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Summary 

In order to explain the universal metric properties associated with 

the breakdown of invariant tori in dissipative dynamical systems, 

Ostlund, Rand, Sethna and Siggia together with Feigenbaum, Kadanoff 

and Shenker have developed a renormalisation group analysis for 

pairs of analytic functions that glue together to make a map of the 

circle. Using a method of Lanford's, we have obtained a proof of the 

existence and hyperbolicity of a non-trivial fixed point of the 

renormalisation transformation for rotation number equal to the 

golden mean (�5 - 1)/2. The proof uses numerical estimates obtained 

rigorously with the aid of a computer. These computer calculations 

were based on a method of Eckmann, Koch and Wittwer. 
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0. Introduction 

In the late seventies, Feigenbaum (1978) made a remarkable discovery 

while studying one-parameter families of quadratic maps on an 

interval. Looking at the parameter values for which successive 

period doubling bifurcations occurred, he found that they 

accumulated at an asymptotically geometric rate and that this rate 

was universal in the sense that is was the same for many different 

families. Using the idea of -a "renormalisation group" from the study 

of critical exponents in statistical physics, he developed an analysis 

to explain this phenomenon, which was based on ýa number of 

conjectures about a non-linear "renormalisation transformation" on 

function space. 

This work has produced a great deal of interest in the dynamics 

world, not least because here were quantitative results' coming from a 

primarily qualitative area of mathematics. The universal period 

doubling sequences have been found in higher dimensional dissipative 

systems and in real physical systems (see Collet and Eckmann (1980)). 

The conjectures themselves proved a tough nut to crack and were 

only solved by Lanford (1982) and, in part, by Campanino, Ruelle and 

Epstein (1981) in 1981. Both of these proofs used functional analytic 

estimates obtained rigorously on a digital computer. 

Feigenbaum-like universal behaviour has been found in other, systems 

undergoing a "transition to chaos. " -These - include conservative 

systems where universality has been found for period doubling 

(Eckmann et al (1982)), and for the breakdown of K. A. M. tori (McKay 

(1982)). Manton and Nauenberg have discovered universal behaviour 

in complex dynamical systems (Manton "and- Nauenberg (1983), Widom 

(1983)). 
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We shall be concerned with another path to chaos found in 

dissipative systems, namely the famous Ruelle-Takens scenario (Ruelle 

and Takens (1971)): 

steady state -> periodic -> quasi-periodic -> chaos 

Ostlund, Rand, Sethna and Siggia (1983) and Feigenbaum, Kadanoff 

and Shenker (1982) have developed a renormalisation scheme to 

explain universal behaviour in dissipative systems undergoing the 

Ruelle-Takens transition. This scheme is based on one dimensional 

maps of the circle for which universal behaviour was discovered ' by 

Shenker (1982). This universal behaviour has now been observed 

experimentally (Fein et al (1985)). We have developed a Lanford-type 

proof of the most important conjectures made in Ostlund et al (1983). 

In what follows, we shall explain in more detail the background to 

the theory in Ostlund et al (1982) and Feigenbaum et al (1982). We 

then state our results, followed by a description of the proof. We 

conclude with a brief discussion of some of the philosophical and 

mathematical implications of the method of proof. We relinquish most 

of the details of the proof to the appendices at the end. 

More specifically, in Chapter 1 we give the physical motivation for 

the theory developed in Ostlund et al (1983). We review this theory 

in Chapter 2. Chapter 3 contains a statement of the results and a 

description of the proof. In Chapter 4 we give the basic ideas behind 

the numerical functional analysis used in the proof, while most of the 

details are left to the appendices. Chapter 5 contains a discussion of 

some of the philosophical and mathematical questions arising from this 

type of proof. The- references are listed in Chapter 6. 

Appendix 0 contains a brief list of some of the notation used 

elsewhere in the text. Appendix 1 contains a brief review of the 

theory of continued fractions, while Appendix 2 does the same for 
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circle maps. Appendix 3 contains a number of results on the spaces 

of analytic functions that we use. We discuss the notion of analyticity 

improving linear operators and show that they are compact operators. 

We list some results on perturbation theory for linear operators and 

discuss various aspects of the L1-spaces that we use. Appendix 4 

details various results on the spectrum of the derivative of the 

renormalisation transformation, and in Appendix 5 we list some basic 

results on stable and unstable manifolds. Appendix 6 contains various 

formulae connected with the renormalisation transformation and its 

derivative. Appendix 7 contains the computer program and some 

detailed explanatory notes. Finally, in Appendix 8 we discuss the 

error bounding routines and the implementation of numerical 

functional functional analysis on the computer. 

t 

ý. 

ý, 

-. 
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1. Physical Motivation 

The aim of this chapter to provide some physical motivation for the 

problem we shall discuss in Chapter 2. We shall assume a familiarity 

with the basic ideas of dynamical systems. These, include the notions 

of flows, maps, orbits, hyperbolic sets, stable and unstable manifolds 

and attractors (see Palis and De Melo (1982) and Irwin (1980) for 

more information). In this account we shall not be concerned with 

mathematical rigour. 

We are interested in parametrised dissipative dynamical systems on 

some (possibly infinite dimensional) manifold. For example, this 

manifold might be the space of velocity fields of a fluid with the flow 

corresponding to evolution under the Navier-Stokes equations. The 

parameter will be in general be some form of "stress" on the system 

or a measure of the non-linear departure from a simple system. 

For each parameter value, there will be attractors that will govern 

the long term behaviour of the system. We are interested in the 

changes or bifurcations that take place in the attracting sets as we 

vary the parameter. Of particular interest is the transition from 

regular motion to turbulent or chaotic motion. Of course, there are 

many possibilities that can occur and we shall focus on one 

particular scenario, which, as we shall see, has been found in some 

physical systems. 

One common bifurcation is the Hopf birfurcation (see Marsden and 

McCracken (1976)) in which an attractive stationary point of a flow 

destabilises and throws off an attractive periodic orbit. This is 

illustrated in Figure (1). Under further change in the parameter, this 
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Figure 1. The Hopf bifurcation. 
As the parameter u is increased, an 
attractive stationary point for thd- 
flow destabilises and throws off a 
periodic orbit. 
(Pictures from Zeeman (1982) and 
Whitley (1983). ) 
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periodic orbit can itself become unstable and bifurcate to an 

attracting two dimensional torus (or 2-torus) (Figure (2)). The flow 

on the 2-torus is determined by two frequencies fl, f2. If their 

ratio fl/f2 is rational then the flow on the torus is "phase-locked. " 

In this case there is an attractive periodic orbit within the torus. On 

the other hand, if the ratio is irrational then the flow on the torus 

is "quasi-periodic" (with two frequencies) and the orbits wrap 

densely round the torus. 

In the 1950's Landau developed a theory for the onset of turbulence 

in fluids (Landau and Lifschitz (1959)). He supposed an infinite 

sequence of Hopf bifurcations producing quasi-periodic motion of 

ever increasing complexity. However Ruelle and Takens (1971) 

showed that the Landau model was not likely (at least in a topological 

sense) and suggested modelling chaotic motion by low dimensional 

"strange attractors" (i. e. attractors that were not stationary or 

periodic). The flow on these attractors shows "sensitive dependence 

on initial conditions, " which means that orbits of points that are 

initially close together in phase space diverge quickly and after a 

while there is no correlation between them. This gives the effect of 

"randomness" in systems that are completely deterministic. Ruelle and 

Takens showed that a direct transition from quasi-periodicity on a 

2-torus to chaotic motion was not an unlikely event. It is this 

transition that we shall be dealing with here. The basic model can be 

written as: 

(stationary state --->) periodic ---> quasi-periodic ---> chaotic 

(1 frequency) (2 frequencies) 

We shall now describe two physical sytems that display this type of 
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Figure 2. An attracting 2-torus in phase space. 
Orbits of nearby points are asymptotic to the 
torus. The flow on the torus is determined by-two 
frequencies f1 and f2. If f1/f is rational, then 

2 the flow is pAase locked. OtFierwise the flow is 
quasi-periodic and orbits wrap densely round the 
torus. - 
(Picture from Jensen et al (1984). ) 
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behaviour. They are Taylor vortex flow and Rayleigh-Renard 

convection. They are illustrated in Figure (3). We shall only give a 

brief description here. A detailed account is given in Swinney and 

Gollub (1981). - 

(i) Taylor vortex flow 

In this experiment, fluid is placed between two concentric cylinders 

and the inner cylinder is rotated with angular velocity Cl. This Cl is 

the "stress parameter" on the system. For small values of Cl the 

fluid rotates laminally around the inner cylinder. But for larger Cl, 

instabilities produce Taylor cells that can be seen clearly in Figure 

(5), which shows the motion of the fluid for various values of a. 

Inside the cells the fluid swirls as it rotates around the inner 

cylinder. The orientation of this swirling (vortex) motion alternates 

from cell to cell. However, although the motion is rather elaborate, at 

first the picture is of steady state flow. The flow pattern is 

stationary in time. As Cl is increased, the system bifurcates and the 

flow pattern modulates producing wavy vortex flow. At first, this 

modulation is periodic, but as Cl is further increased the modulation 

becomes quasi-periodic; the flow never quite returns to its original"' 

state. Further increase in Cl, produces turbulent flow, clearly visible 

in the last picture of Figure (5). However, although turbulent, there 

is still a great deal of order in the flow. 

(ii) Rayleigh-Benard convection 

The Rayleigh-Benard experiment consists of a rectangular - cell 

containing fluid (Figure (3) ). A temperature difference between, the 

top and bottom faces of the cell produces convection currents in the 

fluid. The size of the temperature difference AT is the "stress" 
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(a) Taylor vortex flow (b) Rayleigh-Benard conv- 
ection flow 

Figure 3. The experimental apparatus for Taylor vortex flow 
and for Rayleigh-Benard convection flow (Pictures from 
Swinney and Gollub (1978). ) 
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parameter. This system also bifurcates from periodic to chaotic motion 

through quasi-periodicty with two frequencies. 

Referring to Figure (4), we see the spectral diagrams that come from 

time series measurements on these systems. Periodic flow is 

characterised by peaks at a single frequeny fl (and possibly at its 

harmonics - 2fl, 3f1, ... ). The spectral diagram for quasi-periodic flow 

shows peaks at two frequencies fl and f2 and at integer combinations 

mfl + nf2 of these frequencies. The characteristic feature of 

turbulent systems is broad band spectrum; a wide range of 

frequencies can be discerned above -the 
background noise of the 

system. This type of behaviour is often called weak turbulence since 

sometimes a considerable degree of order persists in the flow. 

In Ostlund et al (1983) a mechanism is suggested for the breakdown 

of the 2-torus in phase space producing turbulent flow. First of all 

the flow is reduced to a discrete time dynamical system by means of 

a Poincare Section (Figure (6)). If we take a codimension one 

hypersurface E that is transverse to the 2-torus, then, sufficiently 

close to the 2-Torus, the flow induces a map f on E (called the 

Poincare return map). This map takes a point x of E and maps it to 

the next intersection of the orbit of x with E. The intersection of 

the 2-torus with E is a circle C which is invariant under the 

Poincare return map and is an attractor for this map. If the flow on 

the 2-torus is phase locked then the rotation number (see Appendix 

2) of f restricted to C is rational; quasi-periodicity gives an 

irrational rotation number. 

Ostlund et al (1983) propose the following mechanism for the 
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Figure 6. A Poincar6 cross-section of an attracting-2-torus. 
The codimension one manifold E is transverse to the 2-torus. 
The intersection of E with the torus is a circle C which is 
attracting for the Poincar6 return map. (Picture from Jensen 
et al (1984). ) 

0 
ý. 

(a) The strong stable foliation (b) cubic tangency of C with 
the foliation. 

Figure 7. The attracting invariant circle C for the Poincare map 
and its strong stable foliation (a). (b) shows schematically 
a cubic tangency of C with the foliation. In fact such tangencies 
will be dense in C. 
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breakdown of this invariant circle. For any point x on the circle, 

we consider the set of points of E that converge together with x 

under application of f. These sets form codimension one manifolds in 

E and form the leaves of the strong stable foliation (SSF). Ostlund 

et al (1983) suggest that breakdown of the invariant circle occurs 

when the circle forms an inflection point with a leaf of this strong 

stable foliation. This is illustrated in Figure (7). This tangency will 

generically be cubic in nature and will induce a cubic critical point 

in the map on the circle. In fact, the action of the map will transmit 

the tangency around the circle and there will be infinitely many 

tangencies. Nevertheless, they propose to model this situation with 

parameterised families of maps of the circle that develop a single 

cubic singularity. They recognise that this is not realistic, but, as 

we shall see, Rand (1984) has been able to take the theory for maps 

of the circle, and extend it to higher dimensional systems. 

In the next chapter, we discuss the renormalisation "theory in Ostlund 

et al (1983). 
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2. Renormalisation of mans of the circle 

Having provided some physical motivation for study of parametrised 

families of maps of the circle, we shall outline the theory developed 

in Ostlund et al (1983) and Feigenbaum et al (1982). This subject is 

of mathematical interest in its own right. We assume that the reader 

has a basic knowledge of circle maps viz. rotation number, Denjoy's 

theorem and the Herman-Yoccoz theorem. This basic theory is outlined 

in Appendix 2. A comprehensive account can be found in 

Herman (1976), Nitecki (1971) and Cornfeld et al (1982). 

2.1 Parametrised families of maps of the circle 

The dynamics of maps of the circle depends crucially on the rotation 

number p of the map. A map for which pcQ has (generically) 

attractive periodic orbits, while C2 diffeomorphisms with pcR\Q 

are topologically' conjugate to an ergodic rotation. Given a one 

parameter family of maps, then (generically) the rotation number will 

vary with the parameter. In order to keep the rotation number 

constant we shall need to introduce an extra parameter to "tune" the 

system. We therefore consider two parameter families of maps. One 

particular two parameter family of maps of the circle is the "sine" 

family, with two parameters w, a, which is given (when lifted to R) by 

fw, a(x) =x+w- a/2Tr . sin(2rrx) (2.1) 

Here aC [0,1] and wC (0,1). This family is often used as a model 

two parameter family and displays generic behaviour (apart from its 

obvious symmetry about the point x= 34). If a=0, then fw, 0 is a 

rotation through a constant angle w. For aE [0,1), fw, a is a 

diffeomorphism, while fw, l has a single cubic critical point at 0. Thus 

a -> 1 in this model familiy represents the breakdown of the 
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invariant 2-torus according to the scheme in Ostlund et al (1982). 

The parameter "a" is a non-linearity parameter, while the parameter 

loci" is the frequency of a driving force. Together they determine the 

rotation number of the system. 

For aE [0,1), the picture is as illustrated in Figure (8). This picture 

was described by Arnold (1965). The figure shows the regions of the 

(w, a)-plane for which the rotation number p(fw, a) is rational. These 

are the Arnold tongues. Taking a cross section for constant a>0, 

the set of w for which p is rational has non-zero measure and 

increases as a increases. It is conjectured that for a. =1 this set has 

full measure. Figure (9) shows the graph of p(fw, a) against 2TW for 

0<a<1. The picture shows the "Devils staircase" function. P is 

constant at every rational value and increasing at every irrational 

value. For 0 irrational, the function w(a), determined so that 

p(fw(a), a) = n, is a curve from the line a=0 to a=1. 

A dissipative map of the plane that is related to fw'a is the 

dissipative sine map defined by: 

y ^> X- Y- a/2n. sin 27rx 0<<1 (2.2) x 
Exýw+. 

y_a, 2Tr. sjnTrx 

)º is the dissipation parameter. For a=0, the map reduces to the map 

fw, a when one restricts to the y-axis. For a=1, we obtain the 

area-preserving map called the standard or Taylor-Chirikov map. This 

has been extensively studied in Hamiltonian Mechanics. For 

0<a<1, the map exihibits the universal behaviour in the 

breakdown of its invariant tori (see Bohr (1984)). 

2.2 Scaling Laws for Circle Maps 

Following Feigenbaum's work on universal scaling laws for period 
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doubling in quadratic maps on the interval, Shenker (1982) 

investigated the scaling behaviour of maps of the circle. In this 

section we shall restrict to maps with golden mean rotation number 0. 

Let pn/qn denote the rational approximants to v (see Appendix 1). 

For a diffeomorphism of the circle f, with p(f) = a, we have the 

following scaling laws (see Propositions A2.2 and A2.3 in Appendix 2). 

Let wn be a sequence of parameter values for which Run of= pn/qn. 

Then: 

(i) fgn(0) - pn - (__v)n 

(ii) wn (-1/c2)-n (2.3) 

(iii) (-a)-n(fgn((-a)nx) - pn -> R. some aER. 

We shall refer to these laws as simple scaling. 

Herman 's Theorem does not apply to cubic critical maps and Shenker 

(1982) investigated whether there were similar scaling laws for such 

maps. He found that there were scaling laws but they were not the 

simple scaling laws for diffeomorphisms. From numerical studies, he 

found that for cubic critical f with p(f) =v 

(i) fgn(0) - Pn - 

(ii) (ii "S -n (2.4) 

(iii) ß n(fQn(/ x) - Pn) -> f*(X) 

where wn is a sequence of parameter values for which 

P(kn o f) = pn/qn. 13 a -0.776051, s-1 a -2.8331 and f* is a 

non-linear analytic function of x3. The ß, 8 and f* are universal for 

cubic critical maps with a single critical point. We note that 

0a -0.618 and -1/02 -2.618 so that this is not simple scaling. 

Figure (10) illustrates the scaling laws (2.3)(ii) and (2.4)(ii) for the 

sine map fw, a. Here the wn and W1 are the distances of the Arnold 
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Figure 10. Scaling behaviour of Arnold tongues for the 
sine map f. .w, w 'are the distances of the p/ 
tongue from 'the curvenw(a), on which the rotationnn er 
is a. For 0<a<1, w- (-1/a2) n, while wn" -n, where 
6= -2.813. 
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tongues from the curve p(fw(a), a) = a. For 04a< It wn - (-1/02)-n, 

but for a= 1, when fwa is cubic critical, wn " S-n, where 

Sa -2.8331. 

We investigate the functional equation that f* satisfies. For p(f) = Q, 

we have the relations cin+1 ' qn + Qn-11 Pn+1 ' pn + pn-19 so that 

ß (n+l)(fgn+l(pn+lX) 
- pn+l) 

ß 
lß n(fgn(lin. R 

l. 
ß 

(n-1)(fgn-1(i3n-l 
x) - Pn_1) )- Pn). 

Taking the limit as n -> ca gives the functional equation for f*: 

ß 
if*(R if*(R 

x)) = f*(x) (2.5) 

Similarly, writing qn+1 ' qn-1 + qn and Pn+1 - Pn-1 + pn gives the 

equation: 

9 2f*(ß. f*(Qx)) = f*(x) (2.6) 

(We note that in Ostlund et al (1983) and Feigenbaum et al (1982) 

these equations are written in terms of a_ 9-1. ) 

Nauenberg (1982) has shown that (under suitable assumptions) any 

analytic solution of one of these two equations is also a solution of 

the other. 

We note that the function R. satisfies both of these equations (2.5) 

and (2.6) with A set equal to -a. The scaling hypothesis ((2.4) (iii)) is 

certainly enough to explain the first scaling law (2.4)(i) above. 

However to obtain (2.4)(ii) we need to enlarge the function space and 

consider pairs of functions. Although there is a similar method 

contained in Feigenbaum et al (1982) we shall describe the scheme 

contained in Ostlund et al (1983). 

2.3 Pairs of maps 

We continue to restrict to the golden mean rotation number. For 
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p(f) = a, we have Pn+1 = Qn = Fn, where Fn is the nth Fibonacci 

number (FO = 0, F1 = 1, ... ). The Fibonacci numbers satisfy the 

recurrence relations 

Fn+l = Fn + Fn-1 

and 

(2.7) 

Fn+l = Fn-1 + Fn (2.8) 

These recurrence relations are second order. It is possible to write 

(2.7) as a first order recurrence relation on a two dimensional space 

as follows: 

Fn 
= Tn 

i, 
T 

[n--> 
B [+A] 

(2.9) 
n+l 

We can also generate Fibonacci iterates by the same process 

fFn fgn 

fFn+1 = Tn fTR --> n0g 
(2.10) 

We can also write (2.8) in the same manner: 

Fn 
= Tn TA __> 

B (2.11) 
Fn+1 1B EA+BI 

giving the following for iterates: 

f . Fn fg 

fFn+l = Tn fTR -- £on 
(2.12) 

However, while these two methods for generating the Fibonacci 

numbers are identical, the ones for functions are not, unless the pair 

of functions (r;, n) commute i. e. goR=RoC. This phenomenon will 

introduce extra eigenvalues of the renormalisation transformation. 

Following Ostlund et al (1983) we shall use the first of these 

recurrence schemes. 
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The essential idea of Ostlund et al (1983) is to work with pairs of 

maps that glue together to give a map of the circle. Denote by Sa 

space of pairs (Z, ri) of maps on R with the following 

properties: - 

(i) (0) = n(0) +1 

(ii) n(0) <0< g(0) 

(iii) g(nm) = n(g(0)) (2.15) 

(iv) r;, n are increasing on [n(0), 0J and [0, £(0)] 

respectively. 

Now we define 

_9 on [n(0)101 
(2.14) fýýý 

R on [01Q(0)1 

Then fr;, n induces a map on the circle obtained by identifying the 

points t1(0) and g(0). We note also that maps of the circle can be 

embedded in this space of maps. For if f is a lift of a circle map; 

then writing 

£f =f 
Rf =f-1 (2.15) 

we obtain a pair of maps that give f when glued together again. Note 

that since this pair comes from a single map f, the functions C; f, Rf 

must commute i. e Ef o of = Rf o Cf. The construction of a circle map 

from a pair of maps is illustrated in Figure (11). 

It is possible to define a rotation number for a pair (g, t1) ES by 

the formula 

(2.16) P(g, n) = P(fg, n). 

2.4 Renormalisation Transformation 

We aim to apply equation (2.10) to obtain a transformation of pairs of 

functions (g, n) that has a fixed point corresponding to solutions of 



E cc 

t (n (0) 

n(C 

n(ý(O) ) 

Figure 11. Constructing a circle map from of pair of functions 
M, TI) - If ß(n(0)) = n(E(0)), then the map f defined as 
E on [n(0), O] and n on [0, E(0)] defines a maý'ön the circle 
obtained by identifying the points n(0) and F(O). 



15 

equations (2.5) and (2.6). We need the following lemma. 

Lemma 2.1 Let (r;, rt) cS with p(C, R) irrational and with continued 

fraction expansion (n, ... ], n> 0. Let To = [0, g(0)]. We write f= fg, rr 

Then 

fl(I0) (1 IO =0 for 04i<n, fn(IO) n IO *0 

and 

gi(r1(0)) <0 for 04i<n, £n(rl(0)) > 0. 

proof We recall (Appendix 2) that p= p(g, n) can be defined as the 

average number of points of the orbit of a point x that lies in 

10 = [0, g(0)]. Note that 

1/(n+l) <p< 1/n 

and that for i>0, fi(I0) (1 10 =0 iff p< 1/(i+l). The first conclusion 

follows simply from this. The second conclusion follows from the first 

by noting that the ith image of 10 under f is (g14(r«(0)), gl(r1(0))]. 

13 

Definition Let (C, TO ES with p(S., r1) = [n, ... ]. Then we define-the 

(renormalisation) transformation Tn by: 

g ß--l , gn-1(n (p. x) ) 
Tn : (x) --> (2.17) 

n rl. gn-1(R(g(ß"x))) 

where ß= gn-1(n(o)) - gn-1(r1(C(o)))" 

We note that in view of Lemma 2.1, Tn is well defined. For n=1, we 

obtain: 

g /r'. r (ß. x) 
T1 (x) --) (2.18) 

R 

where !3= R(0) - R(r1(0)). This transformation T1 is illustrated in 

Figure (12). The pair (R o RE, R) form a map of smaller circle of length 

IPI= R(g(0)) - R(0). Scaling by 13 = -I /3 I renormalises the circle 
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to unit length. This is why the transformation T1 (and also Tn) is 

called a "renormalisation" transformation. The scaling factor R is 

chosen negative in order to restore the asymmetry of (£, r1) for pairs 

of maps close to golden mean rotation number. For f= (£f' Rf) we 

write Tn(f) for Tn(£f, nf). The important property of the 

transformation Tn is the following. 

Lemma 2.2 (Ostlund et al (1983)) Let (C, n) cS and p(C, R) _ (n, ... ]. 

Then 

P(Tn(E:, n)) = 1/P(E:, R) -n (2.19) 

proof Let f= fg, n. Let 10 = [0, r; (O)], 19 = [ýQ'1(n(O)), EQ(R(0))], for 

2=1, ..., n, J1 = [gn-1(R(0)), 0] and J2 = [0, Qn(r1(0))]. Choose x in 

J2 such that fk(x) *0 for all k and let m(k) denote the number of 

elements x, f(x), ..., fk'1(x) in I0 and hence the same number in IQ, 

2=1, ..., n (Lemma 2.1). Then p(f) = lim k_>O m(k)/k (Appendix 2). 

Now chose a sequence ki such that ki < ki+1 and fki(x) c JI. Let 

y= g' I. x, 13 = £n-1(n(0)) - £n'I (R(£(0)) ). Then there are precisely 

m(ki) elements of the sequence x, ..., fki'1(x) in 10 and hence the same 

number in 19,9 = I, ..., n. Thus there are ki = n. m(ki) in J1. 

Consequently, ki - n. m(ki) points of the sequence y, Tn(f)(y), .. ". 

Tn(f)m(ki)-I(y) fall in I0(Tn(f)) which proves that 

p(Tn(f)) = lim (ki - n. m(ki))/m(ki) = 1/p(f) - n. 

a 

Note that for p(£, R) _ In, n, n, ... ] the transformation Tn leaves p 

unchanged. In particular, for p(C, rt) =a= (1,1,1, ... ], p(T1(£, r1)) 

p(C, n) =Q and if p(Z, r1) = Fn/Fn+l for some n, then 

P(T1(Q, R)) = Fn-1/Fn. (2.20) 

For (C, n) c S, we write T for the renormalisation transformation 

TI(£, a) where p(£, n) _ [1, ... ]. 

Following Feigenbaum (1978) we look for fixed and periodic points for 



(o) 

n(0) 

dop i 
440 

1 dp 

ý 40 

n(o) nK (o)) Z(o) 

1-p 
1-pp 

Figure 13. The effect of Ti on the rotation 
number of a pair (ý, n). Let x be such that 
fn (x) /0 for any n. Then the ratio of 
poil& in [0, &(0)] is p. For the renormalised 
pair, this becomes the ratio of the number of 
points of the orbit in [n(0), 0] to the number 
in ( (0), n(ý(O))] which is (1 - p)/p = 1/p - 1. 

, "i 
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T. Note that in view of Lemma 2.2 a fixed or periodic point of T must 

have a rotation number with a periodic continued fraction expansion. 

These rotation numbers are all quadratic irrationals (see e. g. 

Khinchin (1964)). We restrict ourselves to the simplest case which is 

when the continued fraction expansion has all entries equal to 1. This 

is the case of golden mean rotation number. Apart from its simplicity, 

we consider this case because a is the number least well 

approximable by rationals for a given size of denominator (Khinchin 

(1964) ). This means that in real physical systems this frequency is 

often the easiest to isolate from phased locked systems. The 2-torus 

with quasi-periodic motion with golden mean frequency-ratio is often 

the last to break down as the stress parameter is increased. Also of 

importance are rotation numbers with continued fraction "tails" 

ending in 1's i. e. numbers of the form [nl, n2, ,..., nkr 1,1,1, ... ] 

McKay (1982) has christened these "noble" numbers. The 

renormalisation theory for golden mean rotation number will also 

apply to these 'noble numbers, as applying Ta number of times will 

strip the "head" of the number leaving the golden "tail. ", 

From now on we shall implicitly use T to mean T1, as defined in 

equation (2.18). We shall consider fixed points of T. 

2.5 Simple or Weak Coupling Fixed Point. 

There' is a simple linear fixed point (Cs, Cs) of T given by: 

(ps, rts) = (x + 0, x- 02). (2.21) 

It is a simple matter to check that (Cs, N) is indeed a fixed °point of 

T. This fixed point is studied extensively in Jonker and Rand (1983). 

They also develop a perturbation theory in the order of the 

singularity at 0 and have obtained fixed points" that are analytic 

functions of x. IxIE for c>0 'sufficiently small. We list some of the 
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properties of this simple fixed point in Table 2.1. 

Table 2.1 Properties of the simple fixed point 

(a) (£s, Rs) _ (x + a, x- 02) 

(b) R= -0 

(c) T is well defined and CO0 on a neighbourhood of (gs, rls) in 

a suitable space of pairs of functions (r;, r1) that satisfy: 

(i) 9-(n(0)) - n(CM) =0 

(ii) D(C on- r1 o C) (0) =0 

(d) dTs = dT(gs, fls) is a compact operator and the spectrum 

of dTs consists of a simple eigenvalue S= -1/a2 and all 

of the rest of the spectrum of dTs is contained within the 

disc {z :Iz1( Q} 

(e) There is a codimension one stable manifold and a one 

dimensional unstable manifold (see Appendix 5). The unstable 

manifold is the line u -> (gs + is, n$ + u). 

From the discussion below, we shall see how the scaling behaviour' 

(2.3)(ii) of diffeomorphisms with golden mean rotation number may be' 

deduced from the hyperbolic structure of T at this i simple! fixed 

point. 

2.6 Critical or Strong 
-Coupling 

Fixed Point 

In Chapter 3 we shall prove the existence of another fixed point 

(C*, n*) with C*, n* analytic functions of x3. They are defined on 

domains nl, f22 of C specified in Chapter 3. s The main properties of 

this critical fixed points are summarised in Table 2.2. 

Table 2.2 Properties of the Critical Fixed Point 

(a) P. *, t1* are non-trivial real analytic functions of x3, defined 

on two domains 01, n2 c C. 
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(b) A* a -0.77605138 

(c) T is well defined and C00 on a neighbourhood of (E: *, n*) in a 

suitable function space of pairs of maps (G:, n) defined on f21, 

n2 respectively and which satisfy: 

(i) g(R(0)) - n(g(0)) =0 

(ii) D(G: o n- noQ (0) =0 

(iii) D2(ß o n- no ') 
(0) =0 

(iv) D3(g o n- no p) (0) =0 

(v) Dg(0) = DR(0) = D2E(0) = D2R(0) =0 

(d) dT* = dT(g*, n*) is a compact operator and the spectrum of dT* 

consists of a single real eigenvalue s* s -2.83361 and 

the rest of the spectrum lies within the disc 

{z :IzI<0.875). 

(e) V; * o R* = n* o Q*, on aa neighbourhood of 0. 

Figure (14) is a schematic diagram which illustrates the probable 

connection between the two fixed points (ge, ns) and (F. *, n*) once 

condition (c) (v) of Table 2.2 is relaxed (although we still require the 

condition D£, Dr1 >0 on t21 f 62,02 nR respectively). There is an 

extra unstable direction with eigenvalue p*-2 corresponding to the 

"cross-over" between pairs corresponding to homeomorphisms and 

those corresponding to non-invertible maps. This extra unstable 

direction is supposed to extend to the simple fixed point as a stable 

direction. Indeed, we have not proved the existence of this extra 

unstable direction (although numerical evidence suggests that it 

exists) let alone proved the correctness of the geometry suggested 

by Figure (14). 



(g*, n*) 

-_ 

11 
-11 

(cs'nsv 

P =Pn+I"Qn+I P=ý P=P n/qn 

critical 
surface 

UNSTABLE 
MANIFOLD 

TRANSVERSE 
2-PARAMETER 
FAMILY 

"-- TRIVIAL 
ROTATIONS 

Figure 14. Schematic diagram of the geometry around the fixed points 

of T. The simple fixed point and the critical fixed point are 
joined by part of the stable manifold of (Es, T) corresponding to 
the cross-over unstable direction at (ý*, n*). 
(Picture taken from Ostlund et al (1983). ) 

one parameter family 

+i 

Figure 15. Geometry around the critical fixed point on the critical 

surface. There is a one dimensional unstable manifold and a co- 
dimension one stable manifold. A one parameter family that crosses 
the stable manifold transversely will exhibit universal scaling 
behaviour. 
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2.7 Scaling Laws for Cubic Critical Maps 

Sections 2.5 and 2.6 details two fixed points of T both of which are 

hyperbolic with a single simple expanding eigenvalue once we put on 

constraints to remove extraneous "non-essential" eigenvalues. We may 

conclude (Appendix 5) the existence of local stable and unstable 

manifolds for T in the neighbourhood of these fixed points. The 

stable manifolds Ws are of codimension one and the unstable 

manifolds Wu are one dimensional. 

Let R denote { (ý, n) : p(g, n) a j. We make the following 

assumptions: 

a) R is contained within the stable manifold near to the fixed point. 

We know (Lemma 2.2) that all pairs in the stable manifold` must lie' in 

R, but as pointed out in (Ostlund et a] (1983), section 4.2) there may 

be parts of R close to the fixed point but not contained in Ws. In 

Jonker and Rand (1983) it is proved that this assumption is true for 

the simple fixed point. 

Let En denote the set of pairs (g, r) for which f£, n has 0 as a 

periodic orbit with rotation number pn/qn. Note that 

T(En) s En-1 (2.22) 

by Lemma 2.2. We assume: 

b) Wu intersects En transversally in a single point for n sufficiently 

large. 

This has been proved for the simple fixed point (Jonker and Rand 

(1983)). Now let (gu, nu) be a one parameter family of pairs of maps 

that lie either close to the critical fixed point in the critical manifold 

(the set of pairs corresponding to circle maps with single cubic 

critical points) or that lie close to the simple fixed point. (This family 

may be the embedding of a one parameter family of circle maps fu via 

equation (2.15)) In either case we assume that this family is 
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transverse to the stable manifold of T. (This behaviour is not 

unusual for one-parameter families close to the simple fixed point and 

for families close to the critical fixed point lying in the critical 

manifold. ) Let l. t� denote the parameter value at which this transverse 

interesction takes place. Then for sufficiently large n (Fu, nu) 

intersects Fn in a single point /1n and 

limn->ý nOln - M0) (2.23) 

exists and is non zero. A detailed derivation of this equation from 

the assumed geometry is contained in Jonker and Rand (1983). 

The situation is illustrated in Figure (15). The proof of this result 

depends upon Proposition A5 taken from Collet et al (1980). This says 

that it is possible to find a differentiable coordinate change around 

the fixed point in which the transformation T is linearised in the 

unstable direction. Geometrically, it is clear that, in view of equation 

(2.22), the manifolds En approach the stable manifold Ws at the 

asymptotic rate S*. The fact that the family (E: u, n. ) is transverse to 

Ws means that this geometric rate is transferred to the parameter 

values stn. 

2.8 Extensions to Higher Dimensions 

Once the renormalisation analysis has been completed for circle maps 

and circle map pairs, it is possible to extend the theory to higher 

dimensions and hence to the solutions of differential equations. This 

is explained partially in Ostlund et al (1983). Further details are 

given in Rand (1984). We shall outline the basic idea. We embed the 

one dimensional solution of the renormalisation equations in a higher 

dimensional space. Let (r; *, n*) denote the critical fixed point of 

Section 2.6. Then we write g#(x) = h(x3), R*(x) = k(x3), since (£*, n*) 

are analytic functions of x3 (Table 2.2). Let n>1, and choose a unit 
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vector ac Rn-1. Let (E*, F*) denote the pair of maps from 

Rn =Rx Rn-1 to itself given for (x, y) cRx Rn-l by: 

E*(x, y) = (g*(S(X, y)1/3), 0) _ (h(4(x, y)), 0) (2.24) 

F*(x, y) _ (n*(S(x, y)1/3), 0) _ (k(C(x, y)), 0) 

where S(x, y) = X3 - <a, y> ("<", ">. " denotes the usual dot product on 

Rn-1). Here a represents an arbitrary choice of direction in which to 

embed the one dimensional map. With definition (2.24), (E*, F*) is a 

fixed point of the n dimensional renormalisation transformation S 

given for pairs of maps (E, F) by: 

S(E, F) _ (A-1 oFoA, A-1 oFoEo A) (2.25) 

where A(x, y) _ (R*x, ß*3y). 

Then with "a suitable space of pairs of functions E, F, S is well 

defined and C°° in a neighbourhood of (E*, F*). When the function 

space is suitably restricted to get rid of extraneous "non-essential" 

eigenvalues, the derivative dS* = dS(E*, F*) (which is a compact 

operator) has a spectrum consisting of one simple eigenvalue S* and 

all the rest of the spectrum is contained within the unit disc. 

This sets up the renormalisation scheme in the higher dimensional 

space. Then it is possible to develop the arguments of Section 2.7 

directly for higher dimensional systems and so the "ansatz" made by 

Ostlund et al (1983) that the breakdown of attractive invariant circles 

may be modelled by one-dimensional circle maps with a single cubic' 

critical point is seen to be unnecessary. 

2.9 Experimental Verification 

There have now been two experimental attempts to verify that the 

renormalisation analysis developed here does apply to actual physical 

systems. One of these (by Libchaber and his coworkers) has not yet 

been published and we shall only consider the results of 
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Fein et al (1985). 

The results so far are not as conclusive as might be hoped for. I 

understand that the results of Libchaber are better in this respect. 

Experimental verification is difficult for a number of reasons. First of 

all the data from these experiments are time series and power 

spectra, so it is necessary to understand how to spot universality in 

these observables. Secondly, we can only expect to see universality 

when we hold the rotation number or frequency ratio constant at a 

quadratic irrational value and in particular it is necessary to avoid 

phase locking. This is a good reason to concentrate on the golden 

mean as this is the rotation number least likely to be affected by 

phase locking. Maintaining a constant rotation number requires 

modulation of the stress parameters discussed in Chapter 1. Fein et 

al (1985) have performed their experiments on Rayleigh-Bänard 

Convection. They control the rotation number by modulating the 

temperature difference. 

Making certain assumptions about the power spectrum of cubic 

critical maps (supported by numerical experiments) Ostlund et al 

(1983) derive a description of the scaling behaviour of the spectrum 

predicted by their renormalisation analysis. We shall briefly outline 

this theory. The power spectrum of a circle map f is defined to be 

f(w) = tim 
Lt 

exp(2ni2w)(f2(0) - Kä(0)) (2.26) 
L->o 4=0 

For cubic critical maps it is conjectured (Ostlund et al (1983), Section 

6.2, Conjecture C) that if P is of period 1 and once differentiable 

(except at 0here it has left and right derivatives) then: 
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lim 
LE1 

exp(21Ti9w)P(f9(0)) = O(w. f(w)) as w -> 0 (2.27) 
L->- 2=0 

From this conjecture, they show that for f, g two cubic critical maps 

f(w) 
- 

g(w) = O(w. g(w)) as w -> 0 (2.28) 

This says that the power spectrum is universal for small w. Moreover, 

they predict a scaling law for T (w): 

f(w) = as w -> 0. (2.29) 

We should therefore expect that the frequency power spectrum is 

universal for small frequencies. 

Figure (16) shows the power spectrum for the sine map for a=1 and 

p=a. The scales are logarithmic and one can clearly see the self 

similarity indicating a scaling structure. 

Figure (17) shows the corresponding power spectrum obtained from 

time series measurements on the Rayleigh-Benard convection cell just 

above criticality. There is a clear self similarity in the spectral 

diagram but unfortunately, for very low frequencies the normalisation 

of the spectrum produces very large background noise. 
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3. Statement and proof of results 

In this chapter we state the results proved, give a description of the 

method of proof, and then explain the parts of the complete proof in 

detail. 

The renormalisation transformation T defined by equation (2.18) has 

the normalisation condition g(0) = n(0) + 1, which makes the circle of 

unit length. This is the most natural condition for the embedding of 

circle maps in the space of pairs of maps as outlined in Chapter 2. 

However, it is not the most convenient from the computational point 

of view. Various formulae are simplified if we impose the condition 

F, (0) =1 (as in Feigenbaum et al (1982) and McKay (1982)). The 

expression for ß then simplifies to ß= n(0). This merely involves a 

change of scale. The results of Appendix 4 say that this change 

makes no difference to the spectrum of the derivative of T. We 

therefore henceforth define the renormalisation transformation by 

T(g, n)(x) = (A-1rO x), lýln(ý(Rx))) R= n(o). (3.1) 

3.1 Statement of Results 

We first fix some notation. Let 

al ='-63457/218 a -0.2420692 

rl = 9898557/225 = 0.295 

a2 = 4344147/223 a 0.5178627 

r2 = 9898557/224 a 0.590 

C21 = (xEC: J x3 - al J < rl } 

n2= { xEC: I x3-a2 1 <r2 } 

We write A for the space A(f21) x A(02) as defined in Appendix 3. We 

write A3 for -the subspace of A comprising those pairs (g, n) cA 

such that both Ca nd TI are analytic functions of x3. From Proposition 
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A4.12(a), T preserves A3. As in Appendix 4, we write for qý0, 

F(q)(r;,, n) Dq(p .o rl - r1 o F. ) (0) and for open sets U, V we write 

U<Vifcl(U)cV. 

The main result proved in the computer program is the following: 

Theorem 3.1 There is an open set V3 S A3 with the following 

properties: 

(1) For all (Q, r1) c V3: 

9.01 < n2 

9.02 < 01 (3.2) 

g(ß. f22) < 02 

where ß= r1(0). 

(2) T: V3 -> A3 is well defined and C. 

(3) T has a unique fixed point (g*, r1*) in V3. 

(4) For all (r;, fl) E V3, dT(g, n) : A3 -> A3 is -a compact linear 

operator. 

(5) The spectrum of dT* = dT(£*, n*) consists of 3 simple eigenvalues: 

s* = a0 E [-2.84, -2.83] 

Al c [2.13,2.14] (3.3) 

a2 E [-1.01, -0.99] 

and the rest of the spectrum is contained within the disc D(0,0.875). 

(6) The eigenvector (8£, Sri) of dT* corresponding to Xl violates the 

condition: 

dF(0)(£*, n*)(s£, Sn) =0 

(7), The eigenvector (8£, Sri), of " dT* corresponding to A2 violates the 

condition: 

dF(3)(£*, n*)(s£, sn) =0 

(8) R* = R(£*, n*) c [-0.776052, -0.776051]. 

(9) D3£*(0), D3n*(0) > 0. 



27 

(10) K(R*2) = R*2, DK(ß*2) < 0, K= 

(11) £* o n* = n* o Q*, on a neighbourhood of 0. 

a 
We shall prove this Theorem in section 3.3. 

We remark t hat the assumptions (i)-(v) of Section A4.2 hold. For (i) 

follows from Theorem 3.1 (1) and (3), (ii) follows from Theorem 3.1 

(8), (iii) is a simple consequence of the definition of Al, C22, (iv) 

follows from the fact that g*, n* are both analytic fu nctions of x3 

together with Theorem 3.1 (9) and, finally, (v) follows from Theorem 

3.1 (10). 

Let Acorn be the subset of A for which (r;, n) satisfy 

Di(g on- r1 o E) (0) = 0, for i=0,1,2,3. (3.4) 

Let AcOm denote the subset of Acom for which (P., n) satisfy 

DiC(0) = Din(o) = 0, i=1,2. (3.5) 

From Propositions A4.11 and A4.12, we have that, at least in a 

neighbourhood of (£*, n*), Acom and Ar. -°. m are both manifolds that are 

preserved by T. 

From this, we may deduce the following 

Theorem 3.2 There is an open set VSA with the following properties: 

(1) For all (C, n) c V: 

P. ci < 02 

ß. t! 2 < Al 

g(/3. C2) < 02 

where P= n(0). 

(2) T: V -YA is well defined and C0. 

(3) T has a unique fixed point ('Z*, n*) in V. Both of P-*, n* are 

analytic functions of x3. 

(4) For all (C, n) c V, dT(g, n) :A -> A is a compact linear operator. 

(5) The spectrum of dT* = dT(r*, n*) restricted to Acorn consists of a 
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simple single eigenvalue 

8* e [-2.84, -2.83], 

together with possibly two other eigenvalues (3*-1, ß*-2 and the rest 

of the spectrum is contained within the disc D(0,0.875). 

(6) The spectrum of dT* = dT(r; #, n*) restricted to Acrm consists of a 

simple single eigenvalue 

ß* c [-2.84, -2.83), 

and the rest of the spectrum is contained within the disc D(0,0.875). 

(8) ß* _ P(g*, n*) c [-0.776052, -0.776051]. 

(9) D3g*(0), D3n*(0) > 0. 

(10) K(R*2) =p*: 2, DK(g*2) < 0, K= ß*-i. n*. 

(11) ý* o r1* = n* o r; *, on a neighbourhood of 0. 

We remark that the eigenvalue R*-2 is the "cross-over" eigenvalue 

mentioned in Chapter 2 and illustrated in Figure (14). It corresponds 

to the addition of a function that is linear at 0. The eigenvalue ! -1 

corresponds to the addition of a function that is quadratic at 0. This 

case is excluded in the analysis of circle maps because it violates the 

condition (2.15)(iv). The fixed point (Q*, n*) is displayed graphically 

in Figure (18). From the results of section A4.1, there will be an an 

analogous theorem for the transformation (2.17). Note that S defined 

by (A4.17) preserves the conditions (3.4) and (3.5), so that the 

conclusions of Theorem 3.2 (6), (7) will carry over. 

proof of Theorem 3.2 from 3.1 The proof of this theorem in a 

straightforward application of Theorem 3.1, together with the results 

of Appendix 4. Let (C*, q*) be the fixed point given by Theorem 3.1. 

Since equations (3.2) holds for (P-*, n*), they will also hold for 

(ý, r) CA close to (£*, n*). We choose a neighbourhood V of (C*, rt*) 

in A for whch (3.2) holds and such that V (1 A3 s V3 of Theorem 3.1. 
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That T is well defined and C°° follows immediately from (3.2) and 

Proposition A3.3. This proves (1) and (2). (£*, no is a fixed point in 

V. The uniqueness is slightly tricky, so we deal with it below. (4) is 

immediate since (G: *, n*) C A3. (5) follows immediately from (3.2), 

Proposition A3.6 and the formula for dT (A6.2). The spectrum of dT* 

restricted to A3 is given by Theorem 3.1 (5). Note that Proposition 

A4.9 says that any eigenvalue of dT* = dT(g*, n*) on A, which is not 

an eigenvalue a of dT* on A3, must be of the form tß*q-3, where q 

is the smallest integer, not a multiple' of three, for which one of 

Dgs2(0), DgSn(0) is non-zero. Here (S£, än) is an eigenvector of dT* 

in A with eigenvalue X. We note that such aa does not have modulus 

one. This means that (P-*, n*) is a hyperbolic fixed point of T. Now by 

Hartman's theorem (see for example Irwin (1980)) T is conjugate to its 

linear part in a neighbourhood of (g*, c1*) and thus is an isolated 

fixed point. Hence, (Q_*, n*) is unique provided V is chosen small 

enough to be included in this neighbourhood. This completes the 

proof of (3). Now, Proposition A4.13 shows that, if we restrict to 

Acorn, then the only possible extra eigenvalues of modulus greater 

than or equal to one are are those for which q=1,2, that is, 

a= ß*-2, /3*-l. Note that Theorem 3.1 (6) and (7) show that the 

eigenvectors with eigenvalues ), I, X2 violate (3.4). Hence they are not 

in the spectrum of dT* I Acom. (They are in fact -R*-3 and -1 

respectively - see Ostlund et al (1983). ) This proves (5). Restricting 

further to Acr°. m removes the possible extra eigenvalues. P*-2, ß* 

and (7) folllows immediately. Finally (8) - (10) are immediate 

consequences of Theorem 3.1. 

13 
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3.2 Description of the Method of Proof 

The proof follows closely the work of Lanford in his proof, of the 

Feigenbaum conjectures. In essence the proof consists of a simple 

application of the contraction mapping theorem. The following is taken 

from Krasnoselski et al (1972). 

Proposition 3.2 Let ep be an element of a real Banach space E. Let V 

be a neighbourhood of e0 given by V= {e EE: fleo - ell < r). Let 

N: V -> E be a C1 map, let IIdN(e)II 4y for all ecV, and let 

(IN(ep) - epll < V. Then if c+ V1r < 1, then N has a unique fixed 

point in V. 

proof Since IIdN(e)II <1 for all ecV, N is a contraction and the 

contraction mapping theorem will give a unique fixed point in V 

provided cl(N(V)) a V. But for ecV, 

IIN(e) - eoII 4 IIN(e) - N(ep)II + IIN(ep) - epll 

4 sup (IIdN(e)II :ec V}. Ile - eoII + IIN(eo) - epll 
y. r +v< (y + v/r). r < c. r <r 

so that cl(N(V)) cV and N is a contraction map V -> V. 

0 

The rest of the proof consists of finding E, e0, V, N and verifying 

the above estimates! We shall use a generalisation of Newton's method 

for finding zeroes of non-linear equations to obtain a contraction. 

There are several steps in the proof which we describe briefly. 

The first step is to obtain a good approximate fixed point (9-0, rt0) of 

the renormalisation operator T and good domains on which to define 

the functions g, n. McKay (1982) describes how to use the functional 

equations and the value of 13* to get a quartic approximation to R*, 

expanded about 0. Scaling this approximate fixed point gives an 

approximation to E. Application of a Newton or quasi-Newton method 
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can be used to improve this approximate fixed point by taking more 

terms. However, to get very good convergence, it is important to find 

a good domain on which to expand g, t1. The best domain for rt is 

around the fixed point x* of the function g$(J3*x). An approximate 

value x0 of x* can be found from the expansion of rj about 0. Then 

no is expressed as a Taylor series around this approximate value of 

x0 and CO is expanded about ß. x0, where ßo = %(0). From this 

expansion, better F-0, no can be obtained (by taking more terms in 

the Taylor series) and from these, better approximations to x* and 

p*, and so better domains to expand to the functions CO, no. In this 

way the functions j, t10 can be improved successively until the 

functions are accurate to machine precision. We have expanded 

g0, n up to degree forty. The Taylor coefficients are given in 

Appendix 7. 

After obtaining good domains and good ,r the next step is to 

block diagonalise an approximation to the derivative matrix dT. The 

matrix dT is not close to diagonal and we require a diagonal matrix 

both to obtain a contraction and also to deduce the spectral 

properties of the derivative dT at the fixed point (£*, n*). It is 

important to take a sufficiently large matrix approximation to 

guarentee that the error in the approximation is small even when the 

matrix is transformed under this block diagonalisation. This requires 

a certain amount of trial and error. The columns of the derivative 

matrix decrease geometrically, but, unfortunately, at rate s 0.98. This 

figure is much larger than the rate for the Feigenbaum case and it 

is therefore necessary to take a considerably larger derivative 

matrix. This seems to be built into the problem and is the primary 

cause for the delicacy of the computer calculations. The aim of the 
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block diagonalisation procces is to transform the derivative matrix 

so that it has the form: 

a0 where a0 a -2.83, X1 a 2.14, 
al (3.6) 

a2 a2 -1, and {DII < 0.8 
D 

We are constrained by the fact that by making a change of basis, 

error in the approximation will be multiplied by the ill-conditioning 

factor IIPII"IIP-111, where P is the matrix transforming the derivative to 

the above form. Complete diagonalisation of the derivative would make 

this factor too large and so we use a version of the Jacobi iteration 

method for non-symmetric matrices (Wilkinson and Reinsch 1971) that 

converges to the Jordan canonical form through a sequence of 

complex rotations (i. e. rotations through complex angles) on the basis 

vectors. We adapted the ALGOL program in Wilkinson and Reinsch 

(1971) to reduce the number of rotations and stopped the algorithm 

as soon as the matrix had reached the required form. The rotations 

were accumulated to form the conjugation matrix P. This basis change 

was tested to see whether the error remained sufficiently small. We 

required to take Taylor series up to degree 80 before this method 

worked satisfactorily. Unfortunately, this method is ad hoc. I do not 

know of an optimum method to obtain the block diagonalisation that 

we require. 

We now transform to a new basis given by this transformation. Using 

this new basis it is straightforward to define a ball V around (CO, t10) 

and a map N which is a contraction on V. We can then use a method 

contained in Eckmann et al (1982) to deduce information on the 

spectrum of dT in V. 

Since a fixed point of T is a zero of T-I, a straightforward 
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generalisation of Newton's method is 

(g, n) -> (£, n) - (dT(g, n) - I)-1. (T(g, n) - (C, n)) 

where the second term on the right hand side is the inverse of the 

linear operator (DT - 1) applied to the difference T(g, t1) n). It 

is, however, unnecessary to use this formula. For the map 

(g, n) -> (g, n) - J. (T(g, n) - (g, n)), 

where J is an approximation to (dT - I)-1 evaluated close to the fixed 

point, is sufficient to obtain a contraction. In fact, for the spectral 

calculations, it is important to work in basis in which the derivative 

matrix is in the form (3.6) above. In this basis, we can take J to be 

a very simple linear map indeed. 

f 

The spectral calculations consist of verifying that, in the ball V, dT 

has no eigenvalues on various circles in the complex plane. The map 

dT is shown to be compact by verifying that it is an analyticity 

improving operator i. e. an operator that produces functions that are 

analytic on a larger domain (see Appendix 3). The compactness implies 

that the spectrum of dT consists of discrete eigenvalues A with finite 

dimensional eigenspaces (except a= 0). Only finitely many a are 

outside the unit circle in C. By using perturbation theory we can 

show that the spectrum of dT has only simple eigenvalues of modulus 

greater than or equal to one. 

Once an open ball containing the' fixed point is obtained, then it is 

straightforward to obtain reasonable estimates on the top three 

eigenvalues of the derivative at the fixed point (together with their 

eigenvectors) and to check that al, 12 violate (the inifinitesimal 

versions of) conditions 3.4. 
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3.3 Proof of Theorem 3.1 

The proof uses functional analytic estimates obtained rigorously with 

the help of a digital computer. The method used in briefly described 

in Chapter 4. Further details are given in Appendices 7 and 8. The 

use of the computer is considerably more extensive than in Lanford 

(1982). We use the computer not only to obtain the estimates, but also 

to check that these estimates are sufficient to prove the various 

statements of Theorem 3.1. In this respect I would call the proof a 

"computer proof" as oppposed to a "computer-assisted proof. " 

There are two important points to deal with first. Firstly, we note 

that A3 is isomorphic to the space A(al, r1) x A(a2, r2) via the 

isomorphism 

(P., n) -> (h, k), g(x) = h(x3), n(x) = k(x3). 

The renormalisation transformation T induces a transformation (also 

wriiten as T) on A(al, rl) x A(a2, r2) via this isomorphism. 

Throughout the program we work with this induced transformation. 

Appendix 6 lists various formulae both in terms of (G:, '1) and (h, k). 

We shall, however, state the results in terms of functions (r;, ri). 

Secondly, we work in the space L= L(al, rl) x L(a2, r2) rather than 

A(al, rl) x A(a2, r2) (see Appendix 3 for the definition of these 

spaces). This is because L1-norms are readily computable, while the 

supremum norms are not. (For a discussion of L1 spaces, see 

Appendix 3. ) The computer program proves the following proposition. 
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Proposition 3.4 There is an open set VSL with the following 

properties: 

(1) For all (h, k) c V: 

p3.01 < n2 

ß3. t22 < f21 (3.7) 

h(133. n2)3 < 02 

where ß= k(0). 

(2) T: V -> L is well defined and C. 

(3) T has a unique fixed point (h*, k*) in V. 

(4) For all (h, k) c V, dT(h, k) :L -> L is a compact linear operator. 

(5) The spectrum of dT* = dT(h*, k*) consists of 3 simple eigenvalues: 

s* =ape [-2.84, -2.83) 

XI c (2.13,2.14] 

a2 E (-1.01, -0.99] 

and the rest of the spectrum is contained within the disc D(0,0.875). 

(6) The eigenvector (8h, sk) of dT* corresponding to 11 violates the 

condition: 

dF(O)(h*, k*)(sh, 8k) =0 

(7) The eigenvector (Sh, Sk) of dT* corresponding to a2 violates the 

condition: 

dF(3)(h*, k*)($h, 8k) =0 

(8) ß* = ß(h*, k*), c [-0.776052, -0.776051]. 

(9) Dh*(0),. Dk*(0) > 0. 

(10) g(ß*6) = ß*2, Dg(ß*6) < 0, g= ß*-1. k*. 

0 

Proof of Theorem 3.1 given Proposition 3.4 

The key to the proof is that (3.7) will hold for (h, k) in 

A(ai, r1) x A(a2, r2) sufficiently close to (h*, k*). We may therefore 

find a neighbourhood V in A(al, r1) x A(a2, r2) for which (3.7) holds 
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and hence, translating back to A3, we may find a neighbourhood V3 

of (g*, n*) (g*(x) = h*(x3), n*(x) = k*(x3)) for which (3.2) hold. We may 

further suppose that v f1 L is contained in the neighbourhood V of 

Proposition 3.4. This proves (1). (2) follows immediately from (3.1). 

(3.2) and the results of Appendix 3, especially Proposition A3.3. 

(Q*, r1*) is certainly a fixed point of T in V3. We note that it must be 

unique. For let (h', k') be a fixed point of T in V. then, in view of 

(3.7) and (A6.7), (h', k') are defined on domains D(al, rl), D(a2, r2) 

with 

D(al, r1) < D(al, rj), D(a2, r2) < D(a2, r2) (3.8) 

From Proposition A3.1 (h', k') c A(al, ri) x A(a2, r2) S 

L(al, r1) x L(a2, r2) so that (h', k') are in the neighbourhood V of 

Proposition 3.4 so that by (3) of that Proposition (h', k') _ (h*, k*). 

(4) follows from the relations (3.2) and Proposition A3.6. 

Now let (ßh, Sk) be an eigenvector of dT* = dT(h*, k*) with non-zero 

eigenvalue A. (Sh, sk) are defined on D(al, ri), D(a2, r2) respectively 

in view of (3.7) and (A6.8). Thus (ßh, 8h) cL and hence any 

eigenvector of dT* in A(al, r1) x A(a2, r2) also lies in L. The 

converse is trivially true by Proposition A3.1(c). This proves (5). (6) 

and (7) are direct translations of Proposition 3.4 (6) and (7). 

Similarly (8), (9) and (10) are direct translations of the statements 

(8), (9), (10) of Proposition 3.4. (11) follows from Proposition A4.6, 

noting that assumptions (i) - (v) of Section A4.2 are satisfied by 

(10), (11), (12), the fact that P-*, n* are analytic functions-of x3, and 

that 0C A1, A2, and [0,1] 5 02- 

D 

We now turn to the proof of Proposition 3.4. The proposition is 

proved with the aid of the computer program circ_proof in Appendix 
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7. The space L (with norm 1I(h, k)II _ 11 h 11 + 11 k fl) is isometrically 

isomorphic to the space 91 ®Q1 (see Appendix 3 for a definition of 

91). This isomorphism is given by the basis {(ei(l), 0) :iZ 0) U 

{(0, ei(2)) :ia 0) where 

ei(l) _( (x - al)/rl )1, e1(2) (x - a2)/r2 )i 

for i=0, 1, ... We shall r efer to th is basis on L as the standard 

basis of L. Dividing the standard basis into 

{ (ei(1), 0) :06i( 80 }U{ (e1(1), 0) : 81 (i } (J 

{ (0, ei(2)) :0<i4 80 }U{ (0, ei(2)) : 81 i} 

we may look on L as R81 ® 91 ® R81 ® 91. 

We consider the operator matrix 

P11 0 P12 0 

0I00E A(R81 ® 91 ® R81 21, 
P21 0 P22 0 

R81 9 21 1B R81 21) 
000I 

where for Banach spaces E, F, A(E, F) denotes the space of bounded 

linear maps of E -> F. Here I is the identity operator on 21. We shall 

assume that the 164 x 164 matrix 

F P11 0p 12 0 

0100E A(p164, p164) 

1 P21 0 P22 0 

0001 

is an invertible 

P-1 0 11 
01 

P-1 0 
21 

00 

matrix, with inverse 

-1 P12 0 

00 

P-1 0 A('64, R164) 
22 

01 

Then P is invertible with inverse 
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P-1 -1 P11 0 P12 0 

0I00 

:;: 0001 E A(R81 ® pl ® R81 ® 91, 
R81 ® ql (D IR81 0 91) 

The basis 

fi(l) _ (ei(1), 0)P, fi(2) _ (0, ei(2))P 

for i=0,1,2, ... is a basis for 91 which we call the p-basis. (The 

left multiplication is because P is really a matrix on the coordinates 

rather than the basis vectors themselves. ) The basis change matrix P 

is calculated as explained in Section 3.2. 

Theoretically, we shall work with the p-basis. We shall look on the 

space L as R3 ® 91 regarding the three basis vectors f0(1), fl(1), 

f2(1) as R3 and the rest of the p-basis as constituting 91. The basis 

vectors f0(1), fl('), f2(l) are (very) approximately the eigenvectors 

of dT* corresponding to the three eigenvalues a0+ ß1y 12 of modulus 

greater than or equal to one. The p-basis provides a new L1-norm 

for L which we shall use to define balls around the approximate fixed 

point (see Appendix 3, Section A3.5). The approximate Newton map . 
N- 

is very easy to define with respect to the p-basis: 

N I-J(T - I) 

where J is the diagonal matrix 

-1/3.234 
1/1.239 

E 
-1/2 

A(R3 ® 91, R3 ® 91) 

-I 

or, more precisely, a binary approximation to this matrix. The 

program takes an approximate fixed point (h0, k0) that is extremely 

accurate. It defines a ball V or radius r (in terms of the Ll-norm 

with respect to the p-basis) 

r-5x 10-12 
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and checks directly that T is well defined and C' on V. This is done 

by checking that (3.7) holds. It then calculates upper bounds for 

IIN(ho, k0) - (ho, k0)II 

and 

sup { IIdN(h, k)II : (h, k) EV 

It then checks directly that the conditions of Proposition 3.3 are 

satisfied for e0 = (h0, k0). We may then conclude the existence of a 

unique fixed point (h*, k*) in V. The derivative dT* = dT*(h*, k*) 

may be looked upon as the matrix of operators 

«00 a01a02 90 

a10 «11 «12 R1 
E A(R3 ®Q1, p3 (D i) 

«20 a21 «22 R2 

YO Y1 Y2 s 

where for i, j=0,1,2 

aij E R, Ai C A(91, R) _ 91*, Yj C A(R, 91) a 91 

S-C A(91,21) 

The program calculates upper and lower bounds for aij and upper 

bounds for the norms II II, IIYjII, II 16,11. By a method of Eckmann et al 

(1982) (described in Appendix 7), the program shows that for tC 

(0,11 any operator of the form 

C(00 ta01 tu02 tß0 

Lt = 
ta10 «11 t«12 tp 1E A(R3 (D Q1, R3 ®Q1) 
tuZ0 ta21 «22.. t132 

L tY0 t>1 tY2 s 

has no eigenvalues on the circles 

rl = C(-2 1441151880758587/254,57646075230342349/259) 

r2 = C(-l, 57646075230342349/259) 

r3 = C(0,7/23) 

r4 = C(2 1261007895663739/253,576460752303442349/259) 
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The family t -> Lt- is a continuous one parameter family of compact 

operators on R3 6 21. Note that 

a 00 

Lp = 
«11 

Cc 2s 
E A(R3 ® 2i, p3 9 Q1) 

and L1 = dT*. Now, L0 has one simple eigenvalue inside each of r1, 

r2, r4 with the rest of the spectrum contained within r3. Now from, 

Proposition A3.8, this is true for all Lt with tE [0,1] and so, in 

particular, is true for L1 = dT*. Thus dT* has spectrum consisting of 

three simple eigenvalues ýO, al, a2 contained within I'1, r2, r4 

respectively with the rest of the spectrum lying within 13. The 

bounds for the eigenvalues given in Proposition 3.4 are obtained 

below. This proves (1), (20), (3), (4) of Proposition 3.4. The program 

obtains (8) and (9) by direct calculation. 

The next stage is to obtain bounds for the eigenvalues ao, al, a2 and 

their eigenvectors. For each 2=0,1,2 the following is done. First 

of all, we obtain (numerically) approximate values X', u' for the 

eigenvalue a* and and its eigenvector uff. With respect to the p-basis 

a* a cc , and u* a k. f9(l), for some kcR. 

In order to obtain a space with a unique eigenvector, we must 

normalise the eigenvector. We choose to fix u2, the 9th component of 

the vector u, to be the 9th component of u', where u, u' are 

expressed in terms of the p-basis. We then consider the pair (),, u) 

as lying in the 91 via the embedding 

(a, u) _ (uni as u2, ... ) 

where the term uQ has been replaced by a in this expression. We now 

consider the map 

S(a, u) =( dT* - XI )u (3.4) 



41 

Then S is map from 91 to itself. We again look on 41 as R3 Wi via 

the p-basis. A zero of this map corresponds to an eigenvalue a* with 

eigenvector u*. We now follow the same procedure for the pair (a, u) 

as we did for the pair (h, k). We obtain a contraction on a ball about 

the approximate eigenvalue/vector by forming an approximate Newton 

map Ni defined by 

Ni =I-M. S 

where M is the diagonal matrix c S-1 

approximation by 

given in its decimal 

(«00 a')-1 

M= 
(u 9) 

(0c22- a . )1 E A(R3 ®Stl, R3 6D 2 

_X , -1 

Here the 9th diagonal element is as shown. The program now once 

again calculates the norm IINi(a', u') - (x', u')II and forms a ball VQ 

around (a' , u') and calculates 

sup { II dNi (%, u) II : (X, u) c Vp}. 

The program then checks the conditions of Proposition 3.3 and, 

provided all is well, we may conclude that there is a unique 

eigenvector u* in V2. The radius of VQ provides the bounds on the 

eigenvector given in (5). For i=1,2, using the ball around u ", the 

program checks that any u vector in Vi fails to satisfy the condition 

dF(0)(h*, k*)u =0 for i=1 and 

dF(3)(h*, k*)u =0 for i=2. 

This proves (6) and (7). 

13 
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4. Interval Arithmetic and Numerical Functional Analysis 

4.1 Interval Arithmetic 

With the advent of fast digital computers, there has been a 

corresponding upsurge in research into the propogation of error in 

arithmetic processes. Interval arithmetic was invented in the 1960's 

as a method of obtaining exact error bounds for, the results of 

numerical calculations. Its use was envisaged primarily for situations 

in which there was uncertainty in the input data, such as when the 

data arose from inexact physical measurements. I think that it is 

fair to say that the usefulness of interval arithmetic in this area has 

proved to be limited. The error bounds obtained are often 

considerable overestimates. This is essentially because interval 

arithmetic treats every step in a sequence of calculations as 

independent. However, interval arithmetic has proved to be amply 

adequate for our purposes, once its limitations have been recognised 

and guarded against. Its use combined with careful analysis of 

computer rounding error has turned suggestive computer experiment 

into rigorous mathematical proof. A good introduction to interval 

arithmetic is Moore (1966). 

The fundamental idea of interval arithmetic is to define arithmetic 

operations on finite closed intervals in R that correspond to the 

usual arithmetic operations on R. Suppose that 0 represents a binary 

operation on R; 0 could be addition or multiplication for example. 

Then if II and 12 are two intervals of R, a natural requirement for 

any definition of an interval 13 = Il 0 12 is: 

I3= II0I22(x10x2: x1CI1, x2EI21 (4.1) 

Of course, ideally, equality would hold. However, for computer 
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implememented operations, this will not in general be true and indeed 

it is unnecesary for our purposes. It is important, of course, to 

make this difference as small as possible. An inclusion similar to (4.1) 

should hold for unary operations, such as negation. We define 

interval arithmetic routines to correspond to addition, subtraction, 

negation, multiplication, inversion and division. Appendix 8 contains a 

detailed description of the standard interval arithmetic operations 

and their computer implementation. As two simple examples of interval 

arithmetic operations we consider addition and multiplication. 

Let I1 = [al, bl], 12 = [a2, b2] be two intervals. 

(i) addition Define 11 + 12 = I3, where 13 = [al + a2, b1 + b2]. Then 

this interval addition satisfies (4.1) with the inclusion replaced by 

equality. 

(ii) multiplication Define I1 X 12 = 13, where 13 is the interval [a3, b3] 

and 

a3 = min { al. a2, a1. b2, b1. a2, bl. b2 } 

b3 = max { al. a2, a1. b2, bl. a2, bl. b2 }. 

This definition again satisfies (4.1) with equality. 

These two interval operations satisfy some but not all of the usual 

axioms of R. For example, addition and multiplication are both 

commutative and associative and there are zero (CO, 0]) and unit 

([1,1]) elements. The distributive law does not hold as can be seen 

from the following example: 

[-1,11 [0,0] 

while 

Q-1.1] x [-1, -1]) + ([-1,1] x (1,1]) _ [-2,2]. 

However, the following law does hold: 

Ilx( I2+I3)S( I1xI2 )+( I1xI3 ) (4.2) 

This means that care has to be taken to "take out common factors" 
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whenever possible during calculations. Of course, the reason for the 

problem is that 11 appears twice on the right hand side of (4.2), and 

interval arithmetic regards these two intervals as independent of 

each other. When implemented on a computer these laws will not hold 

exactly. This is because computer multiplication and addition is in 

general non-commutative and non-associative. They will, however, be 

approximately true. 

We conclude this section with a definition that will be used often in 

the Appendices. 

Definition An interval of the form [-al, all is called a symmetric 

interval. 

4.2 Computer implementation of Interval Arithmetic 

The standard interval arithmetic operations can be adapted for 

implementation on a computer by enlarging the interval computed 

using standard interval arithmetic to take into account the rounding 

error made by the computer. This is described in detail in Appendix 

8. However the general idea is as follows. If we let R be the set of 

numbers that can be represented', on the computer, then, for 

x, ycR, the computer-calculated result for the sum of x and y, 

x +c y, will, in general, not be exact. However, for rER, there are 

two functions r_up(r), r_down(r) which give numbers slightly greater 

and less than r respectively. These functions are such that for all 

x, yCR 

r. down(x +c y) 4x+y4 r_up(x +c y)" 

A similar set of inequalities holds for multiplication. Now it is 

possible to define an addition operation between those intervals with 

end-points in R. For example the interval addition defined earlier is 

modified as follows. Let 11 = [al, bl], 12 = [a2, b2] be two such 
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intervals. Then defining and interval addition +c for the computer 

by: 

11 +c 12 = [r down(a1 + a2), r_up(bj + b2)) 

then equation (4.1) will hold for 0 set to +c, although equality will 

not hold. In this way the standard interval arithmetic operations are 

implemented on the computer. 

4.3 Numerical Functional Analysis 

We have used the technique for Numerical Functional Analysis that is 

described in Eckmann et al (1982). They develop a series of 

operations on sets of analytic functions, which we call "function 

balls, " that can be implemented as finite algorithms on a digital 

computer. These algorithms use the interval arithmetic routines that 

are described in the previous two sections. 

For simplicity, we will assume that all functions are real analytic and 

defined on the unit disc D(0,1) in C. We shall represent functions by 

their Taylor expansions about 0. The formulae can be readily 

extended to any disc in C. Of course, we shall have to truncate these 

expansions after a finite number of terms and lump anything 

remaining in an extra term. We therefore choose a positive integer n 

which will be the degree of the Taylor Expansion. This n will remain 

fixed throughout. For 

f(x) = f0 + f1. x + f2 x2 + .., 

we write II f II for the L1-norm of f given by 

II f II = If01 + If11 + If21 + """ 
We work in the space L(0,1). This is a space of functions analytic on 

D(0,1) with finite Ll-norm. This is formally described in Appendix 3. 

It is natural to consider sets of functions of the form 
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{ fp(x) + fh(x) : 11 fh fl <E} where fp is (fixed) polynomial of degree 

n>0 and fh is an arbitrary function containing only terms O(xn+l) 

and with L1-norm bounded by c>0. Of course, we shall have to 

replace the Taylor coefficients with intervals. However, we shall also 

need to introduce an extra arbitrary function, an error function fe. 

This is because when we take a function fh, with only terms that are 

O(xn+l) and compose it with a function that has a non-zero constant 

term, then the resulting function is made up of terms of all degrees. 

This function must be taken into account in some form of error term. 

Following Eckmann et al (1982) we define a vector v as a finite data 

structure consisting of (n+l) intervals v0, v1,..., vn, together with 

two non-negative numbers vh and ve. As in Eckmann et al (1982), we 

write a vector as 

V= { V0, V1+ V2, 
..., 

Vn; °h, Ve }. 

Provided the end-points of the intervals and the numbers vh, ve are 

all in - R, the set of numbers that can be represented on the 

computer, then this data structure can be implemented on a 

computer. To a vector v we associate a (function) ball B(v) of 

functions on D as follows: 

fp(x) + fh(x) + fe(x) with 

B(v) = fp(x) =L fi"x1, fi c vi 
" i=0 

II fhU 4vh, 11 4 Ve 
fh has only terms O(xn+l) 

We refer to the functions fh, fe as the high order and error 

functions respectively. As with intervals, for many binary or unary 

operations on functions, we can define operations between vectors to 

correspond to these operations on the function balls. Suppose that 0 
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is a binary operation on functions. Then analogously to (4.1) we 

shall require that for any vectors v and w, v0w satisfies: 

{f0g: fc B(v), gc B(w) }c B(v 0 w) (4.3) 

A similar inclusion will hold for unary operators. Again, this inclusion 

will be strict when implemented on the computer. In Appendix 8 the 

operations that we have implemented are listed. They include 

addition, negation and subtraction, multiplication by a "scalar" real 

number, multiplication (but not division) between functions and, 

importantly, function composition and differentiation followed by 

composition. 

To illustrate this procedure we give two examples: (i) function 

addition and (ii) differentiation followed by composition. 

Let w, v be two vectors and let 

f= fp+fh+feCB(v), g= gp+gh+geCB(w). 

(i) Addition i-- 

We require a definition of addition between v and w so that (4.3) is 

satisfied. Now 

f+g= (fp+gp) + (fh+gh) + (fe+ge), 

where fp + gp is a polynomial of degree n and fh + gh contains only 

terms O(xn+l). Furthermore, 

fp + gp = (f0 + g0) + (fl + gl). x + (f2 + 82). x2 + ... 

and 

II fh + gh II4II fh II+II gh lit II fe + ge II 4 II fe (I + II ge II 

Therefore, if u-=v0w is defined by: 

Ui = vi + Wig i=0, ..., n and uh = vh + who ue = ve + we 

then ` (4.3) is easily seen to hold. 

(ii) Differentiation followed -by composition 

This example, while rather complicated, is highly instructive. Consider 

a function f with II f II 4C<C. Unfortunately, without further 
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information about f, it is impossible to find a bound for 11 Df 11. This 

is why it is not possible to define a straight diferentiation operation. 

However if g is a function with 11 g4c<1, then g(D) SD and 

Df og is well defined. Moreover, fi Df og 11 can be bounded in terms 

of c. For if 

f(x) = fp + fl. x + f2-x2 + ... 

then 

""- IIDfogII < IfjI +2.1f21"II gII+3.1f3l"II g 112 + 

< II f II. sup { (i + 1) . ci :i2 0} 

This last supremum can be calculated in finite time since (i + 1). ci 

decreases for i> a/(1 - a). Now for fc B(v) and gc B(w) we have 

Df og is given by 

DfPog+Dfhog+Dfeog 

We can therefore treat the elements Dfp o g, Dfh og and Dfe og 

independently 
, 
and add the results together at the end. ° This is the 

same as treating v as the sum of , the vectors 

vp ={ v0, ..., vn; 0,0 vH 10, O1, ..., [0,0); vh, 0 }, and' 

vE _{ [Orel, ..., 10,0l; 0, Ve }. 

The first of these can be readily defined directly in terms of the 

composition operation (see appendix 8). Since Dfp has Taylor 

expansion ' 

f1 + 2. f2. x + 3. f3. x2 + ... n. fn. xn-1 

we see that, an appropriate definition for vp is up o w, where up is 

the vector { v1,2. v2...... n. vn, (0,0]; 0,0 }. Here i. vi denotes scalar 

multiplication of the interval vi by the integer i. The appropriate 

definitions for vH and vE are clear from the discussion above. If we 

define uH and uE by the vectors: 

{ [0,0), ..., [0,0); 0; uh ) and 
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{ (0,0], ..., [0,0]; 0; ue } where 

uh = sup { (i+l). ci :i)n} and 

ue = sup { (i+1) . c1 :i0 11 g (I <c<1 

then u= up + uH + uE is a definition of differentiation and 

composition that will satisfy (4.3). 

The same general comments about the importance of taking out 

common factors etc... apply just as well to operations with vectors as 

to interval arithmetic. 

Using computer interval arithmetic, these operations can all be 

implemented as finite algorithms on the computer. In Appendix 8, 

there is a complete list of the operations between functions that have 

been implemented as operations on vectors. 

Apart from being necessary to take account of computer rounding 

error, there are other advantages to this method of numerical 

functional analysis. First of all, we need to work with a 

neighbourhood of an approximate fixed point and this "vector 

arithmetic" provides a natural framework for this to be done. 

Furthermore, we need to make estimates on the error in truncating 

the derivative matrix at a finite point. This can be done by 

evaluating the derivative at all but finitely many basis elements at 

one go. For the ball B( { [0,0], ..., [0,0]; 1; 0}) includes all the 

basis elements { xn+l, xn+2, .,. } that we use in the calculation of the 

derivative matrix. 

4.4 Summary 

We see that by a careful analysis of the computer algorithms to 

obtain rigorous error bounds on computer floating point calculations, 

together with the interval arithmetic and numerical functional -, 
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analysis described here, it is possible to rigorous calculations on 

function balls. 
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5. Philosophical and Mathematical Considerations 

Computer assisted proofs are no longer the novelty that they were 

ten years ago. The proof of the Four Colour Theorem announced by 

Appel and Haken (1976) generated a great deal of discussion on the 

philosophical implications of such proofs. We shall outline some of this 

discussion below. However, since that time, computers have been used 

extensively to prove/disprove conjectures in a number of branches of 

mathematics especially number theory and algebra. By and large, this 

use of computers has been accepted by the mathematical community, 

although it has not been universally welcomed. It was thus a natural 

progression for Lanford to extend the use of computers from 

combinatorial and integer arithmetical calculations to the rigorous 

floating point calculations of numerical -functional analysis. This 

extension adds little new to the philosophical questions. However it 

raises a different and, in my -view, more important mathematical 

question. Even if, one accepts these type of computer proofs as 

valid, - it is debatable whether they constitute "good mathematics. " 

Lanford (1981) himself, referring to the Feigenbaum problem, 

expressed his dissatisfaction as follows: 

"... the proofs rest on long and relatively blind computations which 

could - perfectly well, so far as one can see without actually doing 

them, have come out differently. I 'think it is fair to say that, 

although we know that a solution (of the Feigenbaum' equation), exists, 

we don't at all understand r why it must exist. In view of the 

simplicity of the functional equation, this seems a most unsatisfactory 

state of affairs. " 

We shall discuss briefly, this and other questions below. 
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5.1 The Controversy over the Four Colour Theorem 

When Appel, Haken and Koch (1976) announced their proof of the 

Four Colour Theorem (4CT) almost ten years ago, it generated a great 

deal of excitement in the mathematical world. The theorem states that 

every planar graph may be coloured with four differrent colours so 

that no adjoining vertices are coloured the same. This theorem, which 

had eluded proof for so many years, had finally been cracked and 

then only by extensive use of computer calculations. However, 'it was 

not long before philosophers stepped in to spoil the fun. Was the 4CT 

a theorem at all? Or, rather, did the proof of the 4CT necessitate a 

revision of the notion of a mathematical theorem? Futhermore, did the 

proof of the 4CT pose a challenge to the widely held belief,, that 

mathematical theorems are a priori truth, existing independently ' of 

the physical world? In order to get, the flavour of the controversy, 

we reproduce some the arguments that Tymoczko presented in an 

article in the Journal of Philosophy together with two subsequent 

replies, one by Krakowski and another by Swart. This discussion is 

in no way intended to be a comprehensive review of the topic. 

In his articles (Tymoczko (1979) and (1980)), Tymoczko accepts that 

the mathematical question of the 4CT can be regarded as solved. The 

proof has been accepted by most mathematicians. However, he argues 

that the 4CT is the "first mathematical theorem to be known a 

posteriori and raises again for philosophy the problem of 

distinguishing mathematics from the natural sciences. " He identifies 

three major characteristics of mathematical proofs. Firstly, proofs are 

"convincing". He accepts that the proof of the 4CT is convincing to 

mathematicians. Secondly, proofs are "surveyable", that ' is "a proof 

is a construction that can be looked over, reviewed, verified by a 
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rational agent. " "To say that (proofs) can be surveyed is to say that 

they can be definitively checked by members of the mathematical 

community", and he claims further that "because of surveyability, 

mathematical theorems are credited by some philosophers with a kind 

of certainty unobtainable in other sciences. Mathematical theorems are 

known a priori. " With regard to the 4CT, Tymoczko argues that the 

proof has not been surveyed "in its entirety". "It has not been 

checked, step by step, as all other proofs have been checked. " 

Tymoczko's third characteristic of proofs is "formalisability". He 

claims that "most mathematicians and philosophers believe that any 

acceptable proof can be formalised. " Although he "concedes that "most 

mathematicians would concur that there is a formal proof of the 4CT 

in an appropriate Graph Theory", he suggests that "we believe that 

the formal proof exists only because we accept the appeal to 

computers. " 

And, with regard to the computer calculations, he suggests that "our 

knowledge rests on general empirical assumptions about the nature of 

computers and particular empirical assumptions about Appel and 

Haken's computer work. " Moreover, in view of the inherent complexity 

of the 4CT, he suggests that "The only route to 4CT that we can 

ever take appears to lead through computer experiments. " He 

concludes that the 4CT is an "a posteriori truth and not an a priori 

one. " 

In his reply to Tymoczko's article, Krakowski (1980) argues that the 

computer proof of the 4CT "introduces nothing new of philosophical 

importance" (emphasis in original). He argues against an independent 

notion of "surveyability". He suggests that Tymoczko's notion of 

"surveyability" reduces to the existence of a "step by step method 
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by which mathematicians can check proofs" and that "the computer 

has, in a step by step fashion, surveyed and proved" the crucial 

lemma in the proof of the 4CT. While it may be true that the "4CT 

proof can be surveyed by no mathematician" (emphasis in original), 

he claims that this "is a matter of empirical accident" and that "there 

is no principled reason why, when longevity reaches astronomical 

proportions, a bright young mathematician could not spend a few 

millenia going through the entire proof. " On the question of 

computer reliability he suggests that a computer is no more fallible 

than a human mathematician. He concludes that "all mathematical 

theorems can be known a priori" (emphasis in original) and that "the 

proof highlights the already existing empirical elements of 

mathematical knowledge" (emphasis in original). 

Swart (1980) also argues that the computer proof does not require to 

revision of the idea that mathematical theorems are a priori truth. He 

defines an a priori truth as one whose validity can in principle 

(though not necessarily in practice) be established "without recourse 

to sense experience of the physical world. " This, he claims, does not 

mean that mankind need not resort to an experiment to know the 

truth of an a priori truth. He gives four categories of proof 

involving the sort of case testing required in the proof of the 4CT. 

(i) Those theorems in which the case testing can be done in our 

heads. 

(ii) Those theorems in which the case testing is impossible to 

carry out without the help of pencil and paper. 

(iii) Those theorems in which the testing can be carried out with 

immense effort by means of pencil and paper - requiring, say, 

several thousand man hours of effort. 



55 

(iv) Those theorems which are entirely beyond the reach of hand 

calculations and for which the case testing has to be carried out by 

computer" (emphasis in original). 

r 

"The divisions between these categories are not clear cut" and Swart 

maintains that from the philosophical point of view the division 

between category (i) and all the rest is the most significant. In these 

considerations, the fact that the proof is by case testing is not 

important. The categories apply equally well with "case testing" 

replaced by "functional analytic estimates. " It is interesting to note 

that Lanford's proof of the Feigenbaum Conjectures is borderline 

(iii)-(iv) while our proof is undoubtably in category (iv). Swart 

defines an a posteriori truth as one "whose truth is contingent upon 

the nature of the universe to which it applies and cannot in 

principle be known without carrying out at least some experiments. " 

For him, mathematical theorems remain a priori truths. However, 

Swart concedes that "perhaps (mathematicians) need a new kind of 

entity that lies somewhere between a theorem and a conjecture. 

Perhaps these additional entities could be called agnograms, meaning 

whereby theoremlike statements that we have * verified as best we can 

but whose truth is not known with the kind of assurance we attach 

to theorems and about which we must remain, to some extent, 

agnostic. " 

I have tried to summarise three views of the philosophical 

implications of computers proofs and the proof of the 4CT in 

particular. While there are differences between the combinatorial 

case testing required for the proof of the 4CT and the 

numerical-functional-analysis-type proofs we are considering, these 
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considerations carry over. One point however. Tymoczko lays quite a 

bit of stress on the fact that, by its very nature, the 4CT probably 

cannot be proved accept using a computer. While, remaining 

somewhat agnostic as to whether a "computer-free" proof will be 

found, I feel that it certain that proofs involving the delicate 

functional analytic estimates we have obtained, must use computer 

calculations. 

5.2 Are these proofs "good" or "bad" mathematics? 

In my opinion, the question of whether. theorems proved using 

computer estimates constitute a priori or -a posteriori truth is not the 

most important matter. For the working mathematician a theorem/proof 

is judged by other criteria. Elegance, applicability and depth are a 

few of these. -, 

(i) How elegant is the proof? 

Although there is a great deal of cleverness in the construction of 

the numerical functional analysis routines, I can see little intrinsic 

merit, in a proof that' depends so decisively on a large number of 

"number crunching" calculations. Perhaps this is in part a 

manifestation of the snobbishness of modern mathematicians who 

regard a decimal point in a proof with horror (a feeling not shared 

by Soviet mathematicians). In ,. fact, calculation is a great mathematical 

tradition. Gauss was, a prodigious calculator. Indeed, I regard it as 

rather fitting that ., a computer is used in the solution" of 

Feigenbaum-like problems. After all. the discovery of, 
+e 

phenomena 

which the�theory explains was only made possible with the advent of 

, 
digital computers! Moreover, with -the horsehoes and strange 

attractors that abound in modern dynamical systems, we should 
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indeed be glad there is room for any quantitative analysis at all! 

Maybe for some, to adapt Poincare, computers and computer proofs 

are a "desease from which mathematics will recover, " but I suspect 

that this is false and would be a great loss if it were so. 

(ii) How applicable is the proof? 

The methods of numerical functional analysis and rigorous interval 

arithmetic have been used to solve a number of Feigenbaum-like 

problems. After Lanford's proof of the Feigenbaum Conjectures 

(Lanford (1982)), Eckmann, Koch and Wittwer (1982) proved 

universality for period doubling in conservative systems. McKay and 

Percival (1985) have applied rigorous interval arithmetic to obtain 

good rigorous upper bounds for the "onset of chaos" in the standard 

map. However, there must come a time when this type of proof will 

cease to be either practical or profitable. Indeed, we may well have 

reached this limit already. We have tried (and failed) to adapt the 

methods for the renormalisation scheme developed by McKay (1983) 

for the breakdown of invariant circles in conservative systems. The 

problem was too large (primarily in storage space) for the resources 

we had available. Another problem with this type of proof is that it 

is very specific. For example, although, the method can be applied to 

solve the renormalisation problem for any periodic rotation number, 

there does not seem to be a way of dealing with a whole class of 

rotation numbers at one time. This has meant that only one rotation 

number has generally been dealt with, almost exclusively, the golden 

mean. These are serious flaws in the method and although it is in 

principle possible to adapt the method to other renormalisation 

schemes I seriously doubt whether it is a useful thing to do. 
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(iii) How deep is the proof? 

By this I mean, how much insight does the proof give to the actual 

problem? I think it is clear from the quote from Lanford given above, 

that the proof is seriously defficient in this respect. Apart from the 

importance of "analyticity improvement" on some domain, there are 

few clues which will enable us to determine under what conditions 

Feigenbaum-like functional equations will possess analytic solutions. 

When a geometric construction for the renormalisation transformation 

can be found (as in the Feigenbaum and circle map cases), for which 

a fixed point (or periodic point or whatever) is plausible, then it is 

certainly a strong indication that it actually exists. At its most basic 

level, the proof is an application of the contraction mapping theorem 

on an open set in a Banach space. The sophistication comes in 

obtaining the contraction map and showing that it is indeed a 

contraction. The fact that such .a contraction exists, however, is 

really a result of the fact that the renormalisation transformation has 

a fixed point (and 1 is not in the spectrum of the derivative), rather 

than the other way round. With the right amount of resources, this 

method can. be used to solve any other such problem provided it has 

a solution, but gives virtually no information as to why the solution 

should exist! 
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AO. Notation 

This appendix contains some of the notation used commonly in the 

text. 

A The Banach space A(01) X A(02)- 

A3 The Banach space of pairs (g, rr) E A, for which 

both g, n are analytic functions of x3. 

Acorn The space A with the commuting conditions (3.4). 

AcOm The space A with the conditions (3.4) and (3.5). 

A(n) Banach space of real analytic functions on (2, with 

the supremum norm II"Iln" 

A(a, r) Banach space of real analytic function on D(a, r) 

with the supremum norm II " IID (a, r) 

al, rl Centre and radius of the domain of h 

a2 r2 Centre and radius of the domain of k. 
, 

R The scaling parameter for the map T. 

A* The scaling parameter for the critical fix ed point 

(g*, n*). 

C The renormalisation transformation with co nstant 

ß= ß* given by (A4.4). 

C(a, r) {zcC: Iz - a+ =r} 

cl(A) The closure of the set A. 

D Differentiation of a function with respect to its 

argument. 

D (a , r) {zcC: I z- al <rI 

8* The leading eigenvalue of dT* 

(8h, 8k) Tangent vector at (h, k) E A(al, r1) x A(a9, r2) or 

Val, rl) x L(a9, r2). 
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(SQ, SR) Tangent vector at (G:, n) c A. 

dT* The derivative of T at the critical fixed point 

(g*, n*)" 

Fn The nth Fibonnacci number. 

fW a The two parameter sine map (2.1). 

g The function ß*-lk*- 

< For open sets A, B, A<B iff cl(a) S B. 

(h, k) Pair of functions associated with (F-, r1): 

C(x) = h(x3), n(x) = k(x3). 

(h*, k*) The critical fixed point of T: *(x) = h*(x3), 

n*(x) = k*(x3). 

K The function ß*-lt1*. 

Ql Banach space of real sequences with bounded Ll-norm. 

L(a, r) Banach space of real analytic functions on D(a, r) 

with Ll-norm II " Ila, r" 
A(E, F) The space of bounded linear maps from a Banach space E 

to F. 

N The approximate Newton map for T. 

Ni The approximate Newton map for S. 

Ill, 02 The domains of definition of the pair of functions 

(g, n). 

pn/9n The rational approximants to a number in (0,1), 

usually the golden mean o. 

Rw The map x -> x+u, the lift to R of the rotation 

through constant angle w. 

p, p(f) The rotation number. 

S The eigenvalue/vector map (3.4). 

a The golden mean o= (�5 - 1)/2. 

T Renormalisation transformation. The letter T is used 
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to denote each of the transformations (2.18), (3.1) 

and (A6.7). 

Ws, wu Stable and unstable manifolds. 

(g, n) Pair of functions often thought of as forming a map 

of the circle. 

(g*, R*) The critical fixed point of T. 

(Es, ns) The simple fixed point of T. 
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Al. Continued Fractions 

A1.1 Simple Continued Fractions 

This appendix contains a brief review of some of the properties of 

simple continued fractions that we use. Good references are Khinchin 

(1964) and Hardy and Wright (1954). 

A continued fraction is an expresion of the form: 

a=1 

a1 +1 
(A1.1) 

a2 +1 

a3 + ... 

which is usually written [al, a2, a3, ... ]. We shall only consider simple 

continued fractions where the ai are positive integers. Every 

aE (0,1) has a simple continued fraction expansion. If aCQ then the 

continued fraction terminates after a finite number of steps; if a is 

irrational the expansion is infinite. The expansion is unique if a is 

irrational and is almost unique if a is rational (in which case case 

there are two possiblities, for [a1, ..., am, 1] _ [a1, '..., am+l]). If we 

terminate (A1.1) at the nth stage we obtain the a rational number 

[al, a2, """, an] which we write as pn/qn, with pn and qn relatively 

prime. Writing po = 0, pl =1 and q0 = 1, ql = al then we have 

Pn+1 
- 

an 1 Pn Qn+l an qn 
(A1.2) 

Pn 10 Pn-1 qn 1 '0 qn-1 

A1.2 Eventually Periodic Continued Fractions 

Two infinite continued fractions, a= [al, a2, ... ] and 13 = [b1, b2, ... ] 

have the same tail if there are no m> 0 such that an+r = bm+r for 

r=1,2, ... Two numbers a and ß have the same tail if, and only if, 
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there are integers c, d, e, f such that (ca + d)/(ea + f) _9 (Hardy 

and Wright (1954), Theorem 175). A continued fraction 

a= [aj, a2, ... ] has a periodic tail (or is eventually periodic) if there 

are n, r>0 such that am+r = am for all m>n. In this case r is 

the period of the tail. In fact, a has a periodic tail if, and only if, 

it is a quadratic irrational, that is, a root of a quadratic equation 

with integer coefficients (Khinchin (1964), Theorem 28). We are 

particularly interested in those a with periodic tails. 

Suppose a. [a1, a2, ... ] is eventually periodic with period r. Let n 

be such that am+r = am for m>n. Then equations (A1.2) give 

qm+rk+l Qm+l 
= Ak (A1.3) 

qm+rk qm-1 

for k>1, where A is the matrix: 

n + r ai 
IT 

i = n + 1 1 0 

The same equation holds with the q's replaces by p's. 

Now, det(A) _ (-1)r, Tr(A) > 0 and A is symmetric so that the 

eigenvalues of A, )l, a2 are real and satisfy: 

0<I N1 I<1<I a2 I and al = (-1)r. X2-1 

Writing the right hand side of (A1.3) in terms of the eigenvectors of 

A, we obtain relations: 

9m+kr = C1"3'lk + C2. a2k ; pm+kr = D1. ), lk + D2.12k (A1.4) 

for k>0, where the constants Cl, C2, Dl, D2 depend only on m>n. 

Using the fact that pn/qn -> a, we obtain the relation Cl. a - Dl =0 

and the following scaling relations are immediate: 

qm+rk. a - pn+rk ), lk as k -> 
(A1.5) 

pm+rk/qm+rk -«- ((-1)r-A12)k as k -> ý. 
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A1.3 The Golden Mean a 

Of particular importance is the golden mean a= (, /5 - 1)/2, which has 

continued fraction exapnsion (1,1,1, ... ]. (Note: Most people refer to 

(. (5 + 1)/2 =1+a as the golden mean. ) Mckay (1982) has christened 

numbers that have tail (1,1, ... ] noble numbers . These numbers are 

important because they are the numbers least well approximable by 

rational numbers and a is the least well approximable of all. 

a satifies the equation o2 =1-a and qn = Pn+1 = Fn, where Fn, n> 

0 are the Fibonacci numbers 1,1,2,3, 5,8,13, .... 

In this case the eigenvalues al, a2 are -a, 1/a respectively and the 

equations (A1.5) become 

qk. Q - Pk (-0) k as k -> Co 
(A1.6) 

Pk/qk -a- (-02)k as k -> -. 
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A2. Maps of the Circle 

This appendix contains a review of the basic theory of circle maps. 

Some references to the subject are Herman (1976), Cornfeld et al 

(1982) and Nitecki (1971). 

We denote the circle R/Z by T1. Note that our circles have length 1 

rather than 2n. R is the universal cover of the circle and any map 

f: T1 -> T1 lifts to a unique map f: R -> R satisfying f(O) E [0,1) 

and f(x + 1) = f(x) + 1. It is usually convenient to work with the 

lift and we shall identify a circle map with its lift and use the same 

notation throughout. Which one is being referred to at any time will 

be easily discernable from the context. We shall always assume that f 

is a homeomorphism of T1. 

One particular example of a circle map is a simple rotation through a 

constant angle w, whose lift is RCj: x -> x+w. 

Poincare first introduced the notion of rotation number p of a circle 

map f, defined in terms of the lift by 

p(f) = lim (fn(x) - x) 
n->co n 

(A2.1) 

This limit exists and is independent of x. The following are some 

properties of p. 

(a) p(f) E [0,1) 

(b) p(R) W 

(c) If h is a" homeomorphism of the circle then p(f) = p(h-1 ofo h). 

The dynamics of a circle map depend crucially on the rationality or 

irrationality of the rotation number p. For generic f we have the 

following situation: 

If p(f) = p/q EQ then every point of TI is attracted to a periodic 

orbit of period q. If p(f) of Q, then there are two possibilities: Either 
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every point has a dense orbit in TI, in which case f is topologically 

conjugate to the rotation R, (f), or f has a Denjoy interval I with the 

property that fn(I) (1 I=0, for each n*0. In the second case every 

point is attracted to an invariant Cantor set. Denjoy's Theorem states 

that if f is a C2-diffeomorphism with p(f) ¢Q then this second case 

is not possible, and f is topologically equivalent to a rotation (i. e. 

there is a homeomorphism h of T1 satisfying h-1 of oh = Rp(f). ) 

Unfortunately, Denjoy's theorem does not apply to maps with a single 

cubic critical point (which we shall refer to as cubic critical maps). 

However, it is shown in Ostlund et al (1983) that for a large class of 

cubic critical maps (those in the stable manifold of the critical fixed 

point of T) there cannot be a Denjoy interval and so they will be 

topologically conjugate to a rotation. 

For f differentiable, it is an natural question to ask whether or not 

the map h conjugating f to a rotation is itself differentiable. This 

depends on the arithmetic properties of p(f). 

Definition: An irrational a is diophantine if there are constants C, 

c>0 such that for all p, qEZ, 

1a - P/ql Z 1/92+E (A2.2) 

We denote by D the set of diophantine numbers. D has measure I in 

[0,1) and contains the quadratic irrationals i. e those numbers whose 

continued fraction expansion is eventually periodic (see Appendix U. 

Definition: The Liouville numbers are R\ (Q U D). 

Arnold has constructed an example of an analytic diffeormorphism f 

with Liouville rotation number which is CO but not C1 conjugate to a 

rotation. However Herman showed that for a set of numbers of full 

measure the homeomorphism h was differentiable. Yoccoz has recently 

extended this result to include all diophantine numbers. 
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Theorem A2.1 (Herman-Yoccoz, see Yoccoz (1984)) Let f be a C00 (resp. 

Cu) diffeomorphism of the circle and let p(f) E D. Then f is C°° (resp. 

Cw) conjugate to Rp(f). 

For a given f we consider the family fw = RW o f. Herman (1977) has 

shown that if f is a Cl diffeomorphism which is C1 conjugate to Rp(f) 

then the map w -> p(fw) is differentiable at w=0, with non-zero 

derivative. 

For diffeomorphisms of the circle we may use the Herman-Yoccoz 

theorem to deduce some scaling laws: 

Proposition A2.2 Let f be a CO° of the circle with p(f) a quadratic 

irrational. Let r, )1 be the values given in Appendix 1. Then (in 

terms of the lift) 

fgkr(O) - Pkr - a1k (A2.3) 

Moreover, let wk be a sequence for which p(Rwk o f) = pk/qk" Then 

wk - 12)k. (A2.4) 

proof Let a_ p(f). By Herman's theorem, there is a homeomorphism h 

of T1 such that 

h'lofoh='Ra. 

With no loss of generality we may take h(O) = 0. Hence 

h-l(fQkr(0) - Pkr) = 1? kr(O) - Pkr ' gkr"a - Pkr 

and so fgkr(0) - pkr -> 0 as k -> ý. Expanding the left hand side 

for large k we have 

D(h-1)(O)(fgkr(O) - Pkr) = 9kr. 01 - Pkr + O((fgkr - Pkr)2) 

and from equation (A1.6) we get 

fgkr(0) - Pkr - )1k as k -> a*. 

Now consider the family fw as defined above. We know that the 

function w -> p(fw) is differentiable at w=0. Then as k -> oo, Wk -> 0 

and 
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P(f(lkr) =a+ d/dwIW_o P(fw). wkr + O(Wkr2) 

Moreover the derivative is non-zero so that 

Wkr - Pkr/qkr -a- ((-1)rx12)k as k -> ý. 

0 

In fact one can prove the following: 

Proposition A2.3 Under the hypotheses of Proposition A2.2 we have 

al-k. (fgkr(alk"x) - Pkr) -> Rcr(x) as k -> 

for all xcR, for some ccR. (A2.5) 

proof Let h be as in the proof of Proposition A2.2. Let xcR be 

fixed. Then 

), 1-k(fgkr(a1k"x) - Pkr) = a1-k(h(h-l(atk. x) + 9kr"a - Pkr). 

For k large we have 

), 1-k(Dh(0). D(h-1)(0) alk. x + Dh(0)(gkr. a - Pkr)) + O(A12k) 

--> x+c for some constant c. 

0 

Finally, we give" another characterisation of rotation number. For fa 

homeomorhpism denote by 10 the interval (0, f(0)] going round the 

circle. Note that if y is in the interior of 10, then the next time an 

iterate of y is in 10, y has been around the circle precisely once. 

The rotation number is given by: 

p(f) = lim m(n)/n (A2.6) 
n->oo 

where m(n) tt Ij: fj(x) c 11, j 1, ..., n) and x is a point for 

which f. i(x) ve 0 for any iZ0. That this formula gives the rotation 

number from the equation follows immediately from 

m(n) 4 fn(x) 4 m(n) +1 

This equation is a result of the fact that m(n) counts the number' of 

times x goes round the circle under n iterations. 
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A3. Spaces of analytic functions, analyticity improving operators, 

compact linear operators, spectral perturbation theory and L1-Spaces 

This appendix contains details of the Banach spaces in which we 

work. This is followed by a discussion of analyticity improving 

linear operators and their relationship to compact linear operators. 

Then we review the theory of perturbation of linear operators from 

Kato (1976) and, finally, we consider L1-spaces in more detail. 

A3.1 Banach Spaces of Analytic Functions 

Let 0 be a (simply connected bounded) region in C. Let denote 

the supremum norm on 0 given by II f Iln = sup ((f (x) I: xC n). Let 

A(Q) denote the space of real analytic functions f: t2 -> C such that f 

is continuous on cl(f2) and hence II f 110 < co. Then (A(n), II . 110) is a 

real Banach space. A special case occurs when f2 is a disc around a 

point aEC. We fix the following notation. Let r>0, aCC, D(a, r) _ 

{z cC: Iz - al < r) and C(a, r) = aD(a, r) _ {z CC: (z - al = r}, 

with C(a, r) given the positive orientation. We shall write A(a, r) for 

the space A(D(a, r)). 

We find it convenient to work in the L1-space rather than the "sup" 

space. Let fC A(a, r). Then 

f(x) =ii0f1 . 
(x - a)1/rl 

= 
and the L1-norm is given by 

00 
Il f lla, 

r 
Ifil 

i=0 

Let L(a, r) _ (f E A(a, r) : 11 f Ila, r < cc}. Then, with this norm, 

L(a, r) is a real Banach space. We remark that L(a, r) is isomorphic 

to the space 91 of sequences s= (so, sly ... ) with 

00 

Ils((=FIs. l<ý. 
i=0 1 
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The spaces A(a, r) and L(a, r) are related as follows. 

Pro position A3.1 Let r, a> 0 and fE A(a, r). Then 

(a) 11 f IID(a, r) ( 11 f IIa, r (including the possibility that 11 f ((a, r = 

co). 
(b) II f fla, s 4 K(r, s). Ii f IID(a, r) where K(r, s) = r/(r - s). 

(c) A(a, r) a L(a, s) c A(a, s). 

proof Let 

00 
f(x) =E f(x - a)i/rl 

i=0 i 

(a) If xc D(a, r), then 

co co I If(x)I < I. E f. (x - a)2/rl1 4L If. ( J(x - a)/rl 
1=0 1 i=0 1 

4 11 f Ila, r 
since j (x - a)/r I<1 if xE D(a, r). Therefore 

If f IID(a, r) < II f Ila, r 
(b) Using the Cauchy integral formula (see for example Dieudonne 

(1960)) we have for iZ0 

fi/ri = 1/2ni f 
C(a, r) 

f(z)/(z-a)i+l dz 

so that 

(iil ( 11 f I1D(a, r) 

Then since 

f(x) =Ef. (s/r)1 (x - a)i/si 
i=0 1 

we have that 

If f Ilans = I£il (s/r)1 (I f IID(a, 
r) E (s/r)1 

00 
i=0 i=0 

' 11 f "D (a, r)r/(r - s). 

(c) The inclusions follow immediately from (a) and (b). We shall not 

prove that the inclusions are strict. This involves constructing an 

analytic function in the unit disc with finite supremum norm but with 

infinite L1-norm. 0 
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We note that K(r, s) -> o as s -> r so that A3.1(b) does not give a 

bound for 11 f IID(a, r) in terms of 11 f Il8, r. 

A3.2 Properties of the spaces A(a. r) and L(a. r 

Let a, r>0 be fixed. Let 11 . 11 denote either the norm I I" IID(a, r) or 

II " Ila, r and let E denote either A(a, r) or L(a, r). Let f, gEE. 

Proposition A3.2 The following hold 

(a) Ilf+gll4I If II+II gII. 

(b) Ilafli = P1.11 f 11, aER. 

(c) fif. gll I If 11.11 g II. 

(d) If IIg - all < r, then IIf o gII 4 11 f 11. 
(e) Let 0<s<r and let g(D(a, r) c D(a, s). Then for r 3 0, 

II(Drf) o 911 ( Il f If. sup{(i+r)... (i+l)si :iý 0}. 

The proofs of the statements are elementary. Indeed (a), (b) are 

implicit the statement the 11 " I) is a norm. 

We remark that the maps 

S1 RxE -> E, (a, f) -> of (A3.1) 

S2 EXE -> E, (f, g) --> f+g (A3.2) 

S3 EXE --> E, (f, g) --> f. g (A3.3) 

are all C00 maps with derivatives 

dSI(X, f) : RxE -->'E. (8X, Sf) --> EX. f + X. Sf (A3.4) 

dS2(f, g) : E'x E --> E (Sf, Sg) --> Sf + Sg (A3.5) 

dS3(f, g) : EX E'->'E (8f, Sg) --> Sf. g + f. sg (A3.6) 

respectively. These are all standard results (see for example Irwin 

(1980), Appendix B) Also standard is the following 

Proposition A3.3 Let f0, go EE with cl(gd(D(a, r))) s D(a, r). Let r)0. 

Then the map 

S4 :V --> E, (f, g) -> (Drf) og (A3.7) 

is defined on a neighbourhood of (f0, g0) in ExE and is C°° there. 
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Its derivative is given by: 

dS4(f, g) :ExE --> E 

(Sf, Sg) --> DrSf og+ (Dr+lf o g). Sg (A3.8) 

13 

We shall not give a proof of this proposition. A discussion of this 

type of result is contained in Appendix B of Irwin (1980). Irwin in 

fact considers more general spaces of Cr functions but the ideas are 

the same. We remark that it is not necessary that f and g be defined 

on the same discs. The important property is that g0 maps the 

domain of g strictly into the domain of f. 

A3.3 Analyticity Improving Maps 

A most important property of the renormalisation transformation is 

that, on properly chosen domains and close to the fixed point, it is 

an analyticity improving transformation i. e. the transformed functions 

are analytic on larger domains. This is also true of the derivative 

and, for linear maps, we formalise this idea as follows. Let Cl be as 

defined in Section A3.1. 

Definition A linear map B: A(C) --> A(t2) is analyticity impr Dying if 

there is another open region 0' with cl(c2) S CC, such that B(A(n)) S 

A(n') and B: A(n) --> A(n) is a bounded linear map. 

We recall that a linear map B is compact if the image of a bounded 

set is relatively compact. An equivalent definition is that for any 

bounded sequence {fn), (B(fn)) has a Cauchy subsequence (see for 

example Kato (1976)). 

Proposition A3.4 (see Jonker and Rand (1983)) Let B: A(Cl) --> A(n) be 

an analyticity improving linear map. Then B is compact. 

proof Let Cl be as in the above definition. Let (fn) be a bounded 

sequence in A(fl). With no loss of generality, we may assume that 
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IIfnIIO 4 1 for each n. Now let C be a closed contour in n' \ cl(n) and 

let x, y E C1. Then by the Cauchy integral formula 

IB( n)(x) - B( f)(Y)I = 1/2rri Jc B(fn)(z)/(z-x) dz - 

1/2ni JcB 
n 

/(z-y) dz 

= 1/2Tri lc(X-Y)B(fn 
)(z) / ((z-x). (z-Y))dz 

. 1/2Tr IIB(fn)IlC>, L(C). Ix-YI/s2 

where L(C) in the length of the curve C and ö= d(C, 0), the 

distance of C from the contour C. However B: A(n) --> A(f2') is a 

bounded linear map so that 

IB(fn)(x) - B(fn)(Y)I 4 K(x-y) 

where K is a constant that independent of n. Thus the family is an 

equicontinuous family of maps on Cl. Now from Ascoli's theorem 

(Dieudone (1960)) we conclude that the se quence (B(fn)} has a Cauchy 

subsequence in A(C). 

0 

We shall 'actually work in the L1-spaces. We extend the above result 

to these spaces. 

Proposition A3.5 Let B: A(a, r) --> A(a, r) be an analyticity improving 

map. Then B(L(a, r)) S L(a, r) and the restriction of B to L(a, r) 

(also written B) is also a compact operator. 

proof Let 0= D(a, r) and let 0' be as in the definition of analyticity 

improving map. We take s>r sucht that cl(D(a, s)) S Cl. Now 

B(L(a, r)) S B(A(a, r)) 5 A(fl') S A(a, s) S L(a, r) so that 

B(L(a, r)) S L(a, r). To show that B: L(a, r) --> L(a, r) is a compact 

operator, let {fn) be a bounded sequence in L(a, r). Then Proposition 

A3.1 (a) shows that. {fn) is also a bounded sequence in A(a, r). The 

argument in the proof of `Proposition A3.4 now applies for x, yE 

D(a, s) to give that {B(fn)) is a Cauchy sequence in A(a, s). Then 
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A3.1 (b) gives that (B(fn)} is a Cauchy sequence in L(a, r). Hence 

B: L(a, r) --> L(a, r) is a compact operator. 

0 

The analyticity improvement linear maps that we deal with are all of 

the following type: 

Proposition A3.6 

(a) Let t>r, g1, g2 C A(a, t) be such that (I gl -a IID(a, t), 

II g2 -a IID(a, t) < r. Let he A(a, r). Then the map 

B: A(a, r) --> A(a, r) defined by B(f) _ (h o g1). (f o g2) is an 

analyticity improving map B: A(a, r) --> A(a, r) and hence is compact. 

(b) Let t>r, gj, g2 c L(a, t) be such that II gl -a Ila, t, 

II g2 -a 11a, t < r. Let hc L(a, r). Then the map 

B: L(a, r) --> L(a, r) defined by B(f) _ (h o gl). (f o g2) extends to 

an analyticity improving map B: A(a, r) --> A(a, r) and hence 

B: L(a, r) --> L(a, r) is compact. 

proof 

(a) For fc A(a, r), B(f) C A(a, r) since 

11 B(i) IID(a, r) < II ho g2 IID(a, r)"JI f° g2 IID(a, r) 
< II h IID(a, r). 11 f IID(a, r)- 

The condition on the norms of g1, g2 is sufficient to guarentee that 

these compositions are well defined. Now, we have that 

II B(f) IID(a, t) < II h IID(a, r) " II f IID(a, r) so that B is a bounded map 

from A(a, r) --> A(a, t), that is, B is an analyticity improving map 

A(a, r) --> A(a, r). It follows that B is compact by Proposition A3.4. 

(b) For fC L(a, r), B(f) C L(a, r) since 

II BM 11a, r 4 II ho gI 11a, r-11 fo g2 11a, r 4 II h Ila, r. II f Ila, r. 
Defining B for fC A(a, r) by B(f) _ (h o gl). (f o 92), we see that the 

condition on the norms of gl, g2 is sufficient to guarentee that these 

compositions are well defined (by Proposition A3. l(a)). Now, we have 
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that 11 B(f) IID(a, t) < 11 h IID(a, r) " 11 f 1UD(a, r) so that B is a bounded 

map from A(a, r) --> A(a, t), that is, B is an analyticity improving 

map A(a, r) --> A(a, r). It follows that B restricted to L(a, r) is 

compact by Proposition A3.5. 

0 

It is easy to see that a linear combination of two analyticity 

improving maps A(a, r) --> A(a, r) is also analyticity improving. 

We work mostly with pairs of maps and the appropriate space to 

work is the direct sum of these Banach spaces. We denote by 

L= L(ai, r1) ® L(a2, r2), which is a real Banach space when given 

the norm II (f, g) II = II f (I + (I g II" A linear operator B: L --> L is 

compact if, and only if, the linear maps B11, B12, B21" B22 are 

compact where: 

B= 
11 B 

22 

12 
:L --> L B 21 22 

A3.4 Spectral Theory and Perturbation Theory 

The main reference for this section is the comprehensive account of 

the perturbation theory for linear maps given in Kato (1976). 

Let E be a real Banach. space and let B: ,E . --> E be a compact linear 

operator. We make a number of remarks about the complexification of 

a real Banach space. The right place to do spectral theory is in a 

linear space over the complex field. We work in linear spaces over 

the real numbers. We recall that we can complexify a real space by 

writing, EC =, E + i. E with norm flu + i. vjI _� Iju112 + 11vI12) for u, vE 

E. A linear operator B on E induces a linear operator on EC (which 

we also write B) by 
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B(u + i. v) = B(u) + i. B(v) 

As usual, the complex conjugate of u+i. v is defined to be u-i. v. 

As with finite dimensional spaces, spectral values of a real Banach 

space are either real or come in complex conjugate pairs. We note 

that the property of compactness of B carries over to the operator B 

on EC. In what follows, we shall assume that E has been complexified 

as outlined here, and we shall drop the superscript C. 

We recall that ACC is in the spectrum of a -bounded linear operator 

B if (B - XI) is not an invertible operator. 

Proposition A3.7 (see Theorem 11.4.1 of Dieudonne (1960)) Let B be a 

compact operator on a complex Banach space E. Then 

(a) The spectrum S of B is an at most denumerable compact subset of 

C, each point of which, with the possible exception of 0, is isolated. 

If E is infinite dimensional, then 0cS. 

(b) Each A*0 in S is an eigenvalue of B. The spectral subspace NA 

belonging to any eigenvalue A is closed, finite dimensional and each u 

C N> is a generalised eigenvector i. e. there is rý1 such that 

(B - AI)ru = 0. 

Definition Let B be a bounded linear operator on a Banach space E. 

The resolvent set P(B) is the set of r, CC for which (B - SI)-I is a 

bounded linear operator on E. The operator valued function 

R(S) = 

defined on the resolvent set is called the resolvent of B. The 

resolvent is an analytic function of 1 on P(B) (see for example 

Dieudonne (1960) for a discusion of analytic functions between Banach 

spaces). 

Let rl, r2, ..., rs be disjoint simple closed contours lying in P(B) and 
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for each r=1, ..., s let 

Pr = -1/27ti -1rr R(C) ds. 

Then E may be written as a direct sum 

E1 ® E1 ®.... ® Es 0 EO (A3.9) 

where for each r=1, ..., S, Er = PrE, B(Er) S Er, B(E0) S EO and the 

spectrum of BI Er consists of the spectrum of B lying inside rr and 

that of BI EO consists of the spectrum of B lying outside all of the 

Er, r3I (for details of this discussion see Kato (1976) III-§6.4). 

Proposition A3.8 Let Bt, tE [0,1] be a continuous (in the sense of 

the operator topology) one parameter family of bounded linear 

operators on E, and let t'1, ..., r. be fixed disjoint simple closed 

contours and suppose that S(Bt) (1 rr =p for all r=1, ..., s, and tE 

[0,1]. Then for all t the spectral decompositions (A3.9) are 

isomorphic. This says that if tl, t2 'C 10,1] and if Ttl has 

decomposition 

E1(tl) $ E2(t2) ® ... W EO(tl) 

and Tt2 has decomposition 

E1(t2) e E2(t2) 6 ... ® EO(t2) 

then 

Er(tl) a Er(t2) for r=0, .., s. 

In particular if Bp has a only one simple eigenvalue inside each of 

rI, ..., r. 
_1 with the rest of its spectrum lying inside I's, then the 

same is true for B1 and, in view of the fact that we are' working in a 

real Banach Space, the eigenvalues 'are all real. 

This is a consequence of Kato (1976) - I-§4.6, III-§6.4, IV-§3.4. 
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A3.5 L1-spaces 

The L1-spaces described in section A3.1 are all isomorphic to the 

Banach space 21, the space of sequences s= (s0, sl, ... ) with 

00 Ilsll =E is I< 
i=0 1 

The ismomorphism comes through the selection of the basis 

(((x - a)/r)i) for i=0, ..., - for the space L(al, r1). The isomoprhism 

is also an isometry i. e. it is norm preserving. The space Sti has the 

property of being isometrically isomorphic to a direct sum of itself 

and either Rm or 21 i. e. 

91s91e91 = Rm091 formt O 

(where we give Rm the L1 norm). The isomorphisms are simply a 

matter of reassigning the basis elements of 21. This is extremely 

useful. For example, we may consider the space of pairs of maps 

L(al, rl) ® L(a2, r2) (with norm II . IIa1, r1 + II . IIa2, r2 ) as simply 

91. In fact, when calculating the derivative of the renormalisation 

transformation we regard the space of pairs as R81 ®41 ®R81 ®Stl. 

However, when we have transformed the derivative matrix to the 

"p-basis, " and "contracted down to a4x4 matrix" (see Appendix 7) 

we regard this space as R3 (D 91. This simple conceptual translation is 

a powerful reason for using these L1-spaces. We wish to discuss the 

question of -changing the basis of 91 and the way that error is 

transmitted through such a basis change. We shall use the convention 

that subscripts and summation range from 0 to - unless specified 

othewise. Now, let {ei) be a basis for a real Banach space E. Then we 

may define the L1 norm with respect to this basis by the formula for 

xEE 

11N Ile= E Ixil, x=Eei. xi 

Now suppose E is actually equal to the set of xcE, for which II X Ile 

< a* then the Banach space (E, 11 Ile) is isometrically isomorphic to 
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Ql via isomorphism (x0, xl, ... ) -> E ei. xi. We shall assume that this is 

the case for the rest of this section. 

Now let B be a linear operator on E. Then, with respect to the basis 

(ei), B has a matrix representation (Bid) defined by 

B(ej) =E ei. Bij 

Then for x= Eei. xi 

II B(x) Ile = II E B(ej)"xj II = II Ej (Ei ei. Bij). xj II 

=EjI( Ei Bi jxj)I 

4 Ej Ei I Bij I. I Xj I 

4 sup { Ei I Bi jI: 0 (j ) 1: j IXjI 

=sup{Ei I Bij I: 0<i) Ilxj Ile 

In fact by considering in turn x= ei, it is easy to show that this is 

a best possible bound and 

II B Ile = II Bi j II sup { Ei I Bi jI: 0(i . 

We shall refer to this norm II " I) -on matrices as the "maximum column 

sum" norm. The fact that this norm is easily calculated is another 

reason for using the L1-spaces. 

Now let P be a an invertible mxm matrix. Let (ei) be the basis of E 

given by 

ej = Ei ei. Pij, 04i< in, ej = ej, j>m 

where the summation ranges from i=0 to m-1. Let II " Ile ' denote 

the L1 norm with respect to the basis (ei'). Then 

II - Ile-Ilp-I I! ( ii"Ile' ö ll - Ile"IIPIi 

where the norms 11 P II, II P-I II refer to the maximum column sum 

norms of the matrices P, P-1. The norms of II . Ile and II " Ile ' are 

thus equivalent and the norm (I . Ile ' generates the same topology on 

the space E as the norm I) . Ile- Note that the norms of P, P-1 

provide bounds on the transmission of error in the course of the 

change of basis (ei) -> {ei }. For, if all that is known about a vector 
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x is a bound on º1 x (ºe, then, with respect to the basis {ei }, all that 

can be said about II x Ile " is that it is bounded by II X Ile-11 P 11, Of 

course, when more specific information is known then it is possible to 

give better bounds. This is done when changing from the standard 

basis to the p-basis since we often know that some of the 

coefficients xi are 0. 
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A4. Normalisation Conditions and the Spectrum of dT* 

A4.1. Change in normalisation condition 

Let (E: *, n*) be a fixed point for the Renormalisation Transformation T 

given in equation (2.18). Let ß* be the value of 13 at (P. *, r). Let 

NcR, a}0. Then the pair of maps (IZ*, n*) defined on the sets 

ni 02 = a-1,02 

respectively and given by 

g (x) = a-1.9*(Xx), n*(x) = a-l. n*(ax) 

satisfy: 

g*(x) _ f-r*l. n*(a*x), nj(x) = R*l. n*(g*(A*x)) 

where ! 3* = ß(g*, tl*). 

Of course, the pair (£*, r1*) does not satisfy the normalisation 

condition (2.13)(i). We now see why it is necessary to impose this 

normalisation condition. Without it, the transformation T has a whole 

line of fixed 'points and consequently has- an eigenvalue one in its 

spectrum. However, although the condition (2.13)(i) is the most 

natural condition from the point of view of embedding circle maps (as 

in equation (2.14)), from the computational point of view it is simpler 

to impose the condition 

C(O) = 1. (A4.1) 

This is the normalisation condition used by Feigenbaum et al (1982) 

and McKay (1982). We shall show that this change in normalisation 

does not make any difference to spectrum of the derivative of the 

renormalisation transformation. We introduce some notation. For open 

sets A, B in C, we shall write A4B if ASB and we write A<B if 

ASB and cl(A) S B. A similar convention will hold for Z and >. 

Let (C*, n*)and ß* satisfy the equations: 
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g*(x) = ßln*(ß*x), n*(x) = ir*ln*(E: *(a*x)) (A4.2) 

on the domains 01,02 respectively and suppose 

ß*. nl < n2, ß*. 02 ( 01, F-*(ß02) < 02 (A4.3) 

We denote by C the map 

C: (Q, n) (x) --> Il. n(g(ß*x)) (A4.4) 

We shall show below that C is defined on an open neighbourhood of 

(P-*, n*) in A(f21) x A(C22). We shall work with the following set of 

normalisation conditions. Let a, bcR, a and b not both 0. We 

consider the normalisation condition 

a. £(0) + b. n(0) =1 (A4.5) 

We note that the condition (2.13) (i) has a=1, b= -1, while (A4.1) 

has a=1, b= 0. We write Pab for the map 

Pa, b(£' n)(X) = r) (ax) (A4.6a) 

where 

I=a. P-(0) + b. n(O). (A4.6b) 

Note that Pa, b(£, n) satisfies (A4.5) and that Pa, b o Pa, b = F'a, b since 

if (g, n) satisfies (A4.5) then A=1. This means that Pa, b is a 

(non-linear) projection. We write 

Ta. b : (g, n) (x) ---> (ß-l. n(ßx), lýl. n(ý(ßx))) (A4.7a) 

where 

13 = a. n(0) + b. n(g(0)). 

Then, at least formally, we have 

(A4.7b) 

Ta, b= Pa, b o C, Ta, bo Pa, b = Pa, b 0C (A4.8) 

Pa, b o Ta, b = Ta, b = Ta, b 0 Pa, b 

We shall show that the spectrum of dTa, b and dC are identical at 

(C*, n*) except that dC has an extra eigenvalue 1. 

For convenience we make the conventions P0,0(ß, n) n) and 

T0,0 = C. There is a technical difficulty about the domain of 

definition of Pab(r;, n) which we shall discuss now. The problem is 
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that the natural domains on which the pair Pa, b(4, t1) is defined are 

)'-'Olt 1-102. However these depend on (£, tl) and we need to work 

with fixed domains. We overcome this in the following manner. 

Proposition A4.1. Let a, bcR and let (g*, n*) be a fixed point of 

Ta, b defined on two domains 01,02 in C and suppose that 

A*, itl < 112, A*. 02 < 01, and *(9*02) < ß2. (A4.9) 

Then there are domains A#, f21, C, C with 

nj < nj < f1t and a-2 < f22 < ný 

so that (g*, R*) can be extended to 01, 01. Furthermore, there is a 

neighbourhood V of (r; *, rt*) in A(te) x A(n2) such that for all 

01, 'a2 SC satisfying 

nj 4( ni 4 nj and 02 t n2 4 

we have 

(A4.10) 

(i) Ta, b :V (1 (A(nl) x A(ß2)) ---> A(ni) x A(( ) is well defined and 

C°0. 

(ii) dTa, b(06*, n*): A(i21) x A(02) ---> A(ni) x A((12) is a compact linear 

operator. 

(iii) The (generalised) eigenvectors corresponding to non-zero 

eigenvalues are the same for all the choices of 411, t22. 

proof 

From (A4.9) we see that it is possible to find domains O t, Cj, close to 

f21, and O, n2, close to 112, with the properties 

Al <01 <o#, 02 <f22 <A 

and 

P. nt < Al, ß. Aý < ny, C(13. n2 )< n2 (A4.11) 

where ß= ß*, C_£, k. In particular 

ß*. nt < n29 Q*. ný < nl, *cß*. n )< nZ 

so that in view of equations (A4.2) we may extend (C*, rl*) to tit, '" 

Now let ill, fl satisfy (A4.10). If (g, ri) c A((j) x A(02) is close to 
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(g*, rt*), then ß, given by equation (A4.7), is close to ß, so that 

there is a neighbourhood V of (£*, ri*) in A(ß1) x A(n2) with the 

property that if M, n) is in v fl (A(f2j) x A(02)), then (A4.11) holds 

with /3 = R('Z, n) given by (A4.7). In particular 

13.121 < 02,0.02 < 01, g(ß"122) < f12 

so that Ta, b is well defined an C°D on v (1 (A(nl) x A(f12)) and dTa, b 

is a compact operator on A(01) x A(Q2) (see A3.7). This proves (i) and 

(ii). To show (iii) we note that if (£, n) cv (1 (A(01) x A(02)) then a 

(generalised) eigenvector (8P, sn) of dTa, b(£, n) with eigenvalue ), in 

A(01) x A(02) is also in A(Ot) x A(l ). For if 

(dTa, b(£, n) - ), )r(8g, n) = 0, then 

(sr;, sn) _ -1/A i go ci (_), )r-idTa, b(g, n)1 (sr;, sn) 

which is in A(ni) x A412) in view of (A4.11) and (A6.2). Here 

SA = a. SR(0) + b($R(E(0)) + Dn(C(0)). sg(0)). 

13 

With this proposition we may prove the following slight generalisation 

of Lemma 4.2 in Ostlund et al (1983). 

Proposition A4.2 (Ostlund et al (1983)) Let (Q*, rl*) be a fixed point of 

Ta, b (a, b not both 0) and of C defined on Olt 02. Then the 

eigenvalues aX1 of dT* = dTab(C*, n*) and dC* = dC(C*, n*) are 

identical together with their multiplicities. dC* has an eigenvector 

with eigenvalue 1 which is an eigenvector with eigenvalue 0 for dT*. 

The spectral subspace corresponding to eigenvalue 1 of dT* has one 

less dimension than that of dC*. 

proof 

Let A#, A1, Aý, 02, V be such that (i), (ii) and (iii) of Proposition A4.1 

hold for both C= T0,0 and Ta, b. Then, by reducing V if necessary, 

we may assume that V is a neighbourhood of (£*, n*) in A(01) x A(C2) 

for which A (given by (A4.6)) is close to 1 (note that 
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ag*(0) + bn*(0) = 1) and such that there are 

01 c {a(g, n)-1. (21 : (P., n) E V}, 02 c {), (£, n)-1"112 M n) E v} that 

satisfy equation (A4.10). By further reducing V, we obtain a 

neighbourhood W in A(ni) x A(02) of (r; *, rt*) for which 

Ta, b(W (1 (A(01) x A(n2)) 5V (j (A(01) x A(02)), C(W (1 (A(01) x A(02)) S 

V fl (A(01) x A(02))- and Pa, b(W (1 (A(01) x A(C2)) 

V (1 (A(01) x A(02)). For brevity, we shall write 

A= A(01) x A(02), A A(fll) x A(12) 

V for v (1 (A(01) x A(02) ), W for w (1 (A(01) x A(02)) 

V for v (1 (A(01) x A(t22) 

Then the following diagrams commute: 

C 
WV 

Pa, b 
Ta, b 

A 

w 
Pa, b 

v 

C Ta, b 
Pa, b 

A V` 

Ta, b 
WV 

Pa, b 
Ta, b 

A 

Pa, b 

Ta, b 
Ta, b 

A 

where all of these maps are well defined and C0° on their domains. 
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Differentiating at (E: *, Ti. *) and using the relations C(g*, n*) _ 

'I'a, b(C*, n*) = Pa, b(C*, n*) (g*, n*) we obtain the following 

commutative diagrams: 

dC* 
AA 

dP* 
dT* 

A 

dP* 
AA 

dC* 
dP* 

jdT* 

A Aý 

dT* 

dT* 
A 

dP* 
A-; A 

dT* 
dT* 

A 

where dP* = dPa, b(06*, n*). 

Now if (8P., Sri) is a tangent vector in A, then 

(A4.12) 

dP*(SE, Srt)(x) _ (SE(x) + (DE*. x - E*(x))SN, (A4.13) 

Sn(x) + (DR*. x - n*(x))Sa) 

where Sa aSE(0) + bSrt(0). Now, the right han d side of equation 

(A4.13) in fact lies in A (note that E*, rt* are defined on A#, q so 

that DE*, Dn* are in A) and so dP*(SE, SR) E A. Thus the diagrams 

(A4.12) hold with A. replaced by A. We therefore have the following 

equations: 
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(i) dT* = dP* o dC* 

(ii) dT* o dP* = dP* o dC* (A4.14) 

(iii) dT* o dP* = dT* = dP* o dT* 

holding on A. This technical problem over, we continue as in Ostlund 

et al (1983). We denote by Z* the pair of functions 

(g*(x) - D£*(x). x, t1*(x) - DR*(x). x). Now it is a simple calculation 

(using the fixed point equations (A4.2)) to check that dC*Z* = Z*, so 

that Z* is an eigenvector of dC* with eigenvalue one. The derivative 

of C is given by (applying the results of Appendix 3, Section A3.2) 

dC(g, n)(SC, sn) = (ß* 1Sn(ß*x), 

ß* lsn(ý(ß*x)) + ý* 1Dn(ý(ß*x)). sý(ß*x)) 
(A4.15) 

Therefore 

dC*Z*(x) = (ß* In*(ß*x) - ß* 1 *tR*x). R*"x, 

R* 1n*(E*(R*x)) - R* 1DR*(ý*(R*x))"ý*(R*x)) + 

R* 1Dn*(ý*(R*x))(ý*(R*x) - Dý*(R*x). R*. x) 

_ (R* In*(R*x) - Dn*(P*x). x, 

R* In*(ý*(R*x)) - R* 1Dn*(ý*(R*x)). Dg*(R*x). R*. x) 

_ (R* In*(R*x) - n(ß* In*(R*x)). x, 
R* 1(ý*(R*x)) 

- D(R*-1(ý*(R*x))"x) 

= Z* 
Now let Z= (SC, Sn) be a tangent vector in A. Then, from (A4.13), 

dP*Z =0 iff Z- Z*sa =0 iff Z= sa. Z* 

where S)º = a. Sg(0) - b. Sn(0). This means that Z* is the only 

eigendirection of dP* with eigenvalue 0. From (A4.14) (i) we see that 

dT*Z* = 0. We note that (A4.14) (ii) implies for r)1 

dP* o dC*r = dT*r o dP* 

and 

dP* o (dC* - NI)r = (dT* - ), I)r 0 dp*. (A4.16) 
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Now let A be an eigenvalue of dC* with generalised eigenvector Z i. e. 

there is r31 such that (dC* - ), )rZ =0 and suppose Z* kZ* for 

any kER. Applying dP* and using (A4.16) we obtain 

(dT* - ), I)rdP*Z = 0. Since Z* kZ*, dP*Z ve 0 so that dP*Z is a 

generalised eigenvector of dT* with eigenvalue A. Conversely, let 

Z* kZ* be a generalised eigenvector of dT* with eigenvalue A00. 

Then (dT* -) I)rZ = 0. Expanding this out gives 

Z= -(-a)-r(E C dT*1)Z . 1= 
rr 

11 
Applying dP* and using (A4.14)(iii) we see that dP*Z =Z and 

(dT* - ). I)rdP, Z = 0. Then from (A4.16) we get dP*(dC* - )I)rZ =0 

and therefore (dC* - aI)rZ = cZ*, for some constant c. Now if A +ý 1, 

then Z- cZ*/(1 - ), )r satisfies 

(dT* - AI)rZ = cZ* - c/(1-), )r . (dC* - AI)rZ* =0 

since dC*Z* = Z*. Now if A=1, then there are two possibilities. 

Either c=0 in which case (dC* - AI)rZ = 0, or c*0, in which case 

(dC* - ), I)rZ *0 but (dC* - AI)r+lZ = (dC* - I)cZ* = 0, since Z* is an 

eigenvector of dC* with eigenvalue 1, so that Z is also a generalised 

eigenvector of dC* with eigenvalue A. This proves (iii). 

0 

Proposition A4.3. Let (g*, n*) be a fixed point of C on 01, t! Z and let 

A 0. Then the pair of maps (Z*, nj), defined on the sets 

ni )c l. nl, f22 =ß, -1. n2 

respectively and given by 

g*(x) = A-1. g*(Ax), nj(x) = a-l. n*(ax) 
is also a fixed point of C. Moreover, dC* = dC(IZ*, n*) and 

dC* = dC(P*, nj) have identical eigenvalues complete with 

multiplicities. 

proof This follows immediately since the map 

S: A(nl) x A(n2) ---> A(nl) X A(n2) given by 
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S(R. R)(x) = (a-1£(Ax), a-1R(ax)) (A4.17) 

is a differentiable isometric isomorphism with the property that 

C'o S=SoC and dC* o dS* = dS* o dC* where dS* = dS(C*, t1*) is 

an invertible operator. 

13 
Proposition A4.4 Let (r; *, r1*) be a fixed point of Ta, b on nl, 02 (a, b 

not both zero) and let c, d (c, d not both zero) be given. Let S be 

defined as in equation (A4.17) with X=c. g(0) + d. r1(0). Then (C*, r) 

n*) is a fix ed point of Te, d defined on fei = a-1ß1, AZ = X-1102 

and dTab(C*, n*) and dTc, d(Q*, n*) have identical eigenvalues 

complete with multiplicities. 

proof By Proposition, A4.3, dC* and dC* have isomorphic spectral 

properties and by Proposition A4.2 dC* and dTab and dC* and dTc. d 

only differ by a single eigenvalue 1. Hence dTa, b and dTc, d have 

identical eigenvalues complete with multiplicities. 

0 
This proposition shows that the precise choice of normalisation 

condition is not important. We are therefore justified in working in 

the (computationally) advantagous normalisation (A4.1) instead of the 

more natural condition (2.13)(i). 

In view of this, we shall restrict discussion to the renormalisation 

transformation T as defined by equation (3.1). 
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A4.2 Properties of (r;,, n. ) 

We shall make the following assumptions for the rest of this 

Appendix. Let T denote the renormalisation transformation with 

normalisation given by equation (A4.1). 

Assumptions: 

(i) (g*, n*) is an analytic fixed point of T defined on domains Al, 

102 in C which satisfies equation (A4.9). 

(ii) -1 < ß* <0 

(iii) 0E t21 n 02, [0,1] S 02- 

(iv) DC*(0) = Dr1*(0) = D2e . *(0) = D2R*(0) = 0, D3g*(0), D3n*(0) * 0. 

(v) K(ß*2) _ S*2, DK(g*2) < 0, K= /3*-in*. 

With (i)-(iv) one may show that C*, rr* are both analytic functions of 

x3. This explains why we are justified in working in a space of 

analytic functions of x3 when looking for a fixed point. 

Proposition A4.5 Let (i)-(iv) be satisfied. Then g*, rt* are both 

analytic functions of x3. 

proof(Ostlund et al (1983)) Let ß= ß* and let K(x) = R'ln*(x). Then K 

is defined on 102, /c(O) =1 and, on a neighbourhood of 0, K satisfies 

the equation 

K(X) = ß71. K(K(ß2X)) (A4.18) 

Differentiating (A4.18) three times and evaluating at 0, we obtain 

DK(1) = ýr5. (A4.19) 

Now assume that DPK(0) =0 whenever p4 3n and p is not a multiple 

of 3. Let q be such that 3n <q <'3(n + 1). Differentiating (A4.18) q 

times and evaluating at 0 one obtains (since all" the other terms are 

zero by hypothesis) 

D9x(0) = p2q-1. DK(1). D9x(0) (A4.20) 

Substituting from equation '(A4.19) into (A4.20) we see that 

DgK(0) = 0. Thus the Taylor expansion of g about 0 contains only 
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terms of degree a power of three. Hence K is an analytic function of 

x3. Now £*(x) = x(ßx) and t1*(x) _ 1ic(x) so that the same is true of 

both IZ* and f1*. 

0 

From (i)-(v) Nauenberg has shown that r; * and r1* commute on a 

neighbourhood of 0. 

Proposition A4.6. Let (i)-(v) be satisfied. Then IZ* and n* commute on 

a neighbourhood of 0, that is r; * o n* = R* o g*. 

proof (Nauenberg (1982)) As in the proof of Proposition A4.5 we let 

= ß* and K(x) = /3-ln*(x). Then K is defined on n2, K(0) = 1, and, on 

a neighbourhod of 0, satisfies equation (A4.18). We shall show that 

K(X) =ß 2K(ß2K(ßX)). (A4.21) 

Now C*(x) = K(ßx) and n*(x) = PK(x), so that from equations (A4.18) 

and (A4.21) we obtain 

ß-2. n*(ý*(Rx) = R"2Q*(n*(Rx)) 

so that g* and n* commute on a neighbourhood of 0 if (A4.21) is 

satisfied. We now prove (A4.21). We define ä(x) to be the right hand 

side of (A4.21) i. e. 

K(X) = R-2K(A2K(PX)). (A4.22) 

From equations (A4.21) and (A4.18) we obtain 

K(132K(X)) = K(K(ß2K(Rx))) = IK(K(PX)) = 92K(Rr1X 

or 

K(X) _ jr2K(92K((3X)). (A4.23) 

Now from equations (A4.22), (A4.23) and (A4.18) we obtain 

A2K(jrlx) = K(A2K(x)) = K(K(P"K(RX))) _ PK(K(Rx) ) 

which gives 

(x) = (A4.24) 

We note that K= it is a solution ' of this equation, as it then becomes 

equation (A4.18). Now by Proposition A4.5, K, and hence ic, is an 
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analytic function of x3. Thus we may write 

co - K(x) =1+EC.. x' 1 
and K(x) =C+FC.. x3i 

i=0 10 i=0 1 

Now 

CO = K(O) = /r2. K(R2) 

and by (v) K(I32) = ß2 so C0 = 1. Now K is analytic at x=1 so that 

equation (A4.24) can be written in the form 

go -EC. (1- ß(6i - 1). 
DK(1) X31 

i=1 1 

= ß-l E DiK(I)/j! (EC ß6i X3i 
lj 

j=2 i=1 1J 

Equating powers of x3, for each i>1 we obtain a recurrence relation 

for Ci in terms of Cj for i. C1 is not determined since for 

i= 1, the coefficient of Ci on the left hand side of the above 

equation is 0 as DK(1) = 9-5 by equation (A4.19). Now since K 

satisfies equation (A4.24), its coefficients Ci also satisfy the same 

recurrence relation as Ci so that K(x) = ä(x) if we can show that 

C1 = C1. Now differentiating (A4.22) three times and evaluating at 

x=0, we obtain: 

Cl = DK(ß2). ß3. C1 (A4.25) 

However, differentiating (A4.18) at x=1, and using (v) together with 

equation (A4.19) gives 

DK(132) =f g-3. 

The plus sign must be taken as 13 <0 (by (ii)) and DK(132) >0 (by 

(v)) so that (A4.25) reduces to C1 = Cl. 

0 

We note that (A4.18) evaluated at 0 gives K(1) so that (A4.18) 

when evaluated at 1 gives 

K(K(R*2)) = R*2 (A4.26) 
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A4.3 Eigenvalues of dC, 

In this section, we shall assume that (i)-(v) of section A4.2 are 

satisfied. We shall also make use of Propositions A4.5 and A4.6. 

Lemma A4.7 

(a) Dn*(E: #(0)) = R*-4 

(b) DC: *(n*(0)) = R*-2 

proof(Ostlund et al (1983)) The fixed point equations are 

Q*(x) = 9*-In*(ß*x) (A4.27) 

n*(X) = A*-1n*(C*(ß*x))" (A4.28) 

Differentiating (A4.27) 3 times at 0, we get 

Dag*(0) = ß*2D3n*(0) (A4.29) 

Differentiating (A4.28) 3 times at 0 and using Dg*(0) = D2g*(0) = 0, we 

get 

D3E*(0) = ß*2Dn*(G: *(0))D3E: *ý(0) 

Combining these two and using D3r1*(0) *0 gives 

Dn*(C*(0)) = 13*`4 (A4.30) 

This proves (a). Now from Proposition A4.6, we know that 

n*(C*(x)) 'Z*(n*(x) (A4.31) 

for x near 0. Differentiating (A4.31) 3 times at 0 we get 

Dn*(E: *(0))"D3C*(0) = DZ*(n*(0))D3n*(0) (A4.32) 

Now since Dan*(0) 'ý 0, (A4.29) together with (A4.32) give (c). 

0 

Lemma A4.8 Let q be a positive integer that is not a multiple of 3. 

Let r30 and let Z= (8C, 8n) be a tangent vector at (G: *, n*). Let 

(Se, Sri) = dC*rZ. Then 

DqS£'(0) 0 j3*q-1 r DqSg(0) 

D9sn (0) ß*q-5 0 D9sn(0) 
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proof The case r=0 is trivial. For r=1 we have (from (A4.15)) 

sg'(x) = ß*-lsn(R*x) 

sn'(x) = Q*-1ý(ý*(ß*x)) + ß*-iDn*(ý*(ß*x)). sý(p*x) 

Differentiating q times at 0 and using the fact that*, n* are 

analytic functions of x3, we obtain' 

Dgsg*(O) = ß*9-1DQSn(o) 

Dgsn'(0) = R*q-1Dn*(F-*(0)). Dgs£(0) 

The conclusion of the lemma follows immediately from Lemma A4.7 (a). 

The case r>1 follows by induction. 

0 

The following is a result of Ostlund et al (1983). 

Prop osition A4.9 Let Z = (8£, sn) be a generalised eigenvector of dC* 

with eigenvalue X. Let one of 8P,, En not be an analytic function of x3 

and let q be the smallest integer, not a multiple of 3, for which one 

of Dgßg(0), Dgsr1(0) is non-zero. 

Then 

(a) A_ tß*q-3 

(b) Both DgSg(0) and DgSTX(0) are non zero. 

proof Let r31 be such that (dC* - )1)rZ = 0. Then expanding this 

product, differentiating q times at 0, we obtain from Lemma A4.8 

Dcg(0) 0 ß, ßq-Z 
(M - ), I)q = 0, M= (A4.32) 

Dgsn (o) ß, ßq-5 0 

Since the vector DgZ(0) # 0, a must be an eigenvalue of M. The 

eigenvalues of M are easily seen to be A= t/3*q-3'. This proves (a). 

Note that the eigenvectors of M are not the basis vectors (1,0) or 

(0,1) so that both of Dgs£(0) and Dgsr%(0) are non-zero. This proves 

(b). 

13 
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We denote by F(g, TO the map gon- t1 o C. This map is well defined 

on a neighbourhood of 0 for all pairs (rZ, n) close to (r_*, n*). Let 

F(q) denote the map F(q)(g, n) = DgF(g, n)(0). 

Lemma A4.10 Let Z= (Sc, 8n) be a tangent vector at (£*, n*), let q3 

1 not be a multiple of 3. Then if Z is tangential to F(q) (g, n) =0 (i. e. 

d(F(q))(£*, n*)Z = 0) then 

Dr; *(n*(o)). Dgsn(o) = Dn*(g*(o)). Dgsg(o) 

proof It is easy to see that since the operation of differentiation at 0 

is linear we have that d(F(Q))(g*, n*)Z = DQ(dF(g*, n*)Z)(0). Now 

dF(g*, n*)Z(x) = sE: (n*(x)) + nF, *(n*(x)). sn(x) - 
sn(£*(x)) - Dn*(r*(x)). sP. (x) (A4.33) 

Differentiating this q times at 0, and using the fact that IZ*, n* are 

analytic functions of x3, we see the only terms remaining are 

. (0) Dr;, *(n*(o)). Dgsn(0) - Dn*(E: *(0)). Dgsp 

which gives the result. 

0 
Proposition A4.11 

(a) For q10, the set G(q) _{ (g, ri) : F(q) (£, n) =0} is, in a 

neighbourhood of (P. *, r1*), a codimension one (Banach) submanifold of 

A(01) x A(02) containing (P-*, n*). 

(b) For q ). 0, the set A(q) _( (g, r) : Dqr; (0) = Dgrt(0) =0} is a 

codimension two submanifold of A(nl) x A(t22) containing (G: *, n*). 

proof 

(a) We note that for (£, n) close to (£*, n*), F is well defined around 

0 and hence F(q) is well define d. (£*, R*) C G(q) by Proposition A4.6. 

We show that d(F(q))(£*, n*) is a surjective map. Then it will follow 

that G(q) is a codimension one submanifold from the implicit` function 

theorem (see e. g. Lang (1962)). Now let Z= (8£, sn) satisfy D1ä£(0) 

0, i=0, ..., q-1, and Disrl(0) = 0, i=0, ..., q, Dgs£(0) 0. Then 
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differentiating (A4.33) q times at 0, and using Lemma A4.7 (a) we get 

d(F(q))('Z*, n*)Z = Dn*(g*(0)). Dgse(0) _ -R*-4. DgSg(0) 0. Therefore 

d(F(q)) is surjective. 

(b) This is immediate from the fact that A(q) is a codimension two 

closed linear subspace of A(111) x A(02)- 

13 

Proposition A4.12 Let T be defined on an open neighbourhood of 

(C*, n*) in A(01) X A(02). Then: 

(a) If (£, n) are both analytic functions of x3, then the same is true 

of T(E, n). 

(b) If F(£, n) = 0, then F(T(g, n)) E 0. 

(c) If F(i)(g, n) =0 for i=0, ..., q, then F(i)(T(g, n)) =0 for 

i= 0,..., q 

(d) Let DiE(0) = D1n(0) =0 for i=1,2 (i not a multiple of 3) and let 

(Cl, nl) = T(E, n). Then DiCl (0) = D1 1(0) =0 for i=1,2. 

proof (a) is immediate from the formula for T. (b) follows from 

F(T(E, n))(x) = A7I(n(n(g()3x))) - n(c(n(ß)) (A4.34) 

which is valid on a neighbourhood of 0, for (E, n) sufficiently close 

to (r; *, n*). Now let the hypothesis of (c) hold. The case i=0 follows 

immediately from evaluating (A4.34) at 0. Now differentiating (A4.34) i 

times, and using the case i=0i. e. E(n(0)) - n(E(0)) =0 we get an 

expression whose terms all contain a term of the form 

Dj(g on- t1 o C)(0) for some j=1, ..., i. By hypothesis these will be 

all zero for each i=1, ...., r. This proves (c). Now let the 

hypotheses of (d) hold. Then DiE1(0) = ßi-1Din(0) =0 and 

Dlnl(0) = Dn(g(0)). Dg(0) = 0, 

D2n2(0) = G. (D2n(r(0)). (DQ. (O))2 + Dn(£(0)). D2g(0)) = 0. 

0 
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Proposition A4.13 Let Z= (Se, Erb) satisfy the. hypothesis of 

Proposition A4.9. Futhermore, let Z be tangential to the manifold G(q) 

of Lemma A4.11 i. e. d(F(q))(g*, n*)Z = 0. Then a= /3*q-3 and DgSZ(0), 

DQSn(0) have the same signs. 

proof As in the proof of Proposition A4.9, we have (A4.32). Since Z is 

tangential to G(q) we have by lemma A4.10 and Lemma A4.7 (a) and 

(b) 

DQSn(o) = 13*-2DgBg(0) (A4.35) 

We know from Proposition A4.9 that A= *ß*q-3. Now the eigenvectors 

of M for A= t13*Q-3 are (1, tß*-2) respectively, so that (A4.35) 

implies that a= ß*-2. The fact that Dqs (0), DgSrX(0) have the same 

signs follows from (A4.35). 

13 
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A5. Stable and Unstable Manifolds 

This appendix contains a very brief review of the mathematics of 

stable and unstable manifolds. The standard reference to this topic is 

Hirsch et al (1977). We assume a knowledge of the theory of Banach 

manifolds. The necessary theory is contained in Lang (1962). 

Let E be a Banach Manifold. Let V be an open set in E, and let 

T: V --> E be a C°O map. Let m be a fixed point of T, i. e. T((V) = m" 

Definition A stable manifold for T at m is a smooth submanifold Ws of 

V with the properties: 

(a) T(Ws) c Ws 

(b) If 4' C WS, then lim Tj(p) =m 
j->°° 

(c) (Transversality Condition) For 4V c WS , the range of dT4, is not 

contained in the tangent space to WS at T(4'). 

Because of the transversality condition (c), a transverse intersection 

with the stable manifold remains transverse under application of T. 

The definition of an unstable manifold is complicated by the fact that 

T is not necessarily invertible. 

Definition An unstable manifold for T at 4) is a smooth, submanifold Wu 

of E (not necessarily contained in V) with the properties: 

(a) T(Wu n v) 2 Wu 

(b) If V' E Wu, then there is a sequence y'j converging to 4) such that 

= TJ(kPj) 

(c) For any 4E Wu n V, the tangential derivative of T along W° does 

not vanish. 

Definition Let T be a C0° map from an open set V of a Banach space E 

into E. Let T(4') = m. Then (V is a hyperbolic fixed point of T is dT(0) 
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has no spectral value of modulus 1 in the complex plane. 

The Local Stable and Unstable Manifold Theorems (see Hirsch et al 

(1977)) state that local stable and unstable manifolds exist in a 

neighbourhood of a hyperbolic fixed point. 

We know from Hartmann's Theorem (see e. g. Irwin (1980)) that it is 

possible find a continuous coordinate change about a hyperbolic fixed 

point so that T is linear in the new coordinates. We need a 

differentiable linearisation. There may be obstructions to a complete 

linearisation but it is possible to linearise T differentiably in one 

direction. The following theorem is from Collet, Eckmann and Lanford 

(1980). 

Theorem A5.1 (Collet et al (1980), Theorem 6.3) Let T be a C2 map 

from an open set in a Banach space into the Banach space. Let 0 be 

a fixed point of T. Assume that dT(4) has a single simple eigenvalue 

S>0 and the rest of the spectrum is contained in the interior' of the 

unit disc. Then there exists a C1 diffeomorphism of B1 x (-1,1) (B1 

is the open unit ball in some Banach space) onto a neighbourhood V 

of 0 such that 

(i) (0,0) represents "; 

(ii) B1 x (0} represents Ws (1 V; 

(iii) (0) x (-1,1) represents Wu (1 V. 

(iv) T takes the form 

(X. Y) -> (M(X"Y), S-Y) 

where M(O, y) = 0,11 DM(x, y) 11 4a<1 for (x, y) c B1 x (-1,1). 

a 
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A6. Various Formulae involvinsr T and dT 

This appendix contains various formulae involving the renormalisation 

transformation T and its derivative dT. 

We shall assume that (G:, n) are defined on domains 

01= {x: I x3-al 1 <rl } 

112= {x: I x3-a2 I< r2 } 

with 0C ffLZ 

and that there is an open set V of A(01) x A(C2) on which (in the 

notation of Appendix 4) for (IZ, rX) c V, ß= r1(0), 

-3.01 < 02,0.02 < 01, g(ß. 122) < 02 

A6.1 Formulae in terms of (E, r1) 

The renormalisation transformation T operates on pairs of maps 

(g, n)EV: 

g 

T': (x) --> 

ß ln(ßx) 

Q ln(g(ßx)) 
(A6.1) 

where ß= R(0). 

The derivative of T at a point (Q., TI) E V, dT(g, r1), acting on tangent 

vectors (8E:, ßn) C A(f21) x A(A2) is given by the formula 

dT(R, n) --> 
sn nn 

where 

ng(x) 
2r(ßx) 

+ß 
1Dn(ßx). 

x ). sß + R-lsrl(ßx) 

an(x) _ (-R 2n(g(ßx)) 
+ß 

1Dn(C(ßx)). 
Dg(Rx). x ). sß + 

ß 'Dn(C(Rx)). 8IZ(/3x) +ß Itn(g(ßx)) 

and 

(A6.2) 

sß = sn(o), ß= n(o). 



106 

This formula is obtained by application of the formulae in section 

A3.2. For (C, t1) c V, dT(r, n) is an analyticity improving operator 

since AZ, t are defined on larger domains than 01, n2, 

We shall now assume that the existence of a fixed point ('Z*, n*) of T 

in V, and for which g*, r1* are analytic functions of x3, and with the 

property that on a neighbourhood of 0, C* o n* = n* o *. We use the 

notation of Appendix 4: 

F(E, n) =9,0 n-nog 

F(q)(C, n) = DgF(C, n) (0), for q30 

We consider the operators 

dF*(0) = dF(O)(C*, n*), dF*(3) = dF(3)(C*, n*). 

From the proof of Lemma A4.10 we know that 

dF*(q) (8gß ärti) = Dq(dF*(SC, Sn)) (O) 

where dF* = dF(E*, n*). From equation (A3.8) we get 

dF*(8r;, 8R) = 8E(R*(X)) + Dý*(tl*(X)) 
" Stl(X) 

- sn(g*(x)) - nn*(C*(x)). SC(x). 

Using g*(0) = 1, A* =n *(O), we have the formulae 

dF*(O)(sg, sr) = SP-(n*(O)) + nC*(n*(o))"sn(O) 

- sn(C*(o)) - nn*(ý*(o)). s£(o) 

= sß(ß*) + Dý*(ý*). sn(o> 

- sn(1) - Dn*t1). sý(0) (A6.3) 

and 

dF*(3)(8e 8n) = DSC(n*(0))"D3n*(0) + D2e*(n*(o))"D3n*(0). (o) 

+ DZ*(n*(0)). D3sn(0) - Dsn(Z*(0)}. D3E*(0) 

- D2n*(e*(0)). D3Z*(0). 8e(0) - Dn*(g*(0))"D3S (0) 

Dsg(ß*). D3n (0) + D2C*(ß*). D3n (0). sr(0) 

+ DE*(ß*)"D3r1(0) - Därl(1)"D3g*(0) 

- D2R*(1). D3£*(0). Sg(0) - Dn*(1). D3Eg(0) 

(A6.4) 
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(A6.4) uses the fact that F-*, r1* are analytic functions of x3 and so 

terms involving Dg*(0), Dn*(0), D2C*(0) and D2r1*(0) are all 0. 

These formulae simplify when (SP-, sn) is a eigenvector of dT* with 

eigenvalue a*0. For, from (A6.2) we have 

asF ý(O) 
(-ß* 2n*(0) + ß*-1Dn*(0). o). srI(o) + ß* lsn(0) =0 

where we have used DR*(0) =0 and n*(0) =ß. Hence SF, (0) =0 and 

equations (A6.3) and (A6.4) become 

dF*(o)(sg, sn) = sF, (a*) + Dg*(ß*). sn(o) - sn(1) (A6.5) 

and 

dF*(3)(8p, Sr) = Dsg(ß*)"D3n*(D) + D2C*(ß*)"D3n*(O)"Sr(O) 

+ DZ*(Q*)"D3sn(0) --DSn(1)"D3E: *(D) 

- Dn*(1). D3sg(0) (A6.6) 

i 

A6.2 Formulae in terms of (h, k), (£, rl)(x) _ (h, k)(x3) 

We shall now restrict to the space A3(n1) x A3 (02) of pairs of analytic 

functions of x3. The renormalisation transformation may be defined on 

the restriction of V to this space. A3 (nl) x A3 (02) may be be 

identified with the space of analytic functions on 

A(al, rl) x A(a2, r2) via the map (G:, n) -> (h, k), g(x) = h(x3), n(x) 

= k(x3). We make the convention that greek letters refer to functions 

defined on 01,02, while roman letters refer to functions defined on 

D(al, r1), D(a2, r2). We use the same notation for the maps T, F, FM 

that are induced by this identification. In -terms of h, k the above 

formulae become 

hß 1k(ß3x) 

Tk (x) --) 
ß-1k(h (ß3x)3) 

(A6.7) 

where 13 = k(0). 
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The derivative of T at a point (h, k) c V, dT(h, k), acting on tangent 

vectors (Sh, 8k) c A(al, rl) x A(a2, r2) is given by the formula 

sh Ah 
dT(h, k) : --> (A6.8) 

sk Lek 

where 

, ah(x) = (_ß-2 k(ß3x) + 3ß. Dk(ßx). x ). Sß +ß 
1Sk(ß3x) 

, ýk(x) = (_ß72 k(h (ß3x) 3) 
+ 9ß. Dk(h(ß3x)3). h(ß3x)2. Dh(ß3x). x) Sß 

+ß 
13. 

Dk(h(ß3x)3). h(ß3x)2. Sh(ß3x) +ß 
1Sk(h(ß3x)3) 

ER = Sk(O), 13 = k(0). 

We now give the formulae for F, F(q). Note that if (E:, t1) are both 

analytic functions of x3 then F(q) (ý, t1) =0 for q not a multiple of 3. 

We have 

F(h, k) (x) = h(k(x)3) - k(h(x)3) 

and 

dF(h, k)(sh, sk) = Sh(k(x)3) + 3Dh(k(x)3). k(x)2. sk(x) 

- sk(h(x)3) - 3Dk(h(x)3). h(x)2. sh(x) 

Formulae (A6.3) and (A6.4) become 

dF*(0)(sh, sk) = Sh(k*(0)3) + 3Dh*(k*(0)3). k*(0)2. k(0) 

- Sk(h*(0)3) - 3Dk*(h*(0)3). h*(0)2. Sh(0) 

= Sh(Q*3) + 3Dh*(9*3). R*2. Sk(0) 

- sk(1) - 3Dk*(1). Sh(0) (A6.9) 

and 
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dF*(3)(sh, sk) = 18(D8h(k*(0)3). k*(0)2. Dk*(0) 

+ 3D2h*(k*(0)3). k*(0)4. Dk*(0). ßk(0) 

+ 2Dh*(k*(0)3). k*(0). Dk*(0). ßk(0) 

+ Dh*(k*(0)3). k*(0)2. DÖk(0) 

- DSk(h*(0)3). h*(0)2. Dk*(0) 

- 3D2k*(h*(0)3). h*(0)4. Dh*(0). Sh(0) 

- 2Dk*(h*(0)3). h*(0). Dh*(0). Sh(0) 

- Dk*(h*(0)3). h*(0)2. DSh(0) ) 

18(Dßh(R*3). ß*2. Dk*(0) 

+ 3D2h*(9*3),. ß*4. Dk*(0). 8k(0) 

+ 2Dh*(ß*3). R*. Dk*(0). Sk(0) 

+ Dh*(ß*3). ß*2. DSk(0) 

- Dsk(1). Dh*(0) 

- D2k*(1). Dh*(0). Sh(0) 

- Dk*(1). Dh*(0). 8h(0) 

- Dk*(1). DSh(0) ) (A6.10) 

When (ßh, Sk) is an eigenvector of dT*, we have sh(0) =0 and 
11 

equations (A6.9) and (A6.10) become 

dF*(0)(Sh, 8k) = sh(ß*3) + 3Dh*(ß*3). ß*2. sk(0) 

- sk(1) (A6.11) 

and 

dF*(3)(Sh, ßk) = 18(DSh(ß*3). ß*2. Dk*(0) 

+ 3D2h*(ß, k3). ß*4. Dk*(0). Sk(0) 

+ 2Dh*(ß*3). ß*. Dk*(0). 6k(0) 

+ Dh*(ß*3). ß*2. DEk(0) 

- D8k(1). Dh*(0) 

- Dk*(1). DSh(0) ) (A6.12) 
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A7. Computer Program Listing and Explanatory Program Notes 

A7.1 General Notes on the Computer Programs 

1. The programs are written in the programming language C and have 

been run on Digital Equipment Corporation VAX-11/750 computers 

running UNIX at Warwick University and Queen Mary College, 

University of London. The Warwick Computer runs 4.1 Berkeley UNIX, 

while that at QMC runs version 4.2. A similar program written in 

Fortran and based on the computer program in Eckmann et al (1982) 

was run on the IBM 3081 computer at Cornell University, N. Y., U. S. A. 

2. The UNIX operating system is now well known. The main reference 

is the Berkeley 4.1 and 4.2 UNIX manuals. 

3. C was chosen for the programming for the following reasons: - 

(a) C is the standard language for UNIX systems. Indeed, UNIX itself 

is writen in C. However, C is also now available under other 

operating systems. 

(b) C has pleasant syntactical structures that, make, for easy and 

error free programming. However, C does not have some of the 

useful features of fortran such as the equivalence statement and we 

have had to simulate this construction using pointers (see , 
5. (a) 

below). I. f 

(c) C enables the user to define his/her own data structures. This 

is extremely useful for implementing the interval and function 

ball/vector, operations discussed in Chapter 4 and, Appendix 8. -. 
The 

method of using complex, numbers to represent intervals that was 

used by Eckmann et al (1982) is sensible for fortran programming, 

but can be replaced by the more elegant structures in C. ; One feature 

of C that we have used is the ability to declare function 

subprograms that return structures as their values and to make 
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assignments between structures. These features are a newer 

development of C and our not contained in the description of C in 

Kernighan and Ritchie (1977). However they enable the programming 

to be greatly simplified, often eliminating the need to use to' 

temporary variables. Unfortunately they reduce program efficiency. C 

also has pointer or address manipulation facilities. While these can 

often increase the efficiency of a program, we have used them 

sparingly as they are sometimes confusing to the novice. 

4. The standard reference for C is the book Kernighan and Ritchie 

(1977). However, as mentioned in the above paragraph, this is now 

out of date (and expensive! ) so we have used the references Hogan 

(1984) and Wagner-Dobler (1985). 

5. C has a number of constructs that are not standard programming. 

We mentioned these briefly. 

(a) Pointers Pointers are address variables. For example, 

double *p; 

declares p to be a pointer to a variable of type double. *p then 

refers to the contents of the address of p. If x is a variable, then 

&x refers to the address of x. We have used pointers sparingly in 

the program. They are only used in the routines r_up, r_down and 

as a means of simulating the fortran equivalence statement. 

(b) Structures C enables the programmer to define his/her own data 

structures. We have used the typedef statement' to define new data 

types. Members of a structure are accessed by the ". " operator. For 

example, the sequence of statements 

typedef struct { 

double lo; /* left hand end-point of interval */ 

double up; /* right hand end-point of interval 

} interval; 
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interval a; 

double b; 

b=a. lo; 

defines the data type "interval" to consist of two doubles lo and up, 

declares a to be of type interval, b to be of type double, and finally 

sets b to be the double lo of the interval a. 

(c) Header Files and Macro Preprocessing Before compilation the C' 

preprocessor is run. This enables the programmer to include separate 

files at compile time and to make macro substitutions. The files that 

are included are usually "header" files that contain declarations for 

the functions and variables that are used in the program but whose 

definitions are contained in another files. It is conventional in UNIX 

to suffix these files with ". h". The macros substitution facility of the 

C preprocessor is very useful. The substitutions can also include 

arguments as in the folowing example. A macro defintion 

ttdefine minus(x) -(x) 

would result in the substitution of 

Y=-(1+z>; 

for 

y= minus(1 + z); 

Notice that the brackets around x in the definition of minus are 

absolutely essential. 

(d) Arrays The subsripts of an array declared to be of length N 

vary from 0 to N-1. Two dimensional arrays are stored in rows, 

rather than in columns as in fortran. C has the unusual syntax 

a(i)[ j] for a two dimensional array element. 

(f) Functions All subprograms (unless explicitly declared "void") are 
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functions. By default they have type int. The arguments of a 

function are called by value rather than address as in fortran. The 

exceptions to this rule are arrays and character strings, where the 

address of the first element is passed to the function. This means 

that to change the value of an argument of a function, it is necesary 

to pass the address of the variable. This must be explicitly 

programmed in the function by making the argument a pointer 

variable. The versions of C that we use enable the programmer to 

define "structure valued" functions, i. e. functions that return a 

structure. This, while being rather inefficient since it requires a 

great deal of transferring to and from the stack, is extremely 

convenient from the programing point of view. We have managed to 

get rid of the large number of temporary storage variables required 

the fortran implementation of Eckmann et al (1982). 

(g) Typecasting There an a simple device to converting one data type 

to another. The sequence: 

int i; 

double x; 

x= (double) i; 

converts the int data type i to double and then assigns it to x. In 

fact this conversion would be implicit in the statement 

x=i; 

It is also worth mentioning that the variable type "register" is the 

same as "int" except that the compiler attempts to keep the variable 

easily accessible within the computer memory. This helps to increase 

efficiency. 

(h) Extern statement This is the C version of the fortran "common" 

statement. A variable that is declared outside any of a subprogram 
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(including the subprogram "main" which is the main program) in a 

file is "global" to any of the subprograms in the file, although it may 

be redefined within any of these subprograms. These globally defined 

variables may be accessed from subprograms in another file using 

the "extern" statement. A variable within a subprogram may be 

declared static which means that it retains its value from one 

function call to the next. 

(i) The following abbreviations are used in C: 

i++ =_i i+1 i-- =-i=i-1 

X+=y aXx+y X-=y xx -y 
x *=y $xx*y xy sxx/y 

(X? Y: Z) - IfXthenYelseZ 

7. There are two programs circ_prep and circ_proof. The main 

programs for these programs are contained in circ_prep. c and 

circ_proof. c respectively. The program cire_prep takes an approximate 

fixed point and calculates a basis change matrix (as described in 

Section 3.2) together with its inverse. The program circ_proof obtains 

the rigorous estimates required for the proof of Proposition 3.4. The 

two programs are independent. The actual data supplied to the 

program circ_proof is of no partic ular signficance. In fact, as 

remarked in Section 3.2, the choice of basis change matrix is ad hoc. 

The program circ_prep is included for the sake of completeness 

(although we have not included a program that calculates the 

approximate fixed point (as described in McKay (1982)) or one that 

calculates approximate eigenvalues and eigenvectors of the derivative 

at the fixed point). We shall only briefly describe the program 

circ_prep. The program circ_proof will be described in great detail. 
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A7.2 The program circ prep 

1. This program depends upon the folowing files: 

circ_prep. c circ_nonrig. c r_function. c r_function. h 

2. The files contain the following programs: 

circ_prep. c main, fnorm, eigit 

circ_nonrig. c r_t, r_dt 

r_function. c r_fzero, r_fnorm, r_fsmult, r fscale, 

r_fsum, r_fdiff, r_fmult, r_fmult2, 

r eval, r fcomp, r fcompl, r fdcomp, 

r_fdcompl, r fdkeval 

The file r_function. h contains declarations for the functions in 

r function. c. 

3. The programs manipulate structures called real_functions. The 

definition of this structure is: 

typedef struct { 

double p[81]; 

double a; 

double r; 

} real-function 

This structure represents the polynomial in x 

n 
fp =Ef. p(i]. yl, y= (x - f. a)/f. r 

i=0 

/* polynomial part */ 

/* centre of domain */ 

/* radius of domain */ 

Here, n is an external parameter, set in circ_prep, which is the 

maximum degree of the polynomial f. p. We have n= 80. The file 

r_function. c contains routines that manipulate these real_functions. 

(a) real_function r_fzero(a, r), double a, r, returns a real function 

corresponding to the zero polynomial defined on the domain D(a, r). 

(b) real_function r_fnorm(f), real function f, returns the L1-norm of 

f. 
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(c) real_function r _fscale(f, 
a, r), real_function f, double a, r, returns 

the real-function (f - a)/r. 

(d) real function r_fsum(f, g), real-function f, g, returns the 

real 
-function 

f+g. 

(e) real-function r_fdiff(f, g), real-function f, g, returns the 

real 
-function 

f-g. 

(f) real-function r_fmult(f, g), real_function f, g, returns the 

real 
-function 

fxg. 

(g) real-function r fmult2(f, g), real-function f, g, returns the 

real -function 
fxg, when g is at most linear. 

(h) double r_eval(f, a), real-function f, double a, returns the value of 

fat x=a. 

(i) real-function r_fcomp(f, g), real-function f, g, returns the 

real function fo or. 

(j) real function r_fcompl(f, g), real-function f, g, returns the 

real 
-function 

fog, when g is at most linear. 

(k) real-function r_fdcomp(f, g), real_function f, g, returns the 

real -function 
Df o g. 

(1) real-function r_fdcomp](f, g), real function f, g, returns the 

real 
-function 

Df o g, when g is at most linear. 

(m) double r_fdkeval(f, k, a), real function f, int k, double a, returns 

the value of Dkf at x=a, for ký 1. 

4. The file circ_nonrig. c contains the following two routines: 

(a) r_t(h, k, th, tk), real-function h, k, *th, *tk. This routine takes the 

real functions h and k and returns the renormalised functions *th, 

*tk. The renormalisation process is straightforward to implement and 

it similar to that described in A7.3. 

(b) r_dt(h, k, dtm), 
-real-function h, k, double dtm[164][164]. This 

function returns in dtm the derivative matrix of dT at (h, k). The 
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rows and columns of dtm range from 0 to nk. The rows and columns 

nh, nk are not used - They correspond to the high order-terms in 

the rigorous version of this routine (nh =n+1, nk = 2n + 3). The 

method of calculation is similar to that of -i dt described in A7.3. 

5. The file circ_prep. c contains the folowing routines: 

(a) Main program. The program does the following: 

(i) The program reads in the parameter n, sets up various 

dependent parameters and then reads in the aproximate fixed point 

(h, k). 

(ii) The derivative matrix is calculated. First of all, the pair, (h, k) 

is renormalised as this sets up various parameters used by r_dt e. g. 

the variable bet that corresponds to ß. The routine r_dt is then 

called and the derivative matrix is returned in dtm. ° 

(iii) The routine eigit is called to calculate the basis change matrix p 

and its approximate inverse pi. 

(iv) The elements p[i][j], pi[i][j] for which none of i, j= nh, nk, are 

multiplied by 2.0 and 0.5 respectively. The helps to balance the nh, 

nk rows and columns of the rigourous version of this matrix, i_dtm. 

(v) The matrices p, pi are written to the file ppi. 

(b) fnorm. This function is used by eigit to estimate the norm of D 

(see (c) below). It also provides information on each column so that 

eigit may decide on which columns it is necessary to perform complex 

rotations. 

(c) The routine eigit. This routine calculates the basis change matrix 

and its approximate inverse. The principle behind the routine is 

explained in section 3.2. It is an adaption of a program contained in 

Wilkinson and Reinsch (1971). A sequence of "complex rotations" (i. e. 
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rotations through a complex angle) on the basis elements are used to 

converge to the Jordan canonical form. We adapt this process in two 

ways: 

(i) We only carry out the rotations when necessary. The routine 

scans the columns of the matrix and only performs rotations for 

those columns for which the off-diagonal elements are significant. 

(ii) The process is terminated as soon as the matrix has. the form 

required i. e. (3.3). 

The reason for these changes is that we need to keep the basis 

change matrix as close to the identity as possible, while still 

transforming the matrix to the form (3.3). We could transform the 

matrix to its Jordan form but this is not necessary and increases the 

factor IIPII"IIp-111 which determines how error is transmitted under the 

basis change. 
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A7.3 The Program circ proof 

1. The program depends upon the following files: 

circproof. c circ_rig. c i_function. c i_function. h i routines. c 

i_routines. h r_routines. c r_routines. h rsp_routines. c r_macros. h 

r up. c r up. h print. c 

2. The files contain the following programs: 

circ_proof. c main 

circ_rig. c i_t, i_dt, i_dteval 

i_function. c i_fzero, i_fconv, i_fnorm, r ifnorm, i_fsmult, 

i_fscale, i fsum, i_fdiff, i_fmult, i_fmult2, 

i_eval, i_fcomp, i_fcompl, i_fdcomp, i_fdcompl, 

i fdkeval 

i_routines. c i_intr, i_intrl, i_inti, i intil, r_av, i_neg, 

i_sum, i_prod, i_inv, i_quot, i_rmult, i_power, 

i_abs, r_abs, int_zero, i_matmult, i matvec, 

r_matcol, i_matmult4, i_matvec4, r_matcol4, 

i det4 

r_routines. c r power_up, r_power_down, r_inv_up, r_inv_down 

rsp_routines. c r_sum_up, r_sum down, r_prod_up, r prod_down, 

r_diff_up, r_diff down 

r_up. c r_up, r_down 

print. c print, prquot 

3. The files i_function. h, i_routines. h, r_up. h contain typedef 

statements and declarations for the routines in i function. c, 

i_routines. c and r_up. c respectively. The file r macros. h contain 

macro definitions for the routines. c in rsp_routines. c. The file 

r_routines. h contains declarations for both the routines in 
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r_function. c and those in rsp_routines. c. 

4. The routines in i_function. c, i_routines. c, rsp_routines. c, 

r_routines. c and r_up. c are described in detail in Appendix 8. 

5. The file print. c contains routines connected with output of the 

results. There is a problem with decimal/binary conversion. The data 

are read in in decimal form but are converted to binary. This 

conversion is inexact. There are times that we wish to make print out 

exact (i. e. binary) results. The routine prquot prints out the contents 

of a double variable in the form 

sgn a b/2c, sgn = *, a, b, c cNU {0}, 

where the positive sign is omitted and the negative sign refers to 

the whole of a b/2c, as is usual with fractions. The routine print is 

an extension of the C program printf that includes the new format %q 

corresponding to the routine prquot. This routine may be of interest 

to programmers as it is a function with a variable number arguments 

(like printf). 

6. For the files circ_proof. c and circ_rig. c we have the folowing 

convention: Variables or functions that are "interval" in character 

are prefixed by "i_". Furthermore, often double variables and 

functions will be prefixed "r-". 

7. In the following sections we shall often refer to variables and give 

formulae to which they correspond. The symbol "_" should be loosely 

interpreted as "corresponds to". 

B. We shall make the convention that al, rl, a2, r2 E i_h. a, i_h. r, 
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i_k. a, i_k. r respectively, and stand for the centres and radii of the 

domains of i_h =h and i_k =k respectively. 

9. The file circ_rig. c contains the following functions: 

(a) i_t(i_h, i_k, i_th, i_tk) 

interval_function i_h, i_k, *i_th, *i_tk; 

This routine takes the pair (i_h, i_k) and returns the renormalised 

pair (*i_th, *i_tk). The calculations are straightforward. The variables 

are (in order of calculation): 

i_h = h, i_k = k, (*i_th, *i_tk) = T(h, k) 

i_bet = 13 = k(0), i bet2 = ß2, i_ bet3 = ß3, i_beti = ß'1 

Note that i_zero is the zero interval [0,01 (declared in i_routines. c). 

i_bxl = ß3. x written as a function on the domain of i 
_h 

i. e. 

Q3x = rl*ß3. y + R3a1, y= (x - al)/rl 

i_bx2 = ß3. x written as a function on the domain of i_k i. e. 

Rix = r2*ß3. y + R3a9,, y = (x - a2)/r2 

i_kb = k(ß3x), *i_th = jrl. k(ß3x) 

Note that in calculating i_kb the routine i_fcompl is used since i bxl 

is a linear function. A similar remark applies to i_hb below. 

i_hb = h(R3x), i_hb2 = h(ß3x)2, i_hb3 = h(ß3x)3 

i_khb = k(h(R3x)3), *i_tk = /rlk(h(a3x)3) 

(b) i_dt(i_h, i_k, i dtm, err) 

interval_function i_h, i_k; intervalSi_dtm[164][1641; 

double err[2][164]; 

This routine takes the pair (i_h, i_k) and returns the derivative of 

the renormalisation transformation in the matrices i dtm and err. The 

routine calculates the derivative as a map of Rn+l ®Q1 ® Rn+l ®Q1 

to itself, where the isomorphism is given by the basis (ei(1), 0); ' 

(0, ei(2)) where 
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ei(1) _ ((x - al)/rl)i, i=0,1, ... 

e1(2) = ((x - a2)/r2)1, i=0,1, ... 
the first (n+1) elements in each set being thought of as a basis for 

Rn, the rest being thought of as a basis for 21 (see Appendix 3 for a 

discussion of the LI-spaces). The derivative is calculated as the sum 

of the two matrices of operators 

dT =M+E 

where M is 

«0,0 ... «O, nh-1 
RO, 

nh 

anh-1,0 " %h-1, nh-1 
Rnh-1, 

nh 
ynh, 0 "' Ynh, nh 

snh, 
nh 

anh+1,0 "' anh+1, 
nh-1 

Rnh+l, 
nh 

ank-1,0 "' ank-1, nh-1 
Rnk-1, 

nh 
Ynk, 0 " Ynk, 

nh 
snk, 

nh 

U O, nh+1 " 

«nh-1, 
nh-1 

ynh, 
nh+1" 

nh+l, 
nh4l 

«nk-1, 
nfi-1 

Ynk, 
nh+l" 

a0, 
nk-1 

QO, 
nk 

anh-l, 
nk-1 

Rnh-1, 
nk 

ynh, 
nk-1 nh, nk 

anh+l, nk-1 
Rnh+1, 

nk 

ank-l, 
nk-1 

Rnk-1, 
nk 

Ynk, 
nk-1 

snk, 
nk 

where ME A(Rn+l(D Q1®Rn+l®Q1, Rn+l ®Q1®Rn+l®Q1), i, j c R, 

AI jE A(91, R) = 21*, Yij C A(R, 21) "= 21, si, j E A(91p 91). 

and E is 

f(1) ... Eý1} ý(1) Eý1} Eý1} ý(iý 0 nh-i nh nh+l .. nk-1 nk 

E(1) E(1) ... "(1) E(1) -(1) ý(1) 0 nh-1 nh nh+l ... nk-1 nk 

where EC A(Rn+l ®ßi ® Rn+1 (D 21,91 0 Q1), El(i) c A(R, Q1) Q1º 

mjO) E A(Q1, Q1). 

The matrix M corresponds to the polynomial part and the- high order 

function of the interval_ function pair (i_ dth, i_dtk). Information on 

the matrix M is returned in the interval matrix i_dtm. The matrix E 

corresponds to the error function in the interval function pair 

(i_dth, i_dth). Information on this matrix is returned in the double 

matrix err. The following information is r eturned about the matrices 

4 
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M and E. For every (h, k) contained within the interval_function pair 

(i_dth, i_dtk) we have 

ai, j E i_dtm[i][j], Ilßi, jII E i_dtm[i][j], 

IIYi, jII E i_dtm[i][J], Ilsi, jII E i_dtm[i][j]. 

The matrix elements i_dtm[i][ j] for which one of i, j is' equal to nh, 

nk are all symmetric intervals about 0. 

For the matrix E we have IIEj(i)II 4 err[i][j], jj (i)I) 4 err[i][j]. Notice 

that since in equation (A6.6) Ah is indpedent of äh, we have 

i_dtm(i][j] = [0,0], 04i, j ( nh 

err(0J[jJ = 0,0 <i4 nh. 

We therefore set the top left hand corner of i_dtm, err to zero at the 

begining of i dt. 

The calculation of i_dtm and err is divided up into distinct sections 

(1) Set up auxiliary variables. 

(2) Check that dT is a compact operator. 

(3) Various auxiliary calculations. 

(4) Calculation of columns 0, ... n. 

(5) Calculation of column nh. 

(6) Calculation of columns nh + 1, ... nk - 1. 

(7) Calculation of column nk. 

We consider each of these sections in turn. 

The following variables are declared to be as global in circ_rig. c and 

are common to it, i_dt, and i_dteval. They are set in i_t and so i_t 

must be called before calling i_dt. 

interval i_bet, i bet2, i_bet3, i. beti; 

interval_function i_bxl, i_bx2, i_hb, i_hb2, i_hb3, i_kb, i_khb; 
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(1) Set up auxiliary variables. We first of all set the top left hand 

corners of i dtm are err to zero as mentioned above. We use the 

following 

il=x written as a function on the domain of i 
-h 

i. e. 

x= rl. y + al, y = (x - al)/r1. 

i 
-x2 =x written as a function on the domain of i 

-k 
i. e. 

x= r2. y + a2, y = (x - a2)/r2" 

i-s0 = -a2/r2 =0 scaled to the domain of i_k. 

i 
-three 

=3 

(2) Check that dT is a compact op erator. We calculate the following 

variables 

i_sbxl = (ß3x - a2)/r2 

This is the function i bxl scaled to the domain of i 
_k. 

rbxl is an 

upper bound of the Ll-norm of i_sbxl. 

i_sbx2 = (ß3x - al)/rl 

This is the function i_bx2 scaled to the domain of i_h. rbx2 is an 

upper bound of the L1-norm of i_sbx2. 

i shb3 = (h(ß3x)3 - a2)/r2 

This is the function i_hb3 scaled to the domain of i_k. rhb3 is an 

upper bound of the L1-norm of i_shb3. 

The program checks that each of rbxl, rbx2, rhb3 is strictly less 

than 1. If this is not so then it prints an error message. For if these 

quantities, - are strictly less than 1, then (in the notation of 

Appendix 4) 

133. D(ai, r1) < D(a2, r2) 

ß3. D(a2, r2) < D(al, r1) 

h(ß3. D(a 2, r2))3 <, D(a2, r2) 

and dT(h, k) will be a compact operator. For then dT(h, k) is 

analyticity im proving and so is compact by Proposition A3.6(b). 
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(3) Various auxiliary calculations. The program calculates the 

following: 

i_dkb = Dk(ß3x) 

i_dkbx = Dk(ß3x). x 

i_delbl = 3ß. Dk(ß3x). x - /r2k(R3x) 

i_delbl is the coefficient of 8$ in the equation for Ah of (A6.8). 

i_dkhb = Dk(h(ß3x)3) 

i_hdkhb = h(ß3x)2. Dk(h(ß3x)3) 

i_dhb = Dh($3x) 

i_dhbx = Dh(133x). x 

i_dkdh = 9ß. h(R3x)2. Dk(h(R3x)3). Dh(ß3x)'. x 

i_delb2 = 9ß. h(ß3x)2. Dk(h(ß3x)3). Dh(ß3x). x - Q'2k(h(R3x)3) 

i delb2 is the coefficient of 813 in the equation for Ak of (A6.8) 

(4) Calculation of columns 0, ..., n. i_dtk is the value 'Ak, as given 

in equation (A6.8) when the derivative acts on the basis tangent 

vector 8h = (ej(1), 0), sk = 0, j=0, ..., n. It is calculated using the 

following property of the basis (ej(1), 0). For j=0 

i dtk = 3P-1h( ß3x)2. Dk(h(ß3x)3) 

while for j1 

i_dtk (for j) = (i_dtk for j- 1) x i_sbx2 

For each j, the polynomial part of i_dtk form the 'rows nh 41v 
.., 

nk -I of the jth column of i_dtm. The norm of the high order 

function of i_dtk is placed in i_dtm[nk][j] as the symmetric interval 

[-i dtk. h, i_dtk. h]. The norm of the error function is placed in 

err[l][j]. 

(5) Calculation of column nh. This is a straightforward application 

of 'the formula for Ah in equation (A6.8) applied to the 

interval_function i_delh (= Sh) defined by 
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i_delh. p[i] = [0,0], i=0, ..., n 

i_delh. h = 1, i_delh. e =0 

i_delh. a = i_h. a, i_delh. r = i_h. r 

This corresponds to a function ball containing all the basis elements 

(e j(1), 0), j=n+1, n+2, ... The following variables are calculated 

i_delhb = sh(ß3x) 

i_dtk = 3ß'lh(R3x)2. Dk(h(ß3x)3). Sh(ß3x) 

The polynomial part of i_dtk is placed in the rows nh + 1, ... nk -1 

of column nh (They are all symmetric intervals). The norm of the 

high order function is placed in i_dtm(nk][nh] as a symmetric 

interval (-i_dtk. h, i_dtk. h]. The error function is placed in 

err[1][nh]. 

(f) Calculation of columns nh + 1, ..., nk - 1. The interval-functions 

i_dth, i_dtk are respectively Ah, Ak, as given in equation (A6.8) when 

the derivative acts on the basis tangent vector Sh = 0, Sk = e2(2), 

Q=0, ..., n. The following variables are used 

i delkb = R'18k(ß3x) 

i dlkhb = ! 3'18k(h(ß3)3x) 

i delb = sR 

i_dth and i_dtk are calculated using the following property of the 

basis (0, e2(2)). For 9=0 

idelkb =j 1 

i dlkhb = /3-1 

i delb 

while for 231 

i_delkb for 9= (i_delkb for 9- 1) x i_sbxl 

i_dlkhb for 9= (i_dlkhh for Q- 1) x i_shb3 

i_delb for 9= (i_delb for 9- 1) x i_s0 
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Then for each 9 the interval_functions i_dth, i_dtk are given by 

i_dth =i delkb + i_delbl xi deib 

i dtk =i delkhb +i delb2 xi delb 

For each j= nh +1+2, the polynomial part of i_dth form the rows 

0, ..., nh -1 of the jth column of i_dtm. The norm of the high order 

function of i_dth is placed in i_dtm[nh][ j] as the symmetric interval 

[-i_dth. h, i_dth. h]. The norm of the error function is placed in 

err[0J[ j]. The polynomial part of i_dtk form the rows nh + 1, ..., 

nk -I of the ith column of i_dtm. The norm of the high order 

function of i_dtk is placed in i_dtm[nk][ j] as the symmetric interval 

[-i_dtk. h, i_dtk. h]. The norm of the error function'' is placed in 

err[1](j]. 

(7) Calculation of column nk. This is a straightforward application 

of the formula for Ak in equation (A6.8) applied to the 

interval function i_delk (= 8h) defined by 

i delk. p[i] = (0,0), i=0, ..., n 

i_delk. h = 1, i_delk. e =0 

i_delk. a = i_k. a, i_delk. r i_k. r 

This corresponds to a function ball containing all the basis elements 

(0, e9(2)), 9=n+1, n+2, ... The following variables are calculated 

i_delb = 8/3 = sk(0) 

i_dth = sß x i_delbl + A-I k(R3x) 

i_delkb = 8k(h(ß3x)3) 

i_dtk = sß x i_delb2 + flsk(h(ß3x)3) 

The polynomial part of i_dth is placed in the rows 0, ... nh -1 of 

column nk (They are all symmetric intervals). The norm of the high 

order function is placed in i dtm[nh][nk] as a symmetric interval 

[-i_dth. h, i_dth. h]. The error function norm is placed in err[0][nk]. 
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The polynomial part of i_dtk is placed in the rows nh + 1, ... nk -I 

of column nk (They are all symmetric intervals). The norm of the 

high order function is placed in i_dtm[nk][nk] as a symmetric 

interval [-i_dtk. h, i_dtk. h]. The error function norm is placed in 

err[1][nk]. 

(c) i_dteval(i_delh, i_delk, i_dth i_dtk) 

interval function i_delh, i_delk, *i_dth, *i_dtk 

This routine returns in (i_dth, i dtk) the value of the derivative 

dT(h, k) acting on the pair (i_delh, i_delk). The routine uses various 

parameters that are set in it and i dt so that these two routines 

must be called prior to calling i_dteval. The following variables that 

are declared globally in circ_rig. c are used in i_dteval: ' 

interval. 
_function 

i_bxl, i bx2, i_hb3 (set in i_t)' 

interval i beti (set in i_t) 

interval_function i_delbl, i_delb2, i_hdkhb (set in i_dt) 

The calculation of (i_dth, i_dtk) _ (Ah, Ak) acting-on (i-delh, 'i-delk) 

(Eh, Sk) is a straightforward application of (A6.8). Note, that' i_delbl 

is the coefficient of SB in the equation for Ah in (A6.8) and i_delb2 is 

the coefficient of 81? in the equation for Ak in (A6.8). The function 

i hdkhb = h(ß3x)2. Dk(h(ß3x)3). 

i 
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10. The file circ_proof. c contains the main program circ_proof. We 

make the following general points 

(a) interval objects begin with the prefix "i_". 

(b) The program manipulates a number of large matrices (164 x 164 

interval matrices each requiring 430 336 bytes, and 164 x 164 double 

matrices each requiring half that amount). We have therefore 

contrived to keep the number of such matrices to a minimum. We 

have found that we may make do with four of these matrices, 

provided we use a simulation of the fortran equivalence statement. 

For example, the following declaration 

interval i_api[164][164]; 

interval (*i_temp)[164] = i_api; 

has the effect that i_api and i 
-temp 

are interval matrices that refer 

to the same storage location. Of course, if we one must be careful 

that the matrices are not used at the same time and are properly 

initialised each time they are used. 

(c) There is a minor problem of binary/decimal conversion. The 

data that is fed into the program is stored in decimal. However, this 

is converted to binary by the computer. This conversion process is 

not exact and we must always make the caveat that decimal values 

are only approximations to the exact values of the variables to which 

we refer. The input data given for the program is thus only 

approximately the approximate fixed point with which we work! When 

we wish to make exact statements we shall print out the result in 

binary form (using the routine prquot). 

(d) The proof involves finding estimates on matrices of operators 

on various Ll-spaces (see Appendix 3 fora description of Ll-spaces). 

In the program, we represent these matrices of operators as interval 

matrices. These interval matrices contain information on the elements 
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of the matrices of operators. To fix ideas, we consider a simple 

example. It is straightforward to extrapolate from this simple example 

to other situations. Consider the operator BE A(Rm+l ® Q1, Rm+l ®Q1) 

a0,0 ... a0, 
m 

ß0 

m, 0 m, 
m 

ßm 

y0 ... ym s 

where ai, J c R, . 31 E A(91, R) = Q1*, yJ c A(P, 91) = 91, Sc A(91,91). 

We represent this matrix B by the interval matrix B: 

AD 0 ... A0, 
m 

B0 

m, 0 Am, 
m 

Bm 

C0 ... Cm D 

where m>1, c i, jE A1, j, Ilßill c Bi, IlyjII E Cj, II S II E D, and Bi, Cj, D 

are all symmteric intervals. Let u be a vector in Rm+1 ® 91. We write: 

u0 

u m 
V 

with ui c R, vE lti. Analogously we represent u be the interval 

vector U 

U0 

U 
m 

V 

where ui E Ui, II v II cV and V is a symmetric interval. We claim that 

the product Bu c Rm+1 ®41 is represented by a vector formed by 

the interval arithmetic product B. U. To see this, we write w= Bu as 
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W0 

W 
ID 

y 

Then for 04i4m. 

Wi = ai, O. u0 + ... + . um + ß1(V) 

Now, II/j(v)II 4 119,11"Ilvll and so ß1(v) c [-Ill3jll"IIvII, 119111"IIvIII and thus 

wi C Alp Xi Up +i ... +i Ai'm xi U. + Bi xi V 

since Bi Xi V is a symmetric interval containing I1/3 U. IlvIl. Furthermore, 

IIYII t II YO. up + ..,. + y.. um + s(v) II 

: IIyoII" IuoI + ... + IIrmII" IUMI + IIsII"IIvII 

c CO xi UO +i ... +i Cm xi Um +i D xi V 

Note that this last expression is a symmetric interval. This proves 

the claim. 

11. The program may be broken down into the following stages: 

(a) Read in the parameters, the approximate fixed point and 

initialise various dependent parameters. 

(b) Read in the basis change matrix r_p and its approximate 

inverse r_api and find interval matrices i_p, i_pi containing r_p and 

its inverse. 

(c) Estimate the accuracy of the approximate fixed point. 

(d) Form a ball around the approximate fixed point (hO, k0). 

(e) Calculate the derivative matrix. 

(f) Convert the derivative matrix to the p-basis and contract to a 

4x4 interval matrix. 

(g) Check that the Newton map is a contraction on the ball around 

(h0, k0). 



132 

(h) Estimate /3* and check that g(ß6)3 _ p*6, and Dg(13*6) <0 

where g= 9*-lk. 

(i) Check that h, k have non-zero derivative at 0. 

(j} Check that the spectrum of dT* consists of three simple 

eigenvalues a0, al, a2 with the rest of the spectrum contained 

completely within the disc D(0,0.875). 

(k) Obtain good bounds for NO, )`l, )2 and their eigenvectors and 

show that for al and a2 their eigenvectors violate the commuting 

conditions dF*(0)(öh, 8k) = 0, dF*(3)(Sh, 8k) = 0, respectively. 

We give a detailed description of each of these stages. 

(a) Read in the parameters, the approximate fixed point and 

initialise various dependent parameters. 

n= degree of the polynomial part of interval-functions, 

n= 80. 

nh =n+1, nh is the position of the h-high order terms 

in the derivative matrix i dtm. 

nk = 2n + 3, nk is the position of the k-high order terms 

in the derivative matrix i dtm. 

al, ri, a2, r2 - the centres and radii of the domains of h, k 

respectively. The exact binary values are printed out to 

provide a precise statement of the domain of definition 

of the fixed point. 

i_al, i_rl, i_a2, i_r2 - interval versions of al, rl, a2, r2. 

h0, kO - approximate fixed point (real-functions). 

i_hO, i_k0 - interval-function versions of h0, k0. 

(b) Read in the basis change matrix r_p and its approximate 

inverse r_api and find interval matrices i_p, i_pi containing r_p and 
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its inverse. 

The basis change matrix P is of the form 

p0,0 "' PO, nh-1 
0 PO, nh+1 " PO, nk-1 

0 

Pnh-1,0 "' Pnh-l, nh-1 
0 

001 

pnh+1,0 "' pnh+l, nh-1 
0 

Pnk-1,0 "' Pnk-l, nh-1 
0 

000 

Pnh-1, nfi4-1 Pnh-l, nk-1 
0 

000 

Pnh+l, nfi4-1 Pnh+l, nk-1 
0 

pnk-l, nMl Pnk-l, nk-1 
0 

001 

(A7.1) 

We again comment that the actual matrix consists of the binary 

version stored in the computer. The matrix is read in as r_p, a 

164 x 164 matrix with 1 replacing the identity operator I of (A7.1), 

together with an approximate inverse r_api. Two things must be done. 

Firstly, we must show that the matrix r_p is invertible and obtain an 

interval matrix which contains the inverse. To do this we use a 

method contained in Moore (1966). We form the interval matrix 

product i_papi = i_p x i_api, where i_p, i_api are the interval 

versions of r_p, r_api respectively. Now i_papi will be close to the 

identity matrix I but not necessarily containing it. We write i_e for 

the matrix (i_papi - I). We note that the actual product r_p x r_api 

is contained in the matrix i_papi. Now we show that all matrices in 

i_e have L1-norm less than 1. This is done by calculating 

el = r_matcol(i_e, 0, nk, 0, nk). From this we conclude that the norm 

of the true matrix r_p x r_api -I is less than 1, so that r_p is 

invertible and that 

r_pi x r_api c i_papi =I+ i_e 

and therefore 

r_p-1 E i_papi x (I + i_e)-1 
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where (I + i_e)-1 means ((I + e)-Ile E i_e). However, for ec i_e 

(I+e)-1 =I-ex (I+e)-1 

so that 

(I+e)-1cI-M 

where M is an interval matrix with every element 

(-Ile x (1 + e)-111, Ile x (1 + e)-11I) 
This matrix is estimated as i_e3 =I+M, where M is an interval 

matrix with every element i_e2 2 [-el/(1 - el), el/(1 - el)], and we 

have 

r_p-1 Ci 
_pi 

= i_api x i_e3. 

Thus we obtain interval matrices i_p, i_pi containing respectively the 

basis change matrix and its inverse. We shall refer to the basis 

(ei(l), 0), (0, ei(2)) for i=0,1,2, ... as the standard basis and the 

basis to which we transform as the p-basis. The p-basis is defined 

as 

fi(l) = ei('). P, fi(2) = ei(2) . P, for i= 0, 1, .... 

The left multiplication is because P represents the transformation on 

coordinates rather than on the vectors themselves. Note that 

fi(1) - ei(l), fi(2) - ei(2) for i) n+l. We shall look on the space L 

expressed with respect to the p-basis as R3 ®Q1 with the first 3 

basis vectors f0(1), fl('), f2(1) being though of as spanning IR3 and 

the rest of the p-basis being thought of 21. 

(c) Estimate the accuracy, of the approximate fixed point. The 

approximate fixed point is renormalised using the. routine it. The 

following variables are used: 

i_hO, ik0 - the interval versions of the approximate fixed point. 

i_thO, i_tkO - the renormalised approximate fixed point 

i_difO - interval of length 0, ..., nk containing the difference 
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between (i_thO, i_tkO) and (i_hO, i_kO). 

Note that i_thO. e = i_tkO. e = 0, because i h0, i_kO only have non-zero 

polynomial parts and the error terms come from this high order 

terms. The vector is converted to the p-basis by the matrix i_pi 

giving the vector i_difp. The approximate Newton map is defined to 

be: 

N(h, k) _ (h, k) - J(T(h, k) - (h, k)) 

where J is the diagonal matrix (with respect to the p-basis regarded 

as R3®21) 

-1/3.234 
1/1.239 

-1/2 
I 

or, more precisely, the binary approximation to this matrix. i difp is 

multiplied by this matrix and thus i_difp is an interval vector 

representing N(hO, k0) - (h0, k0). 

r_difp is the Ll-norm of i_difp. 

(d) Form a ball around the approximate fixed point. 

We form a ball about the approximate fixed point of radius ten times 

r_difp. Then the approximate Newton map N will be a contraction 

provided the norm of its derivative is less than 0.9. The ball around 

the approximate fixed point (h0, k0) is, of course, defined with 

respect to the L1-norm of the p-basis. Of course, it would be foolish 

to express (hp, kp) in this basis, and then convert back, since this 

would only increase the amount of error. What we do is to form a 

ball about (hp, kp) with respect to the standard basis that must 

contain the ball around (h0, k0) with respect to the p-basis. 
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rad - radius of ball around (h0, k0) in the p-basis. 

This ball will be contained in the pair of interval_functions i_h, i_k 

about h0, kO defined by 

i_h. p[i] = i_hO. p[i], i=0, ..., n 

i_h. h =, 0, i_h. e 3 rnpl*rad 

i_k. p[i] = i_kO. p[i], i=0, ..., n 

i_k. h = 0, i_k. e > rnp2*rad 

where 

nk 
rnpl max {EIp; 

.(: 0tjt nh } j i=0 i 
nk 

rnp2 ) max {E (p.. j: nh +1tj( nk} i=0 1J 

where r_p = (pik). For if we regard P as the matrix 

p(1), p(2) P(1) C A(21,21 ® 21) for i=1,2 

then rnpl ) jjP(l)jj, rnp2 , IjP(2)1j and so bound the radii of balls 

around h, k respectively (each viewed as lying in 
. 
91 via the 

standard basis). (See Appendix 3 for a discussion of transmission of 

error under a basis change. ) 

(e) Calculate the derivative matrix. 

The derivative matrix i_dtm and the associated error matrix err are 

calculated via the routine i_dt. Note that (i_h, i 
_k) 

are first 

renormalised to set, up various parameters within circ_rig. c common to 

both i 
_t 

and i_dt. Note also that since i_h, 
t 

i_k are both 

interval_function's that contain the ball around the approximate fixed 

point, the matrices i dtm and err contain entries that are valid for 

all (h, k) in this ball. 
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(f) Convert the derivative matrix to the p-basis and contract to a 

4x4 interval matrix. 

Information on the derivative is returned from i dt in the interval 

matrix i dtm and the double matrix err as described in the notes for 

i dt. These represent the derivative viewed as an operator on 

pn+l ®Q1 ® pn+1 ® 91 with respect to the standard basis. We look on 

the derivative as an operator on P3 ®41 where the isomorphism is 

given via the p-basis. We must therefore conjugate the derivative 

matrix with the basis change matrix P. With respect to the p-basis, 

the derivative is 

P-1 (M + E) P (A7.1) 

We regard this as an operator on R3 0 91 by "contracting down to a 

4x4 matrix. " This means that we regard (A7.1) as an operator matrix 

010,0 «0,1 010,2 ß0 

011,0 011,1 011,2 Q1 

«2,0 «2,1 «2,2 R2 

0 r1 y2 s 

E A(R ® 91, J3 ® 91) 

and we represent this as an interval matrix i_dtm4 

°ci, jc i_dtm4[i] (j], 0<i, j < 2, Ilßill E i_dtm4[i][3], 0<i<2 

IlYjll E i_dtm4[3][. i], 0<j<2, Ilsll E i_ dtm4[3][3]. 

The matrix elements i_dtm4[i][j] for which at least one of i, j=3 are 

all symmetric intervals. Thus "contracting to a4x4 matrix" requires 

discarding information about the derivative matrix in order to make 

the calculations more manageable. 

The process is done in two stages. Firstly, the interval matrix i_dtm 

representing P-I. M. P is conjugated to the p-basis using the i_matmult 

routine. The conjugated matrix is again called i_dtm but this should 

not cause any confusion since we do not use the matrix with respect 
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to the standard basis. After conjugating i_dtm, the matrix is 

contracted to a4x4 matrix i dtm4 and the contribution from the 

matrix E is added. The contraction of i_dtm is simply a matter of 

viewing P-1. M. P as an operator on R3 ® 21 by regarding f0(1), f1(1), 

f2W1W as spanning R3 and the rest of the matrix as 91. For example, S 

is simply the submatrix of P'1. M. P formed from the rows 3 to nk, and 

columns 3 to nk. Finding a norm for S is a matter of finding the 

maximum column sum norm of this submatrix. This is obtained by 

summing the norms of the elements of this submatrix. To calculate the 

contribution from P-1. E. P, we evaluate the matrix E. P directly by 

calculating the double matrix errp given as 

errp(i][j] =E IIEk(l)II"IPk, jl =E err[i](k). r_abs(i p[k][j]) 

where the sums range from 0 to nk. This gives bounds on the norms 

of E. P viewed as a matrix of operators in the same way as E. To 

calculate P-1. E. P we look on P-1 as the matrix of operators 

-1 1 
P0,0 P0,1 

11 P0,0 P0,1 

-i -1 E A(Q1 ® 21. R3 ® 91) P0,0 PO, 1 

-1 1 P0,0 P0,1 

Than the contribution of P'1. E. P is determined by the maximum 

column sum of these submatrices sto red in the double matrix rnpi 

rnpi[O][O] = max {( p0j-11 : 0 4j t nh } 

rnpi[1][0] = max {I p1j-11 : 0 Cj < nh } 

rnpi[2][0] = max {I p2j-1I : 0 Cj t nh } 

rnpi[31[0] = max {E pij-11 : 0 tj < nh } 

rnpi[0][1] = max (( p0j-11 : nh+1 4j( nk} 
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rnpi(1](1] = max {I p1j-11 : nh+1 t j t nk} 

rnpi[2][1] = max { p2j-1+ : nh+l C j 4 nk} 

rnpi[3][1] = max {EI pij-11 : nh+1 4 j 4 nk} 

where the summations are taken over i= 3, ..., , nk. The bound for 

lJPi ij1I is given by rnpi[i][j]. These factors multiplied by the norms 

contained in errp give the contribution for P-1. E. P. 

(g) Check that the Newton map is a contraction on the ball. 

The program checks that dN, the derivative of the approximate 

Newton map, has norm (with respect to the p-basis) less than 1. It 

also checks that N maps the ball about the approximate fixed point to 

itself. In particular it verifies that the hypotheses of Proposition 3.3 

are satisfied. If the map is not a contraction then an error message 

is printed. Otherwise a message is printed that N is a contraction 

map on the ball around the approximate fixed point and there is a 

unique fixed point (h*, k*) in this ball. 

(h) Estimate ß* and check that g(I3*6)3 = p*6, and Dg(ß*6) <0 

where g= ß*-1. 

It is a simple matter to print out bounds for ß*, from information 

about the fixed point. From equation A4.26, K(K(ß*2)) = A*2, where K= 

R*-l. n* so we know that g(g(ß*6)3)3 = ß*6, where g=ß 1k*. The 

program shows that the function g(x)3 has derivative less than -1 on 

an interval containing /3*6 and g(Q*6)3. If g(ß*6) 0 g*6, the mean 

value theorem implies that g3 must have a point of derivative -1 in 

between ß*6 and g(R*6)3. Hence program ' shows that ß*6 must be a 

fixed point of g3. The following variables are calculated 

i_bet6 = ß6" i_g =g= R'1k, i_gb = g(P6) 

i_gb3 = g(ß6)3, i_comb - interval containing 96 and g(p6)3 
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i_dg - interval containing {Dg(x) :x c i_comb} 

i-dg3 - interval containing {D(g3)(x) : xc i_comb) 

(i) Check that h, k have non zero derivative at 0. 

This is completely straightforward. We find bounds on Dh* (0), Dk*(O) 

and show that these quantities are positive. The variables are 

i_dhO = Dh(O), i_dkO = Dk(O). 

(j) Check that the spectrum of dT* consists of three simple 

eigenvalues NO, al, )2 with the rest of the spectrum contained 

completely within the disc D(0,0.875). This is done using the 

following method of Eckmann et al (1982). 

Proposition A7.1 Let B 

u0,0 a0,1 (X 0,2 90 

«1,0 a 1,1 a 1,2 R1 
E A(P3 ® Stl, p3 ® 91) 

a2,0 a2,1 °C2,2 ß2 

YO r1 r2 

be a matrix of operators and let it be represented by B 

A0,0 A0,1 B0,2 B0 

A1,0 A1,1 A1,2 B1 

A2,0 A2,1 A2,2 B2 

C0 C1 C2 D 

and we assume that all off-diagonal elements of this interval matrix 

are symmetric matrices. Then if the interval arithmetic determinant of 

this matrix does not contain 0, then the matrix B is invertible. 
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proof Let u= 

u0 

ul E R3®St 
U2 

V 

Then if B(u) = 0 we have for i=0,1,2 

0. u0 a1 + ai l. ul + a1 2. u2 + ßi(v) =0 
, , , 

and there is a yi c Bi such that 

ui, 0. u0 + al, l. ul + a1 2. u2 + yi"II v II =0 , 
Similarly, there are zj C Cj, 

_ wED such that 

z0. u0 + zl. ul +z 2-u2 + w. ll v II =0 

Thus B(u) =0 implies that 0 c B(U) where U0 is 

u0 

ul 
E R4 

U2 

II v II 

However if 0 it det(B), then C(U) 00 for any matrix CEB. This is a 

contradiction and the result is proved. 

0 

The reason for stipulating that even the off-diagonal elements Ai, j 

are symmetric intervals is the following. Let r1, r2,1'3, I'4 disjoint be 

circles centred at points cl, c2, c3, c4 on the real axis. 

Proposition A7.2 Let B and B be as in Proposition A7.1. Then if 

det(B - M) does not contain 0 on the real axis outside of the circles 

Ci and if det(B - XI) changes sign according to 

(cl - )'). (c2 - a). (c3 - ), ). (c4 - )') 
. 
(A7.3) 

then B has no eigenvalues on the circles ri. 

Proof If det(B - XI) changes sign according to the sign of (A7.3) 

then this says that in the determinant the term (A7.3) in the 

determinant is greater in absolute value is greater than the sum of 
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the absolute value of the other terms in the determinant. However, 

since the off-diagonal elements of B are symmetric intervals, this 

says that the absolute value of (A7.3) is greater than the absolute 

value of the other terms for any A in C not strictly contained within 

any of the circles ri. Q 

The program first of all calculates rdtm4, the norm of the matrix 

i_dtm4. This provides an upper bound on the eigenvalues of dT. It is 

therefore unnecessary to consider values of A outside of the interval 

[-rdtm4, rdtm4]. The program checks that 

rdtm4 ( 3.0 

and then for AC [-3.0, rdtm4] and outside of the circles r1, ... ', r4 

checks that A is not an eigenvalue. This is done by checking that 

det(i_dtml4 - A. I) does not contain 0. Furthermore, we check that the 

determinant changes sign according to the sign of the 'product 

(a +2 1441151880758587/254). 0 + 1). ). 0, -2 1261007895663739/253) " 

Then from Propositions A7.1 and A7.2 we may conclude that for all 

pairs of functions (h, k) in the neighbourhood of (h0, k0) we have 

that dT(h, k) contains no eigenvalue on the circles t'i, i=1,2,3,4. 

For each a, the determinant is calculated using the routine i_det4. 

Note that the determinant is evaluated for all the Vin i jam. If the 

sign of the determinant is not as expected, an error message "is 

printed. If all goes well, a message confirming that the determinant 

changes sign as expected is printed. The variables used are as 

follows: 

gam - array containing the centres and radii of the circles 

r1. gam[i][0J, gam[i][I] - centre and radius of ri+l. 

i_dtml4 = i_dtm4 with off-diagonal elements replaced by symmetric 

intervals 

rlaumin, rlammax - bounds of the interval for which the 
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determinant is expected to have the same sign. 

rlamO, rlaml lower and upper bounds of the interval 

i 
-lam 

of values of A 

sign expected sign of the determinant for rlamO 4a4 rlaml 

i_d = i_det4(i_dtml4 - a) - interval containing the values 

of the determinant. 

rdl = lower bound of i 
-d 

rdu = upper bound of i_d 

(k) Obtain good bounds for 10' Xi' a2 and their eigenvectors and 

show that for al and a2 their eigenvectors violate the commuting 

conditions dF*(0)(Sh, Sk) = 0, dF*(3)(Sh, Sk) = 0. 

For the each of a09 )`19 12 in turn we obtain better bounds for the 

exact eigenvalue. We also obtain bounds on the eigenvectors of these 

eigenvalues. For al we check that the condition dF*(0)(8h, sk) =0 is 

not satisfied and for a2 we check that condition dF*(3) (Sh, Sk) =0 

is not satisfied. This section is rather long, so we subdivide into the 

following subsections 

(i) Start loop for each eigenvalue 2=0,1,2. 

(ii) Read in approximate eigenvalue and eigenvector, form newton 

map and estimate the accuracy of the approximate 

eigenvalue/eigenvector. 

(iii) Form a ball around the approximate eigenvalue/eigenvector and 

calculate the derivative of the approximate Newton map Ni and show 

that it is a contraction on the ball. Print out accurate bound on 

eigenvalue. 

(iv) Show that for 2=1 the condition dFt(0)(Sh, Sk) =0 is violated 

and for 2=2 the' condition dF*(3)($h, 8k) =0 is violated. 
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(i) Start loop for each eigenvalue 9=0,1,2,. The program opens 

the file "eigvec" which contains the approximate eigenvalues and 

eigenvectors. For 2=0,1,2, it performs the following (ii) - (iv). 

(ii) Read in approximate eigenvalue and eigenvector, form newton 

map and estimate the accuracy of the approximate 

eigenvalue/eigenvector. 

The approximate eigenvalue and eigenvector is read in. 

r1amO = approximate eigenvalue a' 

u0 = approximate eigenvector u' _ (8h, 8k) 

i_delh = Sh, i_delk = 8k 

The routine i_dteval is caled to calculate dT*(Sh, 8k) _ (i_dth, i_dtk). 

i_suO = (dT* - )I)(Sh, 8k) (without the contribution'of the 

error functions of i_dth, i_dtk). 

The symmetric interval i_su0[nh] contains the norm of the, high 'order 

function of i_dth. The symmetric interval i_suO[nk] contains' the norm 

of the high order function of i_dtk. 

i_uOp - (Sh, 8k) expressed with respect to the p-basis 

i_uOp = r_pi x i_uO. 

The approximate Newton map Ni is defined as 

I-M. S 

where S is the map (3.4) and where 'M s dS-1. In fact, the computer 

calculates its own matrix M. The precise choice "of M is not important. 

The matrix M is given as 

M0 

Ml 

M2 
M3 

where Mi ci m4[i][i] i=0, ..., 2, and M3 = k. I where kc i_m4[3][3]. 

i_suOp = i_suO expressed with respect to the p-basis. 
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i_suOp4 = i_suOp contracted to a4 vector. 

i_suOp4 has the error functions included in. 

i_difp4 = i_m4 x i_suOp4 

r_difp4 = Norm of i_difp4 - upper bound for 

II Ni(, ', u') - PC , u') II 

rad = radius of ball around approximate eigenvalue/vector 

i uOp4 - i_uO contracted to a4 interval vector 

i_up4 -4 vector containing ball around i_uOp 

The derivative matrix i_ds4 = dS consists of the matrix i_dtm4 -i jam 

with the 4th column replaced by the vector -i_up4. This is valid for 

all vectors in i up4. The matrix representing the derivative of the 

approximate Newton map Ni, I-M. dS, is i_dn4. r_dn is the maximum 

column norm of i_dn4. The program now checks that rcontr > rdn + 

rdifp4/rad is less than 1 so that Proposition 3.3 gives a unique 

eigenvalue/vector in the ball around (1', u'). The bound for the 

eigenvalue a is printed out. 

(iv) Show that for 9=1 the condition dF*(0)(Sh, Sk) =0 is violated 

and for 2=2 the condition dF*(3)(Sh, 8k) =0 is violated. This 

section is a straightforward application of the equations (A6.11) and 

(A6.12). First of all, if ß=0, then we skip to the end of the loop. 

Secondly we use rnpl, rnp2 (calculated above) to calculate a ball 

around the approximate eigenvector (i_delh, i_delk) in the standard 

basis that contains the exact eigenvalue and eigenvector pair. The 

calculation is then straightforward. The variables used are 

i_delcom is an interval variable that (eventually) contains 

bounds on the right hand sides of equations (A6.11) 

and A(6.12). 

i_twop = 2, i_three =3 
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i_dh = Dh(A) 

i_dk0 = Dk(O) 

i_bet4 = p4 

i_delkO = sk(0) 
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A8. Error bounding for VAX-11/750 Computers, Interval Arithmetic, 

and Function Ball/Vector Arithmetic 

This appendix contains details of the error bounding routines 

implemented on the VAX-11/750 computer. This is followed by a 

detailed description of the interval arithmetic operations and their 

computer implementation. Finally, we describe in detail the Function 

Ball/vector operations. 

A8.1 Error Bounding 

A8.1.1 Floating Point Representation and the functions _E-up and 

r down. 

Double variables in C are implemented on the VAX-11/750 computer as 

D-floating data as defined in the VAX Architecture Guide. The 

D-floating datum consists of 8 contiguous bytes of storage, 64 bits in 

all. The bits are labelled from 0 to 63.55 bits form the fraction, and 

there is an 8 bit exponent and a sign bit. Table A8.1 is an extract 

from the VAX Architecture Guide that describes the D-Floating datum 

and the location of the bits corresponding to the fraction, the 

exponent and the sign bit. The VAX uses a "hidden bit" in its 

floating point representation. The fraction bits represent a number 

between li and 1. All the fraction bits equal to 0 corresponds to a 

fraction )i rather than 0. The 8 bit exponent ranges from 0 to 255. 

Floating point 0 is represented by all the exponent bits equal to 0 

(whatever the fraction, although a zero produced by a floating point 

operation has all bits set to 0). The other 255 values represent 

binary exponents of -127 to 127 inclusive, 1 corresponding to -127 

and 255 corresponding to 127. 

The set R of numbers that can be represented as D-floating data on 
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VAX-11 computers is precisely: 

(0) U{ *f. 2k }, -127 4k6 127, f= 9/256,255 <2< 256 

We note that C int variables are implemented as longword data 

comprising four contiguous bytes of storage. 

The functions r_up and r_down of Chapter 4 are implemented in C as 

the double functions r_up and r_down. The two functions r_up and 

r_down are similar. We shall describe r_up. r_down(r) may be defined 

as -r_up(-r). The source code for r_up is the following: 

/*----------------------------------------------ýýýý_ý---*/ 
r up(r) 

/*-------------- -----------------------------------------------*/ 

double r up(r) 
double r; 
{ 
static double rtemp - 0.0; /* temporary variable that contains 

the increment to be added to r 

static int *p - (int *) &rtemp; /* integer pointer used to place 
the exponent bits of rtemp in 
the correct position 

*p - (*((int *) &r) & Ox00007f80) - Ox00001b80; 
/* access the exponent of'r by 

bitwise & with mask, subtract 
integer variable corresponding 
to exponent 55, and place in 

, position in rtemp 

if(*p <a 0) *p - 0x00000080; /* if resulting exponent <-_0 

put the smallest normalisable 
number in rtemp 

return(r + rtemp); /* add rtemp to r 
} 
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We denote by r+ the number min (ssR: s>r}. Then r+ is the 

smallest number greater than r that can be represented as a 

D-floating datum on the VAX-11/750. Likewise we set 

r- = max (scR: s< r). Now, r_up(r) returns a number in R that 

is slightly larger than r. Usually r_up(r) = r+. There are two 

exceptions to this rule: (1) when IrI< 2-73 and (2) when r= -2n, 

for some integer n. We shall discuss these two cases below. In all 

cases, r_up(r) is greater than r and difffers by at least one Least 

Significant Bit (L. S. B. ) of r. 

The precise allocation of bits for D-floating data is displayed in the 

figure in Table (A8.1). A precise mathematical definition of r_up is 

the following: 

r_up: r= tf. 2k --> r+ yi. 2max(-127, k- 55) 

r_up is implemented in C by adding to ra double variable that 

corresponds to a number with a one in the L. S. B. position of r. 

Because of the hidden bit, this merely requires extracting the 

exponent of r, subtracting the precision of the fraction, placing the 

result in a double variable with fraction bits all set to 0 and adding 

the result to r. This addition is performed exactly by the computer. 

We refer to the code for r_up. rtemp is the variable that contains 

the number to be added to r. It is set to 0 on entering the function. 

p is an integer pointer that points to the first 32 bits of rtemp. The 

exponent is obtained by taking the first 32 bits of r (i. e. 

*( (int *) &r)) ) and masking this with the integer variable 

0x00007f80 which has bit pattern 

15 14 760 
0 11111111 0000000 
0 --------- 0 

32 0 

Then 55 is subtracted from the exponent by subtracting the integer 
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constant Ox0000lb80 which has bit pattern 

15 14 760 
0 00110111 0000000 
0 ------ 0 

32 0 

corresponding to 55 in the exponent bit field. The result is then 

placed in p which points to the first 32 bits of rtemp. Now if *p < 0, 

then the exponent of rtemp is less than or equal to -128 and so we 

replace rtemp by the smallest positive number in R. This has 

exponent -127 and an all-zero fraction bit pattern. The first 32 bits 

have hexadecimal representation 0x00000080 and bit pattern 

15 14 760 
10100000001 10000000 
10 ---------- 0 

32 0 

The last 32 bits are all 0. After rtemp has been calculated, it is 

added to r and the result is returned as the value of r_up. 

We consider briefly the two exceptional cases when r_up(r) # r+. 

Case (1) r= tf. 2k, 34 <f < 1, -127 tk< -73. In the cases r up (r) is 

greater than r+, r+ =r +X 2k-55, while r_up(r) = r+ ff. 2-127. This 

discrepancy occurs because we have used the floating point 

operations to obtain r_up(r). Y4.2'127 is the smallest positive number 

that can be added to a number in R. 

Case (2) r= -34.2k, -72 tkt 127. In this case r_up(r) =r+ 3Uk-55 

_ -(255 - 1)/255.2k-1 while r+ _ _(256 - 1)/256.2k-1. In fact this 

slight deviation is necessary for r_up(r) to differ from r by at least 

1 L. S. B. of r (r+ differs from r by 34 L. S. B. of r). 

A8.1.2 Vax Floating Point Arithmetic 

The arithmetic routines for double variables in C are translated into 

the VAX floating point operations on D-floating data by the C 

compiler. Table A8.2 contains an extract from the VAX Architecture 
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Guide. The guide states that all VAX floating point instructions 

(except two which we do not use) produce results within an error 

margin of i. L. S. B. Therefore, since r_up(r) differs from r by at least 

one L. S. B. of r, we know that for 0c(+, -, x, + ), r, sER, we have 

r0st r_up(r Oc s), where r Oc s is the result produced by the 

VAX instruction corresponding to 0. In fact in order to make the 

routines as portable as possible we have included an extra check in 

the case of division. Because division algorithms vary so greatly, it 

is best to check explicitly an upper bound for the result of a 

division instruction. This is done using the multplication instruction 

and is described below. The comments of the last paragraph apply 

mutadis mutandis to the function r 
-down. 

We provide the following error bounding routines. Let r, scR. 

r_sum_up(r, s) returns upper bound for r+ s 

r sum_down(r, s) returns lower bound for r+ s 

r prod_up(r, s) returns upper bound for rx s 

r prod_down(r, s) returns lower bound for rx $ 

r_diff_up(r, s) returns upper bound for r- S 

r diff down(r, s) returns lower bound for r- S 

r_power up(r, k) returns upper bound for rk, r, k)0 

r power_down(r, k) returns lower bound for rk, r, k>0 

r inv_up(r, s) returns upper bound for 1+ r, r*0 

r_inv_down(r, s) returns lower bound for 1+ -r, ro0 

The functions r_sum_up, r_sum_down, r_prod_up, r_prod_down, 

r diff up, r diff down may be readily implemented as macros, that is, 

routines that are implemented at compile time. These routines use the 

functions r_up and r_down described above to obtain upper and 

lower bounds. With the exception of special cases, the functions 
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r_sum 
_up, 

r_sum_down, r_prod _up, 
r_ prod_down, r_diff_up, 

r diff down are defined in terms of the VAX floating point operations 

+c, xc, -c as 

r sum_up(r, s) = r_up(r +c s) r, s #0 

r_sum_down(r, s) = r_down(r +c s) r, s #0 

r_prod_up(r, s) = r_up(r xc s) r, s # 0,1 

r_prod_down(r, s) = r_down(r xc s) r, s # 0,1 

r_diff_up(r, s) = r_up(r -c s) r, s #0 

r diff down(r, s) = r_down(r -c s) r, s o0 

For the exceptional cases the exact result is returned. The routine 

r_inv_up(r), r v, 0, takes r_up(1 +c r) as an initial guess for an 

upper bound s. It checks that s can be guarenteed to be an upper 

bound by use of the multiplication routines r_prod_up and 

r_prod_down. We suppose r>0 (the case when r<0 is analogous). 

Then, if s satisfies r_prod_down(r, s) > 1, we know that s is an upper 

bound for 1+r. If s fails this test we put s= r_up(s) and test 

again. We continue this process until s is guarenteed to be an upper 

bound for 1+r. This may seem elaborate but on some computers 

(although not the VAX-11) this checking is necessary to ensure that 

the upper bound is rigorous. The routine r_inv_down is similar. 

The routines r_power_up(r, k) and r_power_down(r, k), r, k > 0, use the 

routines r_prod_up and r_prod_down respectively to calculate upper 

and lower bounds for rk. The algorithm for calculating rk is 

standard based on the binary expansion of k (see e. g.. Knuth (1969)). 

A8.1.3 Floating Point Overflow 

In this section we describe briefly how the VAX running UNIX deals 

with floating point overflows. 

The manner in which UNIX handles floating point exceptions is 
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discussed in the signal(2) section of the Berkeley UNIX manual. A 

signal from a floating point exception causes "termination of the 

receiving process" i. e. the program is halted. 

A floating point exception is caused by a floating point overflow as 

described in section 6.4.1.8 of the VAX Architecture Manual. This occurs 

when an instruction results in 'an exponent greater than the largest 

representable exponent for the data type after normalization and 

rounding. ' Table A8.3 contains a brief extract-from the Manual detailing 

the floating point exception. 
We see that floating point overflow will result in program termination 

should it occur during the running of the program. 

A8.2 Interval Arithmetic 

In Chapter 4 the basic principle of interval arithmetic is described. 

We list the exact interval arithmetic routines together with their 

computer implementation. The standard reference for interval 

arithmetic is Moore (1966). Let I1 = [al, bl] and 12 = [a2, b2] be 

finite closed intervals in P. We define the following exact interval 

arithmetic operations: 

(1) addition, sum 11 +i 12 = [al + a2, bl + b2] 

(2) negation, unary -i I1 = [-b1, -a1] 

minus 

(3) subtraction, I1 -i 12 = [al - b2, bl - a2] 

difference 

(4) real multi- r xi I1 = [r. al, r. bi] if r>0 

plication r c, 62 [r. bl, r. al] if r<0 

(5) multiplication, Il xi 12 = [a3, b3] where 

product a3 = min{al. a2, al. b2, bl. a2, bl. b2} 

b3 = max{al. a2, al. b2, bl. a2, bl. b2} 



Exceptions and interrupts 12-Dec-80 -- Rev 7.1 Page 6-16 

EXCEPTIONS 

pushed on the stack is 6 (SRMSK DEC 3VF T(. 

6.4.1.7 Subscript Range Trap -A subscript range trap is an exception 
that indicates that the last instruction was an INDEX instruction with a 

subscript operand that failed the range check. The value of the 

subscript operand is lower than the low operand or greater than the high 

operand. The result is stored in indexout, and the condition codes ace 

set as if the subscript were within range. The type code pushed on the 

stack is 7 (SRMSK SUB RNG T). 

6.4.1.8 Floating Overflow Fault -A floating overflow fault is an 
exception that in(4(cates that the last instruction executed resulted in 

an exponent greater than the largest representable exponent for the data 

type after normalization and rounding. The destination was unaffected 
and the saved condition codes are UNPRCDICTABLC. The saved PC points to 

the instruction causing the fault. In the case of a POLY instruction, 

the instruction is suspended with FPD set (see Chapter 4, for details). 
The type code pushed on the stack is 8 (SRMSK_FLT OVF_F). 

6.4.1.9 Divide By Zero Floating Fault -A floating divide by zero fault 
is an exception that indicates that the last instruction executed had a 
floating zero divisor. The quotient operand was unaffected and the 
saved condition codes are UNPREDICTABLE. The saved PC points to the 
instruction causing the fault. The type code pushed on the stack is 
9 (SRMSK FLT DIV F). 

If 

6.4.1.10 Floating Underflow Fault -A floating underflow fault is an 
exception that indicates that the last instruction executed resulted in 
an exponent less than the smallest representable exponent for the data 
type after normalization and rounding and that floating underflow was 
enabled (FU set). The destination operand is unaffected. The saved 
condition codes are UNPREDICTABLE. The saved PC points to the 
instruction causing the fault. In the case of a POLY instruction, the 
instruction is suspended with FPO set (see Chapter 4 for details). The 
type code pushed on the stack is 10 (SRM'K FLT UND F). 

Table A8.3 Extract from the Vax Architecture Manual 
detailing the floating overflow fault '(6.4.1.8)' 
(page 6-16). 

1. 
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(6) inversion 1 +i I1 = [1/b1, 1/a1], 0 ft I1 

(7) division, I1 +i 12 = I1 xi (1 +i 12) , 0 It I2. 

quotient 

(8) absolute value (a) absr(I1) = max( lall, 1bll } 

(9) absolute value (b) absi(I1) _ [a3, b3) where 

(i) if 0C I1, a3 = 0, b3 = absr(I1) 

(ii) if 00 I1, a3 = min{lall, lbll} 

b3 = max{Iall, Ibil} 

These definitions of exact interval arithmetic operations all satisfy 

equations corresponding to equation (4.3) with equality. 

An interval is implemented in C as the following structure: 

typedef struct ( 

double lo; /* left hand end-point of interval */ 

double up; /* right hand end-point of interval */ 

} interval; 

There are three global interval constants: 

i_zero - the zero interval [0,0] 

i_one - the interval [1,11 

i_unit - the unit interval [-1,1] 

The following are the interval routines that are implemented: 

i intr, i_intrl, i inti, i intil, r_av, i_neg, i_sum, i_diff, i_prod, i_inv, 

i_quot, i_rmult, i_power, i_abs, r_abs, int_zero, i_matmult, i_matvec, 

r_matcol, i_matmult4, i matvec4, r matcol4, i_det4. They are contained 

within the file i_routines. c. The interval typedef statement and the 

declarations for these routines are contained in the file i_routines. h. 

The following is a brief description of each of these routines. The 

statements made are all simple exercises with inequalities. 

A 
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1. interval i_intr(r, s) 

double r, s; 

This routine returns the interval [r, s]. 

2. interval i_intrl(r) 

double r; 

This routine returns the interval [r, r]. 

3. interval i_inti(i, j) 

int i, j; 

This routine returns the interval [i, j], with i, j converted to double. 

4. interval i_intil(i) 

int i; 

This routine returns the interval [i, i], with i converted to double. 

5. double r_av(a) 

interval a; 

This routine returns (an approximation to) the middle point of the 

interval a. 

6. interval i_neg(a) 

interval a; 

This routine returns the negative of the interval a. This is simply 

[-a. up, -a. lo]. 

7. interval i_sum(a, b) 

interval a, b; 

This routine returns an interval c containing a +i b. The precise 
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definition of c is: 

c. lo = r_sum_down(a. lo, b. 1o) 4 a. lo + b. lo 

c. up = r_sum up (a. up, b. up) ) a. up + b. up 

so that a +i b9 c. 

8. interval i_diff(a, b) 

interval a, b; 

This routine returns an interval c containing a -i b. The precise 

definition of c is: 

c. lo = r_diff_down(a. lo, b. up) 4 a. lo - b. up 

c. up = r_diff_up (a. up, b. lo) a a. up - b. lo 

so that a -i b is contained in c. 

9. interval i_rmult(r, a) 

double r; interval a; 

This routine returns an interval c containing r xi a= {r. x :xE a). 

The precise definition for c is: 

If r=0, then c == [0,0]. 

If r>0, then c. lo = r_prod_down(r, a. lo) < r. x for all xca, 

and 'c. up = r prod_up' (r, a. up) ) r. x for all xca. 

If r<0, then c. lo = r prod_down(r, a. up) t r. x for all xca, 

and c. up = r_prod_up (r, a. lo) 1 r. x for all xca. 

Thus c contains the interval r xi a. 

10. interval i_prod(a, b) 

interval a, b; 

This routine returns an interval c containing a xi b. The definition 

(5) of the exact interval product' may be readily implemented on the 

computer as 
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c. lo = r_down(min(a. lo*b. lo, a. lo*b. up, a. up*b. lo, a. up*b. up)) 

c. up = r_up (max(a. lo*b. lo, a. lo*b. up, a. up*b. lo, a. up*b. up)) 

However, in order to reduce the number of multiplications that will 

be required in most cases to two, we distinguish nine separate cases: 

(1) 0Sa. lo 4 a. up, 04b. lo 4 b. up 

Then 

a. lo x b. lo 4 a. lo x b. up, a. up x b. lo 

a. up x b. up 3 a. lo x b. up, a. up x b. lo 

so we put 

c. lo =r prod_down(a. lo, b. 1o) 

c. up = r_prod_up (a. up, b. up). 

(2) 04a. lo 4 a. up, b. lo 4 b. up 40 

Then 

a. up x b. lo 4 a. lo x b. lo, a. up x b. up 

a. lo x b. up ý a. lo x b. lo, a. up x b. up 

so we put 

c. lo = r_prod_down(a. up, b. 1o) 

c. up = r_prod_up (a. lo, b. up). 

(3) 0Ca. lo 4 a. up, b. lo C04b. up' 

Then 

a. up x b. lo 4 a. lo x b. lo 4 0< a. lo x b. up 4 a. up x b. up 

so we put 

c. lo = r_prod_down(a. up, b. lo) 

c. up = r_prod_up (a. up, b. up). 

(4) a. lo 4 a. up 4 0,0 4 b. lo 4 b. up 

Then 

a. lo x b. up < a. lo x'b. lo, a. up x b. up 

a. up x"b. 1o a a. lo`x b. lo, a. up x b. up 

soweput 
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c. lo = r_prod_down(a. 1o, b. up) 

c. up =r prod_up (a. up, b. 1o). 

(5) a. lo 4 a. up t 0, b. lo 4 b. up 40 

Then 

a. up x b. up 4 a. lo x b. up, a. up x b. lo 

a. lo x b. lo ) a. lo x b. up, a. up x b. lo 

so we put 

c. lo =r prod_down(a. up, b. up) 

c. up = r_prod_up (a. lo, b. 1o). 

(6) a. lo t a. up 4 0, b. lo 404b. up 

Then 

a. lo x b. up 4 a. up x b. up 404a. up x b. lo . a. lo x b. lo 

so we put 

c. lo =r prod_down(a. lo, b. up) 

c. up =r prod_up (a. lo, b. 1o). 

(7) a. lo (04a. up, 0<b. lo 4 b. up 

Then 

a. lo x b. up a. lo x b. lo 40a. up'xx b. lo 4 a. up x b. up 

so we put 

c. 1o = r_prod_down(a. lo, b. up) 

c. up = r_prod_up" (a. up, b. up). 

(8) a. lo '(" 0Ca. up, b. lo 4 b. up 40 

Then d ": 

a. up x b. lo t a. up x b. up 4C 04a. lo x b. up 4 a. lo x b. lo 

so we put ' 

c. 1o = r_prod_down(a. up, b. 1o) 

c. up = r_prod_up (a. lo, b. 1o). " 

(9) ä. 1o 404a. up, b. lo 404b. up 
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Then 

a. lo x b. up, a. up x b. lo 40 

a. lo x b. lo, a. up x b. up ý0 

so we put 

c. lo = min(r_prod_down(a. 1o, b. up), r_prod_down(a. up, b. 1o)) 

c. up = max(r_prod_up (a. lo, b. 1o), r_prod_up (a. up, b. up)) 

11. interval i_inv(a) 

interval a; 

This routine returns an interval b containing 1 +i a, provided 00a. 

The routine checks to see whether 0 is in a. If it is not then it 

returns b, defined by: 

b. lo. = r_inv _down(a. up) < 1/x for all xca 

b. up = r_inv _up 
(a. lo) > 1/x for all xca. 

Then b contains the interval 1 +i a. 

12. interval i_quot(a, b) 

interval a, b; 

This routine returns an interval containing a +i b, for 00a. It is 

defined simply in terms of i_prod and i_inv as i 
_prod(a, 

i 
_inv(b)). 

13.. interval i_power(a, k) 

interval a; int k; 

This routines returns an interval b containing ak, -for k 0, and for 

a contained within the non-negative reals. It performs a check on a 

and k. If all is well, it returns b, defined by: 
i 

b. lo =r power down(a. lo, k) xk for all xca 

b. up =r power up (a. up, k) xk for all xca. 

Thus ak is contained in b. 
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14. interval i_abs(a) 

interval a; 

This routine returns an interval b containing the set of absolute 

values of a. The precise definition of b is: 

If a is contained within the non-negative reals, then b=a 

If a is contained within the non-positive reals, then b= -a 

Otherwise we have a. lo <0<a. up, and then 

b= [0, max{a. up, -a. lo}). 

With this definition (I xI: xc a) is contained in b. 

15. double r_abs(a) 

interval a; 

This routine returns an upper bound on' the absolute value of 

elements of a. This upper bound may be defined simply as 

max(-a. lo, a. up). 

16. int int_zero(a) 

interval a; 

This routine returns 1 if 0ca and 0 otherwise. 

The following are a few routines on interval matrices and vectors. 

These routines i_matmult, i_matvec, r_matcol, i_matmult4, i_matvec4, 

r_matcol4, i_det4 are straightforward implementations of standard 

algorithms using the interval routines defined above. The definitions 

are specific to the requirements of the program circ_proof. 

17. i_matmult(a, b, c, m) 

interval a(164][164], b(164](164), c[164)(164); int m; 

This routine returns in the interval matrix c, the product 'a x ib. The 
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rows and columns of a, b, c range from 0 to m. The routine copies 

each column of b into an interval vector for increased efficiency (C 

stores arrays in rows, so that moving down columns is time 

consuming). 

18. i matvec(a, b, c, m) 

interval a[164][164), b[164], c[164]; int m; 

This routine returns in the interval vector c, the product of a Xi b. 

The rows and columns of a, and the rows of b, c all range from 0 to 

m. 

19. double r_matcol(a, ml, m2, m3, m4) 

interval a(1641[164]; int ml, m2, m3, m4; 

This routine returns the maximum of the Ll-norms of the columns of 

the submatrix of a[i][j] with ml 4j4 m2, m3 ti4 m4. 

20. i_matmult4(a, b, c, m) 

interval a[4][4], b[4][4], c[4][4]; int m; 

i matvec4(a, b, c, m) 

interval a[4][4], b[4], c[4]; int m; 

double r matcol4(a, ml, m2, m3, m4) 

interval a[4][4]; int ml, m2, m3, m4; 

These routines are entirely analagous to the routines in 17 - 19 but 

for 4x4 matrices instead of 164 x 164 matrices. 

21. interval i_det4(a) 

interval a(4](4]; 

This routine returns an interval containing the determinant of the 

4x4 interval matrix a. This is calculated using the cofactor method 
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expanding on the last column of a and its submatrices. The method 

has been chosen because it is simple to implement and because it 

involves aa great deal of factoring (useful for reducing error). In 

fact we expand on the last column because (in our application) the 

intervals in this column are wide (especially a[3](3)) and it is 

important to factor out such intervals. The actual definition of i det4 

is: 

33 
i0 (-1)1 a[i](3) xi E (-1)J a[j](2) j=0, j#i 

33 
xi E (-1)k a(k)[1] xi E a[Q][0J k=0, ksi, j 2=O, 2&i, j, k 

where the summation signs mean interval sums. 
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A8.3 Function Ball/Vector Operations 

Function balls/vectors are implemented in C as the following 

structure: 

typedef struct { 

interval p[81]; /* polynomial part 

double h; /* high order function norm 

double e; /* error function norm 

interval a; /* centre of domain */ 

interval r; /* radius of domain 

} interval-function; 

Let n denote the degree of the polynomial part, nC 80. Then if f is 

declared as an interval_function, then, in the notation of Chapter 4, f 

represents a function ball/vector with 

vi = f. p[i], i=0, ..., n 

vh = f. h 

Ve = f. e 

The domain of the functions in this ball is any disc D(a, r), for 

which aEf. a and rCf. r. We shall have f. a. lo = f. a. up and f. r. lo = 

f. r. up, but this need not be the case. 

The following routines are implemented on the computer: i_fzero, 

i_fconv, i_fnorm, r_ifnorm, i_fsmult, i_fscale, i_fsum, i_fdiff, i_fmult, 

i_fmult2, i_eval, i_fcomp, i_fcompl, i_fdcomp, i_fdcompl, i_fdkeval. 

These routines are contained in the file i function. c. The 

interval_function typedef statement and the declarations of the 

routines are contained in i function. h. 

We shall now describe the routines. We shall use freely the standard 

properties of the L1-norm (Proposition A3.2). We make the following 

conventions: 

(a) n, the degree of the polynomial part is fixed. For the routines in 
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i function. c n is an external - variable to be declared in, the main 

program. 

(b) All summations range from 0 to n unless indicated otherwise. 

(c) All norms are the L1-norms of Appendix 3. 

(d) If f is declared to be an interval_function variable, then by f(x) 

we shall mean any function of the form: 

f(x) =E fi. yi + fh(Y) + fe(Y) 

where fi E f. P[i], i=0, ""' n, IIfhII ( f. h, Ilfell C f. e, fh(y) _ 0(yn+l) 

and y= (x - a)/r, for some aCf. a, rcf. r. Similar conventions will 

apply to other interval-function variables. 

(e) When we write an interval operation we shall mean the computer 

implementation that is described in section A8.1 and A8.2. 

1. interval-function i_fzero(a, r) 

interval a, r; 

This routine returns the zero ball with f. a = a, f. r = r. 

2. interval function i_fconv(f) 

real-function f; 

This routine returns an interval_function g that is a ball consisting 

of a single function f, defined on the domain f. a, f. r. (For a 

definition of a real function data structure, see section A7.2 3) The 

routine simply converts the coefficients of the polynomial part of f to 

intervals consisting-of a single point. The centre and radius of the 

domain of f, f. a and f. r, are converted to single point intervals, g. a 

and g. r. 

' :r 

3. interval i_fnorm(f) 

interval function f; 



165 

This routine returns an interval s that bounds the L1-norms of the 

functions in f. We have the following estimate 

r 1fil + IIfhII - Ilfell IC IIfII 4F Ifil + IIfhII + Ilfell 
The reason for this estimate is that while the polynomial part and the 

high order function contain terms of different orders, and therefore 

their norms add, the error function contains terms of all orders 

which may either increase or decrease the norm of f by a maximum of 

"fell. We note that 

0t Ilfhll 4 f. h, 0t Ilfell 4 f. e 
and so 

E Ifi) - f. e C IIuIl 4E Ifil + f. h + f. e 

These bounds are obtained by adding together the intervals 

i_abs(f. p[i]), i = 0, ..., n (which contain bounds on the absolute 

values of the elements in the intervals f. p[i], i= 0, ... , n) together 

with the intervals [0, f. h] and [-f. e, f. e]. 

4. double r ifnorm(f) 

interval-function f; 

This routine returns an upper bound on the Ll-norms of the 

functions in f. The routine is defined simply as r abs(i_fnorm(f)). 

5. interval-function i-fsmult(a, f) 

interval a; interval_function f; 

This routine returns an interval function g that corresponds to 

multiplying functions in f by "scalar" real numbers in a. We note 

that for acR, 

a(Efi. Y1 + fh(Y) + fe(Y)) =E (afi). yi + a. fh(Y) + a. fe(Y) 

and r. - 

Ila. fhll 'C JaJ. Iif}, II' Ila"fell < IaI "Ilfell" 
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a. fh(y) comprises terms that are O(yn+1). A precise definition of g is: 

g"p[i) =a xi f. p[i], i=1, ..., n 

g. h = r_prod_up(r_abs(a), f. h) 

g. e =r prod_up(r_abs(a), f. e) 

g. a = f. a, g. r = f. r. 

6. interval-function i-fscale(f, a, r) 

interval function f; interval a, r; 

This routine returns an interval function g scaled to a domain with 

centre in a and radius in r i. e. g= (f - a)/r. We note that for a, r 

C R, 

(Efi"Y1 + (Y) + fe(Y) - a)/r = (fp - a)/r + Efi/r. y1 + 1/r. fh(y) 

+ 1/r. fe(Y) 

(where the second summation ranges for i=1 to n) and that 

II1/r. fhII < 1/IrI"IIfhII < 1/Irl. f. h 

II1/r. fell 4 1/ IrI. lfeli 4 1/ Irl. f. e. 
1/r. fh(y) comprises only terms that are 0(yn+1). A precise definition 

of gis: 

ri = i_inv(r) 

9. P[O1 = (f. p[O] -i a)*iri 

g. p[i] = f. p[i] x iri ,i=1, ..., n. 

g. h = r_prod_up(r_abs(ri), f. h) 

g. e = r_prod_up(r_abs(ri), f. e) 

g. a = f. a, g. r = f. r. 

7. interval-function i-f3uln(f, g) 

inteval_function f, g; 

.i 

This routine returns an interval 
_function 

h corresponding to the sum 

of two functions in f and g i. e. h=f+g. The domain of f and g are 
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assumed to be the same (the routine does not check that this is 

indeed so). We have the following: 

(Efi. yl + fh(Y) + fe(Y)) + (Fgi"Y1 + gh(y) + ge(y)) 

E(fi + 9i). Y1 + (fh(Y) + gh(y)) + (fe(Y) + ge(Y))" 

and 

(lfh + ghll 4 (lfhll + Nghil 4 r_sum_up(f. h, g. h) 

Ilfe + gell < Ilfell + Ilgell < r_sum_up(f. e, g. e). 
The function (fh(y) + gh(y)) comprises only terms that are O(yn+l). 

The precise definition of h is: 

h. p[i] = f. p[i) +1 9. p(i), i=0, ..., n 

h. h = r_sum_up(f. h, g. h) 

h. e =r sum_up(f. e, g. e) 

h. a = f. a, h. r = f. r 

8. interval-function i_fdiff(f, g) 

interval-unction f, g; 

This routine returns an interval-function h corresponding to the 

difference of two functions in f and g i. e. h= f-g. The domain of f 

and g are assumed to be the same, but again there is no check. We 

have the following: 

(Efi"Y1 + fh(Y) + fe(Y)) - (Egi"Y1 + gh(Y) + ge(Y)) _ 

E(fi - 90"Y1 + (fh(Y) - gh(y)) + (fe(Y) - ge(Y))- 

and 

Ilfh - ghII t IIfhII + IIghII C r_sum_up(f. h, g. h) 

Ilfe - gell t Ilfell + Ilgell C r sum_up(f. e, g. e). 
The function (fh(y) - gh(y)) comprises only terms that are O(yn+l). 

The precise definition of h is: 

h. p[i] = f. p(i] -i g. p[i], i=0, 
..., n 

h. h = r_sum_up(f. h, g. h) 
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h. e = r_sum_up(f. e, g. e) 

h. a = f. a, h. r = f. r 

9. interval_function i_fmult(f, g) 

interval function f, g; 

This routine returns an interval_function h corresponding to the 

product of functions in f and g. i. e. h=fxg. The domain of f and 

g are assumed to be the same but there is no check. We have the 

following: 

(Efi"Y1 + fh(Y) + fe(Y))x(Egi"Y1 + gh(y) + ge(y)) 

_ (Efi"yi)"(Egi"yl) + (Efi"YI)"gh(Y) + (Efi"Y1). ge(Y) 

+ fh(Y). (Lgi. yi) + fh(Y)"gh(Y) + fh(Y)"ge(Y) + fe(Y)"(Egi"Y1) 

+ fe(Y)"gh(y) + fe(Y)"ge(Y)) 

The first term of the right hand side of this equation can be 

written: 

2n n L (E fj. gi-, j)"y' +L 
; 

(£ fj. gi_j). yi i=0 =0 i=n+1 i-n 

The first of these expressions consists of terms of degree 4 n. The 

second consists of terms of degree 
.1 n+l. Thus we may write the 

product of f and g as hp + hh + he where: 

hp(y) _£ (E fj"gi_ ). yi i=0 J=0 

2n n hh(y) =i n+l 
j( 

f. gl-j)"Y1 + (Efi"Y1)"gh(Y) + fh(Y)"(Egi"yi) 

+ fh(Y). gh(Y) + fh(Y)"ge(Y) + fe(Y)"gh(Y) 

he(y) _ (Efi. yi)ge(Y) + fe(Y). (Egi. yi) + fege " 
We note that all the terms in hh (y) are O(yn+l ). 'We have the 

following estimates: 
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2n n 
IIhhII 4 II E ((E fj. gi_j) ). Y1 II + (Elfil)"Ilghll + IIfhII"(EIgiI) 

i=n+1 j=i-n 

+ IlfhII-11901 + IIfhII"IIgeII + Ilfell"II U 

Ilhell I( (EIfll)"Ilgell + Ilfell"(EIg1I) + Ilfell"Ilgell 

Upper bounds for these quantities are 'calculated from the bounds 

f. h, f. e, g. h, g. e. The precise definition of h is: 

i 

h. p[i] E f. p[j] xi g. p[i-j] for i=0, ..., n. j=0 
(The summation sign refers to interval summation. ) 

The upper bound h. h is an upper bound (obtained by using the 

routine r sum_up) for the sum of the following: 

aa, ab x g. h, f. h x ac, f. e x g. h, f. h x g. e, f. h xg. h 

Here as is an upper bound for 

2n n 
11 1: (i fj"9i-j)"y'II 

i=n+1 j=i-n 

obtained by evaluating the coefficient 

n (E f. p[j] x 9. p[i-il) for i=n+1, ...., 2n. 
j=i-n 

I 

ab and ac are upper bounds for E fi I and L 1gi ( respectively. 

Similarly, h. e is an upper bound for the sum of: 

ab x g. e, f. e x ac, f. e x g. e. 

Finally, h. a = f. a, h. r = f. r. 

10. interval-function i_fmult2(f, g) f, .. 

interval_function, f, g; 

This routine returns an interval function h corresponding- to the 

product of two functions in f, g, i. e. h=fxg, with assumption. that 

all functions in g are at most linear. The domain of f and g are 

assumed to be equal but there is no check. Note that, by assumption, 

g. p[i) _ [0,0) for i=2, ..., n 

g. h=g. e= 0 
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We have the following: 

M fi"Y1 + fh(Y) + fe(y)) x (go + g1"Y) 

n 
= f0"g0 +iE (fi"go + fi-1"g1)"y1 + (fn. gl)yn+l 

+ fh(Y)"(go + g1"Y) + fe(y)-(90 + gl"Y)" 

Writing h= hp + hh + he, as before, we have: 

n hp(Y) = f0 "g0 +iEl(fi-gp + fi-1"91)"Y1 

hh(y) = fn. gl. yn+l + fh, (90 + g1, y) 

he(Y) = fe. (gp + g1"Y) 

We note that hh(y) comprises only terms that are O(yn+1). A precise 

definition of the interval function h is: 

h. p[O] = f. p[Ol xi g"p[0) 

h. p[i) = f. p[i] xi g. p[0] + f. p[i-1) xi g"p[1], i=1, ..., n 

h. h is an upper bound (obtained using the r_sum_up routines) for 

the sum of the two quantities 

IfnI. Ig11, f. h x (1g01 + Igil) 

while h. e is an upper bound for: 

f. e x (Ig01 + Ig11). 

h. a f. a, h. r = f. r 

Before moving on to the next routine, we make some general remarks 

about the evaluation and composition routines. 

(a) The routines. are all "linear in the first argument. " This means 

that one can treat the three different parts of the function 

ball/vector i. e. the polynomial part, the high order function and the 

error function, as independent of each other, and then add up the 

results at the end. 

(b) We deal with the polynomial part first. This usually is completely 

straightforward and merely requires implementation of a standard 
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algorithm. 

(c) Whenever the polynomial part of a function ball is evaluated 

(either at a interval or at a interval-function (when composing two 

functions) ) then the following method of evaluating polynomials is 

used: 

(... ((fn. x + fn-1). x + fn-2). x + .... fl). x + fp (A8.1) 

(d) The treatment of the high order and error functions are often 

similar, especially when dealing with differentiation. 

(e) When considering the high order and error functions we shall 

write 

fh(Y) =L di. yi and fe(Y) =E ei. yi. i=n+1 i=0 

11. interval i_eval(f, a) 

interval_function f; interval a; 

This routine returns an interval c that bounds the value of a 

function in f at any real value in the interval a i. e. c= f(a). The 

routine checks that all elements of a are contained within the domain 

of definition of any function in f. The routine first scales a to the 

domain of f i. e. sets an interval b- (a - f. a)/f. r. The polynomial part 

is evaluated using the algorithm (A8.1). To this. is added intervals 

that bound fh(b) and fe(b). We have the following estimates. Let bE 

D(0,1). 

Ifh(b) I( IbIn+1. IIfhII and Ife(b) It Ilfell" 

Thus intervals bounding fh(b) and fe(b) are: 

[-Ibin+l. f. h, IbIn+l. f. h] and [-f. e, f. e] respectively. 

The first of these intervals is evaluated using the . routine 

r_powe r_u p. 
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12. interval_function i_fcomp(f, g) 

interval-function f, g; 

This routine returns an interval function h corresponding to the 

composition of functions in f with those in g. i. e. h=fog. The 

function g is scaled to the domain of f, using the routine i_fscale. 

This scaled interval_function is denoted by q. We consider the 

polynomial part, high order function and the error function of f 

separately. 

(a) polynomial part, fp. 

fp oq is evaluated directly using the algorithm (A8.1) and the 

routines i fmult and U sum. 

(b) high order function fh. 

It is simple to get a bound for fh oq viz. Ilglln+l"Ilfhll" However, in 

general, q will have a non-zero constant term and fh oq will contain 

terms of all orders. It must' therefore be added to the error function 

of the function h. However, as in Eckmann et al (1982), it is possible 

to divide fh oq into a high order part and an error part as follows: 

Consider a term of fh oq which has the form di. gi, i, n+l. We write 

d1. q = di. gi-n-1(q - q(O))n+l + di. gi-n-1(qn+l - (q - q(O)n+l) 

The first term is O(yn+1) while the second term may be of any order. 

We include the first term in the function hh while the second belongs 

to the error function he. Summing over i) n+l, we get the following 

bound for h. h and h. e from the function fh. 

Ilhhll =E (di) . Jqi-n-111"II(q - q(O)Iln+l < f. h x Ilq - q(O)Iln+l 
i=n+1 

Ilhell =E (diI "Ilgl-n-1II"IIgn+1 - (q - q(O))n+lll i=n+1 

< f. h x Ilgn+l - (q - q(O) )n+lll 

We claim that: 

(Iqn+l - (q - q(o) )n+lll 4 Ilglln+l - Ilq - q(O)Iln+l. 
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Write a= q(0), ßq- q(0). Then q=ß+a and 

1I(ß + a)n+1 _ ßn+lll 
nEl 

Cn+l lal 1.11ß11n-i+l 
i=1 1 

(11,911 + 1«I )n+l - 11ß11n+1 = 1113 + alln+l - 11ß11n+l 

= llglin+l - IIq - q(O)II°+1 

for 111311 + (aI = 1lß + all as 13 has no constant term. The following 

method is used to evaluate the norms: 

We set s= i_fnorm (q) , so that Ilgll cs 

and then set q. p[O] = [0,0] and evaluate sl = i_fnorm(q) 

so that Ilq - q(0)II E sl. We write sn = i_power(s, n+l), 

sln = i_power(sl, n+l), so Ilglln+l c sn and Ilq - q(0)Iln}l c sln 

and Ilglln - Ilq - q(0)Iln+l c i_diff(sn, sln). 

(c) Error function, fe. There is a simple bound for fe o q: 

Ilfe o qII (l1: leII "Ilglll < Ilfell < f. e 

This function is added to the error function of h so that he is 

increased by f. e. 

13. interval_function i_fcompl(f, g) 

interval_function f, g 

This routine returns an interval_function h corresponding to the 

composition of functions in f with those in g (i. e. h=fo g), with 

assumption that all functions in g are at most linear. The 

interval_function g is scaled to the domain of f, using the routine 

i_fscale. This routine is identical to the routine i_fcomp except that 

the routine i_fmult2 is used instead of i_fmult in the evaluation of 

the polynomial part of f. 

The last three routine are differentiation followed by 

composition/evaluation routines. We make the. following points: 

(a) They each require an estimate of the following form: 
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Let k31 be an integer. Let 04t<1. Then 

sup { (i + k)(i +k- 1)... (i + 1). ti :i) 01 

is equal to (ml + k)... (ml +1). tm1, where ml satisfies 

ml < k. t/(1 - t) 4 ml (A8.2) 

This can be easily seen from the following: 

(i + k)... (i + 1)ti/((i +k- 1)... iti-1) 

(i + k)t/i 41 iff i k. t/(1 - t) 

Thus the maximum value is attained for i= ml given above. 

(b) Since we are differentiating with respect to x, and the functions 

fp, fh, fe are all expressed as functions of the scaled variable 

y= (x - f. a)/f. r, we must take this into account. Since 

dk/dxk a dk/dyk. 1/f. rk, this is simply a matter of dividing the result 

by f. rk. This if done in the case of the composition routines by 

means of the routine i_fscale, with a= (0,0]. 

14. interval_function i_fdcomp(f, g) 

interval_function f, g; 

This routine returns an interval_function h corresponding to the 

differentiation of the functions in f followed by composition with 

those in g i. e h= Df o g. The interval_function g is scaled to the 

domain of f, using the routine i_fscale. The scaled interval-function 

is denoted by q. We again consider the polynomial part, the" high's 

order function and the error function of f separately. " 

(a) Polynomial part, fp. 

This is computed directly by forming an interval_function df that 

contains the derivative of all the functions in the polynomial part fp. 

This is simply: 

df. p[i-1] _ [i, i]*f. p[i], i=1, ..., n, df. p[n] _ [0,0] 

df. h = df. e = 0.0, df. a = f. a, df. r = df. r. 

A 
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The routine i_fcomp is used to obtain Dfp o q. 

(b) High order function fh and error function fe. 

These two cases are similar, so we consider them together. We have 

the following estimates: 

00 
IIDfh o qII 4. E i. Idil. llgl-111) 4 Ilfhll. sup{(i+1). IIgIII :iý n} 

i=n+1 

C, 
(A8.3) 

IIDfe o qll 4 
iE1 

i. IeiI. Ilq'-111) 4 111e11 sup{(i+1). Ilglli :iZ 0) 

These are bounded using the above remarks. Note that if ml in (A8.2) 

is less than n, then this first bound is: 

IIDfh o QII 4 Ilfhll" (n+l). I1911n" 

The routine finds upper and lower bounds for t/(1 - t), where 

t3 II l and hence finds the integer ml satsifying (A8.2) with k=1. 

The first of the suprema in (A8.3) above is denoted by v and the 

second by u. The bounds f. e xu and f. h xv are added to the error 

function bound h. e obtained from the polynomial part fp. The whole 

interval-function is then divided by f. r. 

15. interval_function i_fdcompl(f, g) 

interval_function f, g; 

This routine returns an interval function h corresonding to the 

differentiation of the functions in f followed by composition with 

those in g (i. e h= Df o g), with assumption that all functions in g 

are at most linear. The interval_function g is scaled to the domain of 

f, using the routine i_fscale. This routine is identical, to the routine 

i_dfcomp except that the routine i_fcompl is used instead of i_fcomp 

in the evaluation of the polynomial part of f. 

16. interval i_fdkeval(f, k, a) 

interval_function f; int k; interval a; 
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This routine returns an interval which contains the result of 

differentiating fk times (k ). 1) and evaluating at a. We consider the 

polynomial part of f first. 

(a) Polynomial part, fp. The kth derivative of the polynomial part 

Dkfp is placed in the interval-function df. The coefficients of df are 

as follows: 

df. p[iJ = fac[iJ x f. p[i+kj for i=0, ..., n-k 

df. p[iJ = [0,0] for i=n-k+1, ..., n 

df. h = df. e = 0, df. a = f. a, df. r = f. r 

where fac[iJ = (i + k).... (i + 1) for i=0,..., n-k+1 

(fac[i] is calculated at i=n-k+1 for use in the calculation of the 

bounds in the high order part). The routine i_eval is used to 

evaluate this interval function df at a. 

(b) High order function fh, and error function fe. We have the 

following estimates: Writing y for (a - f. a)/f. r 

IDkfh(y)I 4E (i+k)... (i+1). Idi+kl"Iyli i=n+1-k 

4 Ilfhll. sup{(i+k)... (i+1). Iyli :i) n+l-k} (A8.4) 

IDkfe(Y)I 4 Go r. (i+k)... (i+1)Iei+kl. Iyll i=0 

4 IIfelJ. sup{(i+k)... (i+1). IyJ1 :i) 0} 

These quantities are bounded using the remarks above. Note that if 

ml in (A8.2) is less than n-k+1, then this first bound is 

IDkfh(Y)I 4 IIfhII"(n+1)..... (n-k+2)lyIn-k+1, 

The routine finds upper and lower bounds for k. t/(1 - t), where 

t3 lyl and finds the integer ml satisfying (A8.2). The first of the 

suprema in (A8.4) above is denoted by v an d the second by u. An 

interval (-w, w] where wý f. a xu+f. h xv is added to the interval 

obtained from the polynomial part fp. The whole interval is then 

divided by f. rk. 
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