
Particle creation in expanding universes

Author: Bernat Plandolit López.
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Abstract: In this work we explore a striking consequence of combining General Relativity and
Quantum Field Theory, namely the creation of particles in expanding Universes. We first review
a known simple 1+1 model and compute the amount of particle creation. Then we explore a
generalization of this model regarding the kind of expansion and the diferences in the particle
creation density.

I. INTRODUCTION

Two of the main cornerstones of the current descrip-
tion of the Universe are General Relativity and Quantum
Field Theory. We don’t have an experimentally tested
theory where they are fully compatible, but we never-
theless have some results of combining them. In this
work, we take advantatge of it and we study an impor-
tant consequence of this pairing: particle creation due to
an expansion of the Universe, a work first carried out by
L. Parker ([1] and [2]).

We will first very briefly review formulation of Quan-
tum Field Theory in curved spacetime, and will learn
that notions of vacuum and particle number are no longer
unique.

We will illustrate these findings with a simple known
example found in Birrell and Davies [3], based on the
work by Bernard and Duncan [4]. We will explicitly
compute particle creation in a 1+1 model of expanding
universe.

We will then consider a generalization of this model,
studying what we will call an n-step expansion and
present numerical evidence to support the conjecture
that particle creation is maximal in the one-step case.

For simplicity, we consider a non self-interacting scalar
field. Backreaction of the scalar field over the metric is
not taken into account.

A. Different vacua, Bogolubov transformations and
particle creation

As explained in [5], we start with a Lagrange density
of a scalar field in curved spacetime. In order to quantize
it, we start by considering the equation of motion. For a
spacelike hypersurface Σ, we can define an inner product
on solutions to this equation which is independent of the
choice of Σ. In flat spacetime, the procedure now would
be to define a complete orthonormal set of positive- and
negative-frequency modes that form a basis for solutions
in order to expand the field operator in terms of this
solutions and creation and annihilation operators.

In a flat Minkowski spacetime we can find a time-
like Killing vector, and we can define positive frequency
modes with respect to it. From this, we can define a

vacuum state and from it an entire Fock space. What is
particular of this case, is that Poincaré’s group of symme-
tries is privileged. Therefore, any inertial time coordinate
is related by a Lorentz transformation, and all possible
vacuum states are the same, and so is the number oper-
ator.

In a general spacetime, there will generically not be
any timelike Killing vector. Hence, we will not in general
be able to find mode solutions that separate into time-
dependent and space-dependent factors, and thus we can-
not classify modes as positive- or negative-frequency. We
can find sets of basis modes, but there will be no way to
prefer one over the rest, and the notion of vacuum and
number operator will depend on the set chosen. Different
observers will differ in their observations of the number
of particles.

A general quantized scalar field φ(x) can be decom-
posed in a complete orthonormal set of mode solutions
of the field equation like

φ(x) =
∑
i

[
aiui(x) + a†iu

∗
i (x)

]
, (1)

with a vacuum state |0〉 defined by

ai|0〉 = 0, ∀i, (2)

and a Fock space. As carried out in Birrell and Davies
[3], consider, then, a second complete orthonormal set of
modes uj(x). We can expand our field φ(x) in terms of
our new choice of modes like

φ(x) =
∑
j

[
ajuj(x) + a†ju

∗
j (x)

]
. (3)

This decompositon gives a new vacuum state |0〉 defined
by

aj |0〉 = 0, ∀j, (4)

and consequently a new Fock space.
Given that both sets are complete, the new modes uj

can be expanded in terms of the old:

uj =
∑
i

(αjiui + βjiu
∗
i ) , (5)
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and conversely

ui =
∑
j

(
α∗jiuj − βjiu∗j

)
. (6)

These relations are known as Bogolubov transformations,
and the matrices αji, βji are called Bogolubov coeffi-
cients. These coefficients also relate the creation and
anihilation operators through

ai =
∑
j

(
αjiaj + β∗jia

†
j

)
, aj =

∑
i

(
α∗jiai − β∗jia

†
i

)
.

(7)
Now, it can be seen that the two Fock spaces based on

the two choices of modes ui and uj are different so long as
βji 6= 0. An easy example of great value for our purposes
is to see that the vacuum states are different. We can
check this by observing that |0〉 is not annihilated by ai:

ai|0〉 =
∑
j

(
αjiaj + β∗jia

†
j

)
|0〉 =

∑
j

β∗ji|1j〉 6= 0 (8)

As a consequence, the expectation value of the opera-

tor for number of ui modes, Ni = a†iai, will give a non-
zero value in |0〉

〈0|Ni|0〉 =
∑
j

|βji|2, (9)

which means that the vacuum of the uj modes contains∑
j |βji|2 particles in the ui mode. That is what we will

call particle creation.

II. A KNOWN SIMPLE MODEL

We consider the problem proposed in [3], based on [4].
We assume a 2-dimensional Robertson-Walker Universe,
that is, with line element of the form

ds2 = dt2 − a2(t)dx2. (10)

We can define a new time variable η such that dη = dt
a .

Hence, we have

ds2 = a2(η)
(
dη2 − dx2

)
:= C(η)

(
dη2 − dx2

)
. (11)

Such a metric is manifestly conformally flat, and we
call C(η) the conformal scale factor.

Our aim is to study a Universe in which the in and out
regions are flat Minkowskian regions. A conformal scale
factor is proposed of the form

C(η) = A+B tanh (ρη) , (12)

with A, B, ρ positive constants such that A > B so
the scale factor is positive. This conformal scale factor
satisfies

C(η) = A±B, η → ±∞ (13)

FIG. 1: C(η) = A+B tanh (ρη). We can see that the in and
out regions of the conformal scale factor give a Minkowskian
flat space.

and so the in and out regions become flat Minkowskian
regions (figure 1).

We will treat scalar fields without self-interactions.
The fully covariant scalar field equation is then[

� +m2 + ξR
]
φ(x) = 0 (14)

where � is the d’Alembertian operator (� = gµν∇µ∇ν),
m is the mass of the particle, ξ is the coupling to the
metric and R is the Riemann curvature scalar. For
the coupling we can distinguish two relevant cases: the
minimal coupling ξ = 0 and the conformal coupling

ξ(n) = 1
4

(
n−2
n−1

)
, with n the dimension of the spacetime.

In the particular case of the 2-dimensional problem we
are solving, the minimal and the conformal couplings are
equivalent. In this work, we set ξ = 0.

A general quantized scalar field φ(x) can be written
like equation (1), where ui(x) is a complete orthonormal
set of mode solutions of the field equation, the index i
covers the set of quantities necessary to label the modes,

and ai, a
†
i are the annihilation and creation operators

from which we can build our Fock space, with vacuum
|0〉.

A. Simple model solution and evidence of particle
creation

Following [3], we solve the equation in order to find the
modes. Given that C(η) is not a function of x (space),
spatial translation is still a symmetry. From now on we
will write x = x. Therefore, we can separate variables

uk(η, x) = Sk(x)χk(η), (15)

and we get to the differential equations

1

χk(η)

∂2χk(η)

∂η2
+C(η)m2 =

1

Sk(x)

∂2Sk(x)

∂x2
= −k2 (16)

with k a constant. This constant k is the reason why
we labeled the modes previously. As we do not have
any boundary condition for space, k can take any real
value. The sign of it is chosen in order to have in the
solutions an oscillator behavior rather than an exponen-
tial one. Fixing C(η) = A+B tanh (ρη), we can find two
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linearly dependent solutions that have different behavior
at the limits η → ±∞. Both behaviors will be of plane
waves, i.e., the one that a free particle would have in a
flat Minkowskian spacetime such as our in and out re-
gions. Therefore, we can write two normalized solutions
for the modes uink (η, x) and uoutk (η, x), found in [3] with

ωin =
√
k2 +m2(A−B) (17)

ωout =
√
k2 +m2(A+B) (18)

ω± =
1

2
(ωout ± ωin) (19)

and labelled so as to match the respective limits

uink (η, x)→ (4πωin)−1/2eikx−iωinη, η → −∞ (20)

uoutk (η, x)→ (4πωout)
−1/2eikx−iωoutη, η → +∞ (21)

We clearly see that these mode solutions are differ-
ent. They have been chosen for their asymptotic plane
wave behavior, but they are solutions of the whole space-
time. Thus, as seen in (I.A), they define different vacuum
states in the in and out regions and generally we will find
a non-zero number of uoutk modes in the in vacuum, i.e.,
particle creation. To see this, we need to find the Bo-
golubov coefficients. Using the linear properties of the
hypergeometric functions described in [6], we can find

uink (η, x) = αku
out
k (η, x) + βku

out∗
−k (η, x), (22)

with

αk =

(
ωout
ωin

)1/2
Γ(1− (iωin/ρ))Γ(−iωout/ρ))

Γ(−iω+/ρ))Γ(1− (iω+/ρ))
, (23)

βk =

(
ωout
ωin

)1/2
Γ(1− (iωin/ρ))Γ(iωout/ρ))

Γ(iω−/ρ))Γ(1 + (iω−/ρ))
, (24)

with the relations αk,k′ = αkδk,k′ , βk,k′ = βkδk,−k′ .

B. Observations

As seen in (I.A), the value |βk|2 is the expected number
of detected quanta in the mode k. If βk = 0, then the in
and out vacuums (|0〉in and |0〉out respectively) are the
same state.

Provided that we stated the relations A and B are
positive and A − B > 0 based on the assumption that
the Universe has a positive scale factor, the only problem
that we could face in expressions (23) and (24) is that we
had m and k going to zero.

If we put m = 0 we find

αk = 1, βk → 0. (25)

We see that there is no particle creation for m = 0.
That is a manifestation of the conformal symmetry.

When we have m = 0, we have extra symmetry in our
problem, and it prevents particle creation.

On the other hand, if we fix m and take k → 0, we find
the same expected result.

Once we had studied the Bogolubov coefficients, we
can compute |αk|2 and |βk|2:

|αk|2 =
sinh2 (πω+/ρ)

sinh (πωout/ρ) sinh (πωin/ρ)
(26)

|βk|2 =
sinh2 (πω−/ρ)

sinh (πωout/ρ) sinh (πωin/ρ)
(27)

It can be checked that |αk|2 − |βk|2 = 1, a general
property of the Bogolubov coefficients.

III. STUDY OF THE NUMBER DENSITY OF
CREATED QUANTA N

A. Preliminar considerations. Maximum N.

As seen in (I.A), and noticing that in our problem k is
a real continuous variable, substituting the sums for in-
tegrals, N can be computed through the coefficient |βk|2
like

N =

∫ +∞

−∞
|βk|2dk. (28)

Then, we will first of all study the coefficient |βk|2.
Performing a rather lengthy but straightforward compu-
tation, and given A, B positive, A > B, we get

d|βk|2

dk
< 0. (29)

Physically, it means that particles with a very high fre-
quency do not feel the expansion. On the other hand,
particles with a low frequency do feel it rather signifi-
cantly.

Similarly to (29),

d|βk|2

dρ
> 0. (30)

This tells us that in this Universe in expansion, the
particle creation is larger as larger is the slope of the hy-
perbolic tangent of the conformal scale factor, i.e., as ρ
increases. This last result leads to the idea of a possi-
ble maximum number density of quanta created in this
expansion given when ρ→∞ (figure 2), which would be

N(ρ→∞) =

∫ +∞

−∞
|βk(ρ→∞)|2dk, (31)

provided that this integral converges.

Treball de Fi de Grau 3 Barcelona, January 2017



Particle Creation in Expanding Universes Bernat Plandolit López

FIG. 2: |βk|2(k) for three values of ρ such that ρ1 < ρ2 <
ρ3. We see that the sign of the derivative would lead to a
maximum N , provided that the integral of |βk(ρ → ∞)|2
converges.

B. Computation of N in the limit ρ→ ∞

The total number density of created quanta is com-
puted as in equation (31). We will focus in the ρ → ∞
limit. First of all, we see that

|βk(ρ→∞)|2 =
ω2
−

ωoutωin
=

1

4

(
ωout
ωin

+
ωin
ωout

− 2

)
.

(32)
Hence

N(ρ→∞) = 2

∫ +∞

0

|βk(ρ→∞)|2dk

=
m
√
A

2

∫ +∞

0

(√
k20 + 1 + x

k20 + 1− x
+

√
k20 + 1− x
k20 + 1 + x

− 2

)
dk0,

(33)
where we defined k0 = k

m
√
A

and x = B
A , 0 ≤ x < 1. The

resulting integral will be the cornerstone of our following
discussion, and it can be solved in terms of complete
elliptic integrals of the first and second kind. Explicitly,

N(ρ→∞) = m
√
A
K
(√

2x
1+x

)
− (1 + x)E

(√
2x
1+x

)
√

1 + x
.

(34)
This expression matches the facts that if m = 0 we did

not have particle creation, and if B = 0, i.e., there is no
real expansion, we are in the case x = 0 and again there
is no particle creation.

An interesting feature easy to check of equation (33)
is that it is symmetric with respect to x, and therefore
so is (34). It means that whether we treat an expansion
or a contraction, the number density of particles created
would be the same.

C. Particle creation in multiple expansion periods
of the ρ→ ∞ kind

We have computed N(ρ → ∞) in a Universe that
has undergone a one-step expansion. We will denote it

N1(ρ → ∞). Now we are going to study this number
in a Universe that has the same initial and final states
but the expansion has n steps of the kind ρ→∞ (figure
3), stopping in the middle flat regions enough time to let
the out modes to become plane waves. We will call it
an n-step expansion. The question we want to address is
whether the one-step expansion gives the largest number
density of particle creation or it is accomplished with a
larger number of expansions.

FIG. 3: Universe with the same initial and final states but
with n equidistant additional expansions (n-step expansion).
The expansions are separated enough in time to let the out
modes to become plane waves.

For every j-step in the expansion, 1 ≤ j ≤ n, we will

have u
(j),in
k and u

(j),out
k modes, formally equal to those

computed in section (I.C). The key argument in this
procedure is to think that the expansions are separated

enough in time for u
(j),out
k modes to become plane waves.

Then, in the second expansion, as they arrive from the

”negative” side of time, these u
(j),out
k modes become the

corresponding u
(j+1),in
k modes, as the frequency ω

(j+1)
in

will be the same as ω
(j)
out.

With all this stated, the number density of created
particles in this n-step expansion, that we will note

Nn(ρ → ∞), will be the sum of the u
(j),in
k modes cre-

ated in the middle flat region’s vacuum of every j-step.
Therefore, the total particle creation density in the n-step
expansion is

Nn(ρ→∞) =

n∑
j=1

∫ +∞

−∞
|β(j)
k (ρ→∞)|2dk. (35)

In analogy with the N1(ρ→∞) case, we can consider a
particular scale factor for every j-th step in the expansion
and perform the very same integral of equation (33) with
a redefinition of the parameters. As a result, the number
density of particle creation in an n-step expansion is given
by the expression

Nn(ρ→∞) = m

n∑
j=1

√
A+B

(
2j − 1− n

n

)

×

K
(√

2x(j)

1+x(j)

)
− (1 + x(j))E

(√
2x(j)

1+x(j)

)
√

1 + x(j)

 (36)
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with the condition A > B, and this determines the values
of x(j) = B

nA+B(2j−1−n) .

We can observe that, for every n-step expansion, either
m = 0 or B = 0 give no particle creation.

D. Comparison of the particle creation in multiple
expansion periods of the ρ→ ∞ kind

As we found a computable expression for Nn(ρ→∞),
we can compare its behavior for diferent expansions.

FIG. 4: Ni(ρ → ∞) for i = 1, 2, 3, 4 (from higher to lower)
with m = 1, fixing A = 10 and varying B ∈ [0, 10).

In view of the results obtained (figure 4), we can con-
jecture by numerical evidence

Np(ρ→∞) > Nq(ρ→∞)⇔ p < q. (37)

A conclusion of this statement is that the maximum
creation of particles occurs when the expansion takes
place with only one step.

IV. CONCLUSIONS

• We mainly studied the 2-dimensional case in mini-
mal (conformal) coupling with a very specific con-
formally flat metric. For massive scalar fields we
have reviewed the argument for particle creation
from a vacuum state. For massless scalar fields we
found that no particle creation exists. Even more,
the reason of this result resides in the fact that if
we keep conformal coupling in higher dimensions
this property is mantained. Conformal symmetry
in such an expansion with Minkowskian in and out
regions turns these regions indistinguishable and
therefore they have the same vacuum state.

• In the situation where particle creation takes place,
we have solved the problem for what we called an
n-step expansion and computed the maximum den-
sity of particles created from the vacuum state.
From this formula, numerical evidence suggests the
conjecture

Np(ρ→∞) > Nq(ρ→∞)⇔ p < q,

which tells that the less steps the expansion takes
place in, the more the particles created.

Acknowledgments

I would specially like to thank my advisor Dr. Bar-
tomeu Fiol for introducing me to a new area in physics
and guide me through it with dedication and motivation.
I would also like to thank my parents, my sister, and my
friends, for being always constant supporters.

[1] Parker, L. (1969). Quantized Fields and Particle Creation
in Expanding Universes. I. The Physical Review, 183(5).

[2] Parker, L. (1971). Quantized Fields and Particle Creation
in Expanding Universes. II. The Physical Review, 3(2).

[3] N.D. Birrell, P.C.W. Davies, Quantum fields in curved
space, (Cambridge monographs on mathematical physics,
Cambridge University Press, 1982).

[4] Bernard, C. and Duncan, AL. (1977). Regularization and
Renormalization of Quantum Field Theory in Curved

Spacetime. Annals of Physics (NY), 107(201).
[5] Carroll, S., Spacetime and Geometry. An Introduction to

General Relativity, (Pearson Education Limited, 2014).
[6] Abramowitz, M., Stegun, I.A., Handbook of Mathematical

Functions With Formulas, Graphs ans Mathematical Ta-
bles, (United States National Bureau of Standards, 1972,
10th. ed.): 559, formulas (15.3.3) and (15.3.6)

Treball de Fi de Grau 5 Barcelona, January 2017


