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ABSTRACT:  This paper presents an axiomatic characterization of difference-form 

group contests, that is, contests fought among groups and where their probability of 

victory depends on the difference of their effective efforts. This axiomatization rests on 

the property of Absolute Consistency, stating that the difference in winning probabilities 

between two contenders in the grand contest must be the same as when they engage in 

smaller contests. This property overcomes some of the drawbacks of the widely-used 

ratio-form contest success functions. Our characterization shows that the criticisms 

commonly-held against difference-form contests success functions, such as lack of scale 

invariance, are unfounded. Finally, we extend our axiomatization to relative-difference 

contests where winning probabilities depend on the difference of contenders effective 

efforts relative to total aggregate effort.   
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1 Introduction

Despite the relevance and ubiquity of contests in the real world, contest
theory has been often criticized for its great reliance on a particular construct:
The Contest Success Function (Hirshleifer, 1989). This function is a mapping
from the efforts made by contenders into their probability of attaining victory
or, alternatively, their share of the contested prize. Critics argue that the
CSF is too reduced form, too much of a black-box. For instance, the widely-
used Tullock CSF (Tullock, 1967; 1980) under which winning probabilities
or shares depend on relative efforts might seem sensible. But there is no
apparent reason for this functional form to govern most types of contests,
ranging from interstate wars to sport competitions.1 Because of this, the
predictions of contest theory could be seen as too reliant on very specific
functional forms rather than on sound economic principles.
This view is somewhat unfair for two reasons: Firstly, because there are

other areas of Economics where very specific functional forms are often as-
sumed. Secondly, because there is an active and fruitful strand of the contest
literature which in the last few years has provided a variety of foundations
to the most frequently employed CSFs.2 This literature has even attempted
to estimate these functions econometrically.3 As a result of these efforts,
economists have now at their disposal a growing menu of well-founded CSFs
to chose from. The next natural question is which type of CSF is better
suited to each specific application. A systematic study of the properties of
each family of CSFs can contribute to that aim.
One family of contests assumes that winning probabilities depend on the

difference of contenders’efforts. These difference-form contests were intro-
duced by Hirshleifer (1989; 1991) and explored later by Baik (1998) and
Che and Gale (2000) for the case of bilateral contests. Difference-form CSFs
have been shown to emerge naturally in a number of settings. Gersbach and
Haller (2009) show that a linear difference-form CSF is the result of intra-
household bargaining when partners must decide how much time to devote
to themselves or to their partner. Corchón and Dahm (2010) microfound a
difference-form CSF as the result of a game where contenders are uncertain
about the type of the external decider; by interpreting the CSF as a share,
they also show that the difference-form coincides with the claim-egalitarian
bargaining solution. Corchón and Dahm (2011) obtain the difference-form

1For excellent surveys of the contest literature see Corchon (2007) and Konrad (2009).
2These characterizations fall into four main categories: Axiomatic, stochastic,

optimally-designed and microfounded (Jia, Skaperdas and Vaidya, 2013).
3For a detailed discussion of the econometric issues involved in the estimation of CSFs

see Jia and Skaperdas (2011) and Jia et al. (2013).
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as the result of a problem where the contest designer is unable to commit to
a specific CSF once contenders have already exerted their efforts. Skaperdas
and Vaydia (2012) show that the difference-form CSF can be derived in a
Bayesian framework in which contenders produce evidence stochastically in
order to persuade an audience of the correctness of their respective views.
Finally, Polishchuk and Tonis (2013) show that a logarithmic difference-form
CSF results from using a mechanism design approach when contestants have
private information over their valuation of victory. In summary, it is fair to
conclude that difference-form contests are by now well micro-founded. How-
ever, little is known about their actual properties and about how they differ
from the properties of the more often used ratio-form CSFs, where winning
probabilities are a function of the ratio of contenders’effective efforts.
The present paper offers the first axiomatic characterization of the family

of difference-form CSFs. All the existing axiomatizations have limited them-
selves to CSFs of the ratio-form. The key property in those characterizations
is the Relative Consistency axiom. This axiom states that the success of a
group in a smaller contest should be equal to the ratio of the contenders’win-
ning probabilities in the big contest. We replace this axiom by an Absolute
Consistency axiom imposing that the difference in winning probabilities of
two contenders in a smaller contest should be the same as when they are
engaged in the grand contest. We show that Absolute Consistency can over-
come some of the problems presented by the ratio-form CSFs. Our Theorem
1 shows that Absolute Consistency, together with a number of reasonable
axioms already employed in the literature, characterize a generalized version
of the linear difference-form CSF introduced by Che and Gale (2000). This
family of CSFs also encompass as particular cases the ones micro-founded
in the aforementioned literature as well as the ones employed in Levine and
Smith (1995), Rohner (2006), Besley and Persson (2008, 2009) and Gartzke
and Rohner (2011).
With our axiomatization, we help to clarify the properties that charac-

terize the families of CSFs studied in the literature. Contrary to the received
wisdom, we show that the difference-form CSF can be scale invariant, i.e.
homogeneous of degree zero (Theorem 2), and that the difference between
the winning probabilities of two contenders diminishes when their efforts
increase whilst keeping constant the difference between them (Theorem 3).
These misconceptions are due to the common assumption of linear impacts,
which we dispense with, and to the common usage of the term "difference-
form CSF" to refer to the logistic functional introduced by Hirshleifer (1989;
1991), under which winning probabilities are proportional to contenders’ex-
ponential efforts.
In the last part of the paper, we show that a generalization of the Relative
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Consistency axiom can characterize the family of Relative-Difference CSFs
introduced recently by Beviá and Corchón (2014a). In this family of CSFs,
winning probabilities depend on the difference of contenders’effective efforts
relative to total aggregate effective effort. This functional form can overcome
the criticisms against the difference-form CSF mentioned above. Although
our results demonstrate that these criticisms are unfounded, the axiomati-
zation of the Relative-Difference CSFs shows that this family of functions
presents their own advantages, advantages which make them a worthy addi-
tion to the toolkit of researchers working in contest theory.
This paper contributes to the axiomatic work on CSF pioneered by Skaper-

das (1996) and Clark and Riis (1998). Later, Münster (2009), which we
follow closely, extended this characterization from individual to group con-
tests. Arbatskaya and Mialon (2009) and Rai and Sarin (2009) axiomatized
multi-investment contests, whilst Blavatskyy (2010) did the same for contests
with ties. More recently, Hwang (2012) axiomatized the family of CSF with
constant elasticity of augmentation, which encompasses the logistic and the
ratio forms as particular cases. Vesperoni (2013) and Lu and Wang (2014)
axiomatized contests producing a ranking of players instead of a sole winner.
Lu and Wang (2014) characterized success functions for contests with strict
rankings of players, whereas Vesperoni (2013) axiomatized an alternative suc-
cess function for rankings of any type. Finally, Bozbay and Vesperoni (2014)
characterized a CSF for conflicts embedded in network architectures. Let us
add that in our axiomatization we make strong connections with the income
inequality literature, and in particular with the concept of absolute inequal-
ity introduced by Kolm (1976a,b) and with the family of compromise indexes
of inequality formalized by Blackorby and Donaldson (1980). The literature
on inequality measurement offers valuable insights on the properties of func-
tional forms which we explicitly employ at several points of the text. In this
same spirit, Chakravarty and Maharaj (2014) have recently characterized a
new family of individual contests success functions which satisfy properties
akin to the intermediate inequality and ordinal consistency axioms employed
in the income distribution literature.

2 Axiomatization

In order to be as general as possible, we consider a society divided in K ≥ 2
disjoint groups formed by a number nk ≥ 1 of individuals each.4 Denote the

4Individual contests are a particular case of the ones studied here when groups are
formed by just one individual. All our results, except those in Section 4 which deal with
the aggregation of individual efforts within groups, thus apply to individual contests as
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set of groups by K. These K groups are in competition. They are engaged
in a contest which can only have one winner. Members of the contender
groups can expend non-negative effort in order to help their group to win
the contest. Depending on the specific type of contest, these efforts can be
money, time, physical effort or weapons. Denote by xk ≡ {x1k, ..., xnkk} the
vector of efforts in group k and by x the vector (x1, ...,xK). For convenience
we will denote by x−k the vector of efforts in groups other than k.
Efforts determine the winning probability of each group according to a

Contest Success Function (CSF) pk : Rn+→ R+. The function pk(x) can also
be thought of as the share of the prize associated to victory that group k
obtains. For most of the paper, we will favor the former interpretation.
Let us now state the axioms that we would like to impose on our CSF.

2.1 Two basic axioms: Let us first present two axioms introduced by
Skaperdas (1996) in his axiomatization of CSFs for individual contests, later
generalized by Münster (2009) to group contests. These axioms are rather
natural and should thus apply to the class of difference-form group contests
we study in this paper.

Axiom 1 (Probability)
∑K

k=1 pk(x) = 1 and pk(x) ≥ 0 for any x and all
k ∈ K.

Axiom 2 (Monotonicity) Consider two generic vectors xk and x′k such
that x′k > xk. Then,

(i) pk(x
′
k,x−k) ≥pk(xk,x−k), with strict inequality whenever pk(xk,x−k) ∈

(0, 1).

(ii) pl(x
′
k,x−k) ≤pl(xk,x−k) for all l 6= k and l ∈ K.

The axiom of Probability just states that the CSF generates a probabil-
ity distribution over the set of groups. The Monotonicity axiom implies that
group winning probabilities are increasing in the effort of their members and
weakly decreasing in the effort of outsiders. Note that this axiom is weaker
than the Monotonicity axiom employed in Münster (2009) and than the anal-
ogous one in Rai and Sarin (2009).

2.2 Subcontest axioms: The next two axioms relate to contests played
among a generic non-empty subset S ⊆ K of groups. We refer to this contest
among groups in S as a subcontest. Let us denote by pSk (x) the winning

well.
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probability of group k in the subcontest S. In particular, denote by p{k,l}k (x)
the winning probability of group k in the bilateral contest against group l.
Finally, denote by xS and x−S the vector of efforts in the groups inside and
outside S respectively.

Axiom 3 (Independence) pSk (x) does not depend on x−S; or p
S
k (x) can be

written as pSk (xS).

Independence implies that the efforts made by contenders outside a sub-
contest should not matter to its result. As discussed by Skaperdas (1996)
and Clark and Riis (1998), this property relates to the axiom of Indepen-
dence of Irrelevant Alternatives in probabilistic individual choice. Thus, it is
a reasonable property in contests where nature determines the winner. Inde-
pendence also implies that there are no spillovers across subcontests or that
spillovers affect all contenders in S equally.5

The next axiom is essential to the characterizations of the ratio-form
CSFs. Skaperdas (1996) and Münster (2009) who call it Consistency:

Axiom 4 (Relative Consistency) For any vector x, any two groups k, l ∈
S and any subcontest S ⊆ K it must be that

pSk (x)

pSl (x)
=
pk(x)

pl(x)
. (1)

We discuss this axiom below. We rename it as Relative Consistency
in order to avoid confusion with the next axiom, which is crucial in our
characterization of the family of difference-form CSFs.

Axiom 5 (Absolute Consistency) For any vector x and any two groups
k, l ∈ S and any subcontest S ⊆ K it must be that

pSk (x)−pSl (x) =pk(x)− pl(x). (2)

Let us now devote some time to compare the implications of these two
axioms. Relative Consistency has been invoked as a natural assumption.
It states that the relative success of two groups should be identical across
subcontests. However, it necessarily bounds winning probabilities away from
zero. Suppose that a contender k has zero winning probability in the big
contest, whereas group l has a winning probability ε arbitrarily close to zero.
Then group k must have a zero winning probability in any subcontest S,
including the subcontest against the similarly weak group l. Hence, Relative

5We thank Luis Corchon for pointing this out.
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Consistency does not apply in contests where contenders with positive efforts
can lose with certainty.
The Absolute Consistency axiom allows contenders to have zero winning

probability in a natural way. Following the example above, group k would en-
joy a winning probability of 1−ε

2
when fighting against the also weak group l.

Nonetheless, the Absolute Consistency axiom has its own limitations. Sup-
pose that l is instead a very strong contender but that the grand contest
involves such a large number of identically strong groups so l’s winning prob-
ability is just ε. In that case, Absolute Consistency again implies that the
weak group k should enjoy a winning probability of 1−ε

2
in the pairwise contest

between k and l. Absolute Consistency seem thus well-suited to model con-
tests with so severe frictions that differences in winning probabilities across
contenders can seldom become large.
One last word on the comparison of these two axioms. It is interesting to

note that there exists an approximate equivalence between them. Assuming
that all probabilities are strictly positive, taking logs in (1) yields

ln pSk (x)− ln pSl (x)= ln pk(x)− ln pl(x).

Knowing that the first-order Taylor approximation of ln z around one is
z− 1, and applying this to all terms in the expression above, one can obtain
precisely expression (2). Therefore, for relatively high winning probabilities,
the two axioms are approximately equivalent.

2.3 The main theorem: We are now in the position to state our main ax-
iomatization theorem. But before that, and for completeness, let us state the
theorem that characterizes the family of ratio-formCSFs.

Theorem 0 (Münster, 2009) The CSF pk(x) is continuous and satisfies ax-
ioms A1-A4 if and only if it can be written as

pk(x) =
hk(xk)∑

l∈K

hl(xl)
for any x,

where hk(xk) : R
nk
+ → R+ is a non-negative and strongly increasing function

for each k ∈ K.

The function hk(xk) is commonly known as the impact function. It aggre-
gates members’efforts into a measure of their group influence in the contest.
Alternatively, it can be seen as the function determining how effective play-
ers’efforts are. In this case, this function must be strongly increasing, which
implies that hk(x′k) > hk(xk) whenever x′k > xk.
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Let us now characterize the family of the difference-form CSFs. They
emerge from replacing the Relative Consistency axiom by the Absolute Con-
sistency axiom in the previous Theorem.

Theorem 1 The CSF pk(x) is continuous and satisfies axioms A1-A3 and
A5 if and only if it can be written as

pk(x) =max

{
min

{
1

K
+ hk(xk)−

1

K

∑
l∈K

hl(xl), 1

}
, 0

}
for any x, (3)

where all hk(xk) are continuous and weakly increasing functions, i.e. hk(x′k) ≥
hk(xk) whenever x′k > xk.

Proof. Recall that p{k,m}k (x) denotes the winning probability of group k in
the pairwise contest against group m. Then, we can rewrite (2) as

p
{k,m}
k (xk,xm)−p{k,m}m (xk,xm)=pk(x)−pm(x).

Note that by A3 we can write p{k,m}k (x) as p{k,m}k (xk,xm). Now consider
the pairwise subcontest {l,m}. Employing (2) again we get

p
{l,m}
l (xl,xm)−p{l,m}m (xl,xm)=pl(x)−pm(x).

After substracting these two expressions and noting that by the prob-
ability axiom p

{k,m}
m (xk,xm) = 1 − p

{k,m}
k (xk,xm) and p

{l,m}
m (xl,xm) = 1 −

p
{l,m}
l (xl,xm) we can rewrite

pk(x)−pl(x) =2[p{k,m}k (xk,xm)−p{l,m}l (xl,xm)]. (4)

Since this holds for any vector x and the left hand side of the expression
does not depend on xm, hence the right hand side cannot depend on xm
either. Therefore, we can rewrite the right hand side as the difference of two
functions

pk(x)−pl(x) =hk(xk)−hl(xl). (5)

Note that hk(xk) and hl(xl) are continuous functions given that pk(x)
and pl(x) are continuous too. Adding up across all groups in K, we get

Kpk(x)−
∑
l∈K

pl(x) =Khk(xk)−
∑
l∈K

hl(xl). (6)

By the Probability axiom
∑
l∈K

pl(x) = 1, so this expression in addition to

the bounds imposed by the Probability axiom boils down to the expression
stated in the text of the Theorem.
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We must finally prove that each function hk(xk) is weakly increasing.
Consider a pair of vectors x′ and x such that x′ = (x1, ...,x′k, ...,xK) where
x′k > xk. That is, vector x′ is identical to vector x except for group k. By
the Monotonicity axiom it must be that pk(x) ≤ pk(x

′) and pl(x) ≥ pl(x
′).

Combining this with the expression (5) implies that

hk(xk)−hl(xl) = pk(x)−pl(x)
≤ pk(x

′)− pl(x′) = hk(x
′
k)−hl(xl),

thus proving that hk(xk) is weakly increasing. This finalizes the proof.

The difference-form group CSF in (3) relates the success of a group to
the difference between its impact and the average impact of all the groups
involved in the contest. If the impact of the group is above (below) the
average impact, its winning probability must be above (below) the winning
probability that the group would be awarded under a fair lottery.
For the case of individual contests and linear and identical impact func-

tions, i.e. hk(xk) = sxk, the form in (3) boils down to

pk(x) =max

{
min

{
1

K
+

s

K

K∑
l=1

(xk − xl), 1
}
, 0

}
,

which is a generalization to K-players contests of the difference-form intro-
duced by Che and Gale (2000) and later employed by Rohner (2006), Besley
and Persson (2008, 2009) and Gartzke and Rohner (2011).

3 Invariance

3.1 Scale invariance

In this section, we study two other properties employed in previous axiomatic
characterizations of CSFs. These properties impose the invariance of winning
probabilities to certain changes in the profile of contestants’efforts. The first
one, and most-commonly used, is homogeneity of degree zero, which here we
will refer to as scale invariance.

Axiom 6 (Scale Invariance) For all λ > 0 and all k ∈ K,

pk(λx) =pk(x).
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This axiom states that winning probabilities must remain constant to
equiproportional changes in all contenders’ efforts. Scale invariance thus
implies that units of measurement should not matter. This is a desirable
property when efforts are measured in money or military units (battalions,
regiments, etc). It is a property which is also satisfied by the indices of
relative inequality introduced by Atkinson (1970).
Münster (2009) proved that if a CSF satisfies axioms A1-A4 and A6, then

the impact function of all groups must be homogeneous of the same degree.
Let us now characterize the family of scale invariant difference-form CSFs.

Theorem 2 If a CSF satisfies axioms A1-A3, A5 and A6, then it is of the
form (3) and the impact functions hk(xk) are homothetic functions satisfying

hk(xk) = αk + β ln g(xk), (7)

where αk and β > 0 are parameters and g(xk) is homogeneous of degree one.

Proof. By Theorem 1 and A6, and for any two groups k,m ∈ K their impact
functions satisfy

hk(λxk)− hk(xk) = hm(λxm)− hm(xm) =
1

K
[
∑
l∈K

hl(λxl)−
∑
l∈K

hl(xl)].

Hence, because the first two terms of the above expression do not depend
on xk or xm they must depend only on λ. Denote by 1 =(1, ..., 1) the vector
of appropriate length whose components are all equal to one. Then it must
hold true that

hk(λxk)− hk(xk) = hk(λ · 1)− hk(1).
Now add and substract hk(1) to the left hand side of this expression and

denote H(xk) = hk(xk)− hk(1). It can then be rewritten as

H(λxk) = H(λ1) +H(xk).

If xk = t · 1 for t > 0 then

H(λt1) = H(λ1) +H(t1).

Define now G(λ) = H(λ1). This is a function of just one variable and
it is weakly increasing and continuous since by Theorem 1 we know already
that hk(xk) must be weakly increasing and continuous. We can then rewrite

G(λt) = G(λ) +G(t).
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This is one of the Cauchy functional equations whose only solution is
given by G(z) = ln zβ where β > 0 is a constant (Aczél, 1969). Now, this
implies that

H(λ1) = G(λ) = lnλβ,

and by the same token that

H(λxk) = H(xk) + lnλ
β.

Given our definition of the function H, this implies that

hk(λxk) = hk(xk) + lnλ
β.

By A6, it must be that β is identical for all impact functions. Now define
F (xk) = exp{hk(xk)}. It is clear that F (xk) is an homogeneous function of
degree β. This is a function of one variable, which in turn must be a multiple
of a power function, i.e. F (s) = asβ (Münster, 2009; p 355). The argument of
this function can be expressed as a function gk : Rn+→ R+, so we can rewrite

F (xk) = ak(gk(xk))
β.

This function gk(xk) must be homogeneous of degree one since

F (λxk) = λβF (xk)→ gk(λxk) = λg(xk).

Finally, tracing back our steps

hk(xk) = lnF (xk) = ln ak + β ln g(xk) = αk + β ln g(xk).

The difference-form CSF has been often criticized because it seemed to vi-
olate scale invariance (Skaperdas, 1996; Hirshleifer, 2000; Alcalde and Dahm,
2007, p. 103; Corchón, 2007, p. 74). Theorem 2 proves that such criticism is
ungrounded. If the impact function is of the form (7), winning probabilities
under the family of difference-form CSFs in (3) are invariant to equipropor-
tional changes in contenders’efforts. To the best of our knowledge, this family
of scale invariant difference-form CSFs has only been studied in Polishchuk
and Tonis (2013). They microfound the CSF of the form

pk(x) =max

{
min

{
1

K
+ ln g(xk)−

1

K

K∑
l=1

ln g(xl), 1

}
, 0

}
,

by using a mechanism design approach when contenders are individual who
have private information over their valuation of victory. For the case of group
contests, (7) is satisfied by the function hk(xk) = ln(

∑nk
i=1 xik)

β, which we
study in more detail in Section 4.
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3.2 Translation invariance

If a CSF is defined as a function of the difference between contenders’efforts,
another natural invariance property is the following: Winning probabilities
should remain constant when the effort of all contenders increase by the
same amount. This is equivalent to the following property. Let us denote by
1 =(1, ..., 1) the vector whose components are all equal to one.

Axiom 7 (Translation Invariance) For all λ > 0 and all k ∈ K,

pk(x+λ·1) =pk(x).

Skaperdas (1996) and Münster (2009) used this property as an alternative
to homogeneity of degree zero in their axiomatization of the ratio-form CSFs.
Actually, translation invariance can be traced back to the income distribution
literature, and in particular to the concept of absolute inequality introduced
by Kolm (1976a,b). Absolute inequality states that the level of inequality in
a distribution should not vary when the income of every individual increases
by the same fixed amount. Hence, any measure of absolute income inequality
must be translation invariant.
However, note that the Translation Invariance axiom builds in an implicit

bias against big groups. Adding a constant λ to the effort of each member
means that the total group effort increases by λnk. Bigger groups increase
more their effort than smaller groups. Despite of this, Translation Invari-
ance requires that winning probabilities should remain invariant. In order to
correct this bias, we introduce the following axiom:

Axiom 8 (Group Translation Invariance) For all λ > 0 and all k ∈ K,

pk(x1+
λ

n1
·1, ..,xK+

λ

nK
·1) =pk(x).

This property implies that if the total group effort increases equally across
all groups by the same positive amount λ (by increasing each member effort
by a fix amount λ

nk
), winning probabilities should not change. Group Trans-

lation Invariance thus levels the playfield: It eliminates the bias against big
groups implicitly built in the standard Translation Invariance property, a
bias which has been so far overlooked by the literature.6

Before stating our next theorem, consider the following definition:

6Such bias is not built in the Scale Invariance property: When each member’s effort
increases in the same proportion, the total effort of all groups increases in that same
proportion.
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Definition The impact function hk(xk) is said to be translatable if

hk(xk+λ·1) =hk(xk)+βkλ where βk, λ > 0.

We will refer to the scalar βk as the degree of (linear) translatability of
the impact function. Translatability is analogous to linear homogeneity when
a fixed amount is added to the arguments of a function. We again borrow
this concept from the income distribution literature; it is a building block
in the analysis of absolute inequality (Kolm, 1976a, 1976b; Blackorby and
Donaldson, 1980).
We are finally ready to state our theorem characterizing the family of

translation invariant difference-formCSFs.

Theorem 3 If a CSF satisfies axioms A1-A3, A5 and A7, then it is of the
form (3) and the impact functions hk(xk) must be translatable of the same
degree β > 0. If A7 is replaced by A8, then the impact functions hk(xk) must
be translatable of degree βnk.

Proof. Combining Theorem 1 with the Translation Invariance axiom,

p
{k,l}
k (xk+λ·1,xl+λ·1) =p

{k,l}
k (xk,xl)→ hk(xk+λ·1)−hk(xk) =hl(xl+λ·1)−hl(xl).

Since this holds for any k, l ∈ K and for any xl, the right hand side cannot
depend on xl but on λ so the expression can be rewritten as

hk(xk+λ·1) =hk(xk)+φ(λ),

where φ(·) is a continuous function because it is the difference of two contin-
uous function. This expression holds for any λ so

hk(xk+(λ+ µ)·1) = hk(xk + λ·1)+φ(µ) =hk(xk)+φ(λ)+φ(µ)
→ φ(λ+µ) =φ(λ)+φ(µ).

This is just the Cauchy functional equation whose only solution is of the form
φ(λ) = βλ where β > 0 is an arbitrary real number.
The proof when A7 is replaced by Group translation invariance runs along

the same lines. It must be that

hk(xk+
λ

nk
· 1) =hk(xk)+ψk(

λ

nk
),

where ψk(·) is also continuous because it is the difference of two continuous
function. Note that for this expression to hold, it must be also that

ψk(
λ

nk
) =ψl(

λ

nl
) ∀k, l ∈ K. (8)
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Because this holds for any λ then one can write

hk(xk+
λ+ µ

nk
·1) = hk(xk +

λ

nk
·1)+ψk(

µ

nk
) =hk(xk)+ψk(

λ

nk
)+ψk(

µ

nk
)

→ ψk(
λ+ µ

nk
) =ψk(

λ

nk
)+ψk(

µ

nk
).

By induction, it is easy to see that this property implies that ψk(λ) =
nkψk(

λ
nk
). Hence, ψk(λ+µ) =ψk(λ)+ψk(µ). This is just the familiar Cauchy

functional equation whose solution is ψk(λ) = βkλ. This together with (8)
implies that

βk
βl
=
nk
nl

∀k, l ∈ S,

so βk = βnk for all k ∈ K. This completes the proof.

For an example of a translation invariant difference-form CSF, consider
the following impact function which we employ in a companion paper (Cubel
and Sanchez-Pages, 2014):

hk(xk) = ln (
1

nk

nk∑
i=1

e−γkxik)
−βk
γk for γk ≥ 0, βk > 0.

This is the log of a CES function where efforts are exponential. The
parameter γk measures the degree of complementarity of members’efforts.
This function is linear when γk = 0. It violates A2 when γk → ∞ as it
converges to the weakest-link technology (Hirshleifer, 1983).
One remark is in order at this point: In his Theorem 3, Münster (2009)

characterizes the class of ratio-form CSF which are also translation invariant.
He shows that for individual contests, this class boils down to the logistic
CSF introduced by Hirshleifer (1989; 1991). In the literature, the logistic
form is often referred to as a difference-form CSF. We see this as a misnomer.
As our axiomatization makes clear, this form does not satisfy the Absolute
Consistency axiom. Hence, in order to be precise and rigorous, we believe
that the logistic form should remain classified as an element in the family of
translation invariant ratio-form CSFs.

4 Aggregation

So far, none of the properties we have posit on CSFs is specific to group
contests. A distinctive feature of confrontations among groups is that mem-
bers’efforts must be aggregated in some form. This is modelled through the
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impact function. Further assumptions on the aggregation of efforts are thus
needed in order to obtain sharper characterizations. Consider for instance
the following axiom introduced by Münster (2009).

Axiom 9 (Summation) For any k ∈ K consider two effort vectors xk and
x′k such that

∑nk
i=1 xik =

∑nk
i=1 x

′
ik. Then it must be that

pk(xk,x−k) =pk(x
′
k,x−k).

This axiom implies that winning probabilities should remain invariant to
changes in the distribution of efforts within groups which leave total group
effort unchanged. In the context of lobbying or rent-seeking, when efforts
are monetary, such assumption seems to be granted. Underlying this axiom
is the assumption that efforts within groups are perfect substitutes, so the
marginal productivity of individual effort does not depend on the effort made
by other group members.
Let us now apply this property to our characterization of the family of

difference-formCSFs.

Proposition 1 If a CSF satisfies axioms A1-A3, A5, A6 and A9, then it is
of the form (3) and the impact functions hk(xk) satisfy

hk(xk) = αk + β ln(

nk∑
i=1

xik), (9)

where αk, β > 0 are parameters.

Proof. Given Theorem 2, we only need to prove that g(xk) =
∑nk

i=1 xik. By
A9, we know that the impact function can be expressed just as a function of
the total sum of efforts in the group. Hence, it must be that

hk(xk) = hk(
1

nk

nk∑
i=1

xik, ...,
1

nk

nk∑
i=1

xik).

This together with expression (7), implies that it is possible to write
g(xk) = φ(

∑nk
i=1 xik). Since φ(

∑nk
i=1 xik) must be homogeneous of degree one

and it is a function of one variable it must be a multiple of a power function.
Hence,

φ(

nk∑
i=1

xik) = a

nk∑
i=1

xik,

which leads to a function of the form (9) .
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The addition of Summation to our set of axioms yields a tighter char-
acterization of the impact function. Proposition 1 highlights again that the
difference-form CSFs can be homogeneous of degree zero when the function
mapping members’efforts into group impact is logarithmic. This result can
thus respond to a criticism often made against this family of CSFs and which
was originally raised in Hirshleifer (2000)7: If the difference between the ef-
forts of two contenders is kept fixed, the weaker side should be more likely
to win as the efforts of the contenders increase; formally, p{i.j}i (xi, xi + c)
should be increasing in xi, where c > 0. This is equivalent to a positive
elasticity of augmentation (Hwang, 2012). This property is not satisfied by
difference-form CSFs with linear impact functions, such as the logistic form
or the linear CSF in Che and Gale (2000). This is because a linear mapping
from effort into impact implies that the CSF is translation invariant which
in turn implies a zero elasticity of augmentation.8 Such feature seems indeed
unreasonable in many circumstances. It is easy to see that if the difference-
form group CSF satisfies Summation, i.e. the impact functions are as in (9),
the weaker group has a higher winning probability as the total efforts of the
two groups increase whilst keeping the difference between the two constant.9

Let us now turn our attention to the case of translation invariant CSFs:

Proposition 2 If a CSF satisfies axioms A1-A3, A5, A7 and A9, then
it is of the form (3) and the impact functions hk(xk) satisfy

hk(xk) = αk +
βk
nk

nk∑
i=1

xik, (10)

where αk, βk > 0 are parameters, and βk = β for all k. If A7 is replaced by
A8, then βk = βnk.

7“It might be thought a fatal objection against the difference form of the CSF that a
force balance of 1,000 soldiers versus 999 implies the same outcome (in terms of relative
success) as 3 soldiers versus 2! [...] Any reasonable provision for randomness would imply
a higher likelihood of the weaker side winning the 1,000:999 comparison than in the 3:2
comparison.”(Hirshleifer, 2000, p 779)

8Translation Invariance implies p{i.j}i (xi, xi + c) = p
{i.j}
i (xi + t, xi + t + c). Hence,

∂p
{i.j}
i (xi,xi+c)

∂xi
= 0.

9Scale Invariance plus Summation imply that for λ > 1

p1(

n1∑
i=1

xi1, c+

n1∑
i=1

xi1)=p1(

n1∑
i=1

λxi1, λc+

n1∑
i=1

λxi1) ≤ p1(
n1∑
i=1

λxi1, c+

n1∑
i=1

λxi1),

where the last inequality follows from the monotonicity axiom.
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Proof. Again, it is possible to define the impact function as a function of∑nk
i=1 xik but in this case, by Theorem 2, with the property that

φk(

nk∑
i=1

xik + nkλ) = φk(

nk∑
i=1

xik) + βλ,

in case A7 is invoked. Define againHk(t) = exp{φk(t)} so thenHk(
∑nk

i=1 xik+
nkλ) = exp{φk(

∑nk
i=1 xik) + βλ} = exp{βλ}Hk(

∑nk
i=1 xik). and

φk(

nk∑
i=1

xik + λ) = φk(

nk∑
i=1

xik) + λ,

if A8 is employed instead.

Summation plus Translation Invariance imply that impact functions must
be linear. This has an additional implication. Given that the form (3) is
already separable, the equilibrium of any simultaneous-move contest with
a linear difference-form CSF must be in dominant strategies under 1) risk
neutrality or 2) when pk(x) is interpreted as a winning probability. This
is because the marginal benefit of effort does not depend in these cases on
neither the effort of other group members or the effort of outsiders. It is thus
natural that Beviá and Corchón (2014b) have been able to microfound this
type of CSFs by means of dominant strategy implementation. Dominance
solvability does not apply when pk(x) is instead a share, and utilities are
non-linear as, for instance, in Levine and Smith (1995).10

One undesirable consequence of the Summation axiom is that the result-
ing CSFs can admit biases. Take for instance the linear impact in (10) and
plug it in the difference-form (3). That yields

pk(x) =max

{
min

{
1

K
+ αk −

1

K

∑
l∈K

αl + β[
_
xk −

1

K

∑
l∈K

_
xl], 1

}
, 0

}
,

where
_
xk denotes the average effort in group k. Note that any group with

an above-average αk enjoys a head-start in the contest. The reason why the
CSF admits this type of bias is because the Summation axiom remains silent
on the relative success of different groups with the same total effort. One
possibility is to modify this property in order to account for this.

Axiom 10 (Total Effort) For any two groups k, l ∈ K such that
∑nk

i=1 xik =∑nl
i=1 xil it must be that

pk(xk,x−k) =pl(xl,x−l).

10We thank Alberto Vesperoni for pointing this out.
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The axiom is a stronger version of Summation. It is actually a combi-
nation of Summation and the Between-Group Anonymity axiom of Münster
(2009). It requires that two groups with the same total effort must have the
same winning probability regardless of their size. Again, this property can
make sense when efforts are monetary units, but not when efforts represent
time or when group size matters: for instance, the impact of a group of 100
people demonstrating for 10 hours may not be the same as the impact of a
group of 1000 people demonstrating for an hour.
The following Proposition shows that when Total Effort replaces Summa-

tion, the bias described above vanishes.

Proposition 3 If A9 is replaced by A10, then the impact functions charac-
terized in Propositions 1 and 2 must satisfy αk = α for all k ∈ K.
Proof. It suffi ces to show that when A10 holds impact functions, whatever
their functional form, should be identical across groups. To see this note that

hk(xk) = hk(

∑nk
i=1 xik
nk

, ...,

∑nk
i=1 xik
nk

),

because A10 also applies to changes in the distribution of efforts within
groups which maintain total effort constant. Hence, for any vector xk it is
possible to write the impact of the group as a function of the total effort, i.e.
hk(xk) = φk(

∑nk
i=1 xik). Similarly for group l, that is, hl(xk) = φl(

∑nl
i=1 xil).

From this it is clear to see that φk and φl are identical functions since by
A10 they yield the same value whenever they are applied to the same argu-
ment. Hence, impact functions (9) and (10) must not differ across groups
and αk = α for all k ∈ K.

Total Effort eliminates biases in favor of certain groups. Denoting by Xk

the sum of efforts within group k, a particularly interesting CSF satisfying
the Total Effort axiom together with Scale Invariance is

pk(x) =max

{
min

{
1

K
+ β ln

Xk

GX

, 1

}
, 0

}
,

where GX = (
∏

K
l=1Xl)

1
K is the geometric mean of groups’total efforts.

5 Relative difference functions

In the previous sections, we have seen that the criticisms often leveled against
difference-form CSFs rest critically on the implicit assumption of a linear re-
lationship between efforts and impact. Within that framework, some authors
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have proposed new difference-form CSFs which can overcome these problems.
Alcalde and Dahm (2007) and Beviá and Corchón (2014a) introduced new
functional forms where the difference in efforts is divided by some aggregate.
This is again reminiscent of the income inequality literature, and in par-
ticular, of the family of compromise indices, which result from dividing an
absolute index by the per capita income of the distribution and are, therefore,
scale-invariant (Blackorby and Donaldson, 1980).11

Let us now characterize axiomatically the relative-difference contest suc-
cess function (RDCSF) introduced in Beviá and Corchón (2014a). Before
proceeding, let us mention that their family of CSFs admits three parame-
ters so here we just characterize one subset of them which, as it turns out,
emerges from a natural generalization of the Relative Consistency axiom.

Axiom 11 (Affi ne Relative Consistency) For any vector x, any subcon-
test S ⊆ K and any two groups k, l ∈ S it must be that

δ + pSk (x)

δ + pSl (x)
=
δ + pk(x)

δ + pl(x)
, (11)

where δ ∈ [0, 1],

Note that when δ = 0 this axiom coincides with the Relative Consistency
axiom. We bound the parameter δ to be in the interval [0, 1] for the following
reason. Taking logs on both sides of (11) yields

ln(δ + pSk (x))− ln(δ + pSl (x))= ln(δ + pk(x))−(δ + ln pl(x)),

which after repeatedly applying the first-order Taylor approximation around
δ yields again (2). Therefore, Affi ne Relative Consistency and Absolute Con-
sistency become equivalent properties when winning probabilities are close
to δ. Because of that, zero and one are the natural limits to the value of this
parameter.
We are now in the position to state a new Theorem characterizing a

RDCSF belonging to the family introduced in Beviá and Corchón (2014a).12

11The equivalence between inequality indexes and CSFs requires a normalization first.
Note that when all impacts are identical, winning probabilities are all equal to 1

K whereas
any inequality index should be equal to zero when all incomes are identical . Now, taking
this into account, observe that substracting 1

K from the difference-form in (3) and dividing

by the per capita impact 1
K

∑
l∈K

hl(xl) yields the RDCSF in (12) minus 1
K when δ = K−1

K .

12Specifically, for the case s = 1 and β = (δ + 1
K )(K − 1). See their equation (15).
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Theorem 4 The CSF pk(x) is continuous and satisfies axioms A1-A3 and
A11 if and only if it can be written as

pk(x)=max

min

1

K
+ (δK + 1)

hk(xk)− 1
K

∑
l∈K

hl(xl)∑
l∈K

hl(xl)
, 1

 , 0

 for any x s.t. x 6= 0,
(12)

where δ ∈ (0, 1] and the impact functions hk(xk) are continuous and weakly
increasing functions.

Proof. Take three contender groups k, l and m. By A11 we know that

δ + pk(x)

δ + pm(x)
=

δ + pk,mk (x)

δ + pk,mm (x)
=

δ + pk,mk (xk,xm)

1 + δ − pk,mk (xk,xm)

δ + pl(x)

δ + pm(x)
=

δ + pl,ml (x)

δ + pl,mm (x)
=

δ + pl,ml (xl,xm)

1 + δ − pl,ml (xl,xm)
,

where the last equalities hold because of A3. Dividing these expressions
yields

δ + pk(x)

δ + pl(x)
=

δ+pk,mk (xk,xm)

1+δ−pk,mk (xl,xm)

δ+pl,ml (xl,xm)

1+δ−pl,ml (xl,xm)

.

Now fix xm = m 6= 0. It is thus possible to write

hk(xk) =
δ + pk,mk (xk,m)

1 + δ − pk,mk (xl,m)
, (13)

so then
δ + pk(x)

δ + pl(x)
=
hk(xk)

hl(xl)
.

Adding up across all l ∈ K and then solving for pk(x) yields

pk(x) = (δK + 1)
hk(xk)∑

l∈K

hl(xl)
− δ, (14)

which, after some rewriting and after applying the necessary bounds due
to A1, becomes expression (12). We finally need to prove that the impact
functions hk(xk) are strongly increasing. We leave out the case δ = 0 because
then A11 becomes A4 and that case is covered by Theorem 1 in Münster
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(2009). For the case δ ∈ (0, 1] take two vectors x′k and xk. By A2 it must
be that pk,mk (xk,m) < pk,mk (x′k,m) when p

k,m
k (xk,m) ∈ (0, 1). Combining this

with the expression (13) implies that hk(x′k) > hk(xk). Inequalities are weak
if pk,mk (xk,m) ∈ {0, 1}. Hence, hk(xk) is a weakly increasing function. This
finalizes the proof.

This Theorem shows that the family of RDCSF is characterized by the
axiom of Affi ne Relative Consistency. Given that Relative Consistency is a
particular case of this property for δ = 0, this implies that the ratio-form
CSFs is a particular case of the RDCSF.
Let us now characterize the RDCSF satisfying the two invariance proper-

ties considered in Section 3.
Proposition 4 If a CSF satisfies axioms A1-A3, A6 and A11, then it is of
the form (12) and all the impact functions hk(xk) are homogeneous of degree
β > 0. If A6 is replaced by A7 then all the impact functions satisfy

hk(xk + λ1) = eβλhk(xk), (15)

for all λ > 0 and where αk, β > 0 are parameters.

Proof. A6 implies that pk(x) = pk(λx). Recall that (12) can be written as
in (14). Assume for the time being that xk 6= 0. It is then possible to write

δ + pk(λx)

δ + pk(x)
=
hk(λxk)

hk(xk)
=
hk(λ1)

hk(1)
=
δ + pk(λ1)

δ + pk(1)
.

From here the proof can just continue identical to the one for Theorem 2
in Münster (2009) in order to show that hk(λxk) = λβhk(xk). For the case
where xk = 0 we need to be a bit more careful. Assume that for some group
m it holds that xm 6= 0. Then it must be that

pk(0,x−k) = max

min
(δK + 1)

hk(0)

hk(0) +
∑

l 6=k,l∈K

hl(xl)
− δ, 1

 , 0


= max

min
(δK + 1)

hk(0)

hk(0) + λβ
∑

l 6=k,l∈K

hl(xl)
− δ, 1

 , 0


= pk(0, λx−k).

If pk(0,x−k) ∈ (0, 1) then it must be that hk(0) = 0 because
∑

l 6=k,l∈K

hl(xl) >

0. If pk(0,x−k) = 0 then A6 implies that pk(0, λx−k) = 0 so for any λ > 0 it
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must be that
δK + 1− δ

δ

hk(0)∑
l 6=k,l∈K

hl(xl)
≤ min{λβ, 1}.

If hk(0) > 0 then the left hand side of the above expression is strictly
positive so it is possible to find a value of λ arbitrarily close to zero which
contradicts the above expression. Hence it must be that hk(0) = 0. A similar
argument can be used if pk(1,x−k) = 0.
Regarding the second part of the Proposition, using A7 is possible to

write
δ + pk(λ1+ x)

δ + pk(x)
=
hk(λ1+ x)

hk(x)
=
hk(λ1)

hk(0)
=
δ + pk(λ1)

δ + pk(0)
.

From here, the proof continues identically to the one for Theorem 3 in
Münster (2009) only if hk(0) > 0. Let us show that this is the case. Assume
instead that hk(0) = 0. Applying A7 implies that for any λ > 0

pk(0,x−k) = 0

= max

min
(δK + 1)

hk(λ1)

hk(λ1) +
∑

l 6=k,l∈K

hl(xl + λ1)
− δ, 1

 , 0


= pk(λ1,x−k + λ1).

For this expression to hold it must be that for any λ > 0

hk(λ1) ≤
δ

δK + 1− δ
∑

l 6=k,l∈K

hl(xl + λ1).

Because the impact functions are increasing, the summation at right hand
side of the above expression is bounded from below by hm(xm) > 0. Because
impact functions are also continuous, then there exists a value of λ arbitrarily
close to zero which leads to a contradiction.

As we have reiterated, the main criticisms made against the difference-
form CSF characterized in (3) can be overcome with the appropriate choice
of the impact function. It is thus not necessary to resort to the RDCSF in
order to restore scale invariance. Notwithstanding, this family of CSFs has
its own advantages. Let us discuss two of them. First, the RDCSF is not
subject to the "zero probability problem" suffered by the CSFs satisfying
the Relative Consistency axiom. Simple inspection of (11) shows that if
pk(x) = 0 the axiom does not force group k to have zero winning probability
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in all subcontests in which k can participate. Secondly, RDCSF is less rigid
than the family of CSFs satisfying Absolute Consistency. Take again our
example in Section 2.2, where group k is very weak so pk(x) = 0 whereas
group l is very strong but pl(x) =ε because there is a large number of equally
mighty groups in the grand contest. In this case, Affi ne Relative Consistency
implies that in the pairwise contest between k and l, the weak group k
has a winning probability of p{k,l}k (x) = δ(1−ε)

2δ+ε
, which ranges between zero

and 1−ε
2+ε

, which is always smaller that the value that p{k,l}k (x) would take if
Absolute Consistency were imposed instead. Therefore, changes in winning
probabilities across subcontests seems more reasonable when CSFs satisfy
Affi ne Relative Consistency than when they satisfy Absolute Consistency.

6 Conclusion

In this paper, we have offered the first systematic study of group contests
where winning probabilities depend on the difference between their effective
efforts. Our axiomatic characterization encompassed both absolute and rel-
ative difference-form CSFs. This axiomatization employed some tools from
the inequality measurement literature.
We aimed to provide a complete cartography of this family of CSFs.

We demonstrated that, contrary to what has been argued in the literature,
difference-form CSFs can be homogeneous of degree zero, and that they do
not force differences in winning probabilities to remain invariant when ab-
solute differences in raw efforts remain constant. In addition, we were the
first to flag up that the Translation Invariance property builds in an implicit
bias against big groups which should be corrected. In this process, we argued
that the logistic function (Hirshleifer, 1989, 1991), although often referred to
as a difference-form function, does not actually belong to this family. For us,
this label should be reserved only to CSFs satisfying the Absolute Consis-
tency axiom, which the logistic form does not satisfy.
Finally, our axiomatization of relative-difference CSFs showed that this

family of functions presents its own distinctive advantages. One of these
advantages, which this family shares with the family of Absolute Difference
CSFs, is that having a zero winning probability in the grand contest does
not bound to zero the probability of winning smaller contests. This might
be adequate in Political Economy applications where a party may have no
chances in a general election but a large probability of winning a local one.
Difference-form CSFs have not been employed in the contest literature as

often as other functional forms. We hope that, by clarifying its properties,
our axiomatization will persuade researchers in the area to include this family
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of CSFs in their toolkit. Of course, our characterization is normative and
leaves out strategic interactions. Che and Gale (2000) showed that their
linear difference-form CSF often leads to mixed-strategy equilibria and that
any equilibrium in pure-strategies involves that at most one contender is
active. One possible next step would be to check whether the equilibria
of contests under the generalized difference-form CSF axiomatized here still
presents such features. In addition, this form implies the separability on
contenders’efforts, leading to dominant strategy equilibria when impacts are
linear. We explore these issues in a companion paper (Cubel and Sanchez-
Pages, 2014).
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