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Abstract

Background

Plasmodium vivax malaria (Pv-malaria) is still considered a neglected disease despite an

alarming number of individuals being infected annually. Malaria pathogenesis occurs with

the onset of the vector-parasite-host interaction through the binding of pathogen-associated

molecular patterns (PAMPs) and receptors of innate immunity, such as toll-like receptors

(TLRs). The triggering of the signaling cascade produces an elevated inflammatory

response. Genetic polymorphisms in TLRs are involved in susceptibility or resistance to

infection, and the identification of genes involved with Pv-malaria response is important to

elucidate the pathogenesis of the disease and may contribute to the formulation of control

and elimination tools.

Methodology/Principal findings

A retrospective case-control study was conducted in an intense transmission area of Pv-

malaria in the state of Amazonas, Brazil. Genetic polymorphisms (SNPs) in different TLRs,

TIRAP, and CD14 were genotyped by polymerase chain reaction-restriction fragment length

polymorphism (PCR-RFLP) analysis in 325 patients infected with P. vivax and 274 healthy

individuals without malaria history in the prior 12 months from the same endemic area. Para-

site load was determined by qPCR. Simple and multiple logistic/linear regressions were per-

formed to investigate association between the polymorphisms and the occurrence of Pv-

malaria and parasitemia. The C/T (TLR5 R392StopCodon) and T/T (TLR9 -1486C/T)
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genotypes appear to be risk factors for infection by P. vivax (TLR5: C/C vs. C/T [OR: 2.116,

95% CI: 1.054–4.452, p = 0.031]; TLR9: C/C vs. T/T [OR: 1.919, 95% CI: 1.159–3.177, p =

0.010]; respectively). Fever (COEF = 7599.46, 95% CI = 3063.80–12135.12, p = 0.001) and

the C/C genotype of TLR9 -1237C/T (COEF = 17006.63, 95% CI = 3472.83–30540.44, p =

0.014) were independently associated with increased parasitemia in patients with Pv-malaria.

Conclusions

Variants of TLRs may predispose individuals to infection by P. vivax. The TLR5 R392Stop-

Codon and TLR9 -1486C/T variants are associated with susceptibility to Pv-malaria. Fur-

thermore, the TLR9 variant -1237C/C correlates with high parasitemia.

Introduction

Approximately 214 million cases of malaria were diagnosed in 2015, with 438,000 deaths [1].

In Brazil, 140,000 cases were reported, representing 41.7% of cases in the Americas [2,3]. The

Amazon region contributes nearly 99.9% of the malaria notifications, and Plasmodium vivax is

responsible for 83.7% of cases [4,5].

Malaria results in a wide spectrum of clinical manifestations that occur during the vector-

parasite-host interaction, and the first asexual reproduction process occurs in the liver [6,7].

Febrile episodes of malaria start after the interaction between the toxins that are produced by

the schizont and released during the rupture of red blood cells and the phagocytic cells of the

innate immune system [8]. These toxins, also called pathogen associated molecular patterns

(PAMPs) are mainly recognized by toll-like receptors (TLRs) [9]. The Plasmodium PAMPs such

as the glycosylphosphatidylinositol anchors (GPI), hemozoin linked to DNA are recognized by

TLR-1/TLR-2, TLR-4, TLR-2/TLR-6, and TLR-9, respectively, producing an intense inflamma-

tory response and activating dendritic cells, monocyte subtypes, and macrophages [10–16].

The inflammatory response resulting from the pathogenesis of the disease is closely related

to the parasite load and the genetic background of the host [17]. Inflammation and cytokine

production were reported to be higher in P. vivax infection than that in other species such as

Plasmodium falciparum [18–20]. Deletion of TLRs and co-stimulatory molecules in murine

models showed decreased production of proinflammatory cytokines and increased susceptibil-

ity to infection by different species of Plasmodium and other protozoans [11,21–23].

Genetic polymorphisms in TLRs are involved in cytokine activation pathways and may play

a role in resistance or susceptibility to Plasmodium infection. The variant TLR1 I602Swas asso-

ciated with the development of symptomatic malaria and high parasitemia in P. falciparum
malaria (Pf-malaria) [24,25]. Single nucleotide polymorphisms (SNPs) in TLR4 (A299G and

T399I) were shown to be associated with the onset of clinical manifestations of severe Pf-
malaria in African children and pregnant women, and in adults with non-severe symptomatic

malaria [26–28]. Individuals with the SNP R392StopCodon (TLR5) are unable to induce the

intracellular signaling cascade in bacterial diseases, producing lower concentrations of inflam-

matory cytokines such as IL-6 and TNF-α [29,30]. Cytokines are important for parasite load

control and Plasmodium clearance in humans [15,31]

The TLR6 S249P polymorphism may be a risk factor for the development of malaria [24].

Allelic variants in the promoter region of TLR9 -1237C/T and -1486C/T are associated with

parasitemia in Pf-infected individuals and placental malaria [24,27]. The SNP of TIR domain-

containing adaptor protein (TIRAP) S180L appears to confer protection against malaria,
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tuberculosis, and bacterial diseases [32]. CD14–159 is associated with the incidence and mor-

tality of septic shock [33,34].

P. vivax has several PAMPs that are recognized by TLRs, and studies have shown that poly-

morphisms in the TLR genes may be associated with Pf-malaria. In this study, SNPs in the

TLRs, TIRAP, and CD14 genes were investigated in P. vivax infected individuals from the

Amazon region of Brazil. Association of the polymorphisms TLR5 R392StopCodon and TLR9
-1486C/Twith Pv-malaria and the C/C genotype of the SNP TLR9 -1237C/Twith increased

parasitemia was observed.

Materials and methods

Study area and sampling

The study was conducted with biological samples collected from individuals of two areas of the

state of Amazonas, based on the low intra-regional migration of its inhabitants and similar

profiles of malaria transmission. The regions chosen were followed in two cohort studies, enti-

tled "The epidemiology of malaria in the municipality of Careiro", and "The comparative epi-

demiology of P. falciparum and P. vivax transmission in Papua New Guinea, Thailand and

Brazil", carried out in rural and peri-urban areas of the cities of Careiro and Manaus from

2008 to 2011 and 2013 to 2014, respectively.

The Careiro municipality, which is 110 km from the Amazonas state capital Manaus, has

access to a federal highway (BR-319), and has an estimated population of 30,000. Most inhabitants

live in rural areas and are supported by federal programs that encourage the practice of agricul-

ture. The Panelão and Sı́tio Castanho communities comprise an estimated population of 1,200,

and were chosen for the study due to the observation of intense transmission of Pv-malaria [35].

The communities Brasileirinho, Ipiranga, and Puraquequara, located in the peri-urban area

east of Manaus, had an estimated population of 2,500 at the end of 2012, according to a census

conducted by the FMT-HVD team shortly before our sample collection. There is uncontrolled

deforestation in these areas. The economy is mainly based on agricultural and extraction activ-

ities, and is at high risk of Pv-infection [36].

A retrospective case-control study was conducted from the two cohorts. A total of 325

patients with Pv-malaria diagnosed by thick blood smear examination [37] and confirmed by

qPCR [38] were included in the study, along with 274 healthy individuals with no malaria his-

tory in the prior 12 months and confirmed negative by qPCR for Plasmodium spp. during the

cohort studies (Fig 1). All study participants were from the same endemic area, sharing similar

environments and risk of exposure to the parasite.

Ethics statement

The studies were approved by the Comitê de Ética em Pesquisa da Fundação de Medicina

Tropical Dr. Heitor Vieira Dourado (CEP/FMT-HVD process #51536/2012), and by the

Comissão Nacional de Ética em Pesquisa (CONEP) linked to the Conselho Nacional de Saúde

(CONEP process #15197/2008, #349211/2013). All participants read and signed the written

informed consent form. Malaria cases detected in longitudinal studies were treated in accor-

dance with the recommendations of the Brazilian Ministry of Health [39].

Genomic DNA extraction

Samples of 300 μL of blood were collected via finger puncture from each participant for geno-

mic DNA purification. The QIAmp DNA kit (QIAGEN, Chatsworth, CA, USA) was used for

the Careiro study, and the FavorPrepTM 96-well Genomic DNA Kit (Favorgen, Ping-Tung,

TLRs polymorphisms and Plasmodium vivax malaria
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Taiwan) was used for the Manaus study. DNA samples were quantified with a NanoDrop

2000c (Thermo Fisher Scientific, Waltham, MA, USA) to evaluate the concentration, and

purity of nucleic acids.

Quantification of P. vivax DNA by qPCR assay

Parasitemia of Pv-malaria was determined by amplifying the 18S rRNA gene using the 7500

Fast qPCR System (Applied Biosystems, Foster, CA, USA) as described previously [40,41], and

is expressed as number of copies/μL. The primers/probes, qPCR cycling conditions, qPCR effi-

ciency and detection limit are shown in S1 Table. Parasitemia was obtained for only 208 Pv-

malaria patients (Fig 1).

Polymorphism genotyping

The following polymorphisms, TLR1 I602S, (rs5743618), TLR4 A299G (rs4986790), TLR4
T399I (rs4986791), TLR5 R392StopCodon (rs5744105), TLR6 S249P (rs5743810), TLR9 -1237C/

Fig 1. Study and data analysis flow chart. We included 599 eligible participants from two cohort studies conducted in Amazonas. Of these, 274 healthy

individuals without malaria history in the prior 12 months were included in the “Healthy Group” and 325 patients diagnosed with Pv-malaria infection were

included in the “Pv-malaria Cases”. Parasitemia analysis was performed for 208 patients.

https://doi.org/10.1371/journal.pone.0183840.g001
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T (rs187084), TLR9 -1486C/T (rs5743836), TIRAP S180L (rs8177374), and CD14–159
(rs2569191) were investigated. Polymerase chain reaction-restriction fragment length polymor-

phism (PCR-RFLP) analysis was used for allelic discrimination as described previously [24,42,

43]. Briefly, the PCR reaction for each SNP consisted of 1 μL genomic DNA (~ 20ng) added to

24 μL amplification mix containing 0.2 μL (2 U) Platinum™ Taq polymerase (Thermo Fisher

Scientific), 2.5 μL 10x buffer (100 mmol/L Tris-HCl [pH 8.3] and 500 mmol/L KCl), 1 μL

MgCl2 (1.5 mmol/L), 1 μL dNTPs (40 mmol/L), 0.5 μL each of forward and reverse primer (0.25

pmol/L) and 18.3 μL ultrapure dH2O. A total of 10 μL of PCR product was digested with 5 U of

respective restriction endonuclease (New England Biolabs, Ipswich, MA, USA) in enzyme

buffer according to the manufacturer’s instructions. The primers, PCR cycling conditions, and

restriction endonucleases are shown in S2 Table. The fragments generated by PCR-RFLP were

separated by electrophoresis in either a 2% or 4% agarose gel stained with GelRed™ Nucleic

Acid Gel Stain (Biotium, Hayward, CA, USA), and visualized with the UV light Gel Doc™ XR

+ System (Bio-Rad Corporation, Hercules, CA, USA) with a photo documentation system.

Statistical and data analysis

Comparison between groups was performed with the chi-squared (χ2) or Fisher’s exact test

with 95% confidence interval [CI]. The Hardy-Weinberg equilibrium (HWE) was determined

by comparing the frequency of the observed and expected number of genotypes. Simple and

multiple logistic regressions were performed to investigate association between the polymor-

phisms and the occurrence and recurrence of Pv-malaria and parasitemia. For both regression

analyses, the variables age, gender, fever, and hemoglobin levels were included as confounders.

A backward stepwise technique was applied. Variables with p-values less than or equal to 0.2

in the simple linear regression were selected for the multivariate model analysis. The final

model considered all variables that were statistically significant (p<0.05). The analysis of hap-

lotypes and linkage disequilibrium (LD) was carried out by Haploview software (v4.2). Tests

for Hardy-Weinberg equilibrium were performed by an online application (https://ihg.gsf.de/

cgi-bin/hw/hwa1.pl). Regression models were performed by Stata software (v13).

Results

Baseline characteristics of the study population

Baseline characteristics of the study population are shown in Table 1. The median age of the

healthy control and Pv-malaria cases were 39 and 37 years, respectively (p = 0.744). In both

Table 1. Clinical and demographic characteristics of the study population.

Variables Healthy Group Pv-malaria Cases

(n = 274) (n = 325)

Age (years, median [IQR]) 39 [20–57] 37 [19–53]

Gender (male/female) 151/123 200/125

Parasitemia (number of copies/μL, median [IQR]) - 188 [25.5–2,881.5]

Number of infections (median [IQR]) - 2 [0–8]

First infection (yes/no) - 89/236

Fever (yes/no) - 177/148

Headache (yes/no) - 102/223

Chills (yes/no) - 95/230

Myalgia (yes/no) - 90/235

Sweating (yes/no) - 52/273

Hemoglobin (g/dL, median [IQR]) - 13.7 [12.6–14.6]

https://doi.org/10.1371/journal.pone.0183840.t001

TLRs polymorphisms and Plasmodium vivax malaria

PLOS ONE | https://doi.org/10.1371/journal.pone.0183840 August 29, 2017 5 / 14

https://ihg.gsf.de/cgi-bin/hw/hwa1.pl
https://ihg.gsf.de/cgi-bin/hw/hwa1.pl
https://doi.org/10.1371/journal.pone.0183840.t001
https://doi.org/10.1371/journal.pone.0183840


groups, male subjects were predominant (55% and 62%). The average parasite load was 188

copies/uL. A median of 2 malarial episodes was reported by the patients. Approximately 27%

of the Pv-malaria cases were primary infections. Patients reported fever (54%), headache

(31%), chills (29%), myalgia (28%) and sweating (16%). The median hemoglobin level was

13.7 g/dL.

Association of the genotypes and alleles of polymorphisms in TLR5

R392StopCodon and TLR9 -1486C/T with P. vivax malaria

Of all the SNPs studied, only TLR9 -1486C/T slightly deviated from the HWE in Pv-malaria cases

(p = 0.006). TIRAP S180Lwas null in the population studied. The genotypic and allelic frequen-

cies for all the SNPs are shown in Table 2. The genotype distributions for TLR5 R392StopCodon
and TLR9 -1486C/Twere significantly different between the groups (p = 0.03 and p = 0.01,

respectively). The genotypes C/T (TLR5 R392StopCodon) and T/T (TLR9 -1486C/T) appear to be

risk factors for Pv-infection (TLR5: C/C vs. C/T OR = 2.1 [95% CI: 1.1–4.5, p = 0.031]; TLR9:

C/C vs. T/T OR = 1.9, [95% CI: 1.2–3.2, p = 0.01]; TLR9: C/C vs. C/T+T/T OR = 1.6, [95% CI:

1.1–2.5, p = 0.024]). Similar trends were observed at the allele levels for both SNPs. Carriers of

the T allele were at higher risk for developing Pv-malaria (TLR5 OR = 2.1, [95% CI: 1.0–4.3,

p = 0.034]; TLR9OR = 1.3, [95% CI: 1.0–1.7, p = 0.02]).

The TLR9 -1237C/C genotype is associated with increased parasitemia

in Pv-malaria

Table 3 summarizes the univariable and multivariable linear regression analyses for parasite-

mia association with the different variables. Fever (COEF = 7599.46, 95% CI = 3063.80–

12135.12, p = 0.001) and the C/C genotype of TLR9 -1237C/T (COEF = 17006.63, 95%

CI = 3472.83–30540.44, p = 0.014) were independently associated with increased parasitemia.

Linkage disequilibrium of the TLR polymorphisms

Linkage disequilibrium (LD) between polymorphisms in receptors TLR1 and TLR6 (I602S vs.

S249P),TLR4 (A299G vs. T399I), and TLR9 (-1237C/T vs. -1486C/T) was very low, as calculated

by Haploview 4.2 software. The R2 and D’ of the LD were 0.38 and 0.83 for TLR1 and TLR6,

0.18 and 0.44 for TLR4, 0.006 and 0.20 for TLR9.

Discussion

Pv-malaria is still considered a neglected disease despite various efforts directed to its control

and elimination [44–46]. P. vivax presents biological complexity due to the interplay between

environmental factors, parasite load, and the immunological status and genetic background of

the human host [17,47]. The hypnozoite stage in the liver can cause clinical episodes of relapse

with lower parasite load. These are often associated with mild or asymptomatic clinical display

and contribute to the transmission of the disease [48,49]. The molecular mechanisms influenc-

ing these characteristics remain poorly understood. Knowledge of the host genetic factors in

malaria may contribute to the elucidation of the molecular mechanisms involved in the devel-

opment of the disease, as not all individuals exposed to the parasites develop symptoms. The

identification of genes involved in susceptibility or resistance to infection by P. vivax is impor-

tant to understand the pathogenesis of the disease and may contribute to the designing of con-

trol and elimination tools, as well as the development of an effective vaccine.

Innate immunity plays a key role in infectious processes. The discovery of pattern recogni-

tion receptors (PRRs) such as TLRs, Nod-like receptors (NLRs), RIG-I-like receptors (RLRs),

TLRs polymorphisms and Plasmodium vivax malaria
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Table 2. Genotype and allele frequencies of the TLRs and CD14 polymorphisms in patients with Pv-malaria and healthy controls.

Polymorphism, Genotype or Allele Healthy Group Pv-malaria Cases OR (IC 95%) p-value

(n = 274) (n = 325)

TLR1 I602S (rs5743618)

T/T 153 (56%) 188 (58%) 0.9 (0.7–1.3) 0.621 T/T vs. T/G+G/G

T/G 107 (39%) 118 (36%) 0.9 (0.6–1.3) 0.530 T/T vs. T/G

G/G 14 (5%) 19 (6%) 1.1 (0.5–2.3) 0.787 T/T vs. G/G

T 413 (75%) 494 (76%) 1.0

(0.8–1.3)

0.798

G 135 (25) 156 (24%)

TLR4 A299G (rs4986790)

A/A 260 (95%) 312 (96%) 0.8 (0.4–1.7) 0.514 A/A vs. A/G

A/G 14 (5%) 13 (4%)

G/G - -

A 534 (97%) 637 (98%) 1.3

(0.6–2.8)

0.519

G 14 (3%) 13 (2%)

TLR4 T399I (rs4986791)

C/C 261 (95%) 310 (95%) 1.0 (0.5–2.1) 0.940 C/C vs. C/T

C/T 13 (5%) 15 (5%)

T/T - -

C 535 (98%) 635 (95%) 1.0

(0.5–2.2)

0.941

T 13 (2%) 15 (5%)

TLR5 R392StopCodon (rs5744105)

C/C 263 (96%) 298 (92%) 2.1 (1.1–4.5) 0.031 CC vs. CT

C/T 11 (4%) 27 (8%)

T/T - -

C 537 (98%) 623 (96%) 2.1

(1.0–4.3)

0.034

T 11 (2%) 27 (4%)

TLR6 S249P (rs5743810)

C/C 4 (1%) 13 (4%) 1.0 (0.7–1.5) 0.889 C/C+C/T vs. T/T

C/T 73 (27%) 80 (25%) 0.3 (0.1–1.1) 0.057 C/C vs. C/T

T/T 197 (72%) 232 (71%) 0.4 (0.1–1.1) 0.068 C/C vs. T/T

C 81 15%) 106 (16%) 0.9

(0.7–1.2)

0.468

T 467 (85%) 544 (84%)

TLR9 -1237C/T (rs187084)

T/T 192 (70%) 222 (68%) 1.1 (0.8–1.5) 0.641 C/C vs. C/T+T/T

C/T 76 (28%) 93 (29%) 1.1 (0.7–1.5) 0.757 C/C vs. C/T

C/C 6 (2%) 10 (3%) 1.4 (0.5–4.0) 0.484 C/C vs. T/T

T 460 (84%) 537 (83%) 1.1

(0.8–1.5)

0.540

C 88 (16%) 113 (17%)

TLR9 -1486C/T (rs5743836)

C/C 56 (20%) 44 (14%) 1.9 (1.2–3.2) 0.010 C/C vs. T/T

C/T 153 (56%) 183 (56%) 1.5 (1.0–2.4) 0.065 C/C vs. C/T

T/T 65 (24%) 98 (30%) 1.6 (1.1–2.5) 0.024 C/C vs. C/T+T/T

C 265 (48%) 271 (42%) 1.3

(1.1–1.6)

0.020

T 283 (52%) 379 (58%)

CD14–159 (rs2569191)

C/C 91 (33%) 99 (31%) 1.2 (0.9–1.8) 0.244 C/C vs. C/T

C/T 118 (43%) 160 (49%) 1.2 (0.8–1.8) 0.313 C/C+C/T vs. T/T

T/T 65 (24%) 66 (20%) 1.3 (0.9–2.0) 0.173 C/T vs. T/T

(Continued )
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and scavenger receptors has contributed to the understanding of infectious disease [50,51].

TLRs are key mediators in the response to malaria, playing an important role in the bridge

between innate and adaptive immunity, mainly by activation of transcription factor NF-κB

and inducing production of proinflammatory cytokines [52]. SNPs in TLRs and adapter

molecules that influence the inflammatory process and proinflammatory cytokine production

may be associated with susceptibility to infections [34,53,54]. Changes in the production of

these cytokines may influence the control of parasitemia and clinical manifestations of the

disease, since a fine balance in the inflammatory process is essential for parasite clearance

[15,16,55,31]. The data presented in this study suggest an association of polymorphisms TLR5
and TLR9 with Pv-malaria. Furthermore, the SNP TLR9 -1237C/Twas associated with

increased parasitemia.

Allelic variants of TLR1 I602S and TLR6 S249P showed no association with Pv-malaria. An

association of polymorphisms in TLR1 and TLR6 with mild malaria in patients infected with

different Plasmodium species was recently demonstrated. Variants in TLR1 may predispose

patients with Pf-malaria complications and increased parasitemia [24,25]. In addition, SNPs

I602S (TLR1) and S249P (TLR6) were associated with severe malaria in Indian patients, show-

ing the genetic contribution of these variants to the onset of cerebral malaria [56]. TLR-1 and

-6 form heterodimers with TLR-2 and recognize the GPI anchor of the parasite. Mutations in

these receptors can impair recognition and subsequent elimination of Plasmodium [12,24].

SNPs in TLR4 were not associated with Pv-malaria in our study. These polymorphisms

have been associated with severe manifestations of malaria in children and mild symptoms in

pregnant African women infected with P. falciparum [26,27]. Furthermore, T399I and A299G
in TLR4were associated with increased parasitemia in Indian patients with Pf-malaria, indicat-

ing that this receptor is important in inducing immune response to malaria [57]. In addition,

these SNPs appeared to modulate the susceptibility to severe anemia and malaria in Nigerian

children [58,59]. Moreover, there was no correlation between these polymorphisms and com-

plications of malaria in adult patients and in other parasitic diseases, such as chronic Chagas

disease [28,60,61], and this study corroborates this lack of association. The TLR4/CD14 com-

plex is responsible for cytokine production via NF-κB, and the SNP CD14–159 in the promoter

region has been associated with susceptibility to tuberculosis, and was shown to influence the

production of IFN-γ [62–64]. Our data does not show any association of this SNP with Pv-

malaria or parasitemia.

Flagellin (FliC), present in bacteria and parasites, is a ligand of TLR-5. Activation of TLR-5

leads to the production of proinflammatory cytokines such as IL-6 [65]. To our knowledge,

this is the first report of an association of the SNP R392StopCodon in TLR5 with susceptibility

to Pv-malaria. TLR-5 was shown to be a promising alternative to enhance the immunogenicity

of the proteins to specific P. vivax, such as the 19 kDa C-terminal fragment of merozoite sur-

face protein 1 (MSP119) after combination with Salmonella enterica serovar Typhimurium

FliC [66,67]. Thus, we suggest that individuals with this mutation may not react favorably to

this vaccine design. Alternative vaccines for carriers of this mutation must be sought.

The association of the -1486C/T variant present in the promoter region of TLR9 with

Pv-malaria in this study corroborated other observations of association of this SNP with

Table 2. (Continued)

Polymorphism, Genotype or Allele Healthy Group Pv-malaria Cases OR (IC 95%) p-value

(n = 274) (n = 325)

C 300 (55%) 358 (55%) 1.0

(0.8–1.3)

0.908

T 248 (45%) 292 (45%)

https://doi.org/10.1371/journal.pone.0183840.t002
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Table 3. Association of parasitemia with TLR and CD14 polymorphisms in Pv-malaria patients.

Variables Parasitemia

(number of copies / μL)

Crude COEFa

(IC 95%)

p-value Adjusted COEFb

(IC 95%)

p-value

Age -134.9

(-240.4 to -29.4)

0.012 -80.0

(-185.7 to 25.6)

0.137

Gender (Male) 1 - 1 -

Female -1305.8

(-6,131.9 to 3,520.1)

0.594 - -

Fever (No) 1 - 1 -

Yes 8630.2

(4,114.1 to 13,146.2)

<0.0001 7599.5

(3,063.8 to 12,135.1)

0.001

Hemoglobin -661.7

(-2,160.9 to 837.4)

0.385 - -

TLR1 602 (G/G) 1 - 1 -

(T/G) 1872.6

(-8,143.7 to 11,888.9)

0.713 - -

(T/T) 5111.41

(-4,702.3 to 14,925.1)

0.306 - -

TLR4 299 (A/A) 1 - 1 -

(A/G) -4766.5

(-17,680.3 to 8,147.3)

0.468 - -

TLR4 399 (C/C) 1 - 1 -

(C/T) -3050.6

(-14,503.7 to 8,402.4)

0.600 - -

TLR5 392 (C/C) 1 - 1 -

(C/T) 5609.1

(-3,372.2 to 14,590.5)

0.220 - -

TLR6 249 (C/C) 1 - 1 -

(C/T) 3510.9

(-8,571.6 to 15,593.3)

0.567 - -

(T/T) 5610.6

(-5,934.8 to 17,156.1)

0.339 - -

TLR9–1237 (T/T) 1 - 1 -

(C/T) 2006.9

(-3,259.7 to 7,273.4)

0.453 - -

(C/C) 21633.9

(7,922.5 to 35,345.3)

0.002 17006.6

(3,472.8 to 30,540.4)

0.014

TLR9–1486 (C/C) 1 - 1 -

(C/T) -155.6

(-7,297.8 to 6,986.6)

0.966 - -

(T/T) -3133.6

(-10,963.1 to 4,695.9)

0.431 - -

CD14–159 (C/C) 1 - 1 -

(C/T) -1374.1

(-6,668.6 to 3,920.4)

0.609 - -

(T/T) 2708.8

(-4,073.2 to 9,490.9)

0.432 - -

aUnivariable regression linear model.
bMultivariable regression linear model.

https://doi.org/10.1371/journal.pone.0183840.t003
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susceptibility to symptomatic and placental malaria caused by P. falciparum [24,27]. Interest-

ingly, this SNP has been shown to correlate with high Plasmodium parasitemia and low pro-

duction of IFN-γ and TNF-α [24,68,69]. We show the genotype C/C of the SNP TLR9 -1237C/
T was associated with high parasite load. Together, these data confirm recent studies with Pf-
malaria and suggest that TLR9 may play a key role in controlling parasitemia [24,69]. TLR9-

depleted mice showed loss in control of parasitic infections compared to wild type mice

[23,70]. SNPs in TLR9 appear to predispose Indian individuals to severe malaria [71] and these

findings were confirmed in a meta-analysis study with 665 severe malaria patients and 1,187

uncomplicated malaria individuals from India and Africa, with an association of variants

-1486C/T and -1237C/T of TLR9 with severe malaria [72].

This study has some limitations. Although the levels of associations with Pv-malaria and

parasitemia are high, the study population is small. It needs validation with a larger sample

size to confirm the importance of TLR9 and TLR5 in Pv-malaria. The small sample size does

not allow intra-comparison of the genotypes and alleles studied with clinical manifestations of

Pv-malaria, including in asymptomatic, mild, and severe malaria.

To our knowledge, this is the first study to show that variants in the TLR pathway may be

involved in the pathogenesis of P. vivaxmalaria. TLRs are key mediators in response to malaria

as they trigger the expression of proinflammatory cytokines to inhibit parasite growth. TLR5
R392StopCodon and TLR9 -1486C/Tmay predispose individuals to P. vivax malaria, while

TLR9 -1237C/Twas associated with Pv-malaria with high parasitemia. However, additional

studies should be conducted in other endemic areas to confirm the role of host genetics in

infection and pathogenesis of Pv-malaria.
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