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Abstract

This thesis presents designs for a series of clinical trials where instead of

designing clinical trials individually, each of the trials is designed as part of

a series of trials. The framework of the design is based on a combination of

classical frequentist and Bayesian approaches which is sometimes known as

the hybrid approach. The unknown parameter of the treatment efficacy is

assumed to be random and follows a prior distribution in the design stage

but at the end of the trial a frequentist test statistic is used on the observed

data to infer the parameter. The design introduced in Chapter 5 aims to

determine an optimum sample size for each trial by optimizing the average

power of each trial and the overall resources while fixing the conventional

type I error. The design has the flexibility to either run sequentially or

concurrently. The design is then extended to allow interim analyses in each

trial (Chapter 6). The focus of the extended design is on a series of Bayesian

decision-theoretic phase II trials and one frequentist phase III trial. At each

interim stage, a decision is made based on the expected utilities of subsequent

actions. There are four possible actions to choose from, namely, to continue

the current trial by recruiting more patients, to initiate a new phase II trial,

to abandon the development plan or to proceed to a phase III trial with

this treatment against a control arm. For the last action, the phase III trial

is designed with the hybrid methodology as described above. Finally, the

prior distributions for each treatments are assumed to be correlated and as

information is gathered from the previous and current trials, the current and

following prior distributions are updated (Chapter 7).
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Thesis Overview

This thesis germinated from a scholarly idea of designing a series of clinical

trials using a hybrid methodology, that is, frequentist and Bayesian. The

work is motivated by practical problems from asthma clinical research so it

is important that the design is easily adapted and adopted in clinical trials.

Although examples from asthma clinical research are used as illustrations

for the design, the application of the proposed design can easily be used for

other diseases by simply adjusting the hypotheses and prior densities. Also,

although the design is presented in a simplistic form, it can be extended to

include more complex parameters to model real-life expectations, conduct

and end of trial strategies.

Current treatments for asthma are highly effective but they are not pre-

ventive, curative, nor disease modifying. In addition, for a minority group of

patients presenting with persistent and severe asthma, current therapies are

not effective in controlling the disease. New therapies are constantly being

developed either as a single agent or a combined regimen. Results from a

search in the ClinicalTrials.gov and published articles showed that there are

many ongoing and completed clinical trials which aim to identify a treatment

regimen that provides the most complete asthma control.

1



Thesis Overview

Pharmaceutical companies may be simultaneously developing drugs from

classes that target different cells and mediators. As these therapies are tar-

geting the same population and development is constrained by limitation of

resources such as time and budget, drugs are ranked and prioritized for selec-

tion for development. Project evaluation and prioritization is often a complex

challenge. There are four main factors to be considered when assessing po-

tential treatments, namely, costs, probability of success, the rewards if the

treatment is successful and time to develop (Senn, 2007, Ch. 24). The last

criterion, time to develop, may be accounted for in the cost and reward with

appropriate adjustment.

The work in this thesis is thus built upon this scenario. Suppose all the

potential treatments targeting the same population can be tried concurrently

but with the constraints of resources; what is the optimal sample size for each

trial if instead by fixing the power of the trials its expectation is maximized?

Also suppose that the population is very small such that trials have to be run

sequentially and its viability in a larger phase III trial has to be taken into

account if it is successful in the phase II trial; what is the optimal sample

size?

The thesis is divided into four main parts where chapters within each

part are more similar. Chapters in Part I are introductory where Chapter 1

briefly introduces clinical trials and the various phases of drug trials. Chapter

2 discusses the asthma disease and some of the classes of standard treatments

and common endpoints employed in asthma clinical trials. Chapter 3 intro-

duces some of the common notation and statistical nomenclatures used in

this thesis. Finally, Chapter 4 briefly describes some of the common designs

2



Thesis Overview

of clinical trials.

The core of the thesis is in Parts II and III, covering Chapters 5 to 7.

In Chapter 5 the design considers a series of trials as a whole instead of

designing each trial individually in order to optimize the resources. The

design is based on a hybrid of frequentist and Bayesian approaches where

the type I error of each trial is maintained and the assurance, that is, the

Bayesian expected power, is optimized. The applicability of the design is

tested with examples where the primary endpoint is a continuous variable,

for example, asthma trials testing bronchodilators where the FEV1 is usually

the primary endpoint.

The design is subsequently modified to consider the scenario where the

population is much smaller, presented in Chapter 6. The formulation of the

design also adopts the hybrid approach but because of the small population,

the proposed design uses a Bayesian decision theoretic approach where pa-

tients are entered into the trial sequentially and their results are used to

update the prior beliefs. The applicability of the design is tested with ex-

amples from trials for severe asthmatic patients. The primary endpoint is a

discrete variable, that is, number of patients with no exacerbation during the

treatment duration (analogous to 1− p where p is the proportion of patients

with at least one exacerbation).

As described in Chapter 2, different classes of drugs treat the disease

differently. Therefore, drugs from the same class are related to each other

in their effectiveness than to other drugs from different classes. As more

information are obtained in earlier trials, they could be used to update the

prior beliefs of the subsequent drugs within the same family. Chapter 7

3



Thesis Overview

extends the decision theoretic design by considering the dependency of each

drug within a family. The prior distribution of each of the treatments are

assumed to be related to each other and observed data from the preceding

trials in the series are used to update the prior beliefs of the subsequent trials

in each interim analysis.

Finally, Part IV rounds up the thesis with a summary and discussion in

Chapter 8. Proposals of future work are also presented.
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Ounce by ounce, putting it together

Small amounts, adding up to make a work of art

First of all you need a good foundation

Otherwise it’s risky from the start

Takes a lot of earnest conversation

But without the proper preparation

Having just a vision’s no solution

Everything depends on execution

The art of making art, is putting it together

Stephen Sondheim

Putting It Together

Part I

Background
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Chapter 1

Clinical Trials

Clinical trials are experiments done on human beings to study and assess the

effect of an intervention. The intervention could be a new drug, a combina-

tion of drugs, a medical procedure, or a medical device for human use. The

following review of the nomenclature system and designs of clinical trials are

mainly based on pharmaceutical trials evaluating drug therapy. However,

the designs are easily generalized to non-drug trials. Throughout this thesis,

terms such as “therapy”, “treatment”, and “drug” will be used interchange-

ably.

The primary objective of a clinical trial is to compare the effect of an

experimental treatment with a control treatment. A control treatment could

be a non-active intervention which means that the “treatment” is a placebo or

due to ethical reasons the control treatment could be an “existing established

effective treatment” (Fitzpatrick, 2005). However, in single-arm trials, the

efficacy of the experimental treatment is compared with a known historical

value which is usually based on the known efficacy of the standard treatment.

6



Clinical Trials

The clinical development of a new drug can be divided into four phases,

i) human pharmacology study, ii) therapeutic exploratory study, iii) ther-

apeutic confirmatory study, or iv) therapeutic use study (ICH, 1997). A

common nonmenclature that is used for each type of the study is phase I,

II, III and IV, respectively. The description of each phase is by no means

restrictive. For example, although a phase II trial is usually meant to assess

the therapeutic effect of a new treatment, it is not restricted to only such

study. It may also look into the human pharmacology and/or confirmation

of the efficacy of the new treatment.

Typically, a development plan of a new drug begins with a phase I trial

where the new treatment is first tested on humans. In the phase I trials

of most diseases, healthy volunteers are recruited to determine the level of

tolerability for later trials. An exception is if the new therapy is highly toxic

such as cytotoxic chemotherapy. Patients are recruited instead to these trials

and usually these patients have already tried and failed on existing standard

therapies. The main objective of a phase I trial is to estimate the maximum

dose level that is acceptable for a participant or patient without causing

unacceptable toxicity. This dose is conventionally known as the maximally

tolerated dose (MTD).

Once the range of safe dose levels has been established, the new treatment

is tried in a phase II trial. The primary objective of a phase II trial is to

explore therapeutic effect in patients and, as such, its aim is to compare the

efficacy of the drug with that of the control treatment formally. However, it

is not necessary to have a control treatment in a phase II trial. Thus, in the

uncontrolled-trial the efficacy of the new drug is compared against a known

7
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value of the current standard or historical control. Usually a single group of

patients is selected to the phase II trial and they are usually a homogeneous

group in terms of disease and stage of disease (Gehan, 1961, Schoenfeld,

1980).

If the new treatment has shown some minimally acceptable clinical effect,

it would be recommended for further testing in larger phase III trials. A

phase III trial is a definitive clinical trial and is comparative in nature. It

is a large confirmatory trial where the results are submitted to regulatory

authorities for drug approval. Due to the large sample size required in a

phase III trial, it is often conducted concurrently by many centres, ranging

from tens to hundreds, and as such is sometimes known as a multicentre

trial. The advantage of the multicentre trials is the possibility of wider

patient population recruitment and a broad range of clinical settings that is

more typical of future use.

Phase IV trials are usually undertaken after or during the registration of

a drug to monitor and discover more about the safety of the drug for the

approved indication. Sometimes, the trials also assess efficacy in different

populations. The sample size is usually very large and the trial may not

have a control arm.

In an ideal situation, the development of a new drug would go through

a series of clinical trials sequentially through phase I to IV. This is because

the results from the preceding phase are used to motivate the design of the

next phase. In practice, the development plan may not go through the same

sequence. It is rather common for the results from a phase II exploratory

study to prompt additional human pharmacology studies or to modify the

8
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strategy of drug administration or to lead to more studies to investigate the

dose-response relationship. Or the results from a phase III trial may prompt

another phase III trial by narrowing the disease population.

The majority of clinical trials aim to demonstrate the superiority of the ef-

ficacy of the new treatment against that of the placebo or standard treatment.

There are other types of comparison, namely, equivalence and non-inferiority.

A common example of clinical equivalence trials is the demonstration of the

clinical equivalence of a generic product to the marketed product. A non-

inferiority trial aims to show that the efficacy of the new drug is not clinically

inferior to the standard treatment.

This thesis concentrates on the designs of superiority clinical trials where

the efficacy of the new treatment is compared to that of a control treatment

or a known value from historical controls. As such, it is assumed that the

dosage and safety issues of the new drug or treatment regimen has been

addressed in phase I trials. As an illustration of the applicability of the

proposed designs, examples from asthma clinical researches are used. The

following chapter briefly describes asthma, some of the class of standard

treatments and common endpoints employed in asthma clinical trials.

9



Chapter 2

Asthma

The definition of asthma has evolved over time as understanding of the dis-

ease has become clearer. However, the pathogenesis of the disease is still

unclear and therefore, the definition by the Global Initiative for Asthma

(GINA) is based on the functional consequences of airway inflammation

(GINA, 2010). In 2010 GINA issued an updated revision of an operational

description of asthma:

Asthma is a chronic inflammatory disorder of the airways in which

many cells and cellular elements play a role. The chronic inflam-

mation is associated with airway hyperresponsiveness that leads

to recurrent episodes of wheezing, breathlessness, chest tightness,

and coughing, particularly at night or in the early morning. These

episodes are usually associated with widespread, but variable, air-

flow obstruction within the lung that is often reversible either

spontaneously or with treatment.

10



Asthma 2.1 Therapies for asthma

There is still a lack of consensus on the definition of asthma and as a

result it is difficult to compare the prevalence rate from different parts of

the world. However, it is estimated that 300 million individuals are affected

worldwide and based on the application of standardized methods in children

and adults, the prevalence “ranges from 1% to 18% of the population in

different countries” (GINA, 2010, p. 3). The prevalence rate in the United

Kingdom is 6% (3 million) and of this, 10% are children (Corrigan, 2009).

Although there is no clear definition of the asthma phenotype, there is

much clearer understanding of asthma clinical manifestations. Appropriate

treatments can then be prescribed to control the condition effectively. Most

of the existing treatments may be classified into a few classes; bronchodila-

tors, corticosteroid, mediator antagonist, or immunomodulatory and they

aim “to minimize symptoms, optimize lung function, and prevent exacerba-

tions” (Reddel et al., 2009).

2.1 Therapies for asthma

The mainstay of bronchodilator agents is the β2-adrenoceptor agonists. The

β2-adrenoceptor agonists are further classified into short-acting β2-adreno-

ceptor agonists (SABA) and long-acting β2-adrenoceptor agonists (LABA).

Some of the frequently used SABA are salbutamol (or albuterol in the United

States), terbutaline and fenoterol, while LABA are formoterol and salmeterol.

The β2-adrenoceptor agonists are effective in reversing airflow obstruction as

well as protecting asthmatic patients against bronchoconstrictor challenge

(Hall, 2009).

11



Asthma 2.1 Therapies for asthma

Another commmonly prescribed family of treatments to control asthma

symptoms is the corticosteroids. These work by switching off the multiple

inflammatory genes that are turned on in the airways by proinflammatory

transcription factors (Barnes, 2009). Inhaled corticosteroids are the most

common asthma management and they suppress the mucosal inflammation

relatively rapid in the asthmatic airways. Some of the common prescribed in-

haled corticosteroids are budesonide, fluticasone propionate and beclometha-

sone dipropionate.

A large number of inflammatory mediator receptors are involved in the

pathophysiology of asthma but so far only one class of mediator antagonists

has become the established treatment, that is, anti-leukotrienes. Leukotriene

receptor antagonists cause bronchodilation and have an additive effect to the

SABA. Their effectiveness against placebo has been shown in short-term

clinical studies of 4-6 week duration (Chung and Barnes, 2009). Some of the

drugs under this class have been approved as a first-line treatment in the

United States and they are zileuton, zafirlukast and montelukast whereas in

Europe, only montelukast and zafirlukast have been approved as a second-line

add-on therapy.

Studies have shown that T-lymphocytes may be involved in the initi-

ation and maintenance of the inflammatory process of asthma (Corrigan,

2009). There have been subsequently clinical trials investigating T-cell im-

munomodulatory agents for possible therapeutic effects especially in patients

with severe asthma. One particular drug from this class that has been ap-

proved in Europe as an add-on therapy for severe persistent asthma that is

caused by an allergy is omalizumab. Omalizumab is a chimeric antibody

12



Asthma 2.2 Outcome variables

that blocks IgE and it is delivered subcutaneously.

Asthma is a heterogenous condition. Most patients are effectively treated

with either corticosteroids or bronchodilators but some patients with severe

asthma however, are poorly controlled even with maximal doses. There is also

a minority of patients resistant to the anti-inflammatory drugs. Therefore,

combined treatments are sometimes recommended for these asthma patients.

Inhaled β2-adrenoceptor agonists and corticosteroids are frequently recom-

mended to be used together and studies have shown that these two classes

of drugs have important molecular interactions (Barnes, 2009). Increasingly,

drugs from other classes have gone on trials to be used as concomitant med-

ications to the inhaled corticosteroids if the asthma is not controlled.

2.2 Outcome variables

Spirometry has been one of the most fundamental measurements of asthma

control. It is objective and highly reproducible in measuring lung function.

The most common spirometric measurement is the forced expiratory vol-

ume in one second (FEV1). In 2009, the American Thoracic Society (ATS)

and European Respiratory Society (ERS) issued an offical guideline that

FEV1 should be included as a primary endpoint for bronchodilator clinical

trials (Reddel et al., 2009). An improvement of a minimum of 10% from the

baseline measurement is considered to be clinically meaningful.

Even prior to the 2009 guideline by ATS/ERS, FEV1 has been the pri-

mary endpoint in most clinical trials because it measures the airflow limita-

tion which is the primary manifestation of asthma. However, the prevention

13



Asthma 2.2 Outcome variables

of asthma exacerbation is arguably the most important clinical outcome. In

the past 10 years some clinical trials have used exacerbation as the primary

endpoint but the criteria and definitions used by different studies are quite

varied.

The ATS/ERS task force has thus recommended that severe exacerba-

tions be events that include at least one of the following: use of systemic

corticosteroids or increase dosage from the maintenance dose, and a hos-

pitalization or emergency department visit because of asthma and require

systemic corticosteroids. The definition of moderate asthma exacerbations

include at least one of the following: deterioration in symptoms, deteriora-

tion in lung function, increased rescue bronchodilator use, and emergency

department visits because of asthma but does not require systemic corticos-

teroids.

The ATS/ERS task force also proposed to include moderate and severe

asthma exacerbations as the important outcome for clinical trials in primary

care. Prior to the issuance of the guideline, studies have reported the per-

centage of patients with at least one exacerbation, the time to first severe

exacerbation, or the rate of exacerbations. The time to first exacerbation is

favoured as the effect of the experimental therapy may be examined before

other rescue or add-on treatments are introduced. The rate of exacerbations

is advantageous especially for comparing between patient populations.

There are other measurable outcome variables used to assess asthma con-

trol. Asthma symptoms are highly variable between patients and the use

of diaries in clinical trials is thus very useful. Some of the questions asked

in diaries are symptoms, adverse events, reliever use, interference to nor-

14



Asthma 2.2 Outcome variables

mal activities and health care utilization. Peak expiratory flow is another

spirometric measurement but is considered to be inferior to FEV1 as a mea-

surement for airways obstruction.

Two main outcomes are considered for the illustrations of the applicability

of the proposed designs in this thesis and they are FEV1 and asthma exacer-

bation, the former as an example of a continuous variable and the latter as

a binary variable where a patient with at least one episode of exacerbation

is considered to be a “failure” whereas a “success”, otherwise.

For clinical trials, it is important to measure asthma control in a pre-

defined time point. Reddel et al. (2009, p. 66) pointed out that “by long-

standing consensus, clinical asthma control is usually assessed over periods

of 1 to 4 weeks”. Following this, the proposed clinical trial designs in this

thesis thus assume that the primary outcome is obtained within 4 weeks.

15



Chapter 3

Statistical Background

The statistical terms, notation and general frameworks used in this thesis

are presented in this chapter. The topics are usually found under different

chapters in standard statistical textbook but now are placed in one chapter

under different sections. Some of the discrete and continuous distributions

are discussed in Section 3.1. A general review of Bayes’ theorem and fre-

quentist hypothesis testing are given in Sections 3.2 and 3.3, respectively.

An alternative to the computation of the power of a study is discussed in

Section 3.4. A general decision theory methodology is given in Section 3.5

and finally, Section 3.6 concludes the chapter with a summary.
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Statistical Background 3.1 Distribution functions

3.1 Distribution functions

3.1.1 Discrete random variables

Bernoulli random variables

Let X be a Bernoulli random variable. It can only take two values: 1 and 0.

If the probability that Pr(X = 1) = p and Pr(X = 0) = 1−p, the probability

mass function may be represented as,

f(x) = px(1− p)1−x, x = 0, 1

Drawing from the motivation of the asthma research, if a patient is able to

achieve the targeted asthma control within the first four weeks, then the

observed response is considered as a success. This may be represented nu-

merically as X = 1. However, if a patient fails to achieve the targeted asthma

control within the first four weeks, then the response is considered as a failure

and numerically represented as X = 0.

The binomial distribution

Suppose that there are n independent patients in the trial and each patient’s

response is recorded either as a success or a failure with p probability of

success, that is, a Bernoulli variable with parameter p. Assuming that all

the binary responses are identical Bernoulli random variable with the same

parameter p, let the accumulated number of successes be denoted by X.

The variable X is said to be a binomial random variable with index n and

17



Statistical Background 3.1 Distribution functions

parameter p. As the sequence of the occurrence of successes is not important

there are
(
n
x

)
ways in which a total number of x successes may occur from

the n patients. Thus, the probability mass function is

f(x) =

(
n

x

)
px(1− p)n−x, (3.1)

for x = 0, 1, . . . , n, and the parameter 0 < p < 1. Its cumulative distribution

function is

F (x) =
x∑
i=0

(
n

i

)
pi(1− p)n−i.

The expected value of X, denoted by E(X), is

E(X) =
n∑
x=0

xf(x) = np,

and the variance of X, denoted by var(X), is

var(X) = E[(x− E(X))2] =
n∑
x=0

(x− E(X))2f(x) = np(1− p).

The statement of X following a binomial distribution with (n, p) can be

“rewritten” as X ∼ Bin(n, p).

The geometric distribution

The geometric distribution is another discrete distribution that is constructed

from independent Bernoulli variables. The difference between the binomial

and geometric distribution is that in the geometric distribution there is an

unlimited number of patients in a trial. Suppose that in a trial, a sequence of

18
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patients is recruited and the trial will stop when the first success is observed.

Let X be the total number of patients including the first successful out-

come and let the probability of a success be p. Following from the indepen-

dence of each patient, the probability mass function is

f(x) = (1− p)x−1p, x = 1, 2, . . . . (3.2)

The expected value of a geometric random variable is E(X) = 1/p and the

variance is var(X) = (1 − p)/p2. The statement of X following a geometric

distribution with parameter p can be written as X ∼ Ge(p).

3.1.2 Continuous random variables

The normal distribution

In another example from the asthma research, spirometric measurements

such as forced expiratory volume in one second (FEV1) are used to assess

the lung function and airway hyperresponsiveness. The outcome of interest

is usually the difference between the measurement at baseline and after the

administration of treatment. It may be measured either in the absolute unit

(ml) or percentage. Let X be the difference of the FEV1 in percentage and

it is a continuous random variable that is often assumed to follow a normal

distribution. The normal distribution which is also known as the Gaussian

distribution is the most important continuous distribution and “plays a cen-

tral role in probability and statistics” (Rice, 1995, p. 53). The probability
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density function of a normal distribution is given by

f(x) =
1√

2πσ2
e−(x−θ)2/2σ2

, (3.3)

for −∞ < x <∞. The probability density function depends on two param-

eters θ and σ where −∞ < θ < ∞ and σ > 0. The cumulative distribution

function is

F (x) =

∫ x

−∞

1√
2πσ2

e−(u−θ)2/2σ2

du.

The density of the normal distribution integrates to 1 in the whole space of

(−∞,∞). However, the cumulative distribution function cannot be evalu-

ated in a closed form but has to be computed numerically. The expected

value is

E(X) =

∫ −∞
−∞

xf(x) dx = θ,

and the variance is

var(X) =

∫ −∞
−∞

(x− θ)2f(x) dx = σ2.

For convenience, the statement that the random variable X follows a normal

distribution with mean θ and variance σ2 is written as X ∼ N(θ, σ2).

A special case of the normal distribution is the standard normal distri-

bution where θ = 0 and σ2 = 1. Its density function is usually denoted

by φ(x) = 1√
2π
e−x

2/2 and its cumulative distribution function is denoted by

Φ(x) =
∫ x
−∞

1√
2π
e−u

2/2 du. The relationship between a normal and standard

normal distribution can be stated by: f(x) = 1
σ
φ
(
x−θ
σ

)
and F (x) = Φ(x−θ

σ
).
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(b) σ = 1

Figure 3.1: Normal densities (a) σ of 0.5 (dotted), 1 (solid), and 2 (dashed), and
(b) θ of −1 (dashed), 0 (solid), and 1 (dotted).

The normal distribution when plotted in a plane of f(x) against x has

a bell-shaped curve (Fig. 3.1). It is symmetric about its mean, θ, and the

shape of the curve, either narrow or wide, depends on the standard deviation,

σ.

The beta distribution

The beta distribution is a distribution that has very flexible shapes with two

parameters a and b, shown in Figure 3.2, from flat to narrow curves. Let X

be the random variable that follows a beta distribution with non-negative

parameters a and b, X ∼ Beta(a, b). Its probability density function is given

by

f(x) =
1

B(a, b)
xa−1(1− x)b−1, (3.4)
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Figure 3.2: Beta densities with various values of a and b.

for 0 < x < 1 where the beta function is defined as

B(a, b) =
Γ(a)Γ(b)

Γ(a+ b)
.

The gamma function is defined as Γ(a) =
∫∞

0
ua−1e−u du if a is a non-integer.

If a is an integer the gamma function is a simple factorial function, Γ(a) =

(a− 1)!.

The beta distribution belongs to the natural exponential family of distri-
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Statistical Background 3.1 Distribution functions

butions. A k-parameter exponential family density can be written as

f(x, θ) = r(x)η(θ) exp

{ k∑
i=1

θipi(x)

}
.

The beta distribution thus can be shown is a two-parameter exponential

family with r(x) = 1, η(θ) = Γ(a + b)/(Γ(a)Γ(b)), θ = (a − 1, b − 1)′ and

p(x) = (log(x), log(1− x))′ where log(·) is the natural logarithm,

f(x, θ) =
Γ(a+ b)

Γ(a)Γ(b)
exp

{
(a− 1) log(x) + (b− 1) log(1− x)

}
=

1

B(a, b)
xa−1(1− x)b−1,

The expected value of a beta random variable is E(X) = a/(a+ b), and the

variance is var(X) = ab/[(a+ b)2(a+ b+ 1)].

3.1.3 Joint distribution

The Sarmanov distribution

One lesser known family of bivariate distribution is the family introduced by

Sarmanov which appeared in Doklady (Soviet Mathematics) in 1966 (Lee,

1996). Define X1 and X2 as the random variables and f1(x1) and f2(x2) as

the marginal probability density functions of X1 and X2, respectively. Let

µi be the mean of Xi and σi the standard deviation for i = 1, 2. The general

function of the joint density function is

h(x1, x2) = f1(x1)f2(x2)
(

1 + ωφ1(x1)φ2(x2)
)
,
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Statistical Background 3.1 Distribution functions

where ω is a real number that satisfies the condition 1 + ωφ1(x1)φ2(x2) ≥ 0

and φi(xi) is a nonconstant mixing function bounded by
∫∞
−∞ φi(xi)fi(xi) dxi =

0 (i = 1, 2) for all values of x1 and x2.

The correlation coefficient of X1 and X2 is given by ρ = ωσ1σ2 where ω

satisfies the condition

max

{
−1

µ1µ2

,
−1

(1− µ1)(1− µ2)

}
≤ ω ≤ min

{
1

µ1(1− µ2)
,

1

µ2(1− µ1)

}
.

Therefore, X1 and X2 are positively correlated if ω > 0; negatively correlated

if ω < 0; and independent if ω = 0.

In her paper, Lee (1996) discussed the properties and applications of the

Sarmanov’s family of bivariate distribution. Of relevance to this thesis is

the case where the marginals of the bivariate distribution follow the beta

distributions. Let Xi be a random variable that follows a beta distribution

with parameters ai and bi, that is, Xi ∼ Beta(ai, bi), for i = 1, 2. Since the

sample space of the random variable is contained in [0, 1], Lee proposed the

mixing function to be

φi(ui) = xi − µi,

where µi = ai/(ai + bi). Therefore, the bivariate density of X1 and X2 is

h(x1, x2) = f1(x1)f2(x2)

(
1 + ω

(
x1 −

a1

a1 + b1

)(
x2 −

a2

a2 + b2

))
, (3.5)

where fi(xi) is the beta density. Note that the bivariate density is a linear

combination of products of independent beta densities and ω is within the
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range

max

{
−(a1 + b1)(a2 + b2)

a1a2

,
−(a1 + b1)(a2 + b2)

b1b2

}
≤ ω

≤ min

{
(a1 + b1)(a2 + b2)

a1b2

,
(a1 + b1)(a2 + b2)

a2b1

}
⇔ −(a1 + b1)(a2 + b2)

max{a1a2, b1b2}
≤ ω ≤ (a1 + b1)(a2 + b2)

max{a1b2, a2b1}
.

In the same paper, Lee extended the family of Sarmanov’s bivariate distri-

bution to the multivariate case. Let Xi be a random variable with marginal

density function fi for i = 1, 2, . . . , k then the k-variate joint density is

h(x1, . . . , xk) =
( k∏
i=1

fi(xi)
)(

1 +RΩk(x1, . . . , xk)
)
, (3.6)

where

RΩk(x1, x2, . . . , xk) =
k−1∑
i1=1

k∑
i2=i1+1

ωi1,i2φ(xi1)φ(xi2)

+
k−2∑
i1=1

k−1∑
i2=i1+1

k∑
i3=i2+1

ωi1,i2,i3φ(xi1)φ(xi2)φ(xi3)

+ · · ·+ ω1,2,...,k

k∏
i=1

φ(xi),

and Ωk = {ωi1,i2 , ωi1,i2,i3 , . . . , ω1,2,...,k} is a set of real numbers satisfying the

condition 1+RΩk(x1, x2, . . . , xk) ≥ 0. If all of the values of ω’s (each element

in Ωk) are zero, then all the k variables are independent.
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Statistical Background 3.2 Bayes’ theorem

3.2 Bayes’ theorem

Suppose that a parameter θ does not have some fixed value but is random. Its

probable value is quantified in a probablity density function known as prior

density, fΘ(θ). The random variable X depends on the unknown parameter

θ in a known way and having observed some data X = x the dependency is

expressed by a density function, fX|Θ(x|θ), which is known as the likelihood

function. The new opinion of the parameter θ is updated and by the Bayes’

theorem it is

fΘ|X(θ|x) =
h(x, θ)

fX(x)
=
fX|Θ(x|θ)fΘ(θ)

fX(x)
, (3.7)

where h(x, θ) is the joint density of X and θ. The function fΘ|X(θ|x) is called

the posterior density. The marginal density of X is obtained by integrating

h(x, θ) over the sample space of θ,

fX(x) =

∫
h(x, θ) dθ =

∫
fX|Θ(x|θ)fΘ(θ) dθ. (3.8)

The marginal distribution of X is also called the predictive distribution.

3.2.1 Normal mean

The Bayes’ theorem is one of the fundamental tools in the Bayesian analysis.

Following are two illustrations of using Bayes’ theorem to infer the unknown

parameter of a random variable that follows a known distribution. Let X be

a random variable that follows a normal distribution with unknown mean θ

and known variance σ2. The parameter θ is assumed to be random and to
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also follow a normal distribution with known mean µ and variance τ 2. The

prior density of θ is

fΘ(θ) =
1

τ
φ
(θ − µ

τ

)
=

1√
2πτ 2

exp

{
− (θ − µ)2

2τ 2

}
,

and the likelihood function of X is

fX|Θ(x|θ) =
1√

2πσ2
exp

{
− (x− θ)2

2σ2

}
.

The marginal density of X is thus,

fX(x) =

∫ ∞
−∞

fX|Θ(x|θ)fΘ(θ) dθ

=

∫ ∞
−∞

1

2πτσ
exp

{
− 1

2τ 2σ2
(τ 2(x− θ)2 + σ2(θ − µ)2)

}
dθ

=

∫ ∞
−∞

1

2πτσ
exp

{
− 1

2τ 2σ2

[(
θ − τ 2x+ σ2µ

τ 2 + σ2

)2

(τ 2 + σ2)

+
τ 2σ2

τ 2 + σ2
(x− µ)2

]}
dθ

=
1√

2πτ 2σ2
exp

{
− 1

2(τ 2 + σ2)
(x− µ)2

}
×
∫ ∞
−∞

1√
2π

exp

{
− τ 2 + σ2

2τ 2σ2

(
θ − τ 2x+ σ2µ

τ 2 + σ2

)2
}
dθ

=
1√

2πτ 2σ2
exp

{
− 1

2(τ 2 + σ2)
(x− µ)2

}
·
√

τ 2σ2

τ 2 + σ2

=
1√

2π(τ 2 + σ2)
exp

{
− 1

2(τ 2 + σ2)
(x− µ)2

}
. (3.9)

The marginal distribution of the random variable X has the form of a

normal distribution with mean µ and variance (τ 2+σ2). Upon observing data

x, the prior belief of the parameter θ can be updated. For ease of notation
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let λ = (τ 2x+σ2µ)/(τ 2 +σ2) and ν = (τ 2σ2)/(τ 2 +σ2), the posterior density

of θ is

fΘ|X(θ|x) =
h(x, θ)

fX(x)

=
exp

{
−
(

(θ − λ)2(τ 2 + σ2) + ν(x− µ)2
)
/(2τ 2σ2)

}
/(2πτσ)

exp
{
− (x− µ)2/(2(τ 2 + σ2))

}
/
√

2π(τ 2 + σ2)

=
1√
2πν

exp
{
− 1

2ν
(θ − λ)2

}
. (3.10)

The posterior distribution of the random parameter θ is also a normal dis-

tribution but with mean λ and variance ν.

3.2.2 Binomial distribution

For the second illustration, let X be a discrete random variable and assume

that it follows a binomial distribution such that X|p ∼ Bin(n, p). The

parameter p is assumed to be random and as 0 < p < 1 a convenient choice

for the prior distribution is a beta distribution. Assume that p ∼ Beta(a, b)

with known parameters a and b. From equations (3.1) and (3.4) the marginal

density of X is therefore,

fX(x|a, b) =

∫ 1

0

fX|p(x|p)fp(p) dp

=

(
n

x

)
1

B(a, b)

∫ 1

0

pa+x−1(1− p)b+n−x−1 dp

=

(
n

x

)
B(a+ x, b+ n− x)

B(a, b)
. (3.11)
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The marginal distribution of X is known as the beta-binomial distribution

with index n, and parameters a, and b.

The posterior density of p given data x is

fp|X(p|x) =
fX|p(x|p)fp(p)

fX(x)

=
1

B(a+ x, b+ n− x)
pa+x−1(1− p)b+n−x−1, (3.12)

which has the same form as a beta distribution. The posterior distribution

of p given x is thus a beta distribution with parameters (a+ x, b+ n− x).

In both examples, it is shown that if X is normal with parameter θ which

prior distribution is also normal, its posterior distribution is likewise a normal

distribution but with different parameters. Similarly, if X is binomial with

parameter p and if it follows a beta distribution, its posterior distribution is

also a beta distribution with different parameters. In general, if L(θ;x) is

a likelihood function and fΘ is a prior distribution belongs to a family of G

where the posterior density

fΘ|x(θ|x) ∝ fΘ(θ)L(θ;x),

also belongs to the family G, then G is said to be a family of conjugate priors

for all x. Due to the “nice” form of the conjugate priors, it is therefore, a

mathematical convenience to choose a prior distribution from a conjugate

family so that the posterior can be evaluated easily.
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3.2.3 Sarmanov distribution

The next example is based on the k-variate joint distribution from the Sar-

manov’s family. Let Xi be a random variable that follows a binomial distribu-

tion with index ni and an unknown parameter pi (i = 1, 2, . . . , k). Suppose

that the likelihood functions of X1, X2, . . . , Xk are independent from each

other, then the joint conditional density, denoted by hX|p(x1, . . . , xk|p1, . . . , pk),

is the product of all the likelihood functions,

hX|p(x1, . . . , xk|p1, . . . , pk) =
k∏
i=1

fX|p(xi|pi) = fX|p(x1|p1) . . . fX|p(xk|pk).

(3.13)

Suppose that pi is a random variable and has a beta distribution with

known parameters ai and bi, and let the joint distribution of p1, p2, . . . , pk fol-

lows the k-variate Sarmanov’s family as seen in (3.6). Denote hp(p1, . . . , pk)

as the joint density of pi’s and let the mixing function be φi(pi) = xi−µi where

µi = ai/(ai + bi) is the expected value of the beta distribution. Therefore,

the unconditional joint density of X1, X2 . . . , Xk, denoted by hX(x1, . . . , xk),

is

hX(x1, . . . , xk) =

∫
· · ·
∫ k∏

i=1

fX|p(xi|pi)h(p1, . . . , pk) dp1 · · · dpk,

an iterated integral. The detailed working of the integration by parts is

shown in Appendix A. From equation (A.8), the unconditional joint density

of X1, . . . , Xk is

hX(x1, . . . , xk) =
( k∏
i=1

fX(xi)
)

(1 +DΩk(x1, . . . , xk)), (3.14)
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where fX(xi) =
(
ni
xi

)
Beta(ai + xi, bi + ni − xi)/Beta(ai, bi) is the marginal

density of Xi and

DΩk(x1, . . . , xk) =
k−1∑
i1=1

k∑
i2=i1+1

ωi1,i2ψ(xi1)ψ(xi2)

+
k−2∑
i1=1

k−1∑
i2=i1+1

k∑
i3=i2+1

ωi1,i2,i3ψ(xi1)ψ(xi2)ψ(xi3)

+ · · ·+ ω1,2,...,k

k∏
i=1

ψ(xi),

where the function ψ is defined as ψ(xi) = (xi − µini)/(ai + bi + ni).

From equations (3.6), (3.13), and (3.14) the joint posterior density is

hp|X(p1, . . . , pk|x1, . . . , xk)

=
hX|p(x1, . . . , xk|p1, . . . , pk)hp(p1, . . . , pk)

hX(x1, . . . , xk)

=
( k∏
i=1

fX|p(xi|pi)fp(pi)
fX(xi)

)( 1 +RΩk(p1, . . . , pk)

1 +DΩk(x1, . . . , xk)

)

=
1 +RΩk(p1, . . . , pk)

1 +DΩk(x1, . . . , xk)

k∏
i=1

fp|X(pi|xi) (3.15)

The posterior is a linear combination of products of the posterior beta den-

sities and it is known as pseudo-conjugate. Although it does not have as

convenient a form as its prior, it is still relatively easy to compute the pos-

terior density numerically.
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3.3 Hypothesis testing and power function

The theory of statistical inference is broadly divided into two branches,

namely, estimation and hypothesis testing. It is the latter branch that is

discussed in this section. Due to the inherent variability in observing an

outcome in each situation, a probability distribution is used to describe the

variability. However, the true probability distribution is also unknown to

us. The inference problem is thus to infer something of the true distribution

or the true parameter. Observations from a certain sample space are more

likely to belong to some known distributions, for example, continuous vari-

ables may follow the normal distribution or the beta distribution and discrete

random variable may tend to follow the binomial distribution. Therefore, for

this thesis, it is assumed that the inherent variability of observations are

adequately explained by a known probability distribution. The inference

problem is then to make use of the observed outcomes to estimate the true

parameter.

We generally wish to test a statement that the true parameter θ belongs to

a subset of the parameter space Θ. This statement is known as a hypothesis.

The testing of the hypothesis is to use statistical methods to check if the

observations are consistent with the stated hypothesis or not. A statistical

rule is used to assign “each possible observation to one of two exclusive

categories: ‘consistent with the hypothesis under consideration’ and ‘not

consistent with this hypothesis”’ (Silvey, 1975, pp. 95).

In the classical approach of hypothesis testing which is also known as the

frequentist method, there are two hypotheses. The first is the null hypothesis
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which states that the parameter θ belongs to ω which is a subset of Θ. The

other hypothesis is simply known as the alternative hypothesis which states

that the parameter θ does not belong to the subset ω but belongs to Θ− ω.

If there is only one element in ω, the hypothesis is known as a simple null

hypothesis because it is in its simplest form, and similarly, if there is only one

element in Θ−ω the alternative hypothesis is a simple alternative hypothesis.

Suppose that the elements in ω and Θ − ω are θ0 and θA, respectively, the

hypotheses can be formulated as

H0 : θ = θ0 against H1 : θ = θA,

where the statement H0 is the null hypothesis and H1 is the alternative

hypothesis. The null hypothesis is always assumed to be true until proven

to be otherwise. The statistical rule to reject H0 is called a statistical test.

Two possible decisions can be made based on the observed data at the

end of the trial: (1) reject the null hypothesis, or (2) do not reject the null

hypothesis. Inevitably, errors may occur when rejecting or not rejecting H0.

The type I error is an error incurred when the null hypothesis is rejected

when it is true. Another type of error that can be incurred is the type II

error. It is an error incurred when the null hypothesis is accepted when it

is false. The probability of incurring the type I error is usually capped at a

predetermined value α such that,

Pr(Reject H0|H0 is true) ≤ α,
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and similary, the probability of incurring the type II error is capped by a

predetermined value β,

Pr(Non-rejection of H0|H1 is true) ≤ β.

The probability that the null hypothesis is rejected when it is false is called

the power of the test and it is simply 1−β. Although the choice of α could be

arbitrary, it is customary to have α at small values such as 0.1, 0.05, or 0.01.

Similarly, the customary values of β are 0.2, 0.1, or 0.05. Correspondingly,

the power of the test is 0.8, 0.9, or 0.95, respectively.

If X1, X2, . . . , Xn are n independent continuous random variables and

each is normally distributed with unknown mean θ and known variance σ2,

let X =
∑n

i=1Xi/n, then X ∼ N(θ, σ2/n). Let (x1, x2, . . . , xn) be the sample

of X1, X2, . . . , Xn. It is desired to test whether the true mean is equal to some

constants θ0 or θA. The simple hypotheses are

H0 : θ = θ0 against H1 : θ = θA.

The decision to either reject H0 or not is made on the basis of the test statistic

upon observing the responses at the end of the trial. The test statistic is most

powerful if X > c where c is some constant such that the size of the test is

α,

Pr(X > c) = α.

Under the null hypothesis, the distribution of X is normal with mean θ0

and variance σ2/n. Let Z =
√
n(X − θ)/σ, then Z has a standard normal
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distribution, Z ∼ N(0, 1). Solving for c under the null hypothesis,

Pr(Reject H0|θ = θ0) = α

⇔ Pr(X > c|θ = θ0) = α

⇔ Pr

(
X − θ√
σ2/n

>
c− θ√
σ2/n

∣∣∣∣θ = θ0

)
= α

⇔ Pr

(
X − θ0√
σ2/n

>
c− θ0√
σ2/n

)
= α

⇔ Pr

(
Z >

c− θ0√
σ2/n

)
= α

⇔ 1− Φ

(
c− θ0√
σ2/n

)
= α

⇔ c = z1−α
√
σ2/n+ θ0 (3.16)

where zγ is the lower 100γ percentile of the standard normal distribution.

The computation of the power on the other hand is important when

designing a trial. The power calculation is one of the standard statistical

methods in determining sample size. Under the alternative hypothesis, X ∼

N(θA, σ
2/n) and from equation (3.16),

Power = Pr(Reject H0|θ = θA)

1− β = Pr

(
X − θ√
σ2/n

>
c− θ√
σ2/n

∣∣∣∣θ = θA

)
= Pr

(
Z >

z1−α
√
σ2/n+ θ0 − θA√
σ2/n

)
= 1− Φ

(
z1−α −

(θA − θ0√
σ2/n

))
. (3.17)

The equation (3.17) shows that if θA is fixed, then the expression is a function
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of n and if n is fixed, it can be evaluated as a function of θA.

As an example, a new bronchodilator for asthma control is ready to be

put on clinical trials. The primary endpoint is the mean percentage change

in FEV1 from baseline. Let θ be the difference of mean change between the

new bronchodilator and a placebo. The new bronchodilator is considered to

be effective in controlling asthma if the mean change difference is at least 10

percent, that is, let θ0 = 0 (there is no difference in mean change between

the new bronchodilator and placebo) and θA = 10. Assume that the popu-

lation standard deviation is known and fixed at σ = 14, and the size of the

hypothesis test is α = 0.05. The power function which for a fixed θA is a

function of n is shown in Figure 3.3. According to the figure, in order to

achieve a power of at least 90%, the sample size has to be at least 17.

3.4 Assurance

In 2001, O’Hagan and Stevens presented an alternative to the power calcu-

lation in order to determine a sample size in the context of cost-effectiveness

(O’Hagan and Stevens, 2001). The methodology has subsequently been

adopted by other researchers and it is easily applicable in the context of

demonstrating treatment efficacy. In the frequentist approach, as shown in

the preceding section, the parameter is assumed to be a fixed value so that

a specific power can be achieved when the true parameter is not equal to θ0.

However, under the Bayesian approach, the true parameter does not need to

assume a fixed value under H1. Let the true parameter θ be random and be

represented by a distribution which consequently implies a prior distribution
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Figure 3.3: Power as a function of n.

for θ. Therefore, the power is now a kind of average power and is called as-

surance. Denote the assurance as A and from equation (3.17) the assurance

is given by

A = E(Power) =

∫
Θ

[
1− Φ

(
z1−α −

( θ − θ0√
σ2/n

))]
fΘ(θ) dθ, (3.18)

which is an integral over the whole parameter space.
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3.4.1 Normal distribution

As an illustration, consider a random variable X whose likelihood is X|θ ∼

N(θ, σ2/n) where the variance σ2/n is known and θ is a random parameter

such that θ ∼ N(µ, τ 2) where µ and τ are known. Similar to the workings

in equation (3.9), the marginal distribution of X can be shown to be normal

with mean µ and variance (τ 2 + σ2/n). Thus, the assurance is

A = Pr(X > z1−α
√
σ2/n+ θ0)

= Pr
(
Z >

z1−α
√
σ2/n+ θ0 − µ
τ 2 + σ2/n

)
= 1− Φ

(z1−α −
√
n/σ2(µ− θ0)√

1 + nτ 2/σ2

)
, (3.19)

which is a function of n.

3.4.2 Binomial distribution

For another illustration, let X1 and X2 be binary random variables and X1 ∼

Bin(n1, p1) and X2 ∼ Bin(n2, p2). Under the frequentist setting, it is desired

to test the hypothesis,

H0 : p1 = p2 against H1 : p1 6= p2.

A simple measurement to test the hypothesis is δ = p2−p1 which lies between

−1 and 1. However, the restricted parameter space of δ may lead to anomalies

(Whitehead, 1997, Ch. 3) and so the log odds ratio is used instead. It is
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defined as

θ = log
(p2(1− p1)

p1(1− p2)

)
,

and because the log odds ratio lies between −∞ and∞, it is a more appealing

measurement than the simple measurement of difference of proportions. The

hypotheses are now rewritten as

H0 : θ = 0 against H1 : θ 6= 0,

The score statistic for θ is

B =
n1S2 − n2S1

n
, (3.20)

and the Fisher’s information is

V =
n1n2S(n− S)

n3
, (3.21)

where Si is the number of successes out of ni for i = 1, 2, S = S1 + S2 and

n = n1 + n2. The score statistic B is approximately normally distributed

with mean θV and variance V , B ∼ N(θV, V ). Assume that n1 = n2, and

that the probability of success of the whole trial is p̄ = (p1 + p2)/2. For large

sample size, S ≈ np̄, and so the equation (3.21) becomes

V ≈ np̄(1− p̄)
4

. (3.22)
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For a two-sided hypothesis, under the null hypothesis,

Pr(B > c|θ = 0) = α/2

⇔ Pr
(
Z >

c− θV√
V

)
= α/2

⇔ 1− Φ
( c√

V

)
= α/2

⇔ c = z1−α/2
√
V .

Let θA be the anticipated log odds ratio to be detected from the trial and it

is one of the parameters in the alternative space Ω − ω. The power of the

trial is,

1− β = Pr(B > c|θ = θA)

= Pr
(
Z >

z1−α/2
√
V − θAV√
V

)
= Pr

(
Z > z1−α/2 − θA

√
V
)

= 1− Φ
(
z1−α/2 − θA

√
V
)
.

Assume that p1 is a fixed constant while p2 is a random parameter that

follows a beta distribution with fixed parameters a and b. The power now

has to be averaged over all possible values of p2,

A =

∫ 1

0

(
1− Φ

(
z1−α/2 − θ

√
V
))

f2(p2) dp2

=

∫ 1

0

(
1− Φ

(
z1−α/2 − log

(p2(1− p1)

p1(1− p2)

)√np̄(1− p̄)
4

))
f2(p2) dp2,

(3.23)
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which is also a function of n and can only be evaluated numerically.

3.5 Decision theory

The simple hypothesis testing is one of inference problems where the results

from the trial is used to infer the value of the unknown true parameter θ of

a random variable X. In a broad sense, it is also a decision problem. After

the collection of observations, a decision is made from a choice of two. These

decisions are:

d0: The hypothesis that the unknown θ belongs to ω is true.

d1: The hypothesis is false.

Another technique of formally making informed decision is the statistical

decision theory. Decision theory is concerned about making decision un-

der uncertainty and each decision has its consequence and “value”. Under

the uncertain circumstances, a decision has to be made such that it is the

best possible one with the knowledge that the worst scenario could happen

(Pratt et al., 1995, Ch. 1).

The “value” of a consequence could be a monetary reward which is mea-

surable in existing scale or it could be a value that has no obvious scale of

measurement, such as happier feeling. However, to work on these “values”,

numbers are assigned and they are called utilities. The function of decision

and parameter is called the utility function and is denoted by G(d, θ). A

decision problem is solved by maximising the expected utility.
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Action T

Action A

Success

Failure

G(T,q1)

G(T,q2)

G(A)

Figure 3.4: A simple decision tree for a phase II trial.

For the review of the decision theory, a simple illustration is used. Sup-

pose that a new treatment is available for a phase II clinical trial then there

are two possible actions to choose:

Action T: Try the new treatment in the phase II trial, or

Action A: Do not try the new treatment in the phase II trial.

There are two possible states of nature from the new treatment:

θ1: The new treatment is effective,

θ2: The new treatment is not effective.

The decision problem for the above scenario can be represented by a

decision tree (Fig. 3.4). If the new treatment is effective, the trial is declared

as a success and it has 1 unit of gain. On the other hand, if it is not effective,
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that is, a failure, it has 0 unit of gain. Let the cost of starting a trial be m

which is relative to the one unit of gain. The gain of taking action T and if

the treatment is effective is, G(T, θ1) = 1 − m, and if the treatment is not

effective it is, G(T, θ2) = −m. If action A is taken, then there is no cost

incurred and so G(A, θi) = 0 for i = 1, 2 (Hilden, 1990). The utility table is

as shown in Table 3.1.

Suppose that the probability of the trial being a success is p and the

probability of it failing is 1 − p. The expected utility function of action

a ∈ {T,A} is

G(a) =
∑
θ∈Θ

G(a, θ)p(θ).

Thus, the expected utility for action T is

G(T ) = p(1−m)− (1− p)m = p−m,

and the expected utility for action A is

G(A) = 0.

Therefore, if the probability of success is greater than the relative start-up

cost, the optimal action is action T, otherwise, action A. For example, if the

relative start-up cost is 0.02, then if p > 0.02, the treatment should be put

on trial but if p < 0.02 then the trial should be abandoned.

In some clinical trials, it may be possible to recruit a group of patients or

volunteers to start on treatments at the same time. For most clinical trials

however, patients are recruited to the trial and treated serially. Although the
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Table 3.1: Utility table for a phase II trial.

State of nature
Action θ1 θ2

T 1−m −m
A 0 0

responses from these patients are available in a sequential order, the analysis

to test the hypothesis is still performed at the end of the trial—after the data

from the last patient has been obtained. Nevertheless, due to the sequential

nature there is a feasibility to analyse the data as they are made available

especially if it deems more advantageous to do so. One of the advantages of

doing sequential analysis is the flexibility to stop a trial early.

After each sequential analysis, there is a possible set of decisions to be

made: 1) to stop the trial because the new treatment is not efficacious and

thus subject fewer patients to the inferior treatment, 2) to stop the trial

and recommend the drug for larger confirmatory trials or for marketing, thus

making it available for more patients quicker, or 3) to recruit more patients

as the results are inconclusive to decide if the treatment is effective or not.

One of the key issues in sequential analyses is that the stopping rules have

to be laid down in the design stage of the trial. The conditions and rules state

when and how the trial should stop or continue with patient recruitment.

There are a few methodologies to construct the rules to decide if the trial

should stop either for futility or efficacy, or to recruit more patients. In the

frequentist setting, the size of the sequential test, α′, is set to be smaller than

the conventional one-stage analysis α (Jennison and Turnbull, 2000). The

reason is that the null hypothesis is tested continuously and thus increase
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the chance of claiming efficacy when in fact it is not. Another method is to

construct stopping boundaries where a set of critical values are determined

before the trial begins. The observed data are used to calculate the test

statistics and then compared with the critical values to determine if the trial

should stop or continue.

3.5.1 Backward induction

The formulation of the design of sequential clinical trials to be discussed in

Chapters 6 and 7 is based on the Bayesian decision theoretic approach and

thus, will be discussed in slightly greater length here. For an illustration,

in a clinical trial, n1 patients are recruited in the first stage and upon the

collection of observations a decision is made from a choice of:

Action R: Recruit another patient, or

Action A: Abandon the trial.

If action R is taken, n2 patients are recruited in the second stage and a

decision to take action R or A is made from the accumulated responses.

At stage k the decision making is based on the accumulated data from

n1, n2, . . . , nk patients and either the trial terminates or continue by recruit-

ing nk+1 patients. Suppose that there are only N patients eligible for trial

and N =
∑k

i=1 ni. If all N patients were observed, then the only action

available is to terminate the trial, action A. The sequential decision tree is

shown in Figure 3.5.

The decision problem is solved by backward induction which begins by

considering the last stage of the decision tree and then moves backward to
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Action R Action A

Action A

1st stage 2nd stage … (k – 1)-th stage     k-th stage

Action R

Action A

Action R

Action A

Figure 3.5: A simple sequential decision tree for a phase II trial.

the first stage of the observation (DeGroot, 1970, Ch. 12). Analogous to

the simple decision tree, the gain function of recruiting n1 patients must

be greater than the gain function of not recruiting in order for the trial to

commence. Based upon the observation from n1 patients, if there is benefit in

recruiting n2 patients for more information than not recruiting, then action R

should be taken. Otherwise, action A. In the former scenario n2 patients are

recruited in the second stage and based on the accumulated information from

n1 and n2 if there is benefit in having more information from n3 patients,

then the optimal decision is to take action R, that is, recruit n3 patients in

the third stage. Continuing in this manner of evaluation, at the penultimate

stage where given information from n1, n2, . . . , nk−1 patients, if the benefit of

recruiting nk patients is greater than not recruiting, then the last group of
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patients should be recruited to the k-th stage before the trial terminates.

Let xi be the observed events from the i-th stage, i = 1, 2, . . . , k. The

gain function at the k-th stage can be denoted by G(A|x1, . . . , xk) because

only action A is available after obtaining information from all N patients.

At the (k − 1)-th stage, the gain function of action R is

G(R|x1, . . . , xk−1) =
∑
xk

G(A|x1, . . . , xk)f(xk|x1, . . . , xk−1),

which depends on the benefit of recruiting nk more patients and the possi-

ble values that may be observed. The expression f(xk|x1, . . . , xk−1) is the

function of the possible observed events in the k-th stage given the observed

events x1, x2, . . . , xk−1.

Similarly, the gain function of action A depends on all the x1, x2, . . . , xk−1

observations, denoted by G(A|x1, . . . , xk−1). If

G(R|x1, . . . , xk−1) > G(A|x1, . . . , xk−1),

then the optimal decision is to take action R and if otherwise, action A. By

working recursively back to the first stage, an optimal decision can be made

for all possible observations from n1 patients.

As described by Lindley (1961), the optimality problem at each present

stage is solved by considering the optimum future. The sequential recruit-

ment of patients by blocks of ni’s is known as group sequential. When ni = 1,

for i = 1, 2, . . . , k the sequential recruitment is called fully sequential. In

Chapters 6 and 7, the illustrations of the patient recruitments for the design
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for a series of trials are based on fully sequential.

3.6 Concluding remarks

In the design of clinical trials, one of the key components is to have an

appropriate sample size such that the minimally clinical accepted efficacy is

detected with small errors. Some of the methodology to determine sample

size is discussed in the following chapter. Most of the designs regard each

clinical trial individually even though the success or the failure of one may

have an impact on subsequent trials. A new design for a series of trials is

proposed in Chapter 5 so that the optimality of the whole of the project

development is considered. Following on that, a series of sequential trials

with sequential sampling is proposed in Chapter 6. Patients are recruited

sequentially and observations from the patients are then used to support

if the current trial should continue recruitment, stop and initiate another

clinical trial or abandon the development programme. Treatments targeting

the same population may be more similar and thus may be correlated. The

design for a series of sequential trials is therefore extended by considering

the correlation between treatments (Chapter 7).

All the proposed designs make use of the Bayesian approach by maximis-

ing the assurance of each trial which optimize the expected gain of the whole

series of trials. On the basis of that, the random variable X is assumed to

take on values from the real line and it follows a known form of distribution

depending on a random parameter θ. The parameter θ is assumed to follow

a known distribution with fixed parameters, implying a prior distribution for
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θ. The elicitation of the prior distribution could be from the opinion and

judgments of an expert, a group of experts, data from previous studies or

published results (O’Hagan et al., 2006). The prior densities in this thesis are

estimated from data of published trials using maximum likelihood estimate

methodology.

49



Chapter 4

Sample Size Determination

Due to the inherent biologic variations in patients presented with the same

condition it is necessary to have a group of patients in clinical trials. The

results from the sampled patients are consequently used to infer how the

treatments may behave in the population. Thus, one of the fundamental

issues in the design of a clinical trial is the number of patients that should

be sampled. On the one hand, a sample size that is too large may delay the

treatment from being made available to the population when it has shown

some minimum clinical efficacy. On the other hand, an inadequate sample

size may not be able to draw a valid conclusion thus, subjecting patients

unnecessarily to “questionable” treatments.

This chapter discusses some of the common methods used to determine

sample size for a superiority trial which aims to establish the superiority of

the experimental treatment to a control treatment that could either be a

placebo or the current standard treatment. In a phase II setting however,

it may not be necessary to have a controlled arm. Instead the efficacy of
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the experimental treatment is compared against a known value of an his-

torical control. The designs discussed in the later sections thus include both

controlled (two-arm) and uncontrolled (one-arm) trials, and the primary end-

point is assumed to be either a continuous variable or a binary variable.

This thesis assumes that the trial’s primary outcome, X, is a random

variable that has a known form of a probability distribution function with an

unknown parameter θ. The probability density function (or equivalently the

probability mass function for a discrete variable) is represented by f(x|θ).

Patients’ outcomes are independent of each other and so each random vari-

able is assumed to be independently and identically distributed with the same

probability density function, f(x|θ).

The sample size is determined based on the analysis of the primary end-

point that is to be done at the end of the trial (ICH, 1998), that is, an

inference on parameter θ is made. Issues such as patient withdrawal and

protocol violation may affect the actual number of patients in a trial and

thus, methods that deal with these issues are employed alongside the com-

mon sample size calculation formulations to determine the minimum sample

size that is necessary. However, these methods will not be discussed in this

thesis.

Sample size determination methods are broadly classified into two main

groups, namely, frequentist and Bayesian. The Bayesian methods are further

divided into two general categories; an inferential technique and a decision

theoretic technique which treats the inference problem as a decision problem

based on utility or loss function. Some designs make use of both frequentist

and Bayesian methods and they are commonly known as the hybrid approach.

51



Sample Size Determination

As discussed briefly in Spiegelhalter et al. (2004, Ch. 6), some authors

advocated the decision-theoretic framework for clinical trial designs and some

advocated the inferential framework. For the former framework the argument

is that a decision is ultimately made whether to stop the trial or not and

therefore, assessing utilities. Under the inferential framework the argument

is that the estimated efficacy of interest should be reported with sufficient

confidence because the population who may be receiving the treatment after

the trial is usually more heterogeneous than the population in the trial. Both

frameworks have their merits and Whitehead (1993) argues that Bayesian

decision-theoretic framework is appropriate in early phase trials whereas a

frequentist approach is suitable for phase III trial.

This thesis concentrates on the designs of a series of trials based on the

hybrid approach. As such the general frameworks of both frequentist and

Bayesian methodology will be discussed. The first section is on the frequentist

method for continuous and binary random variables. There is a subsection

on sample size determination for phase II trials based on the frequentist

approach (Section 4.1.3). Following on, Section 4.2 discusses some general

clinical trials design based on the Bayesian methodology. The hybrid method

is discussed in Section 4.3 and Section 4.4 presents some published works

on designing a series of clinical trials. Finally, Section 4.5 concludes the

chapter. Details of the methods discussed in this chapter can be found in

these textbooks: Friedman et al. (2010), Joseph and Belisle (1997), Julious

(2010), Lachin (1981) and Machin et al. (2009).
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4.1 Frequentist method

The principle of sample size determination is to choose a sample size so that

an analysis is performed on the observed primary outcomes and consequently

infer the unknown parameter θ. Therefore, it is necessary to ascertain the

primary patient outcome which is chosen based on the main objective of the

trial.

In the classical frequentist approach, the objective of the trial is delineated

in the hypothesis where the null hypothesis states that the true difference

between the experimental and control treatments belongs to a subset of the

parameter space. Let Ω be the parameter space and let ω be the subset of

Ω where the true difference belongs to. For the purpose of designing a trial,

the alternative hypothesis needs to be specified, too, where it simply states

that the true treatment difference does not belong to ω but to Ω− ω.

4.1.1 Continuous variable

Controlled trial

Consider a trial examining the efficacy between the experimental treatment

and a control treatment, and that the primary outcome is a continuous vari-

able, that is, it takes a range of values from the real line. Suppose that the

trial’s objective is to estimate the true difference between the mean of the true

outcome of the experimental treatment and the mean of the true outcome

of the control treatment. Let X1, X2, . . . , Xn1 be n1 independent continuous

outcomes from the control group where Xi ∼ N(µ1, σ
2
1), i = 1, . . . , n1. Let
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X =
∑n1

i=1Xi/n1 be the mean ofX1, . . . , Xn1 and as the observations from the

patients are assumed to be independent from each other, X ∼ N(µ1, σ
2
1/n1).

Similarly, let Y1, Y2, . . . , Yn2 be the n2 independent continuous outcomes from

the experimental treatment group where Yj ∼ N(µ2, σ
2
2), j = 1, . . . , n2,

and let Y =
∑n2

j=1 Yj/n2 be the mean from the experimental group where

Y ∼ N(µ2, σ
2
2/n2).

Let the difference of the mean of the two treatment arms denoted by

δ = Y −X. The observations from both arms are assumed to be independent

of each other and so δ ∼ N(µ2 − µ1, σ
2
1/n1 + σ2

2/n2), that is, δ also follows

the normal distribution with mean µ2 − µ1 and variance σ2
1/n1 + σ2

2/n2. For

ease of notation, let θ = µ2−µ1 and n1 = rn2 where r is the allocation ratio.

The total number of patients to be recruited to the trial is N = n1 + n2 =

(1 + r)n2. Therefore, rewriting the notation, δ ∼ N(θ, (σ2
1 + rσ2

2)/(rn2)),

which is equivalent to

δ − θ√
(σ2

1 + rσ2
2)/(rn2)

∼ N(0, 1). (4.1)

The objective of the trial is to estimate the true difference between the

two means. Following on the review in Chapter 3.3, assuming that there

is only one element in ω and that element is denoted by θ0 then the null

hypothesis is written as H0 : θ = θ0. Under the alternative hypothesis, also,

assumed that there is also only one element in Ω− ω and this is denoted as

θA, so the alternative hypothesis is H1 : θ = θA. In determining the sample

size, both θ0 and θA are specified a priori. These two values may be obtained

by assuming the true mean of the control arm and the smallest difference
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that is of clinical significance between the two arms.

In the process of inferring the population mean, two types of errors may

be incurred and they are type I and II errors. Type I error is the error of

rejecting the null hypothesis when it is true and type II error is the error of

not rejecting the null hypothesis when it is false. The maximum allowable

levels of type I and II error rates need to be specified a priori, too, in the

design stage when determining the sample size. Let α and β be the maximal

allowable levels for the type I and II errors, respectively,

Pr(Reject H0|θ = θ0) = Pr(type I error) = α

Pr(Non-rejection of H0|θ = θA) = Pr(type II error) = β. (4.2)

Assuming that the variance of δ is the same in both null and alternative

hypotheses, a general equation for sample size determination can be devel-

oped from (4.1) and (4.2). Similar to the steps seen in (3.16), under the null

hypothesis and a two-sided α-level of significance, the critical region to reject

H0 is given by

Pr(Reject H0|θ = θ0) = α/2

⇔ Pr(δ > c|θ = θ0) = α/2

⇔ Pr

(
Z >

c− θ0√
(σ2

1 + rσ2
2)/(rn2)

)
= α/2

⇔ 1− Φ

(
c− θ0√

(σ2
1 + rσ2

2)/(rn2)

)
= α/2

⇔ c = z1−α/2

√
σ2

1 + rσ2
2

rn2

+ θ0 (4.3)
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where Φ(·) is the cumulative distribution function of the standard normal

distribution and zγ is the lower 100γ percentile of the standard normal dis-

tribution.

Under the alternative hypothesis, the random variable δ follows the nor-

mal distribution with mean θA and variance (σ2
1 + rσ2

2)/(rn2), equivalently,

this is rewritten as (δ − θA)/(
√

(σ2
1 + rσ2

2)/(rn2)) ∼ N(0, 1). As shown ear-

lier, in (3.17) the power function is

Pr(Reject H0|θ = θA) = Power

⇔ Pr(δ > c|θ = θA) = 1− β (4.4)

Substituting (4.3) into (4.4) to solve for n2,

Pr

(
Z > z1−α/2 +

θ0 − θA√
(σ2

1 + rσ2
2)/(rn2)

)
= 1− β

⇔ z1−α/2 −
θA − θ0√

(σ2
1 + rσ2

2)/(rn2)
= zβ

⇔
√
rn2 =

(z1−α/2 − zβ)
√
σ2

1 + rσ2
2

θA − θ0

⇔ n2 =
(σ2

1 + rσ2
2)(z1−α/2 − zβ)2

r(θA − θ0)2
.

(4.5)

Therefore, the total number of patients needed is N = (1 + r)n2 where

n1 = rn2 patients are randomized to the control arm and n2 patients are

randomized to the experimental treatment arm.

Assuming that the variances of both arms are equal, σ2 = σ2
1 = σ2

2, and
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the allocation ratio is 1:1 then (4.5) is simplified into

n2 =
2σ2(z1−α/2 − zβ)2

(θA − θ0)2
. (4.6)

The total number of patients to be recruited is thus, N = 2n2, a positive

number. In practice, N is rounded up to the nearest even integer. For exam-

ple, consider an asthma clinical trial whose objective is to detect a difference

of 10% between treatments in mean percentage change from baseline in the

forced expiratory volume in one second (FEV1) observed 12 hours after the

treatment dose against a null hypothesis of no difference between treatments,

that is, θ0 = 0 and θA = 10. The standard deviations of both treatment arms

are assumed to be equal and fixed at σ = 14. Let α = 0.05 and β = 0.10,

and the randomization ratio is 1:1 then from equation (4.6), the number of

patients needed per arm is n1 = n2 = 41.189. Rounding up to the nearest

even integer the total number of patients needed is N = 84.

Uncontrolled trial

Some phase II trials are conducted with only one treatment arm, that is, the

experimental treatment is tested against a known historical control value. In

this setting, the sample size determination is done by testing the parameter

µ2 of the random variable Y under these hypotheses: H0 : µ2 = θ0 against

H1 : µ2 = θA where θ0 is the known historical value and θA is the minimum

value that is of clinical significance that may be attained by the experimental

treatment. Given the type I and II error rates and assuming that the variance
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is known, the desired sample size is

n =
(z1−α/2 − zβ)2σ2

2

(θA − θ0)2
. (4.7)

Consider the example given in the controlled trial setting but instead of

randomizing patients to two treatment arms, all n patients are given the ex-

perimental treatment. Assume that the mean percentage change from base-

line in FEV1 of the historical control is θ0 = 0 and that the mean percentage

change of the experimental treatment is θA = 10. The standard deviation

is as given in the earlier example, σ2 = 14 and so, for a two-sided test at

0.05 level of significance and power of 0.90 the desired sample size is n = 21

(rounding up from n = 20.59).

4.1.2 Binary variable

This section considers clinical trials with binary data as the primary end-

point, that is, the response from each patient is dichotomized into, for exam-

ple, success or failure, yes or no. Usually, a positive response such as success

is represented numerically by 1 and a negative response, failure, by 0. Con-

sider a two-arm randomized trial where patients are randomly allocated to

either treatment. Let X1, X2, . . . , Xn1 be n1 independent binary outcomes

from the control group where Xi = 1 if the response is a success and Xi = 0,

otherwise, for i = 1, 2, . . . , n1. Let S1 = X1 + X2 + . . . + Xn1 be the sum

of successes from n1 patients. A common and convenient probability dis-

tribution for Xi is the Bernoulli distribution and therefore, as seen earlier

in Section 3.1.1, S1 is assumed to follow the binomial distribution with in-
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Table 4.1: Statistics for a two-arm randomized controlled trial with binary re-
sponse.

Treatment Number of Number of Observed Anticipated
arm successes observations success rate success rate

Control s1 n1 s1/n1 p1

Experimental s2 n2 s2/n2 p2

Overall s N

dex n1 and an unknown parameter p1, the probability of success. Similarly,

let Y1, Y2, . . . , Yn2 be n2 independent binary outcomes from the experimental

treatment arm and let S2 = Y1 + Y2 + . . .+ Yn2 be the sum of successes from

n2 patients. Likewise, S2 is assumed to follow the binomial distribution with

index n2 and an unknown probability of success, p2. Let S1 = s1 and S2 = s2

be the observed successes at the end of the trial, then the statistics may be

recorded as shown in Table 4.1.

There are a few methods to summarize the binary effects between two

treatments at the end of the trial. Some of the common summary measures

are absolute risk difference, odds ratio, log odds ratio and relative risk (Ta-

ble 4.2). The sample size determination depends on the hypothesis which

depends on the summary measure that would be used for the final analysis

at the end of the trial. This thesis will concentrate on the log odds ratio but

examples will be given for both absolute risk difference and log odds ratio

summary measures.

Absolute risk difference: controlled trial

Let r be the allocation ratio such that n1 = rn2, then the total number of

patients needed for the trial is N = (r + 1)n2. First, consider the setting of
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Table 4.2: Summary measures for binary response.

Measure Definition

Absolute risk difference p2 − p1

Odds ratio p2(1−p1)
p1(1−p2)

Log odds ratio log
(
p2(1−p1)
p1(1−p2)

)
Relative risk p2/p1

testing the absolute risk difference between the two treatment groups. The

null and alternative hypotheses are thus written as

H0 : p2 = p1 against H1 : p2 6= p1.

For some values of n1 and n2 that satisfy these conditions n1p1(1 − p1) ≥

10 and n2p2(1 − p2) ≥ 10, respectively, the normal distribution is a good

approximation to the binomial distribution. As such, the test statistic to

test the null hypothesis is defined as

Z =
p̂2 − p̂1

σ̂
,

where p̂1 = s1/n1, p̂2 = s2/n2 and σ̂2 = ˆ̄p(1− ˆ̄p)(1/n1 + 1/n2). The average

proportions of events is estimated as ˆ̄p = (rp̂1 + p̂2)/(r + 1).

The null hypothesis is defined as, H0 : p2 = p1 = p̄, where p̄ = (rp1 +

p2)/(r + 1) and the variance is σ2
0 = (1 + r)p̄(1 − p̄)/(rn2). Under the null

hypothesis and for large sample sizes, the test statistic, Z, is assumed to

follow the standard normal distribution, that is, Z ∼ N(0, 1). Following the

steps seen in Section 4.1.1, for a two-sided α-level of significance the critical
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region to reject the null hypothesis is

Pr(Reject H0|p2 = p1) = α/2

Pr

(
Z >

c− (p2 − p1)

σ0

)
= α/2

1− Φ
( c
σ0

)
= α/2

c = z1−α/2σ0. (4.8)

As the variance of the test statistic depends on the anticipated probabilities

of success of each treatment arm, it is necessary to specify both p1 and p2 a

priori at the design stage for sample size calculation. Under the alternative

hypothesis, H1 : p2 − p1 = pA, the variance is σ2
1 = p1(1 − p1)/n1 + p2(1 −

p2)/n2, and the power function is

Pr

(
Z >

c− (p2 − p1)

σ1

)
= 1− β. (4.9)

Substituting (4.8) into (4.9) to solve for n2,

Pr

(
Z >

z1−α/2σ0 − (p2 − p1)

σ1

)
= 1− β

⇔ n2 =

(
z1−α/2

√
(1 + r)p̄(1− p̄)− zβ

√
p1(1− p1) + rp2(1− p2)

)2

r(p2 − p1)2
.

(4.10)

Therefore, the minimum total sample size needed is N = (1 + r)n2 and

of this, n1 = rn2 is randomized to the control arm and n2 patients to the

experimental treatment arm.
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As an illustration of the sample size calculation, consider an asthma clin-

ical trial whose objective is to test if the experimental treatment is better in

controlling asthma exacerbation than the placebo. The primary endpoint is

binary where at least an episode of moderate or severe asthma exacerbation

during a 4-week treatment period is considered as a failure and the absence

of any asthma exacerbation event is considered as a success. Assume that

the probability of success of the placebo is p1 = 0.80 and that the probability

of success of the experimental treatment is p2 = 0.90. For a two-sided sig-

nificance level of α = 0.05 and power, 1− β = 0.90, and an equal allocation,

r = 1, the minimum sample size that is required per arm is n1 = n2 = 265.86.

So, rounding up to an even integer, the minimum total number of patients

needed is N = 532.

Absolute risk difference: uncontrolled trial

In a single-arm trial, the true probability of success of the experimental treat-

ment is tested against a fixed and known historical control, p0. For sample

size calculation, the probability of success of the experimental treatment, pA,

is specified a priori. Thus, the null hypothesis is written as, H0 : p2 = p0,

which yields σ2
0 = p0(1− p0)/n2 where n2 is the sample size required for the

trial. The alternative hypothesis, on the other hand, is H1 : p2 = pA and the

variance is σ2
1 = pA(1− pA)/n2. The sample size is

n2 =

(
z1−α/2

√
p0(1− p0)− zβ

√
pA(1− pA)

pA − p0

)2

. (4.11)
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For illustration, let p0 = 0.80, pA = 0.90, α = 0.05 and β = 0.10, then from

(4.11), n2 = 136.52 and so the minimum sample size required for the trial is

137.

Log odds ratio: controlled trial

The absolute risk difference discussed in the preceding section is a simple

measurement bounded by (−1, 1). This may however, lead to anomalies

especially if the response is very near to the boundary (Julious, 2010, White-

head, 1997). As such, the log odds ratio may be a better choice as a summary

measure. The odds of success of the control arm is p1/(1− p1) and the odds

of success of the experimental treatment arm is p2/(1 − p2). The ratio of

these odds, OR = p2(1 − p1)/(p1(1 − p2)), is the odds ratio and it can take

any positive values. However, by taking the log of the odds ratio with re-

spect to the natural base, the log odds ratio lies between −∞ and ∞, an

unbounded random variable. As such, it has a more appealing property than

the absolute risk difference.

Let θ = log{p2(1 − p1)/(p1(1 − p2))} be the log odds ratio, then the

hypotheses of the absolute risk difference, H0 : p2 = p1 against H1 : p2−p1 =

pA is rewritten as

H0 : θ = 0 against H1 : θ = θA.

Following the same notation in Table 4.1, let S = S1 + S2 be the sum of

successes from both treatment arms, the score statistic of the log odds ratio
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is

B =
n1S2 − n2S1

N
. (4.12)

Following Whitehead’s definition, the Fisher’s information of the score statis-

tic is

V =
n1n2S(N − S)

N3
. (4.13)

The score statistic, B, is approximately normally distributed with mean θV

and variance V , thus, providing an attractive scale for design, analysis and

inference.

Under the null hypothesis, H0 : θ = 0, the test statistic is B/
√
V . There-

fore, for a two-sided α-level of significance, the critical region to reject H0

is

Pr(B > c|θ = 0) = α/2

⇔ Pr(Z > c/
√
V ) = α/2

⇔ c = z1−α/2
√
V . (4.14)

Under the alternative hypothesis, the power function is

Pr(B > c|θ = θA) = 1− β

⇔ Pr

(
Z >

c− θAV√
V

)
= 1− β

⇔ 1− Φ
(
z1−α/2 − θA

√
V
)

= 1− β

⇔
√
V = (z1−α/2 − zβ)/θA. (4.15)
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Let r be the allocation ratio, then for large sample trial, S ≈ Np̄, where

p̄ = (rp1 + p2)/(r + 1), the Fisher’s information in equation (4.13) is now

approximately

V ≈ r

1 + r
p̄(1− p̄)n2, (4.16)

which is a function of sample size. Substituting (4.16) into (4.15) the sample

size can be approximately determined by

√
r

1 + r
p̄(1− p̄)n2 ≈

z1−α/2 − zβ
θA

n2 ≈
(1 + r)(z1−α/2 − zβ)2

rp̄(1− p̄)θ2
A

. (4.17)

The desired approximate total sample size is thus, N = (1 + r)n2. Based on

the same example for absolute risk difference measurement, given p1 = 0.80,

p2 = 0.90, α = 0.05, β = 0.90 and a 1:1 allocation ratio, the log odds ratio

under the alternative hypothesis is θA = 0.8109. Therefore, the approximate

sample size per arm is 250.64 and the total sample size required is 502.

The formulation using the absolute risk difference (4.10) is not very dis-

similar to the formulation using the log odds ratio (4.17). Referring to

Julious and Campbell (1996), the log odds ratio can be approximated by

θ ≈ 2(OR− 1)/(OR + 1) and so

1

θ
≈ p̄(1− p̄)

p2 − p1

.
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Without loss of generality, let r = 1, then equation (4.17) becomes

n ≈
2(z1−α/2 − zβ)2p̄(1− p̄)

(p2 − p1)2
.

In addition, p1(1−p1)+p2(1−p2) ≈ 2p̄(1− p̄) and so equation (4.10) becomes

n ≈
(z1−α/2 − zβ)2(2p̄(1− p̄))

(p2 − p1)2
.

Therefore, the two methods are approximately equivalent to each other.

4.1.3 Sample size for phase II trials

One of the aims of phase II trials is to screen out nonpromising treatments.

Some phase II trials are designed as single-arm and the sample size is rel-

atively smaller than what is required in a phase III setting. Many designs

of phase II clinical trials are modelled from oncology trials. As such, the

primary objective is usually to look for anti-tumour activity where if the

tumour shrinks by at least 30% according to the RECIST criteria (Eisen-

hauer et al., 2009) it is considered as a success and a failure otherwise. The

primary endpoint is thus, a binary random variable. This section presents

some of the common sample size determination methodologies for single-arm

phase II trials with binary primary endpoint.

In screening out nonpromising treatments, the phase II trial is to test

if the experimental treatment has met the minimum level of efficacy, pA, in

order to be recommended for further testing in a randomized phase III trial.

If however, the experimental treatment is worse than a prespecified level of
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efficacy, p0, then it is not worthy of any further trial. The hypotheses are

thus, written as

H0 : p ≤ p0 against H1 : p ≥ pA,

where p is the true probability of success of the experimental arm.

The origin of designs of trials has its roots in the agricultural field ex-

periments where the field is plotted and sown, the crops grown and finally,

harvested simultaneously for analysis (Whitehead, 1997). The data accumu-

lation from clinical trials, on the other hand, happens steadily over a period

of time. The results from patients who have been recruited earlier could be

used for analysis, interpretation and decision-making. There are many rea-

sons for the use of interim analyses but they can be loosely categorized into

three: ethical, economic and administrative (Jennison and Turnbull, 2000,

Ch.1).

Ethically, if the results from the interim analyses showed that the treat-

ments are greatly ineffective, unsafe or inferior, patients should not be ex-

posed to them anymore. Additionally, resources can then be channelled to

other trials to study the next promising treatment. On the other hand, if

the interim analyses showed that the result is positive, an early stopping of

the trial will allow the treatments to be marketed sooner and consequently

available for more patients. Economically, the expected sample size for a

multi-stage trial is usually smaller compare to a single-stage trial’s. Admin-

istratively, for example, if the non-compliance rate from patients are very

high, this could be identified during the interim analyses. Thus, the trial can

be protected from future non-compliance without losing any power to detect
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a significant result.

Recruitment of patients to multi-stage trial can be done either in groups

or individually. The latter sequential sampling is sometimes known as fully

sequential trial where patients are recruited one at a time and analysis is

performed after every response is obtained. Whereas, in group recruitment,

analysis is performed after all the responses from the current and preceding

groups are observed.

A practical issue regarding multi-stage trials is that patients accrual may

have to be suspended for a few weeks or months while observing recruited

patients’ responses. The disruption may cause awkwardness if patient has

been recruited but could not be treated until a decision is made. Also, the

interest in the trial may wane if the duration of suspension is too long. As

such, trials that are able to recruit patients quickly may benefit from single-

stage designs.

Single-stage

One methodology of sample size determination for a single-stage single-arm

phase II trial with binary primary endpoint is as shown in equation (4.11)

but instead of testing at a two-sided α it is only tested at a one-sided level

of significance (Fleming, 1982, Schoenfeld, 1980). Thus, the sample size is

simplified to

n =

(
z1−α

√
p0(1− p0)− zβ

√
pA(1− pA)

pA − p0

)2

. (4.18)
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Back to the same example where p0 = 0.80, pA = 0.90, α = 0.05 and

β = 0.10, at a one-sided level of significance, the sample size that is required

is 109. As shown, the sample size obtained from this formulation may be quite

large and so, to ensure that the required sample size is relatively smaller, the

difference between experimental treatment and known historical control is

set large or the type I and II error rates are set higher.

Schoenfeld (1980) argued that in the phase II setting, the type II error

is more serious than the type I error because by incurring a type II error a

better drug would be denied the chance of being studied further and patients

are not able to benefit from a more superior drug. Thus, the type I error

could be set as high as 0.25 while the type II error is still restricted to a low

value, between 0.10 and 0.20. As an illustration, consider the same example

where p0 = 0.80, pA = 0.90 and β = 0.10 but the type I error rate is set

higher to α = 0.25, then the required sample size is n = 42.81 and rounding

up to the nearest integer the number of patients needed is 43, less than half

of what would be required if α = 0.05.

The sample size determination based on (4.18) is an approximation based

on the normal distribution although the proportion of success has a binomial

distribution. Referring back to the preceding example where p0 = 0.80,

pA = 0.90, α = 0.05 and β = 0.10, the minimum number of successes needed

in order to conclude that the experimental treatment is worthy of further

investigation is

S = cn = z1−ασ0 + p0 = 94.08.

If the true response rate was 0.80, the probability of observing at least 95
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successes out of 109 is 3.52%. If the true response rate was 0.90, then the

probability of observing at least 95 successes out of 109 is 87.29%. Therefore,

the actual type I and II error rates are 3.52% and 12.71%, respectively. Note

that the type II error is slightly higher than the prespecified 10%. Thus, for

trials with small sample sizes, the normal approximation may not be ideal.

A’Hern (2001) proposed an exact binomial computation to determine

sample sizes. The search for the minimum sample size and cut-off is done

by using the exact binomial distribution and the cumulative binomial distri-

bution function. For the same example of p0 = 0.80, pA = 0.90, α = 0.05

and β = 0.10, the required sample size is 112 and the minimum number of

successes needed to recommend the experimental treatment for further trial

is 97. The actual type I and II errors are 4.67% and 9.22%, respectively.

Multi-stage

One of the earliest works on sequential methodology was by Wald (1945)

where trials are conducted in stages. At each stage, a decision is made

whether to stop the current trial or to continue recruiting patients to the next

stage. If the latter decision is made, at the second interim stage a decision

is made whether to stop the current trial or to continue recruitment based

on the cumulative observed responses. The trial may go on until a definite

decision is made at the last interim stage, that is, whether to conclude that

the treatment is worthy of further trial or to abandon the trial. The decision

is made by testing the null hypothesis and there is a theoretical optimal

property where the expected sample size is smallest when the type I and II

error rates are bounded by α and β, respectively, under H0 and H1 (Wald
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and Wolfowitz, 1948). Other works that are commonly referred to and cited

are, for example, from these authors Lan and DeMets (1983), Pocock (1977)

and O’Brien and Fleming (1979).

There is more literature available on multi-stage trials with binary end-

point than for continuous endpoint due to the nature of discreteness. The

calculations are more straightforward and the boundaries are easily obtained

in the design stage. Gehan (1961) proposed a two-stage phase II trial al-

though when it was first proposed, Gehan referred to it as preliminary and

follow-up trials where preliminary is now commonly known as first stage and

the follow-up is now known as second stage. In the first stage, there is no hy-

pothesis testing, instead a decision is made based on the observed responses

from patients. Suppose that the true probability of success of the experimen-

tal treatment is 90%, then there are two choices available for decision-making.

The first choice is that the experimental treatment is unlikely to be effective

in 90% or more of the patients. The second choice is that the experimental

treatment could be effective in 90% or more of the patients. Assuming that

the type II error rate is 5% then the probability that the first two consecutive

responses are failures is 0.01, that is, the probability of observing at least one

success in two consecutive patients enrolled into the trial is greater than 95%.

The sample size for the first stage is thus, n1 = 2. If there was no success

observed among the two patients, the decision is to reject the experimental

treatment. If however, at least one success was observed, then the second

decision is made, that is, recruit more patients to pinpoint the treatment’s

effectiveness. The additional number of patients to be recruited following the

initial observed success(es) is chosen so that the true probability of success

71



Sample Size Determination 4.1 Frequentist method

“is estimated with given precision, i.e. standard error”.

Gehan’s method requires the number of successes in the first stage to de-

termine the sample size needed for second stage. Thus, the total number of

patients cannot be determined at the design stage. Simon (1989) proposed

a two-stage phase II design that determined the number of patients needed

for stage one (n1) and two (n2) at the design stage. The decision whether

to proceed to stage two of the trial is based upon the minimum number of

successes observed at the end of stage one and the cut-offs are also deter-

mined in the design stage. If the true probability of response is p and the

number of success observed is c1 or less at the end of stage one, then the

trial will end early. The probability of terminating the trial at stage one is

Pr(X ≤ c1) =
∑c1

x=0

(
n1

x

)
px(1 − p)n1−x and the expected total sample size

is E(N) = n1 + n2(1 − Pr(X ≤ c1)). The sample sizes (n1 and n2) are de-

termined under the constraints of α and β error rates by minimizing E(N)

and assuming that the true response rate is p0. There are two optimization

methods in Simon’s design. One of the methods is known as the optimum

design where the number of patients needed for stage one (n1) is kept to

a minimum to ensure that not many patients are subjected to an inferior

treatment. The other method is known as a minimax design which is to

choose the smallest maximum total sample size N that satisfies the design

error probability constraints. Other multi-stage phase II trials have been

proposed by, for example, Fleming (1982) and Chen (1997).
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4.2 Bayesian method

In the frequentist approach, the measure of probabilities is in the data space

whilst the Bayesian measures probabilities in both data space and parameter

space. The principle of the frequentist approach is to use the observations

from the sampled population to make inferences about the population. The

interpretation of the probability assumes that in the long run, on average,

the true parameter is θ. The principle of the Bayesian approach, on the

other hand, considers the current trial in the context of other similar trials.

Under the Bayesian framework the unknown parameter θ is assumed to follow

a probability distribution function with known parameters. In this thesis,

the probability distribution function of θ is assumed to be of some known

parametric form, denoted by fΘ(θ).

The interpretation of the Bayesian probability is based on the degree of

belief where the prior probability is the belief of the parameter space before

any observation is obtained. Upon observing the responses from patients,

the prior is updated and the posterior probability is the combined belief of

the prior probability given the observed data (Stangl and Berry, 1998).

There are generally two main branches under the Bayesian framework for

sample size determination, namely, a statistical decision theory technique and

an inferential technique. Under the decision theory framework, consequences

of all the available actions are expressed as either loss or utility functions.

An optimum action, one that optimizes the loss or utility function, is then

chosen. Under the inferential technique there is no explicit loss or utility

function but the conclusion at the end of the trial is based on the posterior
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distribution of the parameter of interest.

Most of the published works under the Bayesian framework are based

on the decision theory framework and address sequential sampling. Hence,

there is a considerably lengthy discussion on the decision theory framework

than on the inferential technique in this section. In addition, most of the

designs are proposed for a phase II setting. In general, phase II trials can

be thought of as a screening process where promising treatments can be

identified early and be recommended for further trial in a phase III setting.

If on the other hand, they are nonpromising the trial can stop early thus, not

subjecting patients unnecessarily to a nonpromising treatment. In between

the two terminal decisions, the accumulated data may suggest that patient

recruitment should continue.

Single-stage

Under the decision theory framework, the utility function, G(n, x, d, θ), is

made up of sampling n patients, observing X responses and taking a decision

d given that the true parameter is θ. Let fΘ(θ) be the probability density

function of θ. The prior opinion of θ is not influenced by the decision d that is

to be made at the end of the trial nor the sample size n that is to be sampled.

From (3.7), the posterior density of θ upon observing X = x responses from

n patients is

fΘ|X(θ|x, n) =
fX|Θ(x|θ, n)fΘ(θ)

fX(x|n)
.
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The marginal density of X, as shown earlier in (3.8), is

fX(x|n) =

∫
fX|Θ(x|θ, n)fΘ(θ) dθ.

The optimum sample size can be determined by backward induction which

was discussed earlier in Chapter 3.5.1. For designing a single-stage trial the

backward induction is simple. First, taking the expectations of the utility

function over the random variable θ given (x, n). Secondly, maximize the

expectation function over the deterministic variable d. Thirdly, take the

expectation of the maximized expectation function over X, and finally, max-

imize over the deterministic value n (Lindley, 1997). The optimum sample

size is thus,

max
n

{∫
X

max
d

{∫
Θ

G(n, x, d, θ)fΘ|X(θ|x, n) dθ
}
fX(x|n) dx

}
.

If X is a discrete random variable, the integral is replaced by summation

over all possible values of X.

The utility function can be made up of the costs of treating patients

and conducting the trial, and the profits gained from a successful treatment

(for example, Hilden et al. (1987) and Sylvester (1988)). It may also be

made up of significance testing based on the classical frequentist power which

then “classifies” the methodology as a hybrid design as it uses the prior

distribution of the parameter in the design stage and assuming a classical

frequentist hypothesis testing at the end of the trial (for example, Brunier

and Whitehead (1994) and Stallard (1998)). Further discussion on multi-
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stage trials based on decision-theoretic approach is presented in Section 4.3.

The optimum sample size determination under the Bayesian inferential

framework is analogous to the frequentist approach except that the uncer-

tainty about the parameter θ holds and that there is no hypothesis testing

at the end of the trial. The Bayesian approach utilizes the posterior distri-

bution which if the estimate based on the posterior distribution is within the

credibility intervals, (L,U), the result is significant. As such, the sample size

is obtained through the posterior distribution. For a fixed posterior interval

(L,U), the optimum n∗ is the smallest n that satisfies the equation

∫
X

(∫ U

L

fΘ|X(θ|x, n) dθ
)
fX(x|n) dx ≥ 1− α/2.

Joseph and Belisle (1997) presented other fully Bayesian methods for single-

stage trials.

Multi-stage

Thall and Simon (1994) presented a design of a single-arm phase II trial

where patients are recruited sequentially. The maximum number of patients

to be recruited is fixed and will be denoted by nmax. If the cumulative number

of successes up to the i-th patient, Si, is greater than or equal to the upper

bound Ui then the trial will terminate and the new treatment is declared

promising. If Si is less than or equal to the lower bound Li then the trial will

terminate and the new treatment is declared nonpromising. If Li < Si < Ui

then the trial will continue by recruiting another patient. If however, at

i = nmax and Li < Si < Ui then the trial is concluded as inconclusive.
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Other designs similar to Thall and Simon’s have been proposed, for ex-

ample, by Tan and Machin (2002) and Sambucini (2008). However, instead

of monitoring patients continuously, these designs recruit patients in groups.

At the interim stage, the posterior probability of the true response rate from

the first group of patients is estimated. A decision is then made to either

abandon the trial early or to continue to recruit more patients to the second

stage. For the latter decision, once again the posterior probability of the true

response is estimated based on all the patients and a decision is made from

two choices, namely, to recommend the experimental treatment for further

trial or to conclude that the experimental treatment is nonpromising.

It seems more intuitive and appealing to use Bayesian decision theory in

multi-stage trials as at each interim analysis we are more informed on the

efficacy of the treatment as data are amassed and consequently assisted the

decision-maker in making informed decision. Some of the multi-stage trials

designs based on Bayesian decision theoretic approach are by, for example,

Brunier and Whitehead (1994), Hilden et al. (1987), Lewis and Berry (1994),

Stallard (1998), Sylvester (1988), and Sylvester and Staquet (1980). These

designs are briefly discussed in the next section as most of them are based

on hybrid decision theory.

4.3 Hybrid method

Hybrid designs are designs that utilize both frequentist and Bayesian ap-

proaches. Most of the common designs assume a prior distribution for the

parameter but the conclusion at the end of the trial is based on the classical
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frequentist testing, thus, not making use of the prior belief. As such it is

assumed that the point estimate of the treatment difference is reported with

its confidence interval and p-value which is the probability of observing a

treatment difference when in fact the two treatments are equally effective.

One example from among the hybrid decision-theoretic designs cited

above is one proposed by Brunier and Whitehead (1994). The proposed

phase II design assumes that the primary endpoint is binary and that the

sum of successes, S, follows the binomial distribution with parameter p. Like-

wise, the parameter p is assumed to follow a prior distribution and its density

is denoted by fΘ(θ). At the end of the phase II trial, the treatment is either

concluded as nonpromising or recommended to proceed to a larger phase III

trial. In the latter scenario it is assumed that the design of the phase III

trial is based on the conventional frequentist approach (discussed in Section

4.1.2).

The utility function is based on the formulation of the cost of conducting

an ineffective treatment (considered as a loss) and the expected gain if the

treatment is found to be effective, and also the loss of rejecting an effective

treatment. The proposed design considers the number of patients who will

be treated with the new treatment in the phase III, denoted by nIII, if it has

shown to be promising in the phase II setting. Let B(p) denote the power of

the phase III trial which is the probability that the experimental treatment

is concluded as more effective than the standard treatment when the true

probability of success is p. Consequently, it is assumed that nF number of

future patients will be treated with the new recommended treatment till a

successor is found. Let nII denote the sample size for the phase II trial and
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let An(p, c) denote the probability that the experimental treatment proceeds

from phase II to phase III trial when the true probability of success is p, that

is,

An(p, c) =

nII∑
s=c+1

(
nII

s

)
ps(1− p)nII−s.

The utility function is, thus,

G(n, c, θ) = (p− p0)
(
nII + An(p, c)(nIII +B(p)nF )

)

The optimal design is one with the combination (n, c) that maximizes the

expected utility function

G(n, c) =

∫ 1

0

G(n, c, θ)fΘ(θ) dp, (4.19)

where p0 is the probability of success of the standard treatment. The utility

function given in (4.19) may be extended to include the cost of conducting

phase II and III trials. In addition, the number of future patients nF may be

assumed to be dependent on the time it needs to conduct both phase II and

III trials (Stallard, 1998).

An example of a multi-stage hybrid decision-theoretic trial is one by Stal-

lard (1998). The principle involved in obtaining an optimal multi-stage hy-

brid decision-theoretic trial is very similar to the single-stage design but the

utility of each possible decision, d, is denoted by G(n, c, d, θ). If the opti-

mum decision at an interim stage is to recruit more patients, the expected

utility depends on the subsequent responses and the resulting decisions. The

expected utility function is an averaged over all the posterior density of the
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unknown parameter of the treatment efficacy given the observed responses.

4.4 Series of trials

According to Mariani and Marubini (1996) there may be two general sce-

narios that determine the designs of trials. One scenario is when the rate of

eligibility patients is relatively higher than the availability of potential treat-

ments. The second scenario is when there are a few new treatments available

for trials simultaneously and the rate of eligible patients is relatively low such

that the common designs (as introduced above) may not be suitable. In the

latter scenario there is a need to identify promising treatments effectively

and efficiently.

Whitehead (1985) proposed a design for a series of phase II trials where

each trial is designed in the context of others and as such, they are considered

as part of a single development plan. The design assumes that the total

number of patients available for study is known and fixed. Let N denote the

total number of patients and assume that n patients are assigned to each of

the distinct trial. There are then a total of K = N/n trials.

The design assumes that the primary endpoint is binary. Let pi be the

probability of success for the i-th trial, i = 1, 2, . . . , K, and assume they are

independent and identical random variables with prior density fp(p). The

cumulated successes from each trial are ranked and the trial with the highest

number of successes is subsequently recommended for phase III trial. Let p[1]

denote the pi from the most promising treatment, then the optimum number

of treatments to be on trial, K∗, is obtained by maximizing the expected

80



Sample Size Determination 4.4 Series of trials

probability of success, E(p[1]), subject to the constraint of N = nK where n

and K are integers.

The proposed design is subsequently extended by including the design

of a phase III trial in the series of trials (Whitehead, 1986). As mentioned

above, from among the K∗ trials, the treatment with the highest number

of successes is eventually recommended for a phase III trial. Therefore, the

design of the phase III trial is considered simultaneously in the extended

development plan. This integrated approach is appealing if the population

of interest is small as it is of importance to optimize the number of patients

for each phase II trials and the eventual phase III trial.

More recent work by Yao et al. (1996) assumes that the total number of

patients is not fixed. Instead, the main objective of the design is to minimize

the total number of patients, N . In Whitehead’s design, the trials can either

run sequentially or concurrently whereas Yao’s et al. design assumes that

the trials run sequentially until a treatment is declared to be promising.

The development plan is then considered as completed and a new one can

commence.

Similar to Whitehead’s designs, Yao et al. also assumes that the primary

endpoint is binary. Let Si be the sum of successes from trial i for i = 1, 2, . . . ,

and let pi be the probability of success of treatment i. At the end of the trial,

the observed data are used to test the null hypothesis H0 : pi ≤ p0 against

the alternative H1 : pi ≥ pA. If the observed successes, Si = si, is greater

than the critical value, c, the treatment is declared promising. Suppose that

K-th treatment is the first treatment to be declared promising. There are

two types of errors that could be made in the conclusion in the series of trials.
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One of the errors is accepting a nonpromising treatment and the other error

is rejecting one or more promising treatments. The probabilities of these

errors are, respectively,

α1 =
∞∑
i=1

Pr(S1 ≤ c, S2 ≤ c, . . . , Si−1 ≤ c, Si > c, pi < pA),

and

α2 =
∞∑
i=1

Pr(S1 ≤ c, S2 ≤ c, . . . , Si−1 ≤ c, Si > c, ḡi),

where

gi = {p1 < pA, p2 < pA, . . . , pi−1 < pA},

and ḡi is the complementary set to gi. The optimum sample size, n∗, and cut-

off, c∗, are obtained from a search algorithm by constraining the two posterior

error probabilities, α1 < e1 and α2 < e2 where e1 and e2 are predefined

maximum tolerable error rates.

Yao et al. design can be extended by including a phase III trial (akin

to Whitehead’s extension) where a treatment that is declared promising is

then recommended to a phase III trial. Consequently, the development plan

is considered as complete at the end of the phase III trial. The errors that

may be made in the conclusion of the development programme now include

the possible errors that may be made in the phase III setting. These errors

are:

Error 1: Accepting a promising treatment in the phase II setting but sub-

sequently rejecting it in the phase III setting.

Error 2: Accepting a nonpromising treatment in both phase II and III set-
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tings.

Error 3: Rejecting one or more promising treatments in the phase II setting.

Wang and Leung (1998) extended Yao et al. design by considering group

sequential sampling in each of the phase II trials, that is, patients are re-

cruited sequentially and a decision is made based on the cumulative observed

data. The available actions to choose from are to stop the current trial for

efficacy and recommending the current treatment for larger trial, to recruit

more patients to the current trial, and to cease current trial because of futil-

ity.

The optimum decision is obtained under the constraints of the prespec-

ified posterior error rates introduced by Yao et al. This is computed using

backward induction which is based on the principle of dynamic programming

(French and Ros Insua, 2000, Parmigiani and Inoue, 2009). At each interim

stage a decision is made from the available choices. If the optimum action

is to continue patient recruitment, the utility of the action depends on the

subsequent data and possible resulting actions. The optimum strategy is

obtained by considering the whole programme using Bellman’s principle of

optimality which states that regardless of the initial state of nature and the

initial decision, if observations have been taken so far leading to the current

stage then the continuation of the strategy resulting from the first decision

is the optimum strategy.

A recent work by Stallard (2012) is similar to Whitehead (1986) and

Yao et al. (1996) where a series of phase II and III trials are considered

simultaneously with the phase II trials running sequentially.
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4.5 Concluding remarks

This thesis is about designing a series of clinical trials. The motivation for

the design is that a pharmaceutical company may have a number of new

treatments in development and ready for trial or a large public sector body

has funding to identify a promising treatment from a pool of treatments for a

particular disease population. The main assumption in the designs is that the

total number of patients is assumed to be fixed and known. Equivalently, it is

sufficient to fix the total funding available as this can be adjusted accordingly

per the total number of patients.

The proposed designs utilize both classical frequentist and Bayesian for-

mulations. The designs introduced in Chapter 5 consider each trial as part of

a development plan. At the end of each trial the classical frequentist hypoth-

esis testing is performed. However, the parameter of the random variable is

assumed to follow a prior distribution. Therefore, the classical sample size

determination for a continuous variable as discussed in Section 4.1.1 is used

in the formulation but the parameter θ is assumed to be random.

The designs in Chapter 5 are assumed to be single-stage. Following on,

the designs are extended to be multi-stage and these are presented in Chap-

ters 6 and 7. As such, a convenient framework is to adopt the Bayesian

decision-theoretic framework.

84



Note by note, working on projection

Lips, teeth, throat, looking for a moment to inhale

Keeping the emotional connection

Even when your fellow actors fail

Pointing at the subtext by inflection

Helping your director reach perfection

Even though you have a strong objection

To the way he’s handling the direction

Stephen Sondheim

Putting It Together

Part II

Designs for a Series of Hybrid

Trials
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Chapter 5

A Series of Hybrid Trials

It is not uncommon for a pharmaceutical company to develop a number

of potential new drugs simultaneously for the same population. Tradition-

ally, clinical trial designs are chosen and planned individually without taking

account of other trials. Resources are essentially finite and as these new

treatments are made available for clinical trials it seems imperative to design

the trial by considering it as part of a series of trials such that the long-term

yield is maximized.

Some authors (for example, Whitehead (1985) and Yao et al. (1996)) have

proposed to consider designs for a series of trials as a whole and these are

in the setting of phase II trials. The works in this chapter extend some of

the methodology developed by them. The aim is to view a clinical trial as

part of a series of trials and to identify the optimal sample size for each trial

by taking the whole series into account. The methodology used is a hybrid

of frequentist and Bayesian approaches. It is assumed that at the end of

each trial, the conventional frequentist method will be used to analyse the
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observed responses and to test the hypotheses. The type I error for each

trial is fixed but the type II error is not so that this is determined by the

trial sample size. The type II error will be minimized which is equivalent to

optimizing the power of each trial.

The next section introduces the statistical framework that is to be used

in the designs. Section 5.2 presents the first proposed design which aims

to maximize the number of successful trials. Following on, the design is

extended by incorporating a start-up cost for each trial and its aim is to

maximize the expected utility (Section 5.3). Finally, the design is generalized

to a limiting setting where the size of the total population is not fixed. This

is presented in Section 5.4. The chapter ends with some discussion and

concluding remarks.

5.1 Assurance

The development in this section employs most of the notation and concepts

introduced in Chapter 3. Throughout this chapter, the trials are assumed to

be single-arm clinical trials. Let N be the known total number of patients

eligible for trials. This value could be the estimated size of the patient

population or in the case of small population diseases, it is not unreasonable

to assume that it is known at least approximately. If n (n ≤ N) patients

are entered into each trial, then the number of trials that can be tried is,

K = N/n.

Suppose that the primary endpoint is a continuous variable and denote

Xk as the sample mean from n observations from trial k, k = 1, 2, . . . , K.
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Let the sample mean be normally distributed with an unknown mean θk

and known variance σ2/n which can also be stated as Xk ∼ N(θk, σ
2/n).

The unknown parameter θk is assumed to be random and a common and

convenient choice of its prior distribution is the normal distribution. Let

θk ∼ N(µ, τ 2) where µ and τ are some fixed known parameters.

Upon observing the n responses at the end of each trial the frequentist

method is used to test the null hypothesis. For a single-arm trial, the true

mean θk is compared with the historical value θ0 and the size of the hypothesis

is set at α/2. Thus, the null hypothesis is

H0 : θk = θ0.

From equation (3.19), the assurance (the average power) of a trial is

A(n) = 1− Φ
(z1−α/2 −

√
n/σ2(µ− θ0)√

1 + nτ 2/σ2

)
,

where Φ(·) is the cumulative standard normal distribution function and zγ is

the lower 100γ percentile of the standard normal distribution. The assurance

is a function of n and although in practice n is an integer, in this chapter, as

an idealization, n is assumed to be continuous. If we let n→ 0,

lim
n→0

A(n) = 1− Φ(z1−α/2) = α/2,

half of the specified two-sided type I error rate. This suggests that there is

a minimum average power, albeit very small, that can be attained when the

sample size goes to 0, which means that we may still benefit from a successful
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trial without even starting a trial!

As n→∞,

lim
n→∞

A(n) ≈ lim
n→∞

1− Φ

(
z1−α/2 −

√
n/σ2(µ− θ0)√

nτ 2/σ2

)
= Φ

(
µ− θ0

τ

)
,

which is the prior probability that θk > θ0. Therefore, a trial with infinite

sample size will lead to rejection of H0 whenever θk > θ0. This is in contrast

to the power of a trial which approaches 1 when n → ∞. Therefore, if the

prior belief is positive, the assurance will be high and if the prior is negative,

the assurance will be low.

5.2 Maximization of the number of successful

trials

The assurance can be interpreted as the average probability of rejecting H0

over all possible values of the parameter of interest based on the prior density.

Let K̃(n) denote the number of trials that reject H0 where each trial is of

size n and the total sample size is constraint to be at most N . The first

design that we are proposing is to find the optimal number of patients per

trial, n∗, that maximizes the expected number of trials that reject H0 when

H0 is not true, E(K̃(n)). Under the model that we assume for this chapter,
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the expected number of trials that reject H0 is simply,

E(K̃(n)) = KA(n)

=
N

n

(
1− Φ

(
z1−α/2 −

√
n/σ2(µ− θ0)√

1 + nτ 2/σ2

))
. (5.1)

Considering n as a continuous variable, the assurance can be maximized

by differentiation. In theory, the maximum value of E(K̃(n)) is obtained

by differentiating E(K̃(n)) with respect to n and subsequently solve for n

by equating the derivative to 0. The derivative of E(K̃(n)) is presented in

Appendix B. However, the solution to dE(K̃(n))/ dn = 0 is not tractable

and thus can only be solved numerically.

As seen in the preceding section, the sample size n is finite and also the

assurance is bounded between 0 and 1 for n > 0. This implies that E(K̃(n))

is also finite for all n > 0. Suppose that, n→ N →∞ then,

lim
n→∞

E(K̃(n)) = Φ
(µ− θ0

τ

)
.

Whereas as n → 0, N/n → ∞ and as we have seen earlier, the assurance,

A(n)→ α/2, a finite value. Consequently,

lim
n→0

E(K̃(n))→∞.

As there is no other value of n that could give greater value to E(K̃(n)), the

optimal sample size is thus n∗ = 0, that is, the maximum of the expected

number of successful trials is attainable by not recruiting any patient to the
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phase II trials.

Corresponding to the examination of its properties, consider an example

where the variance of the sample mean is σ = 5, and the parameters of the

priof belief are µ = 1 and τ = 1. Under the null hypothesis, H0 : θk = θ0 = 0,

Figure 5.1 shows that to maximize the number of trials that conclude that

the treatments are promising when they are showing efficacy, we should have

many small individual trials. In fact, if n is fixed to have only non-zero integer

value instead of any real positive value, each individual trial should have only

one patient. By having only one patient per trial, naturally more drugs can

be put on trial and consequently, increase the expected total number of trials

that reject H0 since there is positive probability of rejection of H0 even with

a very small sample size.

It appears from Figure 5.1 that E(K̃(n)) is a monotonic decreasing func-

tion of n. However, upon closer examination, this is not so. For some very

small type I error rates, there is a local maximum at n > 0, illustrated in

Figure 5.2. However, as it is not practical to design trials with very small

type I error, this interesting property is not to be examined further in this

thesis.

5.3 Maximization of the expected utility

So far we have ignored the start-up cost per trial and hence from the preced-

ing result, we “get something for nothing” and as such it leads to the very

small optimal sample size. In practice, there is a start-up cost associated

with each clinical trial. By having as many trials as the total number of
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Figure 5.1: The expected number of trials that reject H0 as a function of n.

patients available, the total start-up cost will be greatly inflated. The sec-

ond design that is to be discussed in this section is to extend the first design

that maximizes the number of successful trials (Section 5.2) by considering

the start-up cost. The start-up cost could be the money or time spent on

planning, designing, submitting for ethics approval, and so on.

Suppose that one unit of gain is assigned to each successful trial (rejecting

H0 correctly), then the total expected gain is E(K̃(n)) as before. Let lII be

the fixed start-up cost which is relative to one unit of gain. The total start-up
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Figure 5.2: The expected number of trials that reject H0 under the fixed error
rates, (a) α = 0.01, (b) α = 0.005, (c) α = 0.0005, and (d) α = 0.00005.

cost for all trials is then lIIK. The expected utility is thus,

G(n) = E(K̃(n))− lIIK

=
(

1− Φ(f(n))− lII
)N
n
, (5.2)
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Figure 5.3: The expected utility, G(n) as a function of n.

where f(n) = σ(z1−α/2−
√
n/σ2(µ−θ0))/(

√
1 + nτ 2). Note that the cost for

each patient is excluded from the start-up cost because the total number of

patients is known and fixed. Hence, the total patients cost is a constant and

will not affect the optimization of the design.

The optimization methodology is to find an n that maximizes the ex-

pected utility, G(n). Similarly, to find the maximum of G(n) is to differentiate
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it with respect to n,

d

dn
G(n) = −f ′(n)φ(f(n))

N

n
−
(

1− Φ(f(n))− lII
)N
n2
. (5.3)

Subsequently, solving for n by equating the derivative to 0. However, due

to the cumulative distribution function term in the derivative, it can only

be solved numerically. The search for the optimal n∗ that maximizes the

expected utility can alternatively be made by a direct computation of G(n)

and the n that corresponds to the smallest value of G(n) is then taken as the

optimal n∗. We do this for a range of values for n, for example, from 0.01 to

N by an increment of 0.01.

There is a range of optimal solutions for different combinations of cost,

parameter of likelihood function and a priori knowledge of the unknown

parameters. Table 5.1 presents some of the optimal sample sizes for different

parameters such that the standardized effect sizes (µ/σ) are 0.2 (“small”

effect size), 0.5 (“moderate” effect size) and 0.8 (“large” effect size). The

null hypothesis is, H0 : θk = 0 and the two-sided type I error is fixed at 0.05.

Contrary to the E(K̃(n)) function whose optimal solution is at n∗ = 0, the

G(n) function is concave for most combinations (for example, see Figure 5.3

where θ0 = 0, σ = 7.5, µ = 1.5, τ = 1). An example, if θ0 = 0, σ = 5, µ = 1,

τ = 1, and the start-up cost of a trial is lII = 0.05, the optimal solution is

n∗ = 14.83 (see Table 5.1). Rounding up to the nearest integer, the sample

size needed for each trial is 15.

Note that when the parameters (µ = 1, τ = 1, σ = 5) are all multiplied by

a constant, for example, by 2 to give (µ = 2, τ = 2, σ = 10), the n∗ remains
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Table 5.1: The optimal sample sizes per trial, n∗, and expected utility, G(n), of
the design that maximizes G(n).

Effect size σ µ τ n∗ G(n)

0.2 5 1 1 14.83 8.290
5 1 2 6.38 16.154
5 1 5 1.51 59.356
7.5 1.5 1 21.52 6.507
7.5 1.5 2 10.78 10.520
7.5 1.5 5 2.96 31.805

10 2 1 26.64 5.813
10 2 2 14.83 8.290
10 2 5 4.62 21.350

0.5 2 1 1 2.37 51.813
2 1 2 1.02 100.963
2 1 5 0.24 370.974
3 1.5 1 3.44 40.666
3 1.5 2 1.73 65.748
3 1.5 5 0.47 198.779
4 2 1 4.26 36.334
4 2 2 2.37 51.813
4 2 5 0.74 133.438

0.8 1.25 1 1 0.93 132.642
1.25 1 2 0.4 258.465
1.25 1 5 0.09 949.198
1.875 1.5 1 1.34 104.104
1.875 1.5 2 0.67 168.313
1.875 1.5 5 0.19 508.797
2.5 2 1 1.67 93.014
2.5 2 2 0.93 132.642
2.5 2 5 0.29 341.601

the same, that is, n∗ = 14.83. This implies that the optimal sample size n∗

is robust towards scaling of the unit of measurement. For example, if the

original measurement is in inches and it has now changed to centimetres, the

n∗ will remain the same.
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Table 5.2: Optimal sample sizes per trial, n∗, expected gain, E(K̃(n)), and
expected utility, G(n), for different start-up costs, lII.

lII n∗ E(K̃) G(n∗)

0.001 0.01† 2621.561 2521.561
0.01 0.01† 2621.561 1621.561
0.02 0.01† 2621.561 621.561
0.03 0.84 47.942 12.228
0.04 9.99 13.098 9.094
0.05 14.84 11.659 8.290
0.1 29.45 9.396 6.000
0.2 55 7.181 3.544
0.3 87.11 5.538 2.094
0.4 135.07 4.126 1.164
0.5 218.61 2.860 0.573
0.6 398.42 1.730 0.224
0.7 985.06 0.763 0.052
0.8 0 0.752 −0.048
0.9 0 0.752 −0.148
0.99 0 0.752 −0.238

† In the direct search algorithm 0.01 was used as the minimum for n to start
off the search. Hence, the minimum value that n∗ can reach is 0.01.

From Table 5.1, the expected utility increases as τ increases while σ is

held constant. When τ gets larger, the variance of the prior belief is wider.

Thus, smaller sample sizes are required to give information regarding the

θk of each trial. In contrast to what has been observed from the increment

of τ , G(n) decreases as σ increases while τ is held constant. This property

conforms to the idea that as the standard deviation of the likelihood function

gets wider, a larger sample size is required to provide more information on

the parameter of interest, θk.

So far, we have shown that the expected utility function has a local max-

imum. However, there exists some situations where no optimal solution is
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Figure 5.4: The expected utility as a function of n for lII = 0.001 (dark solid
line), and lII = 0.99 (dark dashed line). The other grey dotted lines in between
are various lII values at 0.02, 0.1, 0.5, and 0.7.

found. If the start-up cost, lII → 0, the total cost for starting up trials, lIIK,

is negligible and thus,

lim
lII→0

G(n) = E(K̃(n).

The expected utility now is the same as the maximization of the number

of successful trials (Section 5.2). Therefore, the optimal solution is n∗ = 0.

Table 5.2 presents some of the optimal solutions when lII takes on various
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values. When lII = 0.01, n∗ = 0.01 which is the minimum value used in

the direct search algorithm. By modifying the minimum value in the direct

search algorithm n∗ changes and takes on that minimum value (result not

shown). The illustration of the change of the expected utility as a function

of n as lII takes on various values is presented in Figure 5.4.

On the other hand, as lII approaches 1, the total start-up costs, lIIK, will

be greater than the expected gain. From equation (5.2),

lim
lII→1

G(n) = A(n)K −K

=
(

1− Φ(f(n))− 1
)
K

= −Φ(f(n))K.

As Φ(f(n)) and K are always greater than 0 for all n > 0, the expected

utility, limlII→1 G(n) < 0, so that it is not worth starting any trial at all.

5.4 Minimization of the expected loss

So far, our designs have had a constraint of a fixed total sample size N .

Usually the availability of eligible patients is a continuous progress and as

argued by Yao et al. (1996) it is more practical to take away the constraint

on the total sample size. Suppose that the clinical trials are conducted se-

quentially, the objective is to recommend the first trial that is successful for

further testing. When the first successful trial is obtained, the series can be

considered to end and another series of trials to start.

Define T as the total number of trials up to and including the first suc-
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cessful trial so that T is a random variable. Each trial is independent of each

other and the prior probability that a trial is declared successful is equal

to A(n), the assurance as introduced earlier. The random variable T thus

follows a geometric distribution,

T ∼ Ge(A(n)),

with Pr(T = t) given by (1 − A(n))t−1A(n). The expected number of trials

required to give one successful trial is 1/A(n). Denoting the start-up cost

per trial as lII, then the average total start-up cost for all trials up to and

including the first successful trial is

lII
A(n)

.

Suppose that there are n patients in each trial, the expected total number

of patients till a successful trial is found is,

E(N) =
n

A(n)
.

As the total number of patients to be required is not fixed, the total cost

needed to be spent on patients is not fixed either. Let l be the cost per

patient which is also relative to the one unit of gain, then the expected total

cost of patients will be,

lE(N) =
nl

A(n)
.

Therefore, the expected total cost that would be spent till a successful trial
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Figure 5.5: The expected loss, L(n), as a function of n, for lII = 0.05 and
l = 0.0001.

is declared is

L(n) =
(
lII + nl

) 1

A(n)
. (5.4)

The optimization problem is to find an n that minimizes the expected loss,

L(n). The evaluation is done numerically, similar to the approach presented

in the preceding section. Figure 5.5 shows the expected loss function of

conducting a series of trials as a function of n for lII = 0.05 and l = 0.0001.

There is a range of optimal solutions for various combinations of costs,
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parameter of the likelihood function and a priori knowledge of the unknown

parameter. Table 5.3 presents some of the optimal sample sizes for a few

combinations of parameters such that the effect sizes (µ/σ) are 0.2, 0.5, and

0.8. The null hypothesis is, H0 : θk = 0 and the two-sided type I error rate

is fixed at 0.05. The start-up cost for a clinical trial is fixed at lII = 0.05 and

the cost per patient is l = 0.0001. For an example, the optimal sample size

for a likelihood, Xk ∼ N(θk, 25), and a priori knowledge of θk ∼ N(1, 1),

is n∗ = 163.38. Rounding up to the nearest integer, the number of patients

required for a trial is n = 164.

5.5 Discussion and concluding remarks

The objectives of the optimization of the series of designs incorporating costs

are different from each other. The first design that incorporates cost (pre-

sented in Section 5.3) is to maximize the expected utility of a number of

successful trials in a series of trials whereas the second design (presented in

Section 5.4) is to minimize the expected loss till a succesful trial is found in

a series of trials. Thus, for the same set of likelihood and prior parameters,

for example, σ = 5, µ = 1, and τ = 1, the optimal solution under the for-

mulation of the design that maximizes G(n) is n∗G = 14.83. Given that the

total sample size is N = 1000, 67.43 trials can be conducted. On average,

the number of successful trials is 11.66, which is about one trial out of every

six trials. On the other hand, the optimal solution under the formulation of

the design that minimizes L(n) is n∗L = 163.38. The expected total number

of patients to be recruited under this design is E(N) = 278.8 and thus, the
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Table 5.3: Optimal sample sizes per trial, n∗, and expected loss, L(n), of the
design that minimizes L(n).

Effect size σ µ τ n∗ L(n)

0.2 5 1 1 163.38 0.113
5 1 2 108.67 0.119
5 1 5 58.71 0.117
7.5 1.5 1 197.73 0.106
7.5 1.5 2 139.28 0.117
7.5 1.5 5 77.55 0.119

10 2 1 218.72 0.101
10 2 2 163.38 0.113
10 2 5 93.96 0.119

0.5 2 1 1 69.31 0.082
2 1 2 50.53 0.094
2 1 5 29.13 0.101
3 1.5 1 77.07 0.074
3 1.5 2 61.75 0.087
3 1.5 5 37.63 0.099
4 2 1 79.08 0.068
4 2 2 69.31 0.082
4 2 5 44.59 0.096

0.8 1.25 1 1 45.81 0.074
1.25 1 2 34.84 0.087
1.25 1 5 20.72 0.097
1.875 1.5 1 48.68 0.066
1.875 1.5 2 41.68 0.080
1.875 1.5 5 26.44 0.094
2.5 2 1 47.62 0.062
2.5 2 2 45.81 0.074
2.5 2 5 31.03 0.090

expected number of trials to be tried till a successful one is found is 1.71.

In this chapter we have proposed to design each trial as part of a series of

trials so that the long-term gain will be the greatest. The first two proposed

designs (presented in Sections 5.2 and 5.3) assume that the total population
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is known, similar to the design proposed by Whitehead (1985). Although

the clinical trials are planned as a group, there is a flexibility to either run

the trials sequentially or concurrently. Each of the trials is independent from

each other and if at any point at least one potential treatment has shown

sufficient efficacy, it may be recommended for further testing regardless of

the results of the others.

Patient recruitment is an ongoing and fluid process and it seems practical

not to impose any constraint on the total sample size. As such, the design

proposed in Section 5.4 assumes that N is not fixed. The objective is to

run the trials sequentially and when the first trial is declared promising the

running of the series of trials ceases and a new series of trials is initiated.

The traditional design of a clinical trial is based on data estimation and

inference method. Subsequently, based on evidence of efficacy a decision is

made if the treatment should be developed further or not, or be approved

by the regulatory agency or not. However, this approach does not inform

decision-makers (for example, regulatory and reimbursement agencies) on

whether the experimental treatment is worthy to be approved based on cur-

rent evidence of cost-effectiveness or if further evidence is required to elimi-

nate uncertainty surrounding the adoption of a decision (Briggs et al., 2006).

Models based on decision theory and expected value of perfect information

(EVPI) are common approaches proposed to aid such decision-making.

Both the traditional and EVPI approaches aim to accomplish different ob-

jectives and so do not seem to be connected. The models proposed in Sections

5.3 and 5.4 represent a hybrid of the traditional approach and a simplified

EVPI method. Only a minimal set of economic parameters normally covered
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by EVPI designs were incorporated into these models. However, they can be

expanded to incorporate further economic parameters and probabilistic dis-

tributions to assess whether any additional evidence in the future is required

to support the current decision.

Resources are necessarily finite and it may be worth considering a fixed

population which is equivalent to fixing the budget when developing a port-

folio of drugs. Thus far, the planning of the clinical trials presented in this

chapter are in the context of a series of trials with the same setting. In the

next chapter, the series of trials is modified and expanded for the special case

of small population diseases where quite often the total population is known.

The framework of the design is in the context of a series of phase II trial

and it also incorporates the viability of the treatment in the phase III setting

in the event that it is recommended for phase III based on its responses in

the phase II. This is necessary to address the inherent issue of the limited

population size.
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Beat by beat, losing inhibition

Head, hands, feet, trying to relax, but not too much

Trying to lay out the exposition

But without exposing it as such

Trying to perform but not audition

Trying to establish recognition

Trying to persuade the electrician

That he should destroy the competition

Stephen Sondheim

Putting It Together

Part III

Designs for a Series of

Decision-Theoretic Trials
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Chapter 6

A Series of Decision-Theoretic

Phase II Trials

The design of a series of trials in the preceding chapter is applicable for

both phase II and III settings. This chapter extends and modifies the design

by encompassing a series of decision-theoretic single-arm phase II trials and

a randomized controlled two-arm phase III trial. The motivation is based

on the scenario where a pharmaceutical company has developed a few new

drugs for the same disease or a large public sector or charity organization has

funding for a few clinical trials. It is assumed that the intended population

is considerably small and there is an interest to find an effective treatment

efficiently. Due to the smaller population it may not be feasible to try all

the new drugs concurrently. A practical approach is to consider one trial at

a time and if the treatment is recommended for a phase III trial then the

other treatments are temporarily suspended from trials so that the remaining

patients can be admitted to the phase III trial. Depending on the availability

107



Decision-Theoretic Trials 6.1 Design

of resources, drugs that have not been tried can be considered for future

trials. These “leftover” drugs may be considered in a “new” series of trials.

Alternatively, individual trials may be designed for these “leftover” drugs.

This chapter introduces a design that considers each of the phase II trial

as part of a series of trials where the trials are conducted sequentially with

interim decision-making. Section 6.1 introduces the statistical framework

of the design. The design is illustrated with examples from treatments for

persistent asthmatic patients. The new treatments belong to the same type

of class, mediator antagonists, and this is shown in Section 6.3. The chapter

concludes with concluding remarks.

6.1 Design

The formulation of the design is an extension of the designs proposed by

Whitehead (1986) and Stallard (2012), reviewed in Chapter 4, to allow se-

quential decision-making in the phase II trials. Phase II trials are sometimes

used as exploratory trials to rule out nonpromising treatments. Hence, it

seems intuitive to use Bayesian decision-theoretic framework in phase II tri-

als where decision can be made in order to prevent loss of resources due to

inferential conclusion.

The methodology of the proposed design is based on the hybrid approach,

namely, a combination of classical frequentist testing, Bayesian decision-

theory and a prior distribution for the parameter that corresponds to the

treatment effects for the experimental treatment. The design of the phase II

trials is based on Bayesian decision-theoretic methodology. At each interim
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stage, a decision is made from four possible actions:

Action R Resume the current phase II trial by recruiting more patients,

Action P Stop the current phase II trial and proceed to a two-arm phase III

trial where the experimental treatment will be tried against a control

treatment with the remaining patients,

Action T Stop the current phase II trial and try a new treatment in a new

single-arm phase II trial using the remaining patients; or

Action A Stop the current phase II trial and abandon the development

plan.

If the decision is to take action P, then the recommended experimental treat-

ment is tested in a phase III trial with a control treatment that is either a

standard treatment or a placebo. At the end of the trial, the data from the

phase III trials are tested using the classical frequentist analysis, that is, the

point estimate is reported with its confidence interval and p-value to infer

the true parameter.

The proposed design assumes that the size of the population and the

number of treatments available for trials are fixed and known. In addition,

both phase II and III trial are assumed to have the same binary primary

endpoint.

6.1.1 Notation

Let N denote the fixed and known total population size eligible for trials.

Also, let K denote the fixed and known number of potential new treatments
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available for trials for the population. Patients are recruited sequentially to

each phase II trial and a decision is made based on the accumulated responses

at every interim stage. At the i-th stage of k-th trial, k = 1, 2, . . . , K, mki

patients are recruited. As the sampling is done fully sequentially, mki = 1.

The variable mki can however, take on any integer value but the proposed

design is illustrated as a fully sequential trial.

Let a success response from a patient be represented numerically by 1

and a failure by 0. Let Xki denote the sum of successes from the i-th stage

of the k-th trial then the cumulative successes from the first stage up to and

including the current i-th stage of k-th trial is Ski = Xk1 +Xk2 + . . .+Xki.

Patients’ responses are assumed to be independent from each other and as

such Ski is assumed to follow a binomial distribution with index nki = mk1 +

mk2 + . . .+mki and unknown probability of success, pk, where nki is the total

number of patients recruited from the first stage up to and including the i-th

stage of k-th trial. The likelihood function of Ski is

fS|p(ski|pk) =

(
nki
ski

)
pskik (1− pk)nki−ski .

The unknown probabilities of success, p1, p2, . . . , pK are assumed to be

independent identically distributed random variables and follow a known

parametric distribution. Its density is denoted by fp(pk). The prior density

summarizes the degree of belief about the efficacy of the treatments before

any responses have been observed. Upon observing patients’ responses from

the first i stages of the k-th trial, the prior is updated and the posterior

density is now a combined belief of the prior probability given the observed
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responses. Having observed Ski = ski, according to the Bayes’ theorem, from

(3.7) the posterior density is

fp|S(p|ski) =
fS|p(ski|p)fp(p)

fS(ski)
,

where

fS(ski) =

∫ 1

0

fS|p(ski|pk)fp(pk) dpk,

is the marginal density of Ski.

A convenient and common choice for pk prior distribution is the beta

distribution as it is a conjugate family for binomial data. Assuming that

the parameter pk follows the beta distribution with known parameters ak

and bk, for k = 1, 2, . . . , K. The probability density function is fp(pk) =

pak−1
k (1 − pk)

bk−1/B(ak, bk) where B(ak, bk) = Γ(ak)Γ(bk)/Γ(ak + bk) is the

beta function. From (3.11), the marginal density of Ski is

fS(ski) =

(
nki
ski

)
B(ak + ski, bk + nki − ski)

B(ak, bk)

which is a beta-binomial distribution function with index nki, and parameters

ak, and bk. As shown earlier in equation (3.12), the posterior density function

of pk given ski is

fp|S(p|ski) =
1

B(ak + ski, bk + nki − ski)
pak+ski−1
k (1− pk)bk+nki−ski−1,

which is a beta distribution with parameters ak + ski and bk + nki − ski.
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6.1.2 Expected utility

The objective of the series of decision-theoretic trials is to derive a decision-

making tree for each phase II trials given the constraints of a fixed and known

population and number of potential treatments by optimizing the long term

expected gain of the development plan. Let GTotal(N,K) be the expected

utility of the optimum development plan with total population N and K

potential treatments. The expected gain of the development plan is relative

to a fixed reference value that is constant throughout the decision making

process (Hilden, 1990, Pratt et al., 1995, Ch. 4). It is easier to fix the

reference point to be the current asset position and any utility function is

measured from it. There are some costs involved in conducting clinical trials

and recruiting patients to the trials. At the initial stage of the development

plan, the gain function of not starting any trial at all is taken to be zero

because no cost is spent. If however, the information from patients’ responses

are worthier than the cost of sampling then it is warranted to conduct the

trial. Therefore, the optimal development plan may start to recruit its first

batch of m11 patients if the expected value of the information less the cost

of conducting and sampling is greater than zero, that is, GTotal(N,K) > 0.

There are two types of economic factors that are involved in the utility

function, namely, cash outflows and profits. For simplicity, only the cash

outflows is considered in the proposed design. The profits, for example, from

the sales of the new treatment if the trial is a success, is not considered.

There are two types of costs, fixed and variable costs (Patel and Ankolekar,

2007). The fixed costs are the costs of setting up and running the trials.
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These costs are incurred once the trial is committed to go on and are not

dependent on the size of the trial. Let lII and lIII be the costs of setting

up and conducting a phase II and III trials, respectively. These costs may

reflect the advertising and recruitment of potential patients, the setting up of

the necessary equipments, periodic audits and site visits by clinical research

assistants, the management of the data, etc.

The variable cash outflow is the cost that depends on the size of the

trial. This cost may reflect the costs of the medical supplies, screening tests,

clinical and biochemical tests during the intervention and follow-up periods,

etc. This cost is known as the cost per patient and it is denoted by l. For

simplicity it is assumed that the cost per patient is equal in phase II and III

trials. The non-negative costs l, lII and lIII are taken to be relative to the one

unit of gain which is given by a successful phase III trial. The details of the

gain of a successful trial is given in the section where the expected utility of

action P is derived.

The decision whether to choose actions R, P, T or A at each interim

analysis depends on the desirability of each action which in turn depends

on the true parameter of the experimental treatment, the total number of

patients and the number of potential treatments. During the k-th trial, let

Ga(pk, Nk, Kk) denote the utility function of action a, (a ∈ {R,P, T,A})

where pk is the true parameter of the experimental treatment, Nk is the total

population and Kk is the number of potential treatments at the start of this

trial. As the unknown parameter follows some known distribution, the utility

function of action a is an expectation over all possible values of pk. Having

observed Ski = ski successes from nki patients from the first i stages of k-th
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trial, the expected utility of action a is the expectation over the posterior

density of pk given ski and nki is

Ga(ski, nki, Nk, Kk) = E(Ga(pk, Nk, Kk)|ski, nki)

=

∫ 1

0

Ga(pk, Nk, Kk)fp|S(pk|ski, nki) dpk. (6.1)

Note that the expected utilities in the k-th trial depend on the observations

from that trial only as p1, . . . , pK are assumed to be independent.

Expected utility of the whole development plan

The development plan is consisted of a series of sequential phase II trials and

it commences with the first phase II trial by recruiting n11 = m11 patients

to it. Of this, S11 = s11, successes are observed. The expected utility of

the whole development plan is obtained by first, calculating the expected

utilities of each action. Secondly, the expected utilities are compared. Then

the maximized expected utility is averaged over all possible values of s11 less

the cost of conducting a phase II trial.

Let N1 and K1 be the population size and number of potential treatments,

respectively, at the start of the first phase II trial of the development plan,

that is, N1 = N and K1 = K. Thus, the expected utility of the whole

development programme is

GTotal(N1, K1) =

n11∑
s11=0

max
a∈{R,P,T,A}

{Ga(s11, n11, N1, K1)}fS(s11)− lII, (6.2)

where Ga(s11, n11, N1, K1) is the expected utility of action a (as given in
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equation (6.1)), fS(s11) is the marginal density of S11, a beta-binomial density

function with index n11 and parameters a1 and b1 (as shown above).

Expected utility of action A (abandon the programme)

At the i-th stage of the first trial, a total of n1i =
∑i

j=1m1j patients have

been recruited and of this, S1i =
∑i

j=1X1j successes are observed. The

utility function of doing nothing is fixed as zero, the reference point, so the

utility function of action A is less the cost of patients recruited in the first i

stages of the first trial. Let s1i be the observed value then the utility function

is GA(p1, N1, K1) = −ln1i. Taking expectation by integrating it with respect

to p1 over all its possible values gives

GA(s1i, n1i, N1, K1) = −ln1i. (6.3)

Expected utility of action P (proceed to phase III trial)

If the optimal action is to take action P upon observing patients’ responses

from the first i stages of the first trial, then the remaining number of patients,

nIII = N1−n1i are recruited to the randomized controlled two-arm phase III

trial. It is assumed that treatment allocation is in a 1:1 ratio, therefore, nIII/2

patients per arm. The randomization list can be prepared either by a simple

or a block randomization method (Pocock, 1983, Ch. 5). The randomization

technique, however, will not be discussed in this thesis.

The utility of action P depends on the reward of the phase III trial and

the cost of conducting it. The primary endpoint of the phase III trial is

assumed to be binary. At the end of the phase III trial, a frequentist analysis
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is done on the observed responses from this trial to test whether the efficacy

of the experimental treatment is different than the control treatment. The

null and alternative hypotheses are written as

H0 : p1 = pC against H1 : p1 6= pC ,

where pC is the true probability of success of the control treatment. This

value is assumed to be fixed and known. The size of the two-sided hypothesis

test will be denoted by α.

As discussed in 4.1.2, there are a few methods used to summarize the

binary effects between two treatments. Following the design of Whitehead

(1986), the log odds ratio measurement is used. Let θ1 = log{p1(1−pC)/(pC(1−

p1))} denote the log odds ratio, then the null hypothesis is rewritten as

H0 : θ1 = 0. From equation (4.12) the score statistic is

B =
nIIISE/2− nIIISC/2

nIII

=
SE − SC

4
,

where SE and SC are the sums of successes from the experimental and con-

trol treatments, respectively. The score statistic B is approximately normally

distributed with mean θ1V1 and variance V1 where V1 is the Fisher’s infor-

mation,

V1 ≈ nIIIp̄(1− p̄)/4,

where p̄ = (p1 + pC)/2 assuming that the sample size is sufficiently large.

The test statistic under H0 is B/
√
V .

The phase III trial is considered a success if the null hypothesis is rejected
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correctly, that is, concluding that the experimental treatment is more effec-

tive than the control arm when it is true. A success has thus, one unit of

gain. The probability that the null hypothesis is rejected at the upper end

of the level of significance under the alternative hypothesis is

1− Φ
(
z1−α/2 − θ1

√
V1

)
, (6.4)

where Φ(·) is the cumulative standard normal distribution function and zγ is

the lower 100γ percentile of the standard normal density.

The reward of identifying a successful treatment correctly has one unit

of gain and so the gain of the phase III trial is the probability of success

which is given by the power function. It is shown from equation (6.4) the

power function is a function of p1, the true probability of success of the first

treatment. Therefore, the gain of action P is the gain of the phase III trial

less the cost of all N1 patients and the cost of conducting a phase III trial,

GP (p1, N1, K1) = 1− Φ
(
z1−α/2 − θ1

√
V1

)
− lN1 − lIII.

Taking expectation by integrating it with respect to p1 over its posterior

density given S1i = s1i successes from n1i patients gives

GP (s1i, n1i, N1, K1)

=

∫ 1

0

(
1− Φ

(
z1−α/2 − θ1

√
V1

)
− lN1 − lIII

)
fp|S(p1|s1i, n1i) dp1. (6.5)

From (3.23), the expected power which is the assurance (O’Hagan and Stevens,
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2001) is shown to be

A(s1i, n1i, N1, K1) =

∫ 1

0

(
1− Φ

(
z1−α/2 − θ1

√
V1

))
fp|S(p1|s1i, n1i) dp1.

Therefore, (6.5) is simplified to

GP (s1i, n1i, N1, K1) = A(s1i, n1i, N1, K1)− lN1 − lIII. (6.6)

Expected utility of action R (resume the current phase II trial)

The expected utility of action R is not as straightforward to find as for

actions A and P. Its expectation is made up of the assumption of resuming

the current trial by recruiting more patients and consequently take the best

possible decisions from then onwards (Lindley, 1961). At the i-th interim

analysis of the first trial, n1i =
∑i

j=1 m1j patients would have been recruited

and of this, S1i = s1i successes are observed. The gain function of action

R depends on the action taken after observing the responses from m1,i+1

patients. Upon observing X1,i+1 = x1,i+1 successes, the optimal decision

at the (i + 1)-th stage is the action with the highest expected utility given

s1i + x1,i+1 which is

max
a∈{R,P,T,A}

{Ga(s1i + x1,i+1, n1i +m1,i+1, N1, K1)}.

Therefore, the expected utility of action R at the i-th stage depends on

the reward after recruiting the additional m1,i+1 patients averaged over all
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the possible responses that may be observed given s1i, that is

GR(s1i, n1i, N1, K1)

=

m1,i+1∑
x1,i+1=0

max
a∈{R,P,T,A}

{Ga(s1i + x1,i+1, n1i +m1,i+1, N1, K1)}fS(x1,i+1|s1i, n1i),

(6.7)

where fS(x1,i+1|s1i, n1i) is the marginal density of X1,i+1 given S1i = s1i.

Patients’ responses are assumed to be independent from each other and so

the cumulative successes, X1,i+1, follows a binomial distribution with index

m1,i+1 and the unknown parameter p1 which now follows the posterior beta

distribution, that is, a beta distribution with parameters (a1 + s1i) and (b1 +

n1i − s1i). The marginal density of X1,i+1 given S1i = s1i is thus,

fS(x1,i+1|s1i, n1i)

=

∫ 1

0

fS|p(x1,i+1|p1)fp|S(p1|s1i, n1i) dp1

=

(
m1,i+1

x1,i+1

)
B(a1 + s1i + x1,i+1, b1 + n1i +m1,i+1 − (s1i + x1,i+1))

B(a1 + s1i, b1 + n1i − s1i)

= fS(x1,i+1|a1 + s1i, b1 + n1i − s1i),

which is a beta-binomial density with index m1,i+1 and parameters (a1 + s1i)

and (b1 + n1i − s1i), as shown above.

It is essential to know the future optimal actions in order to decide

whether to recruit more patients or not to the next stage. As the sequential

scheme is consisted of finite sequence of actions, the expected utility can be

computed by backward induction which is moving backward from the ter-
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minal branch to the present stage (DeGroot, 1970, Ch. 12). Section 3.5.1

gives a brief review of the backward induction methodology. A more detailed

description of the methodology for the proposed design is given in Section

6.2.

Expected utility of action T (start a new phase II trial)

The treatment effects are assumed to be independent and as such the utility

of action T depends on the number of patients remaining, N2 = N1 − n1i,

and the remaining number of potential new drugs, K2 = K1 − 1. The gain

function is obtained by considering a new portfolio of trials starting with this

smaller population size and fewer treatments less the total cost of patients

from the current trial. Let GTotal(N2, K2) denote the expected utility of a

whole programme with population N2 and K2 treatments, then the expected

utility of action T is

GT (s1i, n1i, N1, K1) = GTotal(N2, K2)− ln1i. (6.8)

The gain GTotal(N2, K2) is given by

n21∑
s21=0

max
a∈{R,P,T,A}

{Ga(s21, n21, N2, K2)}fS(s21)− lII

and the individual expected utility of action a are obtained as given in equa-

tions (6.3), (6.6), (6.7), and (6.8).

In a more general notation, the expected utility of the whole development

120



Decision-Theoretic Trials 6.1 Design

at the k-th trial is denoted by

GTotal(Nk, Kk) =

nk1∑
sk1=0

max
a∈{R,P,T,A}

{Ga(sk1, nk1, Nk, Kk)}fS(sk)− lII

and the expected utility of action a at i-th stage of k-th trial is

Ga(ski, nki, Nk, Kk)

=



mk,i+1∑
xk,i+1=0

max
a∈{R,P,T,A}

{Ga(ski + xk,i+1, nki +mk,i+1, Nk, Kk)}

×fS(xk,i+1|ski, nki), a = R

A(ski, nki, Nk, Kk)− lNk − lIII, a = P

GTotal(Nk+1, Kk+1)− lnki, a = T

−lnki, a = A

(6.9)

where A(ski, nki, Nk, Kk) =
∫ 1

0

(
1 − Φ

(
z1−α/2 − θk

√
Vk
))
fp|s(pk|ski, nki) dpk,

and the remaining patients and treatments for action T are Nk+1 = Nk−nki

and Kk+1 = Kk − 1, respectively.

The expected utility of action T depends on the subsequent actions and

thus its computation is also solved by backward induction. The computation

of the expected utility of action T is just like the computation of the expected

utility of the whole programme and this is discussed in the following section.
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6.2 Backward induction

The expected utility of the whole development plan as given in (6.2) depends

on the expected utilities of actions R, P, T and A. Their expressions in

turn are given by (6.7), (6.6), (6.8), and (6.3), respectively, showing that

some expected utilities may depend on the expected utilities of subsequent

actions. The development plan may be represented by a decision tree where

the plan begins with an initial state on the left and the future lies on the right

(Lindley, 1985). Just like a real tree, the decision tree has branches where

each branch is thought of as an interim stage (Figure 6.1). Each branch

“contains several parts that act together” and so, different parts that are

easier to solve should be done first. Then, using the rules of probability, the

computations are brought together to solve for the expected utility of the

whole series of trials.

The computational strategy is to compute the expected utilities for branches

further to the right. At each point, the expected utilities from different ac-

tions are compared and consequently, the optimal decision is obtained. In

practice, the computation of the expected utility of a programme with an

initial population of size N and K potential treatments is to, first, solved

for action T at the further right. As shown from equation (6.9), at the

k-th trial, the expected utility of action T is made up of the expected util-

ity of a whole programme with nki patients and 1 treatment less than the

current k-th trial. Therefore, it is easier to calculate the expected utility

of the last treatment (K-th trial) first and this is done using backward in-

duction. At the ultimate stage within this “branch”, there can only be two
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Figure 6.1: The decision tree for a series of decision-theoretic phase II trials

actions to choose from, namely, actions P (proceed to phase III trial) and

A (abandon the development plan). Action R (resume current trial) is not

available because there would not be enough patients to go on to phase III

trial, that is, action P will not be available at some point in the future. For

ease of computation, at the ultimate interim analysis of K-th trial, the ex-

pected utility of action R is GR(sKi, nKi, NK , KK)→ −∞ so that this action

will never be chosen as the optimum action. The expected utilities of ac-

tions P and A are easily computed, as given in equations (6.6) and (6.3).

If GP (sKi, nKi, NK , KK) > GA(sKi, nKi, NK , KK) then the optimum action is

action P, and if otherwise, action A. Consequently, the expected utility of

action R at the penultimate interim stage can be evaluated. At the penulti-

mate stage, the expected utilities of actions R, P and A are compared and the
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highest is the optimum action. Following on this manner of evaluation, the

expected utility of the whole programme with NK population and KK = 0

treatment can be obtained. Thus, the expected utility of all actions T of the

(K − 1)-th trial, GT (sK−1,i, nK−1,i, NK−1, KK−1) = GTotal(NK , KK)− lnK−1,i,

is obtained for all nK−1,i values.

Once this “branch” of the decision tree is solved, the next “branch” to

be considered is the action T with NK−1 population and KK−1 treatments.

Similarly, at the ultimate stage of the (K−1)-th trial, there are only actions

P and A to choose from. By knowing the optimum action at the ultimate

stage, the expected utility of action R at the penultimate stage is solved and

compared with those of actions P, T and A. The expected utility of action T

is already computed as described in the preceding paragraph.

Finally, the expected utility of the whole programme is solved by evalu-

ating in this iterative manner; firstly, by moving up to a “branch”, that is,

increasing the number of treatments by one. Secondly, within the “branch”,

evaluate the expected utility of action T from the terminal branch back to

the initial stage. Therefore, all expected utilities and optimal actions can be

determined and the expected utility of the whole programme obtained.

6.3 Application

In the earlier introductory chapter on asthma (Chapter 2), the prevalence

rate of asthma in the United Kingdom is 6% (Corrigan, 2009). Although only

about 5–10% of them have the most severe form of asthma, they account for

at least 50% of the total asthma-related health care cost (Humbert et al.,
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2005, p. 309). These patients are usually at higher risk of asthma exacerba-

tions and the usual prescribed treatments for them are combined regimens;

bronchodilators and corticosteroid. In the recent years, with the advent of

targeted therapies, mediator antagonists and immunomodulatory have gone

on trials and some have been approved as first line therapies. Drugs from

the class of mediator antagonists are used as illustrations in this section as

there are more published randomized clinical trials for this class of drugs.

These new treatments aim to control asthma exacerbations, where severe

exacerbations are defined as events of at least one of the following: use of

systemic corticosteroids or increase dosage from the maintenance dose, and a

hospitalization or emergency department visit because of asthma and requires

systemic corticosteroids. The definition of moderate asthma exacerbations

includes at least one of the following: deterioration in symptoms, deterio-

ration in lung function, increased rescue bronchodilator use, and emergency

department visits because of asthma but does not require systemic corticos-

teroids (Reddel et al., 2009).

The first illustration will assume that there is an unlimited number of

potential treatments (K → ∞), that is, new treatments are continuously

being rolled out for phase II clinical trials and the second illustration will

assume that there are only a few limited number of treatments available. In

the latter scenario, when the K-th treatment (the last treatment) is on trial,

action T is not available at the interim stages, leaving only three actions to

choose from, namely, actions R, P and A.

The primary endpoint is the efficacy of the treatment in controlling

asthma exacerbations. At least an episode of asthma exacerbation during
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the period of the treatment (assumed to be four weeks) is considered as

a failure and a non-event as a success. If action P is taken, then the ex-

perimental treatment is tested against a placebo control arm at a two-sided

significance level of α = 0.05. Under the null hypothesis of the phase III trial,

the probability of success of the placebo is assumed to be pC = 0.80 whereas

the probability of success of the experimental treatments, p1, p2, . . . , pK , are

independent unknown variables. The unknown parameter of the efficacy, pk,

is assumed to be a random variable following a beta distribution with known

parameters ak and bk. All K treatments are assumed to have the same prior

densities and so, for convenience, the subscript k is suppressed.

It is not easy to elicit from experts for what these parameters may be. As

there are some published randomized clinical trials comparing mediator an-

tagonist therapies with placebo for severe and persistent asthmatic patients,

it is possible to estimate the parameters empirically. The criteria used to

search for published trials on randomized clinical trials were persistent severe

asthmatic population and mediator antagonists interventions. Publications

from these authors were obtained: Busse et al. (1999), Humbert et al. (2005,

2009) and Malmstrom et al. (1999).

The primary endpoint from some of these trials was asthma exacerbation

whilst some trials reported it as the secondary endpoint. All these trials were

conducted prior to the published guideline by the American Thoracic Soci-

ety (ATS) and European Respiratory Society (ERS) in 2009 (Reddel et al.,

2009). As such, the definitions of asthma exacerbations may be slightly dif-

ferent than the one recommended by the ATS/ERS Task Force. However,

they reported the number of patients who needed rescue medication, un-
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scheduled physicians visits, emergency department visits or hospitalization.

Henceforth, it is still possible to obtain the number of patients with at least

an episode of asthma exacerbations at the predefined period of observation.

Another difficulty in summarizing the proportion of patients with asthma

exacerbations is the treatment period. Some of the trials were measuring

short-term effect and some long-term. It is thus, not feasible to compare the

number of patients with at least one exacerbation in a four-week treatment

period with a trial that investigated a 12-week treatment regimen. In order

to standardize treatment comparison, the treatment period is scaled to be

the same. A four-week treatment period is chosen as the treatment period as

it is possibly the shortest treatment period in investigating targeted therapy

such as the mediator antagonist. Let T be the time when the first episode

of asthma exacerbation (either a moderate or a severe exacerbation) is re-

ported. Therefore, T is a continuous variable and assuming that the event

of exacerbation occurs constantly, a reasonable assumption for its distribu-

tion is the exponential distribution. Let S(t) denote the cumulative density

function of T ,

S(t) = Pr(T > t) = e−λt. (6.10)

Humbert et al. (2009) conducted a trial comparing masitinib to a placebo

and the treatment duration was t = 16 weeks. It was reported that a total

of f = 14 patients out of n = 33 in the masitinib arm experienced at least
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Table 6.1: Summary of estimated proportions of no asthma exacerbation from
published randomized clinical trials comparing mediator antagonist therapies with
placebo for severe and persistent asthmatic patients

Treatment
Published trials n f period, t S(t = 4)

Humbert et al. (2009) 33 14 16 weeks 0.87108
Malmstrom et al. (1999) 387 60 12 weeks 0.94539
Busse et al. (1999) 145 9 4 weeks 0.93793

one exacerbation during the treatment period. Therefore, from (6.10),

S(t = 16) = 1− f/n

⇔ exp{−16λ̂} = 1− 14/33

⇔ λ̂ = 0.03450.

Therefore, the estimated proportion of non-event is

S(t = 4) = exp{−4λ̂} = 0.87108.

A summary of the estimated proportions of non-event from the other

published trials is given in Table 6.1. Using these estimated proportions the

parameters for the beta distribution can be estimated using the maximum

likelihood estimation method. The estimated parameters are â = 68.9870

and b̂ = 6.1569. Rounding them off to the nearest integer the prior density

of p is Beta(69, 6). The degree of the prior belief is equivalent to obtaining

information from a sample size of 75.

Assuming that the projected total size of the population is N = 300.

The variable and fixed costs are taken to be relative to one unit of gain and
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assuming that the cost per patient is l = 0.0001 and the costs of conducting

a phase II and III trials are lII = 0.002 and lIII = 0.02, respectively. At

each stage of the k-th decision-theoretic phase II trials, mki = 1 patient

is recruited. For a simplistic illustration, the minimum sample size for the

phase III trial is set to 1. Although it is not practical to have only one patient

in a phase III trial, it is deemed necessary to have a restriction of at least one

patient. The design can easily be extended to restrict the minimum sample

size to be more than one patient.

6.3.1 Unlimited number of treatments

Figure 6.2 shows that the expected utility of the whole development plan

is 0.83 > 0 and so the development plan is worthy to start. The decision-

making process for the first trial is shown in Figure 6.3. If the first patient

was a failure then the optimal action is to stop the current trial and initiate

a new decision-theoretic phase II trial, that is, an action T. If however, the

first patient did not have asthma exacerbation in the first four weeks of

treatment, then the optimal action is to continue recruiting another patient to

the current trial. If the first 24 patients were all successes, then the optimum

action is action P, that is, to stop the current phase II trial and proceed

to a phase III trial with the remaining 276 patients where the experimental

mediator antagonist drug is compared to a placebo. Therefore, the minimum

number of patients needed for the phase II trial before a phase III trial could

be initiated is 24. The maximum number of patients needed is 79 which is

very close to the prior size of 75. If the cumulative number of successes is
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Figure 6.2: Expected gain of the whole development plan for Beta(a = 69, b = 6)
(solid line), Beta(a = 1, b = 1) (dotted line), Beta(a = 1.15 × 10−5, b = 10−6)
(dashed-dotted line), Beta(a = 1.01, b = 0.088) (thick grey line), Beta(a =
11.5, b = 1) (thick black line) and Beta(a = 676.2, b = 58.8) (dashed line).

74, then the optimal action is action P but if the cumulative successes is less

than 74, the optimal action is to stop the current trial and a new phase II

is initiated. In the latter scenario, the new phase II trial will begin with a

population of N2 = 221.

Note that the boundaries for actions P and T are very close together.

The expected value of the informative prior is E(p) = a/(a + b) = 0.92 and
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Figure 6.3: Decision rules for example in Section 6.3.1 based on prior Beta(69, 6)
and assuming pC = 0.80.

the variance is 0.000968. This suggests that the treatment is highly effective

and thus, the threshold to proceed to the phase III trial must be high, too.

The threshold for action T is also severely high. As given by the very small

variance, it is expected that the probability of success is very close to 0.92

therefore, if a failure is observed early the trial should stop and a new trial

with a new mediator antagonist should be initiated instead.

Decision-theoretic development plans with different underlying prior den-
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sities are compared. A reference prior is sometimes preferred instead of

eliciting information from experts as their judgments may be subjective

(Stangl and Berry, 1998). The standard uniform prior is set as the refer-

ence prior, which is a special case of a beta distribution with parameters

a = 1, b = 1. The expected value of a uniform prior is 0.5 and the variance

is 0.0833. In addition, other parameters such as (a = 1.15× 10−5, b = 10−6),

(a = 1.01, b = 0.088), (a = 11.5, b = 1), and (a = 676.2, b = 58.8) are used

to compare the characteristics of the optimal development plan. All these

prior densities; Beta(1.15×10−5, 10−6), Beta(1.01, 0.088), Beta(11.5, 1), and

Beta(676.2, 58.8) give the same expected value, 0.92, but different variances.

The prior Beta(1.15× 10−5, 10−6) gives the largest possible variance, 0.0736,

subject to the constraints of E(p) = 0.92 and a > 0, b > 0. On the one hand,

prior Beta(1.01, 0.088) gives the largest possible variance, 0.03514, subject

to the constraints of E(p) = 0.92, a ≥ 1 and b > 0. On the other hand, prior

Beta(a = 11.5, b = 1) gives the largest variance, 0.00545, subject to the con-

straints of E(p) = 0.92, a > 0 and b ≥ 1. Finally, the prior Beta(676.2, 58.8)

gives the smallest computationally possible variance, 0.0001, subject to the

constraints of E(p) = 0.92 and a > 0, b > 0. The shapes of these densities

are shown in Figure 6.4.

As shown in Figure 6.4(a) the density Beta(11.5, 1) put most of the weight

on the extreme right, that is, it is more likely to have high probability of

success. Unsurprisingly, the expected gain of the whole development plan is

also higher than other prior densities (Figure 6.2). Although the expected

utility of the whole plan is higher than the informative prior Beta(69, 6),

its larger variance means that more patients are needed before an informed
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Figure 6.4: Beta densities for various parameters. Panel (a) Beta(a = 69, b = 6)
(solid line), Beta(a = 1, b = 1) (dotted line), Beta(a = 1.15 × 10−5, b = 10−6)
(dashed-dotted line), Beta(a = 1.01, b = 0.088) (thick grey dots) and Beta(a =
11.5, b = 1) (thick black dots). Panel (b) Beta(a = 69, b = 6) (solid line) and
Beta(a = 676.2, b = 58.8) (grey dashed line)

choice can be made to progress to the phase III trial (Table 6.2).

If the prior density is Beta(1.01, 0.088), it has a slightly higher overall

expected gain than others if the population is small but as its shape is slightly

“wider” it is not as informative as the other priors as the population size gets

larger. The variance given by the parameters (a = 1.15× 10−5, b = 10−6) is

the largest variance that can be attained under the constraints stated earlier.

The expected utility of the whole development plan is less than zero (the

dashed line just below zero shown in Figure 6.2), that is, given a population

of 300 with a true probability of success p following a prior distribution

Beta(1.15×10−5, 10−6) and the probability of success of a placebo is assumed

to be 0.80, it is not worthy to start any trial at all.
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For the reference prior which is the standard uniform distribution, the

expected gain of the whole series tends to the expected gain of an informative

prior (Beta(69, 6)) for large population, N > 300. This conforms to the

belief that regardless if the prior is flat or informative, given sufficiently large

population, similar results will be attained in the long run. The minimum

and maximum sample size that are needed in order to go on to the phase III

trial is, as suspected, larger than what is necessary for the Beta(69, 6) prior.

The parameters (a = 676.2, b = 58.8) is about 10 times higher than the

informative (69, 6) and its variance is the smallest possible variance attain-

able for illustration purposes. Due to its extremity, a comparison between

its density function and the one given by a = 69, b = 6 is shown in Figure

6.4(b). Interestingly, the expected utility of the whole series with prior den-

sity Beta(676.2, 58.8) is slightly lower than the Beta(69, 6) prior. However,

due to its small variance, the minimum sample size needed for the decision

to go on to a phase III trial is only one (Table 6.2).

The expected utility of the whole series is a non-decreasing function

of N (patient population). It increases rapidly for small values of N but

the increase levels off and becomes rather more linear for large values of

N . The most obvious examples are priors Beta(1.01, 0.088) and Beta(a =

11.5, b = 1). For the former prior, the expected utility function (thick

grey line, Figure 6.2) seemed to dip slightly between a population of size

75 and 100. However, upon closer inspection, the expected utility of the

whole series was increasing at a slower rate. The inflection for the prior

Beta(a = 11.5, b = 1) (thick black line, Figure 6.2) occurred at about the

same interval as Beta(1.01, 0.088), on the other hand, was smoother.
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Table 6.2: Optimal designs for a series of decision-theoretic phase II trials based
on beta prior distributions with parameters a and b, and assuming pC = 0.80.

Minimum Maximum
sample size to proceed

a b N to phase III trial GTotal(N,K)

69 6 100 7 7 0.4695
1 1 17 35 0.4393
1.15× 10−5 10−6 A A -0.0021
1.01 0.088 19 73 0.3814

11.5 1 20 20 0.7322
676.2 58.8 1 1 0.4187

69 6 200 16 27 0.7186
1 1 29 69 0.6996
1.15× 10−5 10−6 A A -0.0021
1.01 0.088 25 185 0.4994

11.5 1 37 66 0.8936
676.2 58.8 1 1 0.6884

69 6 300 24 79 0.8298
1 1 40 110 0.8079
1.15× 10−5 10−6 A A -0.0021
1.01 0.088 31 290 0.6051

11.5 1 49 107 0.9231
676.2 58.8 1 1 0.8238
A, Abandon the development programme without starting any phase II
trial

6.3.2 Limited number of treatments

inal likelihood of S1i1 , . . . , SKiK . In practice, the number of potential new

treatments available for trial is usually between three and five. Suppose that

the number of promising treatments is K = 3, and the other variables are

as given above, pC = 0.80, N = 300, l = 0.0001, lII = 0.002, lIII = 0.02,

mki = 1 and there must be at least one patient for a phase III trial. Only the

135



Decision-Theoretic Trials 6.3 Application

result from the informative prior Beta(69, 6) is given here. The boundaries

for optimal actions are shown in Figure 6.5.

At the start of the development plan, there are 300 patients in the pop-

ulation and 3 potential treatments. The minimum number of patients that

will be recruited to the decision-theoretic phase II trial in order to proceed

to the phase III trial is 19, fewer than when K → ∞. On the other hand,

the maximum number of patients is 84, slightly higher than the prior sample

size 75 and the case of K → ∞. If there are at least 78 successes out of 84

patients, the optimal action is to go on to the phase III trial (Figure 6.5(a)).

If however, less than 78 successes were observed then the optimal action is

action T, to stop the current trial and initiate a new phase II trial.

In the latter case, starting a new phase II trial, the population for the

“new” development plan is N2 = 216 and the number of potential treatments

is K2 = 2. The minimum number of patients needed to move on to a phase

III trial is 11. The maximum number of patients that will be recruited to

the current phase II trial is 44 and if the cumulative number of successes

is 41 or higher, then action P should be taken. On the other hand, if the

cumulative number of successes is 40 or less then the optimal action is to

stop the current trial and try a new treatment in a new phase II trial (Figure

6.5(b)).

Suppose that the third phase II trial has to be initiated, then the develop-

ment plan now has only a population of size N3 = 172 and K3 = 1 treatment.

As there is only one treatment left, action T is not available to choose from

in each interim stage. Interestingly, regardless if the first patient recruited to

the third phase II trial was either a failure or a success, the optimal action
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Figure 6.5: Decision rules for optimal actions for example in Section 6.3.2.

is to proceed to a phase III trial.

The boundaries between Action T (stopping the trial and try a new treat-

ment) and action P (stop the trial and proceed to the phase III with the

current treatment) are very close together. The efficacy of the treatment is

very high and so the boundary to proceed to phase III trial is also set higher

to ensure that the treatment is genuinely effective. The narrow gap, in order

to resume the current trial, suggests that if a success has been observed, it

is always worthwhile to recruit another patient. The aim of the design is to

reach the “tipping point” where it is sufficient to make an informed decision.

6.4 Discussion and concluding remarks

The proposed design is for a series of Bayesian decision-theoretic phase II

trials and one phase III trial. At each interim stage of each phase II trial,
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the viability of the experimental treatment in a phase III trial is evaluated

and incorporated into the utility function to aid the decision-making. This

expected gain is compared with other expected gains, such as, the gain of ini-

tiating a new phase II trial with the remaining potential treatments, the gain

of recruiting more patients to the current trial to obtain more information,

and the gain of ceasing the development portfolio.

At the design stage, the unknown parameter of the efficacy of the exper-

imental treatment is assumed to be random. In turn, due to the uncertainty

of belief, the sample size cannot be determined at the design stage. Only the

minimum and maximum sample sizes can be computed. On average though,

the sample size required in a hybrid design is smaller than one obtained using

the frequentist methodology.

For simplification, the economic factors that makes up the utility function

only considers the cash outflows. The profits from the future sales of the

successful treatment could be included for a realistic modelling. In reality,

profits may increase steadily in the first few years upon being marketed and

then hit a plateau before finally, decrease after the patent of the new drug

has expired or a successor treatment is available. Therefore, the projected

duration of the treatment period and sales of the drug may be included in

the utility function.

Another simplification assumed for the utility function is that the cost per

patient for a phase II trial is equal to that of the cost per patient recruited to

a phase III trial. In practice, there may be more tests and longer follow-up

periods for patients in a phase III trial and so the total cost per patient in

a phase III trial may be higher than the total cost per patient in a phase II
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trial. Consequently, this will decrease the expected utility function of action

P slightly and affects the sequential scheme.

The proposed design may be extended by incorporating multi-arm designs

in the phase II setting. There are a few possible frameworks for the design of

such studies. One approach is to assign one patient at a time to one of the

available treatments then make a decision on the basis of all the observed

responses as to how the trial should proceed. The available choices are similar

to the actions introduced in Section 6.1, namely, to recruit another patient

to the same treatment (action R), to proceed to a phase III trial with the

same treatment (action P), to abandon the development plan (action A) or to

randomize another patient to one of the other treatments (similar to action

T). In the context of the examples given above (Section 6.3), the expected

utility of the whole series may not be too different to that from the single-arm

design as the expected gain from action P has most influence in the expected

utility of the whole series.

Another framework for a multi-arm design is to randomize a cohort of

patients at the initial stage of the development plan to all the available

treatments. This is similar to the design by Stallard and Thall (2001) except

that a decision is made at each interim stage from all the observed data.

The actions at each interim stage are to drop a treatment, to proceed to a

phase III setting with one treatment or to abandon the development plan.

If a treatment is dropped then the next cohort of patients is randomized to

the remaining treatments. If the optimal action is to proceed to a phase III

trial then the remaining patients would be randomized to either the chosen

treatment or the control treatment. The framework can also be modified to
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allow a new treatment to be added at the interim stage.

Although we have assumed that all the potential treatments are from

the same class of drugs, it is possible that both fixed and variable costs

may be different for different treatments. These information can be easily

incorporated into the utility function.

The proposed design in this chapter assumes that the potential treatments

are related. As these treatments are from the same class of drug and they

are intended for the same population it is not unrealistic to consider these

treatments to be correlated with each other. Therefore, the next chapter

considers the correlation between treatments. The prior distributions of each

treatments are assumed to be correlated. Therefore, given the observed data

from the preceding trials and the prior beliefs of the preceding treatments

the prior densities of subsequent treatments are updated.
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Chapter 7

A Series of Decision-Theoretic

Phase II Trials of Related

Treatments

The introductory chapter on asthma (Chapter 2) briefly describes that most

of the current drugs for asthma can generally be classified into a few major

families, namely, bronchodilators, corticosteroid, mediator antagonist, and

immunomodulatory. Each of them has different mechanism in controlling

asthma and it is expected that drugs from the same class are more similar in

controlling the disease than drugs from other classes. Therefore, drugs from

the same class are more related than those that are not.

In the preceding chapter, the design for a series of phase II trials assumes

that each of the drugs available for trials has the same prior distribution

and the probabilities of success are independent. However, as drugs from the

same class are expected to be related, it is worth considering the correlation
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between them in the design. As such, the prior distributions of the subsequent

drugs may be affected by the data from the preceding drugs and consequently

informing us the performance of the class of drugs under evaluation. In

this chapter, the dependency between drugs of the same family is quantified

such that the prior density functions of the following drugs are updated as

responses from the preceding drugs are obtained.

The design of the series of trials is introduced in Section 7.1. The notation

used in this chapter is those introduced earlier in this thesis but is presented

in Section 7.2 for completeness. Section 7.3 presents an illustration of the

design with examples from drugs from the class of mediator antagonist for

patients with severe and persistent asthma. Finally, the chapter concludes

with a discussion in Section 7.4.

7.1 Design

The statistical framework for the design for a series of decision-theoretic

phase II trials of related treatments follows the design introduced in the

preceding chapter very closely. The design encompasses a series of decision-

theoretic single-arm phase II trials and a randomized controlled two-arm

phase III trial. The phase II trials are conducted sequentially with interim

decision making. At each interim stage, a decision is made from the following

actions:

Action R Resume the current phase II trial by recruiting more patients,

Action P Stop the current phase II trial and proceed to a randomized two-
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arm phase III trial where the experimental treatment is compared to

the standard treatment using the remaining patients,

Action T Stop the current phase II trial and initiate a new single-arm phase

II trial of a different treatment using the remaining patients; or

Action A Stop the current phase II trial and abandon the development

plan.

The design of the phase III trial following action P is based on the stan-

dard frequentist method (discussed in Section 4.1). Therefore, at the end

of the phase III trial, the data from that trial are analysed using the stan-

dard frequentist analysis where the point estimate of the treatment efficacy

is reported with its confidence interval and the corresponding p-value to infer

the true treatment efficacy. At the design stage of the whole development

plan though, the unknown parameter of the treatment efficacy is assumed

to be random and follows a prior distribution. Each treatment has a prior

distribution and they are all correlated. As the trials are run sequentially,

the accumulated observed data from patients are used to update the prior

densities of the current and subsequent treatments. The posterior densities

are made up of combined beliefs of the preceding priors given the observed

data.

The process of the decision making at each interim analysis is based on the

utility of each action which depends on the true efficacy of the experimental

treatment, and the number of patients and treatments available at the start of

the series. As the true parameter of the efficacy is a random variable following

a known distribution, the utility function of each action is an expectation
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function over all the possible values of the true parameter. The expected

utility in turn depends on the accumulated information.

Similar to the preceding chapter, the utility function is defined to be

relative to a constant reference value. This baseline is fixed to the initial

stage of the development plan where no cost is spent, as such, the fixed

reference value is zero. Therefore, the development plan will only commence

if the value of information from patients’ responses is worthier than the costs

of recruiting patients, setting up and conducting the trials.

The proposed design is made up of a finite sequence of decisions. Some of

the expected utilities functions depend on the expected utilities of subsequent

actions. Therefore, the optimum sequential scheme is obtained by backward

induction, similar to the design of a series of decision-theoretic phase II trials

(Section 6.2). The computational strategy is to first consider the expected

utility of the whole decision tree of the ultimate treatment. As it is the last

treatment, action T will not be available at any interim stage. Then compute

the expected utility of the whole decision tree of the penultimate trial, noting

that all the actions are available to choose from. Following in this manner of

iterative evaluation, the optimal expected utility of the whole development

plan is computed. The expected gain functions are described in detail in the

following sections.

7.2 Notation

Following on the notation used in the previous chapter, let N denote the

total size of the population which is assumed to be fixed and known. Let K
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denote the number of potential new treatments available for trials for this

population and it is also assumed to be fixed and known. At the ik-th stage

of k-th phase II trial which is equivalent to k-th drug (k = 1, 2, . . . , K), mkik

patients are recruited to the trial. As in the preceding chapter, the design

proposed in this chapter is illustrated with mkik = 1, that is, a fully sequential

phase II trial where a decision is made after every patient. As the design can

be extended to recruit patients in groups of size greater than one, the more

general notation mkik is used. The total number of patients recruited up to

and including the ik-th stage of k-th trial is nkik = mk1 +mk2 + . . .+mkik .

The primary endpoints for both phase II and III trials are assumed to

be binary. Let a success response be represented numerically by 1 and a

failure by 0. Let Xkik denote the sum of successes out of mkik patients in the

ik-th stage of k-th trial. Let the accumulated total number of successes from

the first stage up to and including the ik-th stage of k-th trial be denoted

by Skik = Xk1 + Xk2 + . . . + Xkik . Patients’ responses are assumed to be

independent from each other and so the sum of successes of the current trial,

SkiK , is assumed to follow the binomial distribution with index nkik and an

unknown probability of success, pk. The likelihood function of Skik is

fS|p(skik |pk) =

(
nkik
skik

)
p
skik
k (1− pk)nkik−skik .

In addition, the responses from each trial are also assumed to be indepen-

dent from each other. Therefore, the joint conditional K-variate distribution

145



Trials of Related Treatments 7.2 Notation

of (S1i1 , . . . , SKiK ) is the product of each of the likelihood function,

hS|p(S1i1 = s1i1 , . . . , SKiK = sKiK |p1, . . . , pK) =
K∏
k=1

fS|p(skik |pk). (7.1)

As the trials run sequentially, at k-th trial there is no observation from the

later trials, that is, Sk+1,ik+1
= . . . = SKiK = 0.

Similar to the previous chapter, the unknown parameter pk is assumed to

be random and let fp(pk) be the marginal prior density of pk. The prior den-

sity summarizes the belief of the efficacy of the k-th drug prior to observing

any response. The probabilities of success are, however, not independent.

Let hp(p1, . . . , pK) denote the joint prior density of p1, p2, . . . , pK .

Upon observing Skik = skik successes out of nkik patients in the first ik

stages of the k-th trial and given the observed successes from the preceding

trials, s1i1 , . . . , sk−1,ik−1
, the information of (p1, . . . , pK) is updated. Accord-

ing to Bayes’ theorem, the joint posterior density is

hp|S(p1, . . . , pK |s1i1 , . . . , sk,ik , n1i1 , . . . , nkik)

=
hS|p(s1i1 , . . . , skik , 0, . . . , 0, n1i1 , . . . , nkik , 0, . . . , 0|p1, . . . , pK)

hS(S1i1 = s1i1 , . . . , Skik = skik , Sk+1,ik+1
= 0, . . . , SKiK = 0)

× hp(p1, . . . , pK) (7.2)
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where

hS(S1i1 = s1i1 , . . . , Skik = skik , Sk+1,ik+1
= 0, . . . , SKiK = 0)

=

∫
· · ·
∫
hS|p(s1i1 , . . . , skik , 0, . . . , 0|p1, . . . , pK)

× hp(p1, . . . , pK) dp1 · · · dpK , (7.3)

is the joint marginal likelihood of S1i1 , . . . , SKiK .

Similar to the preceding chapter, each of the unknown parameters pk is

assumed to follow the beta distribution with fixed parameters ak and bk, and

the marginal probability density function is thus,

fp(pk) =
1

B(ak, bk)
pak−1
k (1− pk)bk−1,

where B(ak, bk) = Γ(ak)Γ(bk)/Γ(ak + bk) is the beta function. As intro-

duced earlier in Section 3.1.3, the joint distribution of p1, . . . , pK is as-

sumed to follow the K-variate Sarmanov’s family with parameters ΩK =

{ωi1,i2 , ωi1,i2,i3 , . . . , ω1,2,...,K} and mixing function φ(pk) (Lee, 1996). Its ex-

pression is

hp(p1, . . . , pK) =
( K∏
k=1

fp(pk)
)(

1 +RΩK (p1, . . . , pK)
)
, (7.4)
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where

RΩK (p1, . . . , pK) =
K−1∑
j1=1

K∑
j2=j1+1

ωj1,j2φ(pj1)φ(pj2)

+
K−2∑
j1=1

K−1∑
j2=j1+1

K∑
j3=j2+1

ωj1,j2,j3φ(pj1)φ(pj2)φ(pj3)

+ · · ·+ ω1,2,...,K

K∏
j=1

φ(pj).

The mixing function is assumed to be φ(pk) = pk−µk where µk = ak/(ak+bk)

is the expected value of a beta distribution with parameters ak and bk.

The unconditional joint density of S1i1 , . . . , SKiK is obtained as in (7.3).

The expression, derived earlier in Section 3.2.3 (equation (3.14)), is

hS(S1i1 , . . . , SKiK ) =

( K∏
k=1

fS(skik , nkik |ak, bk)
)(

1 +DΩK (s1i1 , . . . , sKiK )
)
,

(7.5)

where fS(skik , nkik |ak, bk) =
(
nkik
skik

)
B(ak + skik , bk + nkik − skik)/B(ak, bk) is a

marginal beta-binomial density with index nkik and parameters (ak, bk), and

the expression in the second term is

DΩK (s1i1 , . . . , sKiK ) =
K−1∑
j1=1

K∑
j2=j1+1

ωj1,j2ψ(sj1)ψ(sj2)

+
K−2∑
j1=1

K−1∑
j2=j1+1

K∑
j3=j2+1

ωj1,j2,j3ψ(sj1)ψ(sj2)ψ(sj3)

+ · · ·+ ω1,2,...,K

K∏
j=1

ψ(sjij),

where ψ(skik) = (skik − µknkik)/(ak + bk + nkik).
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The joint posterior density is subsequently obtained as in (7.2) which was

also derived earlier and is given by (3.15),

hp|S(p1, . . . , pK |s1i1 , . . . , sKiK , n1i1 , . . . , nKiK )

=
( K∏
k=1

fp|S(pk|skik , nkik)
)( 1 +RΩK (p1, . . . , pK)

1 +DΩK (s1i1 , . . . , sKiK )

)
, (7.6)

where fp|S(pk|skik , nkik) = p
ak+skik−1

k (1 − pk)
bk+nkik−skik−1/B(ak + skik , bk +

nkik − skik) is the posterior beta density.

If action P is taken, the design of the randomized controlled trial is based

on the log odds ratio summary measure. This design is discussed in Section

4.1.2. At the end of the trial, a frequentist analysis is used to test the null

hypothesis, H0 : θk = 0 where θk = log{pk(1 − pC)/(pC(1 − pk))} is the log

odds ratio and pC is the true probability of success of the control arm. The

minimum number of patients needed for phase III trial is set to nIII = 1 as

in the preceding chapter.

7.2.1 Expected utility

Let GTotal(N,K) denote the expected utility of the optimum development

plan with a total population of size N and K potential related treatments.

If GTotal(N,K) > 0, then the development plan commences by recruiting

its first batch of m11 = 1 patient to the first phase II trial. Due to the

complexity of the correlation among the prior distributions and the sequential

nature of the design, it is easier to define the expected utility of the whole

programme with an illustration. Consider a development plan with three
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potential treatments, that is, K = 3. By backward induction methodology,

the development plan of the third trial is computed first followed by the

computation for the second trial and finally, the computation for the first

trial which then gives the optimal strategy for the whole development plan.

7.2.2 Illustration: Expected utilities of a development

plan with N3 and K3

At the start of the third trial, the size of the population is N3 = N−n1ii−n2i2 ,

a smaller size than the original population N where n1i1 is the total number

of patients recruited from the first stage up to the i1-th stage of the first

trial before it is aborted in favour of starting the second trial and n2i2 is the

total number of patients recruited from the first stage up to the i2-th stage

of the second trial before it is also aborted in favour of starting the third

and final trial. Denote the total number of successes observed from the first

and second trials by S1i1 = s1i1 and S2i2 = s2i2 , respectively. At each interim

analysis of the third trial, there are only three choices of actions, namely,

actions R, P and A, except when N3 − 1 patients have been recruited, then

there would only be actions P and A to choose from.

Expected utility of action A (abandon the programme)

At the i3-th interim analysis, let n3i3 =
∑i3

j=1m3j be the total number of

patients recruited thus far to the third trial and let S3i3 =
∑i3

j=1X3j be the

cumulative successes from this trial. Given S3i3 = s3i3 successes, the utility

function of action A is less the cost of patients recruited from the first stage up
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to and including the i3-th stage of this trial, that is, GA(p3, N3, K3) = −ln3i3 .

Taking expectation by integrating it with respect to p3 over all its possible

value,

GA(s3i3 , n3i3 , N3, K3) = −ln3i3 . (7.7)

Expected utility of action P (proceed to phase III trial)

The gain function of action P depends on the success of the phase III trial

and the cost of conducting it. The probability that the phase III trial is a

success is given by the power function. From equation (6.4) the probability

that the null hypothesis, H0 : θ3 = 0, is rejected at the upper end of the

α-level of significance under the alternative hypothesis is 1 − Φ
(
z1−α/2 −

θ3

√
V3

)
where θ3 = log{p3(1 − pC)/(pC(1 − p3))} is the log odds ratio, pC

is the true probability of success of the control arm, Φ(·) is the cumulative

standard normal distribution function and zγ is the upper 100γ percentile of

the standard normal density. Therefore, the gain function of action P is

GP (p3, N3, K3) = 1− Φ
(
z1−α/2 − θ3

√
V3

)
− lN3 − lIII.

Given the observed data from the preceding two trials and cumulative re-

sponses from the first i3 stages of the third trial, the expected utility of
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action P is (the detailed integration by parts is shown in Appendix C)

GP (s3i3 , n3i3 , N3, K3)

=

∫∫∫ (
1− Φ

(
z1−α/2 − θ3

√
V3

))
× hp|S(p1, p2, p3|s1i1 , s2i2 , s3i3 , n1i1 , n2i2 , n3i3) dp1 dp2 dp3 − lN3 − lIII

=
1

1 +DΩ3(s1i1 , s2i2 , s3i3)

[(
1 + ω12ψ(s1i1)ψ(s2i2)

)
A(s3i3 , n3i3)

+
(
ω13ψ(s1i1) + ω23ψ(s2i2) + ω123ψ(s1i1)ψ(s2i2)

)
×
∫ 1

0

φ(p3)

(
1− Φ

(
z1−α/2 − θ3

√
V3

))
fp|S(p3|s3i3 , n3i3) dp3

]
− lN3 − lIII, (7.8)

where A(s3i3 , n3i3) =
∫ 1

0

(
1 − Φ

(
z1−α/2 − θ3

√
V3

))
fp|s(p3|s3i3 , n3i3) dp3 is the

assurance.

Expected utility of action R (resume the current phase II trial)

The expected utility function of action R at the i3-th stage of the third trial

depends on the responses from the patients recruited to the immediate fol-

lowing stage and the decisions taken thereafter. The computation is similar

to that described earlier in Section 6.1.2 except that its expectation is aver-

aged over all the possible responses that may be observed in this stage having

observed all the successes from the first trial up to and including the third

trial.

Before deriving the expected utility of action R at the i3-th interim anal-

ysis of the third trial, first consider the marginal density of X3,i3+1 = x3,i3+1
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given S1i1 = s1i1 , S2i2 = s2i2 , S3i3 =
∑i3

j=1 X3j. Patients’ responses are in-

dependent from each other. Therefore, the marginal likelihood of S3i3 has

a binomial distribution with index n3i3 and parameter p3. From the law of

succession, the likelihood function of X3,i3+1 is similarly, a binomial distri-

bution but with index m3,i3+1 given S1i1 = s1i1 , S2i2 = s2i2 and S3i3 = s3i3 .

Thus, as shown in detail in Appendix D, the “posterior” marginal density is

gX|S(x3,i3+1,m3,i3+1|s1i1 , s2i2 , s3i3 , n1i1 , n2i2 , n3i3)

=

∫∫∫
fS|p(x3,i3+1|p3)hp|S(p1, p2, p3|s1i1 , s2i2 , s3i3 , n1i1 , n2i2 , n3i3) dp1 dp2 dp3

=
1

1 +DΩ3(s1i1 , s2i2 , s3i3)

[
1 + ω12ψ(s1i1)ψ(s2i1) +

(
ω13ψ(s1i1) + ω23ψ(s2i1)

+ ω123ψ(s1i1)ψ(s2i1)
)(s3i3 + x3,i3+1 − µ3(n3i3 +m3,i3+1)

a3 + b3 + n3i3 +m3,i3+1

)]
× fS(x3,i3+1|a3 + s3i3 , b3 + n3i3 − s3i3), (7.9)

where µ3 is the expected value of the prior beta distribution with parameters

a3 and b3, and fS(x3,i3+1|a3 + s3i3 , b3 + n3i3 − s3i3) is the marginal density of

X3,i3+1 with parameters a3 + s3i3 and b3 + n3i3 − s3i3 .

The expected utility of action R at the i3-th stage of the third trial is

GR(s3i3 , n3i3 , N3, K3)

=

m3,i3+1∑
x3,i3+1=0

max
a∈{R,P,A}

{
Ga(s3i3 + x3,i3+1, n3i3 +m3,i3+1, N3, K3)

}
× gX|S(x3,i3+1,m3,i3+1|s1i1 , s2i2 , s3i3 , n1i1 , n2i2 , n3i3). (7.10)

It is solved by backward induction, starting from the terminal branch of the
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decision tree and moving back to the present stage.

Expected utility of the whole development plan

After conducting the first two trials, the third trial commences with a popu-

lation of size N3 and K3 = 1 treatment. The third trial starts by recruiting

n31 = m31 patients to the first stage of the third treatment. Based on the

observed, S31 = s31, successes from the n31 patients and having already ob-

served S1i1 = s1i1 and S2i2 = s2i2 successes from the preceding trials, the

expected utility of the whole development plan of the third trial can be ob-

tained. Its expectation is solved by maximizing the expected utility of each

action and averaging it over all possible values of S31 given S1i1 and S2i2 , and

less the cost of conducting a phase II trial,

GTotal(N3, K3 = 1)

=

n31∑
s31=0

max
a∈{R,P,A}

{
Ga(s31, n31, N3, K3)

}
× gX|S(s31, n31|s1i1 , s2i2 , 0, n1i1 , n2i2 , 0)− lII, (7.11)

where the individual expected utilities are obtained as given in equations

(7.7), (7.8) and (7.10), and gX|S(s31, n31|s1i1 , s2i2 , 0, n1i1 , n2i2 , 0) is as given

by equation (7.9).

The expression in (7.11) shows that the expected utility of the whole

development plan of the third trial with a population of size N3 and K3

treatment depends on the subsequent actions. Thus, the optimal strategy of

the third trial is solved by backward induction methodology.
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7.2.3 Illustration: Expected utilities of a development

plan with N2 and K2

At the start of the second trial, there are N2 = N − n1i1 population where

n1i1 is the total number of patients recruited from the first stage up to and

including the i1-th stage of the first trial before the optimal action to stop

the first trial in favour of the second trial is made. Let S1i1 = s1i1 be the

successes observed out of n1i1 patients from the first trial. As the trials are

designed to run sequentially, there is no information from the third trial.

Also, at the start of the second trial there are K2 = K − 1 = 2 potential

treatments.

Expected utility of action A (abandon the programme)

Similar to the utility of action A of the third trial, the utility of action A

of the second trial at the i2-th interim analysis is less the cost of recruiting

n2i2 from the first i2 stages of the second trial, GA(p2, N2, K2) = −ln2i2 .

Therefore, having observed S2i2 = s2i2 successes out of n2i2 patients, the

expected utility of action A of the second trial is

GA(s2i2 , n2i2 , N2, K2) = −ln2i2 . (7.12)

Expected utility of action P (proceed to phase III trial)

The formulation of the expected utility of action P of the second trial is

similar to the one in the third trial described above. If the second treatment

is recommended for further testing in a phase III setting against a control
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arm, the data from this phase III trial are used to test the null hypothesis

H0 : θ2 = 0 where θ2 = log{p2(1 − pC)/(pC(1 − p2))} is the log odds ratio

and pC is the true probability of success of the control arm. Let S2i2 = s2i2

be the successes from the first i2 stages of the second trial, the gain function

of action P is

GP (p2, N2, K2) = 1− Φ
(
z1−α/2 − θ2

√
V2

)
− lN2 − lIII.

Similar to the workings in (7.8), having observed S1i1 = s1i1 , S2i2 = s2i2

and S3i3 = 0 because the third trial has yet to commence, as shown in

Appendix E, the expected gain function of action P is

GP (s2i2 , n2i2 , N2, K2)

=

∫∫∫
GP (p2, N2, K2)hp|S(p1, p2, p3|s1i1 , s2i2 , s3i3 , n1i1 , n2i2 , n3i3) dp1 dp2 dp3

=
1

1 + ω12ψ(s1i1)ψ(s2i2)

[
A(s2i2 , n2i2))

+ ω12ψ(s1i1)

∫ 1

0

φ(p2)

(
1− Φ

(
z1−α/2 − θ2

√
V2

))
fp|S(p2|s2i2 , n2i2) dp2

]
− lN2 − lIII (7.13)

where A(s2i2 , n2i2) =
∫ 1

0

(
1 − Φ

(
z1−α/2 − θ2

√
V2

))
fp|s(p2|s2i2 , n2i2) dp2 is the

assurance.

Expected utility of action T (start a new phase II trial)

If the optimal action at i2-th stage of the second trial is the action T, then

the second trial is abandoned and a new phase II trial is initiated with the
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remaining N3 = N2 − n2i2 patients and K3 = K2 − 1 = 1 treatment. The

expected utility of action T is the expected utility of the whole programme

of the third trial less the cost of the patients recruited thus far to the second

trial, that is,

GT (s2i2 , n2i2 , N2, K2) = GTotal(N3, K3 = 1)− ln2i2 , (7.14)

where GTotal(N3, K3 = 1) is as given in (7.11).

Expected utility of action R (resume the current phase II trial)

The expected utility of action R at i2-th stage of the second trial depends on

the future responses and the resulting actions. Thus, its expectation function

is also solved by backward induction. Similar to the expression derived earlier

for the third trial, the expectation utility function is

GR(s2i2 , n2i2 , N2, K2)

=

m2,i2+1∑
x2,i2+1=0

max
a∈{R,P,T,A}

{
Ga(s2i2 + x2,i2+1, n2i2 +m2,i2+1, N2, K2)

}
× gX|S(x2,i2+1,m2,i2+1|s1i1 , s2i2 , 0, n1i1 , n2i2 , 0), (7.15)

where

gX|S(x2,i2+1,m2,i2+1|s1i1 , s2i2 , 0, n1i1 , n2i2 , 0)

=
1

1 + ω12ψ(s1i1)ψ(s2i2)

(
1 + ω12ψ(s1i1)

)(s2i2 + x2,i2+1 − µ2(n2i3 +m2,i2+1)

a2 + b2 + n2i2 +m2,i2+1

)
× fS(x2,i2+1|a2 + s2i2 , b2 + n2i2 − s2i2), (7.16)
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is the marginal density of X2,i2+1 given S1i1 = s1i1 , S2i2 = s2i2 and S3i3 = 0.

The details of the derivation of the marginal density is in Appendix F.

Expected utility of the whole development plan

The second trial commences by recruiting n21 = m21 patients into the first

stage. Having observed S1i1 = s1i1 successes from the first i1 stages of the

first trial and let S21 = s21 be the successes from the first n21 patients, then

the expected utility of the whole development plan of the second trial with

an initial population of N2 and K2 treatments is solved by averaging the

maximum expected utility of the available actions over all possible values of

S21 given S1i1 less the cost of conducting a phase II trial,

GTotal(N2, K2) =

n21∑
s21=0

max
a∈{R,P,T,A}

{
Ga(s21, n21, N2, K2)

}
× gX|S(s21, n21|s1i1 , 0, 0, n1i1 , 0, 0)− lII, (7.17)

where the individual expected utilities are obtained as given in equations

(7.12), (7.13), (7.14) and (7.15), and gX|S(s21, n21|s1i1 , 0, 0, n1i1 , 0, 0) is as

given by equation (7.16).

7.2.4 Illustration: Expected utilities of a development

plan with N1 and K1

According to the backward induction methodology, having already first solved

the expected utility of the whole programme of the third and final trial fol-

lowed by the computation of the expected utility of the whole programme of
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the second trial, the last step is to solve for the expected utility of the whole

programme of the first trial which is also the expected utility function of a

series of trials with an initial population of N and K treatments.

At the start of the first trial, the size of the population is N1 = N and

there are K1 = K potential treatments available for trial. Throughout the

conduct of the first trial there is no information from the second and third

trials. Therefore, at the i1-th interim stage of the first trial, there are only

S1i1 successes out of n1i1 patients while S2i2 = S3i3 = 0.

Expected utility of action A (abandon the programme)

The gain function of action A at i1-th interim stage of the first trial is less

the cost of recruited patients, GA(p1, N1, K1) = −ln1i1 . Therefore, having

observed S1i1 = s1i1 , the expected utility of action A of the first trial is

GA(s1i1 , n1i1 , N1, K1) = −ln1i1 . (7.18)

Expected utility of action P (proceed to phase III trial)

If action P is taken, then the recommended treatment is compared to the

control arm in a randomized controlled trial and the data from this phase

III trial are used to test the hypothesis H0 : θ1 = 0 where θ1 = log{p1(1 −

pC)/(pC(1− p1))} is the log odds ratio. Let S1i1 = s1i1 be the successes from

the first stage up to and including the i1-th stage of the first trial. The gain

function of action P is

GP (p1, N1, K1) = 1− Φ
(
z1−α/2 − θ1

√
V1

)
− lN1 − lIII.
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As n2i2 = 0 and n3i3 = 0, the cumulative successes are also S2i2 = 0 and

S3i3 = 0. Thus, DΩ3(s1i1 , s2i2 , s3i3) = 0. From (7.6) and following the similar

workings for the second and third trials, the expected utility of action P is

GP (s1i1 , n1i1 , N1, K1)

=

∫∫∫
GP (p1, N1, K1)hp|S(p1, p2, p3|s1i1 , s2i2 , s3i3 , n1i1 , n2i2 , n3i3) dp1 dp2 dp3

=

∫∫∫ (
1− Φ

(
z1−α/2 − θ1

√
V1

))
fp|S(p1|s1i1 , n1i1)fp(p2)fp(p3)

×
(

1 + ω12φ(p1)φ(p2) + ω13φ(p1)φ(p3) + ω23φ(p2)φ(p3)

+ ω123φ(p1)φ(p2)φ(p3)
)
dp1 dp2 dp3 − lN1 − lIII

=

∫ 1

0

(
1− Φ

(
z1−α/2 − θ1

√
V1

))
fp|S(p1|s1i1 , n1i1) dp1 − lN1 − lIII

= A(s1i1 , n1i1)− lN1 − lIII (7.19)

where A(s1i1 , n1i1) =
∫ 1

0

(
1 − Φ

(
z1−α/2 − θ1

√
V1

))
fp|s(p1|s1i1 , n1i1) dp1 is the

assurance. Note that as there is no information from the subsequent trials,

so, the correlation coefficients are not utilized in the expectation of action P

in the first phase II trial, that is, the expected utility function of action P

does not depend on the prior beliefs of the following treatments. Thus, its

expected function is the same as the expected utility of action P when the

treatments are independent of each other (Section 6.1.2).

Expected utility of action T (start a new phase II trial)

Action T is to stop the current first trial and initiate a second trial with a

different treatment with the remaining patients, N2 = N1 − n1i1 and K2 =
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K1 − 1 treatments where n1i1 is the number of patients recruited from the

first stage up to and including the i1-th stage of the first trial. The expected

utility of action T at the i1-th interim stage is thus, the expected utility of

the whole programme of the second trial less the cost of the patients recruited

thus far to the first trial, that is,

GT (s1i1 , n1i1 , N1, K1) = GTotal(N2, K2)− ln1i1 , (7.20)

where GTotal(N2, K2) is as given in (7.17).

Expected utility of action R (resume the current phase II trial)

The expected utility of action R at the i1-th stage of the first trial depends

on the responses that are to be observed in the (i1 + 1)-th stage and the

resulting actions. The expected utility function is

GR(s1i1 , n1i1 , N1, K1)

=

m1,i1+1∑
x1,i1+1=0

max
a∈{R,P,T,A}

{
Ga(s1i1 + x1,i1+1, n1i1 +m1,i1+1, N1, K1)

}
× gX|S(x1,i1+1,m1,i1+1|s1i1 , 0, 0, n1i1 , 0, 0), (7.21)

where

gX|S(x1,i1+1,m1,i1+1|s1i1 , 0, 0, n1i1 , 0, 0)

= fS(x1,i1+1|a1 + s1i1 , b1 + n1i1 − s1i1),
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is the marginal beta-binomial density of X1,i1+1 with index n1i1 +m1,i1+1 and

parameters a1 + s1i1 and b1 + n1i1 − s1i1 . The form of the expected utility

function of action R at the i1-th stage of the first trial looks similar to the

expected utility function of action R when the treatments are independent

(Section 6.1.2). However, as the expectation may depend on the subsequent

action T which in turns utilizes the information from the prespecified corre-

lation coefficents and the observed data, it is not the same as the one given

by equation (6.7). As action R depends on the future optimal actions, its

expectation function is solved by backward induction.

Expected utility of the whole development plan

The series of trials with an initial population of size N and K potential

treatments begin by recruiting n11 = m11 patients to the first trial. Let

S11 = s11 be the observed successes from these n11 patients. The expected

utility of the whole development plan is solved by taking the expectation of

the maximum expected utility of the actions over all the possible values of

S11 less the cost of conducting a phase II trial,

GTotal(N,K) = GTotal(N1, K1)

=

n11∑
s11=0

max
a∈{R,P,T,A}

{Ga(s11, n11, N1, K1)}fS(s11)− lII, (7.22)

where the individual expected utilities are as given in equations (7.18), (7.19),

(7.20) and (7.21), and fS(s11) is the marginal beta-binomial density with

index n11 and parameters a1 and b1.
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7.3 Application

The proposed design is illustrated with the same asthma clinical examples

seen earlier in Section 6.3. Suppose that there are K = 3 potential drugs

from the family of mediator antagonists. The primary endpoint is binary

where at least an episode of moderate or severe exacerbation in a four-week

treatment period is considered as a failure and a non-event as a success.

The definitions of moderate and severe asthma exacerbations are as given

earlier in the preceding chapter. The unknown probability of success of each

treatment, pk, (k = 1, 2, 3), is assumed to be random and follows the beta

distribution with known parameters ak and bk.

In a multivariate setting, assuming that p1, p2, . . . , pK has the joint prob-

ability density function as defined in (7.4), Lee (1996) shows that any sub-

vector pi1 , pi2 , . . . , pim , 1 ≤ i1 < i2 < . . . < im ≤ K, has the following joint

density

hp(pi1 , . . . , pim) =
( m∏
j=1

fp(pij)
)(

1 +RΩm(pi1 , . . . , pim)
)
, (7.23)

where RΩ1 = 0 and Ωm is a subset of ΩK such that Ωm is only for the

combinations of m variables, pi1 , pi2 , . . . , pim .

For this illustration, consider a subvector with only two variables out of

the given K = 3 variables. As seen earlier in Section 3.1.3, the correlation

coefficient between pi and pj is given by ρij = ωijσiσj where σi (σj) is the
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standard deviation of pi (pj), and ωij satisfies the condition

max

{
−1

µiµj
,

−1

(1− µi)(1− µj)

}
≤ ωij ≤ min

{
1

µi(1− µj)
,

1

µj(1− µi)

}
.

For a bivariate density of independent beta densities, the range is,

−(ai + bi)(aj + bj)

max{aiaj, bibj}
≤ ωij ≤

(ai + bi)(aj + bj)

max{aibj, ajbi}
.

Based on this subvector relationship, the range of values for ω12, ω13, and

ω23 and correspondingly, the correlation coefficients ρ12, ρ13 and ρ23 can be

obtained. The correlation between (p1, p2) and p3 are defined by ω123 and as

it is difficult to elicit the possible values of this correlation, it is assumed to

be ω123 = 0.

All the three treatments are assumed to have the same prior densities and

so the subscript k will be suppressed for convenience, that is, p ∼ Beta(a, b).

The range of values for the correlation coefficient between any two treatments

is then

−ab
(a+ b+ 1) max{a2, b2}

≤ ρ ≤ 1

a+ b+ 1
, (7.24)

and

−(a+ b)2

max{a2, b2}
≤ ω ≤ (a+ b)2

ab
. (7.25)

The computation of the expected utility function of the whole series is

very tedious and as such, only N = 100 is considered for illustration. Fol-

lowing the same assumed values as in the preceding chapter, the probability

of success of the control arm is assumed to be, pC = 0.80, and the two-
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sided significance level is α = 0.05. The known parameters of the prior beta

density function are a = 69 and b = 6, which is equivalent to obtaining

information from a sample size of 75. From equations (7.24), the possible

range of the correlation coefficients is [−0.00114, 0.013] and the correspond-

ing ω range is [−1.1813, 13.4239]. For illustration, ω = −1 (correspondingly,

ρ = −0.0009684) and ω = 10 (correspondingly, ρ = 0.009684) are used. The

variable and fixed costs are taken to be relative to one unit of gain. The cost

per patient is l = 0.0001, the cost of conducting a phase II trial is lII = 0.002

and the cost of conducting a phase III trial is lIII = 0.02. At each stage of

the k-th decision-theoretic phase II trials, mkik = 1 patient is recruited and

the minimum sample size for the phase III trial is set to 1.

The expected utility of the whole development plan when the treatments

are negatively correlated, ρ = −0.0009684, is 0.465356 (Table 7.1). As the

expected utility is greater than zero, it is worth starting the development

programme. Figure 7.1(a) shows the decision rules for the optimal actions

when given an initial population of N1 = N = 100 and K1 = K = 3 potential

treatments. The optimal sample size needed to proceed to a phase III trial

is 4. If all of the patients responded positively to the treatments then the

optimal action is action P. Otherwise, the optimal action is action T, that

is, a new phase II trial is to commence with a population of N2 = 96 and

K2 = 2 treatments.

Suppose that action T was taken after 4 patients had been recruited to

the first trial. The maximum number of patients needed in order to make

a definite decision, that is, action P, T or A in the second phase II trial

is 5. If the accumulated successes is 5 out of 5 then the optimal action is
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Table 7.1: Expected utility of a whole programme of population N and K treat-
ments for various correlation coefficients, ρ.

Programme with
N = Ni population, GTotal(Ni, Ki)
K = Ki treatments ρ = −0.0009684 ρ = 0.009684 ρ = 0

N1 = 100, K1 = 3 0.465356 0.465034 0.467494
N2 = 96, K2 = 2 0.452369 0.451522 0.463745
N3 = 91, K3 = 1 0.425837 0.424690 0.452788

action P and if less than 5, the optimal action is action T (Figure 7.1(b)).

If the latter action is taken, the third trial with the third treatment is to be

initiated with a population of N3 = 91. As this is the last treatment, action

T is not available at each interim stage. Regardless of the response from the

first patient, the optimal action is to go on to the phase III trial (action P)

and so 90 patients will be randomized to either the third treatment or to the

placebo in a 1:1 ratio.

In the next example, consider the case of positive correlation between any

two treatments, ρ = 0.009684. The expected utility of the whole programme

is 0.465034, slightly lower than the case when the treatments are weakly and

negatively correlated (Table 7.1). However, similar to the case of negative

correlation, the maximum sample size that is needed in order to make a

definitive decision in the first phase II trial is 4 and of this, if all are successes

then the optimal action is action P, otherwise it is action T (Figure 7.1(c)).

For the latter action, the second trial will commence with a population of

N2 = 96 and K2 = 2 potential treatments. The maximum sample size for

the second phase II trial is also 5 where a definitive decision is made to either

proceed to a phase III trial or to stop the current trial and initiate the third
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Figure 7.1: Decision rules for optimal actions for a series of related treatments
for ρ = −0.0009684 (upper row) and ρ = 0.009684 (lower row).

and final trial with the last available treatment (Figure 7.1(d)). Also, if the

third trial is to commence with N3 = 91 patients and K3 = 1 treatment, the

optimal action after observing the response from the first patient is action

P, regardless if it is a failure or success.

The illustrations given here are limited due to the narrow range of a
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correlation coefficient between two equal and highly informative prior den-

sities. In the example of negative correlation (ρ = −0.0009684), it is also

the weaker correlation as it is nearer to 0 compare to the positive correlation

(ρ = 0.009684). Interestingly, the expected utility of the whole programme

with an initial population of N1 = 100 and K1 = 3 treatments when the

treatments are independent ρ = 0 is the highest (Table 7.1), followed by the

series of trials that is negatively and weaker correlated. The series of trials

that is positively and higher correlated has the lowest expected utility.

The maximum number of patients that is needed in the first phase II trial

to proceed to the phase III trial for both series of trials with related treat-

ments is 4 whereas if the treatments are independent, the maximum number

of patients needed is 6. In the case of independent treatments, nothing more

is known about subsequent treatments except their prior densities and as

such, as the prior density of subsequent treatments is highly informative, it

is worthier to try a new treatment than to proceed to the larger definitive

phase III trial. Contrary to the series of related treatments, as information

of the current trial is gathered, more is known about the posterior densities

of subsequent treatments and it seems to be worthier to go on to the larger

phase III trial earlier.

For the second trial to commence with N2 = 96 patients, the first trial of

the correlated series would have observed 3 successes out of the 4 patients.

The expected utility of the whole programme depends on the subsequent

actions and as the information from the first trial suggest that the treatment

is slightly worse than expected (as having observed one failure so soon in the

trial), it affects the posterior densities of subsequent treatments much more
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than when they are independent. Thus, the expected utilities of the series

of related trials are much lower; 0.452369 for the negative correlated trials,

0.451522 for the positive correlated trials, and 0.463745 for the independent

trials.

For the third trial to commence with N3 = 91 patients, the second trial

would have observed 4 successes only. Clearly, as both first and second trials

seem to have “failed”, the belief of the third treatment to be more effective

than the placebo is affected which in turn affects the expected utility of the

whole series.

Simulation

A simple simulation was conducted to estimate the distribution of the number

of phase II trials before proceeding to a phase III trial. The algorithm and

codes of the simulation are given in Appendix G. The optimal action in the

third phase II trial is always action P, proceed to the phase III trial, regardless

of the observed response. Therefore, the simulation study was only on the

scenario of the first two phase II trials. The results for both ρ = −0.0009684

and ρ = 0.009684 are about the same (Table 7.2).

As expected, the probability of the first treatment to proceed to a phase

III trial is higher than the second treatment (0.72 against 0.67). The average

sample size required for the first phase II trial is 3.5 which is close to the

required maximum size 4. This is unsurprising as the probability to proceed

to phase III trial is rather high. The average sample size for the second

phase II trial is 4.3 which is comparatively slightly lower than the required

maximum size since the probability to proceed to phase III trial is not as
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Table 7.2: Simulation results for both negative and positive correlation coeffi-
cients, ρ.

ρ = −0.0009684 ρ = 0.009684

Average sample size for first
phase II trial

3.5462 3.5462

Probability of going to phase III
after one phase II trial

0.7187 0.7187

Average sample size for second
phase II trial

4.2769 4.2732

Probability of going to phase III
after two phase II trials

0.6680 0.6673

high as for the first phase II trial.

7.4 Discussion and concluding remarks

The prior density assumed for illustration is highly informative. As a result,

the maximum number of patients needed to make a definitive decision is

very small. Based on the assumed joint probability density function, hp, for

parameters p1, p2, . . . , pK , the correlation coefficient is within a very narrow

range and they are also very close to 0 which is the independent case.

The computational time needed to solve for the optimal decision strategy

is very long and so it is not feasible to explore further in this thesis the

characteristics of the sequential scheme under various scenarios; a wider range

of correlation coefficients with different prior densities.

The prior densities for all the treatments are assumed to be the same.

This is not unreasonable considering that all treatments may be equally ef-

fective before any trial is undertaken. However, in the scenario where a large

funding body such as a public sector or a charity organization is funding a
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series of clinical trials with treatments from different pharmaceutical com-

panies for the same population, the prior densities may be different. Also,

treatments from the same company may be highly correlated than treat-

ments from different companies. The formulation given in Section 7.2.1 can

be used to allow for different correlation coefficients but the computation can

be quite taxing and challenging.

The result from the simulation study showed that the ordering of the

treatments to be evaluated in the phase II setting affects the probability of

any given treatment being evaluated further in the phase III setting. The

treatments in this example are assumed to be equally promising and thus,

they are interchangeable. Accordingly, the treatment order can be random.

However, in practice, even if identical prior distributions are used it is likely

that some treatments may be considered to be more promising. Therefore,

these treatments should be chosen to be evaluated first so that they may

have higher chance to be evaluated further in the phase III setting.
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Chapter 8

Summary

8.1 Conclusion

This thesis proposed designs for a series of trials. The motivation is based on

a pharmaceutical company that has developed a few treatments concurrently

for the same population. In another scenario, a charity organization or a

public sector with large fundings may be interested to identify a promising

treatment from a pool of treatments for the same population.

Resources such as patients and money are essentially finite and limited.

As such, the decision from each trial will affect subsequent trials either in the

design of the next trial or allocation of resources to other trials. Therefore, it

seems intuitive and appealing to design clinical trials in the context of other

trials so that the clinical development plan is more cohesive (Senn, 1996).

As it is essentially a decision problem whether to recommend a treatment for

trial or further development, the statistical decision theory seems to be an

obvious choice to model the clinical development plan (Julious and Swank,
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2005). The method allows the quantification of the risk of futile treatments,

the value of information, the gains from success trials and the losses from

futile trials which in turn aid decision making.

The methodology used in the designs is based on a hybrid approach which

is a combination of both classical frequentist and Bayesian frameworks. In

the design for a series of trials (Chapter 5), it is assumed that at the end

of each trial, the responses observed from within each trial are analysed

using the classical frequentist analysis to test the null hypothesis. A point

estimate of the treatment efficacy is reported with its confidence interval and

the corresponding p-value. Therefore, the design of the trial is based on the

final analysis that is to be done. However, the unknown parameter of the

treatment efficacy is assumed to be random and follows a prior distribution.

Thus, the methodology used at the design stage is a Bayesian one.

Following on, in the design for a series of decision-theoretic trials (Chap-

ters 6 and 7), a series of phase II trials are designed based on the Bayesian

decision-theoretic approach where an optimal decision is chosen based on the

expected utilities of each actions. As above, the unknown parameter of the

treatment efficacy is also assumed to be random and follows a prior distri-

bution. If the treatment from the current phase II trial is recommended for

further testing in a phase III trial setting, it is assumed that at the end of the

phase III trial, the observed data from this trial are analysed using the classi-

cal frequentist analysis to test the null hypothesis. Therefore, the conclusion

is based on the inference from the trial unlike in a fully Bayesian inferential

technique where the conclusion is based on the posterior distribution.

Beliefs of how effective a treatment may be are required in sample size
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calculation and quite often these beliefs are elicited from experts either as

the best guess or the minimum clinically meaningful effect. In a frequentist

setting, these beliefs form the null and alternative hypotheses. There is

inevitably some subjectivity and variability on these beliefs and the Bayesian

approach quantifies these variability. Bayesian approach takes into account

the different results and other available evidence and information to develop

the prior distribution. In addition, it puts the current trial in the context

of previous trials regardless if the trials have very similar or very different

settings. There are many published works on how to elicit prior beliefs from

experts, for example, Chaloner et al. (1993), Chaloner and Rhame (2001),

O’Hagan et al. (2006) and Stangl and Berry (1998). Another technique

that may be used and which is used in this thesis is to obtain prior beliefs

empirically from published literatures. It is not as proficient as eliciting from

experts and there may be publication bias as there are more effective trials

than futile trials being published. A reference prior, the standard uniform

prior, together with the prior elicited from published literatures are used to

illustrate the application of the designs.

The optimal sample size obtained with the proposed designs is, on av-

erage, smaller than the usual sample size obtained with the frequentist ap-

proach. Although it is difficult to compare the sample sizes directly between

a frequentist method and a hybrid method, consider the following example.

Let the probability of success of a historical control be 0.80 and it is desired

to detect a minimum clinical meaningful success rate of 0.92 from the ex-

perimental treatment arm. Fixing the type I and II error rates to α = 0.05

and β = 0.10, at a two-sided significance test, the minimum sample size is
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89. From Chapter 6, the unknown parameter, p, follows the beta density

with parameters a = 69 and b = 6 with an expected value of 0.92, that is,

the average success rate of the experimental treatment is believed to be 0.92.

The minimum number of patients required for the phase II trial in order to

proceed to a phase III trial is 24 whereas the maximum number of patients

is 79, ten patients less than the frequentist approach.

Thus, an advantage over the frequentist approach as trials can be con-

ducted more efficiently. However, in the series of decision-theoretic trials,

the sampling is a fully sequential one and as such, it is not practical if the

duration that is needed to observe the primary endpoint is more than a few

weeks as that will increase the time to conduct a trial and is contrary to an

efficient design.

8.2 Further works

The final analysis at the end of a trial is based on the primary endpoint

using all the data from the patients. Traditionally, subgroup analysis is

also routinely performed regardless if it has been prespecified in the analysis

plan or on a post-hoc basis. In order for the result of subgroup analysis

to be admissible for approval by the regulatory agency it is necessary to

prespecify the subgroup and the type of analysis to be performed. Also of

importance, the sample size has to be adequate so that both principal and

subgroup analyses can be performed (EMEA, 2011). Therefore, it would

be of interest to consider subgroup analysis in the proposed design. In the

sequential decision-theoretic design, the subgroup analysis may be built in
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each interim stage or only at the end of the trial or both interim and final

analyses.

Julious and Swank (2005) suggested using statistical decision theory in

the design of a series of trials but the probability of success of each trial

is different from each other. Thus, it is of interest to expand the proposed

designs by considering different priors for all the treatments. Consequently,

this may affect the optimality of the development plan. The expected utility

of the whole series can be evaluated for each permutation of sequence of

treatments and so the ordering of the treatments to be evaluated in the

phase II setting is the one that gives the highest expected utility for the

whole series. In addition, the specification of prior distribution should not

be restricted to the experimental treatments only but should also be applied

to the control arm. Some of the more straightforward and obvious extensions

that can be applied to the proposed designs are given below.

A Series of Hybrid Trials

The framework of the design of a series of hybrid trials is based on the as-

sumption that each of the trial is a single-arm trial (Chapter 5). The formu-

lation can be extended by considering each trial as a two-arm trial. Following

the same framework introduced in Chapter 5, let us assume that the primary

endpoint is a continuous variable. Let δ denote the mean difference between

the two treatments. From Section 4.1, δ ∼ N(θ, (σ2
1 + rσ2

2)/(rn2)) where θ is

an unknown parameter, σ2
1 and σ2

2 are the known variances of the control and

experimental arms, respectively, r is the allocation ratio and n2 is the sample

size for the experimental treatment. Assuming that at the end of the trial the
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classical frequentist testing is done at α-level of significance. The unknown

mean of the random variable, θ, is assumed to be random and follows a prior

distribution, fΘ(θ). From equations (4.3) and (4.4) the assurance is

A(n) =

∫
Θ

[
1− Φ

(
z1−α/2 −

θA − θ0√
(σ2

1 + rσ2
2)/(rn2)

)]
fΘ(θ) dθ,

where Φ(·) is the cumulative distribution function of the standard normal

distribution and zγ is the lower 100γ percentile of the standard normal dis-

tribution.

The design can also be modified by considering equal and unequal vari-

ances. It can also be extended to assume that the variances are unknown

and follow some prior distributions.

The primary endpoint thus far, is assumed to be continuous and its like-

lihood function is a normal distribution. It is also of interest to modify the

design by considering other endpoints with different likelihood functions.

A Series of Decision-Theoretic Trials

The proposed design has considered a binary outcome where the data is as-

sumed to follow the binomial distribution while its parameter is assumed to

follow the beta distribution. It is of interest to modify the design by consider-

ing other endpoints with different likelihood functions and prior distributions,

for example, normal distribution (for example, the forced expiratory volume

in one second, FEV1 ), survival function (for example, the time to first ex-

acerbation), and Poisson regression (for example, the rate of exacerbation in

a predefined period).
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This design assumes that the population, primary endpoint and treatment

duration for both phase II and III trials are the same. This is usually not

the case in practice as phase II trials have shorter treatment period whilst

phase III trials aim to examine longer treatment effect. It may be more

realistic to consider different endpoints for the phase II and III trials. In

such scenario, the phase II primary endpoint and the phase III primary

endpoint are correlated and this can be incorporated into the design albeit

more challenging.

The design is illustrated with fully sequential sampling. The advantage

is that it is more efficient; the minimum number of patients needed for phase

II is fewer than what would be needed in a frequentist setting. In practice,

however, group sequential may be more preferred because it is not pragmatic

to monitor patients continuously and stop the trial frequently for a long

period if a few weeks or months are needed to observe a response. It would

be straightforward to implement group recruitment as described in Section

6.1 but it may lead to a decrease in the expected gain.

8.3 Discussion

In the proposed design, all the treatments are assumed to be equally effective

and have the same prior distribution. Consequently, they are interchangeable

and so the ordering of the treatments to be admitted into trials may be

random. However, as seen from the simulation results (see Section 7.3), the

ordering does affect the chance of any given treatment being recommended

for phase III trial evaluation.
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The first treatment is more likely to go on to the phase III trial, mainly

because if it is successful in the phase II setting, the remaining treatments

will not be tested. However, as the development plan progresses, the size

of the population gets smaller and there is a greater urgency to promote a

treatment to a phase III trial. Thus, less positive results are required to

justify further testing in a phase III trial.

The population in a trial is never truly homogeneous. If a treatment is

not statistical significantly different than a control treatment in the final con-

firmatory analysis, it may be statistically different for a subgroup of patients.

Patients in this subgroup are usually thought to be more homogeneous as

they have been clearly defined by a narrower clinical characteristics such as

sex, age and ethnicity.

Some of the newer treatments developed in the past few years are targeted

therapies; designed to target the affected receptors or pathways in order to

control, modify, suppress or kill the cause of disease. Such targeted therapies

although may be more effective and beneficial to the patients, combined with

clinical characteristics have further delineated patients into a much smaller

subgroup.

These issues may pose a dilemma on the design and conduct of clinical

trials because patients would need to fulfill much more stringent eligibility

criteria which consequently affects the size of the total population. In an ex-

pert workshop on subgroup analysis conducted by the European Medicines

Agency (EMEA, 2011) in November 2011, there is a call for closer and early

dialogue between industry and regulatory agency or health technology as-

sessment bodies in order to incorporate relevant subgroups analyses in the
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designs of clinical trials as this will help in guiding the assessment and inter-

pretation of treatments efficacies.

Some novel clinical trials designs have been proposed for the targeted

therapies, and of particular interest are the Bayesian adaptive designs. In

the recent years, Bayesian adaptive designs have generated much interest

and excitement in the research community especially when a couple of clinical

trials adopted this methodology to deliver targeted therapies to patients with

the same condition. A recently concluded and published clinical trial is the

BATTLE trial, a phase II trial that adaptively randomized patients with

refractory non-small cell lung cancer to one of the four targeted treatments

(Kim et al., 2011, Zhou et al., 2008).

Another trial that was launched in 2010 is the I-SPY 2 trial where patients

with locally advanced breast cancer are randomized to one of the 12 different

cancer drugs in a neoadjuvant setting. The design allows treatments that are

not promising to be dropped from the trial and those that have shown suffi-

cient efficacy are pass on to be tried in larger phase III trial (Barker et al.,

2009, Printz, 2010). The underlying scenario of this programme is very sim-

ilar to the motivation of this PhD project where a large funder is interested

to identify promising treatments from a pool of available treatments.

In the I-SPY 2 trial, patients are randomized to treatment regimens based

on their biomarker signatures which is analogous to stratifying patients in the

design stage. At the interim stage, Bayesian predictive probability method-

ology is used to recommend the drug to be dropped from the trial or not.

For the latter action, the biomarker signature(s) that correspond(s) to the

“graduated” drug will also graduate from the trial. As patients are already
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stratified according to their molecular characteristics, this is comparable to

performing “subgroup analysis”.

The advantage of the adaptive designs cited above is that a few treatments

can be tried concurrently. However, this may not be feasible if the population

is small and as such, alternative designs that are “customized to address

the clinical research question and study population” should be considered

(Institute of Medicine, 2001, p. 11). The proposed series of Bayesian decision-

theoretic phase II trials and one phase III trial aims to address this issue. In

addition, treatments targeting the same population are inevitably correlated,

regardless of whether they are highly or lowly correlated. Although it may

be computationally challenging, it is worthy to investigate further its effect

on the design. It is also of interest to incorporate subgroup analysis formally

in the proposed design based on a hybrid methodology.
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Appendix A

Derivation of the Unconditional

Joint Density of X1, . . . , Xk from

the Sarmanov’s Family

Let Xi ∼ Bin(ni, pi) and pi ∼ Beta(ai, bi), for i = 1, 2, . . . , k. Let fX|p(xi|pi)

denote the marginal likelihood function of Xi,

fX|p(xi|pi) =

(
ni
xi

)
pxii (1− pi)ni−xi .

Let fp(pi) denote the marginal prior density of pi,

fp(pi) =
1

B(ai, bi)
pai−1
i (1− pi)bi−1.

Let hX|p(X1 = x1, . . . , Xk = xk|p1, . . . , pk) denote the joint likelihood
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function of X1, . . . , Xk,

hX|p(X1 = x1, . . . , Xk = xk|p1, . . . , pk) =
k∏
i=1

fX|p(xi|pi).

Finally, let hp(p1, . . . , pk) denote the joint prior density of p1, . . . , pk,

hp(p1, . . . , pk) =
( k∏
i=1

fp(pi)
)(

1 +RΩk(p1, . . . , pk)
)
,

where

RΩk(p1, . . . , pk) =
k−1∑
i1=1

k∑
i2=i1+1

ωi1,i2φ(pi1)φ(pi2)

+
k−2∑
i1=1

k−1∑
i2=i1+1

k∑
i3=i2+1

ωi1,i2,i3φ(pi1)φ(pi2)φ(pi3)

+ · · ·+ ω1,2,...,k

k∏
i=1

φ(pi).

The mixing function is φ(pi) = pi−µi where µi = ai/(ai+ bi) is the expected

value of pi.

Let hX(x1, . . . , xk) denote the unconditional joint density of X1, . . . , Xk

which is obtained by integrating the product of hX|p(X1 = x1, . . . , Xk =
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xk|p1, . . . , pk) and hp(p1, . . . , pk) with respect to p1, . . . , pk,

hX(x1, . . . , xk)

=

∫
· · ·
∫
hX|p(X1 = x1, . . . , Xk = xk|p1, . . . , pk)hp(p1, . . . , pk) dp1 . . . dpk

=

∫
· · ·
∫ ( k∏

i=1

fX|p(xi|pi)fp(pi)
)(

1 +RΩk(p1, . . . , pk)
)
dp1 . . . dpk

=

∫
· · ·
∫ ( k∏

i=1

fX|p(xi|pi)fp(pi)
)
dp1 . . . dpk

+

∫
· · ·
∫ ( k∏

i=1

fX|p(xi|pi)fp(pi)
)
RΩk(p1, . . . , pk) dp1 . . . dpk (A.1)

Let fX(xi) denote the marginal density of Xi which is a beta-binomial

density, fX(xi) =
(
ni
xi

)
Beta(ai + xi, bi + ni − xi)/Beta(ai, bi). Then the first

term of (A.1) integrates to the product of all the marginal densities of Xi,

k∏
i=1

∫
· · ·
∫ (

fX|p(xi|pi)fp(pi)
)
dp1 . . . dpk =

k∏
i=1

fX(xi). (A.2)

For the integration of the second term of (A.1), first consider a general
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integrand that will appear iteratively,

∫ 1

0

φ(pi)fX|p(xi|pi)fp(pi) dpi

=

∫ 1

0

(pi − µi)
(
ni
xi

)
1

B(ai, bi)
pai+xi−1
i (1− pi)bi+ni−xi−1 dpi

=

(
ni
xi

)
1

B(ai, bi)

∫ 1

0

pai+xii (1− pi)bi+ni−xi−1 dpi − µifX(xi)

=

(
ni
xi

)
B(ai + xi + 1, bi + ni − xi)

B(ai, bi)
− µifX(xi)

=
( ai + xi
ai + bi + ni

− µi
)
fX(xi)

=
((ai + xi)(ai + bi)− ai(ai + bi + ni)

(ai + bi)(ai + bi + ni)

)
fX(xi)

=
( xi − µini
ai + bi + ni

)
fX(xi)

For ease of notation, let ψ(xi) = (xi − µini)/(ai + bi + ni) then

∫ 1

0

φ(pi)fX|p(xi|pi)fp(pi) dpi = ψ(xi)fX(xi). (A.3)

The integration of the second term of (A.1) is done iteratively, first inte-
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grate it with respect to p1,

∫ 1

0

( k∏
i=1

fX|p(xi|pi)fp(pi)
)
RΩk(p1, . . . , pk) dp1

=
( k∏
i=2

fX|p(xi|pi)fp(pi)
){( k∑

i=2

ω1iφ(pi) +
k−1∑
i1=2

k∑
i2=3

ω1,i1,i2φ(pi1)φ(pi2)

+ · · ·+ ω1,...,k

k∏
i=2

φ(pi)

)∫ 1

0

φ(p1)fX|p(x1|p1)fp(p1) dp1

+

( k−1∑
i1=2

k∑
i2=i1+1

ωi1,i2φ(pi1)φ(pi2) +
k−2∑
i1=2

k−1∑
i2=i1+1

k∑
i3=i2+1

ωi1,i2,i3φ(pi1)φ(pi2)φ(pi3)

+ · · ·+ ω2,...,k

k∏
i=2

φ(pi)

)∫ 1

0

fX|p(x1|p1)fp(p1) dp1

}

= fX(x1)
( k∏
i=2

fX|p(xi|pi)fp(pi)
){

ψ(x1)

( k∑
i=2

ω1iφ(pi)

+
k−1∑
i1=2

k∑
i2=i1+1

ω1,i1,i2φ(pi1)φ(pi2) + · · ·+ ω1,...,k

k∏
i=2

φ(pi)

)

+

( k−1∑
i1=2

k∑
i2=i1+1

ωi1,i2φ(pi1)φ(pi2) +
k−2∑
i1=2

k−1∑
i2=i1+1

k∑
i3=i2+1

ωi1,i2,i3φ(pi1)φ(pi2)φ(pi3)

+ · · ·+ ω2,...,k

k∏
i=2

φ(pi)

)}
. (A.4)
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Subsequently, integrate (A.4) with respect to p2,

fX(x1)
( k∏
i=3

fX|p(xi|pi)fp(pi)
)∫ 1

0

{
ψ(x1)

(
ω12φ(p2) +

k∑
i=3

ω1iφ(pi)

+ φ(p2)
k∑
i=3

ω12iφ(pi) +
k−1∑
i1=3

k∑
i2=i1+1

ω1,i1,i2φ(pi1)φ(pi2)

+ · · ·+ φ(p2)ω1,...,k

k∏
i=3

φ(pi)

)

+

(
φ(p2)

k∑
i=3

ω2iφ(pi) +
k−1∑
i1=3

k∑
i2=i1+1

ωi1,i2φ(pi1)φ(pi2)

+ φ(p2)
k−1∑
i1=3

k∑
i2=i1+1

ω2,i1,i2φ(pi1)φ(pi2)

+
k−2∑
i1=3

k−1∑
i2=i1+1

k∑
i3=i2+1

ωi1,i2,i3φ(pi1)φ(pi2)φ(pi3)

+ · · ·+ φ(p2)ω2,...,k

k∏
i=3

φ(pi)

)}
fX|p(x2|p2)fp(p2) dp2

= fX(x1)fX(x2)
( k∏
i=3

fX|p(xi|pi)fp(pi)
){

ω12ψ(x1)ψ(x2) + ψ(x1)
k∑
i=3

ω1iφ(pi)

+ ψ(x1)ψ(x2)
k∑
i=3

ω12iφ(pi) + ψ(x1)
k−1∑
i1=3

k∑
i2=i1+1

ω1,i1,i2φ(pi1)φ(pi2)

+ · · ·+ ψ(x1)ψ(x2)ω1,...,k

k∏
i=3

φ(pi) + ψ(x2)
k∑
i=3

ω2iφ(pi)

+
k−1∑
i1=3

k∑
i2=i1+1

ωi1,i2φ(pi1)φ(pi2) + ψ(x2)
k−1∑
i1=3

k∑
i2=i1+1

ω2,i1,i2φ(pi1)φ(pi2)

+
k−2∑
i1=3

k−1∑
i2=i1+1

k∑
i3=i2+1

ωi1,i2,i3φ(pi1)φ(pi2)φ(pi3) + · · ·+ ψ(x2)ω2,...,k

k∏
i=3

φ(pi)

}
.
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Rearranging the variables the expression becomes,

fX(x1)fX(x2)
( k∏
i=3

fX|p(xi|pi)fp(pi)
){

ω12ψ(x1)ψ(x2) + ψ(x1)
k∑
i=3

ω1iφ(pi)

+ ψ(x2)
k∑
i=3

ω2iφ(pi) +
k−1∑
i1=3

k∑
i2=i1+1

ωi1,i2φ(pi1)φ(pi2) + ψ(x1)ψ(x2)
k∑
i=3

ω12iφ(pi)

+ ψ(x1)
k−1∑
i1=3

k∑
i2=i1+1

ω1,i1,i2φ(pi1)φ(pi2) + ψ(x2)
k−1∑
i1=3

k∑
i2=i1+1

ω2,i1,i2φ(pi1)φ(pi2)

+
k−2∑
i1=3

k−1∑
i2=i1+1

k∑
i3=i2+1

ωi1,i2,i3φ(pi1)φ(pi2)φ(pi3)

+ · · ·+ ψ(x2)ω2,...,k

k∏
i=3

φ(pi) + ψ(x1)ψ(x2)ω1,...,k

k∏
i=3

φ(pi)

}
(A.5)

Following on, integrate (A.5) with respect to p3,

fX(x1)fX(x2)fX(x3)
( k∏
i=4

fX|p(xi|pi)fp(pi)
)

×
{
ω12ψ(x1)ψ(x2) + ω13ψ(x1)ψ(x3) + ψ(x1)

k∑
i=4

ω1iφ(pi) + ω23ψ(x2)ψ(x3)

+ ψ(x2)
k∑
i=4

ω2iφ(pi) + ψ(x3)
k∑
i=4

ω3iφ(pi) +
k−1∑
i1=4

k∑
i2=i1+1

ωi1,i2φ(pi1)φ(pi2)

+ ω123ψ(x1)ψ(x2)ψ(x3) + ψ(x1)ψ(x2)
k∑
i=4

ω12iφ(pi)

+ ψ(x1)ψ(x3)
k∑
i=4

ω13iφ(pi) + ψ(x2)ψ(x3)
k∑
i=4

ω23iφ(pi)

+
k−2∑
i1=4

k−1∑
i2=i1+1

k∑
i3=i2+1

ωi1,i2,i3φ(pi1)φ(pi2)φ(pi3)

+ · · ·+ ψ(x1)ψ(x2)ψ(x3)ω1,...,k

k∏
i=4

φ(pi)

}
(A.6)
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Following on the same manner of integration, the second term of (A.1) is

integrated to

∫
· · ·
∫ ( k∏

i=1

fX|p(xi|pi)fp(pi)
)
RΩk(p1, . . . , pk) dp1 . . . dpk

=
( k∏
i=1

fX(xi)
){ k−1∑

i1=1

k∑
i2=i1+1

ωi1,i2ψ(xi1)ψ(xi2)

+
k−2∑
i1=1

k−1∑
i2=i1+1

k∑
i3=i2+1

ωi1,i2,i3ψ(xi1)ψ(xi2)ψ(xi3)

+ · · ·+ ω1,...,k

k∏
i=1

ψ(xi)

}
(A.7)

For ease of notation, let DΩk(x1, . . . , xk) represents the second term of

(A.7). Finally, with (A.2) and (A.7), the joint unconditional density of

X1, . . . , Xk, is

hX(x1, . . . , xk)

=

∫
· · ·
∫
hX|p(X1 = x1, . . . , Xk = xk|p1, . . . , pk)hp(p1, . . . , pk) dp1 . . . dpk

=
k∏
i=1

fX(xi) +
( k∏
i=1

fX(xi)
)
DΩk(x1, . . . , xk)

=
( k∏
i=1

fX(xi)
)(

1 +DΩk(x1, . . . , xk)
)

(A.8)
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Appendix B

Derivation of the Expected

Number of Hybrid Trials that

Reject H0

The expected number of trials that reject H0 is,

E(K̃) =
N

n

(
1− Φ

(
z1−α/2 −

√
n/σ2(µ− θ0)√

1 + nτ 2/σ2

))
.

Let f(n) =
z1−α/2−

√
n/σ2(µ−θ0)√

1+nτ2/σ2
, and since the derivative of the cumulative dis-

tribution function (cdf) is the density function, Φ′(x) = φ(x), the derivative

of E(K̃) is,

d

dn
E(K̃) = −N

n2

(
1− Φ

(
f(n)

))
− N

n
f ′(n)φ

(
f(n)

)
. (B.1)
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The cdf in the first term of (B.1) is bounded, Φ(f(n)) ∈ (0, 1). Therefore,

N

n2

(
1− Φ(f(n))

)
> 0, for all n > 0. (B.2)

The derivative of f ′(n) in the second term of (B.1) is,

f ′(n) =

−
√

1 + nτ 2/σ2(µ− θ0)

2
√
nσ2

−
τ 2(z1−α/2 −

√
n/σ2(µ− θ0))

2σ2
√

1 + nτ 2/σ2

1 + nτ 2/σ2

=

−(1 + nτ 2/σ2)(µ− θ0)

2
√
nσ2

−
τ 2(z1−α/2 −

√
n/σ2(µ− θ0))

2σ2

(1 + nτ 2/σ2)3/2

= −
z1−α/2(τ 2/σ2) + (µ− θ0)/

√
nσ2

2(1 + nτ 2/σ2)3/2
.
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Appendix C

Derivation of the Expected

Utility of Action P of the Third

Trial for the Design of a Series

of Related Treatments

The log odds ratio is defined as θ3 = log{p3(1 − pC)/(pC(1 − p3))}. Let

g(s3, n3, N3, K3) be the integral given in (7.8), then

g(s3, n3, N3, K3) =

∫∫∫ (
1− Φ

(
z1−α/2 − θ3

√
V3

))
× hp|S(p1, p2, p3|s1, s2, s3, n1, n2, n3) dp1 dp2 dp3. (C.1)
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From equation (3.15), the integral is now

g(s3, n3, N3, K3)

=
1

1 +DΩ3(s1, s2, s3)

∫∫∫ (
1− Φ

(
z1−α/2 − θ3

√
V3

))( 3∏
i=1

fp|S(pi|si, ni)
)

×
(

1 + ω12φ(p1)φ(p2) + ω13φ(p1)φ(p3) + ω23φ(p2)φ(p3)

+ ω123φ(p1)φ(p2)φ(p3)
)
dp1 dp2 dp3. (C.2)

First consider a general integrand that will appear iteratively,

∫ 1

0

φ(pi)fp|S(pi|si, ni) dpi

=
1

B(ai + si, bi + ni − si)

∫ 1

0

(pi − µi)pai+si−1
i (1− pi)bi+ni−si−1 dpi

=
B(ai + si + 1, bi + ni − si)
B(ai + si, bi + ni − si)

− µi

=
ai + si

ai + bi + ni
− µi

=
si − µini
ai + bi + ni

. (C.3)

First, integrate the inner expression in (C.2) with respect to p1 over all

its possible values,

∫ 1

0

fp|S(p1|s1, n1)
(

1 + ω12φ(p1)φ(p2) + ω13φ(p1)φ(p3)

+ ω23φ(p2)φ(p3) + ω123φ(p1)φ(p2)φ(p3)
)
dp1

= 1 + ω23φ(p2)φ(p3) +
(
ω12φ(p2) + ω13φ(p3) + ω123φ(p2)φ(p3)

)
ψ(s1),

(C.4)
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where as derived earlier in equation (C.3) ψ(s1) = (s1−µ1n1)/(a1 + b1 +n1).

Substitute (C.4) back into (C.2) and integrate it with respect to p2 over

all its possible values,

∫ 1

0

fp|S(p2|s2, n2)

(
1 + ω23φ(p2)φ(p3)

+
(
ω12φ(p2) + ω13φ(p3) + ω123φ(p2)φ(p3)

)
ψ(s1)

)
dp2

= 1 + ω13φ(p3)ψ(s1) +
(
ω23φ(p3) + ω12ψ(s1) + ω123φ(p3)ψ(s1)

)
ψ(s2).

(C.5)

Finally, substitute (C.5) back into (C.2) and integrate the whole expres-

sion with respect to p3 over all its possible values,

g(s3, n3, N3, K3)

=
1

1 +DΩ3(s1, s2, s3)

∫ 1

0

(
1− Φ

(
z1−α/2 − θ3

√
V3

))
fp|S(p3|s3, n3)

×
(

1 + ω13φ(p3)ψ(s1) +
(
ω23φ(p3) + ω12ψ(s1) + ω123φ(p3)ψ(s1)

)
ψ(s2)

)
dp3

=
1

1 +DΩ3(s1, s2, s3)

[(
1 + ω12ψ(s1)ψ(s2)

)
×
∫ 1

0

(
1− Φ

(
z1−α/2 − θ3

√
V3

))
fp|S(p3|s3, n3) dp3

+
(
ω13ψ(s1) + ω23ψ(s2) + ω123ψ(s1)ψ(s2)

)
×
∫ 1

0

φ(p3)

(
1− Φ

(
z1−α/2 − θ3

√
V3

))
fp|S(p3|s3, n3) dp3

]
. (C.6)

Note that the expression
∫ 1

0

(
1−Φ

(
z1−α/2− θ3

√
V3

))
fp|S(p3|s3, n3) dp3 is

the assurance (as defined in (3.23)) given observed responses, s3, out of n3
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patients. Let the assurance be denoted by A(s3, n3) thus,

g(s3, n3, N3, K3)

=
1

1 +DΩ3(s1, s2, s3)

[(
1 + ω12ψ(s1)ψ(s2)

)
A(s3, n3)

+
(
ω13ψ(s1) + ω23ψ(s2) + ω123ψ(s1)ψ(s2)

)
×
∫ 1

0

φ(p3)

(
1− Φ

(
z1−α/2 − θ3

√
V3

))
fp|S(p3|s3, n3) dp3

]
.
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Appendix D

Derivation of the Expected

Utility of Action R of the

Third Trial for the Design of a

Series of Related Treatments

The marginal density of X3 given S1 = s1, S2 = s2 and S3 = s3 is defined as

gX|S(x3,m3,i+1|s1, s2, s3, n1, n2, n3)

=

∫∫∫
fS|p(x3|p3)hp|S(p1, p2, p3|s1, s2, s3, n1, n2, n3) dp1 dp2 dp3. (D.1)
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From equation (3.15), the integral in (D.1) becomes

gX|S(x3,m3,i+1|s1, s2, s3, n1, n2, n3)

=
1

1 +DΩ3(s1, s2, s3)

∫∫∫
fS|p(x3|p3)

( 3∏
i=1

fp|S(pi|si, ni)
)

×
(

1 + ω12φ(p1)φ(p2) + ω13φ(p1)φ(p3) + ω23φ(p2)φ(p3)

+ ω123φ(p1)φ(p2)φ(p3)
)
dp1 dp2 dp3. (D.2)

First, integrate the inner expression in (D.2) with respect to p1,

(
1 + ω23φ(p2)φ(p3)

)∫ 1

0

fp|S(p1|s1, n1) dp1

+
(
ω12φ(p2) + ω13φ(p3) + ω123φ(p2)φ(p3)

)∫ 1

0

φ(p1)fp|S(p1|s1, n1) dp1

= 1 + ω23φ(p2)φ(p3) +
(
ω12φ(p2) + ω13φ(p3) + ω123φ(p2)φ(p3)

)
ψ(s1),

(D.3)

where from equation (C.3), ψ(s1) = (s1 − µ1n1)/(a1 + b1 + n1).
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Substitute (D.3) back into (D.2) and integrate it with respect to p2,

∫ 1

0

(
1 + ω23φ(p2)φ(p3) +

(
ω12φ(p2) + ω13φ(p3) + ω123φ(p2)φ(p3)

)
ψ(s1)

)
× fp|S(p2|s2, n2) dp2

=
(

1 + ω13ψ(s1)φ(p3)
)∫ 1

0

fp|S(p2|s2, n2) dp2

+
(
ω23φ(p3) + ω12ψ(s1) + ω123ψ(s1)φ(p3)

)∫ 1

0

φ(p2)fp|S(p2|s2, n2) dp2

= 1 + ω13ψ(s1)φ(p3) +
(
ω23φ(p3) + ω12ψ(s1) + ω123ψ(s1)φ(p3)

)
ψ(s2).

(D.4)

Then, substitute (D.4) back into (D.2) and integrate it with respect to
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p3,

gX|S(x3,m3,i+1|s1, s2, s3, n1, n2, n3)

=

∫ 1

0

[
1 + ω13ψ(s1)φ(p3) +

(
ω23φ(p3) + ω12ψ(s1) + ω123ψ(s1)φ(p3)

)
ψ(s2)

]
× fS|p(x3|p3)fp|S(p3|s3, n3) dp3

=

(
m3,i+1

x3

)
1

B(a3 + s3, b3 + n3 − s3)

×
[(

1 + ω12ψ(s1)ψ(s2)
)∫ 1

0

pa3+s3+x3−1
3 (1− p3)b3+n3+m3,i+1−(s3+x3)−1 dp3

+
(
ω13ψ(s1) + ω23ψ(s2) + ω123ψ(s1)ψ(s2)

)
×
∫ 1

0

φ(p3)pa3+s3+x3−1
3 (1− p3)b3+n3+m3,i+1−(s3+x3)−1 dp3

]
=

(
m3,i+1

x3

)
1

B(a3 + s3, b3 + n3 − s3)

×
[(

1 + ω12ψ(s1)ψ(s2)
)
B
(
a3 + s3 + x3, b3 + n3 +m3,i+1 − (s3 + x3)

)
+
(
ω13ψ(s1) + ω23ψ(s2) + ω123ψ(s1)ψ(s2)

)(s3 + x3 − µ3(n3 +m3,i+1)

a3 + b3 + n3 +m3,i+1

)
×B

(
a3 + s3 + x3, b3 + n3 +m3,i+1 − (s3 + x3)

)]
.

=

[
1 + ω12ψ(s1)ψ(s2) +

(
ω13ψ(s1) + ω23ψ(s2) + ω123ψ(s1)ψ(s2)

)
×
(s3 + x3 − µ3(n3 +m3,i+1)

a3 + b3 + n3 +m3,i+1

)]
fS(x3|a3 + s3, b3 + n3 − s3), (D.5)

where B(α, β) = Γ(α + β)/(Γ(α)Γ(β)) is the beta function and fS(x3|a3 +

s3, b3 +n3− s3) =
(
m3,i+1

x3

)
B(a3 + s3 +x3, b3 +n3 +m3,i+1− (s3 +x3))/B(a3 +

s3, b3 +n3−s3) is the beta-binomial distribution of X3 with index m3,i+1 and

parameters a3 + s3 and b3 + n3 − s3.

Substituting (D.5) back into (D.2), the “posterior” marginal density of
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X3 given S1 = s1, S2 = s2 and S3 = s3 is

gX|S(x3,m3,i+1|s1, s2, s3, n1, n2, n3)

=
1

1 +DΩ3(s1, s2, s3)

[
1 + ω12ψ(s1)ψ(s2)

+
(
ω13ψ(s1) + ω23ψ(s2) + ω123ψ(s1)ψ(s2)

)(s3 + x3 − µ3(n3 +m3,i+1)

a3 + b3 + n3 +m3,i+1

)]
× fS(x3|a3 + s3, b3 + n3 − s3).
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Appendix E

Derivation of the Expected

Utility of Action P of the

Second Trial for the Design of a

Series of Related Treatments

The log odds ratio is defined as θ2 = log{p2(1− pC)/(pC(1− p2))}. Let

g(s2, n2, N2, K2) =

∫∫∫ (
1− Φ

(
z1−α/2 − θ2

√
V2

))
× hp|S(p1, p2, p3|s1, s2, s3, n1, n2, n3) dp1 dp2 dp3, (E.1)
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be the integral given in (7.13). As S3 = 0 and n3 = 0, then DΩ3(s1, s2, s3) =

ω12ψ(s1)ψ(s2). From (3.15), the above equation (E.1) is simplified to

g(s2, n2, N2, K2)

=
1

1 + ω12ψ(s1)ψ(s2)

∫∫∫ (
1− Φ

(
z1−α/2 − θ2

√
V2

))
× fp|S(p1|s1, n1)fp|S(p2|s2, n2)fp(p3)

×
(

1 + ω12φ(p1)φ(p2) + ω13φ(p1)φ(p3) + ω23φ(p2)φ(p3)

+ ω123φ(p1)φ(p2)φ(p3)
)
dp1 dp2 dp3. (E.2)

First, integrate the inner expression (E.2) with respect to p3,

(
1 + ω12φ(p1)φ(p2)

)∫ 1

0

fp(p3) dp3+(
ω13φ(p1) + ω23φ(p2) + ω123φ(p1)φ(p2)

)∫ 1

0

φ(p3)fp(p3) dp3, (E.3)

where the mixing function is defined as φ(p3) = p3 − µ3. Therefore, the

second integrand of (E.3) integrates to 0 whilst the first integrand integrates

to 1 leaving the expression in (E.3) simply as
(
1+ω12φ(p1)φ(p2)

)
. Substitute

this expression back into (E.2) and integrates it with respect to p1,

∫ 1

0

(
1 + ω12φ(p1)φ(p2)

)
fp|S(p1|s1, n1) dp1

= 1 + ω12φ(p2)

∫ 1

0

φ(p1)fp|S(p1|s1, n1) dp1

= 1 + ω12φ(p2)ψ(s1) (E.4)

where ψ(s1) = (s1 − µ1n1)/(a1 + b1 + n1) as given in equation (C.3).
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Finally, substitute (E.4) back into (E.2) and integrate it with respect to

p2,

g(s2, n2, N2, K2)

=
1

1 + ω12ψ(s1)ψ(s2)

∫ 1

0

(
1− Φ

(
z1−α/2 − θ2

√
V2

))
fp|S(p2|s2, n2)

×
(
1 + ω12ψ(s1)φ(p2)

)
dp2

=
1

1 + ω12ψ(s1)ψ(s2)

[
A(s2, n2)

+ ω12ψ(s1)

∫ 1

0

φ(p2)

(
1− Φ

(
z1−α/2 − θ2

√
V2

))
fp|S(p2|s2, n2) dp2,

]

where A(s2, n2) =
∫ 1

0

(
1−Φ

(
z1−α/2− θ2

√
V2

))
fp|S(p2|s2, n2) dp2 is the assur-

ance (as defined in (3.23)) given observed responses, s2, out of n2 patients.
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Derivation of the Expected

Utility of Action R of the

Second Trial for the Design of a

Series of Related Treatments

The marginal density of X2 given S1 = s1, S2 = s2 and S3 = 0 is defined as

gX|S(x2,m2,i+1|s1, s2, 0, n1, n2, 0)

=

∫∫∫
fS|p(x2|p2)hp|S(p1, p2, p3|s1, s2, 0, n1, n2, 0) dp1 dp2 dp3. (F.1)

Given that S3 = 0 and n3 = 0 then DΩ3(s1, s2, s3) = ω12ψ(s1)ψ(s2). From
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equation (3.15), the integral in (F.1) becomes

gX|S(x2,m2,i+1|s1, s2, 0, n1, n2, 0)

=
1

1 + ω12ψ(s1)ψ(s2)

∫∫∫
fS|p(x2|p2)fp|S(p1|s1, n1)fp|S(p2|s2, n2)fp(p3)

×
(

1 + ω12φ(p1)φ(p2) + ω13φ(p1)φ(p3) + ω23φ(p2)φ(p3)

+ ω123φ(p1)φ(p2)φ(p3)
)
dp1 dp2 dp3. (F.2)

First, integrate (F.2) with respect to p3,

∫ 1

0

(
1 + ω12φ(p1)φ(p2) + ω13φ(p1)φ(p3) + ω23φ(p2)φ(p3)

+ ω123φ(p1)φ(p2)φ(p3)
)
fp(p3) dp3

=
(
1 + ω12φ(p1)φ(p2)

) ∫ 1

0

fp(p3) dp3

+
(
ω13φ(p1) + ω23φ(p2) + ω123φ(p1)φ(p2)

) ∫ 1

0

φ(p3)fp(p3) dp3. (F.3)

Note that the mixing function is defined as φ(p3) = p3−µ3 and so the second

integrand of (F.3) integrates to 0 whilst the first integrand integrates to 1,

leaving (F.3) simply as 1 + ω12φ(p1)φ(p2). Substitute this expression into

(F.2) and integrate it with respect to p1,

∫ 1

0

(
1 + ω12φ(p1)φ(p2)

)
fp|S(p1|s1, n1)

= 1 + ω12ψ(s1)φ(p2). (F.4)

Finally, substitute (F.4) back into (F.2) and integrate it with respect to
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p2,

gX|S(x2,m2,i+1|s1, s2, 0, n1, n2, 0)

=
1(

1 + ω12ψ(s1)ψ(s2)
)
B(a2 + s2, b2 + n2 − s2)

(
m2,i+1

x2

)
×
∫ 1

0

(
1 + ω12ψ(s1)φ(p2)

)
pa2+s2+x2−1

2 (1− p2)b2+n2+m2,i+1−(s2+x2)−1 dp2

=
1

1 + ω12ψ(s1)ψ(s2)

(
1 + ω12ψ(s1)

)(s2 + x2 − µ2(n2 +m2,i+1)

a2 + b2 + n2 +m2,i+1

)
× fS(x2|a2 + s2, b2 + n2 − s2). (F.5)
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Appendix G

Simulation for a Series of

Related Treatments

The algorithm of the simulation study is

1. Generate p1 from Beta(a1, b1).

2. Generate s1 from Bin(4, p1).

3. Generate p2 from the probability density function, f(p2|p1).

4. Generate s2 from Bin(5, p2).

As the probability density function f(p2|p1) is not of a standard para-

metric form, the sampling of p2 from the function f(p2|p1) is based on rejec-

tion sampling (Ripley, 1987). The joint distribution of p1, p2, p3 is denoted

by h(p1, p2, p3) =
∏3

i=1 fp(pi)(1 + RΩ3(p1, p2, p3)) where fp(pi) = pai−1
i (1 −
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pi)
bi−1/B(ai, bi) is the marginal probability density function,

RΩ3(p1, p2, p3) = ω1,2φ(p1)φ(p2) + ω1,3φ(p1)φ(p3)

+ ω2,3φ(p2)φ(p3) + ω1,2,3φ(p1)φ(p2)φ(p3),

and φ(pi) = pi − µi and µi = ai/(ai + bi) for i = 1, 2, 3.

Let f(p2|p1) denote the conditional distribution of p2 given p1 and from

Bayes’ theorem it is

f(p2|p1) =

∫ 1

0
h(p1, p2, p3) dp3

fp(p1)
. (G.1)

Consider only the numerator of equation (G.1),

∫ 1

0

h(p1, p2, p3) dp3 = fp(p1)fp(p2)

∫ 1

0

fp(p3)
(

1 + ω1,2φ(p1)φ(p2)

+ ω1,3φ(p1)φ(p3) + ω2,3φ(p2)φ(p3)

+ ω1,2,3φ(p1)φ(p2)φ(p3)
)
dp3

= fp(p1)fp(p2)

[(
1 + ω1,2φ(p1)φ(p2)

)
+
(
ω1,3φ(p1) + ω2,3φ(p2) + ω1,2,3φ(p1)φ(p2)

)
×
∫ 1

0

φ(p3)fp(p3) dp3

]
= fp(p1)fp(p2)

(
1 + ω1,2φ(p1)φ(p2)

)
. (G.2)

Substitute (G.2) back into (G.1),

f(p2|p1) =
(

1 + ω1,2φ(p1)φ(p2)
)
fp(p2).
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Let g(p2) =
(

1 + ω1,2(p1 − µ1)(p2 − µ2)
)
pa2−1

2 (1 − p2)b2−1. As shown in

equation (7.25), for a1 = a2 and b1 = b2, ω is bounded by (a+ b)2/ab. Thus,

g(p2) is bounded by

c =
(

1 +
(a+ b)2

ab

)(a− 1)a−1(b− 1)b−1

(a+ b− 2)a+b−2
.

Therefore, the algorithm for the rejection sampling is:

1. Generate Y from U(0, 1).

2. Generate U from U(0, 1) until U ≤ g(p2)/c.

3. Return p2 = Y .

The program in R1 for the simulation is given below.

# Define the parameters

a = 69

b = 6

user.seed = 20120607

n.sim = 100000

set.seed(user.seed)

#-----------------------------------------------------------

# First phase II trial

#-----------------------------------------------------------

p.sim <- rbeta(n.sim,a,b)

# Generate a random sequence of "0" and "1" out of n=4

# observations given p.sim

s.sim <- rbinom(n=4*n.sim,size=1,rep(p.sim,rep(4,length(p.sim))))

1http://www.r-project.org/

211



Simulation

# The first column is the list of randomly generated p.sim

# and the next 4 columns are the randomly generated observations

m.sim <- cbind(p.sim,matrix(s.sim,byrow=TRUE,ncol=4))

# If the sum of successes is NOT EQUAL to 4 then

# the optimal action is Action T

samp.size <- function(obs.sim){

if(sum(obs.sim[2:5])==4){

n.II = 4

p.III = 1

}

else{

n.II = which.min(obs.sim[2:5])

p.III = 0

}

c(n.II,p.III)

}

sum.sim <- apply(m.sim,MARGIN=1, samp.size)

#-----------------------------------------------------------

# Second phase II trial

#-----------------------------------------------------------

#-----------------------------------------------------------

# 1. For every p in p.sim

# 2. Generate a variate Y from Unif(0,1)

# 3. Generate a variate U from Unif(0,1)

# 4. (a) If U <= f.p2(Y)/c then p2 = Y

# 4. (b) Else, go to Step 1

# Calculate the expected value

mu = a/(a+b)

# Negative correlation

# (change it to omega.12=10 for positive correlation)

omega.12 = -1

# Compute the constant

c = (1+((a+b)^2)/(a*b))*((a-1)^(a-1))*((b-1)^(b-1))/(a+b-2)^(a+b-2)

# In order to generate values from

# f(p2|p1) = (1 + omega.12*phi(p1)*phi(p2))*f(p2)
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# where p1 ~ beta(a1,b1) and p2 ~ beta(a2,b2),

# and phi(p.i)= p.i - mu.i and mu.i = a.i/(a.i+b.i), for i=1,2,

# let f(x) = (1 + omega.12*phi(p1)*phi(p2))*p2^(a2-1)*(1-p2)^(b2-1)

phi <- function(x){

x - mu

}

rand.p2condp1 <- function(X){

p = X[1]

d=1

while(d>0){

Y = runif(1,0,1)

U = runif(1,0,1)

# Compute f(Y) where Y is the random variate from Unif(0,1)

# and f(x) is a function given above

f.p2 = (1 + omega.12*phi(p)*phi(Y))*(Y^(a-1))*((1-Y)^(b-1))

# If the random variate U is within the density of

# f(p2|p1) then accept

if(U <= f.p2/c){

p2.rand = Y

d = -1 #stop the while loop

}

else d = 1

} #close "while" loop

return(p2.rand)

}

# Generate a variate p.2 from f(p2|p1)

p2givenp1 = apply(m.sim,MARGIN=1,rand.p2condp1)

# Combine the whole matrix:

# 1) the randomly generated p1 from beta(a,b)

# 2) the randomly generated observations from bin(4,p1)

# 3) the randomly generated p2 from f(p2|p1)

combi.p1p2 = cbind(m.sim,p2givenp1)
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# Generate a random sequence of "0" and "1" out of n=5

# observations given p2

s2.sim = rbinom(n=5*n.sim,size=1,rep(combi.p1p2[,6],

rep(5,length(combi.p1p2[,6]))))

fin.mat = cbind(combi.p1p2,matrix(s2.sim,byrow=TRUE,ncol=5))

# If the sum of successes is NOT EQUAL to 5 then

# the optimal action is Action T

samp.size.02 <- function(obs.sim){

if(sum(obs.sim[7:11])==5){

n.II = 5

p.III = 1

}

else{

n.II = which.min(obs.sim[7:11])

p.III = 0

}

c(n.II,p.III)

}

sum.sim02 <- apply(fin.mat,MARGIN=1, samp.size.02)

#-----------------------------------------------------------

# Print the results

#-----------------------------------------------------------

# Probability of taking Action P in the first phase II trial

prob.III <- sum(sum.sim[2,])/dim(sum.sim)[2]

# Average sample size for the first phase II trial

mean.n <- mean(sum.sim[1,])

# Probability of taking Action P in the second phase II trial

prob.III.02 <- sum(sum.sim02[2,])/dim(sum.sim02)[2]

# Average sample size for the second phase II trial

mean.n02 <- mean(sum.sim02[1,])
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