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Abstract 

Inland waters are active components of the global carbon (C) cycle that transform, store 

and outgas more than half of the C they receive from adjacent terrestrial ecosystems. In 

particular, C emissions from fluvial networks to the atmosphere represent a substantial 

flux in the global C cycle. However, fundamental uncertainties regarding the 

spatiotemporal patterns, controls and sources of C gas fluxes in fluvial networks still exist. 

For instance, current biogeochemical models addressing C transport and processing in 

fluvial networks from a continuous perspective, do not integrate the effects of local 

discontinuities such as river impoundment or stream flow intermittency on the dynamics 

of C gas fluxes.  

The present dissertation aims to examine how flow discontinuities (i.e., river 

impoundment, flow fragmentation and drying) shape the spatiotemporal patterns, the 

controls and the sources of C gas fluxes in a Mediterranean fluvial network. The study was 

performed from December 2012 to March 2015 in the Fluvià River (NE Iberian Peninsula). 

This river is characterized by a high density of impounded waters associated to small water 

retention structures (SWRS; i.e., weirs and small to very small impoundments with a 

surface area < 0.1 km2 and a volume < 0.2 hm3) as well as fragmented river sections 

dominated by isolated water pools and dry riverbeds coinciding with dry periods. 

Results of this dissertation show that river discontinuities associated to SWRS and flow 

intermittency modulate the spatiotemporal patterns, controls and sources of C gas fluxes 

in the studied fluvial network. However, the magnitude of these effects varied depending 

on the nature of the discontinuity (i.e., river impoundment or flow intermittency), the type 

of C gas (i.e., carbon dioxide (CO2) or methane (CH4)) and the hydrological condition (i.e., 

high or low flow).  

The presence of SWRS, despite their relatively small water capacity, attenuated the 

turbulent conditions occurring in free-flowing river sections. As a consequence, the diffusive 

CO2 emissions from impounded waters were significantly lower than from free-flowing 

river sections. Contrarily, no reduction in CH4 emissions from impounded river sections 
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associated to the presence of SWRS was detected. This result suggests that the higher 

internal CH4 production at the impounded river sections, which remained very stable over 

time, compensated the attenuated physical effect on CH4 emissions. Despite potential 

inaccuracies in capturing the temporal and spatial heterogeneity, ebullition was the 

predominant pathway of CH4 emissions in impounded river sections. Moreover, sources 

other than internal metabolism (i.e., external inputs, internal geochemical reactions or 

photochemical mineralization) sustained most of the fluvial network CO2 emissions. 

Specifically, the magnitude and sources of CO2 emissions depended on flow conditions in 

the free-flowing sections, whereas they remained relatively stable and independent of 

hydrological variation in the impounded river sections. 

The channels of temporary rivers remain as active biogeochemical habitats, degassing 

significant amounts of CO2 to the atmosphere after flow cessation. In contrast, the CH4 

efflux from dry beds was undetectable in almost all cases, most likely due to the high 

aeration limiting the redox requirements for microbial CH4 production. Our results also 

suggest that the source of CO2 emitted from dry riverbeds remains unclear, although CO2 

produced from biological mineralization of fresh and labile organic matter fractions could 

be an important source.  

Future hydrological scenarios considering the combined effects of climate change and 

human pressures on water resources in the Mediterranean region show the rather low 

sensitivity of the annual CO2, CH4 and total C emissions to shifts in river discharge. In 

contrast, they stress the high sensitivity of annual CH4 and total C emissions to shifts in 

the surface area of lentic waterbodies associated to SWRS. 

Overall, the main findings of this dissertation point to the need for a shift away from a 

continuous and system-centric view to a more inclusive approach that incorporates 

spatiotemporal discontinuities (i.e., SWRS and flow fragmentation and drying) as a 

suitable framework to understand the dynamics of C gas fluxes in fluvial networks. We 

acknowledge that our results represent a first approximation to better understand the role 

of flow discontinuities on C gas fluxes from fluvial networks. Further work on the temporal 

and spatial patterns of the C gas fluxes is needed to provide a more conclusive 

understanding. 
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Resum 

Les aigües continentals o ecosistemes d’aigua dolça són uns components molt actius en el 

cicle del carboni (C). Aquests, transformen, emmagatzemen i emeten la meitat de C que 

reben dels ecosistemes terrestres adjacents. En concret, les emissions de C des de les xarxes 

fluvials a l’atmosfera representen un dels fluxos més significatius de tot el cicle del C. No 

obstant, encara existeix una elevada incertesa pel que fa als patrons espaciotemporals, 

factors de control i principals fonts dels fluxos gasosos de C en xarxes fluvials. Per exemple, 

els models biogeoquímics actuals que avaluen tant el transport com el processat de C en 

xarxes fluvials, no inclouen els efectes de discontinuïtats locals com el represament de rius 

o la intermitència del règim hidrològic sobre les dinàmiques de fluxos gasosos de C.  

Aquesta Tesi Doctoral té com a objectiu examinar com les discontinuïtats en el règim 

hidrològic (això és, represament del riu, fragmentació del canal o assecament del riu) 

modulen els patrons espaciotemporals, factors de control i origen de les principals fonts dels 

fluxos gasosos de C en xarxes fluvials. Aquest estudi es va dur a terme al Riu Fluvià (NE 

de la Península Ibèrica) des del Desembre de 2012 al Març de 2015. Aquest riu es 

caracteritza per una elevada densitat d’aigües represades en estructures de retenció 

d’aigua de mida petita (ERMP) així com d’una elevada cobertura de seccions fluvials que 

tendeixen a fragmentar-se duran els moments més secs de l’any (això és, seccions 

dominades per basses d’aigua aïllades i lleres de riu seques). 

Els resultats d’aquesta Tesi Doctoral mostren que les discontinuïtats en el règim hidrològic 

associades al represament de rius o la intermitència tenen un paper fonamental en la 

modulació dels patrons espaciotemporals, factors de control i fonts dels fluxos gasosos de C 

en xarxes fluvials. La magnitud d’aquests efectes varia, però, en funció de la naturalesa de 

la discontinuïtat (això és, represament del riu o intermitència del règim hidrològic), el tipus 

de gas (això és, diòxid de carboni (CO2) o metà (CH4)) i la condició hidrològica (això és, cabals 

alts o baixos). 

Tot i la seva capacitat relativament petita d’emmagatzemar aigua, la presència de ERMP 

va atenuar les condicions turbulents que caracteritzen les seccions del riu amb aigües 

corrents. Com a conseqüència, les emissions difusives de CO2 des de les aigües represades 
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van ser significativament inferiors a aquells des d’aigües corrents. Contràriament, la 

presència de ERMP no va suposar un efecte negatiu sobre les emissions de CH4. Aquest fet 

suggereix que l’elevada producció interna de CH4 a les seccions de riu represades, la qual 

és manté força estable al llarg del temps, pot compensar l’ efecte físic d’atenuació sobre les 

emissions de CH4. Tanmateix, fonts diferents al metabolisme intern (això és, inputs externs 

i reaccions geoquímiques o fotoquímiques internes) van sostenir, en gairebé la totalitat, les 

emissions de CO2 de la xarxa fluvial. La magnitud i fonts d’aquestes van dependre de les 

condicions hidrològiques en el cas dels trams d’aigües corrents, mentre que es van mantenir 

relativament estables i independents de la hidrologia en aquelles seccions de riu 

represades. 

Les lleres dels rius intermitents romanen actives pel que fa a la emissió de CO2 a 

l’atmosfera una vegada el flux superficial d’aigua cessa. Per contra, el flux d’emissió de CH4 

des de les lleres seques va ser indetectable en gairebé tots els casos, probablement degut a 

les condicions d’alta aeració que limiten els requisits redox per a la producció microbiana 

de CH4. El flux d’emissió de CO2 des de les lleres seques va doblar a l’emès des de les lleres 

amb aigües corrents i va ser comparable a l’emès des dels sòls terrestres adjacents. No 

obstant, les lleres seques i els sòls terrestres adjacents van resultar ser molt diferents des 

d’un punt de vista fisicoquímic, mostrant així diferències en els principals factors i fonts 

que en regulen les emissions de CO2.  

Els escenaris de futur que consideren els efectes combinats del canvi climàtic i les pressions 

antropogèniques sobre els recursos d’aigua a la regió Mediterrània van mostrar una baixa 

sensibilitat de les emissions de CO2, CH4 i emissions totals de C sobre canvis de cabal. En 

contra, les mateixes prediccions postulen una elevada sensibilitat de les emissions de CH4 

i C total emès a canvis en la superfície d’aigua represada associada a un increment de 

ERMP. 

En resum, les principals troballes fetes en aquesta tesi apunten cap a una necessitat clara 

de substituir els models continus i limitats espacialment per aquells models que incorporen 

discontinuïtats espaciotemporals (això és, represament del riu o intermitència del règim 

hidrològic) per tal d’entendre en millor mesura les dinàmiques dels fluxos gasosos de C en 

xarxes fluvials. 
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1.1 The role of inland waters in the global carbon cycle 

Carbon (C) in the Earth is unevenly distributed among three major reservoirs: the 

continents, the oceans and the atmosphere. The global C cycle is the biogeochemical cycle 

by which C is exchanged among these three reservoirs (Figure 1.1). Atmospheric C gases 

contribute to the regulation of the energy balance of the Earth-climate system. Since pre-

industrial times (~1750), the concentration of carbon dioxide (CO2) has increased by 40% 

from 278 ppm to 390 ppm [IPCC, 2013]. During the same period, atmospheric methane 

(CH4) has raised by 150% from 722 ppb to 1803 ppb [IPCC, 2013], a highly significant 

increase considering the ~30-fold higher global warming potential of CH4 compared to that 

of CO2 over a 100-year time horizon [IPCC, 2013]. These increases of CO2 and CH4 reflect 

only about half of the C emissions; the other half is assumed to be sequestered in the oceans 

and the continents before reaching the atmosphere (IPCC [2013]; Figure 1.1).  

The location and magnitude of these climate-critical C sinks (i.e., oceans and continents) 

remains uncertain [Heimann, 2009]. Therefore, depictions of the global C cycle generally 

consisted of two active boxes (i.e., oceans and continents) connected through gas exchanges 

with a third box, the atmosphere [Siegenthaler and Sarmiento 1993; IPCC, 2001]. 

However, this rather simplistic approach has also lead to the identification of major 

knowledge gaps, such as apparent imbalances in the continental C budget or the uncertain 

response of these reservoirs to large-scale phenomena such as global change [Cole et al., 

2007; Battin et al., 2009a; Tranvik et al., 2009].  

As models developed further, more sub-components and processes were added to unravel 

the link between the continental ecosystems and the oceans [Foley et al., 1996; Canadell et 

al., 2000; Cramer et al., 2001]. Among them, the integration of inland waters (i.e., streams, 

rivers, lakes, reservoirs and wetlands), which have a significant role in the transport, 

mineralization, sequestration and emission of C, has been identified as crucial for an 

appropriate understanding of the global C cycle [Cole et al., 2007; Battin et al., 2009a; 

Tranvik et al., 2009]. The most updated estimates that include inland waters indicate that 

the C discharged to the oceans (0.7- 0.9 Pg C y-1) is only a fraction (<50%) of that entering 

rivers from terrestrial ecosystems (1.7 - 2.8 Pg C y-1) via soil respiration, leaching, chemical 

weathering, and physical erosion. Most of this C influx is returned to the atmosphere from 
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inland waters as CO2 or CH4 (0.8 - 1.2 Pg C y-1; ~50%), whereas another fraction (0.2 - 0.6 

Pg C y-1; ~20%) is buried in sedimentary deposits within freshwater ecosystems (Battin et 

al., [2009a]; Aufdenkampe et al., [2011]; Regnier et al., 2013; IPCC [2013]; Figure 1.1).  

 

 

Figure 1.1  Simpl i f ied scheme of the global  C cycle and i ts an thropogenic perturbation. 

Numbers represent  reservoi r  mass or ‘C stocks ’  in  Pg C (1 Pg C = 10 1 5  g C)  and annual C  

exchange f luxes ( in Pg C y – 1 ).  Black numbers and arrows indicate reservoir mass and exchange 

f luxes estimated for  the t ime prior  to  the Industr ia l  Era,  about 1750. Red numbers in the 

reservoirs  denote cumulat ive changes of an thropogenic C over the Industr ia l  Period 1750–2011. 

By convention, a posit ive cumulat ive change means that  a  reservoir  has gained C since  1750. 

Figure source :  [ IPCC ,  2013]. 
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1.2 Carbon emissions from inland waters 

Over the past years, several studies have demonstrated that CO2 emissions from inland 

waters show a similar magnitude to the C export from land to sea (Aufdenkampe et al., 

[2011]; Striegl et al., [2012]; IPCC, [2013]; Figure 1.1) as well as to the net ecosystem 

productivity of the terrestrial biosphere (Cole et al., [2007]; Jonsson et al., [2007]; IPCC, 

[2013]; Figure 1.1). The most updated global estimate, places the efflux of CO2 emitted from 

streams and rivers at 1.8 Pg C y-1 and from lakes and reservoirs at 0.32 Pg C y-1, resulting 

in a global estimate of CO2 emissions from inland waters of 2.1 Pg C y-1 [Raymond et al., 

2013]. Conversely, our understanding of the magnitude of CH4 emissions from freshwater 

ecosystems has lagged well behind that of CO2. The few global estimates, which are based 

on meta-analyses of existing data of CH4 emissions concluded that lakes, rivers and 

reservoirs emit 0.09 Pg C y-1 (3.25 Pg C-CO2e y-1; CO2e= CO2-equivalents; 1g CH4 = 28 g 

CO2e [IPCC, 2013]) in the form of CH4 of which 0.02 Pg C y-1 (0.75 Pg C-CO2e y-1) is emitted 

from streams and rivers [Stanley et al., 2016] and 0.07 Pg C y-1 (2.5 Pg C-CO2e y-1) from 

lakes and reservoirs [Bastviken et al., 2011; Deemer et al., 2016].  

Adding CO2 and CH4 emissions results in a global total C emission from freshwater 

ecosystems of approximately 2.2 Pg C y-1 (5.1 Pg C-CO2e y-1) [Bastviken et al., 2011; 

Raymond et al., 2013; Borges et al., 2015; Stanley et al., 2016]. According to the most recent 

global C budget (IPCC [2013]; Le Quéré et al., [2016]; Figure 1.1), these values are highly 

significant when compared to other C fluxes at global scale such as C emission from fossil 

fuels and industry (7.8 ± 0.6 Pg C y−1), emissions derived from land use change (1.1 ± 0.8 

Pg C y−1), the ocean C sink (2.3 ± 0.7 Pg C y−1) and the continental C sink (2.6 ± 0.9 Pg C 

y−1).  

Although the growing interest in aquatic C studies, and for C gases in particular, has 

brought to relatively robust estimates of C emissions from inland waters (Table 1.1), large 

critical uncertainties still remain. Among these, we may include the underrepresentation 

of some geographical regions [Borges et al., 2015], the exclusion of potentially active 

environments for C emissions such as wetlands [Kirschke et al., 2013; Melton et al., 2013], 

temporary freshwater ecosystems [Fenner and Freeman, 2011; Catalán et al., 2014] and 

small freshwater ecosystems [Laurion et al., 2010; Holgerson and Raymond, 2016], or the 
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poor understanding of the mechanisms underlying C emissions [Borges et al., 2015; 

Hotchkiss et al., 2015; Stanley et al., 2016]. These uncertainties preclude evaluating 

potential changes in C fluxes in response to human pressures, including land use and 

climate change. 

 

Table 1.1  Compi lat ion of the global surface area and annual C f luxes between freshwater  

ecosystems and the atmosphere. 

 

 

1.2.1 Mechanisms of C gas exchange across the air-water interface 

Biogeochemical C gases are emitted from freshwater ecosystems by two major 

mechanisms. The first and most frequently studied is the diffusive pathway [Fick, 1855; 

Bade, 2009; Baulch et al., 2011]. The second, which is particularly important for CH4 

because of its specific low solubility [Weiss, 1974; Yamamoto et al., 1976], is the bubble-

mediated (ebullitive) pathway [Bastviken et al., 2004; Baulch et al., 2011; Crawford et al., 

2014a; DelSontro et al., 2016], 

The diffusive flux of a given gas across the air-water interface requires a concentration 

difference between both phases [Fick, 1855]. Accordingly, a higher concentration of the gas 

in the water compared to the air phase results in a concentration gradient that drives the 

diffusion of the gas from the water to the atmosphere. Conversely, a higher concentration 

CO2 CH4 CO2 CH4

Lakes 3.7 - 4.5 
a,b

         70 - 860 
c, f, g, h

  31.7 - 71.6 
i, k * 257 - 3153 1183 - 2673

Small ponds 0.15 - 0.86 
c

 26 - 132 
c

 0.0 - 8.3 
c, ** 95 - 484 0 - 310

Reservoirs 0.31 - 1.5 
b,d

32 - 43 
i

8.9 – 22.2 
i, * 117 - 157 332 - 828

Wetlands 8.6 - 26.9 
e

" -1280" j 106.4 - 198.9 
e, * " -4693" 3957 - 7392

Streams and rivers 0.36 - 0.65 
f

1550 - 2050 
f

1.1 - 20.1 l, ** 5683 - 7517 41 - 750

**
 Only diffusive CH4 efflux pathway

*
 Diffusive and ebullitive CH4 efflux

a 
Downing et al., [2006]; 

b 
Verpoorter et al.  [2014]; 

c 
Holgerson and Raymond  [2016]; 

d
 Lehner et al.  [2011]; 

e 
Melton et al.  [2013]; 

f
 Raymond et al.,  [2013];

 
g 

Aufdenkampe et al., [2011]; 
h
 Tranvik et al. , [2009]; 

i
 Deemer et al . [2016]; 

j
 Mitch et al., [2012]; 

k
 Bastviken et al.,  [2011]; 

l 
Stanley et al.,  [2016]

System type
Annual C Mass Flux (Tg C y-1)                     Annual CO2e Mass Flux (Tg CO2e y-1)                     Surface Area            

(x 106 km2)

The annual CO2e was calculated by multiplying the mass-based flux (in units of Tg of CO2 or CH4 per year) by the 100-year global warming potential (i.e., radiative forcing) of 

each gas (1 for CO2, 28 for CH4) obained from IPCC  [2013]. Lakes defined as natural non-running (and non-impounded) water bodies with a surface area higher than 0.001 

km
2

. Small (and very small) ponds defined as natural non-running water bodies (i.e., lakes) with a surface area lower than 0.001 km
2

.  Negative values indicate atmospheric 

carbon sequestration by the system.
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of the gas in the air compared to the water results in a concentration gradient that drives 

the diffusion of the gas from the atmosphere to the water. The rate or intensity of this 

diffusive flux is ultimately modulated by the gas exchange ability or gas transfer velocity 

(k600) at the water-atmosphere layer [Fick, 1855], a physical component that mostly 

depends on the turbulence at the air-water interface [Bade, 2009; Vachon et al., 2010]. 

Consequently, in lentic freshwater ecosystems such as lakes [Wanninkhof, 1992; Cole and 

Caraco, 1998; Crusius and Wanninkhof, 2003; Vachon et al., 2013], reservoirs [Guérin et 

al., 2006, 2007a] and large rivers [Alin et al., 2011; Beaulieu et al., 2012], the k600 is often 

concluded to be determined by the water turbulence created by wind speed over the water 

surface. Although other physical processes such as penetrative convection due to heat loss 

[MacIntyre et al., 2002; Rutgersson and Smedman, 2010] or rain [Ho et al., 1997, 2007] may 

affect 
��� at low wind-speeds, most empirical models used to parameterize k600 in lentic 

ecosystems are based on wind speed. In contrast, the main driver of k600 in lotic ecosystems 

(i.e. rivers and streams) is suggested to be water turbulence created by variations in stream 

hydromorphology [Tsivoglou and Neal, 1976; Hope et al., 2001; Raymond et al., 2012; Long 

et al., 2015]. Because turbulence conditions are often very variable in space, C emissions 

can vary greatly within fluvial networks [Wallin et al., 2011; Wehrli, 2013]. Hence, a good 

understanding of the spatial variability in 
��� is required to accurately scale up C gas 

emissions to fluvial networks, whole regions or even larger scales [Benstead and Leigh, 

2012; Raymond et al., 2013; Borges et al., 2015]. 

The ebullitive emission pathway has so far received much less attention than the diffusive 

pathway [Bastviken et al., 2011]. CH4 production and subsequent ebullition is especially 

important in stagnant waters that typically experience high depositional rates and high 

storage of fresh organic stocks in the sediments. For instance, CH4 ebullition can be an 

important pathway of CH4 efflux in wetlands [Stamp et al., 2013] and lakes [Bastviken, 

2004] as well as the primary source of CH4 emissions in large reservoirs [Delsontro et al., 

2010; Fearnside and Pueyo, 2012; Beaulieu et al., 2016] and smaller impounded systems 

[Maeck et al., 2013] worldwide. Similarly to the diffusive flux, recent studies have shown 

that the CH4 ebullitive flux is also very dependent on physical factors such as decreases in 

hydrostatic pressure as a consequence of water level drawdowns or atmospheric pressure 

changes [Maeck et al., 2014; Deshmukh et al., 2015]. Moreover, other physical properties of 
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the sediment such as its bulk density or its temperature can also play an important role on 

driving the ebullitive CH4 flux, at least over short time scales [Crawford et al., 2014].  

In addition to the Fickian diffusive emissions and the ebullitive emissions, other less 

studied pathways of CH4 emissions, such as CH4 microbubble-mediated pathway 

[Beaulieu et al., 2012; Prairie and Giorgio, 2013; Tang et al., 2014; McGinnis et al., 2015] 

or plant-mediated transport [Yavitt and Knapp, 1995; Bergström et al., 2007; Liang et al., 

2016] may also potentially contribute to CH4 emissions from fluvial networks.  

 

1.2.2 Sources and sinks of CO2 and CH4 in inland waters 

In fluvial networks, there are two major processes that determine the concentration 

gradient of CO2 (by adding CO2 to or removing CO2 from the water) between lentic (solid 

arrows in Figures 1.2a) or lotic (solid arrows in Figures 1.3a) waterbodies and the 

atmosphere: i) internal aquatic mineralization of organic matter (OM)[Cole et al., 2000; 

Duarte and Prairie, 2005]), and ii) external surface and subsurface hydrological inputs of 

water with high dissolved inorganic carbon (DIC) content derive from either soil respiration 

[Humborg et al., 2010a; Maberly et al., 2012] or mineral weathering within the catchment 

[Marcé et al., 2015; Nõges et al., 2016]. Likewise, the role of geochemical reactions such as 

precipitation and dissolution of carbonate minerals [Otsuki and Wetzel, 1974; Stets et al., 

2009; Nõges et al., 2016] or photochemical mineralization of organic solutes [Amon and 

Benner, 1996; Cory et al., 2014; Vachon et al., 2016] on the concentration gradient of CO2 

remains largely undefined both in lentic (dashed arrows in Figure 1.2a) and lotic (dashed 

arrows in Figure 1.3a) freshwater ecosystems.  

Among the best-known processes, internal aquatic mineralization of OM (i.e., internal 

metabolism) has typically been considered the main process driving the concentration of 

CO2 in lakes and rivers [Cole et al., 2000; Duarte and Prairie, 2005]. Therefore, when no 

other processes are adding or removing CO2 besides internal metabolism, the 

concentration of CO2 should be in line with the degree of net autotrophy (i.e., gross primary 

production exceeding respiration) or net heterotrophy (i.e., respiration exceeding gross 

primary production) in the corresponding aquatic ecosystems. However, recent studies 

have shown a persistent disagreement between the CO2 produced by internal metabolism 
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and the CO2 present in both lentic and lotic ecosystem [Stets et al., 2009; McDonald et al., 

2013; Winterdahl et al., 2016]. These findings indicate that sources other than internal 

metabolism sustain CO2 supersaturation and thus CO2 emissions in both lotic and lentic 

freshwater ecosystems within fluvial networks.  

For CH4, the air-water concentration gradient mostly depends on the activity of 

methanogens in the sediments of either lentic (solid arrows in Figures 1.2b) or lotic (solid 

arrows in Figures 1.3b) ecosystems [Stanley et al., 2016]. The presence and activity of 

methanogens is typically limited by their strict redox-dependent requirements: specific C 

substrates such as acetate or other small organic molecules as well as the presence of 

terminal electron acceptors such as oxygen, nitrate and oxidized forms of manganese, iron 

or sulphur [Reeburgh, 2007; Likens et al., 2009]. These strict conditions probably explain 

why the conventional wisdom among aquatic scientists has been that CH4 should be scarce 

in streams and rivers. Consequently, the understanding of the magnitude and sources of 

CH4 emissions from lotic ecosystems has lagged well behind that of lentic systems such as 

lakes, reservoirs and wetlands [Zaiss et al., 1982; Trimmer et al., 2012]. 

Other processes that may add to or remove CH4 from lentic (dashed arrows in Figure 1.2b) 

and lotic (dashed arrows in Figure 1.3b) ecosystems include the import of CH4 via different 

hydrological flow paths (i.e., surface discharge, hyporheic exchange, groundwater 

discharge), export from the system mainly via surface discharge and gas 

movement/dissolution into the system [Bastviken et al., 2004; Stanley et al., 2016]. 

Examples of hydrological linkages that deliver CH4 include shallow groundwater flows 

that travel from saturated soils or peat deposits to the channel [Jones and Mulholland, 

1998; Hope et al., 2001; Crawford et al., 2014a], water passing through hyporheic sediments 

[Schindler and Krabbenhoft, 1998; Anthony et al., 2012], and connection to inundated 

floodplains [Richey, 1988; Pullman, 1992; Teodoru et al., 2015] or adjacent wetlands 

[Crawford et al., 2013; Bresney et al. 2015].  

Finally, oxidation of CH4, which is an advantageous process from an energetic point of view, 

can be an important sink of CH4 under aerobic [Guérin and Abril, 2007b; Stanley et al., 

2016], and even under anaerobic conditions [Deutzmann et al., 2011; Megonigal et al., 2013; 

Segarra et al., 2015].  
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Figure 1.2  Conceptual  model showing the primary (sol id arrows) and the less known (dashed 

arrows) sources and pathways involved in the  production and removal of (a)  CO2  and (b)  CH4  in 

lentic f reshwater  ecosystems.  DIC and CH4  a re imported to  (1) o r exported from (2)  the system 

fo l lowing d i f ferent hydrological  f low paths ( i .e . ,  surface  d ischarge,  hyporheic exchange, 

groundwater d ischarge).  Internal  metabol ism (3)  and calci te  d issolut ion and precip i ta t ion (4)  

can consume or re lease CO2  with in the systems. Photochemical  mineral iza t ion of OM in  the 

water  column (5)  and bio logica l  mineral iza t ion of  OM in  the sediment (6)  re leases CO2  into  the 

system. Water  column, benth ic,  and hyporheic methanogenesis incorporate CH4  e i ther d issolved 

or in the form of bubbles into  the water  column (7)  whi le CH 4  oxidation ( i .e . ,  methanotrophy) 

consumes CH4  (8).  Bubble  d issolut ion (9)  a lso  takes p lace in the water  column and al ters  the 

cycl ing of CH4 .  F inal ly,  gas exchange, which can occur v ia d i f fusion for both CO2  and CH4  (10) 

and v ia ebul l i t ion only fo r CH4  (11),  e i ther d issolve the gas into- or evade the gas out f rom- the 

system.  
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Figure 1.3 Conceptual  model showing the main (sol id arrows) as wel l  as the less known (dashed 

arrows) sources and pathways involved in the  production and removal of (a)  CO2  and (b)  CH4  in 

lot ic f reshwater ecosystems. DIC and CH4  are imported to the system (1)  fo l lowing d i f ferent  

hydrological  f low paths ( i .e . ,  surface d ischarge (1.1),  l atera l  d ischarge (1.2) and groundwater 

and hypothetic d ischarge (1.3)) .  In lo t ic  waterbodies,  DIC and CH4  a re exported from the system 

primari ly v ia  surface d ischarge (2).  Internal  metabol ism (3) and calci te d issolut ion and 

precip i tat ion (4) can consume or re lease CO2  wi th in the systems. Photochemical  mineral izat ion 

of OM in the water column (5)  and bio logical  mineral izat ion of OM in the sediment (6) re lease  

CO2  into the system. Benth ic ,  and hyporheic methanogenesis can incorporate CH4  e i ther 

d issolved or in the form of bubbles into the system (7)  whi le CH4  oxidation ( i .e . ,  methanotrophy 

(8)) consumes CH4 .  Bubble d issolut ion (9) a lso takes p lace in the water and al ters the cycl ing 

of CH4 .  Bubble d issolut ion may be  enhanced in lot ic waterbodies as a combined effect  of 

oxygenic condit ions and h igh turbulence. F inal ly,  gas exchange, which can occur v ia d i f fusion 

for both  CO2  and CH4  (10) and v ia ebul l i t ion only  for  CH4  (11) ,  e i ther  d issolve  the  gas into-  or  

evade the gas out f rom- the system. 
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1.3 The study of biogeochemical processes at a fluvial network scale  

Fluvial networks are hieratically organized systems, composed of a set of subsystems that 

are linked and interact with each other as well as with other components of the landscape 

(i.e., soils, groundwater, atmosphere and oceans) from large to small spatial scales [Frissell 

et al., 1986; Lowe et al., 2006].  

Due to their inherent characteristic of unidirectional flow, most models assume that the 

physical and chemical properties of a stream segment within a fluvial network will always 

be more similar to those of neighbouring segments. This gradient should elicit a series of 

responses within the constituent populations resulting in a continuum of biotic 

adjustments and consistent patterns of loading, transport, utilization, and storage of OM 

along the length of a river [Vannote et al., 1980]. However, no river is a continuum, but, on 

the contrary, at any spatial scale, rivers are regularly divided into discrete parts based on 

non-arbitrary distinctions [Frissell et al., 1986; Poole, 2002]. Therefore, the sequential 

ability of a fluvial network to transport and process organic and inorganic materials rather 

depends on the presence or absence of flow paths between persistent fluvial patches [Fisher 

et al., 2004; Freeman et al., 2007; Larned et al., 2010]. Framed within this idea, the 

discontinuum view assumes that the flow paths between persistent fluvial patches might 

be laterally, vertically or longitudinally constrained over time [Ward and Stanford, 1983; 

Stanley et al., 1997; Stanford and Ward, 2001; Fisher et al., 2004; Larned et al., 2010]. 

The “serial discontinuity concept of lotic ecosystems” was perhaps the first conceptual 

framework describing the spatial complexity of biogeochemical patterns in fluvial networks 

considering the effect of flow discontinuities [Ward and Stanford, 1983; Stanford and 

Ward, 2001]. More recent conceptual models [Fisher et al., 2004; Battin et al., 2009b; 

Larned et al., 2010], empirical studies [Tank et al., 2010; McGuire et al., 2014; Dent and 

Grimm, 2016] or even simulation exercises [Acuña and Tockner, 2010a] have also 

attempted to provide a framework that facilitates the transition from classical fluvial 

network biogeochemical models assuming system homogeneity (Figure 1.4a) to those ones 

that consider the natural heterogeneity inherent to fluvial networks (Figure 1.4b). 
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Figure 1.4 Maps exempl i fy ing the spatia l  conf igura t ion of a f luv ia l  network from two contrasted 

points of v iew: (a)  the classical  continuous point of v iew, where f low discontinui t ies such as 

temporary s treams and smal l  man-made water retention structures (SWRS) are not  considered 

and, (b)  the  emergent d iscontinuum point of v iew, where  SWRS and temporary  streams that  run 

dry at  some point in space and t ime are integrated with in the complexi ty of f luv ia l  networks.  

F igure  by  courtesy of  Rafael  Marcé.  

 

Some studies (mostly conceptual) dealing with fluvial C biogeochemistry have emphasized 

the potential influence of network discontinuities (in time and in space) on modulating C 

cycling within fluvial networks [Ward and Stanford, 1983; Battin et al., 2009b; Larned et 

al., 2010; Acuña and Tockner, 2010]. Specifically, these studies highlight i) the importance 

of flow discontinuities associated to the presence of dams on enhancing heterotrophic 

processes along fluvial networks, or ii) the effect of flow fragmentation and the associated 

repeated cycles of transport and retention of organic materials occurring in temporary 

rivers on leading recurrent fluvial network heterogeneities in C processing. Nevertheless, 

the vast number of empirical studies focused on C gas flux dynamics in fluvial networks 

[Wallin et al., 2010; Striegl et al., 2012; Crawford et al., 2013; Peter et al., 2014] rarely 
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address the effect of local discontinuities such as the presence of impoundments or the effect 

of flow intermittency in temporary rivers. Therefore, these studies may be potentially 

missing the true spatial complexity of biogeochemical patterns and processes that is 

inherent to fluvial networks. 

 

1.4 Mediterranean fluvial networks as ideal settings to test the 

effects of flow discontinuities on carbon gas fluxes  

1.4.1 Climate setting and hydrological regime 

The Mediterranean climate is characterized by a pronounced seasonality with warm 

temperatures in summer and moderate temperatures in winter [Gasith and Resh, 1999a]. 

The total annual precipitation varies substantially among different Mediterranean regions 

(from 275 to 900 mm; [Lulla, 1987]); however, precipitation shows in general a highly 

predictable pattern, with most of it often falling in few major storm events during the cool 

wet season [Lulla, 1987]. The discharge regime of Mediterranean streams and rivers 

generally follows that of the rainfall pattern; thus, discharge also exhibits a predictable 

seasonal pattern with high flow in the wet period (late autumn to early spring) and low 

flow in the dry period (from late spring to early autumn) [Gasith and Resh, 1999a; Bonada 

and Resh, 2013]. During the wet period, both the hydrological connectivity within the 

fluvial network and between the fluvial network and the catchment is maximized and most 

of the fluvial network area is covered with surface water (i.e., hydrological expansion; 

Figure 1.5a). In this situation, the mobilization of solutes such as nutrients [von Schiller et 

al., 2011; Bernal et al., 2013] and C gases [Hope et al., 2001; Öquist et al., 2009b; Leith et 

al., 2015] is enhanced by promoting the longitudinal and lateral supply pathways across 

the fluvial network. At the same time, reduced water residence time during high flows 

limits the capacity of the biota to interact with organic substrates [Battin et al., 2009b], 

thereby constraining the processing and retention of nutrients and C [Bernal et al., 2013] 

and homogenizing the sources of DIC [Hotchkiss et al., 2015] and DOC [Raymond et al., 

2015].  
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In contrast, during the dry period, the hydrological connectivity decreases across all the 

spatial dimensions and the area of the fluvial network covered with surface water is 

drastically reduced (i.e., hydrological contraction; Figure 1.5b). Consequently, the fluvial 

network is often converted into a fragmented heterogeneous riverscape characterized by 

slow-moving waters, isolated river pools and dry beds (Stanley et al., [1997]; von Schiller et 

al., [2011]; Bernal et al., [2013]; Figure 1.5b). In this situations, the reduced hydrological 

connectivity also hampers the lateral and longitudinal supply of nutrients and C [von 

Schiller et al., 2011; Bernal et al., 2013] and favours, in turn, in-stream processes through 

the easier interaction with biological actors [Battin et al., 2009b]. Similarly, flow 

intermittency in temporary rivers also creates discontinuities in the source and 

degradation of OM [Casas-Ruiz et al., 2015; von Schiller et al., 2015; Abril et al., 2016]. 

However, little is known about how flow intermittency can affect C gas flux dynamics in 

Mediterranean fluvial networks. 

 

 

Figure 1.5  Schematic  f igure  i l lustra t ing two contrasted hydrological  s i tuat ions in  Mediterranean 

f luv ia l  networks:  (a)  hydrological  expansion and (b) hydrological  contract ion. Sol id and dashed 

arrows indicate respective ly h igh and low hydrological  connectiv i ty  with in longi tudinal  (1),  

lateral  (2)  and vert ical  (3)  spat ia l  d imensions of f luv ia l  networks.  
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Temporary rivers that recurrently run dry mainly occur in arid and semiarid regions such 

as the Mediterranean, although they can also be found in many other areas of the world 

(Tooth, [2000]; Acuña et al., [2014]; Datry et al., [2014]; Figure 1.6). Due to their temporal 

and spatial dynamism, estimates of the total length, surface area and discharge of 

temporary rivers are still very rough [Acuña et al., 2014; Datry et al., 2014]. Low-order 

streams deserve special attention, since they account for more than 70% of the area of 

fluvial networks and are particularly prone to flow intermittency [Lowe et al., 2006]. These 

low-order temporary streams are very dynamic systems in time and space, and analysing 

their spatial coverage is particularly difficult to detect by traditional mapping techniques 

[Benstead and Leigh, 2012]. We can therefore suspect that the surface area of temporary 

watercourses in the global fluvial network can be higher than 50% [Datry et al., 2014], 

while their importance is increasing as a result of the combined effects of climate and land 

use changes [Palmer et al., 2008; Larned et al., 2010; Hoerling et al., 2012]. 

 

 

Figure 1.6  Location of the arid  and semiarid regions ( i .e . ,  dryland systems) in the world.  The 

area of  Mediterranean regions is specif ica l ly  h ighl igh ted ( in  b lue).  F igure  by  courtesy of  Xisca 

T imoner. 
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Our understanding of the biogeochemical processes that occur in temporary rivers lags well 

behind that of perennial watercourses [Acuña et al., 2014; Datry et al., 2014; Leigh et al., 

2016]. By extension, far less is known about the biogeochemical processes that occur in the 

dry beds of these temporary streams and rivers (hereinafter referred to as dry riverbeds) 

[Steward et al., 2012]. These unexplored habitats have been largely overlooked by aquatic 

and terrestrial ecologists and biogeochemists [Steward et al., 2012]. However, dry riverbeds 

are dynamic habitats [Stanley et al., 1997; Boulton, 2003], representing spatial (i.e., 

transitional zones between dissimilar habitats) and temporal (i.e., transitional periods 

between persistent and dissimilar states) ecotones [Naiman and Decamps, 1997]. Thus, 

against the traditional view of being “biogeochemically inactive”, dry riverbeds are likely to 

be potential active sites for materials transformations [McClain et al., 2003]. In general, 

there is little knowledge on the biogeochemistry of dry riverbeds [Larned et al., 2010; 

Steward et al., 2012; Leigh et al., 2016]; although recent studies advanced that microbial 

activity [Pohlon et al., 2013; Febria et al., 2015] and associated C and nitrogen processing 

in dry riverbed sediments can be maintained to some degree during stream desiccation by 

the activity of well-adapted biofilms [Zoppini and Marxsen, 2011; Timoner et al., 2012, 

2014; Merbt et al., 2016]. Nevertheless, our understanding of the effects of flow 

intermittency and associated river fragmentation and drying on C gas fluxes across 

Mediterranean fluvial networks remains limited. 

 

1.4.2 Intense damming 

Due to the high human demand for energy and water, most fluvial networks worldwide 

are already or in the process of being regulated (Nilsson et al., [2005]; Döll et al., [2009]; 

Lehner et al., [2011]; Zarfl et al., [2014]; Figure 1.7). Regulation is achieved through a 

variety of hydraulic structures, ranging from very large dams to smaller reservoirs, 

impoundments and weirs (Figure 1.7). Mediterranean fluvial networks are no exception, 

having mainly been modified by small man-made water retention structures (SWRS; i.e., 

weirs and small to very small impoundments with surface area < 0.1 km2 and a volume < 

0.2 hm3) for centuries [García-Ruiz et al., 2011].  
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Disruption of water flow by dams enhances the loss of longitudinal connectivity [Stanford 

and Ward, 2001] and modifies hydrological dynamics [Kondolf and Batalla, 2005; Grill et 

al., 2015] of fluvial networks by prolonging the residence time in waters associated to dams. 

Moreover, dams alter water physicochemistry [Ward and Stanford, 1983] and the 

transport dynamics of suspended materials [Syvitski et al., 2005; Maeck et al., 2013], with 

severe impacts on biological communities [Ward and Stanford, 1983; Stanford and Ward, 

2001; Haxton and Findlay, 2008] and biogeochemical cycles at the different scales of 

organization [Ward and Stanford, 1983; Stanford and Ward, 2001; Friedl and Wüest, 

2002].  

 

 

Figure 1.7 Map of the global  location and d istr ibu tion of  large- and medium-size reservoirs  (1-

10 5  km2  of  impounded water surface area).  F igure  constructed with data  from the Global  

Reservoir and Dam Database  (GRanD)  [Lehner et a l . ,  2011] . 

 

Most quantitative estimates of C emissions from impounded waters have mainly been 

obtained for very large (> 104 km2), large (104 - 102 km2) and medium (100 - 1 km2) size 

reservoirs [St. Louis et al., 2000; Barros et al., 2011; Deemer et al., 2016]. These estimates 

point out that the depositional zones close to the river inflow, where freshly allochthonous 

materials enter the reservoir (i.e., riverine-lacustrine transition zone, sensu Wetzel [2001]), 
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are very active compartments in terms of CO2 and CH4 production and emission despite 

their relatively small areal coverage [Beaulieu et al., 2016]. The sedimentation of fresh OM 

in the riverine-lacustrine transition zone, which in the case of smaller systems (< 1 km2) 

can cover a major fraction of the impounded water surface area, fuels intense CO2 and CH4 

production, making these systems potential biogeochemical hotspots for C emission to the 

atmosphere [Maeck et al., 2013]. However, the effects of SWRS on C gas flux dynamics have 

so far remained poorly examined, despite they represent the most common water retention 

structure causing river fragmentation worldwide [Downing et al., 2006; Lehner et al., 2011; 

Verpoorter et al., 2014]. 
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1.5 Dissertation Objectives 

The overarching goal of this dissertation is to investigate how flow discontinuities (i.e., river 

impoundment, flow fragmentation and drying) shape the spatiotemporal patterns, controls 

and sources of carbon (C) gas fluxes in a Mediterranean fluvial network. This goal is 

addressed along four chapters, each one corresponding to an independent publication. The 

first two chapters focus on the effect of flow fragmentation and drying, whereas the other 

two chapters focus on understanding the effect of small and very small water retention 

structures (SWRS). 

Chapter 3 of this dissertation explores and compares the magnitude, spatial patterns and 

potential drivers of carbon dioxide (CO2) and methane (CH4) emissions in a variety of 

environments (i.e., running waters, slow-moving waters impounded in SWRS, isolated 

river pools and dry riverbeds) typically observed in the fragmented heterogeneous 

riverscape characteristic of Mediterranean fluvial networks during summer.  

Chapter 4, focuses on those parts of the fluvial network that recurrently cease to flow and 

run dry. Specifically, it aims to quantify CO2 emissions from dry riverbeds, comparing them 

to those during the flowing period and to those from adjacent upland soils. Differences and 

similarities in the controls and sources of CO2 emissions between dry riverbeds and upland 

soils are also explored.  

Chapter 5 investigates how and to what extent the presence of SWRS influence i) the 

longitudinal patterns of the concentrations and diffusive CO2 and CH4 emissions along the 

river, and ii) the interplay between patches of distinct aquatic habitats (i.e., lotic and lentic) 

in terms of concentrations and diffusive CO2 and CH4 emissions. 

Finally, Chapter 6 of this dissertation evaluates and compares the magnitude, controls 

and sources of CO2 emissions from lotic (i.e., free-flowing) and lentic (i.e., impounded waters 

stored in SWRS) river sections within the fluvial network, with special focus on their 

response to different hydrological conditions.  



 

 
Study site and sampling design 
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2.1 The Fluvià River catchment 

Field work was conducted in the Fluvià River catchment, located in the North-East of the 

Iberian Peninsula (Figure 2.1), from December 2012 to March 2015. The Fluvià River main 

stem is 97-km long and drains a 990-km2 catchment covered with mixed forests (78%), 

agricultural (19%) and urban (3%) areas (Land Cover Map of Catalonia 2009, Centre of 

Ecology and Forestry Research of Catalonia, http://www.creaf.uab.es/mcsc/). The 

catchment is mostly calcareous, with some areas (<15%) of siliceous materials 

(Cartographic and Geological Institute of Catalonia, 2006,  http://www.icc.cat/).  

 

 

Figure 2.1 Location of the F luvià River  catchment (NE Iberian  Peninsula),  with the corresponding 

posit ion of the s tudy si tes (n=38) sampled f rom December 2012 to  March 2015. The considered 

study si tes included 8 lot ic  segments (a lso cal led running waters or  f ree-f lowing river sections 

along the d issertat ion),  13 lentic segments associa ted to a  SWRS (also ca l led impounded waters 

or impounded water  sect ions a long the  d isserta t ion),  5 iso la ted water  pools and 12 dry  s tream 

or r iver beds (dry r iverbeds th roughout the d isserta t ion).  Stars inside the symbols  are  used to  

d i f ferenciate the si tes sampled in the d i f ferent chapters of th is d isserta t ion (see section 2.3 

and Table 2.1 for a  detai led descript ion of  the sampl ing s tra tegy).   
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The climate in the area is typically Mediterranean (Figure 2.2); the mean monthly air 

temperature ranges from 6 ºC in January to 26 ºC in July and the mean annual 

precipitation is 660 mm, with rainfall primarily occurring in autumn and spring, with 

occasional storms in summer (Data from 2004 to 2014, Catalan Water Agency, http://aca-

web.gencat.cat). 

 

 

Figure 2.2 Cl imatic regime of the F luvià River ca tchment (NE Iberian Peninsula) exempl i f ied by 

the temporal  variat ion  of the mean monthly temperature  (so l id l ine)  and rainfal l  (so l id  bars)  

regis tered between 2004 and 2014. Data  from 2004 to  2014 obtained from the Banyoles 

Meteorological  s ta t ion si tuated in the central  par t of the s tudied catchment (Cata lan Water  

Agency).   

 

2.2 Discontinuities along the Fluvià River network 

Similarly to that of other rivers situated in the Mediterranean region [Gasith and Resh, 

1999; Bonada and Resh, 2013], the flow regime of the Fluvià River shows a wide seasonal 

variation driven by changes in rainfall. Consequently, from late summer to early autumn, 

its fluvial network is transformed into highly heterogeneous fragmented riverscape 

characterized by discontinuous sections dominated by dry riverbeds and isolated water 

pools (Figure 2.3). These intermittent river sections are mainly located in the headwaters 

of the Fluvià River network, and result from a combination of natural water scarcity and 

human water abstraction for irrigation.  
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The flow of the Fluvià River has been highly regulated since the early 20th century due to 

the high human demand for energy and water in the area [García-Ruiz et al., 2011]. 

Nowadays, the Fluvià River network presents up to 61 small man-made water retention 

structures (SWRS; i.e., weirs and small to very small impoundments with surface area < 

0.1 km2 and a volume < 0.2 hm3; Figure 2.3) that cause recurrent flow discontinuities from 

its headwaters to the river mouth [Pavón, 2010]. The spatial distribution of these 

structures along the fluvial network is not homogeneous. Around 98% (60 of 61) of the 

SWRS are situated within the Fluvià River main stem, from which 60% (2.24 structures 

km-1) are situated in the upper part of the catchment, 22% (0.73 structures km-1) in the 

middle part and 18% (0.58 structures km-1) in the lower part [Ferrer et al., 2009].  

Overall, the abundance of impounded waters associated to SWRS as well as fragmented 

sections dominated by isolated water pools and dry riverbeds makes the Fluvià River 

network an ideal setting to test hypotheses about the effects of flow discontinuities on C 

gas fluxes in fluvial networks.  
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Figure 2.3  Examples of  some representat ive  study si tes grouped by environment type ( i .e . ,  

running waters,  impounded waters associa ted to SWRS,  iso la ted water  pools and dry r iver and 

reservoir  beds).  Photographs by courtesy of  Matth ias Koschorreck,  Danie l  von Schi l le r  and 

Vicenç Acuña. 
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2.3 Sampling design 

To address the objectives of the present dissertation, we combined field sampling surveys 

of different frequency and spatiotemporal extent from December 2012 to March 2015 

(Table 2.1).  

In Chapter 3, one sampling campaign was conducted at the end of summer (from 26 

August to 6 September 2013) in order to measure the CO2 and CH4 fluxes and their 

potential drivers in a variety of environments typically observed in Mediterranean fluvial 

networks during summer. The considered environments included 6 running water reaches 

(empty blue squares in Figure 2.1 and Table 2.1; visual examples in Figure 2.3), 4 

impounded waters stored in SWRS (2 empty green circles + 2 green circles with open stars 

in Figure 2.1 and Table 2.1; visual examples in Figure 2.3), 5 isolated water pools formed 

during the fragmentation of the fluvial network (orange triangles in Figure 2.1 and Table 

2.1; visual examples in Figure 2.3) and 2 dry beds (empty red circles in Figure 2.1 and Table 

2.1; visual examples in Figure 2.3). Two additional sites (i.e., 1 impounded water and 1 dry 

reservoir belt) from a nearby catchment (i.e., Muga River, NE of Iberian Peninsula) were 

also sampled in order to expand the dataset. 

In Chapter 4, the focus was placed on 10 temporary tributaries of the Fluvià River that 

recurrently cease to flow and run dry (red circles with stars in Figure 2.1 and Table 2.1; 

visual examples in Figure 2.3). At each sampling site, we measured CO2 fluxes and took 

samples for physicochemical characterization of the dry riverbeds sediments and the 

adjacent upland soils during the dry (August 2014) and the wet period (March 2015).  

In Chapter 5, the sampling focused on an intensively regulated 36-km stretch in the upper 

part of the river main stem (lower left corner in Figure 2.1 and Table 2.1) to investigate the 

direct interplay between lotic and lentic waterbodies in terms of C gas fluxes. To address 

this, we measured the dissolved concentrations and fluxes of CO2 and CH4 in a selection of 

11 impounded waters associated to SWRS (green open circles with stars in Figure 2.1 and 

Table 2.1; visual examples in Figure 2.3) and their adjacent free-flowing sections. To 

characterize the potential temporal variations, 11 impounded river sections and their 
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adjacent free-flowing sections were sampled three times in 2014: in spring (28 to 30 April), 

summer (2 to 4 September) and winter (9 to 11 December). 

In Chapter 6, we measured CO2 emissions and the underlying fluxes that drive variation 

in CO2 concentration within a set of 12 segments situated throughout the fluvial network 

(from headwaters to lowlands; Figure 2.1) along 12 monthly samplings (December 2012 to 

November 2013), in order to cover the wide spectrum of hydrological conditions occurring 

in the fluvial network. The segments included 8 lotic sections (i.e., running water reaches; 

blue solid squares in Figure 2.1 and Table 2.1; visual examples in Figure 2.3) and 4 lentic 

sections (i.e., stagnant waters associated to a dam or weir; 2 green open circles + 2 green 

open circles with open stars in Figure 2.1 and Table 2.1; visual examples in Figure 2.3). 

 

Table 2.1  Temporal  and spatia l  extent,  measured C gas f luxes and specif ic objectives addressed 

in each chapter  of th is d isserta t ion.  

 

 

Measured C gas

Frequency Duration Environment N Symbol
Magnitude and spatio-

temporal patterns
Controls Sources

3 2 weks Lot 6 CO2 & CH4 ✔ ✔

Len 4 CO2 & CH4 ✔ ✔

Iso 5 CO2 & CH4 ✔ ✔

Dry 2 CO2 & CH4 ✔ ✔

4 2 samplings 

(summer&spring )

1 week Dry 10 CO2 ✔ ✔ ✔

5 Seasonal 1 year Len 11 CO2 & CH4 ✔ ✔ ✔

6 Monthly 1 year Len 4 CO2 ✔ ✔ ✔

Lot 8 CO2 ✔ ✔ ✔

Grey font indicates objectives that were not directly adressed

Specifc objectives

Symbols are described in the legend of Figure 2.1

Lot = lotic segment (also called running water or free-flowing river section along the dissertation), Len = lentic segment associated to a SWRS (also called impounded water or 

impounded water section along the dissertation), Iso = isolated water pool, Dry = dry bed

Temporal extent Spatial extent

Chapter

1 sampling 
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Abstract 

During summer drought, Mediterranean fluvial networks are transformed into highly 

heterogeneous riverscapes characterized by different environments (i.e., running and 

impounded waters, isolated river pools and dry beds). This hydrological setting defines 

novel biogeochemically active areas that could potentially increase the rates of carbon (C) 

emissions from the fluvial network to the atmosphere. Using chamber methods, we aimed 

to identify hot spots for carbon dioxide (CO2) and methane (CH4) emissions from two typical 

Mediterranean fluvial networks during summer drought. The CO2 efflux from dry beds 

(mean ± SE = 209 ± 10 mmol CO2 m-2 d-1) was comparable to that from running waters (120 

± 33 mmol m-2 d-1) and significantly higher than from impounded waters (36.6 ± 8.5 mmol 

m-2 d-1) and isolated pools (17.2 ± 0.9 mmol m-2 d-1). In contrast, the CH4 efflux did not 

significantly differ among environments, although the CH4 efflux was notable in some 

impounded waters (13.9 ± 10.1 mmol CH4 m-2 d-1) and almost negligible in the remaining 

environments (mean < 0.3 mmol m-2 d-1). Diffusion was the only mechanism driving CO2 

efflux in all environments and was most likely responsible for CH4 efflux in running waters, 

isolated pools and dry beds. In contrast, the CH4 efflux in impounded waters was primarily 

ebullition-based. Using a simple heuristic approach to simulate potential changes in C 

emissions from Mediterranean fluvial networks under future hydrological scenarios, we 

show that an extreme drying out (i.e., a 4-fold increase of the surface area of dry beds) would 

double the CO2 efflux from the fluvial network. Correspondingly, an extreme 

transformation of running waters into impounded waters (i.e., a 2-fold increase of the 

surface area of impounded waters) would triple the CH4 efflux. Thus, C emissions from dry 

beds and impounded waters should be explicitly considered in C assessments of fluvial 

networks, particularly under predicted global change scenarios, which are expected to 

increase the spatial and temporal extent of these environments. 

 

Original publication (Appendix C in the Supporting information section):  

Gómez-Gener, L., B. Obrador, D. von Schiller, R. Marcé, J. P. Casas-Ruiz, L. Proia, V. 
Acuña, N. Catalán, I. Muñoz, and M. Koschorreck (2015), Hot spots for carbon emissions 
from Mediterranean fluvial networks during summer drought, Biogeochemistry, 125(3), 
409–426, doi:10.1007/s10533-015-0139-7  
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3.1 Introduction 

Increasing evidence has demonstrated the active role of inland waters in the global carbon 

(C) cycle and the capacity of these water bodies to emit significant amounts of carbon 

dioxide (CO2) and methane (CH4) to the atmosphere [Cole et al., 2007; Battin et al., 2009a]. 

Recent global estimates of C emissions have shown that inland waters, including both 

running and impounded waters, emit approximately 2.1 Pg C y-1 in the form of CO2 

[Raymond et al., 2013a] and 0.09 Pg C y-1 in the form of CH4 [Bastviken et al., 2011a]. 

Expressed as CO2 equivalents, these emissions correspond to 3.25 PgC-CO2e y-1, assuming 

that 1 kg of CH4 corresponds to 28 kg of CO2 over a 100-year period [IPCC, 2013]. In this 

context, regional and local studies conducted in arctic and subarctic [Kling et al., 1991; 

Lundin et al., 2013], boreal [Jonsson et al., 2007; Campeau and Lapierre, 2014], temperate 

[Hope et al., 2001; Halbedel and Koschorreck, 2013] and tropical biomes [Abril, 2005; 

Guérin et al., 2007; Fearnside and Pueyo, 2012] have confirmed the role of streams, lakes 

and reservoirs as net emitters of CO2 and CH4 to the atmosphere. Nonetheless, there is 

limited information concerning the relevance of C release from inland waters to the 

atmosphere in arid and semiarid regions, such as the Mediterranean [López et al., 2011; 

Obrador and Pretus, 2013; Morales‐Pineda, 2014]. 

Because of the climatic conditions of Mediterranean regions, with warm, dry summers and 

mild, humid winters, Mediterranean fluvial networks are characterized by a highly 

seasonal and intermittent hydrological regime[Gasith and Resh, 1999a]. During the wet 

period (late autumn to early spring), the hydrological longitudinal connectivity increases, 

and most of the fluvial network area is covered with surface water. In contrast, during the 

dry period (from late spring to early autumn), the hydrological longitudinal connectivity 

decreases, and the area of the fluvial network covered with surface water is drastically 

reduced. Consequently, during summer drought, the fluvial network is converted into a 

fragmented heterogeneous riverscape characterized by slow-moving waters, isolated river 

pools and dry streams and river beds (hereinafter referred to as dry riverbeds). Temporary 

rivers experiencing these patterns are not restricted to arid and semiarid regions, but they 

can be found in many areas of the world [Tooth, 2000; Acuña et al., 2014; Datry et al., 2014]. 

Moreover, as a consequence of climate change and water abstraction for socio-economic 
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uses, their global surface area is expected to increase in the Mediterranean and other 

regions where a negative water flow trend has been predicted [Milliman et al., 2008; 

Tockner et al., 2009; Larned et al., 2010]. 

Dry beds are defined as the parts of the fluvial network exposed to air during dry periods 

[Steward et al., 2012]. They are habitats in their own right and differ from adjacent riparian 

and other terrestrial habitats in their substrate composition, topography, microclimate, 

vegetation cover, inundation frequency, and biota [Steward et al., 2012]. Dry river beds play 

an important role as dispersal corridors and contain a unique diversity of aquatic, 

amphibious, and terrestrial biota [Williams 2006; Lake 2011]. Moreover, recent studies 

have reported that the energy flow, nutrient cycling and other biogeochemical processes 

also continue when the river runs dry. For example, Zoppini and Marxsen [2011], Timoner 

et al., [2012] and Pohlon et al., [2013] showed that extracellular enzymatic activities and C 

processing through sediment biofilms could be maintained to some degree during 

desiccation. Similarly, Gallo et al., [2013] and von Schiller et al. [2014] showed that 

temporary streams can release significant amounts of CO2 when they are dry. 

Nevertheless, our understanding of the biogeochemical processes that occur in dry beds 

and the role of these environments as emitters of CO2 and CH4 to the atmosphere remains 

limited [Steward et al., 2012].  

The hydrological contraction of the fluvial network also affects impounded waters stored in 

dams, weirs and small impoundments. These aquatic environments are abundant in 

Mediterranean regions because of the growing human demand for water and electricity 

[García-Ruiz et al., 2011]. The reduction of the river flow as a consequence of seasonal 

drought prolongs the residence times of the water in impoundments, which favour C 

processing through the promotion of the interaction between OM and biological 

actors[Battin et al., 2009b; Acuña and Tockner, 2010]. As a result, C emissions from 

impounded waters might increase during hydrological contraction. Furthermore, the 

reduction of the volume and surface area during summer drought also increases the areal 

extent of exposed dry sediments along the shore of impounded waters, which together to 

those from dry stream and riverbeds may be potentially active, but frequently neglected, 

sites for C emissions [Mitchell and Baldwin, 1999; Forzieri et al., 2014]. 
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Knowledge on the biogeochemistry of isolated river pools is also limited despite they are 

abundantly observed along temporary rivers during hydrological contraction (Bernal et al. 

2013; Datry et al. 2014). Isolated pools show high residence times and potentially suitable 

conditions for methanogenesis (i.e., organic matter (OM) accumulation and low dissolved 

oxygen concentration) [Vazquez et al., 2010; von Schiller et al., 2011]. Nevertheless, the 

hydrological isolation in these pools creates individual systems that are highly influenced 

through particular local conditions [Dahm et al., 2003; Bonada et al., 2006]. 

In the present study, we aimed to quantify C emissions and to identify C emission hot spots 

from Mediterranean fluvial networks during summer drought. To this end, we measured 

the CO2 and CH4 effluxes and their potential drivers in a variety of environments (i.e., 

running waters, impounded waters stored in reservoirs, weirs and small dams, isolated 

river pools and dry river and impoundment beds) typically observed in Mediterranean 

rivers during summer drought. We hypothesized that the reduction of flow during summer 

drought would promote the spatial heterogeneity of C fluxes along the fluvial network and 

enhance the contribution of dry beds, isolated pools and impounded waters to these fluxes. 

Moreover, we use a simple heuristic approach to explore the potential future implications 

of increasing river desiccation and impoundment of running waters on the total C 

emissions from Mediterranean fluvial networks. 

 

3.2 Materials and Methods 

3.2.1 Study sites and sampling design 

The Fluvià River (NE Iberian Peninsula; Figure 3.1) is a 97-km long river that 

drains a 990-km2 catchment covered with mixed forests (78%), agricultural 

(19%) and urban (3%) areas (Land Cover Map of Catalonia, Centre of Ecology 

and Forestry Research of Catalonia, 2009,). The catchment is mostly calcareous, 

with some areas (< 15%) of siliceous materials (Cartographic and Geological 

Institute of Catalonia, 2006). 
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Figure 3.1  Location of the F luvià River  in Catalonia (NE Iberian Peninsula),  wi th the 

corresponding posit ion of the study si tes (n = 17).  Blue squares indicate lot ic segments ( i .e . ,  

running waters (n =  6)),  green ci rcles lentic  segments ( i .e . ,  impounded waters s tored in  smal l  

water re tention structures (n = 4)),  orange tr iangles iso lated r iver pools (n = 5) and red circles 

dry r iver beds (n  = 2).  

 

The climate in this area is typically Mediterranean. The mean monthly air temperature 

ranges from 6 ºC in January to 26 ºC in July. The mean annual precipitation is 660 mm, 

with rainfall primarily occurring in autumn and spring, with occasional storms in summer 

(Data from 2004 to 2014, Catalan Water Agency). 

The water flow of Fluvià River has been deeply modified due to the high human demand 

for energy and water [García-Ruiz et al., 2011]. Its fluvial network presents up to 61 small 

to very small water retention structures (SWRS) such as weirs and small impoundments 

that cause flow interruptions from its headwaters to the river mouth [Pavón, 2010]. 

We conducted the sampling campaign at the end of summer (from 26 August to 6 

September 2013), prior to the first post-summer rainfall events that typically occur in the 

region during autumn [Bernal et al., 2013]. We sampled a total of 17 sites along the Fluvià 

River network to cover a wide spectrum of environments typically observed during summer 

drought (Figure 3.1; Table A.3.1 in the Supporting information section). The considered 
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environments included running water reaches (n=6), impounded waters stored in SWRS 

(n=4), isolated river pools formed during the fragmentation of the fluvial network (n=5) and 

dry river beds (n=2). Two additional sites (i.e., 1 impounded water and 1 dry reservoir belt) 

from a nearby catchment (i.e., Muga River, NE of the Iberian Peninsula) were also sampled 

in order to expand the dataset. The dry beds in rivers had been dry for less than 4 weeks 

and the dry bed in the reservoir for approximately 2-3 months. 

 

3.2.2 Determination of CO2 and CH4 fluxes  

To guarantee the comparability of the flux measurements, we used the same approach 

(chamber method, Frankignoulle [1988]) to directly measure the CO2 and CH4 fluxes in all 

environments. We monitored the gas concentrations in the chamber every 30 s for a total 

of 10 min using a Fourier-Transform-Infrared (FTIR) Spectrometer (GASMET DX4000, 

Temet Instruments, Finland) after passing through an in-line moisture trap (Drierite, 

USA) at a rate of 2.9 L min-1. Measurement accuracy of the GASMET DX4000 FTIR was 

within 2% of the calibrated range. We calculated the total fluxes of both gases (F, mmol m-

2 d-1) from the rate of change of CO2 and CH4 inside the chamber: 

F � �dp

dt
�  � V

RTS
�         (1) 

where dp/dt is the slope of the gas accumulation in the chamber (µatm s−1), V is the volume 

of the chamber (dm3; aquatic chamber = 14.6 dm3, soil chamber = 2.2 dm3), S is the surface 

area of the chamber (dm2; aquatic chamber = 9.8 dm2, soil chamber = 2.0 dm2), and T is the 

air temperature (K) and R is the ideal gas constant (L atm K−1 mol−1). Positive F values 

represent gas evasion to the atmosphere, and negative F values indicate gas invasion from 

the atmosphere. We calculated the diffusive flux of CO2 and CH4 from the linear 

concentration change of both gases in the chamber. We identified ebullitive episodes 

(bubbling), only in the case of CH4, as notorious non-linear increases in the concentration 

of CH4 during the course of chamber measurements. We estimated the ebullitive flux of 

CH4 as the difference between the total and the diffusive flux [Campeau and Lapierre, 

2014]. 
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The artificial enhancement of the gas transfer velocity through disturbance of the surface 

boundary layer during the chamber deployment and subsequent measurement could be a 

critical aspect [Guérin et al., 2007; Vachon et al., 2010]. To minimize this, we carried out 

specific chamber deployment procedures in each environment. In running waters, we used 

a rope to deploy the chamber at a fixed position onto the water column. In impounded 

waters, we cautiously deployed the chamber from an anchored boat onto the water surface 

in the centre of the system. In isolated river pools, we slowly lowered the chamber onto the 

water surface in the central part of the pool using a rope. In the case of dry beds, we inserted 

the chamber into the exposed sediments. A total of 3 replicate measurements were 

obtained at every aquatic site. The number of replicate measurements was increased at 

each dry site (5-10) to cover the maximum spatial variability in terms of dry bed OM and 

water content. In both the aquatic and the dry environments, we flushed the chamber with 

ambient air between consecutive measurements. 

 

3.2.3 Determination of pCO2, w
, pCH4, w

and k600 

At every aquatic site, we determined the partial pressure of CO2 (pCO2, w
) and CH4 (pCH4, w

) 

in water at the same location as flux measurements. We measured the pCO2, w
 using an 

infrared gas analyser (EGM-4, PP-Systems, USA) coupled to a membrane contactor 

(MiniModule, Liqui-Cel, USA). The water was circulated via gravity through the contactor 

at 300 mL min -1, and the equilibrated gas was continuously recirculated into the infrared 

gas analyser for instantaneous pCO2
 measurements [Teodoru et al., 2010]. The accuracy of 

the infrared gas analyser was estimated to be within 1% over the calibrated range. We 

determined the pCH4, w
 using the headspace equilibrium technique and gas 

chromatography according to Striegl et al., [2012]. Briefly, we collected 30 ml of water with 

a 60 ml polypropylene syringe, creating a headspace with ambient air of 1:1 ratio (sampled 

water:ambient air). To facilitate the kinetics of equilibration between the liquid and the gas 

phase, we shook the syringe for 1 min and submerged it in water at each sampling site for 

30 min to maintain constant equilibrium temperature. The water temperature was 

recorded using a portable sensor, and no changes were observed during equilibration. 

Subsequently, we transferred the 30 mL of the equilibrated gas to a pre-evacuated gas-
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tight glass tube (2-RV, Chromacol, USA). The CH4 samples were analysed in the laboratory 

using a gas chromatograph coupled to a Flame Ionization Detector (Trace GC Ultra, 

Thermo Fisher Scientific, USA). The measurement accuracy of the gas chromatograph was 

estimated to be within 4% over the calibrated range. The water temperature during 

equilibration was used to calculate Henry’s coefficient between the liquid and the gas phase 

(Stumm and Morgan 1996). 

The CO2 flux measured with the chamber was used to calculate the direct gas transfer 

velocity of CO2 (kCO2 ) from Fick’s law of gas diffusion: 

FCO2  � kCO2  Kh �pCO2, w - pCO2, a �      (2) 

where kCO2 is the specific gas transfer velocity for CO2 (m d-1), FCO2  is the chamber-

measured CO2 flux between the surface water and the atmosphere (mmol m-2 d-1), Kh is 

Henry’s constant (mmol µatm-1 m-3) adjusted for salinity and temperature [Weiss, 1974; 

Millero, 1995], and pCO2, w  and pCO2, a  are the surface water and the atmosphere partial 

pressures of CO2 (µatm), respectively. Because the gas transfer velocity is temperature- and 

gas-dependent, we standardized kCO2  to a Schmidt number of 600 (k600 ; m d-1), which 

corresponds to CO2 at 20ºC in freshwater, following Jähne and Münnich [1987]: 

Direct k600 (m d-1) � kCO2( 600

Sc
)
-n

      (3) 

where Sc is the Schmidt number of a given gas at a given water temperature [Wanninkhof, 

1992]. In accordance with Bade [2009], the exponent n was set to 2/3 at sites with a smooth 

water surface (sheltered impounded waters and isolated pools) and 1/2 in the more 

turbulent environments (open impounded waters and running waters). 

The k600 was also indirectly determined after applying different methods depending on the 

specific type of aquatic environment. In running waters, we obtained the indirect k600from 

the night time drop in the oxygen concentration [Hornberger and Kelly 1975]. Briefly, 

photosynthesis ceases from sunset to sunrise, thus night time dynamics are dependent on 

the respiration rate and reaeration coefficient. During the night, respiration reduces the 

oxygen levels until the atmosphere equilibrium is reached. In parallel, reaeration 
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approaches the oxygen concentration to saturation. Thus, when we plot the night time 

oxygen concentration per unit of time versus the oxygen saturation deficit, a linear trend 

is obtained. The intercept of the regression corresponds to the respiration (g O2 m-2 h-1) and 

the slope to the mean gas transfer velocity of oxygen (kO2; m d-1). The kO2 was transformed 

to indirect k600using equation (3). The dissolved oxygen concentration and temperature 

used in the night time reduction in oxygen method, were obtained at the running water 

sites at a frequency of 10 minutes with a multiparameter probe (YSI 600 OMS V2, Yellow 

Springs, USA). 

In impounded waters, we estimated the value of indirect k600 from the wind speed based 

equation (4) of Crusius and Wanninkhof [2003]: 

Indirect k600 (m d-1) � 0.17 U10      (4) 

where U10 is the wind speed at 10 m above the surface (m s-1). The wind speed at a given 

height (Ux; m s-1) was converted to that at 10 m (U10; m s-1) from the equation described by 

Donelan [1990]. The wind speed for these calculations was obtained from measurements 

during the chamber deployments using a portable anemometer (Kestrel 4000, Kestrel 

Meters, UK) fixed to a tripod at 2 m above the water surface. 

In the case of isolated pools, we estimated the indirect k600from a wind speed based model 

previously applied in small, shallow and low turbulence ponds [Laurion et al., 2010b]:  

Indirect k600 (m d-1) � 0.19+0.26 U10+ 0.02 U10
2     (5) 

Due to the sheltered location, there was no noticeable wind in any of the isolated pools sites, 

resulting in a constant indirect k600 of 0.19 m d-1 (intercept of equation 5), a parameter 

reflecting the effect of the other physical processes occurring in addition to wind that cause 

turbulence at the air-water interface. 

We acknowledge that the floating chamber approach could be problematic in some of our 

environments, particularly in running waters where the employed method might not 

capture the complex turbulence regime that characterizes this environment. To assess 

these potential biases, we compared the site-specific CO2 and CH4 fluxes obtained from the 

chamber method (direct) versus the system-integrated fluxes of CO2 and CH4 derived from 



Hot spots of C emissions during summer drought   65 
 

the Fick’s law of gas diffusion (indirect) using equation (2). We detected a good agreement 

between direct and indirect CO2 fluxes (log (indirect CO2 efflux) = 1.096 (log direct CO2 

efflux) -0.28, r2 = 0.81, p < 0.001, n = 16) and between direct and indirect CH4 fluxes (log 

(indirect CH4 efflux) = 0.322 log (direct CH4 efflux) -0.647, r2 = 0.33, p = 0.019, n = 6). These 

significant relationships support the reliability of the chamber method for quantifying C 

emissions in our study. However, the slope < 1 for the CH4 equation indicates the 

overestimation of the direct CH4 efflux with respect to the indirect CH4 efflux. Therefore, it 

is likely that, in addition to Fickian and ebullitive transport, other pathways of CH4 efflux, 

such as microbubble release, were also involved in CH4 emission [Beaulieu et al., 2012; 

Prairie and Giorgio, 2013; McGinnis et al., 2015]. 

 

3.2.4 Physicochemical characteristics of sediments and dry beds  

To characterize the inundated sediments of the impounded waters, we collected three 

replicates of sediment cores (diameter = 6 cm) from the deepest part of the impounded 

waters with a gravity corer (UWITEC, Austria). We sub-sampled the upper 5 cm of the 

sediment cores and determined the water content (%), dry bulk density (g cm-3) and 

porosity [Sobek et al., 2011]. We also determined its OM content (mg cm-3) by sample 

combustion following the loss on ignition method [Dean 1974]. 

To characterize the dry river and impoundment beds, we first measured in-situ the dry bed 

water content and temperature at the dry bed surface of every chamber location (upper 5 

cm) along two dry sites (1 dry river bed and 1 dry impoundment bed) using a portable soil 

probe (Decagon ECH2O 10HS, Pullman, USA). We then collected sediment samples (upper 

5 cm) to determine the dry bed OM content using the loss on ignition method. We estimated 

the basal microbial respiration rate (µg CO2 g−1 h−1) of the dry bed samples using a 

microrespirometry system (MicroResp, Macaulay Scientific Consulting Ltd, UK) according 

to Campbell and Chapman [2003]. Briefly, four replicates of 0.5 g of the sample taken at 

the dry bed surface of every chamber location (upper 5 cm) were added to a deep well 

microplate. The samples were incubated for 6 h at 20°C, and a colorimetric method was 

used to measure the evolution of CO2 immediately before and after the incubation. The % 

change of CO2 was converted to basal respiration (µg CO2 g−1 h−1) considering the 
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incubation time and temperature, the gas constant, the headspace volume and the soil dry 

weight as indicated in the MicroResp technical manual. 

 

3.2.5 Hydromorphological characteristics 

We measured the mean cross-sectional depth (m) and width (m) of the running water sites 

at the same location where the gas fluxes were measured. We measured the mean cross-

sectional water velocity (m s-1) with an acoustic-Doppler velocity metre (Sontek, YSI, USA), 

and we combined it with the measured section to derive the water discharge (m3 s-1). The 

discharge data were used to obtain averages of water velocity and stream depth along a 1-

km segment using the hydraulic modelling software HecRas 2.2 (US Army Corps of 

Engineers) and hydromorphological data from the Catalan Water Agency.  

We estimated the surface area, volume, and mean and maximum depths of the impounded 

waters sites from digitized bathymetric maps using a geospatial-processing software 

(ArcMap 10, ArcGis, USA). We calculated the residence time combining the volume 

obtained from the bathymetric map and the measured inflow at each impounded water 

site. 

 

3.2.6 Data analysis 

We grouped the 19 studied sites into 4 major environments (i.e., running waters (n = 6), 

impounded waters (n = 5), isolated pools f (n = 5) and dry river beds (n = 3)). We tested the 

effect of the factor environment on the CO2 and CH4 fluxes, pCO2, w and pCH4, w , direct and 

indirect k600 and percentage molar ratio between CH4 and CO2 efflux ((CH4 efflux / CO2 

efflux) * 100) using one-way analysis of variance (ANOVA) and subsequent post hoc 

comparisons (Tukey’s Honest Significant Differences test).  

For the dry beds, we assessed the effect of dry bed basal respiration, water content and OM 

content on the CO2 efflux using linear and non-linear regressions. For aquatic 

environments, we assessed the relative contributions of pCO2, w and indirect k600  on the 

CO2 efflux using simple and multiple linear regressions. When the statistical techniques 

required it, we log-transformed the variables to meet the conditions of homogeneity of 
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variance, normality and to avoid the deleterious effect of extreme large values. All 

statistical analyses were conducted in the R statistical environment [R Core Team 2013] 

using the Vegan package [Oksanen et al., 2013]. 

 

3.3 Results 

3.3.1 CO2 and CH4 effluxes along the fluvial network 

The studied environments were net emitters of CO2 (mean ± SE = 95.7 ± 43.9 mmol m-2 d-

1, range = 17 – 219 mmol m-2 d-1) and CH4 (3.6 ± 3.4 mmol m-2d-1, 0.1 – 13.8 mmol m-2 d-1) to 

the atmosphere (Figure 3.2, Table 3.1). However, significant differences among these 

environments, in terms of CO2 efflux (ANOVA, f = 23.2, p < 0.001, n = 19; Figure 3.2a), 

were observed. The CO2 efflux from dry beds (mean ± SE = 209 ± 10 mmol m-2 d-1) was 

statistically comparable to that from running waters (120 ± 33 mmol m-2 d-1) and 

significantly higher than the CO2 efflux from impounded waters (36.6 ± 8.5 mmol m-2 d-1) 

and isolated pools (17.2 ± 0.9 mmol m-2 d-1). The intra-environment variability of the CO2 

efflux was highest in running waters and lowest in isolated pools (Figure 3.2a, Table 3.1). 

In contrast to CO2, no significant differences in the CH4 efflux were observed among the 

studied environments (ANOVA, f = 2.62, p > 0.05, n = 19; Figure 3.2b). The CH4 efflux from 

impounded waters (14 ± 10 mmol m-2 d-1) was the highest among the studied environments, 

but also showed the highest intra-environment variability (Figure 3.2b, Table 3.1) and was 

thus, not significantly different from that of running waters (0.2 ± 0.1 mmol m-2 d-1), isolated 

pools (0.10 ± 0.05 mmol m-2 d-1) and dry beds (0.2 ± 0.2 mmol m-2 d-1). 
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Figure 3.2  Eff lux of (a) CO2  and (b) CH4  measured from running waters (b lue box; n = 6),  

impounded waters (green box; n =  5),  iso lated pools (orange box; n  = 5)  and dry r iver  and 

impoundment beds (red box;  n = 3).  Box p lots d isplay the 25 t h ,  50 t h  and 75 t h  percenti les;  

whiskers d isplay minimum and maximum values. Signif ican t d i f ferences of CO2  and CH4  ef f lux 

between environments (p  < 0.05, Tukey’s post  hoc test)  are marked with  d i f ferent capita l  le tters  

above the box p lots.  

 

Diffusion was the only mechanism driving CO2 efflux in all studied environments (Table 

3.1). Similarly, diffusion was most likely the only efflux mechanism for CH4 in running 

waters, isolated pools and dry beds, while the predominant mechanism of CH4 efflux in 

impounded waters was ebullition (> 85%; Table 3.1). Moreover, the percentage molar ratio 

between CH4 and CO2 efflux was significantly higher in impounded waters (37.8 ± 53.4%) 

than in running waters (0.2 ± 0.1%), isolated pools (0.4 ± 2.4%) and dry beds (0.2 ± 2.7%), 

where this ratio was nearly negligible (ANOVA, f = 4.64, p < 0.001, n = 19; Table 3.1). 
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Table 3.1  Summary table showing the mean, the s tandard error  (SE) and the to tal  number of 

studied si tes per environment (n) of  the surface water  par t ia l  p ressures of CO2  and  CH4  in water 

(p
CO2, w 

and p
CH4, w 

),  the d irect  and the indirect gas exchange coeff ic ients  (k600) ,  the total  ef f lux of 

CO2  and CH 4  and the percentage molar  ra t io between CH4  and CO2  f lux (CH4  f lux :  CO2  f lux) 

a long the d i f ferent  s tudied environments.  In brackets  the percentages of  ebul l i t ive  CO2  and  CH4  

ef f luxes in re lat ion to the to tal  CO2  and CH4  ef f luxes. 

 

 

3.3.2 Drivers of CO2 and CH4 effluxes 

In dry beds, the basal respiration showed a significant positive linear relationship with both 

the dry bed water content (r2 = 0.72, p < 0.001, n = 10; Figure 3.3a) and the dry bed OM 

content (r2 = 0.71, p < 0.001, n = 10; Figure 3.3b). In contrast, the CO2 efflux was inversely 

related to the dry bed water content (r2 = 0.75, p < 0.001, n = 10; Figure 3.3c) and showed 

no significant relationship with the dry bed OM content (r2 = 0.21, p > 0.05, n = 10; Figure 

3.3d). This resulted in a significant negative exponential relationship between the basal 

respiration and CO2 efflux in dry beds (r2 = 0.53, p < 0.001, n = 10).  

In aquatic environments, the two main parameters directly involved in the diffusion of CO2 

across the water-atmosphere boundary (i.e., surface water pCO2, w and k600; equation (2)) 

were directly related to the CO2 efflux. When all aquatic environments were pooled 

together, the k600 and CO2 efflux exhibited a significant positive relationship (r2 = 0.79, p < 

0.001, n = 16; Figure 3.4a), while no dependency between surface water pCO2, w and the 

CO2 efflux was detected (p > 0.05, n = 16; Figure 3.4b). However, the CO2 efflux and 

pCO2, w were positively related when the isolated pools were excluded from the model (r2 = 

0.49, p = 0.015, n = 11; Figure 3.4b). The multiple regression analysis revealed that 

ANOVA test

Mean SE n Mean SE n Mean SE n Mean SE n p -value

p CO2,w (µatm) 1841
A 242 6 1295

A 228 5 2553
B 224 5 NA NA NA 0.009

p CH4,w  (µatm) 123 33 6 669 380 5 345 4.2 5 NA NA NA 0.12

Direct k 600  (m d
-1

) 2.2
A 0.4 6 1.1

A 0.3 5 0.2
B 0.0 5 NA NA NA < 0.001

Indirect k 600  (m d
-1

) 2.0
A 0.4 6 0.7

B 0.4 5 0.2
B 0.0 5 NA NA NA < 0.001

CO2 efflux (mmol m
-2 

d
-1

) 120
A
 (0) 32 6 36.6

B
 (0) 8.5 5 17.2

B
 (0) 0.9 5 209

A
 (0) 10 3 < 0.001

CH4 efflux (mmol m
-2 

d
-1

)  0.2  (0) 0.1 6  13.8  (87) 10.1 5 0.1  (0) 0.0 5  0.2  (0) 0.5 3 0.089

CH4 efflux : CO2 efflux (%) 0.2
A 0.1 6 37.8

B 53.4 5 0.4
AB 2.4 5 0.2

AB 2.7 3 < 0.001

Significant differences between environment types for each parameter were determined with a one-way ANOVA followed by Tukey’s post hoc test and are displayed as 

different capital letters above the mean values. NA: Not available

Parameter

Running waters Impounded waters Isolated pools Dry beds
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pCO2, w and k600 explained 0.1% and 86% of the total variation in the CO2 efflux, 

respectively, when all aquatic environments were included in the model. In contrast, when 

isolated pools were excluded from the multiple regression analysis, pCO2, w and k600 

explained 49% and 38% of the total variation in the CO2 efflux, respectively (r2 = 0.87, p = 

0.003, n = 11). 

 

 

Figure 3.3  Basal  respira t ion as a  function of  (a)  dry  bed water  content  and (b)  dry  bed organic 

matter.  Eff lux of CO2  as a  funct ion of (c)  dry  bed water content and (d) dry  bed organic  matte r.  

The continuous l ine in a  (r2  = 0.72, p  < 0.001, n = 10) and b (r2  = 0.71, p  < 0.001, n = 10) 

represent the l inear regression model f i t t ing l ine between predictor  and response variables.  The 

continuous l ine in  c  (r2  =  0.65, p  <  0.001, n = 10) represents  the exponentia l  regression  model 

f i t t ing l ine between predictor  and response variables.  Absence of continuous l ine in (d) 

represents that  no signif ican t regression model f i t ted with the observed values.  
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Figure 3.4  Eff lux of CO2  as a function of (a) k600  and (b)  surface  water p
CO2, w 

for a l l  the aquatic  

study si tes.  Blue squares:  running waters;  green ci rcles:  impounded waters;  Orange tr iangles:  

iso lated r iver  pools.  The continuous l ine in (a)  represents the l inear regression model f i t t ing 

l ine incorporating al l  the environments (r2  = 0.79, p  < 0.001, n = 16).  The dashed l ine in (b)  

represents the l inear regression model f i t t ing l ine excluding iso lated r iver  pools (r 2  =  0.49, p  = 

0.015, n = 11).  

 

A high contribution of ebullition to the CH4 efflux was detected in the impounded waters, 

with increased residence time, higher sediment OM content and porosity and lower dry 

bulk density (Table 3.2). However, both the low number of study sites where ebullition of 

CH4 was detected and the narrow range of ebullitive efflux values prevented a robust 

statistical analysis of the potential drivers that control the ebullitive CH4 efflux. 

 

Table 3.2  Hydromorphological  descrip tors,  and sediment physical  and chemical  propert ies  of  

the d i f ferent impounded waters .  

 

Detection 

(yes/no)

Flux              

(%)

Residence time 

(hours)

Mean depth          

(m)

Max. depth 

(m)

Water content 

(%) 

Dry bulk density    

(g cm-3)

Porosity                                                Organic matter  

(mg cm-3)

1 Yes 82 4247.6 16.5 45.5 0.69 0.41 0.84 26.2

2 Yes 87 49.7 1.8 5.7 0.63 0.51 0.77 35.5

3 Yes 90 39.8 2.5 5.4 0.58 0.62 0.69 29.8

4 No 0 5.1 1.5 3.6 0.41 1.00 0.41 18.7

5 No 0 3.7 1.1 2.6 NA NA NA NA

Ebullition of CH4 Hydromorphological characteristics Sediment properties

Site

 Flux  indicates the percentage of ebullitive efflux to the total CH4 efflux.  NA : Not available
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The surface water physicochemical or hydromorphological variables (Table A.3.1 in the 

Supporting information section) were not significantly related to the CO2 and CH4 effluxes 

or the pCO2, w , pCH4, w and k600 in these aquatic environments. 

 

3.4 Discussion 

3.4.1 Hot spots for CO2 and CH4 effluxes 

Among the different environments investigated in the present study, running waters and 

dry beds emitted significantly higher amounts of CO2 than the other environments. Several 

studies have highlighted the importance of running waters as hot spots for CO2 efflux [Cole 

et al., 2007; Battin et al., 2009a; Raymond et al., 2013]. The results of the present study also 

show that the dry beds associated with the dry phase of Mediterranean temporary rivers 

are not only inert but also active sites in terms of CO2 emissions to the atmosphere. The 

CO2 efflux from dry beds (mean = 209 mmol m-2 d-1, range = 189 to 220 mmol m-2 d-1) was 

higher than that from dry desert streams in Arizona (43.5 mmol m-2 d-1, range = 19.6 to 65 

mmol m-2 d-1; Gallo et al., [2013]), to our knowledge the only study reporting CO2 emissions 

from dry beds in different catchments. The CO2 efflux from dry beds was also higher than 

the global mean CO2 efflux from soils (123 mmol m-2 d-1, range = 121 to 125 mmol m-2 d-1; 

Raich et al., [2002]) and the regional mean CO2 efflux from desert soils (104 mmol m-2 d-1, 

range = 95 to 110 mmol m-2 d-1; Raich and Schlesinger [1992]), and it was in the upper 

range of values for the regional mean CO2 efflux from Mediterranean soils (188 mmol m-2 

d-1, range = 44 to 371 mmol m-2 d-1; Bond-Lamberty and Thomson [2012]). Although the 

magnitude of CO2 efflux from dry beds was within the range of reported soil emissions, the 

CO2 from this environment should not be considered terrestrial because the C processed in 

dry beds has either already left from the terrestrial ecosystems and entered into the fluvial 

network or has been produced within the fluvial network. In addition, the sediments from 

dry rivers and terrestrial soils are different environments in terms of physical structure 

and biogeochemical dynamics [McIntyre et al., 2009; Larned et al., 2010; Steward et al., 

2012]. Thus, we emphasize that dry beds should be included in CO2 balances from fluvial 

networks, particularly in arid and semiarid regions, such as the Mediterranean. 
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Despite the high variability of CH4 efflux detected for impounded waters, this environment 

likely represents a hot spot for CH4 efflux to the atmosphere. This result is consistent with 

the notion that impounded waters stored in dams and smaller impoundments play a 

prominent role in the CH4 efflux from fluvial networks [Maeck et al., 2013; Xiao et al., 2013]. 

Furthermore, the other three environments studied (running waters, isolated pools and 

dry beds) were net emitters of CH4. Although previous studies have detected CH4 efflux 

from rivers [Striegl et al., 2012; Crawford et al., [2013]; Campeau and Lapierre, 2014; 

Crawford et al., 2014b] and dry beds [Gallo et al., 2013], this study provides to our 

knowledge the first evaluation of the CH4 efflux from isolated river pools.  

Ebullition was the primary pathway for CH4 efflux from impounded waters. This finding 

is consistent with previous studies [Delsontro et al., 2010; Maeck et al., 2013] and contrary 

to the efflux pathway of CO2 which is a more soluble gas that primarily follows a strictly 

diffusive pathway of emission to the atmosphere [Belger et al., 2010]. The ebullitive CH4 

efflux from impounded waters, as the only environment experiencing ebullition in the 

present study, contributed to more than 85% of the total CH4 efflux when the evasion of 

CH4 was detected.  

The CH4 efflux was estimated using a floating chamber, reported as the most appropriate 

method for water-atmosphere diffusion flux measurements [Cole et al., 2010]. Nonetheless, 

the floating chamber approach can be problematic in the case of ebullition measurements 

from aquatic systems [Bastviken et al., 2004; Delsontro et al., 2010; Crawford et al., 2013]. 

The vast spatial and temporal heterogeneity of CH4 ebullitive fluxes is generally not 

captured through short-term floating chamber experiments (10 min in our study). An 

inverted funnel survey designed to cover the maximum surface area of the impounded 

waters would likely have reduced potential sampling bias and increased the accuracy of 

the spatially and temporally integrated final dataset for CH4 ebullitive fluxes [Bastien and 

Demarty, 2013; Maeck et al., 2013]. Although we did not observe ebullition in running 

waters and isolated pools (i.e., we never observed non-linearity in dCH4/dt during the 

chamber deployments or bubbles emerging from the stream or isolated pool sediments), a 

sampling design with inverted funnel-style bubble traps would have improved the 

characterization of CH4 ebullitive fluxes from these environments [Baulch et al., 2011; 

Crawford et al., 2014a]. Despite the potential inaccuracies in capturing the temporal and 
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spatial heterogeneity, the results indicate that the contribution of ebullitive efflux of CH4 

to the total CH4 efflux is substantial in Mediterranean impounded waters during summer 

drought, and that they should be taken into account in CH4 flux assessments. 

 

3.4.2 Physical and biogeochemical regulation of CO2 and CH4 effluxes 

The unexpected negative relationship between the basal respiration and CO2 efflux 

indicates potential decoupling between CO2 production and CO2 emission from dry river 

and impoundment beds. This decoupling between processes suggests the existence of a 

physical factor restricting the evasion of the biologically produced CO2. Based on the results 

obtained in the present study, the dry bed water content might play a dual role in the CO2 

generation-emission mechanism. On the one hand, higher water content enhances C 

respiration by facilitating the contact between microorganisms and available substrates 

[Koschorreck and Darwich, 2003; Xu et al., 2004; Luo and Zhou, 2010]. On the other hand, 

higher water content diminishes the CO2 efflux through the restriction of the gas diffusivity 

through the dry media, consistent with the results from Howard and Howard [1993] and 

Fujikawa and Miyazaki [2005] showing that the diffusivity of CO2 and other gases in soils 

is strongly reduced when the air-filled porosity decreases with increasing water content. 

Taken together, these results suggest that the water content might modulate the 

uncoupling between CO2 production and CO2 emission from dry beds. However, it has to 

be noted that dry bed water content is highly dynamic in both space and time, and other 

non-biotic CO2-generating processes (e.g., interactions with the groundwater system [Rey, 

2015], reactions with the carbonate system [Angert et al., 2014] or photochemical 

degradation reactions [Austin and Vivanco, 2006] could potentially contribute to the 

observed uncoupling between the respiratory process and the emission of CO2. Hence, 

further studies are required to understand the relative importance of environmental 

variables (e.g., air temperature, precipitation, vegetation) with respect to the role of local 

conditions (e.g., water content, temperature, OM content and type, grain size distribution 

of the substrate, light regime, and carbonate content) in driving the CO2 efflux from dry 

beds.  
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In aquatic environments, the diffusive CO2 efflux depends on both the surface water 

pCO2, w , which is primarily regulated through biogeochemical processes [Sobek and 

Algesten, 2003; Campeau and del Giorgio, 2013], and the k600 , which is a physical factor 

including the turbulent and molecular diffusion of CO2 [Bade, 2009]. However, the extent 

to which these two factors regulate the aquatic CO2 efflux from Mediterranean fluvial 

networks during summer drought and whether there are shifts in the relative importance 

of these two parameters across the different aquatic environments remain unknown. The 

results of the present study show that k600acts as the primary control for the CO2 efflux 

along the studied aquatic environments. Although the three types of aquatic environments 

were supersaturated in terms of pCO2, w , strong evidence for the active role of the physical 

turbulence (measured here as k600) as a factor enhancing the exchange process between 

generated CO2 and emitted CO2 was observed [Halbedel and Koschorreck, 2013]. In 

running waters, the aquatic environment experiencing the highest CO2 efflux, the CO2 gas 

is immediately emitted because the high turbulence disrupts the surface boundary layer 

[Alin et al., 2011; Demars and Manson, 2013]. With values of pCO2, w similar to those from 

running waters, impounded waters showed a lower efflux of CO2, suggesting a partial 

physical limitation of CO2 gas. An extreme effect of the physical limitation of CO2 efflux 

occurred in the isolated river pools, where CO2 efflux was lowest despite showing the 

highest pCO2, w . 

Because of the unbalanced contribution of diffusion and ebullition to the total CH4 efflux in 

the different environments, any statistical assessment of the factors controlling the CH4 

efflux could not be performed. In any case, the total CH4 efflux was detectable, but low, 

from all environments, except impounded waters, where the dominant efflux pathway was 

the ebullitive one (see above). Nonetheless, our results are consistent with those of previous 

studies showing that both the residence time and the sediment physical and chemical 

composition also play a crucial role in controlling the biological activity involved in the 

generation of CH4 in the sediment layer [Sobek et al., 2012; Maeck et al., 2013]. The amount 

and composition of stored OM are key factors affecting the biological activity in sediments 

and, therefore, the CH4 efflux [Mulholland and Elwood, 1982; Downing et al., 2008; Sobek 

et al., 2012]. Moreover, the porosity of the sediment plays an important role by limiting or 
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favouring the diffusion of CH4, the shape of CH4 bubbles and the capacity for CH4 to escape 

from or be retained in the sediment media [Delsontro et al., 2010; Meier et al., 2011] 

Unexpectedly, the CH4 efflux in isolated pools was low, despite the high water residence 

time and optimum redox conditions for methanogenic activity, suggesting that these 

systems contain much less stored OM compared with impounded waters which are more 

active OM traps. Thus, we speculate that the amount of OM could be a limiting factor for 

the CH4 generation in the sediments of isolated pools. Nevertheless, the hydrological 

isolation in the pools generates individual systems highly influenced through particular 

local conditions [Bonada et al., 2006; von Schiller et al., 2011]. For example, these 

observations would likely differ under contrasting situations, such as increased canopy 

cover and higher leaf input. Thus, further investigation of the hydrological and 

biogeochemical processes in isolated pools over time and across contrasting systems is 

needed to better understand the dynamics of C emissions from these systems.  

 

3.4.3 Potential changes in C emissions from Mediterranean fluvial networks under future 

hydrological scenarios 

River desiccation and impoundment of running waters through the construction of dams 

or small weirs have been recognized as some of the most important environmental 

pressures on fluvial networks worldwide [Nilsson et al., 2005a; Sabater, 2008; Vörösmarty 

et al., 2010; Steward et al., 2012]. The influence and interplay between these two processes 

largely determines the relative surface area of the different environments comprising the 

fluvial network. Estimation of the areal extent and distribution of different environments 

along the fluvial network is key aspect when upscaling specific biogeochemical processes to 

the entire fluvial network [Benstead and Leigh, 2012]. However, the high temporal and 

spatial dynamism of Mediterranean rivers makes these estimations extremely difficult and 

subject to high inaccuracies [Benstead and Leigh, 2012; Datry et al., 2014]. 

Herein, we applied a simple heuristic approach using different potential scenarios to 

evaluate how river desiccation and running water impoundment might affect the C 

emissions from fluvial networks. We combined the mean CO2 and CH4 effluxes measured 
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for each environment with the relative surface area (%) of each environment in each 

scenario to obtain a mean fluvial network efflux of CO2, CH4, and total C (i.e., sum of CO2 

and CH4), and the total C considering the global warming potential (i.e., CGWP; expressed 

as CO2 Eq)(Figure 3.5). We then combined the annual mean relative area per environment 

from the COastal Segmentation analysis and the related CATchments regions for the 

study region (Meybeck et al., [2006], COSCAT Region 418) with the data from the dry and 

total river effective areas from the same region [Raymond et al., 2013] to situate an 

idealized Western Mediterranean fluvial network in the scenarios contour map (Figure 

3.5). The idealized fluvial network (with an annual mean relative surface area of running 

waters, impounded waters and dry river and impoundment beds of 54.8, 30.7 and 14.5%, 

respectively) emits 107 mmol m-2d-1 of CO2, 4.4 mmol m-2 d-1 of CH4, 112 mmol m-2 d-1 of total 

C and 217 mmol m-2 d-1 of total CGWP. 
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Figure 3.5  Contour p lots  simu lat ing the effect  of a  broad spectrum of  potentia l  hydrological  

scenarios of r iver desiccation and transformation of running waters in to impounded waters of 

an hypothetical  Mediterranean f luv ia l  network during summer drought (expressed in terms of 

re lat ive surface area of dry bed (x-ax is) and re lat ive surface area of impounded waters (y-axis))  

on (a)  the mean f luv ia l  network CO2  ef f lux,  (b)  the  mean f luv ia l  network  CH 4  ef f lux,  (c)  the mean 

total  f luv ia l  network  C eff lux  and (d)  the mean total  C eff lux considering the g lobal  warming 

potentia l  of  CH4  (expressed as  CO2  Eq).  The marked asterisks represent an ideal ized Western 

Mediterranean f luv ia l  network.  Detai ls  of calculat ions are prov ided in the text.  

 

3.5 Conclusions and implications 

The results of the present study show that dry beds and running waters (for CO2) and 

impounded waters (for CH4) are hot spots for C efflux from Mediterranean fluvial networks 

during summer drought. These results suggest dry beds as active sites in terms of C 
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emissions, which should be considered in C balances from fluvial networks in arid and 

semiarid areas. The CO2 efflux, which was only mediated via diffusion, is mostly physically 

limited in both dry and aquatic environments. In contrast, the CH4 efflux, which is 

predominantly mediated through ebullition, is primarily controlled through the biological 

activity in the sediments. The duration, spatial extent and severity of flow intermittency 

and the degree of river impoundment will play a decisive role in shaping the C efflux from 

fluvial networks in response to global change.
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Abstract 

Most fluvial networks worldwide include watercourses that recurrently cease to flow and 

run dry. The spatial and temporal extent of the dry phase of these temporary watercourses 

is increasing as a result of global change. Yet, current estimates of carbon (C) emissions 

from fluvial networks do not consider temporary watercourses when they are dry. We 

characterized the magnitude and variability of C emissions from dry watercourses by 

measuring the carbon dioxide (CO2) flux from 10 dry riverbeds of a temporary fluvial 

network during the dry period and comparing it to the CO2 flux from the same riverbeds 

during the flowing period and to the CO2 flux from their adjacent upland soils. We also 

looked for potential drivers regulating the CO2 emissions by examining the main physical 

and chemical properties of dry riverbed sediments and adjacent upland soils. The CO2 

efflux from dry riverbeds (mean ± sd = 781.4 ± 390.2 mmol m-2 d-1) doubled the CO2 efflux 

from flowing riverbeds (305.6 ± 206.1 mmol m-2 d-1) and was comparable to the CO2 efflux 

from upland soils (896.1 ± 263.2 mmol m-2 d-1). However, dry riverbed sediments and 

upland soils were physicochemically distinct and differed in the variables regulating their 

CO2 efflux. Overall, our results indicate that dry riverbeds constitute a unique and 

biogeochemically active habitat that can emit significant amounts of CO2 to the 

atmosphere. Thus, omitting CO2 emissions from temporary streams and rivers when they 

are dry may overlook the role of a key component of the C balance of fluvial networks.  

 

 

 

 

 

 

Original publication (Appendix C in the Supporting information section):  

Gómez-Gener, L., B. Obrador, R. Marcé, V. Acuña, N. Catalán, J. P. Casas-Ruiz, S. 
Sabater, I. Muñoz, and D. von Schiller (2016), When water vanishes: magnitude and 
regulation of carbon dioxide emissions from dry temporary streams, Ecosystems, 19(4), 
710–723, doi:10.1007/s10021-016-9963-4. 
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4.1 Introduction 

Fluvial networks emit significant amounts of carbon dioxide (CO2) to the atmosphere 

[Raymond et al., 2013a; Lauerwald et al., 2015]. However, considerable uncertainties 

regarding the magnitude and controls of CO2 emitted from fluvial networks still exist 

[Wehrli, 2013]. For instance, current global estimates do not accurately consider the CO2 

emitted from expanded areas of rivers and streams during floods, which can increase the 

areal extent of fluvial networks by several orders of magnitude [Richey et al., 2002]. Also, 

these estimates, based on continuous models, do not include the CO2 emitted from local 

discontinuities along the fluvial network, such as weirs, rapids, waterfalls or turbine 

releases in hydropower plants [Wehrli, 2013]. Finally, current estimates do not consider 

the CO2 emitted from the areas of temporary watercourses that recurrently run dry 

[Raymond et al., 2013a]. 

Temporary watercourses can be found in many areas of the world [Acuña et al., 2014]. In 

Australia, roughly 70% of the 3.5 million kilometres of watercourses are considered 

temporary[Sheldon et al., 2010], and more than half of the total length of watercourses in 

the United States, Greece, and South Africa are also temporary [Larned et al., 2010]. Low-

order streams deserve special attention, since they account for more than 70% of fluvial 

networks surface area and are particularly prone to flow intermittency [Lowe et al., 2006]. 

These are very dynamic systems in time and space, and analysing their spatial coverage is 

particularly difficult to detect by traditional mapping techniques [Benstead and Leigh, 

2012]. We can therefore suspect that the surface area of temporary watercourses in the 

global fluvial network can be higher than 50% [Datry et al., 2014a], while their importance 

is increasing as a result of the combined effects of climate and land use changes [Palmer et 

al., 2008; Larned et al., 2010; Hoerling et al., 2012]. 

The dry beds of temporary streams and rivers hereinafter referred to as dry riverbeds 

[Steward et al., 2012], are dynamic habitats [Stanley et al., 1997; Boulton, 2003], 

representing spatial (i.e., transitional zones between dissimilar habitats), and temporal 

(i.e., transitional periods between persistent and dissimilar states), ecotones [Naiman and 

Decamps, 1997]. These systems are constrained by the strength of interactions with their 

adjacent ecosystems. Thus, against the traditional view of being “biogeochemically 
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inactive”, dry riverbeds are likely to be potential active sites for materials transformations 

[McLain and Martens, 2006]. In fact, recent studies reported that carbon (C) processing in 

dry riverbed sediments can be maintained to some degree during river desiccation by the 

activity of well-adapted biofilms [Zoppini and Marxsen, 2011; Timoner et al., 2012; Pohlon 

et al., 2013]. Likewise, first estimates also showed that dry riverbeds are not inert but 

rather potentially active sites for CO2 release to the atmosphere [Gallo et al., 2013]. 

The C processed in dry streams and rivers has its particular history, since it either already 

left terrestrial ecosystems and entered the fluvial network, or was produced within the 

fluvial network [Steward et al., 2012]. Therefore, emissions of CO2 from dry riverbeds 

should not be considered terrestrial, but mostly as a fundamental biogeochemical 

component of fluvial networks under drought. Yet, little is known about the spatial 

variability and drivers of CO2 emissions from dry riverbeds and the differences and 

similarities with respect to CO2 emissions from terrestrial soils.  

The aim of this study was to quantify CO2 emissions from dry riverbeds of a temporary 

fluvial network, comparing them to those during the flowing period and to those from 

adjacent upland soils. We also looked for potential drivers regulating the CO2 emissions by 

examining the main physical and chemical properties of dry riverbed sediments and 

adjacent upland soils. We predicted differences in both the magnitude and drivers 

controlling CO2 emissions between dry riverbeds and the other investigated habitats 

because of strong dissimilarities in physicochemical properties and biogeochemical 

dynamics. 

 

4.2 Materials and Methods 

4.2.1 Study sites and sampling design 

The Fluvià River (NE Iberian Peninsula; Figure 4.1) is 97-km long and drains a 990-km2 

catchment covered with mixed forests (78%), agricultural (19%) and urban (3%) areas 

(Land Cover Map of Catalonia 2009, Centre of Ecology and Forestry Research of Catalonia) 

The climate in the region is typically Mediterranean. Mean monthly air temperature 

ranges from 6ºC in January to 26 ºC in July. Mean annual precipitation is 660 mm, with 
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rainfall mainly occurring in autumn and spring (Data from 2004 to 2014, Catalan Water 

Agency). During the wet period (late autumn to early spring), hydrological connectivity is 

enhanced and most of the fluvial network area is covered with surface water. In contrast, 

during the dry period (late spring to early autumn) hydrological connectivity is reduced and 

the area of the fluvial network covered with surface water drastically decreases.  

 

 
Figure 4.1  Location of the F luvià River  in Catalonia (NE Iberian Peninsula),  wi th the 

corresponding posit ion of the study si tes (n = 10).  

We conducted two samplings in 10 temporary tributaries of the Fluvià River spanning a 

wide range of physiographic and land use conditions (Figure 4.1 and Table 4.1). In the first 

sampling (dry period; August 2014), we measured CO2 fluxes and took samples from the 

dry riverbed sediments and adjacent upland soils. In the second sampling (flowing period, 

March 2015), we measured the CO2 fluxes from the riverbeds where flowing water was 

found (7 out of 10 rivers; see Figure A.4.1 in the Supporting information section for details).  
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Table 4.1  Physiographic and land use characteris t ics  of the study si tes and their corresponding subcatchments  

   
 

Site-specific parameters Catchment-specific parameters

Stream name
Stream 

code

Stream 

ordera

Surface 

areaa (ha)
Lithologyc  (%)

x y Small fractionsCobbles Boulders Scrubs Pastures Crops Forest 

Riera de St. Miquel 1 473788 4663780 4 77.2 22.8 0.0 5191 1.2 2.6 10.7 84.6 Loams (66), conglomerates (17) and gravels (16)

Riera de Mieres 2 470306 4663964 4 71.1 28.9 0.0 1825 1.1 5.1 18.4 72.9 Loams (65), gravels (22) and conglomerates (12)

Torrent de Pujolars 3 464116 4665691 3 49.1 43.7 7.2 1219 0.2 0.1 7.9 91.7 Conglomerates (87) and gravels (13) 

Torrent de Rocanegra 4 464289 4665909 2 58.8 41.2 0.0 1252 1.7 3.7 27.6 59.4 Conglomerates (62), volcanic deposits (34) and gravels (23)

Fluvià 5 454382 4662603 4 63.2 31.6 5.2 3078 0.9 10.7 16.9 70.2 Conglomerates (64), gravels (18), silt (7), snadstone (6) and gravels (5) 

Joanetes 6 453844 4663758 4 61.4 38.6 0.0 2954 1.3 4.1 11.4 81.9 Conglomerates (66), gravels (18) and loams (11)

Torrent de St. Pere 7 453724 4673311 3 59.8 29.8 10.3 1480 0.2 2.1 10.5 86.2 Conglomerates (85), loams (9) and gravels (5)

Riera d'Oix 8 462235 4680827 4 79.0 21.0 0.0 11085 4.4 1.4 1.9 92.2 Loams (49), conglomerates (33) gravels (16) and limestone (9)

Llierca 9 466415 4679576 5 67.6 32.4 0.0 16743 5.9 2.8 1.5 89.7 Loams (59), limestone (23) and sandstone (18)

Barranc de Junyell 10 476914 4671359 3 55.6 44.4 0.0 5238 0.5 0.3 1.9 97.3 Conglomerates (76), gravels (21) and sandstone (2)

a Stream order  and subcatchment surface area  were calculated with the Hydrological Extension in ESRI® ArcGISTM v. 10.0 software. Data obtained from a 2-meter digital elevation model (Centre of Ecology and Forestry Research of Catalonia)

b Surface grain-size  characterization of studied streambeds was estimated following an image-processing-based procedure (Graham and others 2005). Results were obtained from an average of 3 high resolution photos along 50 m stream segments. 

  Fraction classification was made according Wentworth (1922). Small fractions contain silt, clay, sand and gravel fractions.

c Subcatchments land uses and lithologies  (S=silt, L=loams, C=conglomerates, G=gravels, V=volcanic deposits, LS=limestone) were calculated with ESRI® ArcGISTM v. 10.0 software from a Land cover map of Catalonia and a Lithological map of Catalonia, 

  respectively (Centre of Ecology and Forestry Research of Catalonia)

Coordinates Streambed grain sizesb (%) Land usesc (%)
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4.2.2 Determination of CO2 fluxes  

In both dry riverbeds and upland soils, we applied the enclosed dynamic chamber method 

[Livingston and Hutchinson, 1995] to measure the CO2 flux. Briefly, we monitored the gas 

concentration in an opaque chamber (SRC-1, PP-Systems, USA) every 4.8 s with an 

infrared gas analyser (EGM-4, PP-Systems, USA). Measurement accuracy of the EGM-4 

is estimated to be within 1% over the calibrated range. In all the cases, flux measurements 

lasted until a change in CO2 of at least 10 µatm was reached, with a maximum duration of 

300 s and a minimum of 120 s. We calculated the CO2 flux (����, mmol m-2 d-1) from the 

rate of change of CO2 inside the chamber: 

FCO2  � �dpCO2
dt

�  � V

RTS
�          (1) 

where 
dpCO2

dt
 is the slope of the gas accumulation in the chamber along time in µatm s−1, V 

is the volume of the chamber (1.171 dm3), S is the surface area of the chamber (0.78 dm2), 

T is the air temperature in Kelvin and R is the ideal gas constant in l atm K−1 mol−1. Positive 

����  values represent efflux of gas to the atmosphere, and negative ���� values indicate 

influx of gas from the atmosphere. We performed 4 randomly distributed measurements 

within each site,, 4 in dry riverbeds and 4 in upland soils.  

In the flowing riverbeds we measured the CO2 flux applying the Fick’s First Law of gas 

diffusion: 

FCO2  � k���  Kh �pCO2, w - pCO2, a �      (2) 

where ���� is the estimated CO2 flux between the surface river water and the atmosphere 

(mmol m-2 d-1), Kh is the Henry’s constant (mmol µatm-1 m-3) adjusted for salinity and 

temperature [Weiss, 1974; Millero, 1995], pCO2, w and pCO2, a are the surface water and the 

atmosphere partial pressures of CO2 (µatm), respectively, and 
���  is the specific gas 

transfer velocity for CO2 (m d-1). 
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We measured pCO2, w and pCO2, a  with an infrared gas analyser (EGM-4, PP-Systems, 

USA). In the case of pCO2, w  we coupled the gas analyzer to a membrane contactor 

(MiniModule, Liqui-Cel, USA). The water was circulated via gravity through the contactor 

at 300 mL min -1, and the equilibrated gas was continuously recirculated into the infrared 

gas analyser for instantaneous pCO2  measurements [Teodoru et al., 2010]. 

We estimated the kCO2  from the night-time drop in dissolved oxygen concentration 

[Hornberger and Kelly 1975], a method that has been extensively applied in ecosystem 

metabolism studies in rivers and streams (for example, Aristegi et al., [2009]; Hunt et al., 

[2012]; Riley and Dodds [2013]). Briefly, photosynthesis ceases from sunset to sunrise, thus 

night time dynamics of oxygen depend on respiration and reaeration. During the night, 

respiration reduces the oxygen levels until atmospheric equilibrium is reached. In parallel, 

reaeration approaches the oxygen concentration to saturation. Thus, when we plot the 

night time oxygen concentration per unit of time versus the oxygen saturation deficit, a 

linear trend is obtained. The intercept of the regression corresponds to the respiration (g 

O2 m-2 h-1), and the slope to the mean reaeration coefficient (KO2;d-1). We corrected the 

KO2  for depth to obtain the mean gas transfer velocity of oxygen (kO2;m d-1) [Raymond et 

al., 2012] and we further transformed to kCO2  by applying equation (3).  

 kCO2  � kO2(
ScCO2

ScO2

)
-n

 ,        (3) 

where kCO2  is the mean gas transfer velocity of CO2 (m d-1), �����  and ����  are the Schmidt 

numbers of respectively CO2 and O2 at a given water temperature [Wanninkhof, 1992]. 

Following Bade [2009], we set the exponent n to 1/2 for turbulent environments (i.e., 

flowing waters). We obtained the diel cycles of dissolved oxygen concentration and 

temperature at each site at a frequency of 5 minutes with an optical dissolved oxygen 

sensor (MiniDot, PME, USA). 
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4.2.3 Physical and chemical characterization of dry riverbeds and upland soils 

At each flux measurement location, we measured the substrate temperature by means of 

a portable soil probe (Decagon ECH2O 10HS, Pullman, USA) and collected substrate 

samples (i.e., dry riverbed sediments and upland soils (0-10 cm depth)), after the flux 

measurements had been carried out. In the laboratory, we measured the substrate pH 

from a 1:1 sample:deionized water mixture [McLean 1982] with a hand-held pH meter (pH 

3110, WTW, Germany). We also determined gravimetrically the substrate water content 

by drying a fresh subsample at 105 ºC and the organic matter (OM) content by sample 

combustion following the loss on ignition method [Dean 1974]. We sieved the air-dried 

samples (2-mm mesh) and determined their main textural fractions (% sand, % silt and % 

clay) and their mean particle size with a laser-light diffraction instrument (Coulter LS 230, 

Beckman-Coulter, USA). We determined the percent of organic carbon (OC) and total 

nitrogen (TN) from a sieved an air-dried subsample on an Elemental Analyzer (Model 

1108, Carlo-Erba, Italy) after grinding and eliminating the inorganic fraction (i.e., 

carbonates), by acidification (1.5N HCl) . 

Water Extractable Organic Matter (WEOM), the fraction of DOM extracted with deionized 

water, and conceptually consisting of the mobile and available portion of the total DOM 

pool [Corvasce et al., 2006; Vergnoux et al., 2011], was obtained by shaking (100 rpm, 4ºC) 

the air-dried, sieved and grinded samples with deionized water in the dark for 48h with a 

sample: water ratio of 1:10. After the extraction, we filtered the leachates through 0.70 and 

0.45 µm pre-combusted glass microfiber filters (Whatman, USA). We determined their raw 

dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) concentration with a 

total OC analyser (TOC-V CSH, Shimadzu, Japan). The detection limit of the analysis 

procedure was 0.05 mgC l-1 for DOC and 0.005 mgN l-1 for TDN. All samples were 

previously acidified with HCl 1.5 N and preserved at 4 ºC until analysis. The extraction 

efficiencies were calculated as the ratio between the mass of WEOM recovered and the 

mass of the dry sample used for the extraction.  

UV/Vis absorbance and fluorescence spectra were obtained from diluted WEOM extracts 

(DOC≈10 mg l−1) [Anesio et al., 2000]. We measured the UV/Vis absorbance spectra (200-

800 nm) using a 1-cm quartz cuvette on a spectrophotometer (Shimadzu UV-1700, 
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Shimadzu, USA) with an analytical precision of 0.001 absorbance units. From the 

absorbance spectra, we calculated the specific UV absorbance at 254 nm (SUVA254, L mg-1 

m-1) by dividing the absorbance at 254 nm by DOC concentration and cuvette path length 

(m). SUVA254 is positively related with the aromaticity of DOM, with values generally 

ranging between 1 and 9 L mg-1 m-1 [Weishaar et al., 2003]. 

We obtained the excitation–emission matrices (EEM) on a spectrofluorometer (Shimadzu 

RF-5301PC, Shimadzu, USA) using a 1-cm quartz cuvette. We ran the EEM scans over an 

emission range of 270–630 nm (1-nm increments) and an excitation range of 240–400 (10-

nm increments). A water blank (Milli-Q Millipore) EEM, recorded under the same 

conditions, was subtracted from each sample to eliminate Raman scattering. The area 

underneath the water Raman scan was used to normalize all sample intensities. All the 

EEMs where corrected for instrument-specific biases, and inner-filter effects corrections 

where applied according to Kothawala et al., [2013]. From EEMs we calculated 3 indices: 

the fluorescence index (FI) as the ratio of the emission intensities at 470/520 nm for an 

excitation wavelength of 370 nm [Jaffé et al., 2008]. FI is an indicator of terrestrial (low FI) 

or microbial (high FI) origin of DOM. The humification index (HIX) was calculated as the 

peak area under the emission spectrum 435–480 nm divided by that of 300–345 nm, at an 

excitation of 254 [Zsolnay et al., 1999]. Higher values of HIX correspond to a higher degree 

of humification [Huguet et al., 2009; Fellman et al., 2010]. Finally, we calculated the 

biological index (BIX) as the ratio of the emission intensities at 380/430 nm for an excitation 

of 310 nm [Huguet et al., 2009]. The BIX is an indicator of recent biological activity or 

recently produced DOM. Higher values of BIX correspond to a predominantly 

autochthonous origin of DOM and to the presence of OM freshly released into the sample, 

whereas a lower DOM production will lead to a low value of BIX [Huguet et al., 2009]. 

 

4.2.4 Data analysis 

We performed paired t-tests to test the differences in terms of CO2 flux among habitats (i.e., 

dry riverbed vs. upland soil and dry riverbed vs. flowing riverbed).  

We applied a principal component analysis (PCA) on the correlation matrix to ordinate the 

dry riverbeds (n = 10) and upland soil sites (n = 10) by their physical and chemical 
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properties. All the variables included in the analysis are described in Table 4.2. We also 

examined differences in physical and chemical properties of dry riverbed sediments and 

upland soils by means of paired t-tests. 

We built two PLS regression models (projections of latent structures by means of partial 

least squares, Wold et al., [2001]) to identify the potential physical and chemical drivers of 

CO2 fluxes in dry riverbeds (n = 35) and upland soils (n = 34). All the variables included in 

the models are described in Table 4.2. PLS is a regression extension of PCA and allows the 

exploration of relationships between multiple, collinear data matrices of X’ and Y’s. The 

model performance is expressed by R2Y (explained variance) and by Q2Y (predictive power 

estimated by cross validation). The PLS model was validated by comparing the goodness 

of fit with models built from randomized Y-variables. To summarize the influence of every 

X-variable on the Y-variable, across the extracted PLS components, we used the variable 

influence on projection (VIP). The VIP scores of every model term (X-variables) are 

cumulative across components and weighted according to the amount of Y-variance 

explained in each component [Wold et al., 2001]. X-variables with VIP > 1 are most 

influential on the Y-variable. A cut off around 0.8 separates moderately important X-

variables, whereas those below this threshold can be regarded as less influential.  

 

Table 4.2  Overview of X and Y variables included in the PCA and PLS models. 

 

Variable Description PCA model PLS models

F CO 2 CO2 flux (mmol m
-2
 d

-1
)     Y

WC Water content (%) X X

Temp Temperature (ºC) X X

Sand Sand fraction (%) X X

Silt Sil fraction (%) X X

Clay Clay fraction (%) X X

P. Size Mean particle size (µm) X X

OM Organic matter content (%) X X

OC Organic carbon content (%) X X

TN Nitrogen content (%) X X

DOC Dissolved organic carbon concentration of WEOM (mg g
-1
) X X

TDN Total dissolved nitrogen concentration of WEOM (mg g
-1

) X X

SUVA SUVA254 index of WEOM (l mg
-1

 m
-1

) X X

FI Fluorescense index of WEOM X X

HIX Humification index of WEOM X X

BIX Biological index of WEOM X X
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All statistical analyses were conducted in the R statistical environment [R Core Team 2013] 

using the vegan package [Oksanen et al., 2013], except for PLS analysis which was done 

with the software XLSAT (XLSTAT 2015.2.01, Addinsoft SRAL, Germany). Our data met 

the conditions of homogeneity of variance and normality. Statistical tests were considered 

significant at p < 0.05. Extreme outliers were excluded from the CO2 flux data set after 

careful data exploration using numerical and graphical tools (i.e., Cook’s influential outlier 

tests, boxplots, and Cleveland dotlpots, following Zuur et al., [2010] 

 

4.3 Results  

4.3.1 CO2 effluxes 

Dry riverbeds (mean ± sd = 781.4 ± 390.2 mmol m-2 d-1), flowing riverbeds (305.6 ± 206.1 

mmol m-2 d-1) and upland soils (896.1 ± 263.2 mmol m-2 d-1) were net emitters of CO2 to the 

atmosphere (Figure 4.2). The CO2 efflux from dry riverbeds experienced the highest intra-

habitat variability and was significantly higher than the CO2 efflux from flowing riverbeds 

(Paired t-test: p = 0.043, n = 7), but not statistically different than the CO2 efflux from 

upland soils (Paired t-test: p = 0.444, n = 10). 

 

 
Figure 4.2 Mean CO2  ef f lux  from dry r iverbeds (n  =  10),  f lowing riverbeds (n  =  7)  and adjacent 

upland soi ls (n = 10) of  the s tudied r ivers.  The error  bars represent s tandard deviat ions. 
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4.3.2 Physical and chemical properties of dry riverbed sediments and upland soils 

The principal component analysis (PCA) based on physical and chemical properties of the 

dry riverbed sediments and upland soils stressed differences between the two habitats 

(Figure 4.3). The two first axes of the PCA explained 71.6% of total variance. The first 

principal component (58.9% of total variance), clearly separated dry riverbeds and upland 

soils, and was related to texture properties, water content and OM quantity. The second 

principal component (12.7% of total variance), was mainly related to temperature and 

quality of the WEOM, and exerted a minor effect on the scores distribution along the 2 

planes.  

 

 

Figure 4.3  Mul t ivariate  ord inat ion (PCA) of dry  r iverbed sediments and upland soi ls  based on 

physical  and chemical  descriptors (See Table 2 fo r the explanation of the abbreviat ions).  The 

percentage of explained varia t ion for each component is shown in brackets.  The symbo ls 

represent the scores of the samples for the f i rst  two axes and the arrows represent the loadings 

of each descriptor  for  the f i rs t two axes.  

 

The paired t-tests further corroborated that dry riverbed sediments and upland soils 

differed in several physical and chemical properties (Table 4.3). Water content was 
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significantly lower in dry riverbeds than in upland soils. The substrate texture differed 

significantly between habitats. Dry riverbeds showed higher sand fraction and mean 

particle size, whereas upland soils had higher silt and clay fractions. The pH was 

significantly higher in dry riverbeds, whereas upland soils had higher organic matter, OC 

and TN content, both in the solid and in the extracted phase (WEOM). The SUVA254 and 

FI indices indicated that the WEOM from dry riverbeds was less aromatic and had a more 

microbial-derived character than the WEOM from upland soils. 

 

4.3.3 Drivers of CO2 emissions from dry streambed sediments and upland soils  

The PLS regression model for dry riverbed sediments (Figure 4.4) extracted two 

components from the data matrix that explained 40% of the variance (R2Y = 0.40). The first 

(horizontal axis in Figure 4.4a) and the second PLS components (vertical axis in Figure 

4.4a) respectively explained respectively 20.1% and 19.7% of the variance. This analysis 

stressed the relevance (VIP > 1) of sediment temperature, mean particle size, DOC, TDN 

and TN explaining the variance in the CO2 efflux from dry riverbed sediments.  

The PLS model for upland soils (Figure 4.4b) extracted two components that explained 

42% of the variance (R2Y = 0.42). The first and the second PLS components explained 

respectively, 24.0% and 17.6% of the variance. The pH, mean particle size, sand, silt and 

clay fractions, SUVA254, FI and HIX were the most influential descriptors explaining the 

variance in the CO2 efflux from upland soils (VIP > 1). 
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Physical characteristics Chemical characteristics

% % % mg g DW-1 mg g DW-1

1 Dry streambed 18.5 ± 0.3 5.5 ± 0.5 81.4 ± 1.4 11.2 ± 1.1 7.5 ± 0.4 1483.6 ± 168.5 8.49 ± 0.04 1.01 ± 0.18 0.94 ± 0.76 0.03 ± 0.01 0.06 ± 0.01 0.00 ± 0.00 3.12 ± 0.29 2.20 ± 0.17 7.62 ± 1.36 0.52 ± 0.06

Upland soil 19.0 ± 0.0 16.4 ± 1.4 45.2 ± 9.4 34.8 ± 6.4 20.0 ± 3.2 407.7 ± 306.5 8.43 ± 0.05 6.68 ± 2.36 3.15 ± 2.05 0.20 ± 0.13 0.39 ± 0.12 0.03 ± 0.01 5.93 ± 1.05 2.08 ± 0.01 6.27 ± 0.70 0.54 ± 0.01

2 Dry streambed 19.8 ± 0.4 13.0 ± 6.2 38.9 ± 33.5 34.3 ± 16.5 26.8 ± 17.2 1326.4 ± 235.9 7.96 ± 0.17 2.50 ± 1.92 1.00 ± 0.44 0.09 ± 0.04 0.18 ± 0.08 0.01 ± 0.01 3.58 ± 1.00 2.29 ± 0.08 3.77 ± 0.78 0.57 ± 0.03

Upland soil 19.9 ± 0.3 21.9 ± 3.8 59.8 ± 3.5 29.7 ± 2.6 10.5 ± 2.7 1239.3 ± 296.0 8.08 ± 0.07 10.10 ± 2.41 5.96 ± 1.32 0.36 ± 0.08 0.47 ± 0.02 0.05 ± 0.01 6.19 ± 0.79 2.09 ± 0.13 5.18 ± 1.61 0.50 ± 0.06

3 Dry streambed 17.7 ± 0.3 20.3 ± 5.6 72.5 ± 34.8 19.9 ± 26.2 7.6 ± 8.6 1039.1 ± 373.8 8.40 ± 0.13 3.79 ± 2.00 1.02 ± 1.07 0.08 ± 0.06 0.11 ± 0.07 0.01 ± 0.00 4.40 ± 0.50 2.14 ± 0.06 6.24 ± 0.65 0.54 ± 0.04

Upland soil 18.3 ± 0.2 27.0 ± 6.2 48.6 ± 5.2 33.9 ± 4.6 17.5 ± 2.5 147.1 ± 12.7 8.27 ± 0.22 15.83 ± 8.53 6.05 ± 2.73 0.36 ± 0.14 0.55 ± 0.11 0.11 ± 0.01 5.86 ± 0.66 2.14 ± 0.11 5.40 ± 0.28 0.50 ± 0.03

4 Dry streambed 20.9 ± 1.1 10.0 ± 1.7 88.3 ± 7.9 6.7 ± 4.7 4.9 ± 3.3 1411.5 ± 217.6 7.94 ± 0.33 1.65 ± 0.57 0.37 ± 0.03 0.03 ± 0.00 0.07 ± 0.02 0.02 ± 0.00 5.48 ± 0.57 2.14 ± 0.05 7.00 ± 0.98 0.50 ± 0.01

Upland soil 20.1 ± 0.5 15.3 ± 1.0 24.6 ± 2.4 48.2 ± 1.2 27.3 ± 1.8 855.7 ± 282.1 8.80 ± 0.29 11.07 ± 2.07 5.59 ± 1.50 0.39 ± 0.14 0.56 ± 0.13 0.12 ± 0.04 7.91 ± 0.55 2.04 ± 0.04 9.14 ± 1.37 0.47 ± 0.01

5 Dry streambed 21.2 ± 0.6 9.3 ± 1.9 89.1 ± 6.6 6.9 ± 3.9 4.0 ± 2.7 1305.0 ± 155.1 9.25 ± 0.06 1.11 ± 0.25 0.33 ± 0.14 0.03 ± 0.02 0.06 ± 0.02 0.01 ± 0.00 4.32 ± 0.55 2.18 ± 0.03 6.12 ± 1.00 0.53 ± 0.01

Upland soil 21.0 ± 0.7 17.0 ± 1.4 55.7 ± 8.0 32.7 ± 6.2 11.5 ± 1.9 101.2 ± 18.7 8.14 ± 0.36 5.97 ± 0.70 1.85 ± 0.53 0.11 ± 0.07 0.30 ± 0.02 0.06 ± 0.01 4.88 ± 0.25 2.09 ± 0.02 5.65 ± 0.59 0.53 ± 0.02

6 Dry streambed 23.4 ± 1.1 15.4 ± 8.7 60.1 ± 30.7 28.0 ± 20.7 11.9 ± 10.0 686.1 ± 557.6 7.98 ± 0.05 4.25 ± 5.01 2.17 ± 2.22 0.15 ± 0.14 0.23 ± 0.16 0.05 ± 0.03 4.09 ± 0.66 2.27 ± 0.17 4.25 ± 0.59 0.53 ± 0.08

Upland soil 21.1 ± 0.6 14.8 ± 1.1 60.4 ± 3.7 27.2 ± 2.5 12.4 ± 1.3 221.6 ± 49.6 7.78 ± 0.17 6.39 ± 1.39 1.50 ± 0.12 0.14 ± 0.02 0.28 ± 0.04 0.06 ± 0.02 5.60 ± 0.48 2.21 ± 0.03 5.73 ± 0.74 0.60 ± 0.04

7 Dry streambed 21.8 ± 0.7 9.2 ± 3.5 47.4 ± 11.1 36.3 ± 7.9 16.3 ± 3.2 440.2 ± 608.1 7.82 ± 0.26 2.05 ± 0.77 1.18 ± 0.52 0.10 ± 0.05 0.12 ± 0.02 0.02 ± 0.00 5.23 ± 0.47 2.15 ± 0.06 8.74 ± 1.20 0.51 ± 0.02

Upland soil 22.1 ± 0.7 18.0 ± 2.5 25.0 ± 4.6 55.5 ± 3.7 19.5 ± 1.1 67.9 ± 26.9 7.13 ± 0.24 10.03 ± 3.12 5.17 ± 2.58 0.39 ± 0.18 0.52 ± 0.19 0.09 ± 0.01 5.14 ± 0.78 2.14 ± 0.02 6.14 ± 1.94 0.50 ± 0.03

8 Dry streambed 22.9 ± 1.4 7.2 ± 6.2 79.2 ± 7.9 14.8 ± 5.6 6.0 ± 2.3 1538.1 ± 238.8 8.14 ± 0.10 1.54 ± 1.03 2.13 ± 0.83 0.05 ± 0.04 0.10 ± 0.05 0.02 ± 0.01 2.83 ± 0.27 2.35 ± 0.10 4.64 ± 0.51 0.56 ± 0.01

Upland soil 20.3 ± 0.4 24.2 ± 3.8 63.9 ± 2.0 24.5 ± 1.3 11.6 ± 0.8 242.4 ± 32.2 8.20 ± 0.14 8.56 ± 2.68 2.66 ± 0.83 0.13 ± 0.05 0.32 ± 0.05 0.03 ± 0.01 5.67 ± 0.68 2.07 ± 0.14 5.56 ± 1.07 0.43 ± 0.05

9 Dry streambed 22.1 ± 0.3 3.4 ± 1.2 96.5 ± 1.5 2.3 ± 0.9 1.3 ± 0.6 1886.6 ± 213.8 7.53 ± 0.52 0.52 ± 0.17 0.16 ± 0.04 0.01 ± 0.00 0.06 ± 0.02 0.00 ± 0.00 2.22 ± 0.16 2.36 ± 0.07 4.58 ± 0.82 0.60 ± 0.04

Upland soil 22.0 ± 0.3 13.3 ± 1.0 23.4 ± 13.0 46.3 ± 6.2 30.3 ± 6.9 685.8 ± 286.5 8.40 ± 0.08 7.00 ± 1.95 5.02 ± 1.26 0.31 ± 0.09 0.57 ± 0.21 0.03 ± 0.01 4.53 ± 0.53 2.11 ± 0.16 7.54 ± 1.56 0.42 ± 0.05

10 Dry streambed 22.8 ± 0.2 16.1 ± 8.5 56.6 ± 27.7 29.3 ± 18.8 14.1 ± 8.9 800.9 ± 1093.9 8.41 ± 0.10 4.42 ± 2.87 2.87 ± 0.46 0.17 ± 0.05 0.32 ± 0.04 0.02 ± 0.00 3.90 ± 0.86 2.28 ± 0.13 4.93 ± 0.82 0.51 ± 0.03

Upland soil 22.7 ± 0.3 11.6 ± 1.6 55.7 ± 4.9 29.7 ± 3.7 14.6 ± 1.7 683.5 ± 610.3 8.45 ± 0.16 7.24 ± 2.76 3.34 ± 1.46 0.20 ± 0.09 0.50 ± 0.18 0.04 ± 0.01 5.33 ± 0.57 2.14 ± 0.01 5.34 ± 0.53 0.47 ± 0.01

Mean ± sd Dry streambed 21.1 ± 1.9 11.0 ± 5.2 71.0 ± 19.3 19.0 ± 12.4 10.0 ± 7.5 1191.7 ± 442.7 8.19 ± 0.48 2.28 ± 1.41 1.22 0.90 0.07 ± 0.05 0.13 ± 0.09 0.02 ± 0.01 3.92 ± 1.02 2.24 ± 0.08 5.79 ± 1.63 0.54 ± 0.03

Mean ± sd Upland soil 20.6 ± 1.4 18.0 ± 4.9 46.2 ± 16.1 36.3 ± 10.2 17.5 ± 6.9 465.2 ± 387.6 8.17 ± 0.45 8.89 ± 3.01 4.03 1.73 0.26 ± 0.11 0.45 ± 0.11 0.06 ± 0.03 5.70 ± 0.93 2.11 ± 0.05 6.19 ± 1.24 0.50 ± 0.05

p  value dsb vs. us

Values reported means and standard deviations (mean ± sd; n=4). Results of the paired T-tests for differences between dry streambeds and upland soils are shown in the lower part of the table. Significant differences (p<0.05) are marked in bold.

DOC

Stream code Habitat
Solid phase Extracted phase

Temperature
Water 

content
Sand Silt Clay Mean particle size pH Organic matter OC TN TDN SUVA254 FI  HIX  BIX

µm L mg-1m-1

0.220 < 0.001 0.020 0.009 0.040 < 0.001 0.009 < 0.001

ºC % % % %

0.472 0.105< 0.001 < 0.001 < 0.001 0.019 < 0.001 < 0.001

Table 4.3   Physical  and chemical  propert ies  of the dry  r iverbed sediments and upland soi ls 
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Figure 4.4  Loadings p lot  of the PLS regression analysis of  the CO2  emissions f rom dry r iverbeds 

(a)  and adjacent  upland soi ls (b).  The graph shows how the Y-variable (square)  corre lates w ith 

X-variables (ci rcles)  and the corre lat ion structure  of the X ’s.  The X variables are classi f ied 

according to their variable  inf luence on projection value (V IP):  h ighly inf luentia l  (black circles),  

moderate ly inf luentia l  (grey ci rcles),  and less inf luentia l  (white circles).  The X-variables si tuated 

near Y-variables are posit ive ly  corre la ted to them and those si tuated on the opposite side are 

negative ly corre lated. See Table 4.2 for the explanation of  the abbrevia t ions.  
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4.4 Discussion 

4.4.1 Magnitude of CO2 emissions from dry riverbeds 

Dry riverbeds from the studied temporary fluvial network emitted substantial amounts of 

CO2 to the atmosphere. Our measurements of CO2 efflux from dry riverbeds (mean = 781 

mmol m-2 d-1, range = 342 to 1533 mmol m-2 d-1) are similar to those reported from a drying-

rewetting experiment in dry desert streams in Arizona, USA (395 mmol m-2 d-1, range = 20 

to 1531 mmol m-2 d-1; Gallo et al., [2014]) and higher than others observed in the same 

geographical area of our study but with lower spatial coverage (mean = 209 mmol m-2 d-1, 

range = 189 to 220 mmol m-2 d-1; von Schiller et al., [2014]. These are, to our knowledge, the 

only previous studies reporting CO2 effluxes from dry riverbeds around the globe. 

In the present study, we further show that the CO2 efflux from dry streams and rivers was 

higher than the CO2 efflux from the same aquatic system when they was flowing. On the 

one hand, this result indicates that energy flow, nutrient cycling and subsequent CO2 

production and efflux remain active after flow cessation [Jacobson et al., 2000; Boulton, 

2003; Amalfitano et al., 2008]. On the other hand, this observation could be related to 

limitation of the CO2 efflux in aquatic environments due to reduced gas diffusivity 

compared to dry riverbeds. Interestingly, these results agree with recent studies 

highlighting the relevance of the dry hydrological phases on the CO2 fluxes from temporary 

systems of different nature, including temporary ponds [Catalán et al., 2014] or reservoir 

beds found along Mediterranean fluvial networks [Gómez-Gener et al., 2015; Chapter 3].  

Contrary to our expectations, the CO2 efflux from dry riverbeds was similar to the CO2 

efflux from adjacent upland soils. Similarly, von Schiller et al., [2014] observed a 

comparable CO2 efflux between dry riverbeds (median 212 mmol m−2 d−1; range 36–455 

mmol m−2 d−1) and a compiled data set of Mediterranean soils (median 188 mmol m−2 d−1; 

range 44–371 mmol m−2 d−1). However, as our results show, a similar magnitude of CO2 

efflux from dry riverbeds and their adjacent upland soils does not necessarily imply that 

these habitats are equivalent in their physical and chemical structure and function, and 

therefore in the way they process and emit C. 
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4.4.2 Dry riverbeds as habitats in their own right 

The studied riverbeds and their upland soils were very heterogeneous in terms of physical 

and chemical properties, but our results revealed a clear clustering of samples by habitat. 

In general, variables related to the textural composition and the OM content exerted the 

strongest influence on the differentiation between the two habitats. Specifically, dry 

riverbed sediments showed a higher mean particle size and a higher proportion of sand, 

whereas upland soils were associated to lower mean particle size and higher proportions of 

clay and silt fractions. Since they act as hydrological flow paths, riverbeds are more exposed 

to higher and recurrent surface stress in comparison to soils [Hickin 1995], making it more 

likely for water flow to initiate sediment erosion and transport. Thus, finer particles can be 

more easily mobilised in rivers, but tend to be more retained in soils [Jacobson et al., 2000]. 

Dry riverbed sediments also contained less OM, OC, TN, DOC, TDN, in comparison to 

upland soils. Dry riverbeds and upland soils are subjected to different temporal and spatial 

dynamics of transport, retention, and processing of OM [Wagener et al., 1998]. Accordingly 

we expect that recurrent periods of flow recession and subsequent reflowing in temporary 

streams and rivers may favour the oxidation and subsequent washing of OM from dry 

riverbeds, thus lowering its concentration of OM [Acuña et al., 2007; Larned et al., 2010]. 

Our results also show that dry riverbed sediments and upland soils were different in terms 

of the quality of WEOM. Significant differences in SUVA254 and FI values between habitats 

indicate lower aromaticity and higher signal of in-situ produced OM from dry riverbed 

sediments. Mediterranean streams and rivers can receive a higher leaf input from the 

riparian forest (direct and lateral fluxes) in comparison to their upland soils during drought 

periods [Acuña et al., 2007]. However, the recurrent periods of hydrological connections and 

disconnections, may prevent the stabilization and further humification of stored OM, 

thereby decreasing the signal of plant structural compounds such as lignin in the WEOM 

fraction. The dry riverbeds also showed higher BIX values than upland soils, pointing again 

towards a higher proportion of fresh DOM compounds likely derived from fluvial microbial 

sources [Birdwell and Engel, 2010]. The stronger microbial character of the WEOM from 

dry riverbed sediments compared to upland soils was likely due to the extracellular release 

and leachate from decaying bacteria and algae as a result of riverbed drying [Fierer and 

Schimel, 2003; Borken and Matzner, 2009; Kaiser et al., 2015] 
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4.4.3 Regulation of CO2 effluxes from dry riverbeds and upland soils 

The physical and chemical variables that controlled the CO2 efflux differed between dry 

riverbeds and upland soils, despite some variables (i.e., temperature and textural 

composition), were involved in the regulation of the efflux in both habitats. The positive 

relationship between temperature and many biogeochemical processes by stimulation of 

the microbial activity, for example, autotrophic and heterotrophic respiration, has been 

widely reported [Raich and Schlesinger, 1992; Mielnick and Dugas, 2000; Raich et al., 

2002]. Soil texture also influenced the CO2 efflux from dry riverbeds and from upland soils 

but in opposite directions in each habitat. The CO2 efflux from dry riverbeds increased with 

decreasing mean particle size. Burke et al., [1989] and Buschiazzo et al., [2004] also 

reported that higher proportions of small particles (i.e., silt and clay fractions), correlated 

positively with DOC, TDN and TN concentrations and with water holding capacity, and 

Austin et al., [2004] showed that this promoted microbial heterotrophic respiration in soils 

of arid and semiarid ecosystems. On the contrary, our upland soils responded inversely to 

the textural properties and showed higher CO2 efflux with increasing proportion of coarse-

textured soils. This observation can be attributed to a higher diffusion of air and higher 

infiltration of water to the rooting zone of vegetated soils, resulting in a significant 

contribution of autotrophic respiration to the total CO2 efflux in the investigated soils [Noy-

Meir, 1973; Cable et al., 2008; Catalán et al., 2014] 

Apart from these common drivers of the CO2 efflux, some variables specifically regulated 

the efflux from dry riverbeds and upland soils. The concentration of the particulate and 

water extracted fractions of OC and TN were involved in the regulation of the CO2 efflux 

from dry riverbeds. The availability of OM can be enhanced during drying periods by 

release of high amounts of fresh and labile materials to sediment interfaces through 

microbial cell lysis and physical processes [Fierer and Schimel, 2003; Borken and Matzner, 

2009]. However, the microbial activity in dry riverbeds could be partially limited by the low 

concentration of DOC, TDN and TN in the substrate (Table 4.3), thus explaining the 

positive effect of OM concentration variables (TDN, DOC, TN) on the CO2 efflux (Figure 

4.3a). In contrast, the CO2 efflux from upland soils was related to OM quality rather than 

to OM quantity (Figure 4.3b). Efflux from upland soils, which had a lower proportion of 

fresh and labile fractions in comparison to the dry riverbed sediments (Table 4.3), was 
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limited by the high aromaticity of the OM. Thus, low aromaticity and molecular complexity 

and high microbial signal were associated to high CO2 efflux in the upland soils. The 

amount and composition of soil OM have been previously identified as important factors 

affecting CO2 efflux from soils [Grogan and Jonasson, 2005; Casals et al., 2009; Paré and 

Bedard-Haughn, 2013] 

The PLS models only accounted for 50% of the total variance in CO2 emissions, indicating 

that other factors involved in the production of CO2 potentially contributed to the final CO2 

efflux. Such factors could include non-biotic CO2-generating processes [Rey, 2015], 

reactions with the carbonate system [Angert et al., 2014], photochemical degradation 

[Austin and Vivanco, 2006] or the effect of wind and air-pressure on the exchange of CO2 

[Suleau et al., 2009; Redeker et al., 2015]). Our results represent an initial attempt for the 

identification and quantification of the main drivers regulating CO2 emissions from dry 

riverbeds.  

 

4.5 Conclusions and implications 

Temporary watercourses can be found in many areas of the world, and the spatial and 

temporal extent of the dry phase of these systems is increasing as a result of global change. 

Our study shows that streams and rivers do not turn into inert ecosystems when they 

become dry. On the contrary, they remain as active biogeochemical habitats processing and 

degassing significant amounts of C to the atmosphere comparable to those from upland 

soils. Our results also demonstrate that a similar magnitude of CO2 emissions between dry 

riverbeds and upland soils does not imply that these habitats are equivalent in their 

physicochemical characteristics and in the variables driving CO2 emissions. Further work 

is needed to provide a more conclusive understanding of the magnitude and regulation of 

CO2 emissions occurring during the dry period of temporary streams and rivers, including 

the temporal patterns of the CO2 efflux along the dry period. Nonetheless, available 

evidence so far suggests that neglecting CO2 emissions from dry riverbeds may overlook a 

fundamental component of the C balance of fluvial networks.
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Abstract  

Impoundment of running waters through the construction of large dams has been 

recognized as one of the most important factors determining the transport, transformation 

and emission dynamics of carbon (C) in fluvial networks. However, the effect of small and 

very small water retention structures (SWRS) on the magnitude and spatiotemporal 

patterns of C is still unknown, despite SWRS represent the most common type of water 

retention structure causing river fragmentation worldwide. Here, we investigated the 

effect of SWRS on the concentrations and air-water diffusive carbon dioxide (CO2) and 

methane (CH4) fluxes in an intensively regulated stretch of the Fluvià River (NE Iberian 

Peninsula). While the longitudinal pattern of dissolved CO2 concentration along the 

investigated river stretch was relatively smooth, that of dissolved CH4, exhibited a clear 

shifting pattern with substantial increases in impounded waters. The diffusive CO2 efflux 

from impounded waters (17.7 ± 16.3 mmol m-2 d-1) was significantly lower than that from 

adjacent free-flowing river sections (230.6 ± 286.4 and 2.1 ± 3.1 mmol m-2 d-1), because of 

the attenuated turbulent conditions in the former. On the contrary, no reduction in CH4 

efflux associated to the presence of SWRS was detected (0.7 ± 0.8 and 2.1 ± 3.1 mmol m-2 d-

1, for respectively impounded and free-flowing river sections), because the significant 

enrichment in CH4 concentration in the impounded river sections compensated the lower 

turbulence. Overall, our results suggest that although the presence of SWRS might not 

significantly influence the C efflux of this highly-regulated river as a whole, these 

structures modify the local dynamics of C concentrations. Therefore, accounting for the 

effects of SWRS, together with that of larger dams, may be relevant for accurate 

estimations of C fluxes and transformation in fluvial networks. 
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5.1 Introduction 

Inland waters are active components of the global carbon (C) cycle that transform, store 

and emit more than half of the C they receive from terrestrial ecosystems [Cole et al., 2007; 

Battin et al., 2009a; Tranvik et al., 2009; Aufdenkampe et al., 2011]. Recent global estimates 

have shown that fluvial networks emit 2.1 Pg C y-1 in the form of carbon dioxide (CO2), of 

which 1.8 Pg C y-1 is emitted from streams and rivers [Raymond et al., 2013a] and 0.32 Pg 

C y-1 from lakes and reservoirs [Raymond et al., 2013a]. Similarly, fluvial networks emit 

0.09 Pg C y-1 in the form of methane (CH4), of which 0.02 Pg C y-1 is emitted from streams 

and rivers [Stanley et al., 2016] and 0.07 Pg C y-1 from lakes and reservoirs [Bastviken et 

al., 2011; Deemer et al., 2016]. The contribution of CH4 is major (3.25 PgC-CO2e y-1) when 

considering the ~30-fold higher global warming potential of CH4 compared to that of CO2 

over a 100-year time horizon [IPCC, 2013]. Nevertheless, despite the increasing availability 

of data covering both spatial and temporal variability, there are still fundamental 

uncertainties regarding the magnitude and spatiotemporal patterns of C emissions along 

highly regulated rivers were lotic and lentic sections inherently interact. 

Due to the high human demand for energy and water, many fluvial networks worldwide 

have been regulated with a variety of hydraulic structures, ranging from very large dams 

to smaller reservoirs, impoundments and weirs [Nilsson et al., 2005; Döll et al., 2009]. Thus, 

the natural condition of fluvial networks as hieratically organized and uninterrupted 

conduits draining water from the catchments to the ocean [Vannote et al., 1980; Frissell et 

al., 1986] has turned into an alternating series of lotic (i.e., running waters) and lentic (i.e., 

stagnant waters associated to a dam) reaches [Ward and Stanford, 1983; Stanford and 

Ward, 2001]. Disruption of water flow by dams changes the hydrological dynamics of rivers 

[Kondolf and Batalla, 2005; Grill et al., 2015], thereby altering water physicochemistry 

[Ward and Stanford, 1983], the transport of suspended particles [Syvitski et al., 2005; 

Houser et al., 2010], and ultimately leading to multiple consequences on the composition 

and function of aquatic biological communities at different levels of organization [Haxton 

and Findlay, 2008; Ponsatí et al., 2015; von Schiller et al., 2016; Proia et al., 2016]. 

Sediments, organic matter (OM) and nutrients delivered from the inflowing river may 

accumulate upstream of water retention structures due to the higher deposition rates 
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typically occurring in lentic waterbodies [Syvitski et al., 2005; Maeck et al., 2013]. Such 

trapping of autochthonous and allochthonous OM typically leads to anaerobic 

environments that are ideal for active methanogenesis and subsequent CH4 

supersaturation of the water column and release of CH4 to the atmosphere [Keller and 

Stallard, 1994; Giles, 2006; Delsontro et al., 2010]. Likewise, the increase in water residence 

time (WRT) caused by river impoundment can favour the mineralization of OM and CO2 

supersaturation by increasing the interaction between organic substrates and biological 

actors [Battin et al., 2009b; Acuña and Tockner, 2010; Crawford et al., 2016]. 

Most of the quantitative estimates of C emissions from impounded waters have mainly 

been obtained for very large (> 104 km2), large (104 - 102 km2) and medium (100 - 1 km2) size 

reservoirs [St. Louis et al., 2000; Barros et al., 2011; Deemer et al., 2016]. These estimates 

pointed out that the depositional zones close to the river inflow, where freshly 

allochthonous materials enter the reservoir (i.e., riverine-lacustrine transition zone, sensu 

Wetzel [2001]), remain a very active compartment in terms of CO2 and CH4 production and 

emission despite their relatively small areal coverage [Beaulieu et al., 2016]. Recent 

research in small reservoirs (1 - 0.1 km2) has shown that the intense sedimentation of fresh 

OM in the riverine-lacustrine transition zone, which in the case of medium to small 

systems can cover a larger fraction of the reservoir’s surface area, fuels intense CO2 and 

CH4 production, making these systems potential biogeochemical hotspots for C emission to 

the atmosphere [Maeck et al., 2013]. 

Small water retention structures (SWRS) include weirs and small to very small 

impoundments with a surface impounded area < 0.1 km2 and volume < 0.2 hm3 [Lehner et 

al., 2011]. These structures, despite their small global areal extent (3.8% of the global 

reservoir surface area [Downing et al., 2006; Lehner et al., 2011], represent one of the most 

common feature in freshwater landscapes (99.5% of the total number of reservoirs 

worldwide [Downing et al., 2006; Lehner et al., 2011]). However, they still remain 

underemphasized or event not considered in most of the biogeochemical studies in fluvial 

networks [Downing et al., 2006]. 

SWRS have a profound effect on river fragmentation and generate substantial impacts on 

the spatial extent of flow alterations [Lehner et al., 2011]. SWRS are also of increasing 
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concern because their cumulative effects may be considerable, yet they have so far 

remained underemphasized and unexamined [Downing et al., 2006]. For example, 

Harrison et al., [2009] showed that SWRS play an important regional and global role in the 

removal of nitrogen from surface water. Casas-Ruiz et al. [2015] pointed out that the 

presence of SWRS generate changes in the composition and degradation of dissolved 

organic matter (DOM) in rivers. In the same line, Proia et al. [2016] found that the presence 

of SWRS can also modify the natural dynamics of C processing along the fluvial network 

by altering the structure and activity of the microbial community. This previous knowledge 

leads to the intriguing question of whether SWRS can affect the magnitude and patterns 

of CO2 and CH4 similarly as larger impounded systems do. 

Here, we investigate the effect of SWRS on the concentrations and air-water diffusive CO2 

and CH4 fluxes in an intensively regulated stretch of a Mediterranean river. To this end, 

we measured the dissolved concentrations and fluxes of CO2 and CH4 in impounded and 

free-flowing riverine sections on a seasonal basis. We hypothesize that the presence of 

SWRS will lead to higher WRT and, in turn, higher accumulation rates of OM, thus 

enhancing aerobic heterotrophic respiration and anaerobic methanogenesis in both the 

water column and the sediments of impounded waters. We therefore expected higher 

concentrations and emission rates of CO2 and CH4 in the impounded water of SWRS in 

comparison to their upstream free-flowing waters. We also hypothesize that the CO2 and 

CH4 accumulated in the impounded waters will influence the emission dynamics of the 

lotic sections located downstream from the dams, being thus higher than in the upstream 

lotic sections. 

 

5.2 Materials and Methods 

5.2.1 Study sites and sampling design 

The Fluvià River (NE Iberian Peninsula; Figure 5.1) is a 97-km long river, with a mean 

annual flow of 3.6 m3 s-1 at the catchment outlet (Data from 2004 to 2014, Catalan Water 

Agency), that drains a 990-km2 catchment covered with mixed forests (78%), agricultural 

(19%) and urban (3%) areas (Land Cover Map of Catalonia, Centre of Ecology and Forestry 
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Research of Catalonia, 2009). The catchment is mostly calcareous, with some areas (< 15%) 

of siliceous materials (Cartographic and Geological Institute of Catalonia, 2006). The 

climate in the area is typically Mediterranean; the mean monthly air temperature ranges 

from 6 ºC in January to 26 ºC in July and the mean annual precipitation is 660 mm, with 

rainfall primarily occurring in autumn and spring and occasional storms in summer (Data 

from 2004 to 2014, Catalan Water Agency). The water flow of Fluvià River has been deeply 

modified due to the high human demand for energy and water [García-Ruiz et al., 2011]. 

Its fluvial network presents up to 61 SWRS that alter the flow dynamics from its 

headwaters to the river mouth [Pavón, 2010]. 

 

 
Figure 5.1  (a) Location of the F luvià River ca tchment (NE Iberian Peninsula),  with the posit ion 

of the  studied SWRS (black ci rcles,  n =  11).  See Table A.5.1 in the Support ing information 

section for  a  detai led hydromorphological  and physicochemical  descript ion  of the selected 

SWRS (sorted by number).  (b)  Scheme of a SWRS sampl ing unit  ( i .e . ,  upstream river,  

impoundment water  and downstream river) sampled at each  s tudy si te .  
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We focused this study on a highly regulated 36-km stretch situated in the upper part of the 

Fluvià River main stem (Figure 5.1a). To cover a wide spectrum of hydromorphological and 

trophic conditions (Table A.5.1 in the Supporting information section), we selected a total 

of 11 SWRS and we sampled them in spring (28 to 30 April), summer (2 to 4 September) 

and winter (9 to 11 December) 2014. At each site, we sampled the stagnant water 

impounded in the SWRS as was well as the free-flowing river sections located upstream 

and downstream (Figure 5.1b). The distance between the SWRS and the downstream 

sampled free-flowing river section was between 20 and 380 meters.  

 

5.2.2 Determination of CO2 and CH4 water-atmosphere fluxes 

In the impounded river sections, we determined the CO2 flux across the water-air interface 

by the enclosed chamber method [Frankignoulle 1988]. Briefly, we monitored the CO2 gas 

concentration in an opaque floating chamber every 4.8 s with an infrared gas analyser 

(EGM-4, PP-Systems, USA). In all the cases, flux measurements lasted until a change in 

CO2 of at least 10 µatm was reached, with a maximum duration of 600 s and a minimum 

of 300 s. We calculated the CO2 flux from the rate of change of CO2 inside the chamber as 

follows: 

FCO2  � �dpCO2
dt

�  � V

RTS
�          (1) 

where 
dpCO2

dt
 is the change in CO2 concentration in the chamber along time in µatm s−1, V 

and S are the volume and surface area of the chamber (27.1 dm3 and 19.4 dm2, respectively), 

T is the air temperature in Kelvin and R is the ideal gas constant (L atm K−1 mol−1). Positive 

FCO2  values represent efflux of gas to the atmosphere while negative FCO2  indicate influx 

of gas from the atmosphere. We performed 2 measurements in the central part of the 

impounded water after flushing the chamber with ambient air between consecutive 

measurements. 

At each SWRS, we determined the partial pressure of CO2 and CH4 in the water (pCO2, w
, 

pCH4, w
) and in air (pCO2, a, pCH4, a) at the same location as the flux measurements. We 
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measured the pCO2, w
with an infrared gas analyser (EGM-4, PP-Systems, USA) coupled to 

a membrane contactor (MiniModule , Liqui-Cel, USA). The water was circulated by gravity 

through the contactor at 300 mL min -1 and the equilibrated gas was continuously 

recirculated into the infrared gas analyser for instantaneous pCO2
 measurements [Teodoru 

et al., 2010]. For pCO2, w
, the air samples were taken approximately one meter above the 

water surface layer and circulated through the gas analyzer. Measurement accuracy of the 

infrared gas analyser is estimated to be within 1% over the calibrated range. We 

determined the pCH4, w
 and pCH4, a by the headspace equilibrium technique and gas 

chromatography described by Striegl et al., [2012]. Briefly, we collected 40 ml of water with 

a 60 ml polypropylene syringe creating a headspace with ambient air of 3:2 ratio (sampled 

water : ambient air). To facilitate the kinetics of equilibration between the liquid and the 

gas phase, we vigorously shook the syringe for 1 min and we submerged it for half an hour 

at constant water temperature. We then transferred the 20 mL of equilibrated gas to a pre-

evacuated gas-tight glass tube (2-RV, Chromacol, USA). The CH4 samples were analysed 

in the laboratory with a gas chromatograph coupled to a Flame Ionization Detector (Trace 

GC Ultra, Thermo Fisher Scientific, USA). Measurement accuracy of the gas 

chromatograph is estimated to be within 4% over the calibrated range. 

We used the FCO2measured with the chamber to calculate the direct gas transfer velocity 

of CO2 (kCO2) from Fick’s law of gas diffusion: 

FCO2  � kCO2 Kh �pCO2, w - pCO2, a �      (2) 

where kCO2  is the specific gas transfer velocity for CO2 (m d-1); FCO2 is the chamber-

measured FCO2  between the surface water and the atmosphere (mmol m-2 d-1), Kh is the 

Henry’s constant (mmol µatm-1 m-3) adjusted for salinity and temperature [Weiss, 1974; 

Millero, 1995]. Because the gas transfer velocity is temperature- and gas-dependent, we 

standardized kCO2  to a Schmidt number of 600 (k600; m d-1), which corresponds to CO2 at 

20ºC in freshwater:  

k600 (m d��) � kCO2 (
600

Sc
)
-2/3       (3)  
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where Sc is the Schmidt number of a given gas at a given water temperature [Jähne and 

Münnich [1987], Bade [2009], Wanninkhof, 1992].  

At each SWRS, we derived the diffusive CH4 flux across the water-air interface (mmol m-2 

d-1) following equation (2) and combining pCH4, w
, pCH4, a  and the chamber derived kCH�  

obtained by applying equation (3). 

In the riverine sections upstream and downstream the impounded water stored in the 

SWRS, we determined the diffusive CO2 and CH4 flux across the water-air interface (mmol 

m-2 d-1) using equation (2). At each river section we determined pCO2, w
, pCO2, a, pCH4, w

 and 

pCH4, a following the same technique described above and we estimated the reach gas 

transfer velocity from the segment slope (s; m m-1) and the mean segment water velocity 

(v; m s-1) with equation (4) in Raymond et al. [2012]: 

k600 � 1162 s0.77 v0.85            (4) 

The k600 was transformed to the kCO2  and kCH4 following equation (3). 

 

5.2.3 Data analysis 

We investigated the overall effect of the SWRS on the CO2 and CH4 fluxes, concentrations 

and gas transfer velocities in each season by using a one-way repeated measures analysis 

of variance (ANOVA). We performed subsequent post-hoc comparisons (Tukey’s Honest 

Significant Differences test) to evaluate the specific effect of SWRS on i) the impounded 

water CO2 and CH4 fluxes, concentrations and gas transfer velocities (by comparing 

impounded waters and free flowing upstream reaches), and ii) the downstream C fluxes, 

concentrations and gas transfer velocities (by comparing upstream and downstream 

riverine reaches adjacent to the SWRS). 

We assessed the relative control of pCO2, w
 and kCO2  on the CO2 efflux using simple linear 

regression models. We used the same statistical approach to assess the relative control of 

pCH4, w
 and kCH4  on the CH4 efflux. 
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We built two partial-least squares regression models (PLS) to identify the potential controls 

of both impounded water pCO2, w
 and pCH4, w

. The PLS is a regression extension of a 

principal component analysis (PCA) that allows the exploration of relationships between 

multiple and collinear independent (X; potential explanatory variables described in Table 

A.5.2 in the Supporting information section) and dependent (Y; pCO2, w
 and pCH4, w

) data 

matrices through a linear, multivariate model that produces latent variables (i.e.; PLS 

loadings) representing the combination of X variables that best describe the distribution of 

observations in ‘Y space’ [Eriksson et al., 2006]. For each Y-variable, the best PLS model 

was selected by iteratively removing X-variables in order to maximize the goodness of fit 

(R2Y) and the predictive ability (Q2Y) of the model. In each case, Q2Y was determined by 

comparing modelled and actual Y observations through an iterative, cross-validation 

process. We identified the influence of each X-variable by using variable influence on the 

projection (VIP) scores, calculated as the sum of square of the PLS weights across all 

components. Variables with high influence on impounded water pCO2, w
 and pCH4, w

 were 

identified as those having VIP > 1, while variables with moderate and low influence on 

impounded water pCO2, w
 and pCH4, w

 were those having VIP between 1 and 0.8 and VIP < 

0.8, respectively [Eriksson et al., 2006].  

All statistical analyses were conducted in the R statistical environment [R Core Team 2013] 

using the vegan package [Oksanen et al., 2013], except for PLS analysis which was done 

with the software XLSAT (XLSTAT 2015.2.01, Addinsoft SRAL, Germany). When 

necessary, we normalized data using log-transformations to meet parametric assumptions. 

In all cases, differences were considered statistically significant when p < 0.05. 

 

5.3 Results 

5.3.1 Diffusive CO2 and CH4 effluxes 

The surface waters impounded in the 11 SWRS were net emitters of CO2 (mean ± SE = 

17.7 ± 2.8 mmol m-2 d-1, range =-2.1–86.2 mmol m-2 d-1; Figure 5.2a) and CH4 (0.66 ± 0.14 

mmol m-2 d-1, range = 0.01–3.29 mmol m-2 d-1; Figure 5.2b) to the atmosphere in the three 
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studied seasons. The only exception to this pattern occured at site N5, which acted as a 

sink of CO2 in winter (-2.1 mmol m-2 d-1). Nonetheless, the CO2 and CH4 efflux from the 

impounded river sections never exceeded that from their adjacent free-flowing river 

sections, which were always net emitters of both C gases to the atmosphere (Figure 5.2a 

and 2b). More precisely, the efflux from impounded waters was significantly lower than 

their upstream and downstream free-flowing river sections in the case of CO2 (ANOVA, f 

= 10.26, p < 0.001, n = 33; Figure 5.2a), but comparable in the case of CH4 (ANOVA, f = 

4.82, p = 0.23, n = 33; Figure 5.2b).  

No significant differences among SWRS sampling units (i.e., upstream free-flowing river 

section, impounded river section and downstream free-flowing river section) in terms of 

pCO2, w
 (ANOVA, f = 0.08, p = 0.92, n = 33; Figure 5.2c), were detected. In contrast, we 

detected significant differences among SWRS sampling units in terms of pCH4, w
 (ANOVA, 

f = 7.47, p < 0.001, n = 33; Figure 5.2d). Specifically, we detected a significant increase in 

pCH4, w
 in the impounded waters in relation to their upstream free-flowing river sections 

(ANOVA, post-hoc, p < 0.001, n = 33; Figure 5.2d). In spring, when this effect was more 

aggravated, it was translated into an increase of pCH4, w
 in the flowing sections downstream 

the SWRS (ANOVA, post-hoc, p = 0.01, n = 33; Figure 5.2d). This impounded waters pCH4, w
 

increase, was however, not strong enough to cause a significant influence on the CH4 efflux 

of the downstream riverine sections (ANOVA, post-hoc, p = 0.18, n = 33; Figure 5.2b). 

Among the two main parameters directly driving the CO2 and CH4 fluxes (see Equation 2), 

the surface water turbulence (measured as kCO2 and kCH4), which exhibited a significant 

positive relationship with both the CO2 efflux (CO2 efflux = 31.1 kCO2+ 46.2; r2 = 0.61, p < 

0.001, n = 33; Figure A.5.1a in the Supporting information section) and CH4 efflux (CH4 

effflux = 31.1 kCH4 + 46.2; r2 = 0.61, p < 0.001, n = 33; Figure A.5.1b in the Supporting 

information section). In addition, the kCO2 (ANOVA, f = 18.36, p < 0.001, n = 33; Figure 

5.2e) and kCH4  (ANOVA, f = 18.32, p < 0.001, n = 33; Figure 5.2f) were significantly lower 

in the impounded river sections than in free-flowing river sections. Thus, surface water 

turbulence appeared to be the main responsible factor for the clear differences in CO2 and 

CH4 effluxes between impounded waters and riverine sections (Figure 5.2). 
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Figure 5.2  Mean (a)  CO2  ef f lux ,  (b) CH4  ef f lux,  (c) part ia l  pressure of CO 2  in water (p
CO2, w

),  (d)  

part ia l  pressure of CH4  in water  (p
CH4, w

),  (e) gas transfer  ve loci ty of CO2  (kCO2
) and (f ) gas t ransfer  

ve loci ty of CH4  (kCH�)  of the 11 SWRS grouped by sampl ing units  ( i .e . ,  upstream river,  

impoundment water and downstream river)  during the 3 sampled seasons ( i .e . ,  spring, summer 

and winter).  Error  bars represent s tandard error  (SE) of  the 11 studied SWRS. Signif icant 

d i f ferences of reported parameters be tween SWRS units  (p  <  0.05, Tukey’s post-hoc test af ter 

repeated measures ANOVA) are  marked with  d i f ferent le tters above the bars.  
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5.3.2 Longitudinal patterns of pCO2, w
 and pCH4, w

 

Distinct longitudinal patterns along the studied stretch were identified for pCO2, w
 and 

pCH4, w
 (Figure 5.3). The pCO2, w

 showed a relatively smooth downstream pattern during 

the three investigated seasons (Figure 5.3a, 5.3b and 5.3c). On the contrary, the presence 

of SWRS not only influenced the dynamics of pCH4, w
 at local scale (see previous section) but 

also led to abrupt fluctuations in the pCH4, w
 longitudinal pattern (Figure 3). Even though 

this longitudinal pCH4, w
 pattern was consistent in the three studied seasons, a more 

marked fluctuating pattern was observed during winter (Figure 3f). 

 

 

Figure 5.3  Downstream longi tudinal  patterns of the part ia l  pressure of CO2  in water (p
CO2, w

) in  

(a)  spr ing,  (b)  summer and (c)  winter and part ia l  pressure  of  CH4  in  water  (p
CH4, w

) in  (d)  spring,  

(e) summer and (f)  winter  for  the 3 d i f ferent SWRS units  ( i .e . ,  upstream river,  impoundment 

water and downstream river).  The continuous sol id l ines represent the mean impoundment water  

p
CO2, w

 or p
CH4, w

.  Water  f low direction from N1. 
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5.3.3 Drivers of impounded water pCO2, w
 and pCH4, w

 

The PLS models identified distinct combinations of factors as predictors of impounded 

water pCO2, w
 and pCH4, w

 (Figure 5.4a; Table A.5.3 in the Supporting information section). 

The PLS model for pCO2, w
 extracted two components from the data matrix that explained 

68% of the variance (Figure 5.4a; Table A.5.3 in the Supporting information section). The 

most influential factors (VIP > 1) on pCO2, w
 were surface area, WRT, pCH4, w

, electrical 

conductivity and alkalinity, while the moderately influential factors (VIP between 0.8 and 

1) on the pCO2, w
 were surface water oxygen saturation, dissolved organic carbon 

concentration (DOC) and pH (see the direction and the relative strength of the effect of each 

factor on the pCO2, w
 in Table A.5.3 in the Supporting information section). 

The PLS model for pCH4, w
 extracted two components from the data matrix that explained 

69% of the variance (Figure 5.4b; Table A.5.3 in the Supporting information section). The 

most influential factors (VIP > 1) on pCH4, w
 were surface area, WRT, total dissolved 

nitrogen concentration, DOC, surface water temperature and concentration of Chl-a in 

suspension (see the direction and the relative strength of the effect of each factor on the 

pCH4, w
 in the Table A.5.3 in the Supporting information section), while no moderately 

influential factors was obtained from the PLS model for pCH4, w
. 
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Figure 5.4 Loadings p lot of  the PLS regress ion analysis  for  (a) pressure of  CO2  in  water  (p
CO2, w

) 

and (b)  par t ia l  pressure of CH4  in water  (p
CH4, w

).  The graph shows how the Y-variable (squares)  

corre lates wi th X-var iables (ci rcles)  and the  corre lat ion structure  of the X ’s.  X-variables are  

classi f ied according to their var iable inf luence on projection value (VIP):  h ighly inf luentia l  (black 

circles),  moderate ly inf luentia l  (grey circles)  and less inf luentia l  (white circ les).  The X-variables 

si tuated near Y-variables are posit ive ly corre lated to them and those si tuated on the opposite  

side are negative ly  corre lated. See Table A.5.2 in the Support ing information  section for the 

explanation of the abbrevia t ions. 
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5.4 Discussion 

5.4.1 Low diffusive CO2 and CH4 emissions from impounded waters 

Disruption of water flow by SWRS changes the hydrological dynamics of rivers, leading to 

higher WRT and higher deposition rates of OM [Syvitski et al., 2005; Acuña and Tockner, 

2010; Maeck et al., 2013]. Such trapping of autochthonous and allochthonous OM typically 

fuels aerobic and anaerobic heterotrophic processes, consequently favouring the 

enrichment of surface waters with CO2 and CH4 surface water concentrations and 

ultimately leading to higher emissions from impounded waters to the atmosphere [Cole, 

2000; St. Louis et al., 2000b; Duarte and Prairie, 2005; Giles, 2006]. Contrary to our 

expectations, the diffusive CO2 and CH4 emitted from impounded waters in our study 

never exceed the emissions from adjacent upstream riverine waters (treated as reference 

systems without SWRS influence). We attribute this finding to the higher turbulence 

induced by water currents in the free-flowing riverine sections. This physical control on C 

emissions was more evident in the case of CO2, where differences in pCO2, w
 were not even 

detected. Interestingly the physical control of emissions was also observed for CH4, despite 

for this gas, the impounded waters did show a significant increase in CH4 concentrations 

in relation to their upstream free-flowing river sections. Our results agree with previous 

findings that emphasized the importance of the gas transfer velocity as the major driver of 

diffusive CO2 and CH4 emissions from fluvial networks containing lakes and reservoirs 

[Guérin et al., 2007; Lundin et al., 2013; Crawford et al., 2014a; Gómez-Gener et al., 2015]. 

For CH4, we must consider that our estimates did not account for the ebullitive efflux, 

which has been described to be a major pathway for total CH4 efflux in very large, large 

and medium-size (> 1 km2) reservoirs [Delsontro et al., 2010; Fearnside and Pueyo, 2012; 

Sobek et al., 2012; Beaulieu et al., 2016], small reservoirs (1 - 0.1 km2) [Maeck et al., 2013] 

and SWRS (< 0.1 km2) previously examined in the same river [Gómez-Gener et al., 2015]. 

Therefore, the inclusion of ebullition estimates (e.g. inverted funnel-style bubble traps) in 

our sampling design would have probably led to higher total CH4 emission rates in the 

studied impounded waters compared to the river segments [Delsontro et al., 2010]. 
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5.4.2 Low effect of SWRS on downstream diffusive CO2 and CH4 emissions 

Regulation by dams not only affects the C emissions from the surface waters of reservoirs 

but also influences the C dynamics in the riverine sections downstream the reservoir 

[Guérin et al., 2006; Kemenes et al., 2007]. Emissions downstream of reservoirs have 

generally been poorly studied and are usually not taken into account in reservoir C 

balances [Barros et al., 2011]. The few works reporting C emissions downstream of 

reservoirs, mainly conducted in large reservoirs situated in the tropic region, showed that 

downstream C emissions can account for 7 to 25% of total CO2 emissions from reservoirs 

[Abril, 2005; Guérin et al., 2006] and 50 to 90% of total CH4 emissions [Abril, 2005; Guérin 

et al., 2006; Kemenes et al., 2007].  

In the present study, we did not find significant differences in CO2 or CH4 effluxes between 

free-flowing river sections located upstream and downstream of SWRS, despite the 

significant enrichment in CH4 in the impounded surface water. Here, we propose that this 

finding may be due to a possible loss of CO2 and CH4 along the segment between the SWRS 

and the downstream sampling stations. We acknowledge that although the distance 

between the SWRS and the downstream sampling stations was relatively short (never 

exceed 380m), a non-quantifiable part of CO2 and CH4 could have been emitted along this 

distance (e.g., throughout the waterfall associated to the SWRS) [Galy-lacaux et al., 1997; 

Wehrli, 2013; Deshmukh et al., 2015].  

 

5.4.3 Routing vs. local controls on the longitudinal patterns of pCO2, w
 and pCH4, w

 

Conceptual models of longitudinal patterns in streams and rivers are framed by the 

interplay of two contrasting perspectives. On the one hand are those frameworks that 

emphasize flow as an integrator over space [Vannote et al., 1980; Montgomery, 1999]. On 

the other hand, are those frameworks that highlight patchiness and abrupt spatial changes 

[Frisell et al., 1986; Townsend 1989]. These models are based on gradient analysis in which 

rivers are ultimately viewed as uninterrupted continua. However, few fluvial networks 

remain free from flow regulation over the entire course, but contrarily, they typically result 
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in an alternating series of lentic and lotic reaches [Ward and Stanford, 1983; Nilsson et al., 

2005; Döll et al., 2009].  

Here, we show that the downstream longitudinal patterns of dissolved C gases in water 

differed considerably depending on the nature of the C gas. On the one hand, CO2 

concentrations varied softly and homogeneously both at local scale (i.e., across SWRS 

sampling units) and at fluvial network scale (i.e., along the 36-km study stretch). This 

pattern suggests that although localized controls may influence CO2 concentrations in river 

water, the longitudinal dynamics of this gas have a routing control [Montgomery, 1999], 

where the CO2 lost in riverine sections is constantly replenished by CO2 produced internally 

or imported from the catchment [Hotchkiss et al., 2015; Gómez Gener et al., 2016]. On the 

other hand, CH4 concentrations showed a more variable pattern both at local and fluvial 

network scales. This shifting longitudinal pattern suggests that the concentration of CH4 

is highly dominated by local controls such as the presence of SWRS [Stanley et al., 2016]. 

Likewise, the difference in pCH4, w
 between impounded and riverine sections also highlights 

the high reactivity and dynamism of this gas, which in few meters is generated and rapidly 

emitted or consumed [Guérin et al., 2006; Kemenes et al., 2007]. 

 

5.4.4 Regulation of pCO2, w
 and pCH4, w

 from impounded waters 

Surface water supersaturation of dissolved CO2 and CH4 in impounded waters was 

persistent along the studied stretch and across seasons. Albeit, the results from the PLS-

models suggest that the drivers of gas supersaturation in SWRS may differ between CO2 

and CH4.  

CO2 supersaturation in impounded waters was explained by a combination of 

metabolically-related factors (i.e., oxygen saturation level, DOC, WRT and surface system 

area) and factors that may be related to hydrological inputs of CO2 from soil respiration 

and mineral weathering within the catchment (i.e., surface water alkalinity, pH and 

electrical conductivity). These results confirm the idea that direct terrestrial or geological 

origin of river pCO2, w
 [Stets et al., 2009; McDonald et al., 2013; Hotchkiss et al., 2015a; 

Marcé et al., 2015] is not in contradiction with the widespread notion of net heterotrophy 
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leading to CO2 supersaturation in different aquatic ecosystems [Duarte and Prairie, 2005; 

Lapierre et al., 2013]. In the case of pCH4, w
, our results support the idea that the presence 

of SWRS, despite their relative small water capacity, can still produce similar effects on 

their impounded water pCH4, w
 than those previously found in larger impoundments 

[Delsontro et al., 2010; Maeck et al., 2013; Beaulieu et al., 2016]. This can occur, for example, 

by affecting internal metabolic processes in the sediments (i.e., attenuated hydrological 

conditions [Thornton 1990], altering temperature regimes [Delsontro et al., 2010] and by 

inducing higher input and concentration of autochthonous and allochthonous OM [Sobek 

et al., 2012]). 

 

5.5 Conclusions and implications 

Our results show that because of the attenuated turbulent conditions, the diffusive CO2 

efflux from impounded waters was significantly lower than that from free-flowing river 

sections. On the contrary, no reduction in CH4 efflux associated to the presence of SWRS 

was detected because the significant enrichment in CH4 concentration in the impounded 

river sections compared to the free-flowing river sections compensates the physical effect 

on CH4 efflux. The significant increase in CH4 concentration detected in the impounded 

waters was not high enough to imply a significantly increase in the diffusive CH4 efflux 

from the free-flowing riverine sections adjacent to the SWRS; however, it influenced the 

overall longitudinal patterns of CH4 along the study stretch. Local controls (e.g., higher 

WRT, higher sedimentation rates, higher temperatures) associated to the presence of 

SWRS shaped the longitudinal dynamics of CH4 along this highly regulated river. Overall, 

these findings emphasize that the view of fluvial networks as a continuum is insufficient 

for describing the true spatial complexity of CH4 dynamics.  
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Abstract 

Inland waters are significant sources of carbon dioxide (CO2) to the atmosphere. CO2 

supersaturation and subsequent CO2 emissions from inland waters can be driven by 

internal metabolism, external inputs of dissolved inorganic carbon (DIC) derived from the 

catchment and other processes (e.g., internal geochemical reactions of calcite precipitation 

or photochemical mineralization of organic solutes). However, the sensitivity of the 

magnitude and sources of CO2 emissions to fluvial network hydromorphological alterations 

is still poorly understood. Here, we investigated both the magnitude and sources of CO2 

emissions from lotic (i.e., running waters) and lentic (i.e., stagnant waters associated to 

small dams or weirs) waterbodies of a Mediterranean fluvial network by computing 

segment-scale mass balances of CO2. Our results showed that sources other than internal 

metabolism sustained most (82%) of the CO2 emissions from the studied fluvial network. 

The magnitude and sources of CO2 emissions in lotic waterbodies were highly dependent 

on hydrology, with higher emissions dominated by DIC inputs derived from the catchment 

during high flows, and lower emissions partially fuelled by CO2 produced biologically 

within the river during low flows. In contrast, CO2 emissions in lentic waterbodies were 

low, relatively stable over the time and the space, and dominated by DIC inputs from the 

catchment regardless of the different hydrological situations. Overall, our results stress the 

sensitivity of fluvial networks to human activities and climate change, and particularly 

highlight the role of hydromorphological conditions on modulating the magnitude and 

sources of CO2 emissions from fluvial networks. 
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6.1 Introduction 

Inland waters are active components of the global carbon (C) cycle that transform, store 

and emit more than half of the C they receive from terrestrial ecosystems [Cole et al., 2007; 

Battin et al., 2009a; Tranvik et al., 2009; Aufdenkampe et al., 2011]. Recent global estimates 

place the efflux of carbon dioxide (CO2) emitted from streams and rivers at 1.8 Pg C y1 and 

from lakes and reservoirs at 0.32 Pg C y-1, resulting in a global estimate of CO2 emissions 

from fluvial networks of 2.1 Pg C y-1 [Raymond et al., 2013]. However, there are still 

fundamental uncertainties regarding the magnitude, spatiotemporal variation and 

sources of CO2 emissions from fluvial networks [Raymond et al., 2013; Wehrli, 2013; von 

Schiller et al., 2014; Hotchkiss et al., 2015].  

A better understanding of the processes regulating CO2 emissions from fluvial networks is 

essential to comprehend the present and thus predict the future role of freshwaters in the 

global C cycle and the climate system [Raymond et al., 2013; Hotchkiss et al., 2015]. The 

flux of CO2 across the air–water interface depends on the gas transfer velocity and the 

supersaturation of CO2 in the surface water [Bade, 2009]. While the gas transfer velocity 

is a physical factor mainly controlled by the turbulence at the air–water interface, there 

are two major processes that can lead to CO2 supersaturation in aquatic ecosystems. The 

first is internal aquatic mineralization of organic matter (OM), which can result in an 

imbalance of net ecosystem production (NEP) towards net heterotrophy (respiration 

exceeding production) [Cole et al., 2000; Duarte and Prairie, 2005]. The second is the input 

of surface and subsurface water with high dissolved inorganic carbon (DIC) content derived 

from soil respiration and mineral weathering within the catchment [Cole et al., 2007; 

Humborg et al., 2010b; Marcé et al., 2015]. Among these, internal metabolism has 

classically been considered to be the main factor driving CO2 supersaturation in lakes and 

rivers [Cole et al., 2000; Duarte and Prairie, 2005]. Yet, recent studies have shown that 

external inputs dominate CO2 supersaturation and thus CO2 emissions from most streams 

and rivers [Borges et al., 2015a; Hotchkiss et al., 2015] as well as lakes and reservoirs[Stets 

et al., 2009; McDonald et al., 2013; Marcé et al., 2015; Weyhenmeyer et al., 2015; Wilkinson 

et al., 2016a]. However, there is still little information about the relative contribution of 

these major sources to the CO2 emissions from lotic and lentic waterbodies located within 
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fluvial networks. Likewise, the role of other less known processes such as internal 

geochemical reactions of calcite precipitation usually occurring in alkaline waterbodies 

[Otsuki and Wetzel, 1974; Stets et al., 2009; Nõges et al., 2016] or photochemical 

mineralization of organic solutes [Amon and Benner, 1996; Cory et al., 2014; Vachon et al., 

2016] on sustaining CO2 supersaturation and emission in aquatic ecosystems is still largely 

undefined. 

Due to the high human demand for energy and water, many fluvial networks worldwide 

have been regulated with a variety of hydraulic structures, ranging from very large dams 

to smaller reservoirs, impoundments and small weirs [Nilsson et al., 2005a; Döll et al., 

2009]. Mediterranean fluvial networks are no exception, having mainly been modified by 

small man-made flow discontinuities such as impoundments or weirs [García-Ruiz et al., 

2011]. Such anthropogenic changes combined with the naturally marked seasonality of 

river flow in Mediterranean regions [Gasith and Resh, 1999; Bernal et al., 2013], modulate 

the fluvial network hydrological dynamics (i.e., flow conditions) that, in turn, govern the 

overall physicochemical [Friedl and Wüest, 2002; Poff and Hart, 2002], structural [Clavero 

et al., 2004; Buffagni et al., 2009] and functional [Ward and Stanford, 1983, Acuña and 

Tockner, 2010; Elosegi and Sabater, 2013; Abril et al., 2015] attributes of these fluvial 

networks. As a consequence, strong changes in the magnitude and sources of CO2 

emissions in response to flow modification are expected for fluvial networks in this region. 

Here we evaluated and compared the magnitude and sources of CO2 emissions between 

lotic and lentic waterbodies within a Mediterranean fluvial network and investigated their 

response to different hydrological conditions. To test the overarching objectives, we 

measured CO2 emissions and the underlying fluxes that drive variation in CO2 

concentration within studied segments. We then computed the relative contribution of the 

CO2 production by internal metabolism, the hydrological flux of CO2 and the CO2 flux of 

other non-measured processes to the emitted CO2 by solving segment-scale mass balances 

over one hydrological year. We hypothesized that the magnitude and the relative 

contribution of the different sources to CO2 emissions in our fluvial network would strongly 

depend on the waterbody type (i.e., lotic or lentic) as well as on the hydrological conditions 

(i.e., high or low water flow). During high flows, we expected that higher gas exchange as 

well as greater hydrological connectivity would homogenize gas dynamics along the lotic 
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and lentic waterbodies of the fluvial network. Thus, we predicted generally higher fluvial 

network CO2 emissions and similar rates of CO2 emissions in lentic and lotic waterbodies, 

with dominant support of sources other than CO2 produced by internal metabolism. In 

contrast, during low flows, we expected a general decrease in the gas exchange and 

hydrological connectivity, with an associated increased spatial heterogeneity in gas 

concentration and flux. Thus, we predicted generally lower fluvial network CO2 emissions, 

and lower CO2 emissions from lentic than from lotic segments, as well as a greater 

contribution of aquatic metabolic sources in lentic than in lotic waterbodies. 

 

6.2 Materials and Methods 

6.2.1 Study sites and sampling design 

The Fluvià River (NE Iberian Peninsula; Figure 6.1) is a 97-km long river that drains a 

990-km2 catchment covered with mixed forests (78%), agricultural (19%) and urban (3%) 

areas (Land Cover Map of Catalonia, Centre of Ecology and Forestry Research of 

Catalonia, 2009 The catchment is mostly calcareous, with some areas (< 15%) of siliceous 

materials (Cartographic and Geological Institute of Catalonia, 2006). The climate in the 

area is typically Mediterranean; the mean monthly air temperature ranges from 6 ºC in 

January to 26 ºC in July and the mean annual precipitation is 660 mm, with rainfall 

primarily occurring in autumn and spring, with occasional storms in summer (Data from 

2004 to 2014, Catalan Water Agency). The water flow of Fluvià River has been deeply 

modified due to the high human demand for energy and water [García-Ruiz et al., 2011]. 

Its fluvial network presents up to 61 small to very small water retention structures (SWRS) 

such as weirs and small impoundments that cause flow interruptions from its headwaters 

to the river mouth [Pavón, 2010]. 

 

In order to cover the wide spectrum of hydrological conditions occurring in the Fluvià River 

fluvial network, we performed monthly samplings (December 2012 to November 2013) in 

a set of 12 segments situated throughout the fluvial network, from headwaters to lowlands 

(Figure 6.1). The segments included 8 lotic (i.e., running water reaches) and 4 lentic (i.e., 
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stagnant waters associated to SWRS) segments.. The selected study segments were chosen 

as to avoid point source pollution, and their length was defined as a compromise between 

sufficient to detect changes in the variables of interest, while maintaining relative 

homogeneity of environmental conditions (i.e., canopy cover, morphology, and 

subcatchment land use). A detailed hydromorphological description of the selected 

segments along the sampling period is shown in Table A.6.1 in the Supporting information 

section. 

 

 
Figure 6.1 Location of the F luvià River catchment in Catalonia  (NE Iberian Peninsula),  with the 

corresponding posit ion of the s tudy segments (n  = 12).  Dark  blue circles indicate  lot ic  segments 

(n = 8) and l ight  green circles lentic segments (n = 4).  See Table A.6.1 in the Support ing 

information section for  a  detai led descript ion of the hydromorphological  characteris t ics  of the 

segments.  

 

6.2.2 Hydromorphology 

On each sampling date, we measured the cross-sectional water velocity (m s-1) at the inlet 

and outlet of each segment with an acoustic-Doppler velocity meter (Sontek, YSI, USA), 

and we combined this with the cross-sectional depth (m) and width (m) to derive the water 

flow (m3 s-1). We used then the hydraulic modelling software HecRas 2.2 (US Army Corps 
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of Engineers, USA) to estimate the mean cross-sectional water velocity, the wet segment 

area and the water volume every ca. 100 m along the segments. The model was fed with 

the measured water flow and segment geometrical data provided by the Catalan Water 

Agency). We calculated the slope of each lotic segment as the elevation difference over the 

length of the segment with the geospatial-processing software (ArcMap v10, ESRI, USA) 

using a 2-meter digital elevation model (Cartographic and Geological Institute of 

Catalonia, 2006).  

In lentic segments, we obtained the surface area, volume and mean and maximum depth 

from digitized bathymetric maps constructed with a geospatial-processing software 

(ArcMap v10, ESRI, USA) using in-situ morphological data obtained from different field 

surveys performed during 2013. The water residence time (WRT; h) in both lotic and lentic 

segments was calculated by dividing the segment volume by the segment average water 

flow. 

 

6.2.3 Water-air flux of CO2 

In lotic segments we determined the CO2 flux across the water-air interface (FCO2 emission; 

mmol m-2 d-1) using Fick First Law of gas diffusion: 

FCO2 emission  � k���  Kh �pCO2, w - pCO2, a �     (1) 

where Kh (mmol µatm-1 m-3) is the Henry’s constant for CO2 adjusted for salinity and 

temperature [Weiss, 1974; Millero, 1995], pCO2, w (µatm) and pCO2, a (µatm) are the mean 

partial pressures of CO2 in surface water and air, respectively, and the kCO2 (m d-1) is the 

specific gas transfer velocity for CO2. Positive values of FCO2 emission represent gas efflux 

from the water to the atmosphere, and negative values indicate gas influx from the 

atmosphere to the water. 

At the inlet and the outlet of each segment, we measured the pCO2, w  and pCO2, a with an 

infrared gas analyzer (EGM-4, PP-Systems, USA). Measurement accuracy of the EGM-4 

is estimated to be within 1% over the calibrated CO2 range. For  ���," measurements, the 
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water samples were circulated through a membrane contactor (MiniModule, Liqui-Cel, 

USA) coupled to the gas analyzer [Teodoru et al., 2010] at 300 mL min -1. For pCO2, a , the 

atmospheric air was taken approximately one meter above the water surface layer and 

circulated through the gas analyzer. We then averaged the pCO2, w  and  ���,#  measured 

at the inlet and the outlet of each segment to obtain a mean segment pCO2, w and pCO2, a . 

We estimated a mean segment gas transfer velocity from the segment slope (s; m m-1) and 

the mean segment water velocity (v; m s-1) with equation (2) in Raymond et al. [2012]: 


���  �  1162 &�.(( )�.*+         (2) 

where k600  (m d-1) is the standardized gas transfer velocity at 20ºC. The k600  was 

transformed to the 
��� following: 

 kCO2  � kO2(
ScCO2

ScO2

)
-n

 ,        (3) 

where Sc (dimensionless) is the Schmidt number of CO2 at the measured water 

temperature [Wanninkhof, 1992]. In addition, we compared our kCO2  derived from 

equation (2) with the kCO2  calculated from night-time oxygen dynamics (NTR method; 

[Hornberger and Kelly, 1972]; detailed description of the method in the Figure A.6.1 in the 

Supporting information section) and direct chamber measurements to ensure their 

applicability throughout the study (Figure A.6.1 in the Supporting information section). 

This validation exercise showed that the range where 95% of the y-observations (i.e., kCO2  

from equation (2)) fall (95th percentile) showed a clear linear relationship with the x-

observations (i.e., kCO2  from the NTR method and from chamber measurement made in 

lotic segments), with almost all the observations falling very close to the 1:1 reference line. 

In lentic segments, we determined ����  ,-.//.01 by the enclosed chamber method 

[Frankignoulle 1988]. Briefly, we monitored the CO2 gas concentration in an opaque 

floating chamber every 4.8 s with an infrared gas analyser (EGM-4, PP-Systems, USA). In 

all the cases, flux measurements lasted until a change in CO2 of at least 10 µatm was 
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reached, with a maximum duration of 600 s and a minimum of 300 s. We calculated the 

����  ,-.//.01 from the rate of change of CO2 inside the chamber as follows: 

FCO2 emission  � �dpCO2
dt

�  � V

RTS
�         (4) 

where 
2345�

26  is the change in CO2 concentration in the chamber along time in µatm s−1, V 

and S are the volume and surface area of the chamber (27.1 dm3 and 19.4 dm2, respectively), 

T is the air temperature in Kelvin and R is the ideal gas constant (L atm K−1 mol−1). We 

performed and averaged a minimum of 3 measurements in the central part of the lentic 

segment after flushing the chamber with ambient air between consecutive measurements. 

At each lentic segment, we determined the pCO2, w  and the pCO2, a at the same location 

where flux was measured using the methodology described for lotic segments and we then 

derived the kCO2  from equation (1). 

 

6.2.4 Internal metabolic flux of CO2 

We estimated the internal metabolic flux of CO2 (FCO2 metabolism; mmol m2 d-1) at each of 

the 12 segments from diel open-water dissolved oxygen (DO) variations [Odum 1956]. The 

diel DO data was obtained from automatic monitoring stations equipped with optical 

probes (YSI 600OMS V2, YSI 600XLM V2, Yellow Springs, USA, and MiniDOT, PME, 

USA). The YSI 600OMS V2, YSI 600XLM V2 and MiniDOT sensors have an accuracy of 

0.1, 0.1 and 0.3 mg O2 L-1, respectively. All the probes were intercalibrated before 

deployment. 

The metabolic rates were determined for those days coincident with the FCO2 emission 

samplings. Specifically, in those segments were permanent monitoring stations were 

available (#8, #3 and #11, Figure 6.1) the metabolic rates were determined for all the 

monthly FCO2 emission samplings (n = 12). In the other segments, we used temporarily 

installed monitoring stations, and the metabolism was determined in two contrasted 

hydrological situations (high flow period, end of May 2013, and low flow period, end of 

August 2013; Figure 6.2a).  
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We obtained the solar irradiance reaching the surface (E; W m-2) from a nearby 

meteorological station (< 50 km away from the study segments) and converted it to 

photosynthetically active radiation (PAR; mmol m-2 d-1) following Kirk [1994]. 

We calculated the gross primary production (GPP) and ecosystem respiration (ER) using a 

linear photosynthesis–irradiance relationship [Van der Bogert et al., 2007; Hanson et al., 

2008; Holtgrieve et al., 2010]:  

DOt � DOt-1+ �GPP

z
·

PARt-1

PAR24
� - �ER

z
∆t� +FO2

∆t      (5)  

where GPP is the rate of O2 production by photosynthesis (mmol O2 m-2 d-1), ER is the 

respiratory rate of O2 consumption (mmol O2 m-2 d-1), PARt-1 is the instantaneous 

photosynthetically active radiation (mmol m-2 d-1), PAR24 is the daily accumulated 

photosynthetically active radiation (mmol m-2 d-1), z is mean water column depth (m), FO2 

is the exchange of O2 between the water and the atmosphere (mmol O2 m2 d-1) and ;< is 

the time between measurements. FO2 was calculated as FO2  � kO2 =O2,w (t-1)- O2,sat (t-1)>, 

where kO2 is the specific gas transfer velocity for O2 (m d-1), O2,w is the measured DO 

concentration in water, and O2,sat is the DO concentration in atmospheric equilibrium, 

calculated at each time step from temperature and corrected for barometric pressure from 

[Benson and Krause, 1984]. We obtained kO2 from kCO2 by applying equation (3).  

We estimated GPP and ER by fitting Eq. 6 to the diel DO data for each day using a 

numerical minimization algorithm (the negative log likelihood function of a normal 

distribution), using the function nlm in R [R Core Team 2013]. Model performance (i.e., 

how well the model fitted observed diel changes in DO) was assessed both visually, and 

numerically through the coefficient of determination (r2 > 0.75, see examples in Figure 

A.6.2 in the Supporting information section). Model fitting was generally good, and 

metabolic rates agreed with reported ranges for streams, rivers, lakes and reservoirs 

([Hoellein et al., 2013], Table A.6.2 and Figure A.6.23 in the Supporting information 

section). 

We then calculated the net ecosystem production (NEP; mmol O2 m2 d-1) as: 
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NEP � GPP-ER         (6) 

and we converted oxygen-based rates to C metabolic rates (expressed as mmol C m-2 d-1) 

using a CO2:O2 ratio of 138:106 [Torgersen and Branco, 2007]. For NEP > 0 (i.e., net 

autotrophy) there is more CO2 being removed from the water column by photosynthesis 

than added by respiration, leading to negative FCO2 metabolism. In contrast, NEP < 0 (i.e., net 

heterotrophy) implies higher respiration than photosynthesis, and therefore a positive 

FCO2 metabolism. 

 

6.2.5 Source apportionment of CO2 emissions 

In addition to the upstream inputs and internal metabolism, other processes (i.e., 

groundwater fluxes, lateral surface water fluxes and internal fluxes derived from 

geochemical reactions of calcite precipitation and photochemical mineralization of organic 

solutes), can contribute to CO2 supersaturation in each segment. We derived the flux of 

CO2 associated to these unmeasured sources (FCO2 others; mmol m-2 d-1) by applying a mass 

balance approach of CO2 assuming steady state in each individual segment:  

dCO2

dx
 � FCO2 inflow - FCO2 outflow ± FCO2 emission  C  FCO2 metabolism  C  FCO2 others  (7) 

where FCO2 inflow  (mmol m-2 d-1) is the measured flux of CO2 imported from upstream 

surface waters, FCO2 outflow  (mmol m-2 d-1) is the measured flux of CO2 exported to 

downstream surface waters,  FCO2 emission (mmol m-2 d-1) is the measured flux of CO2 across 

the water-air interface and FCO2 metabolismis the measured flux of CO2 derived from aerobic 

metabolic processes occurring in the segment. Not all the CO2 derived from internal 

metabolism will remain in the water as CO2 because a portion will be converted to 

carbonate or bicarbonate depending on water alkalinity and pH. Thus, we calculated 

FCO2 metabolism by considering the geochemical speciation of inorganic carbon (IC) once CO2 

from internal metabolism is added to the water. Concentrations of different DIC species 

where calculated from DIC, pH and temperature using the speciation software CO2SYS 

[Lewis and Wallace, 1998]. 
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 To assess the relative contribution (%) of each source to the total CO2 inputs into 

the segment, we divided each of the contributing fluxes (i.e., FCO2 inflow , FCO2 metabolism and 

FCO2 others ) by their sum. 

 

6.2.6 Data analysis 

We tested the effect of the segment type (i.e., lotic segments, n = 96; lentic segments, n = 

48) on the mean WRT, FCO2 metabolism,   DE�,"  and 
��� using one-way analysis of variance 

(ANOVA). We assessed the effect of the WRT on the FCO2 emission, pCO2, w  and kCO2 in both 

lotic and lentic segments using linear and non-linear regressions. To determine the 

importance of the two main parameters directly involved in the CO2 emission (i.e., pCO2, w  

and kCO2 ) we applied simple and multiple linear regression models. 

We tested the effect of the segment type (i.e., lotic segments, n = 32; lentic segments, n = 

10) on the CO2 fluxes that determined CO2 variations within segments (i.e., FCO2 emission, 

FCO2 metabolism, FCO2 inflow, FCO2 outflow and FCO2 others) using one-way ANOVA. We 

investigated the dependency of FCO2 metabolism on FCO2 emission and  pCO2, w  in both lotic and 

lentic segments with linear and non-linear regression models. A similar approach was used 

to assess the effect of the WRT on the  ����  -,6FG0H./-  and of the WRT on the relative 

contribution of FCO2 metabolism, FCO2 inflow and FCO2 others. 

When the statistical tests required it, we transformed the variables by their natural 

logarithm to meet the conditions of homogeneity of variance, normality of residuals and to 

avoid the deleterious effect of extreme large values. All statistical analyses were conducted 

in the R statistical environment [R Core Team 2013] using the Vegan package [Oksanen et 

al. 2013]. Statistical tests were considered significant at p < 0.05. 

 

6.3 Results 

6.3.1 Hydrological regime 

The WRT of lotic and especially that of lentic segments showed a wide annual variation, 

driven by changes in water flow (Figure 6.2a; Table A.6.1 in the Supporting information 
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section). Specifically, the first part of the monitored period (from December 2012 to March 

2013) was characterized by low water flows. During this period, the average WRT in lotic 

segments was 10 h. In contrast, the presence of dams and weirs extended the WRT in lentic 

segments up to an average of 51 h. Subsequently, surface water flow in the fluvial network 

increased swiftly as a consequence of heavy rainfalls, leading to a minimum difference in 

WRT between segment types (mean WRT of lotic and lentic segments from April to May 

2013 was 0.8 and 3.7 h, respectively). Following this hydrological peak (April 2013) the 

surface water flow gradually decreased until the end of the studied period (November 

2013). Consequently, the mean fluvial network WRT increased progressively, and the 

difference in WRT between lotic and lentic segments increased again (mean WRT of lotic 

and lentic segments in November 2013 was 6.6 and 30.6 h, respectively).  

 

6.3.2 CO2 emissions 

The FCO2 emission ranged from 627.2 to -11.2 mmol m-2 d-1 (mean = 131.9, n = 144) and 

showed a clear difference in magnitude and seasonal variation between lotic and lentic 

segments (Figure 6.2b). The lotic FCO2 emission was negatively related to WRT 

(FCO2 emission= -63.9 ln(WRT) + 205.3; r2 = 0.94, p < 0.001, n = 12), indicating a strong 

dependency on hydrological dynamics. In contrast, a non-significant relationship between 

FCO2 emission and WRT was detected in lentic segments (r2 = 0.14, p = 0.29, n = 12).  

The FCO2 emissionalso showed a different spatial pattern in lotic and lentic segments (Figure 

A.6.4 in the Supporting information section). In lotic segments, both the magnitude and 

the temporal variability decreased from upstream segments (i.e., headwaters streams) to 

lowland segments (i.e., river mouth). In contrast, lentic segments showed the opposite 

pattern, and emitted more CO2 and were more temporally variable when situated close to 

the river mouth, and emitted less CO2 and were less variable when they were situated 

upstream on the fluvial network. 
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Figure 6.2 Temporal  variat ion (from December 2012 to November 2013) of (a) water residence  

t ime (WRT),  (b) CO2  emissions (FCO2 emission),  (c) part ia l  pressure of CO2  in water (p
CO2, w 

) and (d)  

specif ic gas t ransfer  ve loci ty  for CO2  (kCO2
).  Sol id  l ines represent monthly averages for  the lot ic  

(blue,  n = 8) and lentic (green, n = 4) segments.  Shaded regions are monthly standard errors 

(SE) that  represent spatia l  var iat ions. The dashed grey l ine in panel (a)  represents the water 

f low at the outlet of the catchment.  The horizontal  dashed l ine in panel (c)  represents the  

average part ia l  pressure  of CO2  in a i r (p
CO2, a 

) for  a l l  the segments (418 µatm). 
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Most observations (142 out of 144) were supersaturated in dissolved CO2 in relation to the 

atmosphere (Figure A.6.5 in the Supporting information section). The pCO2, w ranged from 

201 to 7213 µatm (mean = 1670, n =144). The pCO2, w from lotic (range = 495 to 5274, mean 

= 1743, n = 96) and from lentic segments (range = 201 to 7313, mean = 1670, n = 48) did 

not differ significantly (ANOVA, p = 0.216; Figure 6.2c). The pCO2, w from lotic segments 

showed a weak but statistically significant positive relationship with the WRT (pCO2, w = 

230.1 ln(WRT) + 1446.5; r2 = 0.26, p =0.04, n = 12), whereas such dependency was not 

observed for the lentic segments (r2 = 0.08, p = 0.39, n = 12). 

The kCO2 ranged from 0.04 to 15.8 m d-1 (mean = 2.1, n = 144; Figure A.6.5 in the 

Supporting information section), and although variable, it was significantly higher 

(ANOVA, p < 0.001; Figure 6.2d) in lotic segments (range = 0.36 to 15.8 m d-1, mean = 2.71, 

n = 96) than in lentic segments (range = 0.04 to 12.38 m d-1, mean = 0.51, n = 48). Likewise, 

the kCO2 from lotic segments clearly responded to the temporal hydrological fluctuations 

and gradually decreased with increasing WRT (kCO2 = -2.1 ln(WRT) + 5.4; r2 = 0.80, p < 

0.001, n = 12). In contrast, kCO2 from lentic segments remained relatively stable along the 

WRT gradient (r2 = 0.03, p = 0.66, n = 12).  

Among the two main parameters directly driving FCO2 emission (i.e., pCO2, w  and kCO2 ; 

Equation 1), the kCO2 exhibited a significant positive relationship with the FCO2 emission 

(FCO2 emission= 31.1 kCO2 + 46.2; r2 = 0.61, p < 0.001, n = 144; Figure A.6.5 in the Supporting 

information section), while no significant dependency between pCO2, w  and FCO2 emission 

was detected (r2 = 0.02, p = 0.080, n = 144; Figure A.6.5 in the Supporting information 

section). The multiple regression analysis also revealed that 
��� and pCO2, w  explained 

respectively 86% and 0% of the total variation in FCO2 emission. However, pCO2, w explained 

a higher proportion of the variance of FCO2 emission(13.9%) when only lentic segments were 

included in the model.  
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6.3.3 Internal metabolism 

While all segments where we estimated FCO2 metabolism (n = 42) were supersaturated in 

CO2, only 71% of them showed positive FCO2 metabolism values (i.e., internal metabolic 

production of CO2; Figure 6.3 and Table A.6.2 in the Supporting information section). This 

discrepancy was more evident in lentic segments, of which only 40% showed positive 

FCO2 metabolism, and even in most cases these were only slightly positive. FCO2 metabolism did 

not show any significant relationship with FCO2 emission or pCO2, w  (Figure 6.3), neither 

when pooling all the data nor when considering lotic and lentic segments separately. 

 

 
Figure 6.3 Relat ionship be tween the inte rnal  metabol ic  f lux  of CO2  (FCO2 metabolism) and (a)  the CO2  

emissions (FCO2 metabolism) and (b)  the part ia l  pressure of CO2  in water  (p
CO2, w 

) for bo th lot ic (dark  

blue ci rcles;  n = 32) and lentic  segments ( l ight  green circles;  n = 10).  The vert ical  dashed l ines 

represent FCO2 metabolism =  0.  The horizontal  dashed l ine in panel (a)  represents FCO2 metabolism =  0.  The 

horizontal  dashed l ine in  panel (b) represents  the  average  part ia l  pressure of  CO2  in  a i r  (p
CO2, a 

) 

for a l l  the segments (418 µatm). The 1:1 reference l ine is  shown in panel (a).  
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FCO2 metabolism in both lotic segments (r2 = 0.62, p < 0.001, n = 30) and lentic segments (r2 = 

0.59, p = 0.008, n = 12) showed a significant positive linear relationship with WRT (Figure 

6.4).. However, FCO2 metabolism increased more rapidly with increasing WRT in lotic (slope 

= 0.08 ± 0.01) than in lentic segments (slope = 0.02 ± 0.006). 

 

 

Figure 6.4 Internal  metabol ic f lux of CO2  (FCO2 metabolism) as  a function of water residence t ime for 

both lo t ic  (dark blue circles)  and lentic  segments ( l ight  green circles).The horizontal  dashed 

l ine represents FCO2 metabolism=0. The sol id l ines correspond to  the  regression model l ines best  

f i t t ing the data.  Model equations are also shown close to model l ines 

 

6.3.4 Source apportionment of CO2 emissions 

The FCO2 inflow and the FCO2 others, were the dominant sources of CO2 that sustained the 

FCO2 emission in the fluvial network (50.2 and 31.9% on average, respectively; Figure 6.5). A 

similar influence of the FCO2 inflow and the FCO2 others on the FCO2 emissionwas detected in 

lotic segments (43.4 and 41.1%, respectively), whereas a stronger influence of upstream 

inputs on the FCO2 emission was detected in lentic segments (73.9%). We also detected 

differences in the contribution of FCO2 metabolism to the FCO2 emission between segment 

typologies. Whereas FCO2 metabolism contributed an average of 24% in lotic segments, the 

mean contribution of FCO2 metabolismto the FCO2 emission was negligible (~ 0%) in lentic 

segments (Figure 6.5). 
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Figure 6.5 Source apport ionment of  CO2  emissions (FCO2 emission)  for  lot ic  ( lef t)  and lentic  (r ight )  

segments.  Columns represent averages and error bars standard errors for the d i f ferent studied 

segments.  The horizontal  dashed l ine represents FCO2 emission = 0.  

 

The relative contribution of FCO2 metabolism to the FCO2 emission in lotic segments showed a 

positive relationship with WRT (contribution of FCO2 metabolism= 18.6 ln(WRT) + 4.1; r2 = 

0.65, p < 0.001, n = 32; Figure 6.6a), and contributed up to 40-70% of the emitted CO2 in 

situations of high WRT. In contrast, no hydrological dependence of the contribution of 

FCO2 metabolism= to the FCO2 emission was detected in the case of lentic segments. The 

contribution of FCO2 inflow to the �DE�  IJKLLKMN showed a negative relationship with the WRT 

(contribution of FCO2 inflow = 52.009 e-0.602 ln(WRT); r2 = 0.44, p < 0.001, n = 32; Figure 6.6b) 

in lotic segments, while no hydrological dependence of the contribution of �DE�  KNOPM" to the 

FCO2 emission was detected in the case of lentic segments. Finally, the contribution of 

FCO2 others to the FCO2 emission, which was highly variable along the fluvial network and 

during the studied period, was not related to the WRT, neither in lotic nor in lentic 

segments (Figure 6.6c). 
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Figure 6.6 Relat ive  contribut ion of (a)  internal  metabol ism,  (b)  upstream inf low and (c)  o ther 

non-measured sources to CO2  emissions as a funct ion of the water residence t ime for lot ic  

(dark blue ci rcles) and lentic  segments ( l ight  green ci rcles).  The horizontal  dashed l ines 

represent reference l ines for 0% contribution. The sol id l ines in panels (a) and (b) correspond 

to the regression l ines best  f i t t ing the data ( included when sta t is t ical ly s ignif icant).  Model 

equations are also shown close to  model l ines.  
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6.4 Discussion 

Here, we showed that the CO2 emitted from the interconnected lotic and lentic waterbodies 

found along a Mediterranean fluvial network mostly derives from sources other than 

internal metabolism. Such sources may include surface and subsurface hydrological inputs 

of CO2 derived from soil respiration and mineral weathering within the catchment, 

internal geochemical reactions of calcite precipitation and internal photochemical 

mineralization of organic solutes (see below). Furthermore, both the magnitude of CO2 

emissions and the relative contribution of the different sources strongly depended on the 

hydrological dynamics of the fluvial network, being particularly dependent on them in the 

lotic segments. 

Our results highlight the importance of CO2 emissions from running waters compared to 

slow-moving waterbodies associated to weirs and small impoundments. In general, low-

order streams deserve special attention since they cover a large surface area [Butman and 

Raymond, 2011; Downing et al., 2012; Raymond et al., 2013]. Several studies have shown 

that stream emissions dominate total aquatic CO2 emissions [Kokic et al., 2015] at regional 

[Lundin et al., 2013; Wallin et al., 2013] and global scales [Raymond et al., 2013]. Our study 

adds to current knowledge by accounting for the pronounced spatial and temporal 

variability in streams and impounded waterbodies within fluvial networks. Specifically, we 

show that CO2 emissions from headwater streams dominate aquatic CO2 loss, especially 

during periods of high flows, when most of the stream network is hydrologically connected 

[Benstead and Leigh, 2012; Downing, 2012; Bernal et al., 2013].  

Our results also agree with previous findings on the importance of 
��� as the major driver 

of the spatial and temporal variability in fluvial network CO2 emissions [Wallin et al., 2011; 

Gómez-Gener et al., 2015; Kokic et al., 2015; Long et al., 2015]. However, the complexity of 

the hydrological regime of Mediterranean fluvial networks leads to particular situations 

(in space and time) where the  ���," can exert a significant control on CO2 emissions. These 

situations mainly occurred in lentic segments during low flows, when dams and weirs 

create discontinuities that decreased 
��� and led to higher supersaturation of CO2. 

Extended periods of low flows as a consequence of intensive use of the water resources or 

drought [Gasith and Resh, 1999; Gibson et al., 2005] may lead to a higher increase of lentic 



General discussion  147 
 

habitats at the expenses of lotic environments in many fluvial networks [Sabater, 2008]. 

Consequently, the dominance of  ���," on controlling the CO2 emissions under situations 

of physical limitation induced by low flows [Demars and Manson, 2013; Gómez-Gener et al., 

2015] will probably be more common in the future. 

Internal biomineralization of aquatic and terrestrial OM (here referred to as internal 

metabolism), has commonly been considered to be the main factor driving CO2 

supersaturation in lakes and rivers [Cole et al., 2000; Duarte and Prairie, 2005]. Therefore, 

if no other processes are adding or removing CO2 besides internal metabolism, the CO2 

present in the system and emitted to the atmosphere should be in line with the degree of 

net heterotrophy in the corresponding aquatic ecosystems. Our results showed a strong 

disagreement with this perspective, since the CO2 produced by internal metabolism and 

both the CO2 present in the segment and the CO2 emitted to the atmosphere did not match 

(Figure 6.3). In fact, some of the supersaturated segments were actually net autotrophic, 

showing negative FCO2 metabolismvalues (overall, 60% of supersaturated lentic and 20% of 

lotic segments were found to haveFCO2 metabolism< 0; Figure 6.3b). In those situations, 

internal metabolism was acting as a net sink for IC, but the magnitude of this sink was not 

sufficient to maintain dissolved CO2 concentrations below atmospheric levels. These 

results support previous findings that already indicated that sources other than internal 

metabolism can sustain CO2 supersaturation in freshwaters [Stets et al., 2009; McDonald 

et al., 2013; Borges et al., 2015; Hotchkiss et al., 2015; Marcé et al., 2015]. 

Our mass balance of CO2 (Table 6.1) highlights a crucial role of hydrological inputs and 

other sources on sustaining the CO2 emissions along the fluvial network. Several studies 

in lentic systems point towards the same direction. For example, Stets et al. [2009] showed 

that the sum of surface and subsurface hydrological inputs of DIC accounted for 41% to 

100% of the observed CO2 release from two lakes situated in north-central Minnesota, 

USA. Likewise, McDonald et al. [2013] and Weyhenmeyer et al. [2015] showed that the 

surface and subsurface hydrological inputs of DIC accounted for a significant fraction of the 

total CO2 emitted from a large number of lakes and reservoirs in the contiguous United 

States and Scandinavia, respectively. Similarly, Marcé et al. [2015] showed that in up to 

57% of the lakes and reservoirs worldwide, CO2 supersaturation could be related to 
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alkalinity inputs from the catchment, suggesting mineral weathering as a fundamental 

regulator of the DIC coming from terrestrial ecosystems Also, Wilkinson et al. [2016] using 

high-frequency time series of O2 and CO2 confirmed the large influence of hydrological 

inputs on the CO2 emissions, even in lakes where internal CO2 uptake had been 

experimentally increased with nutrients. In the same direction, a recent study in lotic 

systems [Hotchkiss et al. 2015] showed that CO2 produced by aquatic metabolism 

contributes on average to only 28% of CO2 evasion from streams and rivers with flows 

ranging between 0.0001 and 19,000 m3 s−1 in the contiguous United States. Our study adds 

to current knowledge by integrating the CO2 fluxes determining CO2 variation within lotic 

and lentic waterbodies that are interconnected in complex fluvial networks.  

 

Table 6.1 Summary of the CO2  f luxes determining CO2  variat ions with in the s tudied lot ic (n =  

32) and lentic segments (n = 10) 

 

 

Despite the dominance of hydrological inputs and other sources to the net CO2 emission, 

the contribution of internal metabolism was not negligible in lotic segments (Table 6.1; 

Figure 6.7), where we detected a predominance of net heterotrophy for most of the year. In 

contrast, lentic segments had much lower and balanced fluxes that varied between net 

autotrophy and heterotrophy, thus leading to a generally much smaller contribution of 

internal metabolism to the lentic CO2 emissions (Table 6.1; Figure 6.7). 

ANOVA test b

Mean Min Max n Mean Min Max n p  value

Emission -172 -490 -40 32 -71 -203 -8 10 <0.001

Inflow 229 20 1230 32 273 37 630 10 0.65

Outflow -279 -1280 -60 32 -290 -650 -40 10 0.91

Internal metabolism 68 -51 213 32 -7 -52 46 10 0.015

Other sources 188 30 1070 32 64 -160 250 10 0.07

b Values in blod font indicate statistically sigificant differences (p<0.05) between lotic and lentic segments.

           (mmol m-2  d-1) 
a

Lotic segments Lentic segments 

a Positive CO2 fluxes indicate a gain of CO2 within the segment (i.e. invasion from the atmosphere, upstream import, internal metabolic 

production or production from other sources). Negaive CO2 fluxes indicate a loss of CO2 within the segment (i.e. emission to the 

atomsphere, downstream export, internal metabolic consumption or consumption by other sources)

F
CO2
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The relationships of the contribution of upstream inflow and internal metabolism to the 

CO2 emissions with WRT in lotic segments reveals a clear coupling between the 

hydrological dynamics and the origin of CO2 emissions (Figure 6.6a and 6b). During high 

flow periods, both the hydrological connectivity within the fluvial network and between the 

fluvial network and the catchment is maximized [Bernal et al., 2013]. This favors 

longitudinal and lateral pathways of CO2 supply along the fluvial network [Wallin et al., 

2010; Campeau and del Giorgio, 2013; Kokic et al., 2015] and an efficient exchange between 

the adjacent terrestrial ecosystems and the stream channels [Stets et al., 2009; Davidson et 

al., 2010; McDonald et al., 2013; Hotchkiss et al., 2015]. At the same time, reduced WRT 

during high flows limits the capacity of the biota to interact with organic substrates [Battin 

et al., 2009b], thereby constraining the internal metabolic pathway of CO2 supply 

[Hotchkiss et al., 2015]. Therefore, situations of high flows and short WRT lead to a higher 

contribution of externally derived CO2 and a lower contribution of internal metabolically 

derived CO2 to the finally emitted CO2 (Figure 6.6). In contrast, during periods of low flows 

and long WRT, the reduced hydrological connectivity hampers the supply of CO2 from 

upstream to downstream waters as well as from adjacent terrestrial ecosystems to the 

fluvial network. Additionally, OM processing is favored through increased interaction with 

biological actors [Battin et al., 2009b]. Altogether, this leads to a higher contribution of 

internal metabolic CO2 and a lower contribution of externally derived CO2 to the finally 

emitted CO2 during low flows and long WRT. 

Interestingly, the above hydro-biogeochemical model does not apply to lentic waterbodies. 

Our results indicate that the contribution of the upstream inflow and internal metabolism 

to the CO2 efflux from lentic waters was independent of hydrological variation (Figures 

6.6a and 6.6b). The contribution of the upstream inflow was very variable and did not follow 

any trend along the WRT axis, while the contribution of the internal metabolism remained 

fairly constant and close to the 0% line. A balanced metabolism (i.e., NEP ~0) is expected 

in aquatic systems over longer durations and for larger spatial scales, if burial is minimal 

[Staehr et al., 2012; Hotchkiss et al., 2015]. Theoretically, this balance arises because, given 

sufficient time, any increase in primary production yields OM, which in a relatively closed 

system, will be proportionally respired. Alternatively, any increases in respiration will 

release inorganic nutrients that proportionally stimulate primary production [Staehr et al., 
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2012]. The higher WRT in lentic segments combined with their higher resistance to 

hydrological perturbations will therefore favor a balanced metabolism that leads to a low 

contribution of internal metabolism to CO2 emissions. 

 

 
Figure 6.7  Summary of the CO2  f luxes (mmol m - 2  d - 1)  determining CO2  varia t ions wi th in the 

studied (a)  lot ic  and (b)  lentic  segments.  Values are  averages ±  s tandard deviat ions f rom a l l  

studied segments.  Note that  the d irection of the arrows indicate d irection of the CO2  wi th in the 

segment ( i .e . ,  a  gain  when pointing to  the segment and a  loss when pointing out of  the  segment)  

and that  the arrow s ize matches with  the magnitude of the f lux.  

 

The variance around the contribution of other non-measured sources to the CO2 emissions 

with WRT in both lotic and lentic waterbodies (Figure 6.6c) reveals a rather hydrological 

independence of this third component. The flux of CO2 coming from these other non-

estimated sources includes a set of diverse processes, apart from internal metabolism and 

upstream inputs, that can add or remove CO2 to the studied segments (i.e., groundwater 

fluxes, lateral surface water fluxes and internal fluxes derived from geochemical reactions 

of calcite precipitation and photochemical mineralization of organic solutes). Therefore, 

being not surprising that such diverse set of CO2 sources and sinks in origin and 

magnitude) may respond differently to hydrological variations.  

Groundwater inputs, typically composed by high CO2 and low O2, can alter the chemistry 

of surface waters, especially of those small lotic [Öquist et al., 2009; Hotchkiss et al., 2015] 
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and lentic [Hanson et al., 2006; López et al., 2011] waterbodies situated along the fluvial 

network. Similarly, surface water lateral inputs (i.e., small low-order streams that flow into 

the segments) draining adjacent terrestrial ecosystems (i.e., riparian and upland) may also 

affect the CO2 dynamics in the receiving waterbodies. 

Precipitation and dissolution of carbonate minerals may, respectively, produce or consume 

CO2 in fluvial networks. Considering the high alkalinity of our fluvial network (mean = 4.1 

meq L-1, n = 144), we suggest that calcite precipitation may be a relevant process 

contributing to the CO2 supersaturation and emission [Otsuki and Wetzel, 1974; Stets et 

al., 2009; Nõges et al., 2016]. However, further investigation is needed in order to 

understand how and to what extent carbonate precipitation and dissolution reactions may 

potentially affect the CO2 dynamics and further regulate the CO2 emissions from fluvial 

network. 

The photo-chemical mineralization of dissolved organic matter (DOM) can contribute to a 

great extent of the C processing [Cory et al., 2014] and CO2 emissions from inland waters 

[Koehler et al., 2014]. This reaction also influence the O2 dynamics of our fluvial network 

[Amon and Benner, 1996], and thus may contribute to the metabolism estimates calculated 

using diel changes in dissolved oxygen (O2). 

 

5.5 Conclusions and implications 

The results of the present study show that sources other than internal metabolism (e.g., 

external inputs, internal geochemical reactions or photochemical mineralization) 

sustained most of the fluvial network CO2 emissions. Internal metabolism accounted for a 

moderate proportion (24%) of CO2 emissions in lotic segments, while it was insignificant in 

lentic ones. In addition, we also show that the magnitude and sources of CO2 emissions 

depended on the WRT in lotic segments, while they remained relatively stable in lentic 

ones, suggesting a clear coupling between the hydrological dynamics and the origin of CO2 

emissions in lotic segments.  

This work represents a novel attempt to integrate a mass balance of CO2 fluxes into the 

complex temporal and spatial dynamism of an anthropogenically altered fluvial network. 
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Using a steady-state approach we were able to integrate most sources affecting CO2 fluxes 

along the fluvial network. Still, uncertainty existed related to the substantial contribution 

of CO2 from other non-measured sources. Solving this uncertainty would require further 

efforts to describe the drivers of the other sources (apart from internal metabolism and 

external surface hydrological) under non-steady state conditions, which would enable a 

better understanding of the conditions regulating the seasonal dynamics of CO2 emissions 

at the fluvial network scale. Because of the high human demand for energy and water, few 

fluvial networks worldwide remain free from impoundment over the entire course, which 

typically results in an alternating series of lentic and lotic segments [Ward and Stanford, 

1983; Nilsson et al., 2005b; Döll et al., 2009]. Therefore, we suggest that our findings should 

not be restricted to Mediterranean fluvial networks, but are also useful for predicting the 

integrated responses of fluvial networks that share similar spatial configurations.
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The river discontinuum 

A continuum is defined as “an extent, succession, or whole, no part of which can be 

distinguished from neighbouring parts except by arbitrary division” [Dictionary of the 

Institute for Catalan Studies; 2016]. The view of a river as a continuum from headwaters 

to mouth is exemplified by the River Continuum Concept [Vannote et al., 1980], which 

assumes that the structure or function of a stream segment will always be most similar to 

that of neighbouring segments. Although this may be a useful and reasonable 

representation of a stream in general, no specific river is strictly a continuum. In fact, at 

any spatial scale, rivers are regularly divided into discrete parts based on non-arbitrary 

distinctions [Frissell et al., 1986; Poole, 2002].  

At the network scale, the presence or absence of flow paths between persistent fluvial 

patches modulates the transport of matter, energy, and organisms at different temporal 

and spatial scales [Fisher et al., 2004; Freeman et al., 2007; Larned et al., 2010]. Thus, the 

view of a river as a discontinuum assumes that the flow paths between persistent fluvial 

patches might be laterally, vertically or longitudinally constrained over time [Stanley et al., 

1997; Stanford and Ward, 2001; Ward and Tockner, 2001; Fisher et al., 2004; Larned et al., 

2010]. However, the discontinuum view does not reject the continuum but rather subsumes 

it. For instance, in some cases, the patchy arrangement of segments will happen to contain 

gradual downstream transitions between elements and will approximate the river 

continuum conditions.  

During the last decades, some conceptual (e.g.,[Ward and Stanford, 1983; Stanley et al., 

1997; Stanford and Ward, 2001; Fisher et al., 2004; Battin et al., 2009a; Larned et al., 2010]) 

and empirical studies (e.g.,[Dent and Grimm, 1999; McGuire et al., 2014; Proia et al., 2016]) 

have attempted to describe the biogeochemical patterns occurring in fluvial networks from 

the discontinuum point of view. Among them, particular attention has been paid to the 

understanding of the effects of artificial flow impoundment on biogeochemical patterns in 

fluvial networks. The “serial discontinuity concept”, originally formulated by Ward and 

Stanford [1983] and revised by Stanford and Ward [2001], views dams as longitudinal 

discontinuities within the river continuum. In this concept, biophysical responses are 

predicted in terms of ‘discontinuity distance’; thus, the higher the discontinuity distance 
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induced by the impoundment, the higher the upstream or downstream shift of a 

biogeochemical variable (e.g., Photosyntesis/Respiration) and the departure from the 

natural or reference condition. Similarly, some models have specifically focused on 

describing the influnece of flow intermitency on biogeochemical patterns in fluvial 

networks. For instance, Larned et al., [2010] proposed the “punctuated longitudinal reactor 

concept”, where flow discontinuities in temporary rivers lead to recurrent fluvial network 

heterogeneities in organic matter (OM) processing. Within this concept, the efficiency of 

OM processing is predicted to increase with the number of cycles of transport, deposition 

and processing that occur down the length of a temporary river. 

A large number of empirical studies that focus on carbon (C) dynamics along fluvial 

networks [Wallin et al., 2010; Striegl et al., 2012; Crawford et al., 2013; Peter et al., 2014] 

cover a wide range of the temporal and spatial variability in C gas fluxes. However, most 

of these studies do not account for the effect of local discontinuities such as the presence of 

impoundments or the effect of flow intermittency. Consequently, they may be missing a 

portion of the complex spatial patterns in biogeochemical processes that is inherent to 

fluvial networks. 

In this dissertation, we have intensively studied a Mediterranean fluvial network from 

December 2012 to March 2015 to examine how the discontinuities caused by river 

impoundment and flow intermittency affect the spatio-temporal patterns, controls and 

sources of C gas fluxes.  

This general discussion focuses on the main outcomes of the present dissertation: (i) the 

effects of small retention structures on shaping the C gas fluxes along a Mediterranean 

fluvial network, (ii) the importance of dry riverbeds as hot spots for carbon dioxide (CO2) 

emission, (iii) the role of physics as a valve modulating C gas exchange between fluvial 

networks and the atmosphere and (iv) the present and the future implications of 

integrating the effects of flow discontinuities on C emissions from fluvial networks. 
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7.1 The influence of small water retention structures on shaping 

carbon gas fluxes along a Mediterranean fluvial network 

The construction and operation of over one million dams globally [Lehner et al., 2011] has 

provided a variety of beneficial services to the growing human population (e.g., hydropower, 

flood control, navigation, and water supply), but has also significantly altered the natural 

longitudinal connectivity along fluvial networks [Ward and Stanford, 1983; Stanford and 

Ward, 2001]. Dams disrupt the fluvial continuum by changing hydrological dynamics (e.g., 

reduction of flood frequency, elimination of turbulent reaches, increased water residence 

time (WRT)), water physicochemistry [Ward and Stanford, 1983] and transport of 

suspended materials [Syvitski et al., 2005; Maeck et al., 2013bu]. These changes ultimately 

lead to severe impacts on the structure and functioning of ecological communities [Ward 

and Stanford, 1983; Stanford and Ward, 2001; Haxton and Findlay, 2008] and 

biogeochemical cycles at different levels of organization [Ward and Stanford, 1983; 

Stanford and Ward, 2001; Friedl and Wüest, 2002; Aristi et al., 2014; von Schiller et al., 

2016; Proia et al., 2016].  

Although reservoirs are often seen as “green” or C-neutral sources of energy, a growing 

body of work has documented their role as greenhouse gas (GHG) sources [St. Louis et al., 

2000a; Barros et al., 2011c; Deemer et al., 2016]. However, most of the estimates of C 

emissions from reservoirs have been mainly obtained in very large (> 104 km2), large (104 - 

102 km2), medium (100 - 1 km2) and small (1 - 0.1 km2) size reservoirs [Deemer et al., 2016]. 

Small and very small water retention structures (SWRS; < 0.1 km2) have so far remained 

unexamined, although they represent the most common water retention structure causing 

river fragmentation worldwide [Downing et al., 2006; Lehner et al., 2011; Verpoorter et al., 

2014]. 

 

7.1.1 The effect of SWRS on the magnitude and variability of C gas fluxes along the fluvial 

network 

The results in Chapters 3, 5 and 6 of this dissertation show an overall significant reduction 

of the CO2 efflux in those fluvial sections that are impounded with SWRS compared to 
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those that are free-flowing. These results are in line with other studies comparing larger 

stagnant waterbodies (e.g., lakes or reservoirs) with riverine waterbodies in fluvial 

networks [Lundin et al., 2013; Kokic et al., 2015]. Similarly, comparisons between lotic and 

lentic waterbodies at regional [Wallin et al., 2013; Crawford et al., 2014b] and global 

[Raymond et al., 2013a; Lauerwald et al., 2015] scales also point in the same direction. 

Together, these results support the idea that the presence of SWRS, despite their relatively 

small water capacity compared to larger systems, can still have a profound effect on 

attenuating the turbulence induced by water currents that typically drive the CO2 efflux 

in the free-flowing river sections (see section 7.3 below).  

Contrary to the effect observed for the CO2 efflux, no reduction in methane (CH4) efflux 

associated to the presence of SWRS was detected (Chapters 3 and 5). Our findings indicate 

that the significant increase in CH4 production in impounded river sections compared to 

free-flowing river sections may compensate the physical effect on CH4 emissions. 

Impounded river sections associated to SWRS always showed higher concentrations of CH4 

than free-flowing river sections; however, such impounded river sections did not show 

higher diffusive CH4 emissions than their adjacent free-flowing river sections (Chapters 5). 

These results are consistent with observed trends across large and medium size systems 

[St. Louis et al., 2000a; Deemer et al., 2016]. Nonetheless, if we account for the ebullitive 

pathway of CH4 emission, which in the Fluvià River contributed to more than 85 % of the 

total CH4 efflux from impounded waters when the evasion of CH4 was detected (CH4 

ebullition was only measured in Chapter 3), the total CH4 emission flux from impounded 

river sections appears to be, on average, 70-fold higher than from their adjacent free-

flowing river sections. Our results of ebullitive emission fluxes from impounded 

waterbodies are consistent with previous studies describing ebullition as the primary 

pathway for CH4 efflux from large and medium reservoirs [Deemer et al., 2016], small 

reservoirs [Maeck et al., 2013] and natural lakes [Bastviken et al., 2004]. Although CH4 

ebullition is highly variable in space and time [Beaulieu et al., 2016; Wik et al., 2016], the 

results shown in Chapter 3 strongly emphasize that CH4 ebullition makes a difference, 

claiming the need to include this pathway when assessing CH4 emissions across the whole 

range of reservoir sizes [Deemer et al., 2016].  
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Furthermore, in Chapter 5 we also showed that the presence of SWRS, despite causing a 

significant enrichment of CH4 in the impounded surface water, did not produce any effect 

on the CH4 efflux at the downstream free-flowing river sections. Our result contrasts with 

those from the few other studies reporting C emissions downstream from reservoirs [Abril, 

2005; Guérin et al., 2006; Kemenes et al., 2007]. These studies, which have mainly been 

conducted in large tropical systems, indicate that downstream C emissions can contribute 

significantly to C emissions associated to the reservoir: 7 to 25 % in the case of CO2 [Abril, 

2005; Guérin et al., 2006] and 50 to 90% in the case of CH4 [Abril, 2005; Guérin et al., 2006; 

Kemenes et al., 2007]. Our study contributes to current knowledge by accounting for the 

still poorly known downstream effects of SWRS in terms of C diffusive fluxes.  

 

7.1.2 The effect of SWRS on the sources of C gas fluxes along the fluvial network 

Over the last decades, a growing body of literature has recognized internal metabolism as 

the main factor driving CO2 supersaturation in lakes and rivers [Cole et al., 2000; Duarte 

and Prairie, 2005]. However, the mass balance of CO2 shown in Chapter 6 highlights the 

dominant role of sources other than internal metabolism (e.g., external inputs, internal 

geochemical reactions or photochemical mineralization) on sustaining CO2 emissions from 

the Fluvià River network CO2 emissions. Other recent studies based on temporally- and 

spatially-independent spot measurements made in lentic [Stets et al., 2009; McDonald et 

al., 2013; Marcé et al., 2015; Wilkinson et al., 2016b] and lotic [Hotchkiss et al., 2015; 

Winterdahl et al., 2016] systems point in the same direction. Hence, our study adds to 

current knowledge by integrating the CO2 fluxes determining CO2 variation within lotic 

and lentic waterbodies that are interconnected in complex fluvial networks. 

In general terms, the common dominance of hydrological inputs and other sources among 

impounded and free-flowing river sections found in Chapter 6 suggests a rather irrelevant 

effect of SWRS on the origin of the CO2 emitted along the studied fluvial network. However, 

the presence of SWRS favoured a decoupling between the fluvial network hydrological 

dynamics and the local hydrological dynamics occurring in impounded waters (by 

attenuating the water currents in the impounded river sections). Thus the contribution of 

the different sources to the CO2 efflux in impounded river sections remained stable and 
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independent of hydrological variation. In contrast, the presence of SWRS did not alter the 

hydrological conditions of the free-flowing river sections, which showed a clear coupling 

between the hydrological dynamics and the origin of CO2 emissions. Specifically, during 

high flow conditions there is an efficient exchange of C along the fluvial network and 

between the fluvial network and the adjacent terrestrial ecosystems [Öquist et al., 2009a; 

Stets et al., 2009; Davidson et al., 2010; Hotchkiss et al., 2015c]. Also, reduced WRT during 

high flows limits the capacity of the biota to interact with organic substrates [Battin et al., 

2009b], thereby constraining the internal metabolic pathway of CO2 supply [Hotchkiss et 

al., 2015]. Therefore, situations of high flow and short WRT lead, in general, to a higher 

contribution of externally derived CO2 and a lower contribution of internal metabolically 

derived CO2 to the finally emitted CO2. In contrast, during periods of low flow and long 

WRT, the reduced hydrological connectivity hampers the supply of CO2 from upstream 

waters as well as from adjacent terrestrial ecosystems to the fluvial network. Additionally, 

OM processing is favoured through increased interaction with biological actors [Battin et 

al., 2009b]. Altogether, this leads to a higher contribution of internal metabolic CO2 and a 

lower contribution of externally derived CO2 to the finally emitted CO2 during low flow and 

long WRT periods. 

Local conditions such as long WRT, high deposition rates of OM, high productivity or high 

temperature are required for CH4 production [Zaiss et al. 1982, Dahm et al. 1991, Trimmer 

et al. 2012]. Results obtained in Chapters 3 and 5, which showed an enrichment of CH4 in 

impounded waters, agree with findings found in other fluvial networks containing SWRS 

[Maeck et al., 2013], and suggest that the presence of SWRS may favour proper conditions 

for CH4 production and further emissions in the fluvial network. However, contrary to our 

expectations based on the established idea that CH4 should be scarce in riverine sections 

because methanogenesis typically occurs at a low rate or not at all in these environments 

[Stanley et al., 2016], in our fluvial network we found a persistent supersaturation of CH4 

in the free-flowing river sections (Chapters 3 and 5). We propose that the CH4 present and 

emitted from the free-flowing river sections is probably imported from their adjacent 

impounded river sections. In fact, many studies indicate that hydrological linkage to 

suitable habitats can deliver CH4 to the free-flowing river sections. Some examples include 

shallow groundwater flows that travel from CH4 saturated soils or peat deposits to the river 
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[Jones and Mulholland, 1998; Hope et al., 2001; Crawford et al., 2014a] as well as 

connections to inundated river floodplains [Richey, 1988; Pullman, 1992; Teodoru et al., 

2015] or adjacent wetlands [Crawford et al., 2015; Bresney et al. 2015]. Moreover, recent 

research has shown that the CH4 emitted from free-flowing river sections can also be 

produced within the same channel [Crawford and Stanley, 2016], therefore adding a new 

pathway in the dynamic balance of CH4 in fluvial networks. 

 

7.1.3 Longitudinal patterns of C gas fluxes along the river discontinuum 

Due to the high density of SWRS in the studied fluvial network, the local effect of SWRS 

on the impounded vs. free-flowing C gas dynamics, is transferred at the larger scale by 

modulating the longitudinal patterns of C effluxes, concentrations and their sources. Based 

on the results from Chapters 3, 5 and 6 of this dissertation, we propose a conceptual model 

illustrating the longitudinal patterns in CO2 and CH4 fluxes in a hypothetic highly 

impounded segment of a Mediterranean fluvial network (Figure 7.1). 

On the one hand, the conceptual model shows that the view of the fluvial network as a 

continuum [Vannote et al., 1980], where conditions are regulated primarily by external 

processes and thus, exhibit gradual routing control of downstream gradients [Montgomery, 

1999], might be valid to approximate the patterns of CO2 concentrations along highly 

impounded rivers with SWRS. The concentration of CO2 showed a rather smooth pattern 

along the altering series of lotic and lentic waterbodies (Figure 7.1a). We suggest that this 

pattern is generated because the CO2 consumed (e.g., metabolically or geochemically) or 

lost to the atmosphere (e.g., via diffusive emission) within the river is constantly 

replenished, mostly by CO2 imported from the catchment via lateral, vertical or 

longitudinal pathways, with no clear differentiation between impounded and riverine 

sections (note that this is a general model but other processes such as internal production 

may also deliver CO2 to the water column; Chapter 6). This phenomenon has been observed 

in larger stagnant waterbodies such as lakes and reservoirs [Stets et al., 2009; McDonald 

et al., 2013; Marcé et al., 2015], but also in other heavily impounded systems [Crawford et 

al., 2016]. Therefore, the results from this dissertation reinforce the crucial role of external 
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sources on modulating the longitudinal CO2 patterns in fluvial networks, even when 

manmade small longitudinal discontinuities are included (Chapter 6).  

On the other hand, the view of fluvial networks as a continuum is insufficient to describe 

the true spatial complexity of CH4 concentrations (Figure 7.1b), where conditions are likely 

regulated by patches of intense CH4 production (i.e., localized controls) such as the presence 

of SWRS that lead to ideal environments for active methanogenesis. Moreover, the view of 

the fluvial network as a continuum is also insufficient to characterize the longitudinal 

dynamics of CO2 (Figure 7.1c) and CH4 diffusive emissions (Figure 7.1d), which are 

controlled by the interplay between the attenuated hydrological conditions in impounded 

waterbodies and the turbulent conditions induced by the water currents typically driving 

the CO2 and CH4 efflux in the free-flowing riverine sections (see section 7.3, below). In the 

same line, a continuous view is not precise enough to describe ebullitive CH4 emissions, 

which similarly to the CH4 concentrations, are controlled by the presence of SWRS that 

lead to ideal redox conditions for CH4 bubble formation in the sediments (Figure 7.1d). 
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Figure 7.1 Conceptual izat ion of the general  longi tudinal  patte rns in (a)  concentra t ion of 

d issolved CO2  in  water,  (b)  concentrat ion of d issolved CH4  in  water,  (c)  CO 2  ef f lux and (d)  CH4  

ef f lux (d i f fusive pathway represented as a  continuous l ine and ebul l i tve pathway as dashed l ine) 

a long a f luv ia l  network integra ting SWRS. Note that th is is a  general  conceptual  model which 

does not include temporal  or  spatia l  pecul iar i t ies.  Dis tances between dams are  not  equal in 

order to simulate f ie ld condit ions. The horizontal  dashed l ine in panels (a) and (b) represents 

the atmospheric equi l ibrium concentrat ion of CO2  and CH4 ,  respective ly.   
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7.2 Dry riverbeds as hot spots for carbon dioxide emissions 

In summer, fluvial networks in Mediterranean and other arid and semiarid regions are 

usually transformed into highly discontinuous riverscapes characterized by slow-moving 

waters, isolated river pools and large areas of dry riverbeds [Stanley et al., 1997; von 

Schiller et al., 2011; Bernal et al., 2013]. River fragmentation as a consequence of flow 

intermittency has been recognized as one of the most important environmental pressures 

constraining the water-mediated transport of matter, energy, and organisms within or 

between elements along fluvial networks [Freeman et al., 2007; Larned et al., 2010; Acuña 

et al., 2014; Datry et al., 2014c]. At the fluvial network scale, dry riverbeds are not restricted 

to headwaters, but they can also be found in the mid-reaches and lowlands of fluvial 

networks [Steward et al., 2012]. Hence, these environments can cover a substantial part of 

the fluvial network when drought conditions or water abstractions are severe [Datry et al., 

2014c]. Moreover, dry beds are not limited to the lotic sections of the fluvial network. 

Instead, they can also be found in the boundaries or belts of lentic waterbodies upstream 

from water retention structures which also dry up to some extent during certain moments 

of the year.  

Dry riverbeds are highly dynamic habitats representing spatial (i.e., transitional zones 

between flowing streams and terrestrial habitats) and temporal (i.e., transitional periods 

between permanent and intermittent states) ecotones [Naiman and Decamps, 1997]. 

Thus, against the traditional view of being “biogeochemically inactive”, dry riverbeds are 

likely to be potential active sites for material transformations [McClain et al., 2003]. 

However, our understanding of the biogeochemical processes that occur in the areas of 

temporary watercourses that recurrently run dry has been lagged well behind that of 

perennial watercourses [Leigh et al., 2016].  

 

7.2.1 Magnitude and variability of C gas fluxes from dry riverbeds 

The measurements of dry riverbed CO2 efflux and basal microbial respiration rates 

reported in Chapters 3 and 4 of this dissertation confirm the active biogeochemical activity 

of this environment. The average CO2 efflux from the Fluvià dry riverbeds was slightly 
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above that obtained in dry desert streams in Arizona, USA (Gallo et al., [2013]; Figure 

7.2a), to our knowledge, the only study reporting CO2 emissions from dry riverbeds in other 

catchments. As indicated in some previous studies on biofilm functioning [Zoppini and 

Marxsen, 2011; Timoner et al., 2012, 2014b], the energy flow, nutrient cycling and 

subsequent CO2 production and efflux can remain active despite the lack of surface water.. 

A significant effect of drying on CO2 loss has also been observed in dry reservoir belts 

(Figure 7.2b; [unpublished data]) and other aquatic ecosystems including wetlands (Moore 

and Knowles [1989]; Freeman et al. [1993]; Fenner and Freeman [2011]; Figure 7.2c) and 

temporary ponds (Catalán et al., [2014]; Obrador et al., [in prep] Figure 7.2d). Overall, these 

results emphasize the overlooked importance of the dry sections of freshwater ecosystems 

in terms of CO2 effluxes, which may have potential implications for C budgets in fluvial 

networks. 

Contrary to the CO2 efflux, the CH4 efflux from dry riverbeds was undetectable in almost 

all cases (Chapter 3). We associate this finding to the fact that recurrent cycles of flow 

recession and subsequent reflowing in temporary streams favours the aeration of dry 

riverbeds, thus limiting the redox requirements for CH4 production.  

 

 

Figure 7.2 Comparison of CO2  ef f luxes measured in the dry beds of 4 aquatic ecosystem types: 

(a)  streams and rivers (b) reservoirs (c) wetlands and (d)  temporary ponds. Data  from streams 

and rivers  was obta ined both f rom th is  thesis  (n=14) and f rom a study in dry  desert  s treams in 

Arizona, USA (n=9) [Gal lo e t a l . ,  2013].  Data f rom dry bel ts  of reservoirs was obtained from 

direct chamber f ie ld measurements in two reservoi rs located in the Basque Country (NW Iberian 

Peninsula) [unpubl ished data].  Data from wetlands corresponds to a compi lat ion of both f ie ld 

and laboratory  measurements obtained f rom Moore  and Knowles  [1989] and Fenner and Freeman  

[2011].  Data f rom temporary  ponds was obtained from Catalán et .  [2014] and Obrador et a l . ,  

[ in prep].  Box p lots  d isplay the  25th,  50th and 75th percenti les;  whiskers d isplay  minimum and 

maximum values. The horizontal  dashed l ine in al l  the panels corresponds to zero f lux.  
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In Chapter 4, we further show that the CO2 efflux from dry riverbeds was higher than the 

CO2 efflux from the same streams when they were flowing. This observation could be 

related to limitation of the CO2 efflux in aquatic environments due to reduced gas 

diffusivity compared to dry streambeds. This sudden change in terms of CO2 efflux between 

dry and flowing riverbeds observed at local scale (Chapter 4), may influence the overall 

fluvial network spatiotemporal pattern in C gas flux, thereby emphasizing again how flow 

discontinuities (in this case, flow intermittency) may lead to a patchy and strongly 

heterogeneous pattern of C gas fluxes along the fluvial network. 

The results from Chapter 4 show that the CO2 efflux from dry riverbeds was similar to the 

CO2 efflux from adjacent upland soils. Consistent with this finding, von Schiller et al., 

[2014] observed a comparable CO2 efflux between dry riverbeds (median 212 mmol m−2 d−1; 

range 36–455 mmol m−2 d−1) and a compiled data set from Mediterranean soils (median 

188 mmol m−2 d−1; range 44–371 mmol m−2 d−1;[Bond-Lamberty and Thomson, 2014]). The 

similar magnitude of CO2 emissions from dry riverbeds and soils raises intriguing 

questions such as i) whether these environments are functionally equivalent in terms of C 

processing as well as ii) to what extent the C processed and further emitted from dry 

riverbeds can be considered terrestrial. 

 

7.2.2 Sources of CO2 emissions from dry riverbeds 

Results in Chapter 4 show that a similar magnitude of CO2 efflux from dry riverbeds and 

their adjacent upland soils does not imply that these habitats are equivalent in their 

physical and chemical structure and function, and therefore they may differ in the sources 

that sustain their emissions. Our results suggest that part of the biologically derived CO2 

emissions from dry riverbeds could be fuelled by CO2 produced from biological 

mineralization of fresh and labile water extractable organic matter (WEOM) fractions. In 

fact, dry conditions may enhance the release of high amounts of fresh and labile materials 

to sediment interfaces of dry riverbeds through microbial cell lysis and physical processes 

[Fierer and Schimel, 2003; Borken and Matzner, 2009]. Thus, at least part of the C emitted 

from dry riverbeds may have an internal in-stream origin. In contrast, CO2 emissions from 

upland soils, which had a lower proportion of fresh and labile WEOM fractions in 
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comparison to the dry riverbeds, most likely relay on the biological mineralization of plant-

-derived aromatic and complex organic compounds [Casals et al., 2009].  

Our results suggest that at least part of the dry riverbed CO2 emissions derives from 

biologically mineralized OM produced within the riverbed sediments. However, other non-

biotic CO2-generating processes such as reactions with the carbonate system [Angert et al., 

2014] or photochemical reactions [Austin and Vivanco, 2006] may also potentially 

contribute to the final CO2 efflux [Rey, 2015]. Thus, further work is needed to provide a 

more conclusive understanding of the sources that sustain CO2 emissions from dry 

riverbeds, including the temporal and spatial patterns and the processes of CO2 production, 

transport and transfer. 

 

7.2.3 Potential contribution of dry riverbeds to CO2 emissions from fluvial networks 

The CO2 efflux measurements in our Mediterranean fluvial network (Chapters 3 and 4) 

indicate that dry riverbeds can play a relevant role in fluvial network C budgets. This is 

particularly important if we consider the expected increase in the spatial and temporal 

extent of temporary watercourses that will result from global change [Palmer et al., 2008]. 

Yet, current global estimates of CO2 emissions from fluvial networks do not consider the C 

emitted from the areas of temporary watercourses that recurrently run dry [Aufdenkampe 

et al., 2011; Raymond et al., 2013]. To explore the potential contribution of CO2 emissions 

from dry riverbeds to the total CO2 emissions from fluvial networks in both our study region 

and on a global basis, we carried out a simple upscaling approach combining our CO2 

effluxes with the mean annual global surface area occupied by dry watercourses derived 

from a global hydro-climatic model [Raymond et al., 2013a] in each COastal Segmentation 

and related CATchments units (COSCAT, Meybeck et al., [2006]). For a more detailed 

description of the upscaling procedure see von Schiller et al., [2014]. 
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Figure 7.3 Estimated percentage contribution of the CO2  ef f lux from dry watercourses to the 

total  f luv ia l  network CO2  ef f lux in each  COSCAT region. We bui l t  3 scenarios using the (a)  

minimum, (b) median and (c)  maximum CO2  ef f lux f rom dry watercourses reported in the 

l i tera ture [Gal lo  et a l . ,  2013] and obtained in the F luvià  River  network (Chapter  3 and 4).  F igure 

extracted from von Schi l ler e t a l . ,  [2014] 
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The upscaling to our study region (COSCAT 418) indicates that including emissions from 

dry watercourses could increase the aquatic fluvial network estimate of CO2 emissions by 

0.6–15% [von Schiller et al., 2014]. At the global scale, the upscaling approach shows that 

emissions from dry watercourses could be especially important in arid regions around 30°N 

and 30°S [von Schiller et al., 2014], increasing the estimate of aquatic fluvial network CO2 

emissions [Raymond et al., 2013a] by 0.4–9% (Figure 7.3). Although our results indicate 

that taking into account CO2 emissions from dry watercourses may have only a small effect 

on the estimate of global CO2 emissions from fluvial networks, they also point out to the 

fact that the efflux of CO2 from dry watercourses may substantially contribute to, and even 

dominate, the CO2 balance in many arid and semiarid fluvial networks (Figure 7.3).  

We acknowledge that our results only represent a first rough estimate of the role of the dry 

phase of temporary watercourses on CO2 effluxes from fluvial networks. Evidence so far 

shows highly intra- and inter-site variability in the CO2 emissions from dry beds. This 

finding can probably be associated to the spatial gradients or shifts on the environmental 

conditions that drive CO2 emissions from dry beds (see Chapter 4 and section 7.2.1 in the 

general discussion). Moreover, further work aimed to capture the temporal patterns of the 

CO2 efflux along the dry period is also needed to provide a more conclusive understanding 

of the magnitude and variability of CO2 emissions in these environments. We need, for 

example, to account for the potential loss of CO2 from dry riverbeds as a response to 

hydrological pulses (e.g. precipitation events, channel reflooding), a phenomenon that has 

been extensively studied in soils [Birch, 1958; Austin et al., 2004; Sponseller, 2007], but only 

to a limited extent in dry riverbeds [Gallo et al., 2013]. In any case, our results indicate that 

neglecting CO2 emissions from dry riverbeds may overlook a fundamental component of 

the C balance of fluvial networks. Thus, including CO2 emissions from dry riverbeds may 

help to constrain the highly uncertain magnitude of the land C sink. 
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7.3 The role of physics as a valve regulating carbon gas exchange 

between fluvial networks and the atmosphere  

The diffusion flux of C across the water- or soil-atmosphere interface only requires, in 

essence, a concentration difference between both phases (Fick, [1855). However, this thesis 

clearly shows that what ultimately modulates the rate or intensity of the diffusion flux in 

the different aquatic and dry environments along the fluvial network are the physical 

mechanisms that either enhance or limit the gas exchange ability or gas transfer velocity 

across the boundary layer (i.e., k600). Our results agree with general models of gas 

diffusion, where physical processes control the gas exchange between the atmosphere and 

aquatic ecosystems [Zappa et al., 2007; Bade, 2009; Raymond et al., 2012; Long et al., 2015] 

and soils [Smith et al., 2003; Luo and Zhou, 2010; Blagodatsky and Smith, 2012]. However, 

one of the most interesting findings unveiled in this dissertation is that the role of physics 

as the ultimate driver of the spatial and temporal variability of CO2 and CH4 emissions 

prevailed across wet and dry environments. 

In the free-flowing running water sections, the CO2 and CH4 gas is rapidly emitted because 

the high turbulence induced by water currents disrupts the surface boundary layer 

(Chapter 3, 5 and 6). With similar (in the case of CO2) and higher (in the case of CH4) 

concentration gradients to those from running waters, the impounded waters showed an 

overall lower efflux of CO2 and CH4, indicating a physical limitation of the flux (Chapter 3, 

5 and 6). An extreme effect of the physical limitation of CO2 and CH4 efflux occurred in the 

isolated river pools, where the diffusive CO2 and CH4 efflux was lowest despite showing the 

highest concentration gradients observed in the fluvial network (Figure 3.4). Moreover, in 

the dry riverbeds, the unexpected negative relationship between the basal respiration rates 

and the CO2 efflux could suggests the existence of a physical factor restricting the evasion 

of CO2 present in the sediment media (Chapter 3). Water content might the factor 

modulating this uncoupling between CO2 production and CO2 emission in dry beds.  
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7.4 Integrating fluvial network discontinuities in a Mediterranean 

river: Implications for carbon gas emissions under present and 

future hydrological scenarios 

The results of this dissertation emphasize the active role of dry riverbeds, running waters, 

and impounded waters in terms of C efflux (Table 7.1). An upscaling exercise was 

performed to examine the contribution of these different environments to the total annual 

C efflux of the entire fluvial network (see Text B.7.1. in the Supporting information section 

for a detailed description of the upscaling exercise). The results show that dry riverbeds 

and running waters contribute respectively to 60 and 38% of the total annual CO2 efflux 

(Table 7.2). Interestingly, dry riverbeds dominate the total annual CO2 efflux, even though 

this environment only covers 27% of the total fluvial network area (Table 7.2). A similar 

situation occurred for CH4 in the lentic environments, which occupy only 6% of the total 

network area, but contributed up to 62% of the total annual CH4 efflux (Table 7.2). Overall, 

the results from this upscaling exercise reinforce the established notion that running 

waters play a major role in fluvial network C budgets at different scales [Butman and 

Raymond, 2011; Lundin et al., 2013; Raymond et al., 2013a; Wallin et al., 2013; Crawford 

et al., 2014a]. However, more importantly, these results point to fluvial discontinuities as 

emerging components dominating the annual CO2 (through dry beds) and CH4 (through 

small impoundments) efflux in highly regulated networks. In line with Maeck et al., [2013] 

and other studies focused on other biogeochemical components or processes [Ward and 

Stanford, 1983; Stanford and Ward, 2001; Fisher et al., 2004; McGuire et al., 2014; Dent 

and Grimm, 2016], our upscaling results at annual and fluvial network scales together 

with those found along the previous chapters, point to the need for a shift away from a 

continuous and system-centric view to a more inclusive approach that incorporates the true 

spatiotemporal complexity (i.e., different environments, spatiotemporal discontinuities, 

lateral, vertical and longitudinal connections) of biogeochemical patterns and processes in 

fluvial networks. 
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Table 7.1 Summary of the areal  CO2 ,  CH4  and total  C f luxes measured in the three types of 

environments s tudied along the F luvià River  network.  

 

 

Table 7.2  Summary of  upscaled surface  areas and annual  CO 2 ,  CH4  and total  C f luxes for  the 

entire F luvià River network  

 

 

River desiccation and impoundment of running waters through the construction of dams 

or small weirs have been recognized as some of the most important environmental 

pressures in fluvial networks worldwide [Nilsson et al., 2005a; Sabater, 2008; Vörösmarty 

et al., 2010; Acuña et al., 2014]. Future projections considering the combined effects of 

climate change [Hoerling et al., 2012; IPCC, 2014] and human pressures [Iglesias et al., 

Mean Min Max N Mean Min Max N Total Min Max

Lotic 172.0 26.7 798.7 145 1.06 0.00 3.77 39 173.0 0.00 802.5

Lentic 44.1 -11.2 199.8 86 23.07 0.00 37.02 38 67.2 0.00 236.8

Dry 563.4 466.8 1046.0 13 0.56 0.00 5.83 3 563.9 0.00 1051.8

Mean, minimum (Min), maximum (Max) and number of observations (N)  of the entire dataset (see Chapter 2  for a 

detailed description of the dataset) for the different environments (i.e., lotic, lentic and dry). 

Environment

Total Areal C Flux      

(mmol m-2 d-1)

Areal CH4 Flux                

(mmol m-2 d-1)

Areal CO2 Flux                

(mmol m-2 d-1)

Min Max Mean Min Max Mean Min Max Mean Min Max

Lotic
a 8.0 (67) 6.0 11.2 22.6 (38) 1.9 0.5 5.0 5.9 (33) 0.5 0.3 0.8 28.5 (37) 2.4 0.9 5.7

Lentic
a 0.8 (6) 0.8 0.8 1.0 (2) 0.1 0.0 0.2 11.2 (62) 0.9 0.9 1.0 12.2 (16) 1.0 0.9 1.1

Dry
a 3.2 (27) 0.0 5.2 36.0 (60) 3.0 0.0 4.6 0.8 (4) 0.1 0.0 0.1 36.9 (49) 3.1 0.0 4.7

Total
b 11.9 (100) 6.8 17.1 59.7 (73) - 9.5 146.0 17.9 (27) - 4.8 26.2 77.6 (100) - 14.3 172.2

Total 

annual

a
 Mean, minimum (Min) and maximum (Max)  of the monthly estimates for the different environments (i.e., lotic, lentic and dry). Total annual 

values  corresponds to the sum of the monthly estimates. The percentatge  contribution of each environment to the total fluvial network 

emission flux is shown in brackets.

b
 Mean, minimum (Min) and maximum (Max) of the annual estimates. The percentatge  contribution of each  gas (i.e., CO2 and CH4) to the 

total mass of C emitted is shown in brackets.

Environment

Surface area                        

(km
2
)

CO2 Mass Flux                                

(Gg CO2 y
-1

)

CH4 Mass Flux                          

(Gg CO2e y
-1

)

Total C Mass Flux                            

(Gg  CO2e y
-1

)

Mean
Total 

annual

Total 

annual
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2007; Murray et al., 2012] on water resources in the Mediterranean region indicate that 

they will have a relevant impact on regional hydrological regimes (e.g.,[IPCC, 2014; 

Pascual et al., 2015]). For instance, a case study in three Mediterranean basins (including 

the Fluvià River) showed that the mean annual discharge will decrease between 25 and 

34% along the 21st century [Pascual et al., 2015]. Similarly, a global reduction of the surface 

area of free-flowing river sections by about 21%, with SWRS being the most common 

impoundment structure, has been predicted by a recent review on global dam construction 

intentions [Zarfl et al., 2014]. 

Here, we used simple empirical models (see Text B.7.2. in the Supporting information 

section for a detailed description of model development and related calculations) to predict 

how future hydrological alterations (projections for the coming 85 years in the Fluvià River 

network from Pascual et al., [2015], see Table B.7.1 in the Supporting Information for a 

detailed description of the future hydrological scenarios) may influence the relative surface 

area of the different environments comprising the fluvial network and how this may, in 

turn, be translated into changes in the annual mass C fluxes. The outcome of this 

simulation is a negligible change in the total annual efflux of CO2 (max of +1%), CH4 (max 

of -2%), and total C (max of +0.3%) in scenarios 1 and 2 (Table 7.3). This result can be 

explained by the counterbalancing effect between lotic and dry CO2 and CH4 emissions 

observed in our fluvial network. Specifically, decreases in discharge increase the mean 

areal extent of dry riverbeds up to respectively +2.2 (+6.1%) and +5.8 (+15%) km2 in 

scenarios 1 and 2 (Table 7.3). However, this areal increase in dry beds will be at the expense 

of a decrease of running water surface area. Therefore, the increase of the annual C mass 

flux from dry beds is at least partially compensated by the decrease of C emitted from the 

running water sections.  

On the other hand, it is likely that an increase of the areal extent of impounded waters 

(+100%; from 0.75 km2 to 1.5 km2) combined with a long term discharge reduction 

(Scenario 3; Table B.7.1 in the Supporting Information) would have a stronger influence on 

the total annual C emitted from the fluvial network (+11.3 Gg CO2e y-1; +15%). This 

predicted change seems to be related to a dramatic increase of +9.9 Gg CO2e y-1 (+55%) of 

the annual CH4 emitted from impounded waters (Table 7.3, Scenario 3).  
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Additionally, it has to be noted that the predictions of fluvial networks C mass fluxes in our 

exercise, only depend on surface area changes as response to flow regime scenarios (Text 

B.7.2. in the Supporting information section). Therefore, our simulation does not consider 

changes in the areal C fluxes and their main drivers (i.e.,  ���," ,  �Q�," and 
���). For 

example, increases in water temperature, OM availability or alteration of stream 

hydraulics can have significant implications for the total mass fluxes from fluvial networks 

[Campeau and del Giorgio, 2013]. Similarly, future modifications of DIC, DOC and CH4 

import and export dynamics may also influence the total mass fluxes from fluvial networks 

[Hope et al., 2004; Wallin et al., 2010; Regnier et al., 2013]. 

 

Table 7.3 Summary of  expected changes in surface areas and annual CO2 ,  CH4  and total  C f luxes 

for the enti re F luvià River  network under 3 future hydrological  scenarios 

 

Min Max Min Max Min Max Min Max

Lotic -2.2 (-2.4) -2.8 -1.7 -1.8 (-8.1) -2.4 -1.4 -0.2 (-3.0) -0.2 -0.1 -2.0 (-7.0) -2.5 -1.5

Lentic 0.0 (0) 0.0 0.0 0.0 (0) 0.0 0.0 0.0 (0) 0.0 0.0 0.0 (0) 0.0 0.0

Dry +2.2 (+6.1) +1.7 +2.8 +2.1 (+5.7) +1.5 +2.6 +0.04 (+4.8) +0.03 +0.05 +2.1 (+5.7) +1.6 +2.6

Total 0.0 (0) -1.1 +1.1 +0.3 (+0.5) -0.9 +1.2 -0.14 (-0.8) -0.17 -0.05 +0.1 (+0.1) -0.9 +1.1

Lotic -5.8 (-6) -7.5 -4.1 -4.7 (-20.8) -6.1 -3.3 -0.5 (-7.7) -0.6 -0.3 -5.2 (-18.1) -6.7 -3.7

Lentic 0.0 (0) 0.0 0.0 0.0 (0) 0.0 0.0 0.0 (0) 0.0 0.0 0.0 (0) 0.0 0.0

Dry +5.8 (+15) +4.1 +7.5 +5.3 (+14.7) +3.8 +6.8 +0.10 (+12.4) +0.07 +0.13 +5.4 (+14.7) +3.9 +6.9

Total 0.0 (0) -3.4 +3.4 +0.6 (+1.0) -2.3 +3.5 -0.4 (-2.0) -0.5 -0.2 +0.2 (+0.3) -2.8 +3.2

Lotic -6.2 (-7) -8.3 -4.9 -5.0 (-24.3) -7.3 -2.1 -1.3 (-20) -1.1 -0.6 -6.3 (-25) -8.4 -2.7

Lentic +0.8 (+100) +0.4 +1.2 +1.0 (+100) +0.4 +1.6 +11.2 (+100) +5.6 +17 +12.2 (+100) +6.0 +18.6

Dry +5.8 (+15) +4.1 +7.5 +5.3 (+14.7) +3.8 +6.8 +0.10 (+12.4) +0.07 +0.13 +5.4 (+14.7) +3.9 +6.9

Total +0.4 (+3) -4.2 +4.2 +1.3 (+2.2) -3.9 +6.7 +9.9 (+55) +9.5 +11.4 +11.3 (+15) +1.5 +22.8

Mean, minimum (Min) and maximum (Max) absolute and relative (in brakets) change of the surface areas and annual mass C fluxes for the 

different environments (i.e., lotic, lentic and dry) and for the entire fluvial network (i.e., total) under 3 potential future scenarios. The 3 future scenarios 

proposed here are based on changes of the fluvial network surface area in response to short and long term hydrological predictions for the Fluvia 

catchment [Pascual et al.,  2015; IPCC , 2014; Zarfl et al ., 2014]. A detailed description of the calculations and the 3 different scenarios is shown in 

Appendix B  in the Supporting Information section.

Mean Mean Mean Mean

Scenario 2 - Long term discharge reduction (2076-2100)

Scenario 3 - Long term discharge reduction (2076-2100) + Intense dam construction (+100% area)

Environment

Scenario 1 - Short term discharge reduction (2006-2030)

Annual surface area 

change (km
2
)

Annual CO2 Mass Flux 

Change (Gg CO2 y
-1

)                     

Annual CH4 Mass Flux 

Change (Gg CO2e y
-1

)                     

Annual Total C Mass Flux 

Change (Gg CO2e y
-1

)                     
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The results from this simulation show the rather low sensitivity of the annual CO2, CH4 

and total C emissions to shifts in river discharge. In contrast, the simulation stresses the 

high sensitivity of annual CH4 and total C emissions to shifts in the surface area of lentic 

waterbodies in fluvial networks. We advance that the combined effect of future dam 

construction [Zarfl et al., 2014] and extended periods of low flows as a consequence of 

drought or intensive use of the water resources [Gasith and Resh, 1999; Gibson et al., 2005] 

may lead to an increase of lentic and dry habitats at the expenses of lotic environments in 

many fluvial networks [Sabater, 2008]. These predictions emphasize the decisive role of 

lentic environments in shaping the C efflux from fluvial networks in response to global 

change. 
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Overall, this dissertation contributes to a better understanding of how the presence of river 

discontinuities as a result of intense impoundment and flow intermittency alters the 

spatiotemporal patterns, controls and sources of C gas fluxes in fluvial networks. In this 

sense, the main conclusions of this dissertation can be summarized as follows: 

- As a consequence of the attenuated turbulence in impounded waters associated to small 

water retention structures (SWRS), the diffusive carbon dioxide (CO2) emissions from 

impounded river sections was significantly lower than that from free-flowing river 

sections. 

- As a consequence of the higher CH4 concentration at the impounded sections 

compensating the attenuated turbulence, no reduction in methane (CH4) emissions 

from impounded river sections associated to SWRS was detected in relation to free-

flowing river sections,  

- The significant increase in CH4 concentration detected in impounded river sections 

influenced the overall discontinuous longitudinal pattern of CH4 along the study stretch 

but did not translate into a significant increase in the diffusive CH4 efflux from the free-

flowing riverine sections downstream the SWRS. 

- As in larger reservoirs or lakes, the ebullitive pathway of CH4 emission was the 

predominant pathway in our impounded river sections, contributing to more than 85% 

of the total CH4 efflux when CH4 emission was detected. 

- Streams do not turn into inert ecosystems when they become dry. On the contrary, they 

remain as active biogeochemical habitats degassing significant amounts of CO2 to the 

atmosphere. 

- The CH4 efflux from dry beds was undetectable in almost all cases, probably because of 

the high aeration limiting the redox requirements for microbial CH4 production.  

- The physical control on gas transfer prevailed across aquatic (i.e., water turbulence) and 

dry (i.e., water content) environments, ultimately driving the overall spatial and 

temporal variability of CO2 and CH4 emissions in the fluvial network. 
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- Sources other than internal metabolism (e.g., external inputs, internal geochemical 

reactions or photochemical mineralization) sustained most of the fluvial network CO2 

emissions. Internal metabolism accounted for a moderate proportion (24%) of CO2 

emissions in lotic segments, while its contribution was insignificant in lentic segments. 

- The free-flowing river sections showed a clear coupling between the hydrological 

dynamics and the origin of CO2 emissions. In contrast, the contribution of the different 

sources to the CO2 efflux in impounded river sections associated to SWRS remained 

stable and independent of hydrological variation.  

- The source of CO2 emitted from dry riverbeds remains unclear, although CO2 produced 

from biological mineralization of fresh and labile organic matter fractions could be an 

important source. 

- The view of fluvial networks as a continuum cannot properly describe the spatial 

variability in CO2 and CH4 effluxes, highly driven by the presence of SWRS and dry 

riverbeds. 

- Fluvial discontinuities are emerging components of the annual C emissions of the 

fluvial network, dominating the annual CO2 (through dry riverbeds) and CH4 (through 

small impoundments) efflux. 

- Upscaling exercises combined with scenario analysis show that decreases in river 

discharge predicted by global change models for this region will not significantly alter 

the annual CO2, CH4 and total C emissions from the Fluvià River network. In contrast, 

annual CH4 and total C emissions could be significantly enhanced in response to 

increases in the surface area of lentic waterbodies associated to SWRS.
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Supporting Information 

This section contains supporting information for Chapter 3, Chapter 4, Chapter 5, and 

Chapter 6 (Appendix A), supporting information for the Chapter 7 (Appendix B) and 

also provides the original publications of Chapter 3, Chapter 4 and Chapter 6 (proof 

version) (Appendix C). 

 

Appendix A 

Table A.3.1 Location, surface water physicochemistry and hydromorphological 

characteristics of the studied sites. 

Figure A.4.1 Schematic drawing and examples of different sites sampled in the dry and 

in the flowing period. 

Table A.5.1 Hydromorphological and physicochemical characterization of the 11 studied 

impoundments. 

Figure A.5.1 CO2 emission flux (CO2 flux) as a function of the gas transfer velocity of CO2 

(kCO2) and CH4 emission flux (CH4 flux) as a function of the gas transfer velocity of CO2 

(kCO2) of the 11 study sites for the three different impoundment units (i.e., upstream river, 

impounded water and downstream river) during the three sampled seasons (i.e., spring, 

summer and winter).  

Table A.5.2 Overview of potential explanatory variables of pCO2,w and pCH4,w included in 

partial least square (PLS) models. 

Table A.5.3 Summary of partial least square (PLS) models produced for pCO2,w and 

pCH4,w. 

Figure A.6.1. Relationship between the 
DE� derived from both the night-time regression 

method (NTR method; open circles; n=151) and the chamber method (filled circles; n=18) 

and the 
DE� obtained from equation (2) in Raymond et al., [2012].  
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Figure A.6.2. Examples of diel dissolved oxygen dynamics (red points) and model fit (black 

continuous line) for representative examples of lotic (top) and lentic (bottom) segments. 

Figure A.6.3. Comparison of metabolic rates obtained in Chapter 6 and global metabolic 

rates for lotic aquatic ecosystems (i.e., streams and rivers) and lentic aquatic ecosystems 

(i.e., lakes and reservoirs). 

Figure A.6.4. Variation of CO2 emissions in lotic and lentic segments along the river 

longitudinal continuum. 

Figure A.6.5. CO2 emissions as a function of 
��� and surface water  ���,"  for both lotic 

(blue circles) and lentic segments (green circles). Horizontal dashed lines represent 

���� ,-.//.01=0. Vertical dashed line in (b) represents the average  ���,# for all the 

segments. 

Table A.6.1. Hydromorphological characteristics of the 12 studied segments 

Table A.6.2. Summary of metabolic rates of the 12 studied segments 

 

 

 

 

 

 

 



S
u

pportin
g In

form
ation 

 
209 

 

 
 

 
 

Environment

X                  

(UTM)
Y                 (UTM) Stream order

Water temp. 

(ºC)

 Cond.            

(µS cm
-1

)
pH

O2                       

(%)

DOC            

(mg L
-1

)

DIC            

(mg L
-1

)

DIN            

(mg L
-1

)

P-PO4
3-            

(mg L
-1

)

Mean width   

(m)

Mean depth   

(m)

Mean velocity 

(m s
-1

)

Discharge      

(m
3
 s

-1
)

Running waters 478288.00 4669565.00 4 19.3 809 8.29 89.3 1.8 56.5 2.8 0.03 6.9 0.21 0.30 0.12

466173.50 4672993.31 5 19.2 828 8.29 110.8 1.7 55.3 3.6 0.23 12.7 0.14 0.62 0.88

504755.14 4669171.03 5 20.3 908 7.79 83.1 1.0 47.6 1.0 0.00 22.7 0.24 0.64 2.65

466139.00 4683037.00 2 16.7 674 7.72 92.9 0.6 36.4 0.0 0.00 4.1 0.11 0.09 0.03

488016.15 4671133.08 5 22.3 906 8.40 104.3 2.0 48.2 1.7 0.08 23.7 0.31 0.54 2.72

455646.68 4669068.73 3 16.1 492 8.29 93.9 1.3 62.8 4.5 0.01 3.4 0.163 0.4 0.12

Surface area 

(hm
2
)

Volume         

(hm
3
)

Residence time 

(h)

Mean depth   

(m)

Impounded waters 456466.28 4669282.00 3 16.8 507 8.13 76.8 1.8 58.1 3.5 0.03 1.2 0.017 39.8 2.50

466121.25 4683366.22 2 17.2 674 8.40 104.2 0.7 35.5 0.0 0.00 0.1 0.001 5.1 1.52

480532.44 4670540.79 5 21.7 788 8.24 82.5 3.5 44.3 1.9 0.11 10.9 0.171 49.7 1.82

502182.40 4668511.88 5 22.8 845 8.21 136.2 1.4 46.9 0.9 0.00 3.7 0.027 3.7 1.14

485882.00 4688563.00 4 23.9 323 8.25 86.2 3.2 29.3 0.0 0.00 256.0 37.999 4247.6 16.50

Isolated pools 454538.81 4664338.02 3 17.2 271 7.11 28.6 5.7 26.0 1.3 0.16 lenght (m) (5-10)

454516.45 4664288.20 2 17.6 251 7.57 40.9 5.4 23.8 1.2 0.18 width (m) (2-5)

454465.20 4664244.11 2 17.8 239 7.51 32.5 4.9 21.8 1.3 0.19 ldepth (m) (0.5-2)

454432.07 4664233.22 3 20.7 217 7.42 22.9 15.5 18.8 0.9 0.15

454415.45 4664220.38 2 18.1 229 7.53 40.9 7.2 20.9 1.2 0.19

Dry beds 454536.99 4664335.08 2

454868.32 4661578.51 2

486488.53 4688216.26 2

Location Hydromorphologic characteristicsSurface water physicochemistry

Table A.3.1  Location, surface  water physicochemistry and hydromorphological  characteris t ics of the s tudied si tes 

R e p o r t e d  s u r f a c e  w a t e r  p h y s i c o c h e m i c a l  p a ra m e t e r s  a r e  m e a n s  o f  t h r e e  m ea s u r e m e n t s  (n = 3 )  a t  t h e  s am e  l o c a t i o n  w h e r e  t h e  f l u x  m ea s u r e m e n t s  w e r e  c a r r i e d  o u t   

S u r f a c e  w a t e r  t e m p e r a t u r e  ( Wa t e r  t e m p . )  a nd  c o n d u c t i v i t y  ( Co n d . )  w e r e  m e a s u r e d  w i t h  a  p o r t a b l e  p r o b e  ( Co n d  3 3 1 0 ,  WT W,  G e r m a n y )  

p H  w a s  m e a s u r e d  w i t h  a  p o r t a b l e  p r o b e  ( p H  3 1 1 0 ,  WT W,  G e r m a n y )   

O x y g e n  s a t u r a t i o n  ( O 2 )  w a s  m e a s u r e d  w i t h  a  p o r t a b l e  p r o b e  ( YS I  P r o O D O  H a n d h e l d ,  Y e l l o w  S p r i n g s ,  U SA )   

D i s s o l v e d  o r g a n i c  a n d  i n o r g a n i c  c a r b o n  c o n c e n t r a t i o n s  i n  w a t e r  ( D O C  a n d  D IC )  w e r e  m e a su r e d  f r o m  0 . 4 5  µ m - f i l t e r e d  w a t e r  s a m p l es  w i t h  a  t o t a l  o r g a n i c  c a r b o n  a n a l y s e r  ( T O C - V  CS H ,  S h i m a d z u ,  

J a p a n ) .  T h e  s a m p l e s  f o r  D O C  d e t e r m i n a t i o n  w e r e  p r e v i o u s l y  a c i d i f i e d  t o  e l i m i n a t e  d i s s o l v e d  i n o r g a n i c  c o n s t i t u e n t s  

A m m o n i u m  c o n c e n t r a t i o n  ( N H 4
+ )  w a s  a n a l y s ed  w i t h  i o n  c h r o ma t o g r a p h y  ( I C5 0 0 0 ,  D IO N E X ,  U SA )  u s i n g  a n  a n i o n - e x c h a n g e  c o l um n  ( I o n P a c ®  A S 1 8 ,  D IO N E X ,  U SA )  D i s s o l v e d  n i t r i t e  ( NO 2

- ) ,  n i t r a t e  

( N O 3
- )  a n d  p h o s p h a t e  ( P O 4

- 3 )  c o n c e n t r a t i o n s  w e r e  a n a l y s e d  w i t h  i o n  c h r o m a t o g r a p h y  ( I C5 0 0 0 ,  D IO N E X ,  U SA )  u s i n g  a  c a t i o n - e x c h a n g e  c o l u m n  ( I o n P a c ®  CS 1 6  ,  D IO N E X ,  U SA ) .  D i s s o l v e d  

i n o r g a n i c  n i t r o g e n  ( D IN )  c o n c e n t r a t i o n  i s  t h e  s u m  o f  N H 4
+ ,  NO 2

- ,  a n d  N O 3
- c o n c e n t r a t i o n s .   

T h e  m e t h o d o l o g y  u s e d  t o  ca l c u l a t e  t h e  h y d r om o r p h o l o g i c a l  p a r a m e t e r s  i s  d e t a i l e d  i n  t h e  m a n u s c r i p t .   

T h e  s i z e  r a n g e  o f  i s o l a t e d  p o o l s  i s  a p p r o x i ma t e d .  
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Figure A1  Schematic  drawing and examples of d i f ferent  si tes sampled in (a)  the  dry  period ( i .e . ,  

(c)  dry  r iverbeds and (d) upland soi ls);  and in (b)  the f lowing period ( i .e . ,  f lowing riverbreds. 
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Hydro-morphological characteristics Physico-chemical characteristics 

Surface 

area (ha)
a

Volume 

(hm
3
)

a

Mean depth 

(m)
a

1 0.8 0.05 1.5 10.0 (6.9 - 13.2) 13.4 (7.8 - 18.4) 546 (480 - 623) 2.9 (2.1 - 4.0) 3.4 (1.4 - 4.8) 1.5 (1.0 - 2.1)

2 0.2 0.01 1.1 0.6 (0.4 - 0.9) 9.9 (5.8 - 19.3) 550 (477 - 622) 2.8 (1.7 - 3.3) 3.4 (1.5 - 5.1) 1.9 (0.3 - 3.4)

3 0.1 0.03 1.1 0.3 (0.2 - 0.4) 13.7 (6.7 - 20.3) 543 (472- 627) 2.2 (1.4 - 2.8) 3.6 (1.9 - 4.9) 2.1 (0.2 - 3.5)

4 0.2 0.03 1.3 1.3 (1.0 - 1.4) 14.9 (7.3 - 22.2) 751 (653 - 854) 2.2 (1.3 - 2.7) 3.8 (1.9 - 5.1) 3.3 (0.1 - 5.5)

5 0.3 0.02 1.3 1.5 (0.9 - 2.0) 14.5 (7.6 - 21.6) 725 (663 - 762) 2.4 (1.5 - 2.9) 3.6 (1.9 - 4.7) 2.1 (0.3 - 4.5) 

6 0.2 0.02 0.8 0.6 (0.5 - 0.7) 15.9 (7.9 - 23.9) 813 (784 - 833) 2.1 (1.6 - 2.8) 3.0 (1.8 - 4.2) 1.8 (0.2- 3.4)

7 0.2 0.03 0.7 0.8 (0.3 - 1.6) 17.2 (9.4 - 24.9) 882 (821 - 946) 2.1 (1.7 - 2.7) 2.9 (1.8 - 3.9) 2.3 (1.6 - 3.0)

8 1.9 0.04 1.8 10.0 (8.2- 13.6) 21.2 (10.3- 25) 933 (891 - 975) 2.0 (1.6 - 2.5) 2.8 (1.7 - 4.0) 4.0 (2.3 - 6.2)

9 1.6 0.02 1.3 4.3 (2.6 - 5.2) 16.7 (9.3 - 23.6) 1038 (915 - 1170) 2.5 (2.0 - 3.1) 1.6 (1.4 - 1.8) 21.9 (1.2 - 48.1)

10 2.7 0.01 0.6 3.2 (2.8 - 3.4) 12.9 (7.9 - 17.9) 682 (678- 685) 2.0 (1.6 - 2.6) 2.3 (1.5 - 3.4) 6.1 (0.9 - 12.2)

11 9.6 0.12 0.7 40.8 (37.0 - 45.5) 13.2 (6.4 - 20.0) 575 (516 - 634) 2.4 (2.0 - 2.7) 2.1 (1.1 - 3.2) 11.4 (0.6 - 27.6)

a 
Mean of the 3 sampling dates. The temporal variation was negligible for these parameters

b 
Mean and range (in brakets) of the 3 sampling dates

Chlorophyll-a (µg L-

1)
b

Impoudnment
Water residence time 

(h)
b Temperature (ºC)

b Conductivity   (µS cm
-

1
)

b

DOC         (mg L-

1)
b

TDN           (mg L-

1)
b

Table A.5.1  Hydromorphological  and physicochemical  characterizat ion of the 11 studied impoundments 
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Table A.5.2  Overview of potent ia l  explanatory  variab les of  pCO2 , w  and pCH4 , w  included in par t ia l  

least square (PLS) models.  

 

 

 

Figure A.5.1  (a)  CO2  emission f lux (CO2  f lux) as a  function of  the gas t ransfer  ve loci ty  of CO 2  

(kCO2 ) and (b) CH4  emission f lux (CH4  f lux) as a  function of the gas t ransfer ve loci ty of  CO2  

(kCO2 ) of  the 11 s tudy si tes fo r the three d i f ferent  impoundment units ( i .e . ,  upstream river,  

impounded water and downstream river) during the three sampled seasons ( i .e . ,  spring,  

summer and winter).  The sol id l ines correspond to the regression model l ines best  f i t t ing the 

data.  Model equations are  also  shown close to model l ines.  

Variable Description Units

WRT Water residence time of the impounded water hours

Area Impounded water surface area ha

Volume Impounded water volume hm
3

Temp Surface water temperature ºC

EC Electrical conductivity µS cm
-1

Alk Surface water alkalinity mg CaCO3 L
-1

pH Surface water pH

DO Sat Surface water oxygen saturation %

DOC Dissolved organic carbon concentration mg L
-1

POC Water-suspended particulate organic carbon concentration mg L
-1

TDN Total dissolved nitrogen concentration mg L
-1

TN Total surface water nitrogen concentration mg L
-1

TP Total surface water phosphorus concentration mg L
-1

Chl-a Total surface water Chl-a  concentration µg L
-1
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Table A.5.3  Summary of  par t ia l  least  square (PLS) models produced for pCO2 ,w and pCH4 ,w 

 

  

Variable Coeficient Variable Coeficient

WRT 1.8 ** 0.24 DOC 1.7 ** 0.35

Area 1.6 ** 0.20 TDN 1.7 ** -0.26

EC 1.6 ** -0.31 WRT 1.2 ** 0.22

p CH4 1.2 ** 0.18 Chl-a 1.1 ** 0.09

Alk 1.0 ** 0.24 Temp 1.1 ** 0.13

DOC 0.9 * 0.20 Area 1.0 ** 0.16

DO Sat 0.9 * -0.17 Alk 0.7 0.03

Chl-a 0.6 0.01 TP 0.7 0.02

Temp 0.6 -0.10 pH 0.7 -0.15

TN 0.5 0.12 EC 0.6 -0.18

TDN 0.5 0.07 DO sat 0.5 0.02

pH 0.4 0.07 TN 0.3 0.08

TP 0.2 -0.05 POC 0.3 -0.01

POC 0.3 0.06

R2Y 0.68 R2Y 0.69

Q2Y 0.34 Q2Y 0.41

Variable importance on the projection scores (VIP values in the table) indicate the parital influnece of each 

explainatory variable (X-; see table S2 in the supporting information for the explanation of each abbreviation)  

on the response variables (Y-; pCO2 and p CH4). X-variables included in the PLS models are sorted according 

to their VIP's. Bold font is used to identify the top ones based on their VIP value. Among them, variables with 

two asterisks are higlhy influential (VIP>1) and variables with ones asterisk are the moderately influential ones

(VIP between 1 and 0.8). PLS models coefficients (ceoficients in the table) describe the relationship (direction 

and relative strength) between X- and Y-variables.

p CO2 p CH4

VIP value VIP-value
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Figure A.6.1 Relat ionship between the 
DE� derived f rom both  the n ight- t ime regression method 

(NTR method; open circ les;  n=151) and the chamber method (f i l led ci rcles;  n=18) and the 
DE� 

obtained from equation (2) in  Raymond et a l . ,  [2012].  Horizontal  dashed l ine indicate 95 t h  

percenti le  boundary for the 
DE� obtained from equation (2) in Raymond et a l . ,  [2012].  The 1:1 

reference l ine is shown as reference. The night-t ime regression method (NTR, Hornberger and 

Kel ly [1975]) is based on the premise that the photosynthesis ceases f rom sunset to sunrise; 

thus n ight-t ime dynamics of oxygen depend on respirat ion and reaeration. During the  n ight,  

respirat ion reduces the oxygen levels unti l  atmospheric equi l ibrium is reached. In paral le l , 

reaerat ion  approaches the  oxygen concentra t ion to saturat ion. Thus, when we plot  the n ight-

t ime oxygen concentra t ion per unit of  t ime versus the oxygen satura t ion def ic i t ,  a  l inear t rend 

is obtained. The intercept of  the regression corresponds to the respirat ion ra te and the slope 

to the mean reaerat ion coeff ic ient (RE�) in d - 1 .  We corrected the RE�for depth to obtain the mean 

gas transfer  ve loci ty of oxygen (
E�) in m d - 1  and we further transformed 
E� to 
DE� by applying 

equation (3) in the manuscript.  
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Figure A.6.2 Measured d ie l  d issolved oxygen dynamics (red points) and  model f i t  (black  

continuous l ine) for representat ive examples of lot ic (top) and lentic (bot tom) segments (see 

F igure 1 in the main text for  the study segment location).  Est imated net ecosystem production 

(NEP; mmol O2  m 2  d - 1 ) is  d isp layed above the  curves. Y-axis (DO,  mg L - 1)  ranges are  f ixed to  

faci l i ta te  comparison among segments.  Each DO curve  correspond to a  24-hours period (X-axis)  

from sunrise to sunrise.   
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Figure A.6.3 Metabol ic rates ( in mmol m - 2  d - 1 )  of (a) gross primary production (GPP),  (b)  

ecosystem respira t ion (ER) and (c) net ecosystem production (NEP) across lot ic  aquat ic  

ecosystems (i .e . ,  st reams and r ivers)  and lentic  aquatic  ecosystems (i .e . ,  lakes and reservoi rs).  

Box p lots  d isplay the 25th,  50th and 75th percenti les;  whiskers d isplay  minimum and maximum 

values. Grey boxes correspond to  the metabol ic  ra tes obtained in our s tudy, with  data  from 8 

d i f ferent lot ic  systems (32 observations) and 3 d i f ferent  lentic systems (10 observations) 

d istr ibuted along one f luv ia l  ne twork.  Whi te boxes correspond to  the metabol ic ra tes extracted 

from a globa l compi lat ion made by Hoel le in et a l . ,  [2013],  with data f rom 218 dif ferent lot ic  

systems (626 observations) and 72 d i f ferent lentic systems (1611 observations).   
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Figure A.6.4 Variat ion  of the magnitude (sol id l ine,  segment means of the d i f ferent  dates)  and 

standard deviat ion (shaded region, segment standard error of the d i f ferent dates) of the 

���� ,-.//.01 for  the lo t ic  (blue)  and lentic  (green) along the r iver  longi tudinal  continuum. The 

horizontal  dashed l ine represents ���� ,-.//.01=0. Spatia l  re la t ionships shown in the F igure  are  

sta t ist ical ly  s ignif icant  for  lot ic (y =  0.0366x2  - 1 .6483x + 89.53 ;  r2  = 0.20, p<0.001, n = 96) 

and lentic (y = -0.9525x + 103.39 ;  r2  = 0.29, p<0.001, n = 48) segments.   

 

 

Figure A.6.5 ���� ,-.//.01 as a function of (a) 
��� and (b) surface water  ���,"  for both lot ic (b lue  

circles) and lentic segments (green ci rcles).  Horizontal  dashed l ines represent ���� ,-.//.01=0. 

Vert ical  dashed l ine in (b)  represents the average  ���,# for a l l  the segments.  
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Segment
Hydrological 

habitat

Stream 

order
a

Length 

(m)

Slope 

(%)

1 Lotic 4 2150 0.9 0.387 (0.02 - 1.84) 0.16 (0.034 - 0.433) 7.7 (5.7 - 11.3) 0.17 (0.08 - 0.37) 6.9 (1.4 - 17.4)

2 Lotic 2 660 3.7 0.012 (0.0004 - 0.05) 0.05 (0.004 - 0.176) 1.8 (1.1 - 2.4) 0.08 (0.06 - 0.12) 12.3 (1.0 - 45.7)

3 Lotic 3 340 2.1 0.117 (0.01 - 0.60) 0.07 (0.016 - 0.248) 5.6 (2.3 - 9.1) 0.16 (0.08 - 0.33) 2.5 (0.4 - 5.8)

4 Lotic 5 3810 0.2 2.569 (1.05 - 5.75) 0.22 (0.113 - 0.347) 26.4 (22.2 - 33.2) 0.12 (0.05 - 0.26) 2.0 (1.2 - 4.5)

5 Lotic 4 1720 0.3 0.422 (0.05 - 1.18) 0.22 (0.048 - 0.467) 7.5 (5.9 - 9.3) 0.15 (0.10 - 0.27) 3.5 (1.0 - 9.9) 

6 Lotic 6 2360 0.7 0.482 (0.03 - 2.32) 0.18 (0.031 - 0.546) 9.9 (6.6 - 18.2) 0.08 (0.05 - 0.23) 6.6 (1.2 - 20.5)

7 Lotic 6 2450 0.2 3.170 (1.33 - 9.00) 0.25 (0.151 - 0.424) 32.6 (27.3 - 44.1) 0.29 (0.23 - 0.48) 2.9 (1.6 - 4.4)

8 Lotic 6 3220 0.1 2.349 (0.30- 7.37) 0.21 (0.112 - 0.356) 35.2 (21.3 - 54.2) 0.19 (0.12 - 0.38) 5.0 (2.5 - 8.0)

9 Lentic 4 770 <  0.1 0.414 (0.02 - 1.83) 0.02 (0.001 - 0.080) 16.1 (16.1 - 16.1) 1.40 (1.40 - 1.40) 56.2 (2.6 - 215.2)

10 Lentic 3 80 <  0.1 0.098 (0.02 - 0.49) 0.01 (0.001 - 0.040) 10.4 (10.4 - 10.4) 1.14 (1.14 - 1.14) 7.5 (0.5 - 16.0)

11 Lentic 6 1640 <  0.1 2.717 (0.48 - 9.43) 0.03 (0.005 - 0.104) 66.4 (66.4 - 66.4) 1.36 (1.36 - 1.36) 35.1 (4.4 - 84.2)

12 Lentic 6 900 <  0.1 2.959 (0.46 - 8.78) 0.10 (0.016 - 0.291) 40.8 (40.8 - 40.8) 0.74 (0.74 - 0.74) 6.2 (0.8 - 15.8)

a 
Stream order was calculated with the Hydrological Extension in ESRI® ArcGISTM v. 10.0. Data obtained from a 2-meter digital elevation model (Centre of Ecology and Forestry Research of Catalonia) 

b 
Mean and range (in brakets) of the 12 sampling dates

Water flow (m
3
 s

-1
)
b

Velocity (m s
-1

)
b

Width (m)
b

Depth (m)
b

Water residence time 

(hours)
b

Table A.6.1  Hydromorphological  characteris t ics  of the 12 studied segments 
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Table A.6.2  Summary of  metabol ic ra tes of  the 12 s tudied segments 

 

  

Segment n

1 51.8 (27.7 - 75.9) -156.5 (-219.1 - (-94.1)) -104.7 (-159.1 - (-50.2)) 2

2 42.4 (13.4 - 71.4) -163.1 (-216.0 - (-110.1)) -120.7 (-144.6 - (-96.7) 2

3 32.8 (13.81 - 68.0) -129.9 (-281.0 - (-21.3)) -97.2 (-213.0 - 18.8) 10

4 162.2 (85.3 - 239.2) -173.3 (-256.2 - (-90.4)) -11.0 (-16.9 - (-5.1)) 2

5 14.0 (9.7 - 18.3) -46.3 (-49.7 - (-43.0)) -32.3 (-33.2 - (-31.4)) 2

6 127.5 (115.6 - 139.4) -130.1 (-172.0 - (-88.2)) -2.6 (-56.4 - 51.2) 2

7 110.4 (56.8- 163.9) -137.1 (-198.1 - (-76.0)) -26.7 (-58.9 - 6.8) 2

8 61.1 (12.4- 161.7) -116.3 (-182.2 - (-71.1)) -55.2 (-111.1 - 26.6) 10

9
b - - - - - - 0

10 35.6 (32.2 - 39.0) -42.0 (-44.3 - (-39.6)) -6.3 (-7.3 - (-5.3)) 2

11 188.3 (83.4 - 304.9) -189.3 (-304.0 - (-75.4)) -1.0 (-35.4 - 25.2) 6

12 124.2 (49.0 - 199.4) -95.2 (-157.0 - (-33.4)) 29.0 (15.6 - 42.4) 2

Lotic segments 124.2 (9.7 - 239.2) -125.2 (-281.0 - (-21.3)) -67.7 (-213.0 - 51.2) 32

Lentic segmemts 57.4 (32.2- 304.9) -141.0 (-304.0 - (-33.4)) 6.9 (-35.4 - 42.4) 10

All segments 78.3 (9.7- 304.9) -129.0 (-304.0 - (-21.3)) -50.7 (-213 - 51.2) 42

a 
Mean and range (in brakets) of the maximum available temporal data (n)

GPP (mmol m
-2

 d
-1

)
a

ER (mmol m
-2

 d
-1

)
a

NEP (mmol m
-2

 d
-1

)
a

b 
Before running the metabolism model, we examined the original data for anomalies that could have thwarted modeling efforts. 

Following this, we discarded the DO data from segment #9 because sensor malfunction lead to DO data anomalies.
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Appendix B 

Text B.7.1. Fluvial network upscaling of CO2 and CH4 emissions  

Text B.7.2 Simulated change in fluvial network CO2 and CH4 emissions under future 

hydrological scenarios  

Table B.7.1 Expected scenarios of short (2006-2030) and long term (2076-2100) 

streamflow and impounded surface area change (%) for the Fluvià River 
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B.7.1 Fluvial network upscaling of CO2 and CH4 emissions  

Here, we combined a) the mean monthly areal CO2 and CH4 effluxes measured in the field 

for each environment (in mmol m-2 d-1) with b) the mean monthly surface area estimated 

for each environment (in m2) to derivate a total annual mass of CO2, CH4 and total C (i.e., 

sum of CO2 and CH4) emitted from each environment (in Gg CO2e y-1). 

B.7.1a Estimation of the areal CO2 and CH4 effluxes 

We used the specific monthly areal CO2 and CH4 effluxes (both diffusive and ebullitive) for 

each environment (i.e., lotic, lentic and dry) and for each Strahler stream order obtained 

along the different chapters of this dissertation. Additionally, we used an ordinary 

resampling technique [Striegl et al., 2012; Crawford et al., 2016; Stanley et al., 2016] to 

derivate the CO2 and CH4 effluxes (and uncertainty) for those moments and those stream 

orders or which we lack field data. The bootstrapped CO2 and CH4 effluxes (means, 

standard deviations and confidence intervals) were obtained from 1000 simulated 

distributions based on the mean and 5th–95th percentiles from our dataset.  

 

B.7.1b Estimation of the fluvial network surface area  

Stream network length (in m) sorted by stream order was obtained from a high resolution 

map provided by the Catalan Water Agency (http://aca-web.gencat.cat). Further validation 

with a 2-m resolution digital elevation model (DEM) with the hydrology tools available in 

ArcGIS 10.2.1 was carried out. The mean monthly cross-sectional wetted width (and 

associated uncertainty; in m) at the same segments were we measured CO2 and CH4 fluxes 

was derived every ca. 100 m (i.e., 5-85 cross-sectional transects per segments) from the 

hydraulic modelling software HecRas 2.2 (US Army Corps of Engineers, USA). The model 

was fed with the measured water flow and segment geometrical data provided by the 

Catalan Water Agency. We then combined the mean monthly cross-sectional wetted width 

(sorted by stream order) with the stream length (sorted by stream order) to obtain an 

estimate of the mean monthly surface area occupied by aquatic environments (sorted by 

stream order; in m2). The surface area of lentic waterbodies associated to SWRS was 

estimated with the polygon tool of Google Earth Pro and applied to correct the surface area 
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occupied by aquatic environments. Based on visual inspection, we assumed no temporal 

variation of the water level in our lentic waterbodies. Finally, we derived the mean monthly 

surface area of dry riverbeds by subtraction of the total fluvial network surface area (i.e., 

surface area at the moment where the fluvial network was fully occupied (100%) by water 

- moment of maximum hydrological expansion) and the mean monthly surface area 

occupied by aquatic environments (for the 12 sampling campaigns). In a last step of our 

upscaling exercise, we multiplied the mean monthly areal CO2 and CH4 effluxes measured 

for each environment an stream order (in mmol m-2 d-1) by the mean monthly surface area 

estimated for each environment and stream order (in m2) to derivate a total annual mass 

of CO2, CH4 and total C (i.e., sum of CO2 and CH4) emitted from each environment (in Gg 

CO2e y-1). Similar fluvial network upscaling of CO2 and CH4 emissions exercises have been 

carried out in Striegl et al., [2012] or Crawford et al., [2013]. 

 

B..7.2. Simulated change in fluvial network CO2 and CH4 emissions under future hydrological 

scenarios  

We used simple empirical models based on linear relationships between streamflow and 

surface area of the different environments (i.e., lotic, lentic and dry), in order to simulate 

how future streamflow changes in the Fluvià River (See Table S1 in the supporting 

information) may potentially change the relative surface area of the different environments 

and how this may, in turn, modify the total annual mass of CO2, CH4 and total C (i.e., sum 

of CO2 and CH4) emitted from each environment (in Gg CO2e y-1).  

The 3 hydrological scenarios proposed here [Pascual et al., 2015; Table S1 in the supporting 

information] have been obtained by simulating the Fluvià River hydrological cycle under 

different future scenarios that accounted for the impacts of climate change and 

antropogenic pressures on water resources [IPCC, 2014; Zarfl et al., 2014]. By linear 

interpolation of the predicted streamflows in our river ([Pascual et al., 2015]; Table S1 in 

the supporting information), we deterimned the total predicted area occupied by the 

different environments in the fluvial network. In Scenario 3 (Table S1 in the supporting 

information), apart from conisdering the effect of streamflow changes on the surface area 
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of the fluvial network, we have also considered the predicted dam construction intentions 

[Zarfl et al. 2014] and doubled the surface area of impounded waters accordingly. 

Finally, we combined the mean monthly areal CO2 and CH4 effluxes measured in the field 

for each environment (in mmol m-2 d-1) with the predicted mean monthly surface area for 

each environment and for each scenario (in m2) to derivate a total simulated annual mass 

of CO2, CH4 and total C (i.e., sum of CO2 and CH4) emitted from each environment (in Gg 

CO2e y-1). We also computed the percentage change (%) between the present conditions and 

the outputs of the 3 simulated scenarios for the different environments and for the entire 

fluvial network (see Table S1 for further details). 

 

Table B.7.1 Expected scenarios of short  (2006-2030) and long term (2076-2100) streamflow 

and impounded surface area change (%) fo r the F luvià River  

 

 

 

 

 

Mean Min Max Mean Min Max

1
 Short term discharge reduction 

(2006-2030)
-11.5 -9.0 -14.0 0.0 0.0 0.0

2
Long term discharge reduction 

(2076-2100)
-30.5 -22.0 -39.0 0.0 0.0 0.0

3

Long term discharge reduction 

(2076-2100) + Doubled surface 

area of impounded waters
-30.5 -22.0 -39.0 +100 +50 +150

Mean, minimum (Min) and maximum (Max)  for the different future projections

Expected streamflow change (%)
Expected impounded water 

surface area change (%)
Description

Expected streamflow change (%)  obtained from Pascual et al.  [2014]. Relative change compared to the present period 

(1984–2008). Streamflow change predictions are for the river mouth. 

Simulated impounded water surface area change (%) in the Fluvià river fluvial network  based on Zarfl et al . [2014] global 

projection. Relative change compared to the present period (2013).

Scenario
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This Appendix provides the original publications of: 

Chapter 3: Gómez-Gener, L., B. Obrador, D. von Schiller, R. Marcé, J. P. Casas-Ruiz, L. 

Proia, V. Acuña, N. Catalán, I. Muñoz, and M. Koschorreck (2015), Hot spots for carbon 

emissions from Mediterranean fluvial networks during summer drought, 

Biogeochemistry, 125(3), 409–426, doi:10.1007/s10533-015-0139-7. 

Chapter 4: Gómez-Gener, L., B. Obrador, R. Marcé, V. Acuña, N. Catalán, J. P. Casas-

Ruiz, S. Sabater, I. Muñoz, and D. von Schiller (2016), When water vanishes: magnitude 

and regulation of carbon dioxide emissions from dry temporary streams, Ecosystems, 19(4), 

710–723, doi:10.1007/s10021-016-9963-4. 

Chapter 6: Gómez-Gener, L., D. von Schiller, R. Marcé, M. Arroita, J. P. Casas-Ruiz, P. A. 

Staehr, V. Acuña, S. Sabater, and B. Obrador (2016), Low contribution of internal 

metabolism to carbon dioxide emissions along lotic and lentic environments of a 

Mediterranean fluvial network, J. Geophys. Res. Biogeosci., 121, 

doi:10.1002/2016JG003549
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Abstract During summer drought, Mediterranean

fluvial networks are transformed into highly heteroge-

neous landscapes characterized by different environ-

ments (i.e., running and impounded waters, isolated

river pools and dry beds). This hydrological setting

defines novel biogeochemically active areas that could

potentially increase the rates of carbon emissions from

the fluvial network to the atmosphere. Using chamber

methods, we aimed to identify hot spots for carbon

dioxide (CO2) and methane (CH4) emissions from two

typical Mediterranean fluvial networks during summer

drought. The CO2 efflux from dry beds (mean ±

SE = 209 ± 10 mmol CO2m
-2 d-1) was comparable

to that from running waters (120 ± 33 mmol m-2

d-1) and significantly higher than from impounded

waters (36.6 ± 8.5 mmol m-2 d-1) and isolated pools

(17.2 ± 0.9 mmol m-2 d-1). In contrast, the CH4

efflux did not significantly differ among environments,

although the CH4 efflux was notable in some

impounded waters (13.9 ± 10.1 mmol CH4 m-2

d-1) and almost negligible in the remaining environ-

ments (mean\0.3 mmol m-2 d-1). Diffusion was the

only mechanism driving CO2 efflux in all environ-

ments and was most likely responsible for CH4 efflux

in running waters, isolated pools and dry beds. In

contrast, the CH4 efflux in impounded waters was

primarily ebullition-based. Using a simple heuristic

approach to simulate potential changes in carbon

emissions from Mediterranean fluvial networks under

future hydrological scenarios, we show that an extreme

drying out (i.e., a four-fold increase of the surface area

Responsible Editor: Jacques C Finlay.

Electronic supplementary material The online version of
this article (doi:10.1007/s10533-015-0139-7) contains supple-
mentary material, which is available to authorized users.
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of dry beds) would double the CO2 efflux from the

fluvial network. Correspondingly, an extreme trans-

formation of running waters into impounded waters

(i.e., a twofold increase of the surface area of

impounded waters) would triple the CH4 efflux. Thus,

carbon emissions from dry beds and impoundedwaters

should be explicitly considered in carbon assessments

of fluvial networks, particularly under predicted global

change scenarios, which are expected to increase the

spatial and temporal extent of these environments.

Keywords Greenhouse gas fluxes � Carbon dioxide �
Methane � Fluvial network � Temporary rivers �

Summer drought

Introduction

Increasing evidence has demonstrated the active role

of inland waters in the global carbon (C) cycle and the

capacity of these water bodies to emit significant

amounts of carbon dioxide (CO2) and methane (CH4)

to the atmosphere (Cole et al. 2007; Battin et al.

2009a). Recent global estimates of C emissions have

shown that inland waters, including both running and

impounded waters, emit approximately 2.1 Pg C

year-1 in the form of CO2 (Raymond et al. 2013) and

0.10 Pg C year-1 in the form of CH4 (Bastviken et al.

2011). Expressed as CO2 equivalents (Eq), these

emissions correspond to 0.65 Pg C (CO2 Eq) year
-1,

assuming that 1 kg of CH4 corresponds to 25 kg of

CO2 over a 100-year period (IPCC 2013). In this

context, regional and local studies conducted in arctic

and subarctic (Kling et al. 1991; Lundin et al. 2013),

boreal (Jonsson et al. 2007; Campeau and Lapierre

2014), temperate (Hope et al. 2001; Halbedel and

Koschorreck 2013) and tropical biomes (Abril 2005;

Guérin et al. 2007; Fearnside and Pueyo 2012) have

confirmed the role of streams, lakes and reservoirs as

net emitters of CO2 and CH4 to the atmosphere.

Nonetheless, there is limited information concerning

the relevance of C release from inland waters to the

atmosphere in arid and semiarid regions, such as the

Mediterranean (López et al. 2011; Obrador and Pretus

2012; Morales-Pineda et al. 2014).

Because of the climatic conditions of Mediter-

ranean regions, with warm, dry summers and mild,

humid winters, Mediterranean fluvial networks are

characterized by a highly seasonal and intermittent

hydrological regime (Gasith and Resh 1999). During

the wet period (late autumn to early spring), the

hydrological longitudinal connectivity increases, and

most of the fluvial network area is covered with

surface water. In contrast, during the dry period

(from late spring to early autumn), the hydrological

longitudinal connectivity decreases, and the area of

the fluvial network covered with surface water is

drastically reduced. Consequently, during summer

drought, the fluvial network is converted into a

fragmented heterogeneous landscape characterized

by slow-moving waters, isolated river pools and dry

beds (Bernal et al. 2013). Temporary rivers expe-

riencing these patterns are not restricted to arid and

semiarid regions, but they can be found in many

areas of the world (Tooth 2000; Acuña et al. 2014;

Datry et al. 2014). Moreover, as a consequence of

climate change and water abstraction for socio-

economic uses, their global surface area is expected

to increase in the Mediterranean and other regions

where a negative water flow trend has been

predicted (Milliman et al. 2008; Tockner et al.

2009; Larned et al. 2010).

Dry beds are defined as the parts of the fluvial

network exposed to air during dry periods (Steward

et al. 2012). They are habitats in their own right and

differ from adjacent riparian and other terrestrial

habitats in their substrate composition, topography,

microclimate, vegetation cover, inundation frequency,

and biota (Steward et al. 2012). Dry river beds play an

important role as dispersal corridors and contain a

unique diversity of aquatic, amphibious, and terrestrial

biota (Williams 2006; Lake 2011). Moreover, recent

studies have reported that the energy flow, nutrient

cycling and other biogeochemical processes also

continue when the river runs dry. For example,

Zoppini and Marxsen (2011), Timoner et al. (2014)

and Pohlon et al. (2013) showed that extracellular

enzymatic activities and carbon processing through

sediment biofilms could be maintained to some degree

during desiccation. Similarly, Gallo et al. (2014) and

von Schiller et al. (2014) showed that temporary

streams can release significant amounts of CO2 when

they are dry. Nevertheless, our understanding of the

biogeochemical processes that occur in dry beds and

the role of these environments as emitters of CO2 and

CH4 to the atmosphere remains limited (Steward et al.

2012).
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The hydrological contraction of the fluvial network

also affects impounded waters stored in dams, weirs

and small impoundments. These aquatic environments

are abundant in Mediterranean regions because of the

growing human demand for water and electricity

(Garcı́a-Ruiz et al. 2011). The reduction of the river

flow as a consequence of seasonal drought prolongs

the residence times of the water in impoundments,

which favour C processing through the promotion of

the interaction between organic matter and biological

actors (Battin et al. 2009b; Acuña and Tockner 2010).

As a result, C emissions from impounded waters might

increase during hydrological contraction. Further-

more, the reduction of the volume and surface area

during summer drought also increases the areal extent

of exposed dry sediments along the shore of

impounded waters, which are potentially active, but

frequently neglected, sites for C emissions (Mitchell

and Baldwin 1999; Forzieri et al. 2014).

Knowledge on the biogeochemistry of isolated

river pools is also limited despite they are abundantly

observed along temporary rivers during hydrological

contraction (Bernal et al. 2013; Datry et al. 2014).

Isolated pools show high residence times and poten-

tially suitable conditions for methanogenesis (i.e.,

organic matter accumulation and low dissolved oxy-

gen concentration) (Vazquez et al. 2010; von Schiller

et al. 2011). Nevertheless, the hydrological isolation in

these pools creates individual systems that are highly

influenced through particular local conditions (Dahm

et al. 2003; Bonada and Resh 2013; Fellman et al.

2010).

In the present study, we aimed to quantify C

emissions and to identify C emission hot spots from

Mediterranean fluvial networks during summer

drought. To this end, we measured the CO2 and CH4

effluxes and their potential drivers in a variety of

environments (i.e., running waters, impounded waters

stored in reservoirs, weirs and small dams, isolated

river pools and dry river and impoundment beds)

typically observed in Mediterranean rivers during

summer drought. We hypothesized that the reduction

of flow during summer drought would promote the

spatial heterogeneity of C fluxes along the fluvial

network and enhance the contribution of dry beds,

isolated pools and impounded waters to these fluxes.

Moreover, we use a simple heuristic approach to

explore the potential future implications of increasing

river desiccation and impoundment of running waters

on the total C emissions from Mediterranean fluvial

networks.

Methods

Study sites and sampling design

The Fluvià and Muga rivers are located in the NE of

the Iberian Peninsula (Fig. 1). The Fluvià River is

97 km long and drains a 990 km2 catchment covered

with mixed forests (78 %), and agricultural (19 %)

and urban (3 %) areas. The Muga River is 64 km long

and drains a 853 km2 catchment with a lower propor-

tion of mixed forests (58 %) and a higher proportion of

agricultural (37 %) and urban (5 %) areas (Land

Cover Map of Catalonia 2009, Centre of Ecology and

Forestry Research of Catalonia, http://www.creaf.uab.

es/mcsc/).

The climate in this area is typically Mediterranean.

The mean monthly air temperature ranges from 6 �C

in January to 26 �C in July. The mean annual

precipitation is 660 mm, with rainfall primarily

occurring in autumn and spring, with occasional

storms in summer (Data from 2004 to 2014, Catalan

Water Agency, http://aca-web.gencat.cat).

The flow of both rivers has been highly regulated

since the early 20th century due to the high human

demand for energy and water in the area (Garcı́a-Ruiz

et al. 2011). A total of 61 and 18 manmade river

interruptions (i.e., reservoirs, small impoundments

and weirs) are present in the Fluvià and Muga rivers,

respectively (Pavón 2010).

We conducted the sampling campaign at the end of

summer (from 26 August to 6 September 2013), prior

to the first post-summer rainfall events that typically

occur in the region during autumn (Bernal et al. 2013).

We sampled a total of 19 sites along the two fluvial

networks to cover a wide spectrum of environments

typically observed during summer drought (Fig. 1,

Online Resource Table S1). The considered environ-

ments included running water reaches (n = 6),

impounded waters stored in weirs and dams of

different dimensions (n = 5), isolated river pools

formed during the fragmentation of the fluvial network

(n = 5) and dry beds (n = 3; two dry river beds and

one dry impoundment bed). The dry beds in rivers had

been dry for less than 4 weeks and the dry bed in the

reservoir for approximately 2–3 months.
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Determination of CO2 and CH4 fluxes

To guarantee the comparability of the flux measure-

ments, we used the same approach (chamber method,

Frankignoulle (1988)) to directly measure the CO2 and

CH4 fluxes in all environments (Online Resource

Fig. S1). We monitored the gas concentrations in the

chamber every 30 s for a total of 10 min using a

Fourier-Transform-Infrared (FTIR) Spectrometer

(GASMET DX4000, Temet Instruments, Finland)

after passing through an in-line moisture trap (Drierite,

USA) at a rate of 2.9 L min-1. Measurement accuracy

of the GASMET DX4000 FTIR was within 2 % of the

calibrated range. We calculated the total fluxes of both

gases (F, mmol m-2 d-1) from the rate of change of

CO2 and CH4 inside the chamber:

F ¼
dp

dt

� �

V

RTS

� �

ð1Þ

where dp/dt is the slope of the gas accumulation in the

chamber (latm s-1), V is the volume of the chamber

(dm3; aquatic chamber = 14.6 dm3, soil cham-

ber = 2.2 dm3), S is the surface area of the chamber

(dm2; aquatic chamber = 9.8 dm2, soil cham-

ber = 2.0 dm2), and T is the air temperature (K) and

R is the ideal gas constant (L atm K-1mol-1). Positive

F values represent gas evasion to the atmosphere, and

negative F values indicate gas invasion from the

atmosphere. We calculated the diffusive flux of

CO2 and CH4 from the linear concentration change

of both gases in the chamber. We identified ebullitive

episodes (bubbling), only in the case of CH4, as

notorious non-linear increases in the concentration of

CH4 during the course of chamber measurements. We

estimated the ebullitive flux of CH4 as the difference

between the total and the diffusive flux (Campeau and

Lapierre 2014).

The artificial enhancement of the gas transfer

velocity through disturbance of the surface boundary

layer during the chamber deployment and subsequent

measurement could be a critical aspect (Guérin et al.

2007; Vachon et al. 2010). To minimize this, we

carried out specific chamber deployment procedures

in each environment. In running waters, we used a

rope to deploy the chamber at a fixed position onto the

water column. In impounded waters, we cautiously

deployed the chamber from an anchored boat onto the

water surface in the centre of the system. In isolated

river pools, we slowly lowered the chamber onto the

water surface in the central part of the pool using a

rope. In the case of dry beds, we inserted the chamber

into the exposed sediments. A total of 3 replicate

measurements were obtained at every aquatic site. The

number of replicate measurements was increased at

each dry site (5–10) to cover the maximum spatial

variability in terms of dry bed organic matter and

Fig. 1 Location of the

Fluvià River and Muga

River catchments in

Catalonia (NE Iberian

Peninsula), with the

corresponding position of

the study sites (n = 19).

Closed squares indicate

running waters (n = 6),

open circles impounded

waters (n = 5), closed

triangles isolated river pools

(n = 5) and open squares

dry beds (n = 3; two dry

river beds and one dry

impoundment bed)
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water content. In both the aquatic and the dry

environments, we flushed the chamber with ambient

air between consecutive measurements.

Determination of pCO2, pCH4 and k600

At every aquatic site, we determined the partial pressure

of CO2 (pCO2) and CH4 (pCH4) in water at the same

location as flux measurements. We measured the pCO2

using an infrared gas analyser (EGM-4, PP-Systems,

USA) coupled to a membrane contactor (MiniModule,

Liqui-Cel, USA). The water was circulated via gravity

through the contactor at 300 mL min -1, and the

equilibrated gas was continuously recirculated into the

infrared gas analyser for instantaneous pCO2 measure-

ments (Teodoru et al. 2010). The accuracy of the

infrared gas analyser was estimated to be within 1 %

over the calibrated range. We determined the pCH4

using the headspace equilibrium technique and gas

chromatography according to Striegl et al. (2012).

Briefly, we collected 30 ml of water with a 60 ml

polypropylene syringe, creating a headspace with

ambient air of 1:1 ratio (sampled water:ambient air).

To facilitate the kinetics of equilibration between the

liquid and the gas phase, we shook the syringe for 1 min

and submerged it in water at each sampling site for

30 min to maintain constant equilibrium temperature.

The water temperature was recorded using a portable

sensor, and no changes were observed during equilibra-

tion. Subsequently, we transferred the 30 mL of the

equilibrated gas to a pre-evacuated gas-tight glass tube

(2-RV, Chromacol, USA). The CH4 samples were

analysed in the laboratory using a gas chromatograph

coupled to a Flame IonizationDetector (TraceGCUltra,

Thermo Fisher Scientific, USA). The measurement

accuracy of the gas chromatograph was estimated to be

within 4 % over the calibrated range. The water

temperature during equilibration was used to calculate

Henry’s coefficient between the liquid and the gas phase

(Stumm and Morgan 1996).

The CO2 flux measured with the chamber was used

to calculate the direct gas transfer velocity of CO2

ðkCO2
Þ from Fick’s law of gas diffusion:

FCO2
¼ kCO2

KhðpCO2;w � pCO2;aÞ ð2Þ

where kCO2
is the specific gas transfer velocity for CO2

(m d-1), FCO2 is the chamber-measured CO2 flux

between the surface water and the atmosphere

(mmol m-2 d-1), Kh is Henry’s constant (mmol

latm-1 m-3) adjusted for salinity and temperature

(Weiss 1974; Millero 1995), and pCO2,w and pCO2,a

are the surface water and the atmosphere partial

pressures of CO2 (latm), respectively. Because the gas

transfer velocity is temperature- and gas-dependent,

we standardized kCO2
to a Schmidt number of 600

(k600; m d-1), which corresponds to CO2 at 20 �C in

freshwater, following Jähne and Münnich (1987):

Direct k600 ðmd�1Þ ¼ kCO2

600

Sc

� ��n

ð3Þ

where Sc is the Schmidt number of a given gas at a

given water temperature (Wanninkhof 1992). In

accordance with Bade (2009), the exponent n was

set to 2/3 at sites with a smooth water surface

(sheltered impounded waters and isolated pools) and

1/2 in the more turbulent environments (open

impounded waters and running waters).

The k600 was also indirectly determined after

applying different methods depending on the specific

type of aquatic environment. In running waters, we

obtained the indirect k600 from the night time drop in

the oxygen concentration (Hornberger and Kelly

1975). Briefly, photosynthesis ceases from sunset to

sunrise, thus night time dynamics are dependent on the

respiration rate and reaeration coefficient. During the

night, respiration reduces the oxygen levels until the

atmosphere equilibrium is reached. In parallel, reaer-

ation approaches the oxygen concentration to satura-

tion. Thus, when we plot the night time oxygen

concentration per unit of time versus the oxygen

saturation deficit, a linear trend is obtained. The

intercept of the regression corresponds to the respira-

tion (g O2 m-2 h-1) and the slope to the mean gas

transfer velocity of oxygen (kO2
; m d-1). The kO2

was

transformed to indirect k600 using Eq. (3). The

dissolved oxygen concentration and temperature used

in the night time reduction in oxygen method, were

obtained at the running water sites at a frequency of

10 min with a multiparameter probe (YSI 600 OMS

V2, Yellow Springs, USA).

In impounded waters, we estimated the value of

indirect k600 from the wind speed based Eq. (4) of

Crusius and Wanninkhof (2003):

Indirect k600 ðm d�1Þ ¼ 0:17 U10 ð4Þ
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where U10 is the wind speed at 10 m above the surface

(m s-1). The wind speed at a given height (Ux; m s-1)

was converted to that at 10 m (U10; m s-1) from the

equation described by Donelan (1990). The wind

speed for these calculations was obtained from

measurements during the chamber deployments using

a portable anemometer (Kestrel 4000, Kestrel Meters,

UK) fixed to a tripod at 2 m above the water surface.

In the case of isolated pools, we estimated the

indirect k600 from a wind speed based model previ-

ously applied in small, shallow and low turbulence

ponds (Laurion et al. 2010):

Indirect k600 ðm d�1Þ ¼ 0:19þ 0:26U10 þ 0:02U2
10

ð5Þ

Due to the sheltered location, there was no notice-

able wind in any of the isolated pools sites, resulting in

a constant indirect k600 of 0.19 m d-1 (intercept of

Eq. 5), a parameter reflecting the effect of the other

physical processes occurring in addition to wind that

cause turbulence at the air–water interface.

We acknowledge that the floating chamber

approach could be problematic in some of our

environments, particularly in running waters where

the employed method might not capture the complex

turbulence regime that characterizes this environment.

To assess these potential biases, we compared the site-

specific CO2 and CH4 fluxes obtained from the

chamber method (direct) versus the system-integrated

fluxes of CO2 and CH4 derived from the Fick’s law of

gas diffusion (indirect) using Eq. (2). We detected a

good agreement between direct and indirect CO2

fluxes (log (indirect CO2 efflux) = 1.096 (log direct

CO2 efflux)-0.28, r2 = 0.81, p\ 0.001, n = 16) and

between direct and indirect CH4 fluxes (log (indirect

CH4 efflux) = 0.322 log (direct CH4 efflux) -0.647,

r2 = 0.33, p = 0.019, n = 16). These significant

relationships support the reliability of the chamber

method for quantifying C emissions in our study.

However, the slope\1 for the CH4 equation indicates

the overestimation of the direct CH4 efflux with

respect to the indirect CH4 efflux. Therefore, it is

likely that, in addition to Fickian and ebullitive

transport, other pathways of CH4 efflux, such as

microbubble release, were also involved in CH4

emission (Beaulieu et al. 2012; Prairie and Del

Giorgio 2013; Tang et al. 2014; McGinnis et al.

2015).

Physicochemical characteristics of sediments

and dry beds

To characterize the inundated sediments of the

impounded waters, we collected three replicates of

sediment cores (diameter = 6 cm) from the deepest

part of the impounded waters with a gravity corer

(UWITEC, Austria). We sub-sampled the upper 5 cm

of the sediment cores and determined the water

content (%), dry bulk density (g cm-3) and porosity

(Sobek et al. 2011). We also determined its organic

matter content (mg cm-3) by sample combustion

following the loss on ignition method (Dean 1974).

To characterize the dry river and impoundment

beds, we first measured in situ the dry bed water

content and temperature at the dry bed surface of every

chamber location (upper 5 cm) along two dry sites (1

dry river bed and 1 dry impoundment bed) using a

portable soil probe (Decagon ECH2O 10HS, Pullman,

USA). We then collected sediment samples (upper

5 cm) to determine the dry bed organic matter content

using the loss on ignition method. We estimated the

basal microbial respiration rate (lg CO2
-1 h-1) of the

dry bed samples using a microrespirometry system

(MicroResp, Macaulay Scientific Consulting Ltd, UK)

according to Campbell and Chapman (2003). Briefly,

four replicates of 0.5 g of the sample taken at the dry

bed surface of every chamber location (upper 5 cm)

were added to a deep well microplate. The samples

were incubated for 6 h at 20 �C, and a colorimetric

method was used to measure the evolution of CO2

immediately before and after the incubation. The %

change of CO2 was converted to basal respiration (lg

CO2
-1 h-1) considering the incubation time and

temperature, the gas constant, the headspace volume

and the soil dry weight as indicated in the MicroResp

technical manual.

Hydromorphological characteristics

We measured the mean cross-sectional depth (m) and

width (m) of the running water sites at the same

location where the gas fluxes were measured. We

measured the mean cross-sectional water velocity

(m s-1) with an acoustic-Doppler velocity metre

(Sontek, YSI, USA), and we combined it with the

measured section to derive the water discharge

(m3 s-1). The discharge data were used to obtain

averages of water velocity and stream depth along a
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1-km segment using the hydraulic modelling software

HecRas 2.2 (US Army Corps of Engineers) and

hydromorphological data from the Catalan Water

Agency (http://aca-web.gencat.cat).

We estimated the surface area, volume, and mean

and maximum depths of the impounded waters sites

from digitized bathymetric maps using a geospatial-

processing software (ArcMap 10, ArcGis, USA). We

calculated the residence time combining the volume

obtained from the bathymetric map and the measured

inflow at each impounded water site.

Statistical analyses

We grouped the 19 studied sites into 4 major

environments (i.e., running waters (n = 6),

impounded waters (n = 5), isolated pools f (n = 5)

and dry river beds (n = 3)). We tested the effect of the

factor environment on the CO2 and CH4 fluxes, pCO2

and pCH4, direct and indirect k600 and percentage

molar ratio between CH4 and CO2 efflux ((CH4 efflux/

CO2 efflux) 9 100) using one-way analysis of vari-

ance (ANOVA) and subsequent post hoc comparisons

(Tukey’s Honest Significant Differences test).

For the dry beds, we assessed the effect of dry bed

basal respiration, water content and organic matter

content on the CO2 efflux using linear and non-linear

regressions. For aquatic environments, we assessed

the relative contributions of pCO2 and indirect k600 on

the CO2 efflux using simple and multiple linear

regressions. When the statistical techniques required

it, we log-transformed the variables to meet the

conditions of homogeneity of variance, normality

and to avoid the deleterious effect of extreme large

values. All statistical analyses were conducted in the R

statistical environment (R Core Team 2013) using the

Vegan package (Oksanen 2013).

Results

CO2 and CH4 effluxes along the fluvial network

The studied environments were net emitters of CO2

(mean ± SE = 95.7 ± 43.9 mmol m-2 d-1, range =

17–219 mmol m-2 d-1) and CH4 (3.6 ±

3.4 mmol m-2d-1, 0.1–13.8 mmol m-2 d-1) to the

atmosphere (Fig. 2, Table 1). However, significant

differences among these environments, in terms of

CO2 efflux (ANOVA, F = 23.2, p\ 0.001, n = 19;

Fig. 2a), were observed. The CO2 efflux from dry beds

(mean ± SE = 209 ± 10 mmol m-2 d-1) was statis-

tically comparable to that from running waters

(120 ± 33 mmol m-2 d-1) and significantly higher

than the CO2 efflux from impounded waters

(36.6 ± 8.5 mmol m-2 d-1) and isolated pools

(17.2 ± 0.9 mmol m-2 d-1). The intra-environment

variability of the CO2 efflux was highest in running

waters and lowest in isolated pools (Fig. 2a, Table 1).

Fig. 2 Efflux of a CO2 and b CH4 measured from running

waters (n = 6), impounded waters (n = 5), isolated pools

(n = 5) and dry river and impoundment beds (n = 3).

Box plots display the 25th, 50th and 75th percentiles; whiskers

display minimum and maximum values. Significant differences

of CO2 and CH4 efflux between environments (p\ 0.05,

Tukey’s post hoc test) are marked with different capital letters

above the box plots
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Table 1 Summary table showing the mean, the standard error (SE) and the total number of studied sites per environment (n) of the surface water partial pressures of CO2 and

CH4 (pCO2 and pCH4), the direct and the indirect gas exchange coefficients (k600), the total efflux of CO2 and CH4 and the percentage molar ratio between CH4 and CO2 flux

(CH4 flux : CO2 flux) along the different studied environments

Parameter Running waters Impound waters Isolated pools Dry beds ANOVA

test

Mean SE n Mean SE n Mean SE n Mean SE n p value

p CO2 (l atm) 1841A 242 6 1295AB 228 5 2553AC 224 5 NA NA NA 0.009

p CH4 (l atm) 123 33 6 669 380 5 345 4.2 5 NA NA NA 0.12

Direct k600 (m d-1) 2.2A 0.4 6 1.1A 0.3 5 0.2B 0.0 5 NA NA NA \0.001

Indirect k600 (m d-1) 2.0A 0.4 6 0.7B 0.4 5 0.2B 0.0 5 NA NA NA \0.001

CO2 efflux

(mmol m-2 d-1)

120A

(0)

32 6 36.6B

(0)

8.5 5 17.2B

(0)

0.9 5 209A

(0)

10 3 \0.001

CH4 efflux

(mmol m-2 d-1)

0.2 (0) 0.1 6 13.8

(87)

10.1 5 0.1 (0) 0.0 5 0.2 (0) 0.5 3 0.089

CH4 efflux : CO2

efflux (%)

0.2A 0.1 6 37.8B 53.4 5 0.4AB 2.4 5 0.2AB 2.7 3 \0.001

Significant differences between environment types for each parameter were determined with a one-way ANOVA followed by Tukey’s post hoc test and are displayed as different

capital letters above the mean values

In brackets the percentages of ebullitive CO2 and CH4 effluxes in relation to the total CO2 and CH4 effluxes

NA not available
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In contrast to CO2, no significant differences in the

CH4 efflux were observed among the studied envi-

ronments (ANOVA, F = 2.62, p[ 0.05, n = 19;

Fig. 2b). The CH4 efflux from impounded waters

(14 ± 10 mmol m-2 d-1) was the highest among the

studied environments, but also showed the highest

intra-environment variability (Fig. 2b, Table 1) and

was thus, not significantly different from that of

running waters (0.2 ± 0.1 mmol m-2 d-1), isolated

pools (0.10 ± 0.05 mmol m-2 d-1) and dry beds

(0.2 ± 0.2 mmol m-2 d-1).

Diffusion was the only mechanism driving CO2

efflux in all studied environments (Table 1). Simi-

larly, diffusion was most likely the only efflux

mechanism for CH4 in running waters, isolated pools

and dry beds, while the predominant mechanism of

CH4 efflux in impounded waters was ebullition

([85 %; Table 1). Moreover, the percentage molar

ratio between CH4 and CO2 efflux was significantly

higher in impounded waters (37.8 ± 53.4 %) than in

running waters (0.2 ± 0.1 %), isolated pools

(0.4 ± 2.4 %) and dry beds (0.2 ± 2.7 %), where

this ratio was nearly negligible (ANOVA, F = 4.64,

p\ 0.001, n = 19; Table 1).

Different spatial variation of CO2 efflux, CO2

concentration and O2 concentration were observed in

the aquatic environments sampled along a longitudinal

gradient from headwaters to the mouth of the Fluvià

River (Online Resource Fig. S2)

Drivers of CO2 and CH4 effluxes

In dry beds, the basal respiration showed a significant

positive linear relationship with both the dry bed water

content (r2 = 0.72, p\ 0.001, n = 10; Fig. 3a) and

the dry bed organic matter content (r2 = 0.71,

p\ 0.001, n = 10; Fig. 3b). In contrast, the CO2

efflux was inversely related to the dry bed water

content (r2 = 0.75, p\ 0.001, n = 10; Fig. 3c) and

showed no significant relationship with the dry bed

organic matter content (r2 = 0.21, p[ 0.05, n = 10;

Fig. 3d). This resulted in a significant negative

exponential relationship between the basal respiration

and CO2 efflux in dry beds (r2 = 0.53, p\ 0.001,

n = 10).

In aquatic environments, the two main parameters

directly involved in the diffusion of CO2 across the

water-atmosphere boundary (i.e., surface water pCO2

and k600; Eq. (2)) were directly related to the CO2

efflux. When all aquatic environments were pooled

together, the k600 and CO2 efflux exhibited a signif-

icant positive relationship (r2 = 0.79, p\ 0.001,

n = 16; Fig. 4a), while no dependency between

surface water pCO2 and the CO2 efflux was detected

(p[ 0.05, n = 16; Fig. 4b). However, the CO2 efflux

and pCO2 were positively related when the isolated

pools were excluded from the model (r2 = 0.49,

p = 0.015, n = 11; Fig. 4b). The multiple regression

analysis revealed that pCO2 and k600 explained 0.1 and

86 % of the total variation in the CO2 efflux,

respectively, when all aquatic environments were

included in the model. In contrast, when isolated pools

were excluded from the multiple regression analysis,

pCO2 and k600 explained 49 and 38 % of the total

variation in the CO2 efflux, respectively (r2 = 0.87,

p = 0.003, n = 11).

A high contribution of ebullition to the CH4 efflux

was detected in the impounded waters, with increased

residence time, higher sediment organic matter con-

tent and porosity and lower dry bulk density (Table 2).

However, both the low number of study sites where

ebullition of CH4was detected and the narrow range of

ebullitive efflux values prevented a robust statistical

analysis of the potential drivers that control the

ebullitive CH4 efflux.

The surface water physicochemical or hydromor-

phological variables (Online Resource Table S1) were

not significantly related to the CO2 and CH4 effluxes or

the pCO2, pCH4 and k600 in these aquatic

environments.

Discussion

Hot spots for CO2 and CH4 effluxes

Among the different environments investigated in the

present study, running waters and dry beds emitted

significantly higher amounts of CO2 than the other

environments. Several studies have highlighted the

importance of runningwaters as hot spots for CO2 efflux

(Cole et al. 2007; Battin et al. 2009a; Raymond et al.

2013). The results of the present study also show that the

dry beds associatedwith the dry phase ofMediterranean

temporary rivers are not only inert but also active sites in

terms of CO2 emissions to the atmosphere. The CO2

efflux from dry beds (mean = 209 mmol m-2 d-1,

range = 189–220 mmol m-2 d-1) was higher than that
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from dry desert streams in Arizona (43.5 mmol m-2

d-1, range = 19.6–65 mmol m-2 d-1; Gallo et al.

2014), to our knowledge the only study reporting CO2

emissions from dry beds in different catchments. The

CO2 efflux fromdry bedswas also higher than the global

mean CO2 efflux from soils (123 mmol m-2 d-1,

range = 121–125 mmol m-2 d-1; Raich et al. (2002))

and the regional mean CO2 efflux from desert soils

(104 mmol m-2 d-1, range = 95–110 mmol m-2 d-1;

Raich and Schlesinger (1992)), and it was in the upper

range of values for the regional mean CO2 efflux from

Mediterranean soils (188 mmol m-2 d-1, range

= 44–371 mmol m-2 d-1; Bond-Lamberty and Thom-

son (2010)).Although themagnitude ofCO2 efflux from

dry bedswaswithin the range of reported soil emissions,

theCO2 from this environment should not be considered

Fig. 3 Basal respiration as a function of a dry bedwater content

and b dry bed organic matter. Efflux of CO2 as a function of

c dry bed water content and d dry bed organic matter. The

continuous line in a (r2 = 0.72, p\ 0.001, n = 10) and

b (r2 = 0.71, p\ 0.001, n = 10) represent the linear regression

model fitting line between predictor and response variables. The

continuous line in c (r2 = 0.65, p\ 0.001, n = 10) represents

the exponential regression model fitting line between predictor

and response variables. Absence of continuous line in d repre-

sents that no significant regression model fitted with the

observed values
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terrestrial because the carbon processed in dry beds has

either already left from the terrestrial ecosystems and

entered into the fluvial network or has been produced

within the fluvial network. In addition, the sediments

from dry rivers and terrestrial soils are different

environments in terms of physical structure and bio-

geochemical dynamics (McIntyre et al. 2009; Larned

et al. 2010; Steward et al. 2012). Thus, we emphasize

that dry beds should be included in CO2 balances from

fluvial networks, particularly in arid and semiarid

regions, such as the Mediterranean (von Schiller et al.

2014).

Despite the high variability of CH4 efflux detected

for impounded waters, this environment likely repre-

sents a hot spot for CH4 efflux to the atmosphere. This

result is consistent with the notion that impounded

waters stored in dams and smaller impoundments play

a prominent role in the CH4 efflux from fluvial

networks (Xiao et al. 2013; Maeck et al. 2013).

Furthermore, the other three environments studied

Fig. 4 Efflux of CO2 as a function of a k600 and b surface water

pCO2 for all the aquatic study sites. Squares running waters;

circles impounded waters; triangles isolated river pools. The

continuous line in a represents the linear regression model fitting

line incorporating all the environments (r2 = 0.79, p\ 0.001,

n = 16). The dashed line in b represents the linear regression

model fitting line excluding isolated river pools (r2 = 0.49,

p = 0.015, n = 11)

Table 2 Hydromorphologic descriptors, and sediment physical and chemical properties of the different impounded waters

Site Ebullition of CH4 Hydromorphologic characteristics Sediment properties

Detection

(yes/no)

Flux

(%)

Residence

time (h)

Mean

depth (m)

Max.

depth (m)

Water

content (%)

Dry bulk density

(g cm-3)

Porosity Organic matter

(mg cm-3)

1 Yes 82 4247.6 16.5 45.5 0.69 0.41 0.84 26.2

2 Yes 87 49.7 1.8 5.7 0.63 0.51 0.77 35.5

3 Yes 90 39.8 2.5 5.4 0.58 0.62 0.69 29.8

4 No 0 5.1 1.5 3.6 0.41 1.00 0.41 18.7

5 No 0 3.7 1.1 2.6 NA NA NA NA

Flux indicates the percentage of ebullitive efflux to the total CH4 efflux

NA not available
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(running waters, isolated pools and dry beds) were net

emitters of CH4. Although previous studies have

detected CH4 efflux from rivers (Striegl et al. 2012;

Campeau and Lapierre 2014; Crawford et al. 2014)

and dry beds (Gallo et al. 2014), this study provides to

our knowledge the first evaluation of the CH4 efflux

from isolated river pools.

Ebullition was the primary pathway for CH4 efflux

from impounded waters. This finding is consistent

with previous studies (Del Sontro et al. 2010; Maeck

et al. 2013) and contrary to the efflux pathway of CO2

which is a more soluble gas that primarily follows a

strictly diffusive pathway of emission to the atmo-

sphere (Belger et al. 2010). The ebullitive CH4 efflux

from impounded waters, as the only environment

experiencing ebullition in the present study, con-

tributed to more than 85 % of the total CH4 efflux

when the evasion of CH4 was detected.

The CH4 efflux was estimated using a floating

chamber, reported as the most appropriate method for

water-atmosphere diffusion flux measurements (Cole

et al. 2010). Nonetheless, the floating chamber

approach can be problematic in the case of ebullition

measurements from aquatic systems (Bastviken et al.

2004; Del Sontro 2011; Crawford et al. 2014). The

vast spatial and temporal heterogeneity of CH4

ebullitive fluxes is generally not captured through

short-term floating chamber experiments (10 min in

our study). An inverted funnel survey designed to

cover the maximum surface area of the impounded

waters would likely have reduced potential sampling

bias and increased the accuracy of the spatially and

temporally integrated final dataset for CH4 ebullitive

fluxes (Bastien and Demarty 2013; Maeck et al. 2013).

Although we did not observe ebullition in running

waters and isolated pools (i.e., we never observed non-

linearity in dCH4/dt during the chamber deployments

or bubbles emerging from the stream or isolated pool

sediments), a sampling design with inverted funnel-

style bubble traps would have improved the charac-

terization of CH4 ebullitive fluxes from these envi-

ronments (Baulch et al. 2011; Crawford et al. 2014).

Despite the potential inaccuracies in capturing the

temporal and spatial heterogeneity, the results indicate

that the contribution of ebullitive efflux of CH4 to the

total CH4 efflux is substantial in Mediterranean

impounded waters during summer drought, and that

they should be taken into account in CH4 flux

assessments.

Physical and biogeochemical regulation of CO2

and CH4 effluxes

The unexpected negative relationship between the

basal respiration and CO2 efflux indicates potential

decoupling between CO2 production and CO2 emis-

sion from dry river and impoundment beds. This

decoupling between processes suggests the existence

of a physical factor restricting the evasion of the

biologically produced CO2. Based on the results

obtained in the present study, the dry bed water

content might play a dual role in the CO2 generation-

emission mechanism. On the one hand, higher water

content enhances C respiration by facilitating the

contact between microorganisms and available sub-

strates (Koschorreck and Darwich 2003; Xu et al.

2004; Luo and Zhou 2010). On the other hand, higher

water content diminishes the CO2 efflux through the

restriction of the gas diffusivity through the dry media,

consistent with the results from Howard and Howard

(1993) and Fujikawa and Miyazaki (2005) showing

that the diffusivity of CO2 and other gases in soils is

strongly reduced when the air-filled porosity decreases

with increasing water content. Taken together, these

results suggest that the water content might modulate

the uncoupling between CO2 production and CO2

emission from dry beds. However, it has to be noted

that dry bed water content is highly dynamic in both

space and time, and other non-biotic CO2-generating

processes (e.g., interactions with the groundwater

system (Rey 2015), reactions with the carbonate

system (Angert et al. 2014) or photochemical degra-

dation reactions (Austin and Vivanco 2006) could

potentially contribute to the observed uncoupling

between the respiratory process and the emission of

CO2. Hence, further studies are required to understand

the relative importance of environmental variables

(e.g., air temperature, precipitation, vegetation) with

respect to the role of local conditions (e.g., water

content, temperature, organic matter content and type,

grain size distribution of the substrate, light regime,

and carbonate content) in driving the CO2 efflux from

dry beds.

In aquatic environments, the diffusive CO2 efflux

depends on both the surface water pCO2, which is

primarily regulated through biogeochemical processes

(Sobek and Algesten 2003; Campeau and Del Giorgio

2014), and the k600, which is a physical factor

including the turbulent and molecular diffusion of
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CO2 (Bade 2009). However, the extent to which these

two factors regulate the aquatic CO2 efflux from

Mediterranean fluvial networks during summer

drought and whether there are shifts in the relative

importance of these two parameters across the

different aquatic environments remain unknown.

The results of the present study show that k600 acts

as the primary control for the CO2 efflux along the

studied aquatic environments. Although the three

types of aquatic environments were supersaturated in

terms of pCO2, strong evidence for the active role of

the physical turbulence (measured here as k600) as a

factor enhancing the exchange process between

generated CO2 and emitted CO2 was observed

(Halbedel and Koschorreck 2013). In running

waters, the aquatic environment experiencing the

highest CO2 efflux, the CO2 gas is immediately

emitted because the high turbulence disrupts the

surface boundary layer (Alin et al. 2011; Demars

and Manson 2013). With values of pCO2 similar to

those from running waters, impounded waters

showed a lower efflux of CO2, suggesting a partial

physical limitation of CO2 gas. An extreme effect of

the physical limitation of CO2 efflux occurred in the

isolated river pools, where CO2 efflux was lowest

despite showing the highest pCO2.

Because of the unbalanced contribution of diffusion

and ebullition to the total CH4 efflux in the different

environments, any statistical assessment of the factors

controlling the CH4 efflux could not be performed. In

any case, the total CH4 efflux was detectable, but low,

from all environments, except impounded waters,

where the dominant efflux pathway was the ebullitive

one (see above). Nonetheless, our results are consis-

tent with those of previous studies showing that both

the residence time and the sediment physical and

chemical composition also play a crucial role in

controlling the biological activity involved in the

generation of CH4 in the sediment layer (Sobek et al.

2012; Maeck et al. 2013). The amount and composi-

tion of stored organic matter are key factors affecting

the biological activity in sediments and, therefore, the

CH4 efflux (Mulholland and Elwood 1982; Downing

et al. 2008; Sobek et al. 2012). Moreover, the porosity

of the sediment plays an important role by limiting or

favouring the diffusion of CH4, the shape of CH4

bubbles and the capacity for CH4 to escape from or be

retained in the sediment media (Del Sontro 2011;

Meier et al. 2011).

Unexpectedly, the CH4 efflux in isolated pools was

low, despite the high water residence time and

optimum redox conditions for methanogenic activity,

suggesting that these systems contain much less stored

organic matter compared with impounded waters

which are more active organic matter traps. Thus, we

speculate that the amount of organic matter could be a

limiting factor for the CH4 generation in the sediments

of isolated pools. Nevertheless, the hydrological

isolation in the pools generates individual systems

highly influenced through particular local conditions

(Bonada and Resh 2013; Fellman et al. 2010; von

Schiller et al. 2011). For example, these observations

would likely differ under contrasting situations, such

as increased canopy cover and higher leaf input. Thus,

further investigation of the hydrological and biogeo-

chemical processes in isolated pools over time and

across contrasting systems is needed to better under-

stand the dynamics of C emissions from these systems.

Potential changes in C emissions from Mediter-

ranean fluvial networks under future hydrological

scenarios

River desiccation and impoundment of running

waters through the construction of dams or small weirs

have been recognized as some of the most important

environmental pressures on fluvial networks world-

wide (Nilsson et al. 2005; Sabater 2008; Vörösmarty

et al. 2010; Steward et al. 2012). The influence and

interplay between these two processes largely deter-

mines the relative surface area of the different

environments comprising the fluvial network. Estima-

tion of the areal extent and distribution of different

environments along the fluvial network is key aspect

when upscaling specific biogeochemical processes to

the entire fluvial network (Benstead and Leigh 2012).

However, the high temporal and spatial dynamism of

Mediterranean rivers makes these estimations extre-

mely difficult and subject to high inaccuracies (Ben-

stead and Leigh 2012; Datry et al. 2014).

Herein, we applied a simple heuristic approach

using different potential scenarios to evaluate how

river desiccation and running water impoundment

might affect the C emissions from fluvial networks.

We combined the mean CO2 and CH4 effluxes

measured for each environment with the relative

surface area (%) of each environment in each scenario

to obtain a mean fluvial network efflux of CO2, CH4,

and total C (i.e., sum of CO2 and CH4), and the total C

considering the global warming potential (i.e., CGWP;
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expressed as CO2 Eq) (Fig. 5). We then combined the

annual mean relative area per environment from the

COastal Segmentation analysis and the related

CATchments regions for the study region (Meybeck

et al. (2006), COSCATRegion 418) with the data from

the dry and total river effective areas from the same

region (Raymond et al. 2013) to situate an idealized

Western Mediterranean fluvial network in the scenar-

ios contour map (Fig. 5). The idealized fluvial

network (with an annual mean relative surface area

of running waters, impounded waters and dry river and

impoundment beds of 54.8, 30.7 and 14.5 %,

Fig. 5 Contour plots simulating the effect of a broad spectrum

of potential hydrological scenarios of river desiccation and

transformation of running waters into impounded waters of an

hypothetical Mediterranean fluvial network during summer

drought (expressed in terms of relative surface area of dry bed

(x-axis) and relative surface area of impounded waters (y-axis))

on a the mean fluvial network CO2 efflux, b the mean fluvial

network CH4 efflux, c the mean total fluvial network C efflux

and d the mean total C efflux considering the global warming

potential of CH4. The marked asterisks represent an idealized

Western Mediterranean fluvial network. Details of calculations

are provided in the text
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respectively) emits 107 mmol m-2d-1 of CO2,

4.4 mmol m-2 d-1 of CH4, 112 mmol m-2 d-1 of

total C and 217 mmol m-2 d-1 of total CGWP.

The results from this heuristic approach showed

that the potential scenarios with the highest mean CO2

and total C effluxes were those in which the relative

surface area of dry beds was highest (Fig. 5a, c). In

contrast, the results also showed that the potential

scenarios with the highest mean CH4 and total CGWP

effluxes were those in which the relative surface area

of the impounded waters dominated the fluvial

network (Fig. 5b, d).

According to these scenarios, in the idealized

fluvial network, (i) an extreme drying out (i.e., a

fourfold increase of the surface area of dry beds)

doubled the CO2 and the total C effluxes, (ii) an

extreme transformation of running waters into

impounded waters (i.e., a twofold increase of the

surface area of impounded waters) tripled the CH4 and

the total CGWP effluxes and (iii) a proportional drying

out and transformation of running waters into

impounded waters increased the emission of all CO2,

CH4, total C and total CGWP. Despite the methodolog-

ical uncertainties of this approach, the results clearly

illustrate that global change could have a relevant

impact on C emissions from fluvial networks in arid

and semi-arid regions, such as the Mediterranean.

Conclusions

The results of the present study show that dry beds

and running waters (for CO2) and impounded waters

(for CH4) are hot spots for C efflux from Mediter-

ranean fluvial networks during summer drought.

These results suggest dry beds as active sites in

terms of C emissions, which should be considered in

C balances from fluvial networks in arid and

semiarid areas. The CO2 efflux, which was only

mediated via diffusion, is most physically limited in

both dry and aquatic environments. In contrast, the

CH4 efflux, which is predominantly mediated

through ebullition, is primarily controlled through

the biological activity in the sediments. The dura-

tion, spatial extent and severity of flow intermit-

tency and the degree of river impoundment will play

a decisive role in shaping the C efflux from fluvial

networks in response to global change.
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landscape of Québec. Glob Biogeochem Cycles 28:1–13.

doi:10.1002/2013GB004685

Cole JJ, Prairie YT, Caraco NF et al (2007) Plumbing the global

carbon cycle: integrating inland waters into the terrestrial

carbon budget. Ecosystems 10:172–185. doi:10.1007/

s10021-006-9013-8

Cole JJ, Bade DL, Bastviken D et al (2010) Multiple approaches

to estimating air-water gas exchange in small lakes. Limnol

Oceanogr Methods 8:285–293. doi:10.4319/lom.2010.8.

285

Crawford JT, Stanley EH, Spawn SA et al (2014) Ebullitive

methane emissions from oxygenated wetland streams.

Global Chang Biol 20:3408–3422. doi:10.1111/gcb.12614

Crusius J, Wanninkhof R (2003) Gas transfer velocities mea-

sured at low wind speed over a lake. Limnol Oceanogr

48:1010–1017. doi:10.4319/lo.2003.48.3.1010

Dahm CN, Baker MA, Moore DI, Thibault JR (2003) Coupled

biogeochemical and hydrological responses of streams and

rivers to drought. Freshw Biol 48:1219–1231. doi:10.1046/

j.1365-2427.2003.01082.x

Datry T, Larned ST, Tockner K (2014) Intermittent rivers: a

challenge for freshwater ecology. Bioscience 64:229–235.

doi:10.1093/biosci/bit027

DeanWE (1974) Determination of carbonate and organic matter

in calcareous sediments and sedimentary rocks by loss on

ignition: comparison with other method. J Sediment Petrol

44:242–248. doi:10.1306/74D729D2-2B21-11D7-864800

0102C1865D

Del Sontro T (2011) Quantifying methane emissions from

reservoirs: from Basin-scale to discrete analyses with a

focus on ebullition dynamics. PhD dissertation, Eid-
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Meybeck M, Dürr H, Vörösmarty C (2006) Global coastal

segmentation and its river catchment contributors: A new

look at land-ocean linkage. Global Biogeochem Cycles

20:GB1S90. doi:10.1029/2005GB002540

Millero F (1995) Thermodynamics of the carbon dioxide system

in the oceans. Geochim Cosmochim Acta 59:661–677.

doi:10.1016/0016-7037(94)00354-O

Milliman JD, Farnsworth KL, Jones PD et al (2008) Climatic

and anthropogenic factors affecting river discharge to the

global ocean, 1951–2000. Glob Planet Chang 62:187–194.

doi:10.1016/j.gloplacha.2008.03.001

Mitchell AM, Baldwin DS (1999) The effects of sediment

desiccation on the potential for nitrification, denitrification,

and methanogenesis in an Australian reservoir. Hydrobi-

ologia 392:3–11. doi:10.1023/A:1003589805914
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Vörösmarty CJ, McIntyre PB, Gessner MO et al (2010) Global

threats to human water security and river biodiversity.

Nature 467:555–561. doi:10.1038/nature09440

Wanninkhof R (1992) Relationship between wind speed and gas

exchange over the ocean. J Geophys Res Ocean

97:7373–7382. doi:10.1029/92JC00188

Weiss R (1974) Carbon dioxide in water and seawater: the

solubility of a non-ideal gas. Mar Chem 2:203–215. doi:10.

1016/0304-4203(74)90015-2

Williams DD (2006) The biology of temporary waters. Oxford

University Press, Oxford

Xiao S, Liu D, Wang Y et al (2013) Temporal variation of

methane flux from Xiangxi Bay of the three gorges reser-

voir. Sci Rep 3:2500. doi:10.1038/srep02500

Xu L, Baldocchi DD, Tang J (2004) How soil moisture, rain

pulses, and growth alter the response of ecosystem respi-

ration to temperature. Global Biogeochem Cycles

18:GB4002. doi:10.1029/2004GB002281

Zoppini A, Marxsen J (2011) Importance of extracellular

enzymes for biogeochemical processes in temporary river

sediments during fluctuating dry-wet Conditions. In:

Shukla G, Varma A (eds) Soil enzymology. Springer,

Berlin, pp 103–117

Biogeochemistry

123

http://dx.doi.org/10.1034/j.1600-0889.1992.t01-1-00001.x
http://dx.doi.org/10.1034/j.1600-0889.1992.t01-1-00001.x
http://dx.doi.org/10.3334/CDIAC/lue.ndp081
http://dx.doi.org/10.1038/nature12760
http://dx.doi.org/10.1111/gcb.12821
http://dx.doi.org/10.1608/FRJ-1.1.5
http://dx.doi.org/10.1046/j.1365-2486.2003.00619.x
http://dx.doi.org/10.1007/s00027-011-0183-x
http://dx.doi.org/10.1029/2011GL050144
http://dx.doi.org/10.1029/2011GL050144
http://dx.doi.org/10.1890/110136
http://dx.doi.org/10.1890/110136
http://dx.doi.org/10.1029/2012GB004306
http://dx.doi.org/10.1029/2012GB004306
http://dx.doi.org/10.4319/lo.2014.59.1.0275
http://dx.doi.org/10.4319/lo.2014.59.1.0275
http://dx.doi.org/10.1007/s10021-010-9393-7
http://dx.doi.org/10.1007/s10750-013-1802-4
http://dx.doi.org/10.1007/s10750-013-1802-4
http://dx.doi.org/10.1016/S0012-8252(00)00014-3
http://dx.doi.org/10.4319/lo.2010.55.4.1723
http://dx.doi.org/10.1007/s10533-010-9421-x
http://dx.doi.org/10.1007/s00027-011-0195-6
http://dx.doi.org/10.5268/IW-4.4.746
http://dx.doi.org/10.1038/nature09440
http://dx.doi.org/10.1029/92JC00188
http://dx.doi.org/10.1016/0304-4203(74)90015-2
http://dx.doi.org/10.1016/0304-4203(74)90015-2
http://dx.doi.org/10.1038/srep02500
http://dx.doi.org/10.1029/2004GB002281


When Water Vanishes: Magnitude
and Regulation of Carbon Dioxide
Emissions from Dry Temporary

Streams
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Núria Catalán,3 Joan Pere Casas-Ruiz,2 Sergi Sabater,2 Isabel Muñoz,1
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ABSTRACT

Most fluvial networks worldwide include water-

courses that recurrently cease to flow and run dry.

The spatial and temporal extent of the dry phase of

these temporary watercourses is increasing as a

result of global change. Yet, current estimates of

carbon emissions from fluvial networks do not

consider temporary watercourses when they are

dry. We characterized the magnitude and variabil-

ity of carbon emissions from dry watercourses by

measuring the carbon dioxide (CO2) flux from 10

dry streambeds of a fluvial network during the dry

period and comparing it to the CO2 flux from the

same streambeds during the flowing period and to

the CO2 flux from their adjacent upland soils. We

also looked for potential drivers regulating the CO2

emissions by examining the main physical and

chemical properties of dry streambed sediments

and adjacent upland soils. The CO2 efflux from dry

streambeds (mean ± SD = 781.4 ± 390.2 mmol

m-2 day-1) doubled the CO2 efflux from flowing

streambeds (305.6 ± 206.1 mmol m-2 day-1) and

was comparable to the CO2 efflux from upland soils

(896.1 ± 263.2 mmol m-2 day-1). However, dry

streambed sediments and upland soils were

physicochemically distinct and differed in the

variables regulating their CO2 efflux. Overall, our

results indicate that dry streambeds constitute a

unique and biogeochemically active habitat that

can emit significant amounts of CO2 to the atmo-

sphere. Thus, omitting CO2 emissions from tem-

porary streams when they are dry may overlook

the role of a key component of the carbon balance

of fluvial networks.

Key words: greenhouse gas emissions; fluxes;

streams; intermittent; fluvial network; drought; dry

streambeds.
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INTRODUCTION

Fluvial networks emit significant amounts of car-

bon dioxide (CO2) to the atmosphere (Raymond

and others 2013; Lauerwald and others 2015).

However, considerable uncertainties regarding the

magnitude and controls of CO2 emitted from fluvial

networks still exist (Wehrli 2013). For instance,

current global estimates do not accurately consider

the CO2 emitted from expanded areas of rivers and

streams during floods, which can increase the areal

extent of fluvial networks by several orders of

magnitude (Richey and others 2002). Also, these

estimates, based on continuous models, do not in-

clude the CO2 emitted from local discontinuities

along the fluvial network, such as weirs, rapids,

waterfalls or turbine releases in hydropower plants

(Wehrli 2013). Finally, current estimates do not

consider the CO2 emitted from the areas of tem-

porary watercourses that recurrently desiccate

(Raymond and others 2013; von Schiller and others

2014).

Temporary watercourses are found worldwide

(Acuña and others 2014; Leigh and others 2015).

In Australia, roughly 70% of the 3.5 million kilo-

metres of watercourses are considered temporary

(Sheldon and others 2010), and more than half of

the total length of watercourses in the United

States, Greece and South Africa are also temporary

(Larned and others 2010). Temporary watercourses

can also be found in humid areas such as Antarctica

(McKnight and others 1999) and Amazonia

(Chapman and Kramer 1991). Low-order streams

deserve special attention, since they account for

more than 70% of fluvial networks surface area

and are particularly prone to flow intermittency

(Lowe and others 2006). These are dynamic sys-

tems in time and space, and analysing their spatial

coverage is particularly difficult to detect by tradi-

tional mapping techniques (Benstead and Leigh

2012). We can therefore suspect that the surface

area of temporary watercourses in the global fluvial

network can be higher than 50% (Datry and others

2014), whereas their importance is increasing as a

result of the combined effects of climate and land-

use changes (Palmer and others 2008; Larned and

others 2010; Hoerling and others 2012).

The dry streambeds of temporary streams, also

commonly referred to as dry riverbeds (Steward

and others 2012), are dynamic habitats (Stanley

and others 1997; Boulton 2003), representing

transitional zones between dissimilar habitats, and

transitional periods between persistent and dis-

similar states (Naiman and Decamps 1997). These

systems are constrained by the strength of inter-

actions with their adjacent ecosystems. Thus, de-

spite being traditionally neglected by aquatic and

terrestrial ecologists and biogeochemists, dry

streambeds are likely to be unique biogeochemical

hotspots for materials transformations (McClain

and others 2003). In fact, recent studies reported

that carbon processing in dry streambed sediments

can be maintained to some degree during stream

desiccation by the activity of well-adapted biofilms

(Zoppini and Marxsen 2011; Timoner and others

2012; Pohlon and others 2013). Likewise, first

estimates also showed that dry streambeds are not

inert but rather active sites for CO2 release to the

atmosphere (Gallo and others 2014; von Schiller

and others 2014, Gómez-Gener and others 2015).

The carbon processed in dry streams has its own

particular history, because it has either already left

terrestrial ecosystems and entered the fluvial net-

work or was produced within the fluvial network

(Steward and others 2012). Therefore, emissions of

CO2 from dry streambeds should not be considered

terrestrial, but mostly as a fundamental biogeo-

chemical component of fluvial networks that

experience large, often seasonal, hydrological

expansions and contraction. Yet, there is an

important lack of knowledge regarding the spatial

variability and drivers of CO2 emissions from dry

streambeds and the differences and similarities

with respect to CO2 emissions from terrestrial soils.

The aim of this study was to quantify CO2 emis-

sions from dry streambeds of temporary streams

within a fluvial network and to compare them to

those during the period with flow and to those from

adjacent upland soils. We also looked for potential

drivers regulating the CO2 emissions by examining

the main physical and chemical properties of dry

streambed sediments and adjacent upland soils. We

predicted differences in both the magnitude and

drivers controlling CO2 emissions between dry

streambeds and the other investigated habitats be-

cause of strong dissimilarities in physicochemical

properties and biogeochemical dynamics.

METHODS

Study Site and Sampling Design

The Fluvià River (NE Iberian Peninsula) is 97 km

long and drains a 990-km2 catchment covered with

mixed forests (78%), agricultural (19%) and urban

(3%) areas (Land Cover Map of Catalonia 2009,

Centre of Ecology and Forestry Research of

Catalonia, http://www.creaf.uab.es/mcsc/). The

L. Gómez-Gener and others
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climate in the region is typically Mediterranean.

Mean monthly air temperature ranges from 6�C in

January to 26�C in July. Mean annual precipitation

is 660 mm, with rainfall mainly occurring in au-

tumn and spring (Data from 2004 to 2014, Catalan

Water Agency, http://aca-web.gencat.cat). During

the wet period (late autumn to early spring),

hydrological connectivity is enhanced and most of

the fluvial network area is covered with surface

water. In contrast, during the dry period (late

spring to early autumn) hydrological connectivity

is reduced and the area of the fluvial network

covered with surface water drastically decreases.

We conducted two samplings in 10 temporary

tributaries of the Fluvià River spanning a wide

range of physiographic and land-use conditions

(Table 1; see Appendix 1 in Supplementary Mate-

rials for details). In the first sampling (dry period;

August 2014), we measured CO2 fluxes and took

samples from the dry streambed sediments and

adjacent upland soils. The upland was defined as

the area occupied by terrestrial vegetation located

close to the stream but beyond the strip of riparian

vegetation. In the second sampling (flowing period,

March 2015), we measured the CO2 fluxes from

the streambeds where flowing water was found,

that is, 7 out of 10 streams (see Appendix 2 in

Supplementary Materials for details). All the CO2

flux measurements and associated sampling were

carried out at each stream only once during the

day.

Determination of CO2 Fluxes

In both dry streambeds and upland soils, we ap-

plied the enclosed dynamic chamber method (Liv-

ingston and Hutchinson 1995) to measure the CO2

flux. Briefly, we monitored the gas concentration

in an opaque chamber (SRC-1, PP-Systems, USA)

every 4.8 s with an infrared gas analyser (EGM-4,

PP-Systems, USA). According to the manufac-

turer’s specifications, the measurement accuracy of

the EGM-4 is estimated to be within 1% over the

calibrated range. In all cases, flux measurements

lasted until a change in CO2 of at least 10 latm was

reached, with a maximum duration of 300 s and a

minimum of 120 s. We calculated the CO2 flux

(FCO2
, mmol m-2 day-1) from the rate of change of

CO2 inside the chamber:

FCO2
¼

dpCO2

dt

� �

V

RTS

� �

; ð1Þ

where dpCO2
=dt is the slope of the gas accumulation

in the chamber along time in latm s-1, V is the

volume of the chamber (1.171 dm3), S is the sur-

face area of the chamber (0.78 dm2), T is the air

temperature in Kelvin and R is the ideal gas con-

stant in l atm K-1 mol-1. Positive FCO2
values

represent efflux of gas to the atmosphere, and

negative FCO2
values indicate influx of gas from the

atmosphere. We performed 4 randomly distributed

measurements within each site, that is, 4 in dry

streambeds and 4 in upland soils.

In the flowing streambeds, we measured the CO2

flux applying the Fick’s First Law of gas diffusion:

FCO2
¼ kCO2

Kh pCO2;w � pCO2;a

� �

; ð2Þ

where FCO2
is the estimated CO2 flux between the

surface stream water and the atmosphere in

mmol m-2 day-1, Kh is the Henry’s constant in

mmol latm-1 m-3 adjusted for salinity and tem-

perature (Weiss 1974; Millero 1995), pCO2,w and

pCO2,a are the surface water and the atmosphere

partial pressures of CO2 in latm, respectively, and

kCO2
is the specific gas transfer velocity for CO2 in

m day-1.

We measured pCO2,w and pCO2,a with an infra-

red gas analyser (EGM-4, PP-Systems, USA). In the

case of pCO2,w we coupled the gas analyser to a

membrane contactor (MiniModule, Liqui-Cel,

USA). The water was circulated via gravity through

the contactor at 300 mL min-1, and the equili-

brated gas was continuously recirculated into the

infrared gas analyser for instantaneous pCO2 mea-

surements (Teodoru and others 2010).

We followed the approach used by Gómez-Gener

and others (2015) to estimate the kCO2
from the

night-time drop in dissolved oxygen concentration

(Hornberger and Kelly 1972), a method that has

been extensively applied in ecosystem metabolism

studies in rivers and streams (for example, Aristegi

and others 2009; Hunt and others 2012; Riley and

Dodds 2013). Briefly, photosynthesis ceases from

sunset to sunrise; thus night-time dynamics of

oxygen depend on respiration and reaeration.

During the night, respiration reduces the oxygen

levels until atmospheric equilibrium is reached. In

parallel, reaeration approaches the oxygen con-

centration to saturation. Thus, when we plot the

night-time oxygen concentration per unit of time

versus the oxygen saturation deficit, a linear trend

is obtained. The intercept of the regression corre-

sponds to the respiration rate in g O2 m
-2 h-1, and

the slope to the mean reaeration coefficient (KO2
)

in day-1. We corrected the KO2
for depth to obtain

the mean gas transfer velocity of oxygen ðkO2
Þ in

m day-1 (Raymond and others 2012) and we fur-

ther transformed kO2
to kCO2

by applying equa-

tion (3).

Carbon Dioxide Emissions from Dry Temporary Streams
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Table 1. Physiographic and Land-Use Characteristics of the Study Sites and Their Corresponding Subcatchments

Stream name Stream

code

Site-specific

parameters

Catchment-specific

parameters

Coordinates Stream

ordera
Streambed grain

sizesb (%)

Surface

areaa (ha)

Land usesc (%) Lithologyc (%)

x y Small

fractions

Cobbles Boulders Scrubs Pastures Crops Forest

Riera de St. Miquel 1 473788 4663780 4 77.2 22.8 0.0 5191 1.2 2.6 10.7 84.6 L(66), C(17), G(16)

Riera de Mieres 2 470306 4663964 4 71.1 28.9 0.0 1825 1.1 5.1 18.4 72.9 L(65), G(22), C(12)

Torrent de Pujolars 3 464116 4665691 3 49.1 43.7 7.2 1219 0.2 0.1 7.9 91.7 C(87), G(13)

Torrent de Rocanegra 4 464289 4665909 2 58.8 41.2 0.0 1252 1.7 3.7 27.6 59.4 C(62), V(34), G(23)

Fluvià 5 454382 4662603 4 63.2 31.6 5.2 3078 0.9 10.7 16.9 70.2 C(64), G(18), S(7), SS(6), G(5)

Joanetes 6 453844 4663758 4 61.4 38.6 0.0 2954 1.3 4.1 11.4 81.9 C(66), G(18), L(11)

Torrent de St. Pere 7 453724 4673311 3 59.8 29.8 10.3 1480 0.2 2.1 10.5 86.2 C(85), L(9), G(5)

Riera d’Oix 8 462235 4680827 4 79.0 21.0 0.0 11085 4.4 1.4 1.9 92.2 L(49), C(33), G(16), LS(9)

Llierca 9 466415 4679576 5 67.6 32.4 0.0 16743 5.9 2.8 1.5 89.7 L(59), LS(23), SS(18)

Barranc de Junyell 10 476914 4671359 3 55.6 44.4 0.0 5238 0.5 0.3 1.9 97.3 C(76), G(21), SS(2)

aStream order and subcatchment surface area were calculated with the Hydrological Extension in ESRI� ArcGISTM v. 10.0 software. Data obtained from a 2-meter digital elevation model (Centre of Ecology

and Forestry Research of Catalonia)
bSurface grain-size characterization of studied streambeds was estimated following an image-processing-based procedure (Graham and others 2005). Results were obtained from an average of 3 high resolution

photos along 50 m stream segments. Fraction classification was made according Wentworth (1922). Small fractions contain silt, clay, sand and gravel fractions.
cSubcatchments land uses and lithologies (S = silt, L = loams, C = conglomerates, G = gravels, V = volcanic deposits, LS = limestone) were calculated with ESRI� ArcGISTM v. 10.0 software from a Land

cover map of Catalonia and a Lithological map of Catalonia, respectively (Centre of Ecology and Forestry Research of Catalonia)
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kCO2
¼ kO2

ScCO2

ScO2

� ��n

; ð3Þ

where kCO2
is the mean gas transfer velocity of CO2

in m day-1, ScCO2
and ScO2

are the Schmidt num-

bers of CO2 and O2, respectively, at a given water

temperature (Wanninkhof 1992). Following Bade

(2009), we set the exponent n to 1/2 for turbulent

environments, that is, flowing waters. Our kCO2

ranged from 0.075 to 15.21 m day-1. We obtained

the diel cycles of dissolved oxygen concentration

and temperature at each site at a frequency of

5 min with an optical dissolved oxygen sensor

(MiniDot, PME, USA). The oxygen probes were

inter-calibrated before the sampling campaign.

Physical and Chemical Characterization
of Dry Streambeds and Upland Soils

At each flux measurement location, we measured

the substrate temperature by means of a

portable soil probe (Decagon ECH2O 10HS, Pull-

man, USA) and collected substrate samples, that is,

dry streambed sediments and upland soils

(0–10 cm depth), after the flux measurements had

been carried out. In the laboratory, we measured

the substrate pH from a 1:1 sample:deionized water

mixture (McLean 1982) with a hand-held pH meter

(pH 3110, WTW, Germany). We also determined,

gravimetrically, the substrate water content by

drying a fresh subsample at 105�C and the organic

matter content by sample combustion following

the loss on ignition method (Dean 1974). We

sieved the air-dried samples (2-mm mesh) and

determined their main textural fractions (% sand,

% silt and % clay) and their mean particle size with

a laser-light diffraction instrument (Coulter LS 230,

Beckman-Coulter, USA). We determined the per-

centage of organic carbon (OC) and total nitrogen

(TN) from a sieved and air-dried subsample on an

Elemental Analyzer (Model 1108, Carlo-Erba, Ita-

ly) after grinding and eliminating the inorganic

fraction by acidification (HCl 1.5 N).

Water Extractable Organic Matter (WEOM), the

fraction of DOM extracted with deionized water

and conceptually consisting of the mobile and

available portion of the total DOM pool (Corvasce

and others 2006; Vergnoux and others 2011), was

obtained by shaking (100 rpm, 4�C) the air-dried,

sieved and ground samples with deionized water in

the dark for 48 h with a sample:water ratio of 1:10.

After the extraction, we filtered the leachates

through 0.70- and 0.45-lm pre-combusted glass

microfiber filters (Whatman, USA). We determined

their raw dissolved organic carbon (DOC) and total

dissolved nitrogen (TDN) concentration with a total

organic carbon analyser (TOC-V CSH, Shimadzu,

Japan). The detection limit of the analysis proce-

dure was 0.05 mg C l-1 for DOC and 0.005 mg

N l-1 for TDN. All samples were previously acidi-

fied with HCl 1.5 N and preserved at 4�C until

analysis. The extraction efficiencies were calculated

as the ratio between the mass of WEOM recovered

and the mass of the dry sample used for the

extraction.

UV/Vis absorbance and fluorescence spectra

were obtained from diluted WEOM extracts

(DOC � 10 mg l-1) (Anesio and others 2000). We

measured the UV/Vis absorbance spectra (200–

800 nm) using a 1-cm quartz cuvette on a spec-

trophotometer (Shimadzu UV-1700, Shimadzu,

USA) with an analytical precision of 0.001 absor-

bance units. From the absorbance spectra, we cal-

culated the specific UV absorbance at 254 nm

(SUVA254, L mg-1 m-1) by dividing the absorbance

at 254 nm by DOC concentration and cuvette path

length (m). SUVA254 is positively related with the

aromaticity of DOM, with values generally ranging

between 1 and 9 L mg-1 m-1(Weishaar and others

2003).

We obtained the excitation–emission matrices

(EEM) on a spectrofluorometer (Shimadzu RF-

5301PC, Shimadzu, USA) using a 1-cm quartz

cuvette. We ran the EEM scans over an emission

range of 270–630 nm (1-nm increments) and an

excitation range of 240–400 (10-nm increments). A

water blank (Milli-Q Millipore) EEM, recorded

under the same conditions, was subtracted from

each sample to eliminate Raman scattering. The

area underneath the water Raman scan was used to

normalize all sample intensities. All the EEMs were

corrected for instrument-specific biases, and inner-

filter effects corrections were applied according to

Kothawala and others (2013). From the EEMs, we

calculated 3 indices: the fluorescence index (FI) as

the ratio of the emission intensities at 470/520 nm

for an excitation wavelength of 370 nm (Jaffé and

others 2008). FI is an indicator of terrestrial (low

FI) or microbial (high FI) origin of DOM. The

humification index (HIX) was calculated as the

peak area under the emission spectrum 435–

480 nm divided by that of 300–345 nm, at an

excitation of 254 (Zsolnay and others 1999). Higher

values of HIX correspond to a higher degree of

humification (Huguet and others 2009; Fellman

and others 2010). Finally, we calculated the bio-

logical index (BIX) as the ratio of the emission

intensities at 380/430 nm for an excitation of

310 nm (Huguet and others 2009). The BIX is an

indicator of recent biological activity or recently

Carbon Dioxide Emissions from Dry Temporary Streams



produced DOM. Higher values of BIX correspond to

a predominantly autochthonous origin of DOM

and to the presence of OM freshly released into the

sample, whereas a lower DOM production will lead

to a low value of BIX (Huguet and others 2009).

Data Analysis

We performed paired t tests to test the differences

in terms of CO2 flux among habitats, that is, dry

streambed versus upland soil and dry streambed

versus flowing streambed.

We applied a principal component analysis

(PCA) on the correlation matrix to ordinate the dry

streambeds (n = 10) and upland soil sites (n = 10)

by their physical and chemical properties. All the

variables included in the analysis are described in

Table 2. We also examined differences in physical

and chemical properties of dry streambed sedi-

ments and upland soils by means of paired t tests.

We built two PLS regression models (projections

of latent structures by means of partial least

squares, Wold and others 2001) to identify the

potential physical and chemical drivers of CO2

fluxes in dry streambeds (n = 35) and upland soils

(n = 34). All the variables included in the models

are described in Table 2. PLS is a regression

extension of PCA and allows the exploration of

relationships between multiple, collinear data

matrices of X’ and Y’s. The model performance is

expressed by R2Y (explained variance) and by Q2Y

(predictive power estimated by cross validation).

The PLS model was validated by comparing the

goodness of fit with models built from randomized

Y-variables. To summarize the influence of every

X-variable on the Y-variable, across the extracted

PLS components, we used the variable influence on

projection (VIP). The VIP scores of every model

term (X-variables) are cumulative across compo-

nents and weighted according to the amount of Y-

variance explained in each component (Eriksson

and others 2006). X-variables with VIP > 1 are

most influential on the Y-variable. A cutoff around

0.8 separates moderately important X-variables,

whereas those below this threshold can be regarded

as less influential.

All statistical analyses were conducted in the R

statistical environment (R Core Team 2013) using

the vegan package (Oksanen and others 2013),

except for PLS analysis which was done with the

software XLSAT (XLSTAT 2015.2.01, Addinsoft

SRAL, Germany). Our data met the conditions of

homogeneity of variance and normality. Statistical

tests were considered significant at p < 0.05. Ex-

treme outliers were excluded from the CO2 flux

dataset after careful data exploration using

numerical and graphical tools, that is, Cook’s

influential outlier tests, boxplots, and Cleveland

dotplots, following Zuur and others (2010).

RESULTS

CO2 Emissions

Dry streambeds (mean ± SD = 781.4 ± 390.2

mmol m-2 day-1), flowing streambeds (305.6 ±

206.1 mmol m-2 day-1) and upland soils (896.1 ±

263.2 mmol m-2 day-1) were net emitters of CO2

to the atmosphere (Figure 1). The CO2 efflux from

dry streambeds experienced the highest intra-

habitat variability and was significantly higher than

the CO2 efflux from flowing streambeds (Paired t

Table 2. Overview of X- and Y-Variables Included in the PCA and PLS Models

Variable Description PCA model PLS models

Fco2 CO2 flux (mmol m-2 day-1) – Y

WC Water content (%) X X

Temp Temperature (ºC) X X

Sand Sand fraction (%) X X

Silt Silt fraction (%) X X

Clay Clay fraction (%) X X

P. Size Mean particle size (lm) X X

OM Organic matter content (%) X X

OC Organic carbon content (%) X X

TN Nitrogen content (%) X X

DOC Dissolved organic carbon concentration of WEOM (mg g-1) X X

TDN Total dissolved nitrogen concentration of WEOM (mg g–1) X X

SUVA SUVA254 index of WEOM (l mg-1) X X

FI Fluorescence index of WEOM X X

HIX Humification index of WEOM X X

BIX Biological index of WEOM X X
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test: p = 0.043, n = 7), but not statistically different

than the CO2 efflux from upland soils (Paired t test:

p = 0.444, n = 10).

Physical and Chemical Properties of Dry
Streambed Sediments and Upland Soils

The principal component analysis (PCA) based on

physical and chemical properties of the dry

streambed sediments and upland soils stressed

differences between the two habitats (Figure 2).

The two first axes of the PCA explained 71.6% of

total variance. The first principal component

(58.9% of total variance), clearly separated dry

streambeds and upland soils, and was related to

texture properties, water content and organic

matter quantity. The second principal component

(12.7% of total variance) was mainly related to

temperature and quality of the WEOM, and ex-

erted a minor effect on the scores distribution

along the 2 planes.

Figure 1. Mean CO2 efflux from dry streambeds

(n = 10), flowing streambeds (n = 7) and adjacent up-

land soils (n = 10) of the studied streams. The error bars

represent standard deviations.

Figure 2. Multivariate ordination (PCA) of dry streambed sediments and upland soils based on physical and chemical

descriptors (see Table 2 for the explanation of the abbreviations). The percentage of explained variation for each com-

ponent is shown in brackets. The symbols represent the scores of the samples for the first two axes and the arrows represent

the loadings of each descriptor for the first two axes.
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The paired t tests further corroborated that dry

streambed sediments and upland soils differed in

several physical and chemical properties (Table 3).

Water content was significantly lower in dry

streambeds than in upland soils. The substrate

texture differed significantly between habitats

with dry streambeds having a higher sand fraction

and mean particle size, whereas upland soils had

higher silt and clay fractions. The pH was signifi-

cantly higher in dry streambeds, whereas upland

soils had higher organic matter, organic carbon

and nitrogen contents, both in the solid and in the

extracted phase (WEOM). The SUVA254 and FI

indices indicated that the WEOM from dry

streambeds was less aromatic and had a more

microbial-derived character than the WEOM from

upland soils.

Drivers of CO2 Emissions from Dry
Streambed Sediments and Upland Soils

The PLS regression model for dry streambed sedi-

ments (Figure 3A) extracted two components from

the data matrix that explained 40% of the variance

(R2Y = 0.40). The first (horizontal axis in Fig-

ure 3A) and the second PLS components (vertical

axis in Figure 3A) explained, respectively, 20.1 and

19.7% of the variance. This analysis stressed the

relevance (VIP > 1) of sediment temperature,

mean particle size, DOC, TDN and TN explaining

the variance in the CO2 efflux from dry streambed

sediments.

The PLS model for upland soils (Figure 3B) ex-

tracted two components that explained 42% of the

variance (R2Y = 0.42). The first and the second PLS

components explained, respectively, 24.0 and

17.6% of the variance. The pH, mean particle size,

sand, silt and clay fractions, SUVA254, FI and HIX

were the most influential descriptors explaining the

variance in the CO2 efflux from upland soils

(VIP > 1).

DISCUSSION

Magnitude of CO2 Emissions from Dry
Streambeds

Dry streambeds from the studied fluvial network

emitted substantial amounts of CO2 to the atmo-

sphere. Our measurements of CO2 efflux from dry

streambeds (mean = 781 mmol m-2 day-1, range =

342–1533 mmol m-2 day-1) are similar to those

reported from a drying-rewetting experiment in

dry desert streams in Arizona, USA (395 mmol m-2

day-1, range = 20–1531 mmol m-2 day-1; Gallo and

others 2014) and higher than others observed in the

same geographical area of our study but with lower

spatial coverage (mean = 209 mmol m-2 day-1,

range = 189–220 mmol m-2 day-1; von Schiller and

others 2014; Gómez-Gener and others 2015). These

are, to our knowledge, the only previous studies

reporting CO2 effluxes from dry streambeds.

In the present study, we further show that the

CO2 efflux from dry streams was higher than the

CO2 efflux from the same streams when they were

flowing. This result indicates that energy flow,

nutrient cycling and subsequent CO2 production

and efflux remain active after flow cessation

(Boulton 1991; Jacobson and others 2000); Amal-

fitano and others 2008). This observation could be

related to limitation of the CO2 efflux due to re-

duced gas diffusivity and the likely higher uptake of

CO2 by primary producers in aquatic environments

compared to dry streambeds. Interestingly, these

results agree with recent studies highlighting the

relevance of the dry hydrological phases on the

CO2 fluxes from temporary systems of different

nature, including temporary ponds (Catalan and

others 2014) or reservoir beds found along

Mediterranean fluvial networks (Gómez-Gener

and others 2015).

Contrary to our expectations, the CO2 efflux

from dry streambeds was similar to the CO2 efflux

from adjacent upland soils. Similarly, von Schiller

and others (2014) observed a comparable CO2 ef-

flux between dry streambeds (median 212 mmol

m-2 day-1; range 36–455 mmol m-2 day-1) and a

compiled dataset of Mediterranean soils (median

188 mmol m-2 days-1; range 44–371 mmol m-2

day-1). However, as our results show, a similar

magnitude of CO2 efflux from dry streambeds

and their adjacent upland soils does not neces-

sarily imply that these habitats are equivalent in

their physical and chemical structure and func-

tion, and therefore in the way they process and

emit carbon.

Dry Streambeds as Unique
Biogeochemical Hotspots

The studied streambeds and their upland soils were

heterogeneous in terms of physical and chemical

properties, but our results revealed a clear cluster-

ing of samples by habitat. In general, variables re-

lated to the textural composition and the organic

matter content exerted the strongest influence on

the differentiation between the two habitats.

Specifically, dry streambed sediments showed a

L. Gómez-Gener and others



Table 3. Physical and Chemical Properties of the Dry Streambed Sediments and Upland Soils at Each Study Site

Physical characteristics Chemical characteristics

% % % mg g DW
-1

mg g DW
-1

1 Dry streambed 18.5 ± 0.3 5.5 ± 0.5 81.4 ± 1.4 11.2 ± 1.1 7.5 ± 0.4 1483.6 ± 168.5 8.49 ± 0.04 1.01 ± 0.18 0.94 ± 0.76 0.03 ± 0.01 0.06 ± 0.01 0.00 ± 0.00 3.12 ± 0.29 2.20 ± 0.17 7.62 ± 1.36 0.52 ± 0.06

Upland soil 19.0 ± 0.0 16.4 ± 1.4 45.2 ± 9.4 34.8 ± 6.4 20.0 ± 3.2 407.7 ± 306.5 8.43 ± 0.05 6.68 ± 2.36 3.15 ± 2.05 0.20 ± 0.13 0.39 ± 0.12 0.03 ± 0.01 5.93 ± 1.05 2.08 ± 0.01 6.27 ± 0.70 0.54 ± 0.01

2 Dry streambed 19.8 ± 0.4 13.0 ± 6.2 38.9 ± 33.5 34.3 ± 16.5 26.8 ± 17.2 1326.4 ± 235.9 7.96 ± 0.17 2.50 ± 1.92 1.00 ± 0.44 0.09 ± 0.04 0.18 ± 0.08 0.01 ± 0.01 3.58 ± 1.00 2.29 ± 0.08 3.77 ± 0.78 0.57 ± 0.03

Upland soil 19.9 ± 0.3 21.9 ± 3.8 59.8 ± 3.5 29.7 ± 2.6 10.5 ± 2.7 1239.3 ± 296.0 8.08 ± 0.07 10.10 ± 2.41 5.96 ± 1.32 0.36 ± 0.08 0.47 ± 0.02 0.05 ± 0.01 6.19 ± 0.79 2.09 ± 0.13 5.18 ± 1.61 0.50 ± 0.06

3 Dry streambed 17.7 ± 0.3 20.3 ± 5.6 72.5 ± 34.8 19.9 ± 26.2 7.6 ± 8.6 1039.1 ± 373.8 8.40 ± 0.13 3.79 ± 2.00 1.02 ± 1.07 0.08 ± 0.06 0.11 ± 0.07 0.01 ± 0.00 4.40 ± 0.50 2.14 ± 0.06 6.24 ± 0.65 0.54 ± 0.04

Upland soil 18.3 ± 0.2 27.0 ± 6.2 48.6 ± 5.2 33.9 ± 4.6 17.5 ± 2.5 147.1 ± 12.7 8.27 ± 0.22 15.83 ± 8.53 6.05 ± 2.73 0.36 ± 0.14 0.55 ± 0.11 0.11 ± 0.01 5.86 ± 0.66 2.14 ± 0.11 5.40 ± 0.28 0.50 ± 0.03

4 Dry streambed 20.9 ± 1.1 10.0 ± 1.7 88.3 ± 7.9 6.7 ± 4.7 4.9 ± 3.3 1411.5 ± 217.6 7.94 ± 0.33 1.65 ± 0.57 0.37 ± 0.03 0.03 ± 0.00 0.07 ± 0.02 0.02 ± 0.00 5.48 ± 0.57 2.14 ± 0.05 7.00 ± 0.98 0.50 ± 0.01

Upland soil 20.1 ± 0.5 15.3 ± 1.0 24.6 ± 2.4 48.2 ± 1.2 27.3 ± 1.8 855.7 ± 282.1 8.80 ± 0.29 11.07 ± 2.07 5.59 ± 1.50 0.39 ± 0.14 0.56 ± 0.13 0.12 ± 0.04 7.91 ± 0.55 2.04 ± 0.04 9.14 ± 1.37 0.47 ± 0.01

5 Dry streambed 21.2 ± 0.6 9.3 ± 1.9 89.1 ± 6.6 6.9 ± 3.9 4.0 ± 2.7 1305.0 ± 155.1 9.25 ± 0.06 1.11 ± 0.25 0.33 ± 0.14 0.03 ± 0.02 0.06 ± 0.02 0.01 ± 0.00 4.32 ± 0.55 2.18 ± 0.03 6.12 ± 1.00 0.53 ± 0.01

Upland soil 21.0 ± 0.7 17.0 ± 1.4 55.7 ± 8.0 32.7 ± 6.2 11.5 ± 1.9 101.2 ± 18.7 8.14 ± 0.36 5.97 ± 0.70 1.85 ± 0.53 0.11 ± 0.07 0.30 ± 0.02 0.06 ± 0.01 4.88 ± 0.25 2.09 ± 0.02 5.65 ± 0.59 0.53 ± 0.02

6 Dry streambed 23.4 ± 1.1 15.4 ± 8.7 60.1 ± 30.7 28.0 ± 20.7 11.9 ± 10.0 686.1 ± 557.6 7.98 ± 0.05 4.25 ± 5.01 2.17 ± 2.22 0.15 ± 0.14 0.23 ± 0.16 0.05 ± 0.03 4.09 ± 0.66 2.27 ± 0.17 4.25 ± 0.59 0.53 ± 0.08

Upland soil 21.1 ± 0.6 14.8 ± 1.1 60.4 ± 3.7 27.2 ± 2.5 12.4 ± 1.3 221.6 ± 49.6 7.78 ± 0.17 6.39 ± 1.39 1.50 ± 0.12 0.14 ± 0.02 0.28 ± 0.04 0.06 ± 0.02 5.60 ± 0.48 2.21 ± 0.03 5.73 ± 0.74 0.60 ± 0.04

7 Dry streambed 21.8 ± 0.7 9.2 ± 3.5 47.4 ± 11.1 36.3 ± 7.9 16.3 ± 3.2 440.2 ± 608.1 7.82 ± 0.26 2.05 ± 0.77 1.18 ± 0.52 0.10 ± 0.05 0.12 ± 0.02 0.02 ± 0.00 5.23 ± 0.47 2.15 ± 0.06 8.74 ± 1.20 0.51 ± 0.02

Upland soil 22.1 ± 0.7 18.0 ± 2.5 25.0 ± 4.6 55.5 ± 3.7 19.5 ± 1.1 67.9 ± 26.9 7.13 ± 0.24 10.03 ± 3.12 5.17 ± 2.58 0.39 ± 0.18 0.52 ± 0.19 0.09 ± 0.01 5.14 ± 0.78 2.14 ± 0.02 6.14 ± 1.94 0.50 ± 0.03

8 Dry streambed 22.9 ± 1.4 7.2 ± 6.2 79.2 ± 7.9 14.8 ± 5.6 6.0 ± 2.3 1538.1 ± 238.8 8.14 ± 0.10 1.54 ± 1.03 2.13 ± 0.83 0.05 ± 0.04 0.10 ± 0.05 0.02 ± 0.01 2.83 ± 0.27 2.35 ± 0.10 4.64 ± 0.51 0.56 ± 0.01

Upland soil 20.3 ± 0.4 24.2 ± 3.8 63.9 ± 2.0 24.5 ± 1.3 11.6 ± 0.8 242.4 ± 32.2 8.20 ± 0.14 8.56 ± 2.68 2.66 ± 0.83 0.13 ± 0.05 0.32 ± 0.05 0.03 ± 0.01 5.67 ± 0.68 2.07 ± 0.14 5.56 ± 1.07 0.43 ± 0.05

9 Dry streambed 22.1 ± 0.3 3.4 ± 1.2 96.5 ± 1.5 2.3 ± 0.9 1.3 ± 0.6 1886.6 ± 213.8 7.53 ± 0.52 0.52 ± 0.17 0.16 ± 0.04 0.01 ± 0.00 0.06 ± 0.02 0.00 ± 0.00 2.22 ± 0.16 2.36 ± 0.07 4.58 ± 0.82 0.60 ± 0.04

Upland soil 22.0 ± 0.3 13.3 ± 1.0 23.4 ± 13.0 46.3 ± 6.2 30.3 ± 6.9 685.8 ± 286.5 8.40 ± 0.08 7.00 ± 1.95 5.02 ± 1.26 0.31 ± 0.09 0.57 ± 0.21 0.03 ± 0.01 4.53 ± 0.53 2.11 ± 0.16 7.54 ± 1.56 0.42 ± 0.05

10 Dry streambed 22.8 ± 0.2 16.1 ± 8.5 56.6 ± 27.7 29.3 ± 18.8 14.1 ± 8.9 800.9 ± 1093.9 8.41 ± 0.10 4.42 ± 2.87 2.87 ± 0.46 0.17 ± 0.05 0.32 ± 0.04 0.02 ± 0.00 3.90 ± 0.86 2.28 ± 0.13 4.93 ± 0.82 0.51 ± 0.03

Upland soil 22.7 ± 0.3 11.6 ± 1.6 55.7 ± 4.9 29.7 ± 3.7 14.6 ± 1.7 683.5 ± 610.3 8.45 ± 0.16 7.24 ± 2.76 3.34 ± 1.46 0.20 ± 0.09 0.50 ± 0.18 0.04 ± 0.01 5.33 ± 0.57 2.14 ± 0.01 5.34 ± 0.53 0.47 ± 0.01

Mean ± sd Dry streambed 21.1 ± 1.9 11.0 ± 5.2 71.0 ± 19.3 19.0 ± 12.4 10.0 ± 7.5 1191.7 ± 442.7 8.19 ± 0.48 2.28 ± 1.41 1.22 0.90 0.07 ± 0.05 0.13 ± 0.09 0.02 ± 0.01 3.92 ± 1.02 2.24 ± 0.08 5.79 ± 1.63 0.54 ± 0.03

Mean ± sd Upland soil 20.6 ± 1.4 18.0 ± 4.9 46.2 ± 16.1 36.3 ± 10.2 17.5 ± 6.9 465.2 ± 387.6 8.17 ± 0.45 8.89 ± 3.01 4.03 1.73 0.26 ± 0.11 0.45 ± 0.11 0.06 ± 0.03 5.70 ± 0.93 2.11 ± 0.05 6.19 ± 1.24 0.50 ± 0.05

p  value dsb vs. us

Values reported means and standard deviations (mean ± sd; n=4). Results of the paired T-tests for differences between dry streambeds and upland soils are shown in the lower part of the table. Significant differences (p<0.05) are marked in bold.

Stream code Habitat Solid phase Extracted phase
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Water 

content
Mean particle size pH Organic matterSand Silt

%

Clay  HIX  BIX

ºC %

SUVA254 FI

% µm L mg
-1
m

-1%

0.220 < 0.001 0.020 0.009 0.040 < 0.001

OC TN DOC TDN

< 0.001 < 0.001 0.472 0.1050.009 < 0.001 < 0.001 < 0.001 < 0.001 0.019

C
a
rb
o
n
D
io
x
id
e
E
m
issio

n
s
fro

m
D
ry

T
e
m
p
o
ra
ry

S
tre

a
m
s



higher mean particle size and a higher proportion

of sand, whereas upland soils were associated with

lower mean particle size and higher proportions of

clay and silt fractions. Because they act as hydro-

logical flow paths, streambeds are more exposed to

higher and recurrent surface stress in comparison

to soils (Hickin 1995), making it more likely for

water flow to initiate sediment erosion and trans-

port. Thus, finer particles can be more easily

mobilized in streams, but tend to be more retained

in soils (Jacobson and others 2000). Dry streambed

sediments also contained less organic matter, that

is, OM, OC, TN, DOC, TDN, in comparison to up-

land soils. Dry streambeds and upland soils are

subject to different temporal and spatial dynamics

of transport, retention and processing of organic

matter (Wagener and others 1998). Accordingly,

we expect that recurrent periods of flow recession

and subsequent reflowing in temporary streams

may favour the oxidation and subsequent washing

of OM from dry streambeds, thus lowering its

concentration of OM (Acuña and others 2007;

Larned and others 2010).

Our results also show that dry streambed sedi-

ments and upland soils were different in terms of

the quality of organic matter. Significant differ-

ences in SUVA254 and FI values between habitats

indicate lower aromaticity and a higher signal of

in situ produced OM from dry streambed sedi-

ments. Mediterranean streams can receive a higher

leaf input from the riparian forest (direct and lateral

fluxes) in comparison to their upland soils during

drought periods (Acuña and others 2007). How-

ever, the recurrent periods of hydrological con-

nections and disconnections may prevent the

stabilization and further humification of stored

OM, thereby decreasing the signal of plant struc-

tural compounds such as lignin in the WEOM

fraction. The dry streambeds also showed higher

BIX values than upland soils, pointing again to-

wards a higher proportion of fresh DOM com-

pounds likely derived from fluvial microbial

sources (Birdwell and Engel 2010). The stronger

microbial character of the WEOM from dry

streambed sediments compared to upland soils was

likely due to the extracellular release and leachate

from decaying bacteria and algae as a result of

stream drying (Fierer and Schimel 2003; Borken

and Matzner 2009; Kaiser and others 2015).

Regulation of CO2 Effluxes from Dry
Streambeds and Upland Soils

The physical and chemical variables that controlled

the CO2 efflux differed between dry streambeds

and upland soils, despite some variables, that is,

temperature and textural composition, being in-

volved in the regulation of the efflux in both

habitats. The positive relationship between tem-

perature and many biogeochemical processes by

stimulation of the microbial activity, for example,

autotrophic and heterotrophic respiration, has

been widely reported (Raich and Schlesinger 1992;

Mielnick and Dugas 2000; Raich and others 2002).

Soil texture also influenced the CO2 efflux from dry

streambeds and from upland soils but in opposite

directions in each habitat. The CO2 efflux from dry

streambeds increased with decreasing mean parti-

cle size. Burke and others (1989) and Buschiazzo

and others (2004) also reported that higher pro-

portions of small particles, that is, silt and clay

fractions, correlated positively with DOC, TDN and

TN concentrations and with water holding capacity,

while Austin and others (2004) showed that this

promoted microbial heterotrophic respiration in

soils of arid and semiarid ecosystems. On the con-

trary, our upland soils responded inversely to the

textural properties and showed higher CO2 efflux

with increasing proportion of coarse-textured soils.

This observation can be attributed to a higher dif-

fusion of air and higher infiltration of water to the

rooting zone of vegetated soils, resulting in a sig-

nificant contribution of autotrophic respiration to

the total CO2 efflux in the investigated soils (Noy-

Meir 1973; Cable and others 2008; Catalán and

others 2014).

Apart from these common drivers of the CO2 ef-

flux, some variables specifically regulated the efflux

from dry streambeds and upland soils. The concen-

tration of the particulate and water extracted frac-

tions of organic carbon and nitrogen were involved

in the regulation of the CO2 efflux only in dry

streambeds. The availability of OM can be enhanced

during drying periods by release of high amounts of

fresh and labile materials to sediment interfaces

through microbial cell lysis and physical processes

(Fierer and Schimel 2003; Borken and Matzner

2009). However, the microbial activity in dry

streambeds could be partially limited by the low

concentration of DOC, TDN and TN in the substrate

(Table 3), thus explaining the positive effect of OM

concentration variables (TDN, DOC, TN) on the CO2

efflux (Figure 3A). In contrast, the CO2 efflux from

upland soils was related to OM quality rather than

to OM quantity (Figure 3B). Efflux from upland

soils, which had a lower proportion of fresh and

labile fractions in comparison to the dry streambed

sediments (Table 3), was limited by the high aro-

maticity of the OM. Thus, low aromaticity and

molecular complexity and high microbial signal
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Figure 3. Loadings plot of the PLS regression analysis of the CO2 emissions from dry streambeds (A) and adjacent upland

soils (B). The graph shows how the Y-variable (square) correlates with X-variables (circles) and the correlation structure of

the X’s. The X-variables are classified according to their variable influence on projection value (VIP): highly influential

(black circles), moderately influential (grey circles) and less influential (white circles). The X-variables situated near Y-variables

are positively correlated to them and those situated on the opposite side are negatively correlated. See Table 2 for the

explanation of the abbreviations.

Carbon Dioxide Emissions from Dry Temporary Streams



were associated with high CO2 efflux in the upland

soils. The amount and composition of soil organic

matter have been previously identified as important

factors affecting CO2 efflux from soils (Casals and

others 2009, Grogan and Jonasson 2005; Paré and

Bedard-Haughn 2013).

The PLS models only accounted for 50% of the

total variance in CO2 emissions, indicating that

other factors involved in the production of CO2

potentially contributed to the final CO2 efflux.

Such factors could include differences in microbial

community structure, biomass and activity (Amal-

fitano and others 2008), or non-biotic CO2-gener-

ating processes, such as groundwater CO2 import

(Rey 2015), reactions with the carbonate system

(Angert and others 2014), photochemical degra-

dation (Austin and Vivanco 2006) or the effect of

wind and air-pressure on the exchange of CO2

(Suleau and others 2009; Redeker and others

2015). Our results represent an initial attempt at

identifying and quantifying the main drivers reg-

ulating CO2 emissions from dry streambeds.

CONCLUSIONS

Temporary watercourses can be found worldwide,

and the spatial and temporal extent of the dry

phase of these systems is increasing as a result of

global change. Despite the prevalence of temporary

watercourses, most knowledge in stream ecosystem

ecology has been exclusively derived from studies

in perennial streams. Thus, fundamental concepts,

including the role of fluvial networks in global

biogeochemical cycles, may be challenged when

temporary watercourses are considered. Our study

shows that streams do not turn into inert ecosys-

tems when they become dry. On the contrary, they

remain as unique biogeochemical hotspots pro-

cessing and degassing significant amounts of car-

bon to the atmosphere comparable to those from

upland soils. Our results strongly suggest that not

considering streams when they are dry will lead to

inaccurate estimates of CO2 emissions from fluvial

networks.
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Key Points: 

 Sources other than internal metabolism (e.g., external inputs, internal geochemical 

reactions or photochemical mineralization) sustained most of the fluvial network CO2 

emissions. 

 Internal metabolism accounted for a moderate proportion (24%) of CO2 emissions in 

lotic segments, while it was insignificant in lentic ones. 

 The magnitude and sources of CO2 emissions depended on the water residence time in 

lotic segments, while they remained relatively stable in lentic ones. 
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Abstract  

 Inland waters are significant sources of carbon dioxide (CO2) to the atmosphere. CO2 

supersaturation and subsequent CO2 emissions from inland waters can be driven by internal 

metabolism, external inputs of dissolved inorganic carbon (DIC) derived from the catchment 

and other processes (e.g., internal geochemical reactions of calcite precipitation or 

photochemical mineralization of organic solutes). However, the sensitivity of the magnitude 

and sources of CO2 emissions to fluvial network hydromorphological alterations is still 

poorly understood. Here, we investigated both the magnitude and sources of CO2 emissions 

from lotic (i.e., running waters) and lentic (i.e., stagnant waters associated to small dams) 

waterbodies of a Mediterranean fluvial network by computing segment-scale mass balances 

of CO2. Our results showed that sources other than internal metabolism sustained most (82%) 

of the CO2 emissions from the studied fluvial network. The magnitude and sources of CO2 

emissions in lotic waterbodies were highly dependent on hydrology, with higher emissions 

dominated by DIC inputs derived from the catchment during high flows, and lower emissions 

partially fueled by CO2 produced biologically within the river during low flows. In contrast, 

CO2 emissions in lentic waterbodies were low, relatively stable over the time and the space, 

and dominated by DIC inputs from the catchment regardless of the different hydrological 

situations. Overall, our results stress the sensitivity of fluvial networks to human activities 

and climate change, and particularly highlight the role of hydromorphological conditions on 

modulating the magnitude and sources of CO2 emissions from fluvial networks. 

 

Key Words: Greenhouse gas, emission, carbon dioxide, metabolism, fluvial network, 

hydrology 
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1. Introduction 

 Inland waters are active components of the global carbon (C) cycle that transform, store 

and outgas more than half of the C they receive from terrestrial ecosystems [Cole et al., 2007; 

Battin et al., 2009a; Tranvik et al., 2009; Aufdenkampe et al., 2011]. Recent global estimates 

place the efflux of CO2 emitted from streams and rivers at 1.8 Pg C year-1 and from lakes and 

reservoirs at 0.32 Pg C year-1, resulting in a global estimate of CO2 emissions from fluvial 

networks of 2.1 Pg C year-1 [Raymond et al., 2013]. However, there are still fundamental 

uncertainties regarding the magnitude, spatiotemporal variation and sources of CO2 emissions 

from fluvial networks [Raymond et al., 2013; Wehrli, 2013; von Schiller et al., 2014; 

Hotchkiss et al., 2015].  

 A better understanding of the processes regulating CO2 emissions from fluvial networks 

is essential to comprehend the present and thus predict the future role of freshwaters in the 

global C cycle and the climate system [Raymond et al., 2013; Hotchkiss et al., 2015]. The 

flux of CO2 across the air–water interface depends on the gas transfer velocity and the 

supersaturation of CO2 in the surface water [Bade, 2009]. While the gas transfer velocity is a 

physical factor mainly controlled by the turbulence at the air–water interface, there are two 

major processes that can lead to CO2 supersaturation in aquatic ecosystems. The first is 

internal aquatic mineralization of organic matter, which can result in an imbalance of net 

ecosystem production (NEP) towards net heterotrophy (respiration exceeding production) 

[Cole et al., 2000; Duarte and Prairie, 2005]. The second is the input of surface and 

subsurface water with high dissolved inorganic carbon (DIC) content derived from soil 

respiration and mineral weathering within the catchment [Cole et al., 2007; Humborg et al., 

2010; Marcé et al., 2015]. Among these, internal metabolism has classically been considered 

to be the main factor driving CO2 supersaturation in lakes and rivers [Cole et al., 2000; 

Duarte and Prairie, 2005]. Yet, recent studies have shown that external inputs dominate CO2 
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supersaturation and thus CO2 emissions from most streams and rivers [Borges et al., 2015a; 

Hotchkiss et al., 2015] as well as lakes and reservoirs[Stets et al., 2009; McDonald et al., 

2013; Marcé et al., 2015; Weyhenmeyer et al., 2015; Wilkinson et al., 2016]. However, there 

is still little information about the relative contribution of these major sources to the CO2 

emissions from lotic and lentic waterbodies located within fluvial networks. Likewise, the 

role of other less known processes such as internal geochemical reactions of calcite 

precipitation usually occurring in alkaline waterbodies [Otsuki and Wetzel, 1974; Stets et al., 

2009; Nõges et al., 2016] or photochemical mineralization of organic solutes [Amon and 

Benner, 1996; Cory et al., 2014; Vachon et al., 2016] on sustaining CO2 supersaturation and 

emission in aquatic ecosystems is still largely undefined. 

 Due to the high human demand for energy and water, many fluvial networks worldwide 

have been regulated with a variety of hydraulic structures, ranging from very large dams to 

smaller reservoirs, impoundments and small weirs [Nilsson et al., 2005a; Döll et al., 2009]. 

Mediterranean fluvial networks are no exception, having mainly been modified by small 

man-made flow discontinuities such as impoundments or weirs [García-Ruiz et al., 2011]. 

Such anthropogenic changes  combined with the naturally marked seasonality of river flow in 

Mediterranean regions [Gasith and Resh, 1999; Bernal et al., 2013], modulate the fluvial 

network hydrological dynamics (i.e., flow conditions) that, in turn, govern the overall 

physicochemical [Friedl and Wüest, 2002; Poff and Hart, 2002], structural [Clavero et al., 

2004; Buffagni et al., 2009] and functional [Ward and Stanford, 1983, Acuña and Tockner, 

2010; Elosegi and Sabater, 2013; Abril et al., 2015] attributes of these fluvial networks. As a 

consequence, strong changes in the magnitude and sources of CO2 emissions in response to 

flow modification are expected for fluvial networks in this region. 
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 Here we evaluated and compared the magnitude and sources of CO2 emissions between 

lotic and lentic waterbodies within a Mediterranean fluvial network and investigated their 

response to different hydrological conditions. To test the overarching objectives, we 

measured CO2 emissions and the underlying fluxes that drive variation in CO2 concentration 

within studied segments. We then computed the relative contribution of the CO2 production 

by internal metabolism, the hydrological flux of CO2 and the CO2 flux of other non-measured 

processes to the emitted CO2 by solving segment-scale mass balances over one hydrological 

year. We hypothesized that the magnitude and the relative contribution of the different 

sources to CO2 emissions in our fluvial network would strongly depend on the waterbody 

type (i.e., lotic or lentic) as well as on the hydrological conditions (i.e., high or low water 

flow). During high flows, we expected that higher gas exchange as well as greater 

hydrological connectivity would homogenize gas dynamics along the lotic and lentic 

waterbodies of the fluvial network. Thus, we predicted generally higher fluvial network CO2 

emissions and similar rates of CO2 emissions in lentic and lotic waterbodies, with dominant 

support of sources other than CO2 produced by internal metabolism. In contrast, during low 

flows, we expected a general decrease in the gas exchange and hydrological connectivity, 

with an associated increased spatial heterogeneity in gas concentration and flux. Thus, we 

predicted generally lower fluvial network CO2 emissions, and lower CO2 emissions from 

lentic than from lotic segments, as well as a greater contribution of aquatic metabolic sources 

in lentic than in lotic waterbodies. 
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2. Methods 

2.1. Site description 

 The Fluvià River (NE Iberian Peninsula) is a 97-km long river that drains a 990-km2 

catchment covered with mixed forests (78%), agricultural (19%) and urban (3%) areas (Land 

Cover Map of Catalonia, Centre of Ecology and Forestry Research of Catalonia, 2009, 

http://www.creaf.uab.es/mcsc/). The catchment is mostly calcareous, with some areas (<15%) 

of siliceous materials (Cartographic and Geological Institute of Catalonia, 2006,  

http://www.icc.cat/). The climate in the area is typically Mediterranean; the mean monthly air 

temperature ranges from 6 ºC in January to 26 ºC in July and the mean annual precipitation is 

660 mm, with rainfall primarily occurring in autumn and spring, with occasional storms in 

summer (Data from 2004 to 2014, Catalan Water Agency, http://aca-web.gencat.cat). The 

water flow of Fluvià River has been deeply modified due to the high human demand for 

energy and water [García-Ruiz et al., 2011]. Its fluvial network presents up to 61 small-size 

structures (i.e., weirs and small impoundments) that cause flow interruptions from its 

headwaters to the river mouth [Pavón, 2010].  

 In order to cover the wide spectrum of hydrological conditions occurring in the Fluvià 

River fluvial network, we performed monthly samplings (December 2012 to November 2013) 

in a set of 12 segments situated throughout the fluvial network, from headwaters to lowlands 

(Figure 1). The segments included 8 lotic (i.e., running water reaches) and 4 lentic (i.e., 

stagnant waters associated to a dam or weir) segments. The selected study segments were 

chosen as to avoid point source pollution, and their length was defined as a compromise 

between sufficient to detect changes in the variables of interest, while maintaining relative 

homogeneity of environmental conditions (i.e., canopy cover, morphology, and subcatchment 

land use). A detailed hydromorphological description of the selected segments along the 

sampling period is shown in Table S1 in the Supporting Information. 

http://www.creaf.uab.es/mcsc/).
http://www.icc.cat/
http://www.icc.cat/
http://aca-web.gencat.cat/
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2.2. Hydromorphology 

 On each sampling date, we measured the cross-sectional water velocity (m s-1) at the 

inlet and outlet of each segment with an acoustic-Doppler velocity meter (Sontek, YSI, 

USA), and we combined this with the cross-sectional depth (m) and width (m) to derive the 

water flow (m3 s-1). We used then the hydraulic modelling software HecRas 2.2 (US Army 

Corps of Engineers, USA) to estimate the mean cross-sectional water velocity, the wet 

segment area and the water volume every ca. 100 m along the segments. The model was fed 

with the measured water flow and segment geometrical data provided by the Catalan Water 

Agency (http://aca-web.gencat.cat). We calculated the slope of each lotic segment as the 

elevation difference over the length of the segment with the geospatial-processing software 

(ArcMap v10, ESRI, USA) using a 2-meter digital elevation model (Cartographic and 

Geological Institute of Catalonia, 2006, http://www.icc.cat/).  

 In lentic segments, we obtained the surface area, volume and mean and maximum depth 

from digitized bathymetric maps constructed with a geospatial-processing software (ArcMap 

v10, ESRI, USA) using in-situ morphological data obtained from different field surveys 

performed during 2013. The water residence time (WRT; h) in both lotic and lentic segments 

was calculated by dividing the segment volume by the segment average water flow. 

  

http://aca-web.gencat.cat/
http://www.icc.cat/
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2.3. Water-air flux of CO2  

  In lotic segments we determined the CO2 flux across the water-air interface 

(             ; mmol m-2 d-1) using Fick First Law of gas diffusion: 

                                                                               (1) 

where Kh (mmol µatm-1 m-3) is the Henry’s constant for CO2 adjusted for salinity and 

temperature [Weiss, 1974; Millero, 1995],        (µatm) and        (µatm) are the mean 

partial pressures of CO2 in surface water and air, respectively, and the     (m d-1) is the 

specific gas transfer velocity for CO2. Positive values of               represent gas efflux 

from the water to the atmosphere, and negative values indicate gas influx from the 

atmosphere to the water. 

 At the inlet and the outlet of each segment, we measured the         and        with an 

infrared gas analyzer (EGM-4, PP-Systems, USA). Measurement accuracy of the EGM-4 is 

estimated to be within 1% over the calibrated CO2 range. For        measurements, the water 

samples were circulated through a membrane contactor (MiniModule, Liqui-Cel, USA) 

coupled to the gas analyzer [Teodoru et al., 2010] at 300 mL min -1. For        , the 

atmospheric air was taken approximately one meter above the water surface layer and 

circulated through the gas analyzer. We then averaged the         and         measured at the 

inlet and the outlet of each segment to obtain a mean segment        and        . 
 We estimated a mean segment gas transfer velocity from the segment slope (s; m m-1) 

and the mean segment water velocity (v; m s-1) with equation (2) in Raymond et al. [2012]: 

                                                (2) 

where      (m d-1) is the standardized gas transfer velocity at 20ºC. The      was 

transformed to the      following: 
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                                              (3) 

where Sc (dimensionless) is the Schmidt number of CO2 at the measured water temperature 

[Wanninkhof, 1992]. In addition, we compared our     derived from equation (2) with the      calculated from night-time oxygen dynamics (NTR method; [Hornberger and Kelly, 

1972]; detailed description of the method in the Supporting Information) and direct chamber 

measurements to ensure their applicability throughout the study (Figure S1 in the Supporting 

information). This validation exercise showed that the range where 95% of the y-observations 

(i.e.,      from equation (2)) fall (95th percentile) showed a clear linear relationship with the 

x-observations (i.e.,      from the NTR method and from chamber measurement made in 

lotic segments), with almost all the observations falling very close to the 1:1 reference line. 

 In lentic segments, we determined               by the enclosed chamber method 

[Frankignoulle 1988]. Briefly, we monitored the CO2 gas concentration in an opaque floating 

chamber every 4.8 s with an infrared gas analyser (EGM-4, PP-Systems, USA). In all the 

cases, flux measurements lasted until a change in CO2 of at least 10 µatm was reached, with a 

maximum duration of 600 s and a minimum of 300 s. We calculated the               from 

the rate of change of CO2 inside the chamber as follows: 

                                                           (4)        

where 
        is the change in CO2 concentration in the chamber along time in µatm s−1, V and 

S are the volume and surface area of the chamber (27.1 dm3 and 19.4 dm2, respectively), T is 

the air temperature in Kelvin and R is the ideal gas constant (L atm K−1 mol−1). We 

performed and averaged a minimum of 3 measurements in the central part of the lentic 

segment after flushing the chamber with ambient air between consecutive measurements. 
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 At each lentic segment, we determined the         and the        at the same location 

where flux was measured using the methodology described for lotic segments and we then 

derived the      from equation (1). 

 

2.4. Internal metabolic flux of CO2 

 We estimated the internal metabolic flux of CO2 (               ; mmol m2 d-1) at each 

of the 12 segments from diel open-water dissolved oxygen (DO) variations [Odum 1956]. 

The diel DO data was obtained from automatic monitoring stations equipped with optical 

probes (YSI 600OMS V2, YSI 600XLM V2, Yellow Springs, USA, and MiniDOT, PME, 

USA). The YSI 600OMS V2, YSI 600XLM V2 and MiniDOT sensors have an accuracy of 

0.1, 0.1 and 0.3 mg O2 L-1, respectively. All the probes were intercalibrated before 

deployment. 

 The metabolic rates were determined for those days coincident with the               

samplings. Specifically, in those segments were permanent monitoring stations were 

available (#8, #3 and #11, Figure 1) the metabolic rates were determined for all the monthly               samplings (n=12). In the other segments, we used temporarily installed 

monitoring stations, and the metabolism was determined in two contrasted hydrological 

situations (high flow period, end of May 2013, and low flow period, end of August 2013; 

Figure 2a).  

 We obtained the solar irradiance reaching the surface (E; W m-2) from a nearby 

meteorological station (<50 km away from the study segments) and converted it to 

photosynthetically active radiation (PAR; mmol m-2 d-1) following Kirk [1994]. 

 We calculated the gross primary production (GPP) and ecosystem respiration (ER) using 

a linear photosynthesis–irradiance relationship [Van der Bogert et al., 2007; Hanson et al., 

2008; Holtgrieve et al., 2010]:  
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                                                              (6)        

where GPP is the rate of O2 production by photosynthesis (mmol O2 m-2 d-1), ER is the 

respiratory rate of O2 consumption (mmol O2 m-2 d-1), PARt-1 is the instantaneous 

photosynthetically active radiation (mmol m-2 d-1), PAR24 is the daily accumulated 

photosynthetically active radiation (mmol m-2 d-1), z is mean water column depth (m),     is 

the exchange of O2 between the water and the atmosphere (mmol O2 m
2 d-1) and    is the 

time between measurements.     was calculated as                                   , 

where     is the specific gas transfer velocity for O2 (m d-1),      is the measured DO 

concentration in water, and        is the DO concentration in atmospheric equilibrium, 

calculated at each time step from temperature and corrected for barometric pressure from 

[Benson and Krause, 1984]. We obtained     from      by applying equation (3).  

 We estimated GPP and ER by fitting Eq. 6 to the diel DO data for each day using a 

numerical minimization algorithm (the negative log likelihood function of a normal 

distribution), using the function nlm in R (R Core Team 2013). Model performance (i.e., how 

well the model fitted observed diel changes in DO) was assessed both visually, and 

numerically through the coefficient of determination (r2 > 0.75, see examples in Figure S2 in 

the Supporting Information). Model fitting was generally good, and metabolic rates agreed 

with reported ranges for streams, rivers, lakes and reservoirs ([Hoellein et al., 2013], Table 

S2 and Figure S3 in the Supporting Information). 

 We then calculated the net ecosystem production (NEP; mmol O2 m
2 d-1) as: 

                                                 (7)         

and we converted oxygen-based rates to carbon metabolic rates (expressed as mmol C m-2 d-

1) using a CO2:O2 ratio of 138:106 [Torgersen and Branco, 2007]. For NEP > 0 (i.e., net 

autotrophy) there is more CO2 being removed from the water column by photosynthesis than 
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added by respiration, leading to negative                . In contrast, NEP < 0 (i.e., net 

heterotrophy) implies higher respiration than photosynthesis, and therefore a positive                . 

 

2.5. Source apportionment of CO2 emissions 

 In addition to the upstream inputs and internal metabolism, other processes (i.e., 

groundwater fluxes, lateral surface water fluxes and internal fluxes derived from geochemical 

reactions of calcite precipitation and photochemical mineralization of organic solutes), can 

contribute to CO2 supersaturation in each segment. We derived the flux of CO2 associated to 

these unmeasured sources (             ; mmol m-2 d-1) by applying a mass balance approach 

of CO2 assuming steady state in each individual segment:  

                                                                                         (8) 

where             (mmol m-2 d-1) is the measured flux of CO2 imported from upstream 

surface waters,              (mmol m-2 d-1) is the measured flux of CO2 exported to 

downstream surface waters,               (mmol m-2 d-1) is the measured flux of CO2 across 

the water-air interface and                  is the measured flux of CO2 derived from aerobic 

metabolic processes occurring in the segment. Not all the CO2 derived from internal 

metabolism will remain in the water as CO2 because a portion will be converted to carbonate 

or bicarbonate depending on water alkalinity and pH. Thus, we calculated                   by 

considering the geochemical speciation of inorganic carbon once CO2 from internal 

metabolism is added to the water. Concentrations of different DIC species where calculated 

from DIC, pH and temperature using the speciation software CO2SYS [Lewis and Wallace, 

1998]. 
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 To assess the relative contribution (%) of each source to the total CO2 inputs into the 

segment, we divided each of the contributing fluxes (i.e.,            ,                 and             ) by their sum. 

 

2.6. Statistical analyses  

 We tested the effect of the segment type (i.e., lotic segments, n=96; lentic segments, 

n=48) on the mean WRT,                        and      using one-way analysis of variance 

(ANOVA). We assessed the effect of the WRT on the                        and       in both 

lotic and lentic segments using linear and non-linear regressions. To determine the 

importance of the two main parameters directly involved in the CO2 emission (i.e.,          
and      ) we applied simple and multiple linear regression models. 

 We tested the effect of the segment type (i.e., lotic segments, n=32; lentic segments, 

n=10) on the CO2 fluxes that determined CO2 variations within segments (i.e.,              ,                  ,             ,                and              ) using one-way ANOVA. We 

investigated the dependency of                   on               and          in both lotic 

and lentic segments with linear and non-linear regression models. A similar approach was 

used to assess the effect of the WRT on the                   and of the WRT on the relative 

contribution of                 ,               and              . 
 When the statistical tests required it, we transformed the variables by their natural 

logarithm to meet the conditions of homogeneity of variance, normality of residuals and to 

avoid the deleterious effect of extreme large values. All statistical analyses were conducted in 

the R statistical environment (R Core Team 2013) using the Vegan package [Oksanen et al. 

2013]. Statistical tests were considered significant at p<0.05. 
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3. Results 

3.1. Hydrologic regime 

 The WRT of lotic and especially that of lentic segments showed a wide annual variation, 

driven by changes in water flow (Figure 2a; Table S1 in the Supporting Information). 

Specifically, the first part of the monitored period (from December 2012 to March 2013) was 

characterized by low water flows. During this period, the average WRT in lotic segments was 

10 h. In contrast, the presence of dams and weirs extended the WRT in lentic segments up to 

an average of 51 h. Subsequently, surface water flow in the fluvial network increased swiftly 

as a consequence of heavy rainfalls, leading to a minimum difference in WRT between 

segment types (mean WRT of lotic and lentic segments from April to May 2013 was 0.8 and 

3.7 h, respectively). Following this hydrological peak (April 2013) the surface water flow 

gradually decreased until the end of the studied period (November 2013). Consequently, the 

mean fluvial network WRT increased progressively, and the difference in WRT between lotic 

and lentic segments increased again (mean WRT of lotic and lentic segments in November 

2013 was 6.6 and 30.6 h, respectively).  

 

3.2. CO2 emissions 

 The               ranged from 627.2 to -11.2 mmol m-2 d-1 (mean = 131.9, n = 144) and 

showed a clear difference in magnitude and seasonal variation between lotic and lentic 

segments (Figure 2b). The lotic               was negatively related to WRT (             = 

-63.9 ln(WRT) + 205.3; r2 = 0.94, p<0.001, n = 12), indicating a strong dependency on 

hydrological dynamics. In contrast, a non-significant relationship between               and 

WRT was detected in lentic segments (r2 = 0.14, p = 0.29, n = 12).  
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 The               also showed a different spatial pattern in lotic and lentic segments 

(Figure S4 in the Supporting Information). In lotic segments, both the magnitude and the 

temporal variability decreased from upstream segments (i.e., headwaters streams) to lowland 

segments (i.e., river mouth). In contrast, lentic segments showed the opposite pattern, and 

emitted more CO2 and were more temporally variable when situated close to the river mouth, 

and emitted less CO2 and were less variable when they were situated upstream on the fluvial 

network. 

 Most observations (142 out of 144) were supersaturated in dissolved CO2 in relation to 

the atmosphere (Figure S5b in the Supporting Information). The        ranged from 201 to 

7213 µatm (mean = 1670, n =144). The        from lotic (range = 495 to 5274, mean = 1743, 

n = 96) and from lentic segments (range = 201 to 7313, mean = 1670, n = 48) did not differ 

significantly (ANOVA, p = 0.216; Figure 2c). The        from lotic segments showed a weak 

but statistically significant positive relationship with the WRT (       = 230.1 ln(WRT) + 

1446.5; r2 = 0.26, p =0.04, n = 12), whereas such dependency was not observed for the lentic 

segments (r2 = 0.08, p = 0.39, n = 12). 

 The      ranged from 0.04 to 15.8 m d-1 (mean = 2.1, n = 144; Figure S5a in the 

Supporting Information), and although variable, it was significantly higher (ANOVA, 

p<0.001; Figure 2d) in lotic segments (range = 0.36 to 15.8 m d-1, mean = 2.71, n = 96) than 

in lentic segments (range = 0.04 to 12.38 m d-1, mean = 0.51, n = 48). Likewise, 

the      from lotic segments clearly responded to the temporal hydrological fluctuations and 

gradually decreased with increasing WRT (     = -2.1 ln(WRT) + 5.4; r2 = 0.80, p<0.001, n 

= 12). In contrast,      from lentic segments remained relatively stable along the WRT 

gradient (r2 = 0.03, p = 0.66, n = 12).  



 

 
© 2016 American Geophysical Union. All rights reserved. 

 Among the two main parameters directly driving               (i.e.,         and      ; 
Equation 1), the      exhibited a significant positive relationship with the               

(             = 31.1      + 46.2; r2 = 0.61, p<0.001, n = 144; Figure S5a in the Supporting 

Information), while no significant dependency between         and               was 

detected (r2 = 0.02, p = 0.080, n = 144; Figure S5b in the Supporting Information). The 

multiple regression analysis also revealed that      and         explained respectively 86% 

and 0% of the total variation in              . However,         explained a higher proportion 

of the variance of               (13.9%) when only lentic segments were included in the 

model. 

 

3.3. Internal metabolism 

 While all segments where we estimated                  (n = 42) were supersaturated in 

CO2, only 71% of them showed positive                  values (i.e., internal metabolic 

production of CO2; Figure 3 and Table S2 in the Supporting Information). This discrepancy 

was more evident in lentic segments, of which only 40% showed positive                 , 
and even in most cases these were only slightly positive.                   did not show any 

significant relationship with               or         (Figure 3), neither when pooling all the 

data nor when considering lotic and lentic segments separately. 

                  in both lotic segments (r2 = 0.62, p<0.001, n=30) and lentic segments (r2 

= 0.59, p=0.008, n=12) showed a significant positive linear relationship with WRT (Figure 

4).. However,                   increased more rapidly with increasing WRT in lotic 

(slope=0.08 ± 0.01) than in lentic segments (slope=0.02 ± 0.006). 
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3.4. Source apportionment of CO2 emissions 

 The             and the            , were the dominant sources of CO2 that sustained the               in the fluvial network (50.2 and 31.9% on average, respectively; Figure 5). A 

similar influence of the             and the             on the               was detected in 

lotic segments (43.4 and 41.1%, respectively), whereas a stronger influence of upstream 

inputs on the               was detected in lentic segments (73.9%). We also detected 

differences in the contribution of                          to the               between 

segment typologies. Whereas                          contributed an average of 24% in lotic 

segments, the mean contribution of                          to the               was 

negligible (~ 0%) in lentic segments (Figure 5). 

 The relative contribution of                   to the               in lotic segments 

showed a positive relationship with WRT (contribution of                  = 18.6 ln(WRT) + 

4.1; r2 = 0.65, p<0.001, n = 32; Figure 6a), and contributed up to 40-70% of the emitted CO2 

in situations of high WRT. In contrast, no hydrological dependence of the contribution of                  to the               was detected in the case of lentic segments. The 

contribution of             to the               showed a negative relationship with the WRT 

(contribution of             = 52.009 e-0.602 ln(WRT); r2 = 0.44, p<0.001, n = 32; Figure 6b) in 

lotic segments, while no hydrological dependence of the contribution of             to the               was detected in the case of lentic segments. Finally, the contribution of              to the              , which was highly variable along the fluvial network and 

during the studied period, was not related to the WRT, neither in lotic nor in lentic segments 

(Figure 6c). 
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4. Discussion 

Here, we showed that the CO2 emitted from the interconnected lotic and lentic 

waterbodies found along a Mediterranean fluvial network mostly derives from sources other 

than internal metabolism. Such sources may include surface and subsurface hydrological 

inputs of CO2 derived from soil respiration and mineral weathering within the catchment, 

internal geochemical reactions of calcite precipitation and internal photochemical 

mineralization of organic solutes (see below). Furthermore, both the magnitude of CO2 

emissions and the relative contribution of the different sources strongly depended on the 

hydrological dynamics of the fluvial network, being particularly dependent on them in the 

lotic segments. 

 Our results highlight the importance of CO2 emissions from running waters compared to 

slow-moving waterbodies associated to weirs and small impoundments. In general, low-order 

streams deserve special attention since they cover a large surface area [Butman and Raymond, 

2011; Downing et al., 2012; Raymond et al., 2013]. Several studies have shown that stream 

emissions dominate total aquatic CO2 emissions [Kokic et al., 2015] at regional [Lundin et 

al., 2013; Wallin et al., 2013] and global scales [Raymond et al., 2013]. Our study adds to 

current knowledge by accounting for the pronounced spatial and temporal variability in 

streams and impounded waterbodies within fluvial networks. Specifically, we show that CO2 

emissions from headwater streams dominate aquatic CO2 loss, especially during periods of 

high flows, when most of the stream network is hydrologically connected [Benstead and 

Leigh, 2012; Downing, 2012; Bernal et al., 2013].  
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 Our results also agree with previous findings on the importance of      as the major 

driver of the spatial and temporal variability in fluvial network CO2 emissions [Wallin et al., 

2011; Gómez-Gener et al., 2015; Kokic et al., 2015; Long et al., 2015]. However, the 

complexity of the hydrological regime of Mediterranean fluvial networks leads to particular 

situations (in space and time) where the        can exert a significant control on CO2 

emissions. These situations mainly occurred in lentic segments during low flows, when dams 

and weirs create discontinuities that decreased      and led to higher supersaturation of CO2. 

Extended periods of low flows as a consequence of intensive use of the water resources or 

drought [Gasith and Resh, 1999; Gibson et al., 2005] may lead to a higher increase of lentic 

habitats at the expenses of lotic environments in many fluvial networks [Sabater, 2008]. 

Consequently, the dominance of        on controlling the CO2 emissions under situations of 

physical limitation induced by low flows [Demars and Manson, 2013; Gómez-Gener et al., 

2015] will probably be more common in the future. 

 Internal biomineralization of aquatic and terrestrial organic matter (here referred to as 

internal metabolism), has commonly been considered to be the main factor driving CO2 

supersaturation in lakes and rivers [Cole et al., 2000; Duarte and Prairie, 2005]. Therefore, if 

no other processes are adding or removing CO2 besides internal metabolism, the CO2 present 

in the system and emitted to the atmosphere should be in line with the degree of net 

heterotrophy in the corresponding aquatic ecosystems. Our results showed a strong 

disagreement with this perspective, since the CO2 produced by internal metabolism and both 

the CO2 present in the segment and the CO2 emitted to the atmosphere did not match (Figure 

3). In fact, some of the supersaturated segments were actually net autotrophic, showing 

negative                  values (overall, 60% of supersaturated lentic and 20% of lotic 

segments were found to have                 < 0; Figure 3b). In those situations, internal 

metabolism was acting as a net sink for inorganic carbon, but the magnitude of this sink was 
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not sufficient to maintain dissolved CO2 concentrations below atmospheric levels. These 

results support previous findings that already indicated that sources other than internal 

metabolism can sustain CO2 supersaturation in freshwaters [Stets et al., 2009; McDonald et 

al., 2013; Borges et al., 2015; Hotchkiss et al., 2015; Marcé et al., 2015]. 

 Our mass balance of CO2 (Table 1; Figure 7) highlights a crucial role of hydrological 

inputs and other sources on sustaining the CO2 emissions along the fluvial network. Several 

studies in lentic systems point towards the same direction. For example, Stets et al. [2009] 

showed that the sum of surface and subsurface hydrological inputs of DIC accounted for 41% 

to 100% of the observed CO2 release from two lakes situated in north-central Minnesota, 

USA. Likewise, McDonald et al. [2013] and Weyhenmeyer et al. [2015] showed that the 

surface and subsurface hydrological inputs of DIC accounted for a significant fraction of the 

total CO2 emitted from a large number of lakes and reservoirs in the contiguous United States 

and Scandinavia, respectively. Similarly, Marcé et al. [2015] showed that in up to 57% of the 

lakes and reservoirs worldwide, CO2 supersaturation could be related to alkalinity inputs 

from the catchment, suggesting mineral weathering as a fundamental regulator of the DIC 

coming from terrestrial ecosystems Also, Wilkinson et al. [2016] using high-frequency time 

series of O2 and CO2 confirmed the large influence of hydrological inputs on the CO2 

emissions, even in lakes where internal CO2 uptake had been experimentally increased with 

nutrients. In the same direction, a recent study in lotic systems [Hotchkiss et al. 2015] showed 

that CO2 produced by aquatic metabolism contributes on average to only 28% of CO2 evasion 

from streams and rivers with flows ranging between 0.0001 and 19,000 m3 s−1 in the 

contiguous United States. Our study adds to current knowledge by integrating the CO2 fluxes 

determining CO2 variation within lotic and lentic waterbodies that are interconnected in 

complex fluvial networks.   
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 Despite the dominance of hydrological inputs and other sources to the net CO2 emission, 

the contribution of internal metabolism was not negligible in lotic segments (Table 1; Figure 

7), where we detected a predominance of net heterotrophy for most of the year. In contrast, 

lentic segments had much lower and balanced fluxes that varied between net autotrophy and 

heterotrophy, thus leading to a generally much smaller contribution of internal metabolism to 

the lentic CO2 emissions (Table 1; Figure 7). 

 The relationships of the contribution of upstream inflow and internal metabolism to the 

CO2 emissions with WRT in lotic segments reveals a clear coupling between the hydrological 

dynamics and the origin of CO2 emissions (Figure 6a and 6b). During high flow periods, both 

the hydrological connectivity within the fluvial network and between the fluvial network and 

the catchment is maximized [Bernal et al., 2013]. This favors longitudinal and lateral 

pathways of CO2 supply along the fluvial network [Wallin et al., 2010; Campeau and del 

Giorgio, 2013; Kokic et al., 2015] and an efficient exchange between the adjacent terrestrial 

ecosystems and the stream channels [Stets et al., 2009; Davidson et al., 2010; McDonald et 

al., 2013; Hotchkiss et al., 2015]. At the same time, reduced WRT during high flows limits 

the capacity of the biota to interact with organic substrates [Battin et al., 2009b], thereby 

constraining the internal metabolic pathway of CO2 supply [Hotchkiss et al., 2015]. 

Therefore, situations of high flows and short WRT lead to a higher contribution of externally 

derived CO2 and a lower contribution of internal metabolically derived CO2 to the finally 

emitted CO2 (Figure 6). In contrast, during periods of low flows and long WRT, the reduced 

hydrological connectivity hampers the supply of CO2 from upstream to downstream waters as 

well as from adjacent terrestrial ecosystems to the fluvial network. Additionally, organic 

matter processing is favored through increased interaction with biological actors [Battin et 

al., 2009b]. Altogether, this leads to a higher contribution of internal metabolic CO2 and a 
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lower contribution of externally derived CO2 to the finally emitted CO2 during low flows and 

long WRT. 

 Interestingly, the above hydro-biogeochemical model does not apply to lentic 

waterbodies. Our results indicate that the contribution of the upstream inflow and internal 

metabolism to the CO2 efflux from lentic waters was independent of hydrological variation 

(Figures 6a and 6b). The contribution of the upstream inflow was very variable and did not 

follow any trend along the WRT axis, while the contribution of the internal metabolism 

remained fairly constant and close to the 0% line. A balanced metabolism (i.e., NEP ~0) is 

expected in aquatic systems over longer durations and for larger spatial scales, if burial is 

minimal [Staehr et al., 2012; Hotchkiss et al., 2015]. Theoretically, this balance arises 

because, given sufficient time, any increase in primary production yields organic matter, 

which in a relatively closed system, will be proportionally respired. Alternatively, any 

increases in respiration will release inorganic nutrients that proportionally stimulate primary 

production [Staehr et al., 2012]. The higher WRT in lentic segments combined with their 

higher resistance to hydrological perturbations will therefore favor a balanced metabolism 

that leads to a low contribution of internal metabolism to CO2 emissions. 

 The variance around the contribution of other non-measured sources to the CO2 

emissions with WRT in both lotic and lentic waterbodies (Figure 6c) reveals a rather 

hydrological independence of this third component. The flux of CO2 coming from these other 

non-estimated sources includes a set of diverse processes, apart from internal metabolism and 

upstream inputs, that can add or remove CO2 to the studied segments (i.e., groundwater 

fluxes, lateral surface water fluxes and internal fluxes derived from geochemical reactions of 

calcite precipitation and photochemical mineralization of organic solutes). Therefore, being 

not surprising that such diverse set of CO2 sources and sinks in origin and magnitude) may 

respond differently to hydrological variations.  
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 Groundwater inputs, typically composed by high CO2 and low O2, can alter the 

chemistry of surface waters, especially of those small lotic [Öquist et al., 2009; Hotchkiss et 

al., 2015] and lentic [Hanson et al., 2006; López et al., 2011] waterbodies situated along the 

fluvial network. Similarly, surface water lateral inputs (i.e., small low-order streams that flow 

into the segments) draining adjacent terrestrial ecosystems (i.e., riparian and upland) may 

also affect the CO2 dynamics in the receiving waterbodies. 

 Precipitation and dissolution of carbonate minerals may, respectively, produce or 

consume CO2 in fluvial networks. Considering the high alkalinity of our fluvial network 

(mean=4.1 meq L-1, n=144), we suggest that calcite precipitation may be a relevant process 

contributing to the CO2 supersaturation and emission [Otsuki and Wetzel, 1974; Stets et al., 

2009; Nõges et al., 2016]. However, further investigation is needed in order to understand 

how and to what extent carbonate precipitation and dissolution reactions may potentially 

affect the CO2 dynamics and further regulate the CO2 emissions from fluvial network. 

 The photo-chemical mineralization of dissolved organic matter can contribute to a great 

extent of the C processing [Cory et al., 2014] and CO2 emissions from inland waters [Koehler 

et al., 2014]. This reaction also influence the O2 dynamics of our fluvial network [Amon and 

Benner, 1996], and thus may contribute to the metabolism estimates calculated using diel 

changes in dissolved oxygen (O2). 

 In conclusion, this work represents a novel attempt to integrate a mass balance of CO2 

fluxes into the complex temporal and spatial dynamism of an anthropogenically altered 

fluvial network. Using a steady-state approach we were able to integrate most sources 

affecting CO2 fluxes along the fluvial network. Still, uncertainty existed related to the 

substantial contribution of CO2 from other non-measured sources, and this would require 

further efforts to describe the drivers of the other sources (apart from internal metabolism and 

external surface hydrological) under non-steady state conditions. This will enable a better 
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understanding of the conditions regulating the seasonal dynamics of CO2 emissions at the 

fluvial network scale. But, because of the high human demand for energy and water, few 

fluvial networks worldwide remain free from impoundment over the entire course, and 

contrarily, they typically result in an alternating series of lentic and lotic [Ward and Stanford, 

1983; Nilsson et al., 2005b; Döll et al., 2009]. Therefore, we suggest that our findings should 

not be restricted to Mediterranean fluvial networks, but also useful for predicting the 

integrated responses of fluvial networks that share similar spatial configurations. 

 

Acknowledgements 

 This research was funded by the Spanish Ministry of Economy and Competitiveness 

through the project FUNSTREAM (CGL2014-58760-C3-1-R). Ll. Gómez-Gener and J. P. 

Casas-Ruiz were additionally supported by FPI predoctoral grants (BES-2012-059743 and 

BES-2012-059655). We thank Meritxell Abril, Carmen Gutiérrez and Lorenzo Proia for field 

and laboratory assistance. We are grateful to R.A. Sponseller for his constructive comments 

on this manuscript. All the data used for the results of this paper is available upon request to 

the corresponding author. 

  



 

 
© 2016 American Geophysical Union. All rights reserved. 

References 

Abril, M., I. Muñoz, J. P. Casas-Ruiz, L. Gómez-Gener, M. Barceló, F. Oliva, and M. 

Menéndez (2015), Effects of water flow regulation on ecosystem functioning in a 

Mediterranean river network assessed by wood decomposition, Sci. Total Environ., 

517(1), 57–65, doi:10.1016/j.scitotenv.2015.02.015. 

Acuña, V., and K. Tockner (2010), The effects of alterations in temperature and flow regime 

on organic carbon dynamics in Mediterranean river networks, Glob. Chang. Biol., 16(9), 

2638-2650, doi:10.1111/j.1365-2486.2010.02170.x. 

Amon, R. M. W., and R. Benner (1996), Photochemical and microbial consumption of 

dissolved organic carbon and dissolved oxygen in the Amazon River system, Geochim. 

Cosmochim. Acta, 60(10), 1783–1792, doi:10.1016/0016-7037(96)00055-5. 

Aufdenkampe, A. K., E. Mayorga, P. a Raymond, J. M. Melack, S. C. Doney, S. R. Alin, R. 

E. Aalto, and K. Yoo (2011), Riverine coupling of biogeochemical cycles between land, 

oceans, and atmosphere, Front. Ecol. Environ., 9(1), 53–60, doi:10.1890/100014. 

Bade, D. L. (2009), Gas exchange across the air-water interface, in Encyclopedia of Inland 

Waters, Academic Press: Oxford, 2009, pp 70–78. 

Battin, T. J., S. Luyssaert, L. A. Kaplan, A. K. Aufdenkampe, A. Richter, and L. J. Tranvik 

(2009a), The boundless carbon cycle, Nat. Geosci., 2(9), 598–600, 

doi:10.1038/ngeo618. 

Battin, T. J., L. A. Kaplan, S. Findlay, C. S. Hopkinson, E. Marti, A. I. Packman, J. D. 

Newbold, and F. Sabater (2009b), Biophysical controls on organic carbon fluxes in 

fluvial networks, Nat. Geosci., 2(8), 595–595, doi:10.1038/ngeo602. 

Benson, B. B., and D. Krause (1984), The concentration and isotopic fractionation of oxygen 

dissolved in freshwater and seawater in equilibrium with the atmosphere, Limnol. 

Oceanogr., 29(3), 620–632, doi:10.4319/lo.1984.29.3.0620. 

Benstead, J. P., and D. S. Leigh (2012), An expanded role for river networks, Nat. Geosci., 5, 

678–679, doi:10.1038/ngeo1593. 

Bernal, S., D. Schiller, F. Sabater, and E. Martí (2013), Hydrological extremes modulate 

nutrient dynamics in mediterranean climate streams across different spatial scales, 

Hydrobiologia, 719(1), 31–42, doi:10.1007/s10750-012-1246-2. 



 

 
© 2016 American Geophysical Union. All rights reserved. 

Borges, A. V. et al. (2015a), Globally significant greenhouse-gas emissions from African 

inland waters, Nat. Geosci., 8, 637–642, doi:10.1038/ngeo2486. 

Buffagni, A., D. G. Armanini, and S. Erba (2009), Does the lentic-lotic character of rivers 

affect invertebrate metrics used in the assessment of ecological quality?, J. Limnol., 

68(1), 92–105, doi:10.4081/jlimnol.2009.92. 

Butman, D., and P. a. Raymond (2011), Significant efflux of carbon dioxide from streams 

and rivers in the United States, Nat. Geosci., 4(12), 839–842, doi:10.1038/ngeo1294. 

Campeau, A., and P. del Giorgio (2013), Patterns in CH4 and CO2 concentrations across 

boreal rivers: Major drivers and implications for fluvial greenhouse emissions under 

climate change scenarios, Glob. Chang. Biol., 20(4), 1–14, doi:10.1111/gcb.12479. 

Clavero, M., F. Blanco-Garrido, and J. Prenda (2004), Fish fauna in Iberian Mediterranean 

river basins: Biodiversity, introduced species and damming impacts, Aquat. Conserv. 

Mar. Freshw. Ecosyst., 14(6), 575–585, doi:10.1002/aqc.636. 

Cole, J. J., M. L. Pace, S. R. Carpenter, and J. F. Kitchell (2000), Persistence of net 

heterotrophy in lakes during nutrient addition and food web manipulations, Limnol. 

Oceanogr., 45(8), 1718–1730, doi:10.4319/lo.2000.45.8.1718. 

Cole, J. J. et al. (2007), Plumbing the Global Carbon Cycle: Integrating Inland Waters into 

the Terrestrial Carbon Budget, Ecosystems, 10(1), 172–185, doi:10.1007/s10021-006-

9013-8. 

Cory, R. M., C. P. Ward, B. C. Crump, and G. W. Kling (2014), Sunlight controls water 

column processing of carbon in arctic fresh waters, Science, 345, 925–928, 

doi:10.1126/science.1253119. 

Davidson, E. a., R. O. Figueiredo, D. Markewitz, and A. K. Aufdenkampe (2010), Dissolved 

CO2 in small catchment streams of eastern Amazonia: A minor pathway of terrestrial 

carbon loss, J. Geophys. Res. Biogeosciences, 115(4), 1–6, doi:10.1029/2009JG001202. 

Demars, B. O. L., and J. R. Manson (2013), Temperature dependence of stream aeration 

coefficients and the effect of water turbulence: a critical review, Water Res., 47(1), 1–

15, doi:10.1016/j.watres.2012.09.054. 

Döll, P., K. Fiedler, and J. Zhang (2009), Global-scale analysis of river flow alterations due 

to water withdrawals and reservoirs, Hydrol. Earth Syst. Sci. Discuss., 6(4), 4773–4812, 

doi:10.5194/hessd-6-4773-2009. 



 

 
© 2016 American Geophysical Union. All rights reserved. 

Downing, J. A., J. J. Cole, C. M. Duarte, J. J. Middelburg, J. M. Melack, Y. T. Prairie, P. 

Kortelainen, R. G. Striegl, W. H. McDowell, and L. J. Tranvik (2012), Global 

abundance and size distribution of streams and rivers, Inl. Waters, 2(4), 229–236, 

doi:10.5268/IW-2.4.502. 

Duarte, C. M., and Y. T. Prairie (2005), Prevalence of Heterotrophy and Atmospheric CO2 

Emissions from Aquatic Ecosystems, Ecosystems, 8(7), 862–870, doi:10.1007/s10021-

005-0177-4. 

Elosegi, A., and S. Sabater (2013), Effects of hydromorphological impacts on river 

ecosystem functioning: A review and suggestions for assessing ecological impacts, 

Hydrobiologia, 712(1), 129–143, doi:10.1007/s10750-012-1226-6. 

Frankignoulle, M. (1988), Field measurements of air-sea CO2 exchange, Limnol. Ocean., 

33(3), 313–322. 

Friedl, G., and A. Wüest (2002), Disrupting biogeochemical cycles - Consequences of 

damming, Aquat. Sci., 64(1), 55–65, doi:10.1007/s00027-002-8054-0. 

García-Ruiz, J. M., J. I. López-Moreno, S. M. Vicente-Serrano, T. Lasanta–Martínez, and S. 

Beguería (2011), Mediterranean water resources in a global change scenario, Earth-

Science Rev., 105(3-4), 121–139, doi:10.1016/j.earscirev.2011.01.006. 

Gasith, A., and V. H. Resh (1999), Streams in Mediterranean climate regions: Abiotic 

influences and biotic responses to predictable seasonal events, Annu. Rev. Ecol. Syst., 

30, 51–81, doi:http://dx.doi.org/10.1146/annurev.ecolsys.30.1.51. 

Gibson, C. A., J. L. Meyer, N. L. Poff, L. E. Hay, and A. Georgakakos (2005), Flow regime 

alterations under changing climate in two river basins: Implications for freshwater 

ecosystems, River Res. Appl., 21(8), 849–864, doi:10.1002/rra.855. 

Gómez-Gener, L., B. Obrador, D. von Schiller, R. Marcé, J. P. Casas-Ruiz, L. Proia, V. 

Acuña, N. Catalán, I. Muñoz, and M. Koschorreck (2015), Hot spots for carbon 

emissions from Mediterranean fluvial networks during summer drought, 

Biogeochemistry, 125(3), 409–426, doi:10.1007/s10533-015-0139-7. 

Hanson, P. C., S. R. Carpenter, D. E. Armstrong, E. H. Stanley, and T. K. Kratz (2006), Lake 

dissolved inorganic carbon and dissolved oxygen: Changing drivers from days to 

decades, Ecol. Monogr., 76(3), 343–363, doi:10.1177/0888325406287176. 

Hanson, P. C., S. R. Carpenter, N. Kimura, C. W, S. P. Cornelius, and T. K. Kratz (2008), 



 

 
© 2016 American Geophysical Union. All rights reserved. 

Evaluation of metabolism models for free-water dissolved oxygen methods in lakes, 

Limnol. Oceanogr. Methods, 6(3), 454–465, doi:10.4319/lom.2008.6.454. 

Hoellein, T. J., D. A. Bruesewitz, and D. C. Richardson (2013), Revisiting Odum (1956): A 

synthesis of aquatic ecosystem metabolism, Limnol. Oceanogr., 58(6), 2089–2100, 

doi:10.4319/lo.2013.58.6.2089. 

Holtgrieve, G. W., D. E. Schindler, T. A. Branch, and Z. T. Amar (2010), Simultaneous 

quantification of aquatic ecosystem metabolism and reaeration using a Bayesian 

statistical model of oxygen dynamics, Limnol. Oceanogr., 55(3), 1047–1062, 

doi:10.4319/lo.2010.55.3.1047. 

Hornberger G.M., Kelly M.G. (1972). The determination of primary production in a stream 

using an exact solution to the oxygen balance equation. Water Resources Bulletin 8, 

795–801. 

Hotchkiss, E. R., R. O. Hall Jr, R. A. Sponseller, D. Butman, J. Klaminder, H. Laudon, M. 

Rosvall, and J. Karlsson (2015), Sources of and processes controlling CO2 emissions 

change with the size of streams and rivers, Nat. Geosci. 8, 696–699, 

doi:10.1038/ngeo2507. 

Humborg, C., C.-M. Mörth, M. Sundbom, H. Borg, T. Blenckner, R. Giesler, and V. Ittekkot 

(2010), CO2 supersaturation along the aquatic conduit in Swedish watersheds as 

constrained by terrestrial respiration, aquatic respiration and weathering, Glob. Chang. 

Biol., 16(7), 1966–1978, doi:10.1111/j.1365-2486.2009.02092.x. 

Koehler, B., T. Landelius, G. A. Weyhenmeyer, N. Machida, and L. J. Tranvik (2014), 

Sunlight-induced carbon dioxide emissions from inland waters, Glob. Biogeochem. 

Cylces, 28, 696–711, doi:10.1002/2014GB004850. 

Kokic, J., M. B. Wallin, H. E. Chmiel, B. A. Denfeld, and S. Sobek (2015), Carbon dioxide 

evasion from headwater systems strongly contributes to the total export of carbon from a 

small boreal lake catchment, Geophys. Res. Biogeosciences, 120, 13–28, 

doi:10.1002/2014JG002706. 

Kirk JTO (1994), Light and photosynthesis in aquatic ecosystems, Cambridge University 

Press, Cambridge. 



 

 
© 2016 American Geophysical Union. All rights reserved. 

Lewis, E., and D. W. R. Wallace (1998), Program Developed for CO2 System Calculations. 

ORNL/CDIAC-105, Carbon dioxide Information Analysis Center, Oak Ridge Natl. Lab. 

Oak Ridge, Tenn. 

Long, H., L. Vihermaa, S. Waldron, T. Hoey, S. Quemin, and J. Newton (2015), Hydraulics 

are a first-order control on CO2 efflux from fluvial systems, J. Geophys. Res. 

Biogeosciences, 120, 1912–1922, doi:10.1002/2015JG002955.  

López, P., R. Marcé, and J. Armengol (2011), Net heterotrophy and CO2 evasion from a 

productive calcareous reservoir: Adding complexity to the metabolism-CO2 evasion 

issue, J. Geophys. Res., 116(G2), G02021, doi:10.1029/2010JG001614. 

Lundin, E. J., R. Giesler, A. Persson, M. S. Thompson, and J. Karlsson (2013), Integrating 

carbon emissions from lakes and streams in a subarctic catchment, J. Geophys. Res. 

Biogeosciences, 118(3), 1200–1207, doi:10.1002/jgrg.20092. 

Marcé, R., B. Obrador, J. Morguí, J. L. Riera, P. López, and J. Armengol (2015), Carbonate 

weathering as a driver of CO2 supersaturation in lakes, Nat. Geosci., 8, 107–111, 

doi:10.1038/NGEO2341. 

McDonald, C. P., E. G. Stets, R. G. Striegl, and D. Butman (2013), Inorganic carbon loading 

as a primary driver of dissolved carbon dioxide concentrations in the lakes and 

reservoirs of the contiguous United States, Global Biogeochem. Cycles, 27(2), 285–295, 

doi:10.1002/gbc.20032. 

Millero, F. (1995), Thermodynamics of the carbon dioxide system in the oceans, Geochim. 

Cosmochim. Acta, 59(4), 661–677, doi:10.1016/0016-7037(94)00354-O. 

Nilsson, C., C. Reidy, M. Dynesius, and C. Revenga (2005), Fragmentation and flow 

regulation of the world’s large river systems, Science, 308(5720), 405–408, 

doi:10.1126/science.1107887. 

Nõges, P., F. Cremona, A. Laas, T. Martma, E. I. Rõõm, K. Toming, M. Viik, S. Vilbaste, 

and T. Nõges (2016), Role of a productive lake in carbon sequestration within a 

calcareous catchment, Sci. Total Environ., 550, 225–230, 

doi:10.1016/j.scitotenv.2016.01.088. 

Odum, T. H. (1955), Primary Production in Flowing Waters, Limnol. Ocean., 1(2), 102–117. 

Oksanen, J, Blanchet F.G., Kindt R. et al. (2013). Vegan: com- munity ecology package. R 

package version 2.0-10. http:// CRAN.R-project.org/package=vegan 



 

 
© 2016 American Geophysical Union. All rights reserved. 

Öquist, M. G., M. Wallin, J. Seibert, K. Bishop, and H. Laudon (2009), Dissolved Inorganic 

Carbon Export Across the Soil / Stream Interface and Its Fate in a Boreal Headwater 

Stream, Environ. Sci. Technol., 43(19), 7364–7369. 

Otsuki, A., and R. G. Wetzel (1974), Calcium and total alkalinity budgets and calcium 

carbonate precipitation of a small hard-water lake, Arch. Hydrobiol., 73, 14–30. 

Pavón, D. (2010), Desarrollo y decadencia hidroeléctrica en los pequeños ríos del litoral 

mediterráneo catalán. El caso de las cuencas del Fluvià y de la Muga, Rev. Hist. Ind., 

42(1), 43–87. 

Poff, N. L., and D. D. Hart (2002), How Dams Vary and Why It Matters for the Emerging 

Science of Dam Removal, Bioscience, 52(8), 659–668, doi:10.1641/0006-

3568(2002)052[0659:HDVAWI]2.0.CO;2. 

Raymond, P. A., C. J. Zappa, D. Butman, T. L. Bott, J. Potter, P. Mulholland,  a. E. Laursen, 

W. H. McDowell, and D. Newbold (2012), Scaling the gas transfer velocity and 

hydraulic geometry in streams and small rivers, Limnol. Oceanogr. Fluids Environ., 2, 

41–53, doi:10.1215/21573689-1597669. 

Raymond, P. A. et al. (2013), Global carbon dioxide emissions from inland water, Nature, 

503, 355–359, doi:10.1038/nature12760. 

R Development Core Team (2008). R: A language and environment for statistical computing. 

R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL 

http://www.R-project.org. 

Sabater, S. (2008), Alterations of the global water cycle and their effects on river structure, 

function and services, Freshw. Rev., 1(1), 75–88, doi:10.1608/FRJ-1.1.5. 

Staehr, P. a., J. M. Testa, W. M. Kemp, J. J. Cole, K. Sand-Jensen, and S. V. Smith (2012), 

The metabolism of aquatic ecosystems: History, applications, and future challenges, 

Aquat. Sci., 74(1), 15–29, doi:10.1007/s00027-011-0199-2. 

Stets, E. G., R. G. Striegl, G. R. Aiken, D. O. Rosenberry, and T. C. Winter (2009), 

Hydrologic support of carbon dioxide flux revealed by whole-lake carbon budgets, J. 

Geophys. Res. Biogeosciences, 114(1), 1–14, doi:10.1029/2008JG000783. 

Teodoru, C. R., Y. T. Prairie, and P. a. del Giorgio (2010), Spatial Heterogeneity of Surface 

CO2 Fluxes in a Newly Created Eastmain-1 Reservoir in Northern Quebec, Canada, 

Ecosystems, 14(1), 28–46, doi:10.1007/s10021-010-9393-7. 



 

 
© 2016 American Geophysical Union. All rights reserved. 

Torgersen, T., and B. Branco (2007), Carbon and oxygen dynamics of shallow aquatic 

systems: Process vectors and bacterial productivity, J. Geophys. Res., 112, G03016, 

doi:10.1029/2007JG000401.  

Tranvik, L., J. Downing, and J. Cotner (2009), Lakes and reservoirs as regulators of carbon 

cycling and climate, Limnol. Ocean., 54(1), 2298–2314, 

doi:10.4319/lo.2009.54.6_part_2.2298. 

Van de Bogert, M. C., S. R. Carpenter, J. J. Cole, and M. L. Pace (2007), Assessing pelagic 

and benthic metabolism using free water measurements, Limnol. Oceanogr., 5, 145–155, 

doi:10.4319/lom.2007.5.145. 

Von Schiller, D., R. Marcé, B. Obrador, L. Gómez-Gener, J. P. Casas-Ruiz, V. Acuña, and 

M. Koschorreck (2014), Carbon dioxide emissions from dry watercourses, Inland 

Waters 4, 377–382, doi:10.5268/IW-4.4.746. 

Wallin, M., I. Buffam, M. Öquist, H. Laudon, and K. Bishop (2010), Temporal and spatial 

variability of dissolved inorganic carbon in a boreal stream network: Concentrations and 

downstream fluxes, J. Geophys. Res., 115, 1–12, doi:10.1029/2009JG001100. 

Wallin, M. B., M. G. Öquist, I. Buffam, M. F. Billett, J. Nisell, and K. H. Bishop (2011), 

Spatiotemporal variability of the gas transfer coefficient (KCO2) in boreal streams: 

Implications for large scale estimates of CO2 evasion, Global Biogeochem. Cycles, 25, 

GB3025, doi:10.1029/2010GB003975.  

Wallin, M. B., T. Grabs, I. Buffam, H. Laudon, A. Ågren, M. G. Öquist, and K. Bishop 

(2013), Evasion of CO2 from streams - The dominant component of the carbon export 

through the aquatic conduit in a boreal landscape, Glob. Chang. Biol., 19, 785–797, 

doi:10.1111/gcb.12083. 

Wanninkhof, R. (1992), Relationship between wind speed and gas exchange over the ocean, 

J. Geophys. Res. Ocean., 97(92), 7373–7382, doi:10.1029/92JC00188. 

Ward, J. V, and J. a Stanford (1983), Serial Discontinuity Concept of Lotic Ecosystems, Dyn. 

Lotic Syst. Ann Arbor Sci. Ann Arbor, 29–42. 

Wehrli, B. (2013), Conduits of the carbon cycle, Nature, 503(21), 9–10, 

doi:10.1038/503346a. 

Weiss, R. (1974), Carbon dioxide in water and seawater: the solubility of a non-ideal gas, 

Mar. Chem., 2(3), 203–215, doi:10.1016/0304-4203(74)90015-2. 



 

 
© 2016 American Geophysical Union. All rights reserved. 

Weyhenmeyer, G. A., S. Kosten, M. B. Wallin, L. J. Tranvik, E. Jeppesen, and F. Roland 

(2015), Significant fraction of CO2 emissions from boreal lakes derived from hydrologic 

inorganic carbon inputs, 8, 933-936, doi:10.1038/NGEO2582. 

Wilkinson, G. M., C. D. Buelo, J. J. Cole, and M. L. Pace (2016), Exogenously produced 

CO2 doubles the CO2 efflux from three north temperate lakes, Geophys. Res. Lett., 

doi:10.1002/2016GL067732.   

  



 

 
© 2016 American Geophysical Union. All rights reserved. 

 

Figure 1. Location of the Fluvià River catchment in Catalonia (NE Iberian Peninsula), with 

the corresponding position of the study segments. Dark blue circles indicate lotic segments 

(n=8) and light green circles lentic segments (n=4). See Table S1 in the supporting 

information for a detailed description of the hydromorphological characteristics of the 

segments. 



 

 
© 2016 American Geophysical Union. All rights reserved. 

 

Figure 2. Temporal variation (from December 2012 to November 2013) of (a) water 

residence time (WRT), (b) CO2 emissions (             ), (c) partial pressure of CO2 in water 

(       ) and (d) specific gas transfer velocity for CO2 (    ). Solid lines represent monthly 

averages for the lotic (blue, n=8) and lentic (green, n=4) segments. Shaded regions are 

monthly standard errors (SE) that represent spatial variations. The dashed grey line in panel 

(a) represents the water flow at the outlet of the catchment. The horizontal dashed line in 

panel (c) represents the average partial pressure of CO2 in air (        ) for all the segments 

(418 µatm). 
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Figure 3. Relationship between the internal metabolic flux of CO2 (               ) and (a) 

the CO2 emissions (              ) and (b) the partial pressure of CO2 in water (       ) for 

both lotic (dark blue circles; n=32) and lentic segments (light green circles; n=10). The 

vertical dashed lines represent                =0. The horizontal dashed line in panel (a) 

represents              =0. The horizontal dashed line in panel (b) represents the average 

partial pressure of CO2 in air (       ) for all the segments (418 µatm). The 1:1 reference line 

is shown in panel (a).  
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Figure 4. Internal metabolic flux of CO2 (               ) as a function of water residence 

time for both lotic (dark blue circles) and lentic segments (light green circles).The horizontal 

dashed line represent                =0. The solid lines correspond to the regression model 

lines best fitting the data. Model equations are also shown close to model lines.  
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Figure 5. Source apportionment of CO2 emissions (              ) for lotic (left) and lentic 

(right) segments. Columns represent averages and error bars standard errors for the different 

studied segments. The horizontal dashed line represent              =0. 
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Figure 6. Relative contribution of (a) internal metabolism, (b) upstream inflow and (c) other 

non-measured sources to CO2 emissions as a function of the water residence time for lotic 

(dark blue circles) and lentic segments (light green circles). The horizontal dashed lines 

represent reference lines for 0% contribution. The solid lines in panels (a) and (b) correspond 

to the regression lines best fitting the data (included when statistical significant). Model 

equations are also shown close to model lines.  
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Figure 7. Summary of the CO2 fluxes (mmol m-2 d-1) determining CO2 variations within the 

studied (a) lotic and (b) lentic segments. Values are averages ± standard deviations among 

studied segments. Note that the arrow direction indicate direction of the CO2 within the 

segment (i.e., a gain when pointing to the segment and a loss when pointing out from the 

segment) and the arrow size matches with the magnitude of the flux.
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Table 1. Summary of the CO2 fluxes determining CO2 variations within the studied lotic 

(n=32) and lentic segments (n=10) 

 

ANOVA test

Mean Min Max n Mean Min Max n p  value

Emission -172 -490 -40 32 -71 -203 -8 10 <0.001

Inflow 229 20 1230 32 273 37 630 10 0.65

Outflow -279 -1280 -60 32 -290 -650 -40 10 0.91

Internal metabolism 68 -51 213 32 -7 -52 46 10 0.015

Other sources 188 30 1070 32 64 -160 250 10 0.07

Positive CO 2  fluxes indicate a gain of CO 2  within the segment (i.e. invasion from the atmosphere, upstream import,

internal metabolic production or porduction from other sources) while negaive CO 2  fluxes indicate a loss of CO 2  within 

the segment (i.e. emission to the atomsphere, downstream export, internal metabolic consumption or consumption by other sources)

         (mmol m-2  d-1)
Lotic segments Lentic segments 
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