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1 Introduction

According to Blundell and Powell (2003), the development of strategies to identify

and estimate certain parameters or even entire functions of regression models under

endogeneity has arguably been one of the main contributions of microeconomet-

rics to the statistical literature. The term endogeneity, in this context, refers to a

correlation between observable regressor(s) and model unobservable(s), which can

arise for multiple reasons such as, among others, omitted variables, measurement

error, unobserved heterogeneity, or simultaneous causality. Whereas linear identi-

fication and estimation techniques to address endogeneity date back as far as 1928

(Stock and Trebbi, 2003), advances in the field of nonlinear models are much more

recent: nonlinear parametric models under endogeneity only came under investiga-

tion during the 1970s and 1980s (e.g. Ameniya, 1974; Hansen, 1982), and it was

not until the mid 1990s that models of (partially) unknown functional form were

considered.1

Literature focusing on endogeneity in the latter typically uses two different iden-

tification ideas that, despite the common assumption of an available instrumental

variable (vector), can be distinguished by the way identification is achieved: non-

parametric instrumental variable methods rely on the existence of a suitable moment

condition, which is based on the instrument(s) and in turn gives rise to an estimator

(e.g. Lewbel, 1998; Ai and Chen, 2003; Darolles, Fan, Florens, and Renault, 2011).

Control function methods on the other hand require the existence of a so called

control function, that is a function of the model observables and the instrument

(vector) satisfying a conditional (mean) independence assumption. Replacing the

control function by an estimated correspondent and incorporating this estimate into

1The general appeal of nonlinear models with (partially) unknown functional form for economics
has been aptly discussed in the literature (e.g. Härdle, 1992): motives range from the ability to
capture empirical phenomena such as individual heterogeneity effects to the provision of a direct
link to economic theory, which itself often leaves functional relationships between different variables
unspecified.
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a suitable statistic to control for the endogeneity yields a consistent estimator of the

function or parameter of interest. Examples of this literature include e.g. Newey,

Powell, and Vella (1999), Blundell and Powell (2003), Imbens and Newey (2009) for

an extension to quantiles, and Blundell and Powell (2004) for an extension to binary

response models. Since both approaches are complements rather than substitutes

as the identification conditions do generally not imply each other, this thesis focuses

on the use of control functions as means to identify different semi- and nonpara-

metric regression models. In particular, the thesis contributes to the identification

literature of nonlinear models under endogeneity by examining two cases where the

correlation between regressor(s) and the model unobservable arises due to measure-

ment error (chapter two) and simultaneous causality between reservation wage and

elapsed unemployment duration (chapter three).

Specifically, chapter two studies nonclassical measurement error in the continuous

dependent variable of a semiparametric, non-separable transformation model. The

latter is a popular choice in practice nesting various nonlinear duration and censored

regression models. The main complication arises because the (additive) measure-

ment error is allowed to be correlated with a (continuous) component of the regres-

sors as well as with the true, unobserved dependent variable itself. This problem

has not yet been studied in the literature, but it is argued that it is relevant for

various empirical setups with mismeasured, continuous survey data like earnings

or durations. A framework to identify and consistently estimate (up to scale) the

parameter vector of the transformation model is developed. The estimator links a

two-step control function approach of Imbens and Newey (2009) with a rank esti-

mator similar to Khan (2001) and is shown to have desirable asymptotic properties.

Moreover, it is proven that ‘m out of n’ bootstrap can be used to obtain a consistent

approximation of the asymptotic variance. The estimator’s finite sample perfor-

mance is studied in a Monte Carlo Simulation. To illustrate the empirical usefulness

of the procedure, an earnings equation model is estimated using annual data from

the Health and Retirement Study (HRS) and its results are compared to the ones of

other estimators. Some evidence for a bias in the coefficients of years of education

and age is found, emphasizing the importance to adjust for potential measurement

2



error bias in empirical work.

Chapter three develops a test for monotonicity of a (possibly nonlinear) regression

function under endogeneity. The novel testing framework is applied to study mono-

tonicity of the reservation wage as a function of elapsed unemployment duration.

Hence, the objective of the chapter is twofold: from a theoretical perspective, it

proposes a test that formally assesses monotonicity of the regression function in the

case of a continuous, endogenous regressor. This is accomplished by combining dif-

ferent nonparametric conditional mean estimators using either control functions or

unobservable exogenous variation to address endogeneity with a test statistic based

on a functional of a second order U-process. The modified statistic is shown to have

a non-standard asymptotic distribution (similar to related tests) from which asymp-

totic critical values can directly be derived rather than approximated by bootstrap

resampling methods. The test is shown to be consistent against general alternatives.

From an empirical perspective, the chapter provides a detailed investigation of the

effect of elapsed unemployment duration on reservation wages in a nonparametric

setup. This effect is difficult to measure due to the simultaneity of both variables.

Despite some evidence in the literature for a declining reservation wage function over

the course of unemployment, no information about the actual form of this decline has

yet been provided. Using a standard job search model, it is shown that monotonicity

of the reservation wage function, a restriction imposed by several empirical studies,

only holds under certain (rather restrictive) conditions on the variables in the model.

The test from above is applied to formally evaluate this shape restriction and it is

found that reservation wage functions (conditional on different characteristics) do

not decline monotonically.

Finally, all proofs and empirical results are postponed to the corresponding Ap-

pendix of each chapter. Numerical computations are carried out in GAUSS (routines

are available upon request).
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2 Nonclassical Measurement Error

in the Dependent Variable of a

Nonlinear Model

2.1 Introduction

The paper considers identification and estimation of the parameter vector of the

monotone transformation model (Han, 1987) when the continuous dependent vari-

able is subject to nonclassical measurement error, where ‘nonclassical’ refers to a

potential correlation of the measurement error with the true, unobserved depen-

dent variable itself and a (continuous) component of the regressor vector. This

setup is of interest from an empirical perspective as survey data is commonly sub-

ject to measurement error (Bound, Brown, and Mathiowetz, 2001). In particular

for earnings and duration data, evidence suggests that nonclassical measurement

error is the rule rather than the exception: Bricker and Engelhardt (2007) for in-

stance study measurement error in matched (annual) earnings data of older workers

in the Health and Retirement Study (HRS). Their findings suggest a strong neg-

ative (‘mean-reverting’) relationship between the extent of measurement error, de-

fined as the difference between self-reported survey and administrative records, and

‘true’ administrative earnings. According to their results for men of the 1991 wave,

measurement error falls by approximately $100 for each additional $1,000 in ‘true’

(administrative) annual labour income. In addition, measurement error is found

to cause a substantial upwards bias in the effect of education on annual earnings.

Cristia and Schwabish (2007) confirm both results using the Survey of Income and

Program Participation (SIPP) Panel matched to administrative records.1 In the

1In addition, the study also provides evidence for a correlation of measurement error with other
demographic variables such as gender, age, or marital status.
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duration context, Jäckle (2008) reveals a similar pattern for benefit recipient history

data from the ‘Improving Survey Measurement of Income and Employment’ project,

which employed (among other interviewing techniques) standard questioning meth-

ods from the British Household Panel Survey (BHPS) to infer about benefit receipts.

Using a non-representative sample and a proportional hazard model, she finds that

low educational attainment has a significant negative impact on the exit hazard of

benefit income related spells with survey data, but not with administrative records.

Moreover, under-reporting of the benefit duration (i.e. reporting a spell length that

falls below the actual length) generally increases when a spell spans more than one

survey wave.2 Since durations and earnings typically serve as ‘left-hand side’ vari-

ables in standard censored regression (e.g. Tobit) or duration models, which can be

nested within the monotone transformation model, both examples can be accomo-

dated by the framework developed in this paper.3 The paper addresses identification

and estimation of the “parametric” parameter vector of this transformation function

(up to scale). Future work will address the recovery of the unknown transformation

function, too.

The main contribution of this paper is to provide the researcher with a tool to

deal with nonclassical (as defined above) measurement error in continuous survey

data such as earnings or durations if the model of interest is the parameter vec-

tor of the monotone transformation model (or any other model nested therein).4

To the best of the author’s knowledge, such a tool does not yet exist. The main

theoretical complications in the identification and estimation process of the param-

eter vector arise because of (i) multiple unobservables (the measurement and the

equation error) in the model setup, (ii) the “lack” of assumptions on the (condi-

tional) measurement error distribution, and (iii) the potential dependence of the

measurement error and continuous component(s) of the regressors. In order to ad-

2More precisely, she finds that the share of self-reported durations longer than a year that end
at the ‘seam’ of two survey waves exceed the share of corresponding spells from administrative
records by 25− 35% for certain benefit types.

3Notice that in order to apply the framework of this paper to the setup of Bricker and Engelhardt
(2007), education needs to be modelled as a continuous variable (‘years of schooling’).

4The Proportional Hazard model can for instance be obtained by restricting the error term
distribution (to a type I extreme value distribution), which allows for an interpretation of the
transformation function as the integrated baseline hazard, while restricting the transformation
function itself (to a logarithmic form) leads to the Accelerated Failure Time model.
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dress these points, a three-step identification and estimation procedure is proposed:

first, a two-step control function approach (see Blundell and Powell, 2003; Imbens

and Newey, 2009) is employed to solve the ‘endogeneity problem’ arising from the

dependence of the measurement error and a continuous component of the regressor

vector by estimating the conditional mean of the (mismeasured) dependent variable

conditional on all covariates and the estimated control function. Subsequently inte-

grating over the marginal support of the control function eliminates its impact as a

conditioning argument and reduces the measurement error to a numerical constant.

In a third step, a rank-type argument is then used comparing pairs of observations

to eliminate this numerical constant. Since a control function method is employed

in the first place, the procedure requires the existence of a suitable instrument vec-

tor. Also, notice that in particular the “lack” of assumptions on the (conditional)

distribution of the measurement error and the presence of multiple unobservables

prohibit the use of other control function estimators such as Rothe (2009). Instead,

all three steps outlined above are crucial for identification and consistent estimation

of the parameter vector.

Finally, it is argued that for the examples given before, instrumental variables typ-

ically suggested by the empirical literature for Mincer-type earnings equations such

as parental education, minimum school-leaving age, or (same sex) sibling’s educa-

tional qualification should also be applicable in this context as they are likely to be

correlated with the observed schooling level of the individual, but unlikely to affect

the individual’s actual response to the survey question.5 Moreover, as pointed out

by Hu and Schennach (2008) and discussed in section 2.2.1, the choice of instru-

mental variables in the context of measurement error could even comprise repeated

measurements if certain conditions are met.

From a technical point of view, the main innovation of the paper is to combine

a nonparametric mean estimator with a rank estimation procedure and to derive

its asymptotic properties.6 Since duration models are arguably one of the most

5Notice that this argument is valid even when measurement error is actually not related to
cognitive ability but to other unobserved determinants.

6Concurrently to this work, Jochmans (2010) developed a two-step rank estimator for the
monotone transformation model that is weighted by nonparametric control functions. While likely
to be superior if the dimension of the covariate vector is large (with the conditional mean estimator
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relevant application field of the transformation model in practice, the estimator is

extended to allow for random right censoring. The additional estimation step re-

quired to accomodate censoring and to obtain the mean function further complicate

the asymptotic variance expression, which depends on first and second order deriva-

tives of certain conditional expectations. Thus, in order to construct confidence

intervals for the parameter estimates, the use of ‘m out of n’ bootstrap is suggested

to obtain corresponding standard errors and show their first order validity. Finally,

to illustrate the methodology empirically, annual earnings data from the HRS is

examined, which has been found to be subject to nonclassical measurement error

(Bricker and Engelhardt, 2007). A reduced version of an earnings equation is esti-

mated and it is found that the estimator differs substantially from other estimators

obtained for comparison purposes. Together with evidence for a mean-reverting

non-classical measurement error in annual earnings in the HRS (see Bricker and

Engelhardt, 2007), this underlines the need to adjust for measurement error bias

when examining the determinants of annual labour income of older workers in the

HRS as estimates appear to be strongly affected.

This paper complements the existing literature on nonlcassical measurement error,

which has been rather limited regarding measurement error in the response vari-

able of nonlinear models. In the duration context for instance, researchers have

limited attention to either fully parametric duration models or classical forms of

measurement error (e.g. Skinner and Humphreys, 1999; Augustin, 1999; Abrevaya

and Hausman, 2004; Dumangane, 2007), both of which are problematic once the

restrictive setup fails to hold. A notable exception is the paper by Abrevaya and

Hausman (1999), who consider nonadditive, classical measurement error in the de-

pendent variable. However, relative to the approach proposed here, their setup can-

not incorporate a correlation of the measurement error with the true, unobserved

dependent variable itself, which often appears to be the more relevant problem in

practice. Abstracting from the duration context, Chen, Hong, and Tamer (2005)

have considered various semiparametric models under nonclassical measurement er-

ror (in the dependent as well as the independent variable(s)) using auxiliary admin-

being potentially less accurate), the procedure has not formally been extended to censoring and is
thus of limited interest in the duration case, which is a main focus of this paper.
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istrative data to infer about the conditional distribution of the true variables given

the mismeasured variables. Matzkin (2007) examines a completely nonparametric

framework, but her identification result hinges on the independence of the response

error and other model (un-)observables. Hoderlein and Winter (2010) on the other

hand use a structural approach to identify marginal effects of linear and nonlinear

models under measurement error in either the dependent or the independent vari-

able(s). While their methodology allows them to make detailed statements about

the determinants and implications of such a measurement error, the validity of these

claims clearly relies on the underlying model assumptions.

The paper is organised as follows: Section 2.2.1 outlines the identification strat-

egy. Section 2.2.2 deals with the corresponding multi-step estimation procedure,

its asymptotic distribution is derived in Section 2.2.3 and the validity of the boot-

strapped confidence intervals is established in Section 2.2.4. Finally, Section 2.3

explores the finite sample properties in a small scale simulation study and Section

2.4 concludes with an empirical illustration on annual earnings data from the HRS

Survey. All tables and proofs are postponed to the appendix.

2.2 Setup

2.2.1 Identification

The monotone transformation model (Han, 1987), which nests several duration and

censored regression models, is given by:

Y ∗j = m(X ′jβ0 + εj) (2.1)

where Y ∗j is an unobserved, continuous scalar dependent variable, X
′
j = {X(c)

j , X
(d)
j }

′

is a (dx × 1)-dimensional covariate vector with X
(c)
j

(
X

(d)
j

)
containing continuous

(discrete) elements, and εj is a scalar unobservable (independent of Xj). m(·) is

a strictly monotonic transformation function giving the model its flexibility and

8



name.7 Without loss of generality, this function is assumed to be strictly increasing

in the following.

Into this setup, an additively separable, nonclassical measurement error ηj is incor-

porated, which is a scalar random variable:

Yj = Y ∗j + ηj (2.2)

‘Nonclassical’ here refers to a potential correlation of the measurement error with the

true, underlying dependent variable and (continuous) component(s) of Xj. That is,

letting “⊥” denote statistical independence of two random variables and “6⊥” their

dependence, the following assumptions are made:

• εj 6⊥ ηj and

• X1j 6⊥ ηj, where X1j ∈ X(c)
j .

X1j could possibly also represent a vector of continuous random variables for each

of which a reduced form equation such as the one in A1 below holds (e.g. Blundell

and Powell, 2004).8 However, in order to maintain a tractable setup, X1j will be

assumed to be a scalar random variable in the following. By contrast, continuity of

the endogenous component is crucial to the control function approach and cannot

be relaxed (see below).

Regarding the additivity assumption of the measurement error, notice that if Y ∗j is

a duration variable taking on positive values only, the expression in (2.2) can be

viewed as the log-transformation of Ỹj = Ỹ ∗j · η̃j, where both Ỹ ∗j and η̃j have support

[0,∞) and Ỹ ∗j , η̃j > 0 except for a set of measure zero. The assumption of additive

separability is hence not as restrictive as it might appear at first sight and has in

fact been adopted by several authors in the literature (e.g Chesher, Dumangane,

and Smith, 2002).

7Notice that the lack of restrictions on m(·) (apart from monotonicity) only allows for identifi-
cation up to a location and size normalization (Sherman, 1993).

8Notice that the identification and estimation procedure of this paper is applicable even if, apart
from the correlation with the measurement error ηj , X1j 6⊥ εj . That is, as long as the instruments
satisfy the independence requirement outlined in assumption A1 below, β0 can be recovered even
if identification and estimation are aggravated by e.g. an omitted variable.

9



Combining (2.1) and (2.2) yields the observed equation:

Yj = m(X ′jβ0 + εj) + ηj (2.3)

The object is to identify β0 from (2.3). To achieve this, the existence of an instrument

vector Z ′j = (X ′−1j, Z
′
1j) is assumed, where X ′−1j refers to all exogenous elements

except for X1j:

A1 there exists a (dz×1)-dimensional vector Z ′j = (X ′−1j, Z
′
1j) (with dimension(Z1j)

≥ 1) such that

X1j = g(Zj) + Vj (2.4)

with g(·) a real-valued function that is differentiable in its continuous compo-

nents (with non-zero derivative), E[Vj] = 0, and

Zj ⊥ εj, ηj, Vj

.

Condition A1 is the “exclusion restriction” typically imposed in the control function

literature. It specifies that the correlation between X1j and ηj only runs through

a function Vj, the so called control function. As outlined before, continuity of

X1j is crucial in this context since, in the discrete case, the distribution of the

control function Vj and its relation with ηj will in general depend on Zj violating

independence between Zj and the model unobservables. Full independence of the

instrument vector Zj on the other hand is required since the model in (2.3) is

not additively separable in observables and unobservables. Notice also that the

setup in (2.4) allows for parametric or semiparametric restrictions: for instance,

the researcher might specify a single-index model of the form X1j = g(Z ′jγ0) + Vj

with γ0 an unknown vector of parameters and g(·) either an unknown or known

differentiable function.

Concerning the empirical examples given in the introduction, instruments suggested

in the context of (Mincer-type) earnings equations (Glewwe and Patrinos, 1999;

10



Butcher and Case, 1994; Card, 2001; Ichino and Winter-Ebmer, 1999) are applica-

ble in the measurement error setup, too. However, in line with Hu and Schennach

(2008), it is stressed that also a repeated measurement of Y ∗j could be understood

as an instrument if it satisfied the independence assumption in A1. That is, if

the second observation (together with the possible error contained in that alter-

native measurement) was independent of the measurement error ηj in the original

Yj conditional on the regressors Xj, the repeated measurement could become a

valid instrumental variable (see Chalak and White (2011) for a detailed discussion

of identification under various instrument concepts). Finally, since the setup is en-

tirely nonparametric, it is well known that identification condition A1 does not imply

nor is it implied by the moment conditions imposed in the nonlinear instrumental

variable (NIV) literature.

The second condition required for identification is a “large support condition”, which

ensures sufficient variation in Vj given X1j.
9

A2 W = X × V is a compact, non-empty set, where X is a subset in the interior

of the marginal support of X, while V denotes the marginal support of V .

Assume that the joint density on W is everywhere continuous and bounded

away from zero.

Assumption A2 states that the marginal support of Vj is identical to its conditional

support for a compact subset X of the marginal support of X. As discussed in Im-

bens and Newey (2009), this might be restrictive in applications where data is scarce

or instrumental variables do not vary sufficiently as the above assumption basically

requires sufficient strength of the latter. In practice, a verification of A2 can only be

carried out approximately on a case by case basis. For instance, various Kolmogorov

Smirnov tests on the conditional distributions of the estimated control function for

subsets of the data used in the illustration example of section 2.4 indicate that the

condition seems to be satisfied for at least a subset of the data. Still, condition

A2 remains a drawback in the setup of this paper and future work will be directed

9Notice that a further support condition similar to Cavanagh and Sherman (1998) will ensure
that identification is not lost by restricting ourselves to the compact set W.
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towards identifying sharp bounds similar to Imbens and Newey (2009).

The third assumption sufficient for identification of β0 is a standard i.i.d. assump-

tion:

A3 {Xj, Zj, εj, ηj}nj=1 is an i.i.d. sample, where Yj and the endogenous component

X1j are generated according to (2.3) and (2.4), respectively.

In the following, let µ(x) :=
∫
E[Yj|Xj = x, Vj = v]fV (v)dv with fV (·) the marginal

density of Vj and recall that m(·) is strictly increasing in its argument. Given this

setup, we obtain the following lemma, which ensures that the limit of the objective

function, introduced in the next section, is uniquely maximized:

Lemma 1. Under assumptions A1, A2, and A3 and given (2.3) and (2.4) with m(·)

strictly increasing in its argument, we have for every x, x̃ ∈ X :

µ(x) > µ(x̃) if x′β0 > x̃′β0

The proof of this lemma can be found in the appendix and proceeds in three steps:

firstly, the mean of Yj conditional on Xj and Vj is computed. Using conditional

independence between ηj and Xj given Vj, the ‘remainder term’ becomes E[ηj|Vj].

However, since no assumption about the distribution of E[ηj|Vj] such as E[ηj|Vj] = 0

are made, an iterated expectations argument to obtain E[ηj] is subsequently applied

by integrating over the support of Vj. That is, it is shown that for every x ∈ X :

µ(x) = E[m(x′β0 + εj)] + E[ηj] (2.5)

where the expectation is taken w.r.t. εj and ηj, respectively. Notice that E[ηj] is

‘reduced’ to a numerical constant (which could be non-zero) and that µ(x), by the

properties of m(·), is strictly increasing in x′β0 for all x ∈ X . The latter motivates

the use of a rank-type argument (see Cavanagh and Sherman, 1998), which together

with the i.i.d. assumption A3 allows for identification of β0. That is, by A3 we have
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for every x ∈ X and i, j ∈ 1, . . . , n:

E[m(x′β0 + εj)] + E[ηj] = E[m(x′β0 + εi)] + E[ηi]

Thus, given x an inequality will only arise for differing β-values. Moreover, it is clear

from the above argument that the lack of structure on the transformation function

only allows for point identification of β0 in relative, not in absolute terms (that

is, a normalization of β will be required). However, notice that if the researcher

is willing to make parametric assumptions about the functional form of m(·), the

above identification argument can be strengthened and point identification can be

achieved even in absolute terms. Also, it becomes apparent that other estimators

using control functions such as Rothe (2009) are not applicable here: the lack of

information about E[ηj|Vj] does not make a “normalization” of this conditional

expectation to zero innocuous, but further steps to identify the parameter vector of

interest are required.

Finally, notice that in a standard linear model with m(·) equal to the identity func-

tion, the identification procedure becomes applicable to “nonclassical” measurement

error in the independent variable, too. For instance, let:

Yj = X1j +X∗2jθ0 + εj

with X2j = X∗2j + ηj and ηj 6⊥ X∗2j as well as ηj 6⊥ εj. In this case, given a suitable

instrument vector Zj satisfying A1 and A2, it holds that:
∫
E
[
Yj

∣∣∣X1j = x1, X2j =

x2, Vj = v]fV (v)dv = x1 +x2θ0 +E
[
εj

]
+E
[
ηj

]
θ0 so that an identical rank argument

to above becomes applicable and θ0 is identified up to scale.

2.2.2 Estimation

The three-step estimation procedure is immediate from the previous identification

result:

(i) In a first step, V̂j is recovered from a nonparametric first-stage regression of

X1j on Zj.
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(ii) Then, µ(x, v) := E[Yj|Xj = x, Vj = v] can be estimated nonparametrically

using Yj, Xj, V̂j and the average: µ̂(x) = 1
n

n∑
i=1

µ̂(x, V̂i) for every x ∈ X can be

computed.

(iii) Finally, a modified version similar to the two-step rank estimator of Khan

(2001) can be used to recover β0 (up to scale).

The last step is similar to a modified rank estimator of Khan’s (2001), who uses an

estimated conditional quantile function as transformation of the dependent variable.

We replace this conditional quantile function and its estimator by the conditional

mean µ(x) and µ̂(x), respectively. The replacement (together with the introduction

of a control function and censoring) affects the asymptotic variance of our estimator,

which will be different from the expression derived in Khan (2001), who does not

address endogeneity or random right censoring in his setup.

The estimated control functions V̂j stem from the regression equivalent of (2.4):

V̂j = X1j − ĝ(Zj)

To estimate g(·), the Nadaraya-Watson estimator is proposed (for simplicity, assume

that dz = 1) with

ĝ(Zj) =

n∑
k=1

X1kkh(Zj − Zk)
n∑
k=1

kh(Zj − Zk)

where

kh(Zj − Zk) = k

(
Zj − Zk

h

)
and h is a deterministic sequence satisfying h −→ 0 as n −→ ∞, while k(·) is a

kernel function that satisfies the restrictions in B3 in Appendix A2.1.10 An optimal

bandwidth theory for the estimator is not developed in this paper, but instead

standard rules of thumb are employed for the determination of the bandwidth in

sections 2.3 and 2.4. Notice that g(·) could also be estimated by series estimators

(splines, power series) or local linear smoothers, but the use of the Nadaraya Watson

10In practice, if some components of the instrument vector Zj are discrete, nonparametric esti-
mation of g(·) can proceed by splitting the sample according to the different values of the discrete
component and estimating g(·) for each subsample separately.
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estimator will facilitate several proofs in the appendix.This argument becomes even

more important as the limiting distribution obtained in section 2.2.3 does not depend

on the nonparametric first step estimators (a similar result was obtained by Newey

(1994) for smooth objective functions with a nonparametric plug-in estimate).

The conditional mean function µ(x) can be estimated using again the Nadaraya-

Watson kernel estimator. Since the dx-dimensional covariate vector Xj contains dc

continuous elements and a univariate V̂j, the following d = (dc + 1) dimensional

product kernel is defined (for simplicity assume that: h = h1 = h2 = ... = hd):

Kh,j(x, v) = k

(
x1 −X1j

h

)
× . . .× k

(
xdc −Xdcj

h

)
× k

(
v − V̂j
h

)

and the following shorthand notation for the first dx elements is introduced:

Kh(x−Xj) = k

(
x1 −X1j

h

)
× . . .× k

(
xdc −Xdcj

h

)

To bound the denominator away from zero and to ensure that observations lie within

the compact set W , a nonrandom trimming function is introduced:

Ixi := I[x ∈ X , Vi ∈ V ] and Îxi := I[x ∈ X , V̂i ∈ V ]

Notice that for simplicity no random trimming is employed, but different trimming

techniques might be used in practice.

Finally, in order for the estimator to become applicable in the duration context, the

possibility of random (right) censoring is accomodated into the estimation procedure

of the conditional mean by using the so called “synthetic data” approach of Koul,

Susarla, and van Ryzin (1981).11 As outlined in section 3.1, duration data is typcially

subject to (random) right censoring. Instead of observing the mismeasured duration

Yj for each individual, one typically observes:

Uj = min{Yj, Cj} and ∆j = I{Yj ≤ Cj}
11The setup of this paper cannot straightforwardly be extended to fixed censoring. However, it

is conjectured that fixed censoring could possibly be incorporated along the lines of Khan (2001)
using a similar kind of weighting function.
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where Cj is the censoring time and ∆j a censoring indicator. We assume {Cj,∆j}

to be independent of the other model covariates. This assumption, albeit debatable

in some settings, is standard in the literature and often justified in practice. In

addition, define:

UjG =
Uj∆j

1−G(Uj−)

and

UjĜ =
Uj∆j

1− Ĝ(Uj−)

where G(·−) is the left-continuous distribution function of Cj and Ĝ(·−) the cor-

responding Kaplan-Meier estimator (Kaplan and Meier, 1958) with Ĥ(·−) the left-

continuous empirical distribution function of Uj:

Ĝ(c) = 1−
∏
i:Ci≤c

(
1−

∑n
j=1 I[(1−∆j) = 1, Cj ≤ Ci]

1− Ĥ(Ui−)

)1−∆i

Replacing the partially unobserved Yj by UjG, Koul, Susarla, and van Ryzin (1981)

showed that under condition B1 in appendix A.1:

E[UjG|Xj = x, Vj = v] = E[Yj|Xj = x, Vj = v] (2.6)

Since UjG is unobserved, we can replace it by UjĜ and estimate (2.6) as:

µ̂(x, V̂i) =

n∑
j=1

ÎxiUjĜKh,j(x, V̂i)

n∑
j=1

ÎxiKh,j(x, V̂i)
(2.7)

while:

µ̂(x) =
1

n

n∑
i=1

µ̂(x, V̂i) (2.8)

is the average of µ̂(x, V̂i) over V̂i. The last stage recovers the parameter vector β0.

As rank estimators only allow an identification of β0 up to scale, a normalization

of an arbitrary component of the parameter vector is required. Following standard

procedures, the first component is normalized to one, i.e. β(θ) ≡ (1, θ).12 Thus, the

12Accordingly, the true parameter vector is β(θ0) ≡ (1, θ0).
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third stage rank estimator is given by:

β(θ̂) = arg max
θ∈Θ

1

n(n− 1)

∑
k 6=l

I[Xk ∈ X ]× µ̂(Xk)× I[X ′kβ(θ) ≥ X ′lβ(θ)] (2.9)

where
∑

k 6=l stands for the double sum
∑n

k=1

∑n
l>k assuming that observations are

in ascending order.13 The form of (2.9) is almost identical to the two-stage rank

estimator of Khan (2001) using a conditional mean instead of a conditional quantile

function. Notice that for the above estimator to work we require that µ̂(Xk) > 0 for

every Xk in X . Thus, if Yj also takes on negative values, an upfront transformation

of the data needs to be carried out, e.g. Y j = Yj − min{Y1, . . . , Yn}, to ensure

positivity.

2.2.3 Asymptotic Properties

This subsection considers the asymptotic properties of the estimation procedure.

The probability limit of (2.9) evaluated at θ0 is:

∫
I[Xk ∈ X ]× µ(Xk)× I[X ′kβ(θ0) ≥ X ′lβ(θ0)]dFX(Xk, Xl) (2.10)

where FX(·, ·) in this case denotes the distribution function of Xk, Xl. Since the

conditions for consistency,
√
n-consistency, and asymptotic normality are standard

and rather lengthy (see Cavanagh and Sherman (1998) or Khan (2001) for details),

the reader is referred to Appendix A.1 for details, where conditions B1 to B8 used

in the theorems below are outlined together with a short discussion of non-standard

assumptions. Notice that a higher order kernel function is employed in order to

allow for a fairly large dimension of the covariate vector Xj. That is, with an

increasing number of covariates used in the estimation of the conditional mean, a

kernel function with an increasing number of moments equal to zero is required in

order to control for the asymptotic bias.

13Summations appearing in the following that involve more than two indices will be defined
according to the same logic.
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Theorem 2. Under conditions A1-A3, B1-B5, B7, and B8, we have:

θ̂
p→ θ0

The proof of Theorem 2 parallels the proof of Theorem 3.1 in Khan (2001). The

main difference with respect to the latter is to show that replacing µ̂(Xk) by its

probability limit µ(Xk) results in an error of smaller order for every Xk ∈ X . Unlike

Khan (2001), however, also the estimated terms V̂j, UjĜ, and Îj need to be controlled

for. One difficulty arises as the V̂j also enter the indicator function Îj, which in turn

prevents a Taylor expansion. An argument from Corradi, Distaso, and Swanson

(2011) is borrowed to show that this term can in fact be bounded by an expression

approaching zero at rate ln(n)
1
2/(nhdz)

1
2 −→ 0. Together with the convergence rates

of UjĜ and V̂j, the overall rate is:

µ̂(x)− µ(x) = Op

((
ln(n)

nhdz

) 1
2
)

= op(1)

for every x ∈ X .

Given consistency of θ̂ for θ0, one can replace the parameter space Θ by a shrinking

set around θ0 to establish
√
n-consistency and asymptotic normality using results of

Sherman (1993). To simplify notation in the next theorem, the following expression

is defined (see Khan, 2001; Sherman, 1993):

ψ1(x, θ) =

∫
µ(x)× I[x ∈ X ]I[x′β(θ) > u′β(θ)]− I[x′β0 > u′β0]dFx(u)+∫
µ(u)× I[u ∈ X ]I[u′β(θ) > x′β(θ)]− I[u′β0 > x′β0]dFx(u)

(2.11)

Moreover, denote:

ψ2(x, θ) =

∫
I[x ∈ X ]I[x′β(θ) > u′β(θ)]dFx(u) (2.12)

Theorem 3. Under conditions A1-A3 and B1-B8, it holds that:

√
n(θ̂ − θ0)

d→ N(0,Σ)
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where Σ = J−1ΩJ−1 with:

J =
1

2
E
[
∇θθ′ψ1(Xk, θ0)

]
The diagonal elements of the matrix Ω are given by the sum of the following expres-

sions:

(i)

Ω0 =

∫ (
Im(UmG − µ(Xm))∇θψ2(Xm, θ0)

)
×
(
Im(UmG − µ(Xm))∇θψ2(Xm, θ0)

)′
dFUG,X,V (UmG, Xm, Vm)

(ii) Ω1 = E1Φ1E
′
1 with:

Φ1 =

∫
V 2
i dFV (Vi)

and

E1 =
(
F

(1)
V

(
a
)

+ F
(1)
V

(
b
))∫

UjG∇θψ2(Xk, θ0)dFUG,X(UjG, Xk)

where a, b are real numbers and F
(1)
V (·) denotes the first-order derivative of the

distribution function FV (·) of V .

(iii) Ω2 = E2Φ2E
′
2 with

Φ2 = Φ1

and

E2 = −
∫
IiUjG∇θψ2(Xk, θ0)dFUG,X,V (UjG, Xk, Vi)

(iv) Ω3 = E3Φ3E
′
3 and

Φ3 =

∫ φY

0

E
[
U1GI[s < U1]

]
Ht1(s)

dG(s)

(1−G(s−))

and

E3 =

∫
Ii∇θψ2(Xk, θ0)dFX,V (Xk, Xl, Vi)
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where φY is defined in B1 and Ht1(s) = E
[
U1GI[s < U1]

]
/{(1− FY (s−))(1−

G(s−))}.

The proof of Theorem (3) follows the proof of Theorem 3.2 in Khan (2001). The

conditions of Lemmata A.1 and A.2 therein are explicitly verified, which establish
√
n-consistency and asymptotic normality, respectively. The main differences to

Khan (2001) consist in the use of a conditional mean rather than a conditional

quantile function and in the estimated first and second stage terms V̂j, Îj, and UjĜ,

which complicate the asymptotic analysis in this case further. Both, the estimation

of the conditional mean function as well as the estimated V̂j, Îj, UjĜ yield the

extra pieces Ω0, Ω1, Ω2, and Ω3 in the variance-covariance matrix Σ that differ

from the expression derived by Khan (2001). The first step in the proof of the

above theorem is to replace µ̂(Xk) in (2.9) by µ(Xk). The term involving µ(Xk)

can be expanded to yield the gradient J = 1
2
E
[
∇θθ′ψ1(Xk, θ0)

]
plus terms that

are of order op(n
−1) once

√
n-consistency of ‖θ̂ − θ0‖ has been established (notice

that Lemmata B.1 and B.2 are verified concurrently and hence expressions shown

to be of order op(‖θ̂ − θ0‖/
√
n) for instance automatically become op(n

−1) once

‖θ̂ − θ0‖ = Op(1/
√
n) has been established via Lemma B.1). The second term

containing the estimation error (µ̂(Xk) − µ(Xk)) on the other hand can be further

expanded to give the different variance pieces plus terms that are again of order

op(n
−1) on a set around θ0 shrinking at rate

√
n.

2.2.4 Bootstrapping Confidence Intervals

The asymptotic variance depends on moments of the derivatives of the unknown

functions ψ1(·, ·) and ψ2(·, ·), which can be estimated using either numerical deriva-

tives (e.g. Sherman, 1993; Cavanagh and Sherman, 1998) or kernel-based methods

(Abrevaya, 1999). However, since these moments may be difficult to estimate in

practice, the use of the ‘m out of n’ bootstrapping procedure is proposed as an

alternative to construct standard errors for our parameter estimates. The ‘m out

of n’ bootstrapping procedure is a widely applicable methodology allowing to ap-

proximate the sampling distribution under fairly weak assumptions. Moreover, this
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bootstrap method is able to replicate the degeneracy of first order terms from the

linear U-statistic expansion (Arcones and Gine, 1992) that is used multiple times in

the derivation of the asymptotic distribution of our estimator. The nonparametric ‘n

out of n’ bootstrap method fails to replicate this degeneracy and hence an extension

of the setup in Subbotin (2008), who recently showed that nonparametric ‘n out of

n’ bootstrap methods consistenly estimate variances and quantiles of standard rank

estimators, is not pursued in this paper.

The procedure works as follows: X∗1 , . . . , X
∗
m and Z∗1 , . . . , Z

∗
m are sampled from the

original sample of size n (with m < n) and V̂ ∗1 , . . . , V̂
∗
m are obtained. In total,

1, . . . , B of these bootstrap samples of size m are constructed. For each of these

samples, the bootstrap equivalent of our estimator is computed:

β(θ∗) = arg max
θ∈Θ

1

m(m− 1)

∑
k 6=l

I[X∗k ∈ X ]× µ̂∗(X∗k)× I[X∗k
′β(θ) ≥ X∗l

′β(θ)] (2.13)

where

µ̂∗(X∗k) =
1

m

m∑
i=1

{ m∑
j=1

Î∗kiU
∗
jĜ

Kh∗,j∗(X
∗
k , V̂

∗
i )

m∑
j=1

Î∗kiKh∗,j∗(X∗k , V̂
∗
i )

}

and the bandwidth sequence h∗ is in lieu of h from Section ?? shrinking to zero at a

rate depending on m (rather than n). Hence one obtains θ∗1, . . . , θ
∗
B. The aim is to

construct a 1−α confidence interval (CI) from the empirical bootstrap distribution.

Thus, one needs to recover standard errors from the bootstrap covariance matrix,

which is given by:

Σ∗ =
m

B

B∑
i=1

(
θ∗i −

1

B

B∑
i=1

θ∗i

)(
θ∗i −

1

B

B∑
i=1

θ∗i

)′

The next theorem establishes that Σ∗ is a consistent estimator for Σ:

Theorem 4. Let P∗ denote the probability distribution induced by the bootstrap

sampling. Under assumptions A1-A3 and B1-B8 with h∗ and m in place of h and

n, respectively, and letting m,n, n
m
−→∞, it holds for all ε > 0:

P
(
ω : P∗

(∣∣∣∣Σ∗ − Σ

∣∣∣∣ > ε

))
−→ 0
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In order to prove the above theorem, it is firstly verified that
√
m(θ∗ − θ̂) has the

same limiting distribution as
√
n(θ̂ − θ0) in a similar manner to before. However,

since first order validity does not justify the use of the variance of the bootstrap

distribution to consistently estimate the asymptotic variance (e.g. Goncalves and

White, 2004), it is also shown that uniform integrability holds as well. A sufficient

condition for the latter is the existence of a slightly higher moment condition, which

in turn ensures consistency of the bootstrap variance estimator.

2.3 Monte Carlo Simulations

To shed some light on the small sample properties of the estimator in 2.9, various

Monte Carlo simulations are conducted. The results are displayed in Table 2.1 and

2.2 of Appendix A2.3. The analysis starts by looking at a linear model under non-

classical measurement error (as defined in Section 2.2.1) in the dependent variable.

This allows to compare the performance of the estimator proposed in this paper

relative to other estimators that are consistent (Two Stage Least Squares) or incon-

sistent (Monotone Rank Estimator, Ordinary Least Squares) in a linear setup.

More precisely, a linear model with two independent variables X1j and X2j is exam-

ined:

Y ∗j = X1j +X2jθ0 + εj

with the coefficient of X1j normalized to one and θ0 set equal to .5. The additive

measurement error ηj is given by:

Yj = Y ∗j + ηj

The model unobservables εj and ηj are generated through a multivariate normal

distribution:  εj

εMj

 ∼ N

(0

0

 ;

 1 −.5

−.5 1

)

and the auxiliary equation ηj = κ · Vj + εMj with κ = .5. The negative correla-

tion between εj and εMj reflects the mean reverting correlation pattern observed in
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empirical studies (Bound, Brown, and Mathiowetz, 2001). X1j is simulated from a

uniform distribution U [1, 2], while X2j is determined by the following reduced form

model:

X2j = α · Zj + Vj

with α = 1. The instrument Zj and the control function Vj are simulated from

two uniform distributions U [0, 1] and U [−1, 1], respectively. Notice that the chosen

range of Zj and Vj imply that Vj has full support given 0 ≤ x2j ≤ 1.

The estimator (labelled RankCF) proposed in section 2.2.3, which is consistent for θ0,

is compared to various other estimation procedures: the Two Stage Least Squares

estimator (TSLS), which is also consistent in the linear model setup, is used to

evaluate the relative performance of the RankCF in small samples. These results

are contrasted with results from the inconsistent Ordinary Least Squares estimator

(OLS) and the likewise inconsistent Monotone Rank Estimator (MRE) introduced

by Cavanagh and Sherman (1998).14 The latter has been chosen as it forms the basis

for the RankCF and, like the RankCF, also requires an optimization algorithm due

to the discontinuous character of the objective function. The chosen algorithm is the

Nelder-Mead Simplex method with the normalized TSLS results as starting values.

The sample size varies from 50, 100, 200, 400 to 800 observations. For every sample

size, 200 replications are conducted. The displayed deviation measures are Mean

Bias, Median Bias, Root Mean Square Error (RMSE), and Mean Absolute Deviation

(MAD). They are constructed as averages over the number of replications. A second

order Epanechnikov kernel is employed using the rule of thumb std(·) · n− 1
7.5 for the

bandwidth selection, where std(·) is the standard deviation of the corresponding

argument, while n remarks the sample size.

Starting with the simulation results in Table 2.1 (Design I: Linear Model & No

Censoring), one can observe that even at small sample sizes TSLS and RankCF

perform well across all bias measures (with a slight advantage for TSLS). Moreover,

in line with consistency, their Mean Bias, RMSE, and MAD shrink as the sample

size increases (albeit not gradually for the Mean Bias). This is not the case for the

14We use the identity function as ‘weighting’ function of the dependent variable.
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MRE and OLS, where the mean bias is still of order .4 even at n = 800.

Next a non-linear design is examined. Using again Yj = Y ∗j + ηj, the non-linear

model is chosen to be:

Y ∗j = ln(X1j +X2jθ0 + εj)

with X2j, and εj being determined as before, while X1j ∼ U [2, 3]. Notice that in

this nonlinear setup with nonclassical measurement error, all estimators except for

the RankCF estiamtor are inconsistent either due to the non-linearity or due to

the endogeneity of X2j. OLS and TSLS will be dropped from the set of estimators

and instead be replaced by the Maximum Rank Correlation Estimator, which was

introduced by Han (1987) as the first estimator in the literature using a rank-type

argument. The results are displayed in the lower part (Design II) of Table 2.1. Again,

one can observe that the theoretical predictions are largely confirmed. Despite

a relatively poor performance of all three estimators at n = 50, the bias of the

MRE and the MRC remain substantial as n increases (albeit a certain decrease

in the RMSE and MAD). This is not the case for the RankCF, where the mean

bias decreases as the sample size increases (even though the bias has not entirely

disappeared at n = 800).

Finally, the censoring setup in Table 2.2 is examined comparing our estimation

procedure again to its rank competitors, the Monotone Rank Estimator (MRE)

and the Maximum Rank Correlation Estimator (MRC). Notice that, in addition

to the inconsistency because of the correlation between X2j and ηj, the MRE as

well as the MRC have not been formally extended to the case of random right

censoring. To evaluate the relative performance of our censoring adjustment, we

firstly carry out the simulations for the linear model of Design I without censoring

(but X2j ∼ U [2, 3]). To maximize the objective functions, we revert again to the

above grid search method. The two censoring cases are also built upon the linear

setup of Design II and contain two different average censoring ratios, .25 and .35.

The censoring variable Cj is sampled from a uniform distribution U [1, 6] (Design

IV) and U [1, 8] (Design V), respectively. Notice that the support of Cj ‘covers’

the support of Yj in both cases so that only the degree of (right) censoring varies.
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Turning to the simulation results, one can see that the effect of censoring drives up

the biases particularly at small sample sizes. Somewhat surprisingly, the negative

impact appears most pronounced for the method proposed in this paper, even though

the deterioration slowly vanishes as the sample size increases. Despite this more

negative effect of censoring, one can observe that, as expected from a theoretical

perspective, the difference in mean and median bias is substantial for all sample

sizes excelling the MRE and the MRC in particular for the case of ‘light’ censoring

(Design IV). As the censoring ratio increases, all bias measures become fairly large.

Once again, however, one observes a substantial improvement for the RankCF with

the size of the sample growing, while the bias measures do only moderately change

for the MRE and the MRC.

Overall, the results from this small simulation study indicate a good finite sam-

ple performance of the methodology for the chosen setups under different forms of

nonclassical measurement error and various degrees of censoring.

2.4 Empirical Illustration

In a recent study, Bricker and Engelhardt (2007) provided empirical evidence for

nonclassical measurement error in annual earnings data from the Health and Retire-

ment Study, which is a nationally representative longitudinal survey of the over 50

population in the US.15 The researchers found a mean-reverting pattern in the data

and a significant positive correlation between higher education and measurement

error. The mean measurement error (defined as the difference between self-reported

HRS and matched administrative annual earnings) was found to be approximately

$1,500 with a standard deviation of $13,899, which is substantial given that the

mean of self-reported and administrative earnings stood at $33,584 and $32,071,

respectively. The authors also established that for every additional $1,000 in ‘true’

earnings, measurement error fell by $100. Finally, men with a college degree or

higher earned 49.2% more than high-school drop-outs based on reported earnings,

15See the University of Michigan’s webpage http://hrsonline.isr.umich.edu/index.php for a de-
tailed description of the study and the data (access date: 06/2010).
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but only 42.1% more based on the matched administrative annual earnings. Unlike

in the paper of Bricker and Engelhardt (2007), the 1998 wave is chosen, which also

includes the ‘War Babies’ and the ‘Children of the Great Depression’ cohorts to

broaden the age range in the data and to comply with the assumption of a contin-

uous variable in the covariate vector. The sample is restricted to individuals with

positive labour income during that year (i.e. no self-employed) and individuals that

were the actual financial respondents of the household.16 Moreover, to further en-

sure a certain degree of homogeneity, only white individuals are selelcted for the

final dataset. The full support requirement in the assumption setup also meant

that persons below the age of 50 and above 70, and those with less than 10 years of

schooling were excluded.17 The final sample size comprised 2,753 observations.

For the earnings equation, (natural) logarithm of annual labour income is taken to

be the dependent variable and gender, age (as a proxy for experience), age squared,

and years of schooling are considered as model covariates.18 In a linear setup, using

years of schooling as independent variable embeds the assumption of log earnings

being a linear function of education, i.e. each additional year of education having the

same proportional effect on expected annual earnings. Notice that this constraint

does not apply to here though as the model setup allows for a nonlinear, monotonic

transformation function. It does only apply to the interpretation of competing

estimators imposing a linear model. The possibility of measurement error in the

independent variables (which can certainly be put into question) is ruled out and

the coefficient of gender is normalized to one as it is a well known result that being

a male has a positive effect on earnings. As instruments for the respondent’s years

of schooling we choose years of schooling of the mother and the father, respectively.

These family background covariates are typically correlated with the schooling level

16Annual labour income comprises (i) regular wage or salary income, (ii) bonuses, tips, commis-
sions, extra-pay from overtime, (iii) professional practice or trade earnings, and (iv) other income
earned from a second job or while in the military reserves.

17Various Kolmogorov Smirnov tests were carried out to compare the conditional distributions
of the estimated control function residuals for different subsets of the data. The results of these
tests indicate that the assumption of a full support is roughly satisfied for this range of the data.

18Notice that the use of three regressors plus an (estimated) control function requires the appli-
cation of a third order kernel. Since simulation results with higher order kernel functions turned
out to be less stable, we continue to employ the Epanechnikov kernel from Section 2.3 also in this
empirical illustration.
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of the individual, but unlikely to be related to the respondent’s actual misreporting

or his/ her ability.19

The estimation results are compared to the ones of the MRE and the MRC as well

as a Least Squares (OLS), a Least Absolute Deviations (LAD), and a Two-Stage

Least Squares (TSLS) estimator. The latter uses the mother’s and the father’s ed-

ucation as instrumental variables for the respondent’s years of schooling and serves

as an additional reference point for the education coefficient. Due to the discon-

tinuous character of the objective function, a Nelder-Mead Simplex method is used

to optimize the functions of the three rank estimators. As starting values for the

initial simplex the OLS estimates are chosen.20 To obtain a 90% confidence interval

for the parameters, a ‘m out of n’ bootstrap with subsample size of 1.600 and 200

replications was conducted.

Examining the results in Table 2.3 in Appendix B, one observes that point estimates

of age and age squared of our estimator (RankCF) lie amid the range of competing

estimates from the MRE, MRC, OLS, LAD, and TSLS. This is in line with the

finding of Bricker and Engelhardt (2007), who did not find a correlation between

measurement error and age. Naturally, the use of first stage estimates in the final

estimator (RankCF and TSLS) does come at the price of larger confidence regions.

However, notice that the range of the confidence bands is fairly similar for the TSLS

and our estimation procedure, and all point estimates still appear to be significant

at a 10% level. Turing to the coefficient of interest, the education coefficient of

our estimator differs from its competitiors and falls substantially below their values

hinting at an upwards bias in the education coefficient of the other estimators. It can

of course not be established whether the size reduction in the estimated education

coefficient can be attributed to an elimination of the measurement error or the

standard ability bias (by standard arguments, one would expect the abilitiy bias

to be positive, which corresponds to the direction of the measurement error bias

as found by Bricker and Engelhardt (2007)). However, the relatively unchanged

19Despite criticism in the literature about the suitability of parental education as an instrumental
variable for childrens’ education, it is deemed that these variables still serve the purpose of this
small scale illustration.

20Notice that the results were rather insensitive to small variations in the initial simplex, e.g.
changing to an average of OLS and LAD or the TSLS estimates.
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TSLS estimate of the education coefficient suggests that measurement error might

be the reason for the drop in size. This conjecture is supported by the observation

that there are no substantial differences between the estimates of OLS and LAD on

one hand and MRE and MRC on the other, which suggests that a violation of the

linearity restriction is unlikely to be the driving force behind the difference between

the TSLS and the RankCF result.

Summarizing this small illustrative example that looks at a log earnings equation

with years of education, gender, age, and age squared as covariates using the 1998

wave of the HRS, it is found that point estimates for the education coefficient pro-

vided by the estimation procedure proposed in this paper differ quite substantially

from those of its competitors. Moreover, since the age coefficient of the estimatior

of section 2.2.3 is largely in line with the values obtained from the other estimators

(confirming Bricker and Engelhardt (2007), who did not find a substantial correla-

tion of measurement error with other characteristics such as age), the illustrative

results hint at the presence of measurement error bias in standard earnings equation

regressions based on the HRS. Together with the empirical evidence of Bricker and

Engelhardt (2007) for a mean-reverting non-classical measurement error in annual

earnings that is correlated with education (Bricker and Engelhardt, 2007) from the

1992 wave, this underlines the need to adjust for measurement error bias when exam-

ining the determinants of annual labour income of older workers in the HRS.

2.5 Conclusion

This paper proposes a multi-step procedure to identify and estimate the parameter

vector of the monotone transformation model when the continuous dependent vari-

able is subject to nonclassical measurement error. Empirical evidence examining

duration and earnings data collected via survey questionnaires often suggests that

such a measurement error represents the rule rather than the exception. Taking on

a reduced form perspective, a methodology to address measurement error when the

researcher does not dispose of any information about the underlying distribution of

either the true dependent variable or the measurement error is developed, but he or
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she only has a suspicion about the correlation pattern of the latter. Combining a

modified control function approach, which requires the existence of a suitable instru-

mental variable vector, with a rank-type argument, it is shown that it is possible to

recover the aforementioned parameter vector consistently up to a location and size

normalization. We derive the estimator’s asymptotic properties and also demon-

strate the methodology’s good finite sample performance in a small Monte Carlo

Study. Finally, an empirical illustration investigating the effect of years of schooling

on annual (log) earnings data from the Health and Retirement Study concludes this

paper. Substantially different point estimates are found using our estimation proce-

dure (relative to other estimators) suggesting that to account for correct inference

is important in this context.

Extensions of the present paper and topics for future research include the non-

parametric recovery of the unknown transformation function m(·), which requires

a point identification result for the parameter vector hence providing another mo-

tivation for the asymptotic result derived in this paper. Being able to identify and

nonparametrically estimate the transformation function is of particular interest in

survival analysis, where the function is typically labelled ‘integrated baseline hazard’

and of substantial importance for policy analysis purposes. Alternatively, in con-

texts where the large support assumption appears to be unjustifiable, the researcher

might instead be interested in abandoning the goal of point identification in favour

of sharp bounds on the parameter vector. Such an extension was considered by

Imbens and Newey (2009) in a similar setup and represents an important future

extension of the present work.

The case of measurement error in multiple spell duration models appears to be an-

other important area of future research, too: despite suitable stationarity assump-

tions on the measurement error (similar to the ones used in Abrevaya (2000) for

the idiosyncratic error terms), such an extension is more complex as ‘fixed effects’

estimators typically exploit ‘intra-unit’ variation rendering the integration over the

support of the control function more difficult. Finally, a last field of interest might

be the case of binary dependent variables: duration models in discrete time are

often set up using binary dependent variables, where the variable in a particular
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period takes on the value zero if the spell is on-going and one if the spell fails. Thus,

falsely reported or recorded responses turn the nonclassical measurement error into

a misclassification rather than a measurement problem, which is non-trivial due

to the nonlinear nature of the underlying model (Hausman, Abrevaya, and Scott-

Morton, 1998).
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A2 Appendix

A2.1 Assumptions

Let ‖·‖ denote the Euclidean norm and ∇i the i-th order derivative of a function.

B1 Cj is i.i.d. and independent of Yj . Moreover, Cj satisfies:

(i) P[Cj ≤ Yj |Yj = y,Xj = x, Vj = v] = P[Cj ≤ Yj |Yj = y].

(ii) G(·) is continuous.

(iii) φY ≤ φC
with φY = inf{t : FY (t) = 1}, φC = inf{t : G(t) = 1}, and FY (t) = P[Yj ≤ t],

G(t) = P[Cj ≤ t].

(iv) When φY < φC , lim sup
t→φY

(∫ φY

t
(1 − FY (s))dG(s))1−ρ/(1 − FY (t))

)
< ∞, for some

2
5 < ρ < 1

2 .

(v) When φY = φC , for some 0 ≤ ς < 1, (1−G(t))ς = O((1− FY (t−))) as t→ φY .

(vi) Let FU (t) = P[Uj ≤ t] and H(Uj) =
∫ Uj

−∞ dG(s)/({1 − FU (s)}{1 − G(s)}). Assume

that: ∫
UjH

1
2 +ε(Uj)[1−G(Uj−)]−1dFU,X,V (U,X, V ) <∞

B2 The elements x in the support of X can be partitioned into subvectors of discrete x(d) and con-

tinuous x(c) components. Let X (d) and X (c) be the corresponding discrete and continuous

parts of X ⊂ W. Assume that the conditional density (given x(d) ∈ X (d)) on W is every-

where continuous and strictly bounded away from zero. Moreover, assume that X is not

contained in any proper linear subspace of Rdx and that the subset X(1) of one component

of the dx-dimensional set X = X (d) ×X (c) contains the interval:

[
µ(x)− 3 max

x′
(−1)

θ
|x′(−1)θ| ; µ(x) + 3 max

x′
(−1)

θ
|x′(−1)θ|

]
for any x ∈ X , where x(−1) denotes the remaining (dx − 1) dimensional component and the

maximum is taken over X(−1) ×Θ with max
x′
(−1)

θ
|x′(−1)θ| <∞.

B3 The multivariate kernel function K = k × . . . × k with K : Rd 7−→ R is symmetric, has

compact support, and is differentiable (with bounded derivative). In addition, K(·) satisfies

(i)
∫
K(u)du = 1, (ii)

∫
K(u)uγdu = 0 for γ = 1, . . . , r − 1, (iii)

∫
K(u)urdu 6= 0 and∫

K(u)urdu <∞, (iv)
∫
|K(u)|du <∞, and (v)

∫
K2(u)du <∞.

B4 θ0 lies in the interior of the parameter space Θ, a compact subset of Rd−1.
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B5 For any value x(d) ∈ X (d), assume that µ(·) is twice differentiable in x(c). In addition, given

0 < γ ≤ 1 and δ0 > 0, for every x
(c)
1 , x

(c)
2 ∈ X (c) and i = 0, 1, 2:

∥∥∇iµ(x
(c)
1 , x(d))−∇iµ(x

(c)
2 , x(d))

∥∥ ≤ δ0∥∥x(c)
1 − x

(c)
2

∥∥γ
where ∇i denotes the order of derivative w.r.t x(c).

B6 Let ψ1(x, θ) and ψ2(x, θ) be defined as in (2.11) and (2.12):

• For each x in X , ψ1(x, ·) is twice differentiable with second order Lipschitz derivative.

• E[∇θθ′ψ1(·, θ0)] is negative definite.

• For each x ∈ X , ψ2(x, ·) is twice continuously differentiable in the second argument.

• Let ∇if(·, ·) denote the order of derivative of fX,V (·, ·) w.r.t. the first argument:

assume that E[‖UG∇θψ2(X, θ)∇ifX,V (X,V )‖2+δ] <∞ and

E[‖UG∇θθ′ψ2(X, θ)∇ifX,V (X,V )‖2+δ] <∞ for some δ > 0 and all θ ∈ Θ.

B7 Assume that E
[
V 2+δ

]
<∞, E

[
µ(x, V )2+δ

]
<∞, E

[
‖Uj/{1−G(Uj)}2‖2+δ

]
<∞ and

E
[
‖UGfX,V (X,V )‖2+δ

]
<∞ for some δ > 0. Moreover, suppose that FV (·) is continuously

differentiable in its argument for every V ∈ V.

B8 Let dz ≤ d ≤ r + 1
2dz (note that r is defined in B3). For d < 3, the bandwidth sequence h

satisfies:

nhd+3 −→ 0 and (n
1
2h

2r+dz
2 )/ ln(n)

1
2 −→∞

and for d ≥ 3:

nh2d −→ 0 and (n
1
2h

2r+dz
2 )/ ln(n)

1
2 −→∞

.

Remark 1: B1 (i) together with the independence assumption of Cj are sufficient for the equality

in (2.6). Condition (iii) ensures that we observe the entire distribution and, in combination with

(iv) and (v), is relevant for the estimation of G(Uj−)) (see Lu and Cheng (2007) for details). The

parameter ρ is determined by the “heaviness” of censoring, i.e. the smaller ρ, the fewer uncensored

observations actually lie close to the “endpoint” φC . Finally, (vi) is a square integrability condition

used in the proof of Theorem 3.

Remark 2: Assumption B2 extends condition A2 in the text, allowing also for discrete components

in the parameter vector. The latter part of the condition ensures that identification is not lost by

restricting ourselves to a compact subset of the support. That is, it is assumed that the set X1 of

one regressor is sufficiently large (relative to the others), see Khan (2001) for details.

Remark 3: The requirement dz ≤ d ≤ r+ 1
2dz of the bandwidth condition B8 allows to neglect the

bias of the higher order kernel defined in B3. For a five dimensional instrument vector Zj (dz = 5)
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and a five dimensional covariate vector (four regressors plus the estimated control function V̂j) as

in the empirical illustration of section 2.4 for instance, we thus require the use of a third order

kernel function to meet the above restriction and to be able to negelect the bias in the asymptotic

distribution.

33



A2.2 Proofs

Notice that it is implicitly understood that whenever Kh,j(·, ·) is evaluated at V̂i, we sum over

V̂j , while if the kernel function is evaluated at Vi, we sum over Vj . Moreover, we will suppress

the dependency of I[Xk ∈ X , Vi ∈ V] on Xk in the following and write the indicator function as

Ii.

Proof of Lemma 1

By A1, we have that Zj ⊥ ηj , εj , Vj . Since Zj is independent of both Vj and ηj , it follows by

standard arguments:

Zj ⊥ ηj |Vj

Moreover, since Xj = g(Zj) + v given Vj = v is a function of Zj only, this implies:

Xj ⊥ ηj |Vj

By identical arguments and using the fact that εj is independent of Vj , we can also establish that

Xj ⊥ εj |Vj . Hence, we obtain:

E[Yj |Xj = x, Vj = v] = E[m(X ′jβ0 + εj) + ηj |Xj = x, Vj = v]

= E[m(x′β0 + εj)|Xj = x, Vj = v] + E[ηj |Xj = x, Vj = v]

= E[m(x′β0 + εj)|Vj = v] + E[ηj |Vj = v]

where the last equality follows by conditional independence. Using the argument of Blundell and

Powell (2003) or Imbens and Newey (2009), by condition A2 we can integrate over the marginal

distribution of V and apply iterated expectations to obtain:∫
E[Yj |Xj = x, Vj = v]fV (v)dv =

∫
E[m(x′β0 + εj)|Vj = v]fV (v)dv +

∫
E[ηj |Vj = v]fV (v)dv

=E[m(x′β0 + εj)] + E[ηj ]

for each x ∈ X . The result then follows by A3 and the strict monotonicity of m(·). That is, for

two observations i, j (i 6= j) with x, x̃ ∈ X :

E[m(x′β0 + εi)] + E[ηi] > E[m(x̃′β0 + εj)] + E[ηj ] if x′β0 > x̃′β0

Hence, the result follows. �
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Proof of Theorem 2

Using the same steps as in Theorem 3.1 of Khan (2001) and Lemma A1 below, the result follows

instantly. �

Lemma A1. Given B1 to B5, B7, and B8, we have that:

µ̂(x)− µ(x) = Op

((
ln(n)

nhdz

) 1
2
)

= op(1)

for every x ∈ X .

Proof of Lemma A1

Notice that:∣∣∣∣ 1n
n∑
i=1

µ̂(x, V̂i)− µ(x)

∣∣∣∣ ≤∣∣∣∣ 1n
n∑
i=1

µ̂(x, V̂i)−
1

n

n∑
i=1

µ̃(x, Vi)

∣∣∣∣+

∣∣∣∣ 1n
n∑
i=1

µ̃(x, Vi)− µ(x)

∣∣∣∣
=L1n + L2n

(A-2.1)

where µ̃(x, ·) is defined as (2.8) in the text with Vj , Ii, UjG replacing V̂j , Îi, UjĜ. We start with

L1n, which can be decomposed as:

L1n =

∣∣∣∣∣ 1n
n∑
i=1

{
ŝx,V (x, V̂i)− s̃x,V (x, Vi)

f̃x,V (x, Vi)
−
f̃x,V (x, Vi)− f̂x,V̂ (x, Vi)

f̃x,V (x, Vi)
× µ̂(x, V̂i)

}∣∣∣∣∣
=L11n + L12n

(A-2.2)

where

ŝx,V̂ (x, V̂i) =
1

nhd

n∑
j=1

ÎiUjĜKh,j(x, V̂i) (A-2.3)

and

f̂x,V̂ (x, V̂i) =
1

nhd

n∑
j=1

ÎiKh,j(x, V̂i) (A-2.4)

with f̃x,V (x, Vi) and s̃x,V (x, Vi) defined analoguously using UjG, Ii, Vj , respectively (recall that

d = dx + 1). We examine L11n first. This term can be further decomposed to tackle the random

denominator:

L11n =
1

n

n∑
i=1

{
ŝx,V (x, V̂i)− s̃x,V (x, Vi)

fx,V (x, Vi)
+

[
1

f̃x,V (x, Vi)
− 1

fx,V (x, Vi)

]
(ŝx,V (x, V̂i)− s̃x,V (x, Vi))

}

By B3 and B8, the second term is of smaller order since sup
x,V ∈W

∣∣∣f̃x,V (x, V )−fx,V (x, V )| = Op((ln(n)/nhd)
1
2 ) =

op(1) with fx,V (x, Vi) denoting the true density evaluated at x, Vi. As for the first term, fx,V (x, V )
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is strictly bounded away from zero for all x ∈ X and V ∈ V by B2. A decomposition of the first

term of L11n yields:

∣∣∣ 1

n2hd

n∑
i=1

n∑
j=1

1

fx,V (x, Vi)

(
Îi − Ii

)
UjGKh,j(x, Vi)

∣∣∣
+
∣∣∣ 1

n2hd

n∑
i=1

n∑
j=1

1

fx,V (x, Vi)
IiUjGKh(x−Xj)

{
kh(V̂i − V̂j)− kh(Vi − Vj)

}∣∣∣
+
∣∣∣ 1

n2hd

n∑
i=1

n∑
j=1

1

fx,V (x, Vi)
Ii
(
UjĜ − UjG

)
Kh,j(x, Vi)

∣∣∣
+op(1)

(A-2.5)

where op(1) captures terms of smaller order containing cross-products. Denote the first, second,

and third term as L111n, L112n, and L113n, respectively. We examine each of these terms separately,

starting with L111n. Notice that by A3, B2, B8, and standard arguments one can show that:

max
1≤j≤n

|V̂j − Vj | = Op

((
ln(n)

nhdz

) 1
2
)

Noting that |Îi− Ii| = |I[a ≤ V̂i ≤ b]− I[a ≤ Vi ≤ b]|, we can use the same argument as in Lemma

A3 of Newey, Powell, and Vella (1999) to show that for ∆n = ((ln(n)/nhdz )
1
2 ) we have:

|Îi − Ii| =|I[a ≤ Vi + (V̂i − Vi) ≤ b]− I[a ≤ Vi ≤ b]|

≤
(
I[|Vi − a| ≤ ∆n] + I[|Vi − b| ≤ ∆n]

)
for 1 ≤ i ≤ n. Turning back to L111n, this term can be expanded as:

L111n ≤
∣∣∣E[ 1

hd
1

fx,V (x, Vi)

(
Îi − Ii

)
UjGKh,j(x, Vi)

]∣∣∣
+
∣∣∣ 1

n2hd

n∑
i=1

n∑
j=1

{ 1

fx,V (x, Vi)

(
Îi − Ii

)
UjGKh,j(x, Vi)

− E
[
fx,V (x, Vi))

(
Îi − Ii

)
UjGKh,j(x, Vi)

]}∣∣∣
=M1 +M2

We consider M1 first. Using the positivity of UjG:

M1 ≤E
[ 1

hd
1

fx,V (x, Vi)
|Îi − Ii|UjG|Kh,j(x, Vi)|

]
≤E

[ 1

hd
1

fx,V (x, Vi)

(
I[|Vi − a| ≤ ∆n] + I[|Vi − b| ≤ ∆n]

)
UjG|Kh,j(x, Vi)|

]
We examine only the first term, the second one follows by identical arguments. Setting a = 0

without loss of generality and letting u1 = ((x−Xj)/h), u2 = ((Vi − Vj)/h), and fV (·) denote the
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density of Vi and Vj , after change of variables we obtain:

∫ ∫ ∫ ∫ ∆n

0

UjG|Kh(u1)kh(u2)|fX,V (x+ u1h, Vj + u2h)

fX,V (x, Vj + u2h)
fX,V (x, Vj)dVjdu1du2dFUG

(UG)

=

∫ ∫ ∆n

0

UjG|Kh(u1)kh(u2)|fX,V (x, Vj)dVjdFUG
(UG)(1 +O(h))

=O(∆n)

Next we consider M2. The variance of this term is given by:

E
[(

1

n2hd

n∑
i=1

n∑
j=1

{ 1

fx,V (x, Vi)

(
Îi−Ii

)
UjGKh,j(x, Vi)−E

[ 1

fx,V (x, Vi)

(
Îi−Ii

)
UjGKh,j(x, Vi)

]})2]
+O(∆2

n)

The first expectation above can be dealt with in the same way as before. This yields:

E
[(

1

n2hd

n∑
i=1

n∑
j=1

{ 1

fx,V (x, Vi)

(
Îi − Ii

)
UjGKh,j(x, Vi)− E

[ 1

fx,V (x, Vi)

(
Îi − Ii

)
UjGKh,j(x, Vi)

]})2]

=O

(
1

n2hd
∆n

)
+O

(
∆2
n

)

Using Chebychev’s inequality and B8, M2 = op(∆n), so the overall rate becomes:

L111n = Op

((
ln(n)

nhdz

) 1
2
)

Next we examine the second term of (A-2.5), L112n. A mean value expansion around (Vi − Vj)

yields:

L112n =

∣∣∣∣ 1

n2hd+1

n∑
i=1

n∑
j=1

1

fx,V (x, Vi)
IiUjGKh(x−Xj)k

(1)
h (V i − V j)

(
(V̂i − Vi) + (Vj − V̂j)

)∣∣∣∣
where V i, V j denote intermediate values and k(1)(·) is the derivative of the kernel function w.r.t.

its argument. We can rewrite the expression as:

∣∣∣∣ 1

n2hd+1

n∑
i=1

n∑
j=1

1

fx,V (x, Vi)
IiUjGKh(x−Xj)k

(1)
h (V i − V j)

((
ĝ(Zi)− g(Zi)

)
+
(
g(Zj)− ĝ(Zj)

))∣∣∣∣
Since (ĝ(Zi) − g(Zi)) and (g(Zj) − ĝ(Zj)) are identical, we only examine the first term involving

(ĝ(Zi) − g(Zi)). Letting K
(1)
h,j(x, V i) = Kh(x −Xj) × k(1)

h (V i − V j), we can decompose the first
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term into:

L112n ≤

∣∣∣∣∣ 1

nhd+1

n∑
i=1

E
[ 1

fx,V (x, Vi)
IiUjGK

(1)
h,j(x, V i)

]
×
(
ĝ(Zi)− g(Zi)

)∣∣∣∣∣+∣∣∣∣∣ 1

n2hd+1

n∑
i=1

n∑
j=1

( 1

fx,V (x, Vi)
IiUjGK

(1)
h,j(x, V i)− E

[ 1

fx,V (x, Vi)
IiUjGK

(1)
h,j(x, V i)

])(
ĝ(Zi)− g(Zi)

)∣∣∣∣∣
=N1n +N2n

We start with N1n. The expectation expression can be shown to be O(1) using iterated expecta-

tions, change of variables, integration by parts, B1, B2, and B3. Moreover, since 1√
n

n∑
i=1

ĝ(Zi) −

g(Zi) converges in distribution (see Proof of Theorem 3), we have that N1n = Op(n
− 1

2 ). The

second term N2n is of smaller order and can be shown to be op(n
− 1

2 ) using similar arguments.

Thus:

L112n = Op

(
1√
n

)

It remains to consider L113n of (A-2.5). Using the non-negativity the indicator function together

with the decomposition argument of Theorem 2 in Lu and Cheng (2007, p. 1915) for
∣∣UjĜ −UjG∣∣

yields:

L113n ≤
1

n2hd

n∑
i=1

n∑
j=1

1

fx,V (x, Vi)
Ii
∣∣UjĜ − UjG∣∣∣∣Kh,j(x, Vi)

∣∣
≤ sup
t≤φF

|Ĝ(t)−G(t)|

[
1 + sup

t≤max
j
{Uj}

∣∣{Ĝ(t)−G(t)}
∣∣∣∣1− Ĝ(t)

∣∣
]
×

1

n2hd

n∑
i=1

n∑
j=1

∣∣∣ Uj
{1−G(Uj)}2

∣∣∣ 1

fx,V (x, Vi)
Ii

∣∣∣Kh,j(x, Vi)
∣∣∣

By Srinivasan and Zhou (1994, p.199), we have that:

sup
t≤max

j
{Uj}

∣∣{Ĝ(t)−G(t)}
∣∣∣∣1− Ĝ(t)

∣∣ = Op(1)

The term:
1

n2hd

n∑
i=1

n∑
j=1

∣∣∣ Uj
{1−G(Uj)}2

∣∣∣ 1

fx,V (x, Vi)
Ii

∣∣∣Kh,j(x, Vi)
∣∣∣

can again be dealt with in the same way as L112n using B1, B3, B7 to show that it is Op(1).

Finally, by conditions B1 and the result of Theorem 3.1 in Chen and Lo (1997):

sup
t≤φF

|Ĝ(t)−G(t)| = Op(n
−ρ)

for 2
5 < ρ < 1

2 (where ρ in turn depends on the “heaviness” of censoring). Putting together these
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results, the rate of the piece is:

L113n = Op(n
−ρ)

Hence, using B8, the convergence rate of L11n becomes:

L11n = Op

((
ln(n)

nhdz

) 1
2
)

The same argument can be used to show that:

L12n = Op

((
ln(n)

nhdz

) 1
2
)

and hence the overall rate Op((ln(n)/nhdz )
1
2 ) of L1n follows.

Next we consider L2n =

∣∣∣∣ 1
n

n∑
i=1

µ̃(x, Vi)− µ(x)

∣∣∣∣. We examine the following decomposition:

L2n ≤
∣∣∣∣ 1n

n∑
i=1

µ̃(x, Vi)− µ(x, Vi)

∣∣∣∣+

∣∣∣∣ 1n
n∑
i=1

µ(x, Vi)− µ(x)

∣∣∣∣
where µ(x) = E

[
µ(x, Vi)

]
. Since µ̃(x, Vi) is a consistent estimator for µ(x, Vi) and E

[
(µ(x, V )2

]
<

∞, we have: ∣∣∣∣ 1n
n∑
i=1

µ̃(x, Vi)− µ(x, Vi)

∣∣∣∣ = Op

(
1√
n

)
Likewise, since µ(x, Vi) is continuous (and hence bounded) on W and B7, we have that:

∣∣∣∣ 1n
n∑
i=1

µ(x, Vi)− µ(x)

∣∣∣∣ = Op

(
1√
n

)

�

Proof of Theorem 3

Let Alk(θ) = I[Xk ∈ X ]
{
I[X ′kβ(θ) > X ′lβ(θ)] − I[X ′kβ(θ0) > X ′lβ(θ0)]

}
. Since the second term

involving β(θ0) does not affect maximization, we note that θ̂ still maximizes:

Qn(θ) =
1

n(n− 1)

∑
k 6=l

µ̂(Xk)Alk(θ) (A-2.6)

and θ0 its corresponding probability limit:

Q(θ) = E
[
µ(Xk)Alk(θ)

]
(A-2.7)
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Notice in addition that by the normalizations in (A-2.6) and (A-2.7), we have that Qn(θ0) =

Q(θ0) = 0. We expand Qn(θ) around the true µ(Xk) yielding:

1

n(n− 1)

∑
k 6=l

µ(Xk)Alk(θ) +
1

n(n− 1)

∑
k 6=l

(
µ̂(Xk)− µ(Xk)

)
Alk(θ)

=S1n + S2n

In the following, we proceed by examining S1n and S2n in turn, starting with S1n. Identical

arguments to the proof of Lemma A.3 in Khan (2001) can be used to show that S1n yields the

gradient term plus terms that are of order op(n
−1) once

√
n-consistency of ‖θ − θ0‖ has been

established. That is:

S1n = (θ − θ0)
′
J(θ − θ0) + op

(‖θ − θ0‖√
n

)
+ op

(
‖θ − θ0‖2

)
+ op

( 1

n

)
with

J =
1

2
E
[
∇θθ′ψ1(Xk, θ0)

]
and ψ1(x, θ) defined in (2.11) of section 2.2.3.

S2n on the other hand can be further expanded to give:

1

n(n− 1)

∑
k 6=l

(
µ̃(Xk)− µ(Xk)

)
Alk(θ) +

1

n(n− 1)

∑
k 6=l

(
µ̂(Xk)− µ̃(Xk)

)
Alk(θ)

=S21n + S22n

where µ̃(x) is defined analoguously to µ̂(x) using the true UjG, Ii, Vj . S21n and S22n determine

the components of the variance. They can be tackled through Lemma B3 and Lemmata B4 to B6,

respectively: using the result of Lemma B3 below, S21n = (θ − θ0)
′ 1√

n
W0n + op

(
‖θ − θ0‖/

√
n
)
,

where W0n is a sum of zero mean vector random variables that converges in distribution to a

random vector defined in Lemma B3. It remains to examine S22n, which can be expanded as in

the proof of Theorem 2:

S22n =
1

n(n− 1)

∑
k 6=l

1

n

n∑
i=1

{
ŝX,V (Xk, V̂i)− s̃X,V (Xk, Vi)

f̃X,V (Xk, Vi)
+
f̃X,V (Xk, Vi)− f̂X,V (Xk, V̂i)

f̃X,V (Xk, Vi)
µ̂(Xk, V̂i)

}
Alk(θ)

=S
(1)
22n + S

(2)
22n

where ŝX,V (·, ·) and f̂X,V (·, ·) are defined in (A-2.3) and (A-2.4), respectively, and s̃X,V (·, ·) and
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f̃X,V (·, ·) follow accordingly. We start with S
(1)
22n, which can be further decomposed into:

S
(1)
22n =

1

n(n− 1)

∑
k 6=l

{
1

n

n∑
i=1

1
nhd

n∑
j=1

(
Îi − Ii

)
UjGKh,j(Xk, Vi)

1
nhd

n∑
j=1

IiKh,j(Xk, Vi)

}
×Alk(θ)

+
1

n(n− 1)

∑
k 6=l

{
1

n

n∑
i=1

1
nhd

n∑
j=1

IiUjG
(
Kh,j(Xk, V̂i)−Kh,j(Xk, Vi)

)
1
nhd

n∑
j=1

IiKh,j(Xk, Vi)

}
×Alk(θ)

+
1

n(n− 1)

∑
k 6=l

{
1

n

n∑
i=1

1
nhd

n∑
j=1

Ii
(
UjĜ − UjG

)
Kh,j(Xk, Vi)

1
nhd

n∑
j=1

IiKh,j(Xk, Vi)

}
×Alk(θ)

+ op(1)

=S221n + S222n + S223n + op(1)

(A-2.8)

where the op(1) term contains cross-products of smaller order. We examine each of the three terms

seperately starting with S221n, which by Lemma B4 is equal to:

(θ − θ0)
′ 1√
n
W1n + op

(
‖θ − θ0‖√

n

)
+ op

(
1

n

)

where W1n is again defined in Lemma B4 below. Likewise, for S222n and S223n, we can apply

Lemma B5 and B6 to obtain:

S222n = (θ − θ0)
′ 1√
n
W2n + op

(
‖θ − θ0‖√

n

)
+ op

(
1

n

)

and

S223n = (θ − θ0)
′ 1√
n
W3n + op

(
‖θ − θ0‖√

n

)
+ op

(
1

n

)
with W2n and W3n being again sums of zero mean vector random variables that converge to a

normal distribution defined in Lemma B5 and B6, respectively. Next we consider S
(2)
22n. A similar

decomposition as for S
(1)
22n and arguments as in Lemmata B4 and B5 can be used to show that the

limiting distribution of this term is the same as that of S221n and S222n.

Taking these decompositions of S1n and S2n together and using B5, Lemma B1 and B2 below

become directly applicable establishing
√
n-consistency and asymptotic normality. Notice that for

(i) of Lemma B1, bn can be set to be o(1) by the consistency result of Theorem 2. (ii) of the same

lemma is satisfied by B2 and B5 in combination with a second order Taylor expansion of Q(θ) in

(A-2.7) around θ0: Q(θ) = 1
2 (θ − θ0)′∇θθ′Q(θ)(θ − θ0) ≤ −κ‖θ − θ0‖2 for some constant κ and

θ ∈ Θ. �

The following two lemmata are from Theorem 3.2 of Khan (2001) (we adapt notation of the original
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paper to our setup).

Lemma B1. (Lemma A.1 of Khan (2001)) Let θ̂ maximize Qn(θ) in (A-2.6) and θ0 maximizes

Q(θ) in (A-2.7). Let bn, ln −→ 0 as n −→∞. If:

(i) θ̂ − θ0 = Op(bn)

(ii) there exists a neighbourhood N of 0 and a positive constant κ for which:

Q(θ) ≤ −κ‖θ − θ0‖2

for all θ in N ,

(iii) uniformly over Op(bn) neighbourhoods of 0,

Qn(θ) = Q(θ) +Op(‖θ − θ0‖/
√
n) + op(‖θ − θ0‖2) +Op(ln) (A-2.9)

then:

‖θ̂ − θ0‖ = Op

(
max

{
l
1
2
n , 1/

√
n
})

Lemma B2. (Lemma A.2 of Khan (2001)) Suppose θ̂ is
√
n-consistent for θ0, an interior

point of Θ. Suppose also that uniformly over Op(1/
√
n) neighbourhoods of 0:

Qn(θ) = (θ − θ0)′J(θ − θ0) +
1√
n

(θ − θ0)′Wn + op(1/n) (A-2.10)

where J is a negative definite matrix, and Wn converges in distribution to a N(0,Σ) random vector.

Then
√
n(θ̂ − θ0)

d→ N(0, J−1ΣJ−1)

.

Lemma B3. Under assumptions A1-A3, B1-B6, and B8, the term 1
n(n−1)

∑
k 6=l

(
µ̃(Xk) −

µ(Xk)
)
Alk(θ) is equal to:

(θ−θ0)
′ 1√
n
W0n+op

(
‖θ − θ0‖√

n

)
= (θ−θ0)

′ 1

n

n∑
m=1

Im(UmG−µ(Xm))∇θψ2(Xk = Xm, θ0)+op

(
‖θ − θ0‖√

n

)

where
1√
n

n∑
m=1

Im(UmG − µ(Xm))∇θψ2(Xk = Xm, θ0)
d−→ N(0,Ω0)
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with

Ω0 =

∫ (
Im(UmG − µ(Xm))∇θψ2(Xm, θ0)

)
×
(
Im(UmG − µ(Xm))∇θψ2(Xm, θ0)

)′
dFUG,X,V (UmG, Xm, Vm)

where ψ2(·, ·) is defined in (2.12) of section 2.2.3.

Proof of Lemma B3

Notice that 1
n(n−1)

∑
k 6=l

(
µ̃(Xk)− µ(Xk)

)
Alk(θ) can be rewritten as:

1

n(n− 1)

∑
k 6=l

{
1

n

n∑
i=1

1
nhd

n∑
j=1

Ii
(
UjG − µ(Xk)

)
Kh,j(Xk, Vi)

1
nhd

n∑
j=1

IiKh,j(Xk, Vi)

}
Alk(θ)

=
1

n(n− 1)

∑
k 6=l

{
1

n

n∑
i=1

1
nhd

n∑
j=1

Ii
(
UjG − µ(Xk)

)
Kh,j(Xk, Vi)

fX,V (Xk, Vi)

}
Alk(θ) + op(1)

where f̂X,V (Xk, Vi) = 1
nhd

n∑
j=1

IiKh,j(Xk, Vi) and the op(1) term follows as in the proof of Theorem

2 by B3 and the bandwidth condition B8. As for the first term, fX,V (X,V ) is strictly bounded

away from zero for every X,V ∈ W by B2 and can be restated as:

1

n(n− 1)(n− 2)(n− 3)

∑
k 6=l 6=i 6=j

1

hd
1

fX,V (Xk, Vi)
Ii
(
UjG − µ(Xk)

)
Kh,j(Xk, Vi)Alk(θ) (A-2.11)

where omitting terms with k = l = i = j results in an error of magnitude op(‖θ − θ0‖/nhd). The

expression in (A-2.11) is a fourth order U-statistic for each θ ∈ Θ. Letting ξk = {Ik, UkG, Xk, Vk}

(ξl, ξi, ξj are defined accordingly), (A-2.11) is:

1

n(n− 1)(n− 2)(n− 3)

∑
k 6=l 6=i 6=j

qn(ξi, ξj , ξk, ξl; θ) (A-2.12)

where qn(·, ·, ·, ·; θ) = 1
hd Ii

(
UjG − µ(Xk)

)
Kh,j(Xk, Vi)Alk(θ) is the ‘kernel’ function of the U-

statistic. Using iterated expectations repeatedly, change of variables, together with B1, B3, B5,

and B6 one can show that qn(·, ·, ·, ·) is degenerate in ξk, ξl, and ξi for each θ ∈ Θ since the expec-

tation of (UjG − µ(Xk)) conditional on Xk is zero. By iterated expectations, this in turn implies

that E
[
qn(ξk, ξl, ξi, ξj , θ)

]
= 0. By contrast, after change of variables, iterated expectations, and
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dominated convergence, the term E
[
qn(ξk, ξl, ξi, ξj , θ)

∣∣∣ξj] yields:

lim
n−→∞

E
[
qn(ξk, ξl, ξi, ξj , θ)

∣∣∣ξj] =E
[
q(ξk, ξl, ξi, ξj , θ)

∣∣∣ξj]
=
(
UjG − µ(Xj)

)
Ij E

[
Alk(θ)

∣∣∣Xk = Xj

]
=(θ − θ0)

′
(
UjG − µ(Xj)

)
Ij∇θψ2(Xj , θ0) +O(‖θ − θ0‖2)

where the last equality follows by a second order Taylor expansion of E
[
Alk(θ)

∣∣∣Xk = Xj

]
around

θ0. Applying the Hoeffding decomposition to the degenerate fourth order U-process in (A-2.12)

(Serfling, 1980) and noting that, by Lemma A.6 in Khan (2001) and the arguments used therein,

all terms except the leading term are of order op

(
‖θ−θ0‖√

n

)
, yields:

1

n(n− 1)(n− 2)(n− 3)

∑
k 6=l 6=i 6=j

qn(ξi, ξj , ξk, ξl; θ) =
1

n

n∑
m=1

E
[
q(ξk, ξl, ξi, ξj , θ)

∣∣∣ξj = ξm

]
+op

(
‖θ − θ0‖√

n

)

and hence:

(θ − θ0)
′ 1

n

n∑
m=1

(
UmG − µ(Xm)

)
Im∇θψ2(Xk = Xm, θ0) + op

(
‖θ − θ0‖√

n

)

The expression:

1

n

n∑
m=1

(
UmG − µ(Xm)

)
Im∇θψ2(Xk = Xm, θ0) (A-2.13)

is a sum of zero mean random variables. Applying Lindberg Levy’s Central Limit Theorem (CLT)

yields the result of the lemma. �

Lemma B4. Under assumptions A1-A3, B1-B8, the term S221n defined in the proof of

Theorem 3 is equal to:

(θ − θ0)
′ 1√
n
W1n + op

(
‖θ − θ0‖√

n

)
+ op

(
1

n

)
=(θ − θ0)

′ 1

n

n∑
m=1

(
ĝ(Zm)− g(Zm)

)(
F

(1)
V

(
a
)

+ F
(1)
V

(
b
))∫

UjG∇θψ2(Xk, θ0)dFUG,X,V (UG, Xk, Vi)
)

+ op

(
‖θ − θ0‖√

n

)
+ op

(
1

n

)
where

1√
n

n∑
m=1

(
ĝ(Zm)−g(Zm)

)(
F

(1)
V

(
V a

)
+F

(1)
V

(
V b

))∫
UjG∇θψ2(Xk, θ0)dFUG,X(UG, Xk)

)
d−→ N

(
0,Ω1

)

with Ω1 = E1Φ1E
′

1:

Φ1 =

∫
V 2
i dFV (Vi)

44



and

E1 =
(
F

(1)
V

(
a
)

+ F
(1)
V

(
b
))∫

UjG∇θψ2(Xk, θ0)dFUG,X(UjG, Xk)

where FUG,X(·, ·) denotes the joint distribution function of UjG and Xk.

Proof of Lemma B4

As before, we start by replacing f̂X,V (Xk, Vi) with the true density fX,V (Xk, Vi) using B2, B3,

and B8. Moreover, notice that I{a ≤ V̂j ≤ b} − I{a ≤ Vi ≤ b} = I{V̂i ≤ b} + I{V̂i ≥ a} −

I{Vi ≤ b} − I{Vi ≥ a} =
(
I{V̂i ≤ b} − I{Vi ≤ b}

)
+
(
I{V̂i ≥ a} − I{Vi ≥ a}

)
. We focus on(

I{V̂i ≤ b} − I{Vi ≤ b}
)
, the other term will follow by an identical argument. Let FV (b) denote

the distribution function of Vi evaluated at b and Bijkl(θ) = f−1
X,V (Xk, Vi)UjGKh,j(Xk, Vi)Alk(θ).

Then we can decompose S221n as follows:

1

n(n− 1)(n− 2)(n− 3)

∑
k 6=l 6=i 6=j

(
I{Vi ≤ b+ (V̂i − Vi)} − I{Vi ≤ b}

) 1

hd
Bijkl(θ)

=
1

n(n− 1)(n− 2)(n− 3)

∑
k 6=l 6=i 6=j

{
I{Vi ≤ b+ (V̂i − Vi)} − FV

(
b+ (V̂i − Vi)

)
− I{Vi ≤ b}+ FV

(
b
)}
× 1

hd
Bijkl(θ)

+
1

n(n− 1)(n− 2)(n− 3)

∑
k 6=l 6=i6=j

(
FV

(
b+ (V̂i − Vi)

)
+ FV

(
b
)) 1

hd
Bijkl(θ)

=T1n(θ) + T2n(θ)

We start with T1n(θ). We examine the term involving FV

(
b
)
−I{Vi ≤ b}, the term with I{Vi ≤ b+

(V̂i−Vi)}−FV
(
b+(V̂i−Vi)

)
follows by the same argument. Adding and subtracting E

[
1
hdBijkl(θ)

]
yields:

T1n(θ) =
1

n(n− 1)(n− 2)(n− 3)

∑
k 6=l 6=i 6=j

(
FV

(
b
)
− I{Vi ≤ b}

)
E
[ 1

hd
Bijlk(θ)

]
+

1

n(n− 1)(n− 2)(n− 3)

∑
k 6=l 6=i 6=j

(
FV

(
b
)
− I{Vi ≤ b}

)
×

( 1

hd
Bijlk(θ)− E

[ 1

hd
Bijlk(θ)

])
=T11n(θ) + T12n(θ)

We start with the first piece, which can be simplified since no term depends on k,l, or j:

1

n

n∑
i=1

(
FV

(
b
)
− I{Vi ≤ b}

)
E
[ 1

hd
Bijlk(θ)

]
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Since E
[
FV

(
b
)
− I{Vi ≤ b}

]
= 0, notice that by change of variables, iterated expectations,

and a second order Taylor expansion of E
[
Alk(θ)

∣∣∣Xk = Xj

]
around θ0, the variance of T11n

is E
[(
T11n(θ)

)2]
= O

(
‖θ−θ0‖2

n

)
. Thus, using Chebychev’s inequality, we have that T11n(θ) =

op(n
−1) uniformly over op(1) neighbourhoods of θ0.

Next, we consider T12n(θ). To derive an upper bound for the convergence rate of T12n(θ) via

Rosenthal’s inequality, we first examine:

E

[(
I{Vi ≤ b} − FV

(
b
))2

{
E
[ 1

hd
1

fX,V (Xk, Vi)
UjGKh,j(Xk, Vi)Alk(θ)

]2
+ 2

1

hd
1

fX,V (Xk, Vi)
UjGKh,j(Xk, Vi)Alk(θ)× E

[ 1

hd
1

fX,V (Xk, Vi)
UjGKh,j(Xk, Vi)Alk(θ)

]
+

1

h2d

1

fX,V (Xk, Vi)2
U2
jGK

2
h,j(Xk, Vi)A

2
lk(θ)

}]
=T121(θ) + T122(θ) + T123(θ)

We start with T121(θ). Using change of variables, iterated expectations, a second order Taylor

expansion of E
[
Alk(θ)

∣∣∣Xk = Xj

]
around θ0, B3, B7, and the boundedness of the indicator function,

we have that T121(θ) = O(‖θ− θ0‖2) + o(‖θ− θ0‖2). By the same line of argument, the same rates

can be obtained for T122(θ). Using again u1 = (Xk −Xj)/h, u2 = (Vi−Vj)/h, boundedness of the

indicator function, B2, B3, B6, B7, and the equality A2
lk(θ) = |Alk(θ)|, T123(θ) on the other hand

is given by:

T123(θ) =

∫ (
I{Vi ≤ b} − FV

(
b
))2 1

hd
1

fX,V (Xj + hu, Vj + hu2)2
U2
jGK

2
j (Xj + hu1, Vj + hu2)

×
∣∣∣(θ − θ0)

′
∇θψ2(Xj + hu1, θ0)

∣∣∣fX,V (Xj , Vj)fX,V (Xj + hu1, Vj + hu2)

× dxjdu1dvjdu2dUG + o

(
‖θ − θ0‖
hd

)
=O

(
‖θ − θ0‖
hd

)
(1 + h) + o

(
‖θ − θ0‖
hd

)
Moreover, using identical arguments:

E

[∣∣∣∣∣(FV (b)−I{Vi ≤ b})( 1

hd
Bijlk(θ)−E

[ 1

hd
Bijlk(θ)

])∣∣∣∣∣
κ]

= O(‖θ−θ0‖h−d(κ−1))+o(‖θ−θ0‖h−d(κ−1))

for κ ≥ 1. Applying Rosenthal’s inequality yields:

E
[(
T12n(θ)

)2κ]
≤n−8κΞκ

(
‖θ − θ0‖n4κh−dκ + ‖θ − θ0‖n4h−2κd+d

)
=O
(
‖θ − θ0‖n−4κh−dκ

)
+O

(
‖θ − θ0‖n−8κ+4h−2κd+d)

)
with Ξκ some positive constant. Using B6, we obtain the following rates for κ = 1: O(‖θ −

θ0‖n−4h−d) + O(‖θ − θ0‖n−4h−2d+d) = O(‖θ − θ0‖n−4h−d). By the bandwidth conditions in
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B8, Markov’s inequality thus implies T12n(θ) = op(n
−1) uniformly over op(1) neighbourhoods of

θ0.

Next, we consider T2n(θ), which can again be decomposed as:

T2n(θ) =
1

n(n− 1)(n− 2)(n− 3)

∑
k 6=l 6=i6=j

(
FV

(
b+ (V̂i − Vi)

)
+ FV

(
b
))

E
[ 1

hd
Bijlk(θ)

]
+

1

n(n− 1)(n− 2)(n− 3)

∑
k 6=l 6=i 6=j

(
FV

(
b+ (V̂i − Vi)

)
+ FV

(
b
))

×
( 1

hd
Bijlk(θ)− E

[ 1

hd
Bijlk(θ)

])
=T21n(θ) + T22n(θ)

We start with T21n. Using B7, a mean value expansion around (V̂i − Vi) = 0, and a simplification

(since T21n only depends on j) yield:

1

n

n∑
i=1

F
(1)
V

(
V b

)(
V̂i − Vi

)
E
[ 1

hd
Bijlk(θ)

]
=

1

n

n∑
i=1

F
(1)
V

(
V b

)(
ĝ(Zi)− g(Zi)

)
E
[ 1

hd
Bijlk(θ)

]
(A-2.14)

where V b ∈ [b, b+(V̂i−Vi)] and F
(1)
V denotes the first derivative w.r.t. its argument. Using iterated

expectations, change of variables, and a second order Taylor expansion of E
[
Alk(θ)|Xk

]
around

θ0, the expectation expression in (A-2.14) yields:

E
[ 1

hd
Bijlk(θ)

]
= (θ − θ0)

′
∫
UjG∇θψ2(Xk, θ0)dFUG,X(UG, Xk)(1 +O(h)) + o(‖θ − θ0‖2)

For the random component in (A-2.14), recall that ĝ(Zi) = (
n∑
j=1

X1jkh(Zi−Zj))/
n∑
j=1

kh(Zi−Zj)).

We examine the following standard decomposition:

1

n

n∑
i=1

ĝ(Zi)− g(Zi)f̂Z(Zi)

f̂Z(Zi)

=
1

n

n∑
i=1

{(
ĝ(Zi)− g(Zi)f̂Z(Zi)

)
fZ(Zi)

+

(
fZ(Zi)− f̂Z(Zi)

fZ(Zi)f̂Z(Zi)

)
×
(
ĝ(Zi)− g(Zi)f̂Z(Zi)

)}

Since sup
Z∈W
|fZ(Zi) − f̂Z(Zi)| = op((ln(n)/nhd)

1
2 ) = op(1) by B3 and B8, the second term is of

smaller order than the first one and will hence be neglected. Moreover, since X1i = g(Zi) + Vi,

observe that the first term is can be restated as:

1

n2h

n∑
j=1

n∑
i=1

(
g(Zj)− g(Zi)

fZ(Zi)

)
kh(Zi − Zj) +

1

n2h

n∑
j=1

n∑
i=1

Vj
fZ(Zi)

kh(Zi − Zj)

Now, notice that omitting observations with i = j results in a negligible error of order op((nh)−1),

while 1
2 (Vjf

−1
Z (Zi) − Vif

−1
Z (Zj))kh(Zi − Zj) is the ‘symmetrized’ version of the second term
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and:

1

2h

(
(g(Zi)− g(Zj))

fZ(Zj)
− (g(Zj)− g(Zi))

fZ(Zi)

)
kh(Zi − Zj) =

1

2h

(
$ij −$ji

)
kh(Zi − Zj)

is the ‘symmetrized’ version of the first term with $ij = (g(Zi) − g(Zj))/fZ(Zj) and $ji de-

fined accordingly. Hence, the above expressions can be rewritten as symmetric second order U-

statistics:(
n

2

)−1∑
i6=j

1

2h
($ij −$ji)kh(Zi − Zj) +

(
n

2

)−1∑
i 6=j

1

2h

(
Vi

fZ(Zj)
− Vj
fZ(Zi)

)
kh(Zi − Zj)

=T211n + T212n

By symmetry of the kernel function and the i.i.d. assumption on one hand, and by independence

between Vi and Zi on the other, one can straightforwardly verify that E
[
T211n

]
= E

[
T212n

]
= 0.

Moreover, letting rn(Zi, Zj) = 1
2h ($ij + $ji)kh(Zi − Zj), one can use B2, B3, B8, and a change

of variables to verify that:

E
[∣∣∣rn(ξi, ξj)

∣∣∣2] = o(n)

Thus, since by change of variables E
[
rn(Zi, Zj)

∣∣∣Zi] = E
[
rn(Zi, Zj)

∣∣∣Zj] = O(h), one can use

Lemma 3.1 in Powell, Stock, and Stoker (1989) to infer that T211n = op

(
1√
n

)
. Next, we examine the

leading term T212n. Let pn(ξi, ξj) = 1
2h ((Vi/fZ(Zj))− (Vj/fZ(Zi)))kh(Zi − Zj) with ξi = {Zi, Vi}

and ξj = {Zj , Vj}. By B2, B3, B8, and change of variables one can verify that:

E
[∣∣∣pn(ξi, ξj)

∣∣∣2] = o(n)

Using again Lemma 3.1 in Powell, Stock, and Stoker (1989), we have that:

√
nT212n =

√
n

2

n

n∑
i=1

E
[
pn(ξi, ξj)

∣∣∣ξi]+ op(1)

After change of variables with u3 = (Zi−Zj)/h, independence between Zi and Vi, and E
[
Vj

∣∣∣Vi] =

E
[
Vj

]
= 0:

E
[
pn(ξi, ξj)

∣∣∣ξi] =

∫
1

2

(
Vi

fZ(Zi + hu3)
− Vj
fZ(Zi)

)
fZ(Zi + hu3)fV (Vj)dvj =

1

2
Vi = E

[
p(ξi, ξj)

∣∣∣ξi]

where E
[
p(ξi, ξj)

∣∣∣ξi] denotes the limit expression. Thus, we have:

√
nT212n =

√
n

2

n

n∑
i=1

E
[
p(ξi, ξj)

∣∣∣ξi]+ op(1) (A-2.15)
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Applying Lindberg Levy’s Central Limit Theorem (CLT) to equation (A-2.15), we have:

√
nT212n

d−→ N
(

0,

∫
V 2
i dFV (Vi)

)
where FV (·) is the distribution function of Vi. Thus, for (A-2.14) we obtain (adding the neglected

term F
(1)
V

(
V a

)
):

√
n

1

n

n∑
m=1

(
ĝ(Zm)−g(Zm)

)(
F

(1)
V

(
V a

)
+F

(1)
V

(
V b

))∫
UjG∇θψ2(Xk, θ0)dFUG,X(UG, Xk)

)
d−→ N

(
0,Ω1

)

where Ω1 was defined in the statement of the lemma.

It remains to show that T22n is of smaller order than the previous term. Using B2, B3, B7, a

mean values expansion and a similar decomposition as for T12n, one can show that E
[∣∣∣T22n

∣∣∣κ] =

O(‖θ − θ0‖h−(κd−d)) + o(‖θ − θ0‖h−(κd−d)). Thus, application of Rosenthal’s inequality (with

κ = 1), followed by Markov’s inequality, and the bandwidth conditions imply that T22n = op(n
−1)

uniformly over op(1) neighbourhoods of θ0. �

Lemma B5. Under assumptions A1-A3, B1-B8, the term S222n defined in the proof of

Theorem 3 is equal to:

(θ − θ0)
′ 1√
n
W2n + op

(
‖θ − θ0‖√

n

)
+ op

(
1

n

)
= (θ−θ0)

′ 1

n

n∑
m=1

(
ĝ(Zm)−g(Zm)

)(
−
∫
IiUjG∇θψ2(Xk, θ0)dFUG,X,V (UG, Xk, Vi)

)
+op

(
‖θ − θ0‖√

n

)
+op

(
1

n

)

where

1√
n

n∑
m=1

(
ĝ(Zm)− g(Zm)

)(
−
∫
IiUjG∇θψ2(Xk, θ0)dFUG,X,V (UG, Xk, Vi)

)
d−→ N

(
0,Ω2

)

with Ω2 = E2Φ2E
′

2 where

Φ2 = Φ1

and

E2 = −
∫
IiUjG∇θψ2(Xk, θ0)dFUG,X,V (UjG, Xk, Vi)

.
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Proof of Lemma B5

Next, we consider S222n. First we replace again f̂X,V (Xk, Vi) by fX,V (Xk, Vi) using B2, B3, and

B8. After a mean value expansion around (Vi − Vj), we have:

S222n =
1

n(n− 1)(n− 2)(n− 3)

∑
k 6=l 6=i 6=j

1

hd+1
f−1
X,V (Xk, Vi)IiUjGK

(1)
h,j(Xk, V )

((
V̂i − Vi

)
−
(
V̂j − Vj

))
Alk(θ)

where K
(1)
h,j(x, V i) is defined in the proof of Theorem 2. As before

(
V̂i − Vi

)
=
(
ĝ(Zi) −

g(Zi)
)

, while the term involving subscript j follows by an identical argument. Let Cijkl(θ) =

f−1
X,V (Xk, Vi)IiUjGK

(1)
h,j(Xk, V )Alk(θ). Then, we have:

S212n =
1

n(n− 1)(n− 2)(n− 3)

∑
k 6=l 6=i 6=j

(
ĝ(Zi)− g(Zi)

)( 1

hd+1
Cijkl(θ)− E

[ 1

hd+1
Cijkl(θ)

])
+

1

n(n− 1)(n− 2)(n− 3)

∑
k 6=l 6=i 6=j

(
ĝ(Zi)− g(Zi)

)
E
[ 1

hd+1
Cijkl(θ)

]
=R1n(θ) +R2n(θ)

We start with R1n(θ). Integration by parts and a similar line of argument to before can be

used to show that E
[∣∣∣R1n(θ)

∣∣∣] = O
(
‖θ− θ0‖h−(dκ−d)−(κ−1)

)
+ o
(
‖θ− θ0‖h−(dκ−d)−(κ−1)

)
, while

the leading term of E
[
R1n(θ)2

]
is O

(
‖θ − θ0‖h−(d+1)

)
. Applying again Rosenthal’s inequality

yields:

E
[(
R1n(θ

)2κ]
≤ n−8κΞκ

(
‖θ − θ0‖

(
n4κh−dκ−κ + n4h−2dκ−2κ+(d+1)

))
For κ = 1, we have O(‖θ− θ0‖n−4h−d−1). By Markov’s inequality and the bandwidth conditions,

we have that R1n(θ) = op(n
−1) uniformly over op(1) neighbourhoods of θ0. Next, consider R2n(θ).

This term only depends on i and can be shown to converge in distribution as claimed in the above

lemma using the same arguments as for T21n(θ) in Lemma B2. That is:

√
n

1

n

n∑
m=1

(
ĝ(Zm)− g(Zm)

)(
−
∫
IiUjG∇θψ2(Xk, θ0)dFUG,X,V (UG, Xk, Vi)

)
d−→ N

(
0,Ω2

)

where Ω2 was defined in the lemma. �

Lemma B6. Under assumptions A1-A3, B1-B8, the term S223n defined in the proof of

Theorem 3 is equal to:

(θ − θ0)
′ 1√
n
W3n + op

(
‖θ − θ0‖√

n

)
+ op

(
1

n

)
= (θ − θ0)

′ 1

n

n∑
m=1

(
UmĜ − UmG

)(∫
Ii∇θψ2(Xk, θ0)dFX,V (Xk, Vi)

)
+ op

(
‖θ − θ0‖√

n

)
+ op

(
1

n

)
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where
1√
n

n∑
m=1

(
UmĜ − UmG

)(∫
Ii∇θψ2(Xk, θ0)dFX,V (Xk, Vi)

)
d−→ N

(
0,Ω3

)
with Ω3 = E3Φ3E

′

3 where

Φ3 =

∫ φY

0

E
[
U1GI[s < U1]

]
Ht1(s)

dG(s)

(1−G(s−))

and

E3 =

∫
Ii∇θψ2(Xk, θ0)dFX,V (Xk, Vi)

where FX,V (·, ·) denotes the joint distribution function of Xk and Vi.

Proof of Lemma B6

f̂X,V (Xk, Vi) in the denominator is again tackled using B2, B3, and B8.

Let Dijkl(θ) = f−1
X,V (Xk, Vi)IiKh,j(Xk, Vi)Alk(θ). Then, S213n can be decomposed as:

1

n

n∑
j=1

(
UjĜ − UjG

)
E
[ 1

hd
Dijkl(θ)

]
+

1

n(n− 1)(n− 2)(n− 3)

∑
k 6=l 6=i 6=j

(
UjĜ − UjG

)( 1

hd
Dijkl(θ)− E

[ 1

hd
Dijkl(θ)

])
=U11n(θ) + U12n(θ)

Consider U11n(θ). We define the following notation, which we keep as close as possible to Lu and

Burke (2005):

ΛG(t) =

t∫
−∞

1

1−G(s−)
dG(s)

Nj(t) =I[Uj ≤ t,∆j = 0]

Mj(t) =Nj(t)−
∫ t

0

I[Uj ≥ s]dΛj(s), Λj(s) = ΛG(s)

Yn(t) =

n∑
j=1

I[Uj ≥ t], Y n(t) =
1

n
Yn(t)

Moreover, FY (·−) will in the following refer to the left-continuous distribution function of Yj .

Noting that Uj only has support on the positive real line and that:

Ĝ(Uj−)−G(Uj−)

1−G(Uj−)
=

∫
s<Uj

1− Ĝ(s−)

1−G(s−)

∑n
j=1 dMj(s)

Yn(s)
=

1

n

∫
s<Uj

1− Ĝ(s−)

1−G(s−)

∑n
j=1 dMj(s)

Y n(s)
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U11n(θ) can be rewritten as:

U11n(θ) =
1

n

n∑
j=1

(
UjĜ − UjG

)
E
[ 1

hd
Dijkl(θ)

]
=

1

n

n∑
j=1

UjĜ
Ĝ(Uj−)−G(Uj−)

1−G(Uj−)
E
[ 1

hd
Dijkl(θ)

]

=E
[ 1

hd
Dijkl(θ)

]{ 1

n2

n∑
m=1

∞∫
0

n∑
j=1

Uj∆j

1−G(Uj−)
I[s < Uj ]

1

Y n(s)

1− Ĝ(s−)

1−G(s−)
dMm(s)

+
1

n2

n∑
m=1

∞∫
0

n∑
j=1

Uj∆j

(
1

1− Ĝ(Uj−)
− 1

1−G(Uj−)

)
I[s < Uj ]

1

Y n(s)

1− Ĝ(s−)

1−G(s−)
dMm(s)

}

=U111n(θ) + U112n(θ)

Using Lemma A.2 (ii) in Lopez (2009) and B1, U112n(θ) is of smaller order than U111n(θ) and can

hence be neglected in the following. Letting Hnt(s) = 1
n

n∑
j=1

UjGI[s < Uj ]
1

Y n(s)

1−Ĝ(s−)
1−G(s−) , we have

for the first term:

U111n(θ) = E
[ 1

hd
Dijkl(θ)

] 1

n

n∑
m=1

∫ ∞
0

Hnt(s)dMm(s)

Now for 0 < ν < φY , let:

Uν111n(θ) = E
[ 1

hd
Dijkl(θ)

] 1

n

n∑
m=1

∫ ν

0

Hnt(s)dMm(s)

Then, uniformly for s ∈ [0, ν], we have:

Hnt(s) =
1

n

n∑
m=1

UjGI[s < Uj ]
1

Y n(s)

1− Ĝ(s−)

1−G(s−)

=
1

n

n∑
m=1

UjGI[s < Uj ]
1

(1− FY (s−))(1−G(s−))
+ op(1)

=E
[
U1GI[s < U1]

] 1

(1− FY (s−))(1−G(s−))
+ op(1)

=H1t(s) + op(1)

where the second and third equality follow by adding and subtracting 1
(1−FY (s−))(1−G(s−)) and

E
[
U1GI[s < U1]

]
, respectively (see Lemma A.8 in Lu and Burke (2005) for details). Moreover,

using the same lines of arguments as in the proof of statement (2.29) in Lai, Ying, and Zheng

(1995, p.274) and B1, we have:

√
n

1

n

n∑
m=1

∞∫
ν

Hnt(s)dMm(s)
p−→ 0
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as ν −→ φY and n −→∞. Therefore:

√
nU11n = Mn2t + op(1)

For 0 < ν < φY , {Mn2t} is a local martingale with predictable variation process (Lu and Burke,

2005, p.198).

〈M2nt(ν)〉 =
1

n

n∑
m=1

ν∫
0

H2
t1(s)I[Um ≥ s](1−∆ΛG(s))dΛG(s)

p−→
ν∫

0

H2
t1(s)P[U1 ≥ s](1−∆ΛG(s))dΛG(s)

=

ν∫
0

H2
t1(s)(1−G(s−))(1− FY (s−))

(1−G(s−)dG(s)

(1−G(s−))(1−G(s−))

=

ν∫
0

E
[
U1GI[s < U1]

]
Ht1(s)

dG(s)

(1−G(s−))

where the second equality follows because of P[U1 ≥ s] = (1−H(s−)) = (1−G(s−))(1−FY (s−))

and the definition of ΛG(s) before. In addition, we have:

1√
n

n∑
m=1

φY∫
ν

Ht1(s)dMm(s)
p−→ 0

as ν −→ φY . By Rebelledo’s martingale central limit theorem (CLT), we obtain:

M2nt
p−→ N

(
0,Φ3

)
with

Φ3 =

∫ φY

0

E
[
U1GI[s < U1]

]
Ht1(s)

dG(s)

(1−G(s−))

Thus:
√
n

1

n

n∑
m=1

(
UmĜ − UmG

)(∫
Ii∇θψ2(Xk, θ0)dFX,V (Xk, Vi)

)
d−→ N

(
0,Ω3

)
where Ω3 was defined in the statement of the lemma.

It remains to show that U12n(θ) is of smaller order. Notice that by a similar argument to before

and B1, one can show that uniformly for 0 < ν < φY :

E
[((

UjĜ − UjG
)( 1

hd
Dijkl(θ)− E

[ 1

hd
Dijkl(θ)

]))2]
= O

(
‖θ − θ0‖
hd

)
+O

(
‖θ − θ0‖2

)
+ o(1)

which is O(‖θ − θ0‖h−d) by B8. A similar line of argument and B1 can used to show that the
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leading term of

E
[∣∣∣(UjĜ − UjG)( 1

hd
Dijkl(θ)− E

[ 1

hd
Dijkl(θ)

])∣∣∣κ]
is O(‖θ − θ0‖h−d(κ−1)) given B8. Thus, applying Rosenthal’s inequality we obtain:

E
[(
U12n(θ)

)2κ]
≤n−8κΞκ(‖θ − θ0‖)

(
n4κh−dκ + n4h−d(2κ−1)

))
=O
(
‖θ − θ0‖n−4κh−dκ

)
+O

(
‖θ − θ0‖n−8κ+4h−d(2κ−1)

)
By Markov’s inequality, we have that U12n(θ) = op(n

−1) uniformly over op(1) neighbourhoods of

θ0 for κ = 1. �

Proof of Theorem 4

We denote by E∗ and var∗ the mean and variance operators of the bootstrapping sampling. In

addition, let O∗p(1) and o∗p(1) be the orders of magnitude according to the bootstrapping distribu-

tion.

Using a similar argument to Goncalves and White (2005), the theorem follows once we show that:

E∗
[√

m(θ∗ − θ̂)
]

= op(1) (A-2.16)

var∗

(√
m(θ∗ − θ̂)

)
= var

(√
n(θ̂ − θ0)

)
+Op

(
1√
n

)
(A-2.17)

and for some δ > 0:

E∗
[(√

m‖θ∗ − θ0‖
)2+δ]

= Op(1) (A-2.18)

Equations (A-2.16) and (A-2.17) follow automatically once we have verified that
√
m(θ∗ − θ̂) has

the same limiting distribution as
√
n(θ̂ − θ0) up to an error of smaller order. Thus, we show that

Lemma B1 and B2 are also applicable to the bootstrap estimator in (2.13) (with n being replaced

by m in both lemmata). Since the proof is rather lengthy and in large parts identical to before,

we will only sketch the one of asymptotic normality and
√
m-consistency paralleling the proof of

Theorem 3. Consistency follows in fact by similar arguments to the proof of Theorem 2 and the

ones presented in the following.

The equation in (2.13) can be decomposed as in the proof of Theorem 3. That is, we examine:

1

m(m− 1)

∑
k 6=l

µ(X∗k)×A∗lk(θ) +
1

m(m− 1)

∑
k 6=l

(
µ̂∗(X∗k)− µ(X∗k)

)
×A∗lk(θ)

with A∗lk(θ) = I[X∗k ∈ X ]
{
I[X∗k

′β(θ) > X∗l
′β(θ)]− I[X∗k

′β(θ̂) > X∗l
′β(θ̂)]

}
. In a first step we show
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that:
1

m(m− 1)

∑
k 6=l

µ(X∗k)A∗lk(θ) (A-2.19)

behaves as

S1n =
1

n(n− 1)

∑
k 6=l

µ(Xk)Alk(θ)

from the proof of Theorem 3. Since (A-2.19) is again a second order U-statistic for every θ ∈ Θ,

the same Hoeffding decomposition argument as in Lemma A.3 of Khan (2001) used in the proof

of Theorem 3 can be applied: first notice that the conditional expectation over bootstrap samples

given Xk and Xl, respectively, is:

ψ∗(X∗k , θ) =
1

2

{
E∗
[
µ(X∗k)A∗lk(θ)

∣∣∣X∗k]+ E∗
[
µ(X∗l )A∗kl(θ)

∣∣∣X∗k]}
=

1

2

{ 1

n

n∑
l=1

µ(X∗k)Alk∗(θ) +
1

n

n∑
l=1

µ(Xl)Alk∗(θ)
} (A-2.20)

where the subscript without star in the second line indicates the summable variable. Hence:

E∗
[
ψ∗(X∗k , θ)

]
=

1

2

1

n2

n∑
k=1

n∑
l=1

{
µ(Xk)Alk(θ) + µ(Xl)Alk(θ)

}

This term can be expanded further to give:

E
[
ψ(Xk, θ)

]
+
( 1

n

n∑
k=1

ψ∗(Xk, θ)− E
[
ψ(Xk, θ)

])
= T ∗1n + T ∗2n (A-2.21)

T ∗1n can be expanded as in Lemma A.3 of Khan (2001). For T ∗2n on the other hand, let φlk(θ) ={
µ(Xk)Alk(θ)+µ(Xl)Alk(θ)

}
−E
[{
µ(Xk)Alk(θ)+µ(Xl)Alk(θ)

}]
. Notice that by B2, B5, and B6

we have E
[∣∣∣φlk(θ)

∣∣∣κ] = ‖θ−θ0‖ and E
[
φlk(θ)2

]
= ‖θ−θ0‖. Thus, by Rosenthal’s inequality:

E
[
T ∗2n

2κ
]
≤ n−4κΞκ

(
‖θ − θ0‖n2κ + ‖θ − θ0‖n2

)
For κ = 1, E

[
T ∗2n

2κ
]

= O(‖θ − θ0‖n−2) and thus by Markov’s inequality T2n(θ) = op

(
‖θ−θ0‖√

n

)
.

Next, we show that ‘m out of n’ bootstrap is also able to mimic the random elements of the

‘projection’ of the U-statistic used in Lemma A.3 of Khan (2001). Notice that:

1

m

m∑
i=1

{
ψ∗(X∗k = X∗i , θ)− E∗

[
ψ∗(X∗k = X∗i , θ)

]}
=

1

m

m∑
i=1

{
ψ(X∗k = X∗i , θ)− E

[
ψ(X∗k = X∗i , θ)

]}
+ op(1)

where the op(1) term follows again by a subsequent application of Rosenthal’s and Markov’s in-

equality. The term in curley brackets can be dealt with by the same arguments as in Lemma

A.3 of Khan (2001) since m −→ ∞ as n −→ ∞. Finally, the quadratic term of the Hoeffding
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decomposition can be shown to be op

(
1
m

)
uniformly over op(1) neighbourhoods of θ̂ by expanding

this term as above and subsequently applying Rosenthal’s and Markov’s inequality.

Next, we give a rough sketch of the steps to show that:

1

m(m− 1)

∑
k 6=l

(
µ̂∗(X∗k)− µ(X∗k)

)
A∗lk(θ) (A-2.22)

behaves as

S2n =
1

n(n− 1)

∑
k 6=l

(
µ̂(Xk)− µ(Xk)

)
Alk(θ)

A similar decomposition as in the proof of Theorem 3 yields:

1

m(m− 1)

∑
k 6=l

(
µ̃∗(X∗k)− µ(X∗k)

)
A∗lk(θ) +

1

m(m− 1)

∑
k 6=l

(
µ̂∗(X∗k)− µ̃∗(X∗k)

)
A∗lk(θ)

=S∗21n + S∗22n

where µ̃∗(·) is defined analogously to the proof of Theorem 3. We start with S∗21n, which can again

be rewritten as:

S∗21n =
1

m(m− 1)

∑
k 6=l

{
1

m

m∑
i=1

1
mh∗d

m∑
j=1

I∗i
(
U∗jG − µ(X∗k)

)
Kh∗,j(X

∗
k , V

∗
i )

1
mh∗d

m∑
j=1

I∗iKh∗,j(X∗k , V
∗
i )

}
×A∗lk(θ)

Using B2, B3, B8, and the same argument as in the proof of Lemma B3, we can replace f̂∗X,V (X∗k , V
∗
i )

by fX,V (X∗k , V
∗
i ). After omitting terms with k = l = j = i, which, parallel to Theorem ??, results

in an error of order o∗p(‖θ − θ0‖/mh∗d)), the numerator is given by:

1

m(m− 1)(m− 2)(m− 3)

∑
k 6=l 6=i6=j

1

h∗d
1

fX,V (X∗k , V
∗
i )
I∗i
(
U∗jG − µ(X∗k)

)
Kh∗,j∗(X

∗
k , V

∗
i )A∗lk(θ)

(A-2.23)

Using a similar decomposition as in (A-2.21), it is straightforward to show that this fourth order

U-statistic is degenerate in ξ∗k, ξ
∗
l , ξ
∗
i for each θ ∈ Θ, where ξ∗k, ξ

∗
l , ξ
∗
i are defined as in the proof of

Lemma B3. As before, this also implies that:

E∗
[ 1

h∗d
1

fX,V (X∗k , V
∗
i )
I∗i
(
U∗jG − µ(X∗k)

)
Kh∗,j∗(X

∗
k , V

∗
i )A∗lk(θ)

]
=E

[ 1

hd
1

fX,V (Xk, Vi)
Ii
(
UjG − µ(Xk)

)
Kh,j(Xk, Vi)Alk(θ)

]
+

{
1

n4h∗d

n∑
k=1

n∑
l=1

n∑
j=1

n∑
i=1

1

fX,V (Xk, Vi)
Ii
(
UjG − µ(Xk)

)
Kh∗,j(Xk, Vi)Alk(θ)

− E
[ 1

hd
1

fX,V (Xk, Vi)
Ii
(
UjG − µ(Xk)

)
Kh,j(Xk, Vi)Alk(θ)

]}

=op

( 1

n

)
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where the last equality follows by B8, the Rosenthal’s and Markov’s inequalities, and the fact

that E
[

1
hd

1
fX,V (Xk,Vi)

Ii
(
UjG − µ(Xk)

)
Kh,j(Xk, Vi)Alk(θ)

]
= 0. The second term of the Hoeffding

projection of (A-2.23) yields for each θ ∈ Θ:

1

m

m∑
p=1

E∗
[ 1

h∗d
1

fX,V (X∗k , V
∗
i )
I∗i
(
U∗jG − µ(X∗k)

)
Kh∗,j∗(X

∗
k , V

∗
i )A∗lk(θ)

∣∣∣ξ∗j = ξ∗p

]
=

1

m

m∑
p=1

∫
1

h∗d
1

fX,V (Xk, Vi)
Ii
(
U∗pG − µ(Xk)

)
Kh∗,p∗(Xk, Vi)Alk(θ)dFX,V (Xk, Xl, Vi) + op

( 1

m

)

where op

(
1
m

)
follows by another application of Rosenthal’s inequality. The term

∫
1
h∗d

1
fX,V (Xk,Vi)

Ii
(
U∗pG−

µ(Xk)
)
Kh∗,p∗(Xk, Vi)Alk(θ)dFX,V (Xk, Xl, Vi) can now be treated as in the proof of Theorem 3 us-

ing a second order Taylor expansion:

(θ − θ̂)
′
Ii
(
U∗iG − µ(Xk)

)
∇θψ2(Xk, θ̂) +O(‖θ − θ̂‖2)

In view that:

var∗

( 1√
m

m∑
j=1

E∗
[ 1

h∗d
1

fX,V (X∗k , V
∗
i )
I∗i
(
U∗jG − µ(X∗k)

)
Kh∗,j∗(X

∗
k , V

∗
i )A∗lk(θ)

∣∣∣ξ∗j ])
= var∗

(
E∗
[ 1

h∗d
1

fX,V (X∗k , V
∗
i )
I∗i
(
U∗jG − µ(X∗k)

)
Kh∗,j∗(X

∗
k , V

∗
i )A∗lk(θ)

∣∣∣ξ∗j ])
=Ω0 + op(1)

and since all higher order degenerate U-statistics from the decomposition are of smaller order, the

term in (A-2.23) weakly converges to N(0,Ω0) as both m and n go to infinity thus mimicking the

limiting distribution of (A-2.13). S∗22n and the three leading terms arising in analogy to S22n can

be treated as in the proof of Lemmata B4 to B6 using similar arguments to above. That is, the

same decomposition as in the proof of those lemmata yields the remaining variance pieces Ω1, Ω2,

and Ω3 as m and n go to infinity. It follows that
√
m(θ∗− θ̂) has the same limiting distribution as

√
n(θ̂ − θ0).

To verify equation (A-2.18), notice that from Lemma B1 and B2, (θ∗− θ̂) can be restated as:

(θ∗ − θ̂) = −J−1 1√
m
Wm + op

(
1

m

)

where the op(m
−1) follows from

√
m-consistency. Thus,

√
m(θ∗ − θ̂) = −J−1Wm + op

(
1√
m

)
.

Recalling that J = 1
2 E
[
∇θθ′ψ1(Xk, θ̂)

]
is bounded and negative definite by B6, we can bound

equation (A-2.18) as follows:

E∗
[(√

m‖θ∗ − θ0‖
)2+δ]

=E∗
[(
‖−J−1Wm‖

)2+δ)]
+ op(1)

≤ΞJ‖Wn‖2+δ = Op(1)
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where ΞJ is a generic constant and the last equality follows since Wn converges in distribu-

tion.

�
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A2.3 Tables

Table 2.1: Monte Carlo Simulation

Design I: Linear Model & No Censoring
No. of obs. Estimator Mean Bias1 Median Bias1 RMSE1 MAD1

n = 50

RankCF 0.0392 0.0291 0.4778 0.2036
MRE 0.5200 0.3774 0.7878 0.5327
OLS 0.4943 0.4179 0.6085 0.4949
TSLS −0.0193 −0.0103 0.5317 0.3170

n = 100

RankCF 0.0448 0.0125 0.1976 0.1372
MRE 0.4874 0.4097 0.5778 0.4876
OLS 0.4479 0.4209 0.4926 0.4479
TSLS 0.0170 0.0179 0.2640 0.2039

n = 200

RankCF −0.0017 −0.0191 0.1164 0.0925
MRE 0.4404 0.4361 0.4702 0.4404
OLS 0.4241 0.4010 0.4445 0.4241
TSLS −0.0085 −0.0093 0.1772 0.1402

n = 400

RankCF −0.0241 −0.0359 0.0805 0.0665
MRE 0.4130 0.4180 0.4233 0.4130
OLS 0.4033 0.4016 0.4124 0.4033
TSLS 0.0023 0.0127 0.1159 0.0929

n = 800

RankCF −0.0260 −0.0303 0.0687 0.0552
MRE 0.4004 0.4009 0.4061 0.4004
OLS 0.3939 0.3928 0.3986 0.3939
TSLS −0.0036 −0.0104 0.0736 0.0577

Design II: Non-linear Model & No Censoring
No. of obs. Estimator Mean Bias1 Median Bias1 RMSE1 MAD1

n = 100
RankCF 0.3911 0.2200 0.6632 0.4509

MRE 0.9628 0.9950 1.0410 0.9628
MRC 0.9697 1.0100 1.0530 0.9697

n = 200
RankCF 0.3378 0.2400 0.5415 0.3738

MRE 1.0305 1.0300 1.0879 1.0305
MRC 1.0031 0.9750 1.0655 1.0031

n = 400
RankCF 0.2948 0.2200 0.4325 0.3035

MRE 1.0846 1.0850 1.1199 1.0846
MRC 1.0710 1.0700 1.1054 1.0710

n = 800
RankCF 0.2499 0.2400 0.3106 0.2582

MRE 1.1180 1.1200 1.1411 1.1180
MRC 1.1150 1.0900 1.1394 1.1150

1 The figures in the table represent the average of the corresponding bias measure (401 replica-
tions).
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Table 2.2: Monte Carlo Simulation - Censoring

Design III: Linear Model & No Censoring
No. of obs. Estimator Mean Bias1 Median Bias1 RMSE1 MAD1

n = 100
Av. Censor. Ratio: 0

RankCF 0.0121 −0.0300 0.1667 0.1309
MRE 0.4392 0.3800 0.5016 0.4394
MRC 0.4422 0.3800 0.5186 0.4424

n = 200
Av. Censor. Ratio: 0

RankCF −0.0027 −0.0200 0.1296 0.0972
MRE 0.4426 0.4200 0.4733 0.4426
MRC 0.4509 0.4200 0.4876 0.4509

n = 400
Av. Censor. Ratio: 0

RankCF −0.0129 −0.0300 0.0885 0.0692
MRE 0.4317 0.4200 0.4466 0.4317
MRC 0.4298 0.4200 0.4445 0.4298

n = 800
Av. Censor. Ratio: 0

RankCF −0.0216 −0.0200 0.0647 0.0523
MRE 0.4192 0.4100 0.4257 0.4192
MRC 0.4176 0.4100 0.4253 0.4176

Design IV: Linear Model & Censoring (light)
No. of obs. Estimator Mean Bias1 Median Bias1 RMSE1 MAD1

n = 100
Av. Censor. Ratio: .25

RankCF 0.2438 0.0300 0.7721 0.5631
MRE 0.5046 0.4050 0.6316 0.5108
MRC 0.5087 0.4200 0.6221 0.5110

n = 200
Av. Censor. Ratio: .25

RankCF 0.1024 −0.0500 0.5392 0.3729
MRE 0.4720 0.4200 0.5428 0.4720
MRC 0.4570 0.4100 0.5151 0.4570

n = 400
Av. Censor. Ratio: .25

RankCF 0.0659 −0.0700 0.4417 0.3050
MRE 0.4293 0.4100 0.4636 0.4293
MRC 0.4306 0.4200 0.4648 0.4306

n = 800
Av. Censor. Ratio: .25

RankCF 0.0794 0.0000 0.3383 0.2247
MRE 0.4384 0.4300 0.4529 0.4384
MRC 0.4371 0.4300 0.4495 0.4371

Design V: Linear Model & Censoring (heavy)
No. of obs. Estimator Mean Bias1 Median Bias1 RMSE1 MAD1

n = 100
Av. Censor. Ratio: .35

RankCF 0.2526 0.0450 0.9521 0.7395
MRE 0.5184 0.4100 0.6619 0.5318
MRC 0.5099 0.4100 0.6455 0.5251

n = 200
Av. Censor. Ratio: .35

RankCF 0.2296 −0.0600 0.7441 0.5388
MRE 0.4864 0.4300 0.5827 0.4864
MRC 0.4726 0.4100 0.5581 0.4726

n = 400
Av. Censor. Ratio: .35

RankCF 0.1431 −0.0550 0.6501 0.4520
MRE 0.4423 0.4100 0.4943 0.4423
MRC 0.4219 0.4000 0.4641 0.4219

n = 800
Av. Censor. Ratio: .35

RankCF 0.1322 0.0150 0.4783 0.3186
MRE 0.4426 0.4300 0.4626 0.4426
MRC 0.4409 0.4300 0.4594 0.4409

1 The figures in the table represent the average of the corresponding bias measure (401 replications).
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Table 2.3: Empirical Illustration - Earnings Study

Estimator Coefficient1 Value 90% Bootstrap-CI

RankCF
Constant −
Education 0.1181 [0.0608;0.1754]

Age 0.5794 [0.3339;0.8249]
Age2 −0.0057 [−0.0079;−0.0036]

MRE
Constant −
Education 0.2042 [0.1809;0.2275]

Age 0.5393 [0.4326;0.6460]
Age2 −0.0054 [−0.0064;−0.0045]

MRC
Constant −
Education 0.2192 [0.1945;0.2439]

Age 0.6767 [0.5631;0.7902]
Age2 −0.0064 [−0.0074;−0.0054]

OLS
Constant −2.3042 [−6.9826;2.3742]
Education 0.2052 [0.1804;0.2299]

Age 0.6534 [0.4837;0.8231]
Age2 −0.0063 [−0.0078;−0.0049]

LAD
Constant −9.4916 [−14.0756;−4.9075]
Education 0.2125 [0.1900;0.2349]

Age 0.9227 [0.7519;1.0935]
Age2 −0.0086 [−0.0100;−0.0071]

TSLS
Constant −2.9967 [−7.8251;1.8318]
Education 0.2313 [0.1720;0.2906]

Age 0.6764 [0.5010;0.8518]
Age2 −0.0065 [−0.0081;−0.0050]

1 The gender coefficient has been normalized to one.
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3 Do Reservation Wages Decline

Monotonically? A Novel

Statistical Test

3.1 Introduction

This paper develops a test for monotonicitiy of the regression function when the

continuous regressor of interest is endogenous. To the best of the author’s knowl-

edge, this case has not yet been studied in the literature, but it is argued that such a

testing framework is relevant for various setups in Labour Economics and Industrial

Organization. In particular, the paper provides an application to formally evaluate

the monotonoicity of the reservation wage as a function of elapsed unemployment

duration, which refers to the length of an unemployment spell at the time the reser-

vation wage information is being retrieved.

Reservation wages lie at the heart of many partial and general equilibrium job

search models and are viewed as a key determinant for the length of unemployment

(Mortensen, 1986). However, the effect of unemployment duration on the reserva-

tion wage is generally ambiguous and difficult to measure since both variables are

determined simultaneuosly if reservation wages are flexible. Numerous papers have

assessed the impact of unemployment duration on the reservation wage using ei-

ther structural approaches (Kiefer and Neumann, 1979; Lancaster, 1985; van den

Berg, 1990) or instrumental variable methods (Addison, Centeno, and Portugal,

2004; Brown and Taylor, 2009). Despite some evidence for an overall declining

reservation wage function over the course of unemployment, it is not yet well un-

derstood whether this decline is monotonic and whether it holds across different

subgroups of the (unemployed) population.
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Using a standard partial equilibrium job search model, it is shown that monotonicity,

a restriction that has been imposed by several empirical studies (Kiefer and Neu-

mann, 1981; Lancaster, 1985; Addison, Centeno, and Portugal, 2004; Brown and

Taylor, 2009), only holds under certain conditions on the variables in the model.

The paper sheds light on this monotonicity aspect by developing a test that can

evaluate the restriction while addressing endogeneity either through a nonparamet-

ric control function argument (e.g. Newey, Powell, and Vella, 1999; Blundell and

Powell, 2003) or through unobservable exogenous variation in the endogenous vari-

able of interest (Matzkin, 2004). The test is set up to detect whether reservation

wages decline monotonically for certain subsets of the support of elapsed unemploy-

ment duration conditional on different characteristics. That is, the test aims to give

an answer to questions such as: does the reservation wage of a male decrease over

the first three months of unemployment?1 Knowledge about this kind of questions

has policy implications since interventions may be designed accordingly. For in-

stance, an increase in the reservation wage after an initial decline, which might be

due to individuals becoming more selective the longer search lasts, could suggest

implementing policies that enforce search or intensify search assistance in particular

from the point when reservation wages increase again. Alternatively, unemployed

individuals below a certain age typically undergo a tighter benefit regime and face

more drastic sanctions than their older counterparts, which might result in a reser-

vation wage that is monotonically declining throughout their unemployment. On

the other hand, these sanctions or changes in the benefit level are often absent or less

pronounced for unemployed individuals above a certain age (in particular the ones

close to retirement age). Thus, reservation wages could, by contrast, behave quite

differently for older unemployed. As mentioned above, this has general implications

for the design of policies addressing unemployment.

From a theoretical perspective, the contribution of the paper is to combine different

conditional mean estimators for the regression function with a test for monotonicity

based on Ghosal, Sen, and van der Vaart (2000) and to derive its asymptotic proper-

1Notice that the notion of ‘decreasing’ here and in the following is understood as non-increasing
during the entire period considered.
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ties. The first step estimator can be constructed in multiple ways:2 if the researcher

has a suitable instrument (vector) at his disposal that gives rise to a conditional

mean independence assumption, a consistent two-step estimator as in Gutknecht

(2011) can be used following standard arguments from the control function litera-

ture (e.g. Newey, Powell, and Vella, 1999; Blundell and Powell, 2003). In a first step,

the mean of the dependent variable conditional on exogenous covariates and the es-

timated control function is estimated using standard kernel methods. Subsequently,

the control function is averaged out to yield the empirical conditional mean function

of interest. Alternatively, if no appropriate instrumental variables together with a

conditional mean independence condition exist, but instead variables that represent

an exogenous perturbation of the endogenous regressor are available, the concept

of ‘unobservable instruments’ (Matzkin, 2004) can be applied. It is shown that by

assuming the existence of such an exogenous perturbation that can be integrated

into the conditioning set, one may still identify and estimate the nonparametric

regression function of interest using additive separability conditions together with

backfitting methods (Mammen, Linton, and Nielsen, 1999).

After having constructed the first stage, either estimator can be plugged into a

modified test statistic that is taken to be the supremum of a suitably rescaled second

order U-process. The asymptotic distribution of this statistic can be approximated

by a stationary Gaussian process with a covariance that resembles the one in Ghosal,

Sen, and van der Vaart (2000). The main difference w.r.t. the latter consists of the

estimated regression function that forms part of the modified test statistic and that

requires extra consideration in the derivation of the limiting distribution (see also

Lee, Linton, and Whang (2009)). The test is shown to be consistent against fixed

general alternatives and its finite sample performance is studied in a Monte Carlo

Simulation.

Tests for monotonicity of the regression function have been a long-standing topic in

the statistical literature and numerous other tests have been developed: Bowman,

Jones, and Gijbels (1998) for instance use Silvermans (1981) ‘critical bandwidth’

2It is the aim of the author to extend the current setup also to nonparametric instrumental
variable regression if the researcher has a corresponding moment condition at hand to construct a
suitable first stage estimator (e.g. Chen and Pouzo, 2009).
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approach to construct a bootstrap test for monotonicity, while Gijbels, Hall, Jones,

and Koch (2000) consider the length or runs of consecutive negative values of obser-

vation differences and Hall and Heckman (2000) suggest to fit straight lines through

subsequent groups of consecutive points and reject monotonicity for too large neg-

ative values of the slopes. A more recent example are Birke and Neumeyer (2010),

who base their test on different empirical processes of residuals. All these tests do,

however, require independence between the equation error and the regressor of in-

terest and are hence not applicable to a wide range of economic setups that allow

for a correlation of the latter. A generalization of the above tests to monotonicity of

nonparametric conditional distributions has recently been carried out by Lee, Lin-

ton, and Whang (2009). Their test statistic is similar to the one of Ghosal, Sen, and

van der Vaart (2000), albeit the asymptotic distribution takes a different and more

complicated form. Another test for monotonicity of conditional distributions and

its moments has been proposed by Delgado and Escanciano (2012). Even though

in both examples the null of stochastic monotonicity implies monotonicity of the

regression function (if it exists), rejection of the null does clearly not imply a failure

of monotonicity of the regression function.

Changing reservation wages raise a simultaneity issue since the reservation wage

does not only influence unemployment, but is in turn also affected by the length of

unemployment itself. This inter-relationship is well understood and has aptly been

discussed in the job search literature (e.g. Lancaster, 1985; van den Berg, 1990).

The identification approach of this paper uses instrumental variables suggested by

the literature such as logarithm of benefit income other than unemployment bene-

fits, logarithm pay in the last job, an indicator variable for having a working spouse,

marital status, or the number of dependent children (Kiefer and Neumann, 1979; Ad-

dison, Centeno, and Portugal, 2004; Brown and Taylor, 2009) to construct control

functions that are plugged into the conditional mean estiamtor.3 To check robust-

ness of the results, the paper also proposes an alternative method based on a recent

study by Addison, Machado, and Portugal (2011), who address endogeneity by us-

ing longitudinal information on completed durations: assuming that endogeneity

3The crucial underlying assumption here will be that all these instrumental variables impact
the reservation wage only through elapsed unemployment duration.
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arises due to an omitted, endogenous ‘fixed effect’ that is constant throughout the

unemployment spell, an additively separable nonparametric model can be fitted to

the data controlling contemporaneously for elapsed and completed unemployment

duration. It is shown that controlling for both durations, together with suitable

additivity assumptions, allows to recover the regression function of interest.4 The

estimated reservation wage function can then be plugged into the test statistic de-

scribed before.

The data for the empirical analysis stems from the British Household Panel Survey

(BHPS), a nationally representative survey on individuals from more than 5,000

households in the UK. This data source provides sufficient information on (hourly)

reservation wages, unemployment spells, and instrumental variables to conduct the

monotonicity test for different population subgroups. More generally, however, the

testing framework can also be applied to other fields in economics where a formal

evaluation of monotonicity is of interest to the researcher and assumptions set out in

this paper are met. Examples include the relationship between the hourly wage rate

and the number of annual hours worked (Vella, 1993) or returns to years of schooling

(Garen, 1984) if years of schooling is modelled as a continuous choice variable.

The paper is organised as follows: Section 3.2 outlines the main setup and the test

statistic if a suitable instrumental variable is at hand, while large sample properties

of the statistic are examined in Section 3.3. Section 3.4 extends the framework of

the previous sections to the case of ‘unobservable instruments’ as outlined above.

Section 3.5 examines the finite sample properties of the estimator in a Monte Carlo

Simulation. Section 3.6 will then be devoted to the reservation wage example and

will provide a motivation for the methods suggested to address endogeneity and

for testing monotonicity in that context. It will also outline the results from an

application to UK unemployment data. Section 3.7 concludes. All proofs and tables

are postponed to the appendix.

4A theoretical model will demonstrate how such an endogenous fixed effect can be incorporated
into a standard partial equilibrium job search model.

66



3.2 Setup

To better understand the setup, consider the following model: let Wi be the contin-

uous outcome variable (e.g. the ‘reservation wage’ from the application example).

Ui is a continuous, endogenous regressor (e.g. elapsed unemployment duration) and

Xi is a D dimensional random vector of exogenous characteristics of the individual.

The vector may contain both, continuous as well as discrete elements. Then, with

εi denoting the unobservable, the equation of interest is given by:

Wi = m̃
(
Xi, Ui

)
+ εi (3.1)

where m̃(·, ·) is a real-valued function, which is differentiable in its continuous ar-

guments. Before the test statistic is outlined, a few remarks on the notation are

required: let X , U denote subsets of the support of X and U with strictly positive

density everywhere.5 Moreover, let ∇Um̃(·, ·) denote the derivative of m̃(·, ·) w.r.t.

the argument Ui, and T = [a, b] be a compact interval s.t. T ⊂ U . Reverting to

the application example of reservation wages from the introduction, suppose the

interest lies in testing whether the reservation wage function (for an individual with

characteristics x) is declining for every elapsed unemployment duration t ∈ T . That

is, for a specific x ∈ X , the null hypothesis is given by:

H0 : ∇Um̃(x, t) ≤ 0 for all t ∈ T

The alterative is the negation of this null hypothesis. Notice that the above hy-

pothesis can be restated as −∇Um̃(x, t) ≡ ∇Um(x, t) ≥ 0 for all t ∈ T , which will

turn out to be more convenient when setting up the test statistic. What prevents

a direct application of the test for monotonicity of Ghosal, Sen, and van der Vaart

(2000) based on observed Wi and Ui is that Ui and εi are correlated and thus in-

ference based on the former test statistic will be misleading. As outlined in the

5For expositional motives, Xi is assumed to contain exclusively continuous components in this
section. This does obviously restrict the applicability for many empirical studies with small samples
where researchers are typically interested in a differentiation of the sample according to different
(discrete) subgroups such as gender, race etc.. Hence, an extension to discrete components is
considered in section 3.3.
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introduction, the paper proposes different identification strategies that allow to im-

plement the test despite this endogeneity problem. In the following, the paper will

outline a control function procedure that can be applied if the researcher has instru-

mental variables at his disposal that give rise to a conditional mean independence

condition. If instead of an instrumental variable, an exogenous perturbation of the

endogenous regressor Ui exists, an identification strategy along the lines of Matzkin

(2004) becomes applicable. The latter will be outlined as an extension in section

3.4.

Suppose a Dz-dimensional vector of instruments Zi = {Xi, Z1i} exists. Moreover,

the subvector Z1i is assumed to be of dimension Dz1 ≥ 1 with at least one (non-

constant) continuous component. The following reduced form equation is assumed:

Ui = g
(
Zi

)
+ Vi (3.2)

where g(·) is a real-valued, differentiable with non-zero derivative in its continuous

argument(s). Vi is the so called control function, which is assumed to satisfy a

conditional mean independence condition:

E
[
εi

∣∣∣Zi, Vi] = E
[
εi

∣∣∣Vi] (3.3)

This restriction is crucial for identification purposes and referred to as ‘exclusion

restriction’ in the literature. A sufficient condition is independence between the

instrument vector Zi and the model unobservables εi and Vi.
6 To revert to the

example of reservation wages, instruments suggested by the literature might for

instance be the logarithm of benefit income other than unemployment benefits, the

pay of a previously held job, having a working spouse, marital status, household size,

or the number of dependent children. In order for these instruments to be valid, one

has to assume that the variables only affect the reservation wage through elapsed

unemployment duration. That is, elapsed unemployment Ui is assumed to be a

6Notice that under this independence condition identification could be achieved even if the setup

in (3.1) contained a nonseparable function Wi = m̃
(
Xi, Ui, εi

)
, where m̃(·, ·, ·) is strictly increasing

in its last argument. Such an extension would require a strengthening of the exclusion restriction
to conditional independence of Ui and εi given Vi (see Blundell and Powell, 2003), which follows
from independence of the instrument vector Zi and the unobservables εi and Vi.
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function of Zi (see section 3.6 for details). Equations (3.1) and (3.2) together with

the assumption in (3.3) and the normalization characterize a standard nonparametric

control function setup for an additive regression function (e.g. Blundell and Powell,

2003).

Identification of m̃(·, ·) can be achieved using for instance Theorem 2.3 of Newey,

Powell, and Vella (1999). In order to understand their result, notice that:

E
[
Wi

∣∣∣Ui = u, Zi = z
]

=m̃
(
x, u
)

+ E
[
εi

∣∣∣Ui = u, Zi = z
]

=m̃
(
x, u
)

+ E
[
εi

∣∣∣Ui = u, Vi = v
]

=m̃
(
x, u
)

+ E
[
εi

∣∣∣Vi = v
]

≡m̃
(
x, u
)

+ λ(v)

(3.4)

where the third equality follows from the conditional mean independence assumption

in (3.3). Newey, Powell, and Vella (1999) show that identification of the additive

m̃(·, ·) from the conditional expectation above is the same as identification of m̃(·, ·)

in equation (3.1). Then, identification up to an additive constant can be accom-

plished by reverting to the following lemma:

Lemma 5. Suppose that equations (3.1) and (3.2) and the conditional mean inde-

pendence assumption in (3.3) as well as E
[
Vi

∣∣∣Zi] = 0 hold. Moreover, assume that

E
[
εi

∣∣∣Vi] is differentiable and that the boundary of the support of (Z, V ) has zero

probability. Then, m̃(X,U) is identified up to an additive constant.7

The proof of the lemma follows directly from an application of Theorem 2.3 in Newey,

Powell, and Vella (1999). The rank condition of that theorem is trivially satisfied

7The exact definition of identification in Newey, Powell, and Vella (1999, p.567) is based on
equation (3.4):

E
[
Wi

∣∣∣Ui = u, Zi = z
]

= E
[
Wi

∣∣∣Ui = u,Xi = x, Vi = v
]
≡ m̃

(
x, u

)
+ λ(v)

Since conditional expectations are unique with probability one, any other additive function
m(x, u) + λ(v) satisfying the above equation must satisfy P[m(x, u) + λ(v) = m̃(x, u) + λ(v)] = 1.
Identification is thus equivalent to equality of conditional expectations, which in turn implies equal-
ity of the additive components, up to a constant. Equivalently, working with the difference of two
conditional expectations, identification is equivalent to the statement that a zero additive function
must have only constant components. Hence, the authors obtain the following Theorem, which
also provides their definition of identification: Theorem 2.1 of Newey, Powell, and Vella (1999):
m̃(x, u) is identified, up to an additive constant, if and only if P[δ(x, u) + γ(v) = 0] = 1 implies
there is a constant cm with P[δ(x, u) = cm] = 1.
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here because our setup only contains one endogenous regressor and thus ∂
∂Z
g(·) has

a vector format with rank one. Then, imposing the normalization E
[
εi

]
= 0 on

εi such that E
[
Wi

]
= E

[
m̃
(
Xi, Ui

)]
, identification of the level of m̃(·, ·) can be

accomplished by assuming the existence of a function f(v) satisfying
∫
f(v)dv = 1:

∫
E
[
Wi

∣∣∣Ui = u,Xi = x, Vi = v
]
f(v)dv =

∫
E
[
Wi

∣∣∣Ui = u,Xi = x, Vi = v
]
f(v)dv

+ E
[∫

E
[
Wi

∣∣∣Ui = u,Xi = x, Vi = v
]
f(v)dv

]
− E

[
Wi

]
=m̃

(
x, u
)

+ E
[
m̃
(
Xi, Ui

)]
− E

[
Wi

]
=m̃

(
x, u
)

(3.5)

where the second equality follows because
∫
E[Wi|Ui = u,Xi = x, Vi = v]f(v)dv =

m̃(x, u) +
∫
λ(v)f(v)dv and

∫
λ(v)f(v)dv =

∫
E[εi|Vi = v]f(v)dv = E[εi] = 0. This

establishes identification.

In order to use the above result for the test statistic developed in this paper, recall

that m(·, ·) = −m̃(·, ·) and let:

µ(x, u, v) = −E
[
Wi

∣∣∣Xi = x, Ui = u, Vi = v
]

(3.6)

so that:

µ(x, u) = −
∫

E
[
Wi

∣∣∣Xi = x, Ui = u, Vi = v
]
f(v)dv = m(x, u) (3.7)

for every x, u ∈ X × U .8 Equation (3.7) can be consistently estimated using the

8A similar argument could be made under conditional independence and non-separability of

m̃(·, ·, ·). That is: µ(x, u) = −
∫
E
[
Wi

∣∣∣Xi = x, Ui = u, Vi = v
]
f(v)dv = E

[
m(x, u, εi)

∣∣∣Vi =

v
]
f(v)dv = E

[
m(x, u, εi)

]
. Notice that for this argument to hold for every x, u ∈ X × U , a large

support condition similar to the one in Imbens and Newey (2009) is required.
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kernel estimator suggested in Gutknecht (2011):

µ̂(x, u) =
1

n

n∑
j=1

µ̂(x, u, V̂j) (3.8)

where

µ̂(x, u, V̂j) = −Îj

1
nh3n

n∑
i=1

WiKh(x−Xi)Kh(u− Ui)Kh(V̂j − V̂i)

1
nh3n

n∑
i=1

Kh(x−Xi)Kh(u− Ui)Kh(V̂j − V̂i)
(3.9)

and Îj = I[x ∈ X , u ∈ U , V̂j ∈ V ] denotes an indicator function that is equal to one

on the compact set of interest. Kh(u) = K(u/hn) is a kernel function with compact

support on [−1, 1] and hn −→ 0 as n −→∞. The empirical control function V̂i can

be constructed using V̂i = Ui − ĝ(Zi), where ĝ(·) is estimated using for instance the

Nadaraya-Watson kernel estimator. The modified test statistic is based on µ̂(·, ·)

in (3.8): assuming that the observations are in ascending order 1 ≤ i < j ≤ n, a

suitable second order U-process based on µ̂(·, ·) and Ui (and indexed by t) is given

by:

Ûn,x(t) =
2

n(n− 1)

∑
1≤i<j≤n

(
µ̂(x, Uj)−µ̂(x, Ui)

)
sign

(
Ui−Uj

) 1

h2
n

Kh(Ui−t)Kh(Uj−t)

(3.10)

where t ∈ T and

sign(x) =


1 if x > 0

0 if x = 0

−1 if x < 0

If ∇Um(x, t) ≥ 0, Ûn,x(t) should, apart from random fluctuations due to estimation

errors, be less than or equal to 0. To see this, replace µ̂(·, ·) by µ(·, ·) and recall that

µ(x, u) = m(x, u). Hence, taking expectations of the modified Un,x(t) and letting
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ν = ((Uj − t)/hn) and u = ((Ui − t)/hn), by change of variables:

E
[
Un,x(t)

]
=

∫ ∫ (
m(x, Uj)−m(x, Ui)

)
sign

(
Ui − Uj

)
× 1

h2
n

Kh(Ui − t)Kh(Uj − t)f(Ui)f(Uj)duiduj

=

∫ ∫ (
m(x, t+ hnν)−m(x, t+ hnu)

)
sign

(
u− ν

)
×K(u)K(ν)f(t+ hnu)f(t+ hnν)dudν

where f(·) denotes a marginal density function. Notice that:

1

hn

(
m(x, t+ hnν)−m(x, t+ hnu)

)
−→ ∇Um(x, t)(ν − u)

and hence by dominated convergence:

1

hn
E
[
Un,x(t)

]
−→ −∇Um(x, t)

∫ ∫
|u− ν|K(u)K(ν)f(t)2dudν

Thus, the limit is negative or zero if and only if ∇Um(x, t) ≥ 0. So in expectation,

the statistic should be less than or equal to zero under H0. Vice versa, under the

alternative the statistic should yield a positive value.

The test statistic is given as the supremum (on the interval T ) of a suitably scaled

version of (3.10), which corresponds to the choice of similar tests in the literature

rendering the test particularly sensitive to large positive outliers violating the null

hypothesis.9 Specifically, the statistic is chosen to be:

Sn = sup
t∈T

{
Ûn,x(t)

cn(t)

}

where cn(t) is a scaling factor that may depend on ({X1, U1}, . . . , {Xn, Un}) and

is assumed to have continuous sample paths as a process of t. A suitable choice

given the U-process structure of (3.10), which ensures that the variability of Sn is

approximately the same over different t, is cn(t) = σ̂n,x(t)/
√
n so that Sn becomes:

9However, as pointed out by Ghosal, Sen, and van der Vaart (2000), other functionals might be
chosen depending on the specific interest of the researcher.
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Sn = sup
t∈T

{√
nÛn,x(t)

σ̂n,x(t)

}
(3.11)

where

σ̂2
n,x(t) =

1

n(n− 1)(n− 2)

∑
1≤i,j,k≤n,i 6=j 6=k

(
µ̂(x, Uj)− µ̂(x, Ui)

)(
µ̂(x, Uk)− µ̂(x, Ui)

)
× sign

(
Ui − Uj

)
sign

(
Ui − Uk

) 1

h4
n

Kh(Uj − t)Kh(Uk − t)K2
h(Ui − t) (3.12)

is the estimated U-process for:

σ2
n,x(t) =

∫ (∫ (
µ(x, ω)− µ(x, U)

)
sign

(
U − ω

) 1

hn
Kh(ω − t)

)2

dF (ω)
1

h2
n

K2
h(U − t)dF (U)

=

∫ (∫ ∫ (
µ(x, ω1)− µ(x, U)

)(
µ(x, ω2)− µ(x, U)

)
sign

(
U − ω1

)
× sign

(
U − ω2

) 1

h2
n

Kh(ω1 − t)Kh(ω2 − t)dF (ω1)dF (ω2)

)
1

h2
n

K2
h(U − t)dF (U)

(3.13)

with F (·) denoting a distribution function that corresponds to the marginal density

function f(·). The respective test is given by:

Reject H0 at level α if Sn > τn,α

where lim
n−→∞

P{Sn > τn,α} = α. Thus, to approximate the critical values, the limiting

distribution of Sn is required. The first step towards this point is to show that

(3.11) can be approximated by a stationary Gaussian process with continuous sample

paths, which will be achieved in Theorem 6 of the next section.

3.3 Large Sample Theory

Before assumptions and asymptotic theory are outlined, the following terms need to

be defined: let the projection of the degenerate U-process in (3.10) for m(x, ·) = 0
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be denoted as (Hoeffding, 1948):

Ûp
n,x(t) =

2

n

n∑
i=1

∫ (
µ̂(x, ω)− µ̂(x, Ui)

)
sign

(
Ui − ω

) 1

h2
n

Kh(ω − t)dF (ω)Kh(Ui − t)

(3.14)

where the projection term of higher order Op(hnn
−1) has been omitted. Moreover,

define:

q(r) =

∫ (
ω − r

)
sign

(
r − ω

)
K(ω)dω (3.15)

and

ρ(s) =

∫
q(r)q(r − s)K(r)K(r − s)dr∫

q2(r)K2(r)dr
(3.16)

as well as Tn = [0, (b− a)/hn]. The following assumptions are made:

A1 Let {Wi, X
T
i , Ui, Zi}ni=1 be i.i.d. data with finite second moments.

A2 W = U×X×V is a non-empty set, where U , X , and V are subsets in the interior

of the marginal support of X and U and V . The marginal distribution function

of V is continuously differentiable on V . The elements x in the support of X

can be partitioned into subvectors of discrete x(d) with a finite number of

points and continuous x(c) components of dimension Dc. Let X (d) and X (c) be

the corresponding discrete and continuous parts of X ⊂ W . Assume that the

conditional density (given x(d) ∈ X (d)) onW is continuously differentiable and

strictly bounded away from zero.

A3 K(·) is a bounded and symmetric second order kernel function with compact

support [−1, 1]. It is twice continuously differentiable.

A4 The function µ(·, ·) = E
[
µ(·, ·, Vi)

]
as defined in (3.7) satisfies, for every u1, u2 ∈

U and x ∈ X , µ(·, ·) = E
[
µ(·, ·, Vi)2

]
< ∞ and the following Lipschitz condi-

tion: ∣∣∣µ(x, u1)− µ(x, u2)
∣∣∣ ≤ C

∣∣∣u1 − u2

∣∣∣
where C is a generic finite constant. Moreover, let w = {x(c), u, v}T denote

a vector of dimension Dc + 2 and ‖·‖ the Euclidean norm. Assume that for

every x(d) ∈ X (d), µ(·, ·, ·) is twice continuously differentiable with derivatives
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satisfying the Lipschitz conditions:

∥∥∥∇wµ(x(d), x
(c)
1 , u1, v1)−∇wµ(x(d), x

(c)
2 , u2, v2)

∥∥∥ ≤ CD

∥∥∥w1 − w2

∥∥∥∥∥∥∇ww′µ(x(d), x
(c)
1 , u1, v1)−∇ww′µ(x(d), x

(c)
2 , u2, v2)

∥∥∥ ≤ CDD

∥∥∥w1 − w2

∥∥∥
for every w1, w2 ∈ X×U×V , where CD, CDD are again generic finite constants.

A5 For every {x, U, t : x ∈ X , U ∈ U , t ∈ T } and bandwidth hn −→ 0, assume

that:

∫ (
µ̂(x, ω)−µ(x, ω)

)
sign

(
U−ω

) 1

hn
Kh(ω−t)dF (ω) ≤ C sup

x∈X

∣∣∣µ̂(x, U)−µ(x, U)
∣∣∣

where µ(·, ·) and µ̂(·, ·) are defined in (3.7) and (3.8), respectively, and C is a

generic finite constant.

Assumption A2 allows in principle for continuous as well as discrete conditioning

variables x in µ(·, ·). In practice, the former will obviously depend on the na-

ture of the data set requiring a rich enough data source if continuous variables

are part of the conditioning vector (for instance, if age was treated as a continu-

ous random variable and sufficient observations existed, one might be testing the

monontonicity of the reservation wage function for different age levels). The under-

lying assumption with discrete x is that, with slight abuse of notation, n −→ ∞

also holds conditional on a specific value of x. A2 also incorporates the identifi-

cation conditions from the previous section (see Newey, Powell, and Vella (1999)

for details), while the absolutely continous distribution of V requires U to be con-

tinuous. Condition A3 is satisfied by many commonly used kernel functions such

as the Epanechnikov kernel K(v) = 0.75(1 − v2) I[|v| ≤ 1] or the biweight kernel

K(v) = (15/16)(1 − v2)2 I[|v| ≤ 1]. The Lipschitz continuity assumptions on µ(·, ·)

and the derivatives of µ(·, ·, ·) in A4 comlement the assumptions made about the

regression function m̃(·) and allow in principle a generalization of the setup to non-

separable models Wi = m(Xi, Ui, εi). However, such a generalization requires also

a ‘tightening’ of the identification conditions to full independence of the instrument

Zi and the unobservables (εi, Vi) as discussed in the previous section. The following
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theorem establishes consistency of the rescaled test statistic.

Theorem 6. Assume that A1 to A6 hold. Let the bandwidth sequence satisfy

hn
√

log(n) −→ 0, nhn(log(n))−2 −→ ∞, and nh3
n −→ ∞. Then there exists a

sequence of stationary Gaussian processes {ξn(s) : s ∈ Tn} with continuous sample

paths s.t.:

E
[
ξn(s)

]
= 0, E

[
ξn(s1)ξn(s2

]
= ρ(s1 − s2), s1, s2, s ∈ Tn

where ρ(·) was defined in (3.16) and

sup
t∈T

∣∣∣∣∣
√
nÛn,x(t)

σ̂n,x(t)
− ξn(h−1

n (t− a))

∣∣∣∣∣
=Op

(
hn
√

log(n) + h
1
2
n + n−

1
2h
− 1

2
n log(n)

)
=op(1)

The proof is carried out in several steps, which follow closely the proof of Theorem

3.1 in Ghosal, Sen, and van der Vaart (2000): Lemma A2 establishes the order

of the error when approximating the U-statistic Un,x(t) by its projection Up
n,x(t).

Lemma A3 gives an approximation of the empirical process
√
nUp

n,x(t) by a Gaus-

sian process Gn(t). Lemma A4 shows that σ̂n,x(t) converges uniformly to σn,x(t).

Finally, in Lemma A5 it is shown that the scaled Gaussian process Gn(t)/σn,x(t)

can be approximated by a stationary Gaussian process ξn(t). The key difference

to Theorem 3.1 consists in the fact that µ̂(·, ·) and σ̂n,x(t) are estimated, which

needs to be accounted for. This is carried out in Lemma A1 and A6: Lemma A1

establishes a parametric convergence rate for the averaged nonparametric estimator

µ̂(·, ·). Similar to Gutknecht (2011), this is accomplished by using the fact that

(V̂i − Vi) = (ĝ(Zi) − g(Zi)) and that the first stage estimator averages over the V̂i.

The latter allows for an approximation of the statistic by a second order U-process,

which in turn can be approximated by a suitable project. Subsequently, a standard

Lindberg-Levy Central Limit Theorem can be applied to prove convergence in dis-

tribution. Finally, Lemma A6 then shows that, given the bandwidth conditions, a

similar argument to the proof of Theorem A.1 in Lee, Linton, and Whang (2009)
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can be used to show that Ûn,x(t) − Up
n,x(t) = Op(n

− 1
2 ) uniformly over x ∈ X and

t ∈ T . That is, the asymptotic distribution of Sn can be treated as if µ(·, ·) was

observed. The same argument applies for the estimated σ̂n,x(t).

The next step is to determine the asymptotic distribution of the test statistic. From

Theorem 6 above, it is clear that Sn = sup
s∈Tn

ξn(s) +Op(δn), where δn = hn
√

log(n) +

h
1
2
n + n−

1
2h
− 1

2
n log(n). Therefore, for some positive an and some real number bn,

if:

an

(
sup
s∈Tn

ξn(s)− bn
)

d→ L

holds for some random variable L, then it also holds that:

an

(
Sn − bn

)
d→ L

provided anδn = o(1). As mentioned in Ghosal, Sen, and van der Vaart (2000), since

the interest lies in distributions only and the covariance of ρ(·) is free from n, one

may assume that all the Gaussian processes are the same with:

E
[
ξ(s)

]
= 0, E

[
ξ(s1)ξ(s2

]
= ρ(s1 − s2), s1, s2, s ∈ Tn

The following theorem establishes the limiting distribution of this Gaussian pro-

cess.

Theorem 7. Let assumptions A1 to A5 hold. The bandwidth sequence satisfies

hn log(n) −→ 0, nhn(log(n))−3 −→∞, and nh3
n(log(n))−1 −→∞. Then, for any x:

lim
n→∞

P

(
an(sup

t∈Tn
ξt − bn) ≥ x

)
= exp(−e−x) ≡ F∞(x)

where an =
√

2 log((b− a)/hn) and

bn =
√

2 log((b− a)/hn) +
log
(
λ

1
2

2π

)
√

2 log((b− a)/hn)
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with

λ = −
∫
q(v)q

′′
(v)K2(v)dv + 2

∫
q(v)q

′
(v)K(v)K

′
(v)dv +

∫
q(v)2K(v)K

′′
(v)dv∫

q(v)2K2(v)dv

and q
′
(·), K ′(·) and q

′′
(·), K ′′(·) denote the first and second derivative of q(·) and the

kernel function, respectively.

Thus, as in Theorem 4.2 of Ghosal, Sen, and van der Vaart (2000), the asymptotic

distribution of Sn follows straightforwardly from the above theorem:

lim
n→∞

P

(
an(Sn − bn) ≥ x

)
= exp(−e−x) ≡ F∞(x)

and one can construct a test with asymptotic level α:

Reject H0 if F∞(an(Sn − bn)) ≥ 1− α (3.17)

Notice that, in order to ensure anδn −→ 0, the restrictions imposed on the band-

width sequence are slightly stronger than in Theorem 6: bandwidth sequences such

as hn = 1/ log(n)γ, γ > 1, or hn = 1/nη, η < (1/3), satisfy the above requirements

and provide a broad range of possible bandwidths for which the test has asymptotic

level α. To compute the above statistic, one needs to calculate an and bn, which

depend on hn and λ. Since K(·) is supported on [−1, 1], the integrals can be com-

puted analytically. The biweight kernel for instance yields λ ≈ 3.082, while for the

Epanechnikov kernel one obtains λ ≈ 4.493.

Next, the consistency of the test against general alternatives is examined, which

leads to the following theorem:

Theorem 8. Assume that nh3
n/ log(n) −→ ∞. Then, for a given x ∈ X , if

∇Um(x, t) < 0 for some t ∈ [a, b], the test in (3.17) is consistent at any level

α.

The theorem imposes a further restriction on the bandwidth sequence. This is

because, under violation of the null for some t ∈ [a, b], hnUn,x(t) for that t can be

shown to converge to a positive limit in probability. Since Sn is of order Op(nh
3
n),
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this exceeds the order of bn only if the bandwidth sequence satisfies nh3
n/ log(n) −→

∞.

3.4 Extension

A drawback of the control function approach is that suitable instrumental vari-

ables are required that satisfy appropriate relevance and exogeneity conditions. In

the context of the reservation wage application, Addison, Centeno, and Portugal

(2010) suggest the concept of ‘unobservable instruments’ as an alternative to the

former using completed duration as an exogenous perturbation of elapsed duration

to infer about the effect of elapsed unemployment duration on reservation wages.

The underlying rationale of completed duration as ‘unobservable instrument’ will

be explained by a job search model outlined in the next section. To formalize the

econometric concept introduced by Matzkin (2004), assume that Ui is an exogenous

perturbation of another continuous random variable Ti (completed duration). That

is, Ui = s(Ti, ζi), where ζi is an unobservable that is assumed to be independent of

εi from (3.1) and s(·, ·) is some unknown function. Further assume that the error

term εi can be characterized by the following additive reduced form equation:

εi = r(Ti) + ηi (3.18)

where ηi is an unobservable variable that is assumed to be independent of the ob-

servable Ti. ηi in the above equation must not to be confounded with the control

function from section 3.2. Notice also that Ti is not an instrumental variable in

the traditional sense as it is correlated with the unobservable εi by construction.

Put differently, endogeneity in this framework can be addressed because it is caused

by a ‘fixed effect’ (e.g. unobserved heterogeneity) that is present in Ui as well as

Ti. Thus, controlling for observed Ti implies controlling for the unobserved effect.10

10That is, the roles of the observable Ti and the unobservable ηi have been exchanged.
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Inserting (3.18) into the regression equation yields:

Wi = m̃
(
Xi, Ui

)
+ r
(
Ti

)
+ ηi (3.19)

Equation (3.19) represents an additive nonparametric regression model with the

unobservable error term ηi that is assumed to be independent of Xi, Ui, and Ti.

Given some additional regularity and identification conditions, one may, for a specific

x ∈ X of interest, recover m(x, ·) = −m̃(x, ·) and r(·) using standard backfitting

methods as proposed by e.g. Mammen, Linton, and Nielsen (1999). In order to apply

this procedure, it is assumed that X only contains discrete elements. With slight

abuse of notation, n −→∞ will hence represent the sample size for a specific value

x in the following. Also, for identification purposes it is assumed that m(x, .) and

r(·) can be normalized to E
[
m(x, Ui)

]
= 0 and E

[
r(Ti)

]
= 0 for every x ∈ X . Once

m̂(x, ·) is obtained, this function can be plugged into the second order U-process

in (3.10) in lieu of µ̂(x, ·) to compute the test statistic. That is, using the smooth

backfitting procedure of Mammen, Linton, and Nielsen (1999) to estimate m(x, ·)

and r(·) from (3.19) for a specific x (see their paper for details of the estimator),

one may construct the following modified test statistic:

S∗n = sup
t∈T

{√
nÛ∗n,x(t)

σ̂∗n,x(t)

}
(3.20)

where Û∗n,x(t) is defined as:

Û∗n,x(t) =
2

n(n− 1)

∑
1≤i<j≤n

(
m̂(x, Uj)−m̂(x, Ui)

)
sign

(
Ui−Uj

) 1

h2
n

Kh(Ui−t)Kh(Uj−t)

and m̂(x, ·) is the backfitting estimator of m(x, ·). σ̂∗n,x(t) is the equivalent to (3.12)

using m̂(x, ·) instead of µ̂(x, ·). The following regularity conditions from Mammen,

Linton, and Nielsen (1999) are imposed:

A2* For every x ∈ X , assume that U and T have compact support [0, 1]× [0, 1] and

that the joint density function is continuously differentiable in its arguments

and strictly bounded away from zero everywhere on [0, 1]× [0, 1].
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A4* For some θ > 5
2
, assume that E

[∣∣∣W ∣∣∣θ] < ∞. Moreover, for every x ∈ X , the

functions m(x, ·) and r(·) are twice continuously differentiable in their (second)

argument.

Since Ui and Ti are both supported on [0,∞), condition A2* implies that trimming

(as for A2 in the previous section) has to be applied to restrict the support to a

compact subset with strictly positive density. A suitable affine transformation of the

data will then ensure that the normalization to [0, 1] in A2* is satisfied. Moreover,

let the assumption below substitute condition A5 from section 3.3:

A5* For every {x, U, t : x ∈ X , U ∈ U , t ∈ T } and bandwidth hn −→ 0, assume

that:

∫ (
m̂(x, ω)−m(x, ω)

)
sign

(
U−ω

) 1

hn
Kh(ω−t)dF (ω) ≤ C sup

x∈X

∣∣∣m̂(x, U)−m(x, U)
∣∣∣

where m(·, ·) is defined in (3.7) and C is a generic finite constant.

The following theorem can be established in analogy to Theorem 6:

Theorem 9. Assume that A1, A3 as well as A2*, A4*, and A5* hold and that

T ⊂ (0, 1). Let the bandwidth sequence satisfy nh3
n −→ ∞, nhn(log(n))−2 −→ ∞,

and nh5
n −→ 0. Then there exists a sequence of stationary Gaussian processes

{ξn(s) : s ∈ Tn} with continuous sample paths s.t.:

E
[
ξn(s)

]
= 0, E

[
ξn(s1)ξn(s2

]
= ρ(s1 − s2), s1, s2, s ∈ Tn

where ρ(·) was defined in (3.16) and

sup
t∈T

∣∣∣∣∣
√
nUn,x(t)

σ̂n,x(t)
− ξn(h−1

n (t− a))

∣∣∣∣∣
=Op

(
hn
√

log(n) + n
1
2h

5
2
n + n−

1
2h
− 1

2
n log(n)

)
=op(1)
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The subsequent theorems follow in accordance with Theorem 7 and 8 from section

3.3 and have been omitted for brevity. Hence, this section has presented a viable al-

ternative to the use of control functions in case where suitable instrumental variables

do not exist, but instead unobserved exogenous variation is available.

3.5 Monte Carlo Simulation

In order to research the performance of the test in small samples, a Monte Carlo

simulation is carried out. The results are displayed in Table 3.1 of Appendix A3.2.

Firstly, the behaviour of the test in small samples is examined when the null hy-

pothesis is true. The underlying model for this case is chosen to be the following

monotonically increasing function:

Wi = 0.1 · Ui + εi

where the regressor Ui is constructed as Ui = Zi + Vi: the instrument Zi and the

control function Vi are drawn from uniform distributions supported on [.25, .75] and

[−.25, .25], respectively. Thus, Ui is supported on the compact interval [0, 1]. The

unobservable εi is given by: εi = Vi + 0.1 ·$i with $i ∼ N(0, 0.12).

The kernel function is chosen to be the Epanechnikov kernel K(v) = 0.75(1 −

v2) I[|v| ≤ 1] and the first stage functions g(·) in (3.2) and µ(·) in (3.7) are estimated

using the Nadaraya Watson estimator as explained in section 3.2. The bandwidth for

these estimators are determined using the rule of thumb for nonparametric density

estimators, i.e. C · sd(·) · n− 1
5 with sd(·) the standard deviation and C = 2.34 a

constant for the Epanechnikov kernel (C = 2.78 for the Biweight kernel). Finally,

the test statistic is constructed as described in (3.11) with the interval T chosen to be

T = {0.05, 0.1, . . . , 0.9, 0.95}. There are three different bandwidth parameters used

for the construction of the test statistic at the final stage, each of which satisfies the

requirements of Theorem 7. The simulations use sample sizes of n = 100, 200, 300

and 1, 500 replications are conducted for each simulation.

Reverting to Table 3.1 one can observe that, while a reasonable approximation to
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the nominal size of 5% is obtained for hn = 1 · n− 1
5 , the proportion of rejections

appears to be rather sensitive to modifications of the bandwidth for this chosen

specification: surprisingly, the share increases with growing sample size (and thus

decreasing bandwidth) to roughly 16% for hn = 0.8 · n− 1
5 and decreases to 0.002%

for h = 1.2 · n− 1
5 . This is in contrast to a stabilization of the size at around 3%

for hn = 1 · n− 1
5 . In order to better understand this sensitive behaviour, further

simulations are to be carried out in the future.

Next, the behaviour of the test is examined when the null hypothesis is false. The

model is altered to:

Wi = Ui(1− Ui) + εi

with the variables themselves being generated as before. In this case, reasonable

rejection levels are achieved across all bandwidth specifications: already at n = 100,

rejection shares range from 94 to 98%. At n = 200, these proportions have reached or

are very close to one, while for n = 300 the nominal level is reached throughout.

Thus, despite a somewhat sensitive behaviour of the test under the null, simulation

results presented in Appendix A2 do overall provide a fairly positive and encouraging

picture of the small sample propteries of the test. Still, other specifications and

different sample sizes are yet to be examined in order to further understand its

performance under different model specifications. Moreover, using an asymptotic

expansion similar to the one in Lee, Linton, and Whang (2009) to construct the test

statistic might substantially improve the results as in their paper. The parameters

for this asymptotic expansion have yet to be derived.

3.6 An Application to Reservation Wages

Reservation wages have been the focal point of labour economists for many decades

since they play a key role in modern job search theory. While early partial equilib-

rium job search models typically assumed constant reservation wages, later studies

mostly relaxed this assumption and allowed for flexible reservation wages that could

change with elapsed unemployment duration (Kiefer and Neumann, 1979). In fact,
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in instances where the hypothesis of constant reservation wages has been tested em-

pirically, it has typicallly been rejected (Kiefer and Neumann, 1979; Brown and Tay-

lor, 2009; Addison, Machado, and Portugal, 2011). That is, using linear regression

techniques, most studies established a significantly negative regression coefficient

for elapsed duration hinting at declining reservation wages over time. However, de-

spite its potential policy implications, no information has yet been provided about

whether this decline is montonic (throughout an unemployment spell) and whether

it holds across different subgroups of the population (see introduction).

In the following, it will be examined under which conditions reservation wages decline

monotonically using a standard job search model based on the one of van den Berg

(1990). Moreover, the model developed in this paper will accomodate unobserved

heterogeneity across agents and thus provide a theoretical underpinning of completed

unemployment duration as an exogenous perturbation of elapsed duration.

Let U denote continuous calendar time, which starts at the moment an individ-

ual becomes unemployed and thus characterizes elapsed unemployment duration.

The underlying hazard rate for such an elapsed duration U(Z) ∈ [0,∞) is given by

θ(U(Z), X, V ) = Ψ(U(Z), X) · V . The dependence of elapsed unemployment dura-

tion U(·) on the vector of instruments Z = {Z1, X} is assumed to ensure the validity

of the latter. V is a random variable denoting unobserved heterogeneity, which is

assumed to be independent of elapsed duration U(Z). Thus, in line with standard

mixed proportional hazard models, unobserved heterogeneity V is time invariant.11

Independence and constancy are certainly strong and rather unrealistic assumptions.

However, both are owed to the use of completed unemployment as an exogenous vari-

ation for elapsed unemployment duration, which relies on the existence of a fixed

effect as the only source of endogeneity. As outlined in the introduction, the paper

uses different methods to verify the robustness of results obtained from regressions

with completed unemployment duration as an exogenous perturbation of elapsed un-

employment duration. Hence, severe violations of the above assumption are likely to

lead to differing results. The conditional distribution function of elapsed durations

11Notice that, despite assuming that unobserved heterogeneity enters multiplicatively into the
hazard, other observed covariates must not necessarily do so. This provides a certain degree of
flexibility to the approach as no proportional hazards in the observed covariates are imposed.

84



U(Z) is given by F (U(Z)|X, V ) = {1 − exp(−
∫ U(Z)

0
Ψ(t,X)dt) exp(−V )}. Notice

that while the model imposes proportionality in the unobserved heterogeneity term

V (thus allowing for fixed effects), no such assumption is imposed on X. The latter

is also reflected by the non-separability of the reduced form function m(·, ·) in its

arguments. The unemployed agent receives job offers that arrive with a fixed wage

ω attached, which represent random draws from a distribution with known distri-

bution function Fω(·;X). Notice that the wage offer distribution function depends

on observed covariates X and not on Z1, which is crucial for our instruments Z1

to be valid.12 The discount factor is given by ρ and the rate at which he receives

these offers is λ(U(Z), X, V ). Every time the agent receives such an offer, he may

decide whether to accept or reject it: if he accepts, the job will be held forever,

while a rejection of the offer implies that he may not recall this job at a later stage

anymore.13 In this stylized version of the model, there are no costs to search and

agents receive benefits b(U(Z)) over their course of unemployment. Individuals are

assumed to maximize the expected present value of income (over an infinite horizon)

and they are able to anticipate changes in the exogenous b(U(Z)) and λ(U(Z), ·, ·).

While the assumption of an infinite decision horizon is clearly unrealistic (but typ-

ically adopted by the literature to simplify matters and to gain better insight into

the essentials of the problem), the anticipation condition appears fairly plausible

in instances where individuals have for instance upfront information about future

reductions in benefit payments (as in the case of contribution based jobseeker’s

allowance in the UK).

The following assumptions are sufficient for a strictly monotonically declining reser-

vation wage:

J1 The discount factor satisfies 0 < ρ < ∞, while 0 < b(U(Z)) ≤ Ψb < ∞ for

all U(Z) ∈ [0,∞) and some fixed Ψb. Additionally, assume that for every X

and V it holds that 0 < λ(U(Z), X, V ) ≤ Ψλ < ∞ for some fixed Ψλ and all

U(Z) ∈ [0,∞). Let Fω(·;X) be continuous and strictly monotonic in ω with

12Fω(·;X) denotes the wage offer distribution rather than the conditional distribution function
of elapsed unemployment durations. A possible element of X might be gender if one expects wage
offer distributions to differ between men and women.

13See van den Berg (1990) for a discussion of these assumptions.
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lim
ω→0

Fω(ω;X) = 0 and lim
ω→∞

Fω(ω;X) = 1. Moreover, assume that Fω(·;X) has

finite first moment for every X.

J2 There exists some finite point U ∈ [0,∞) such that b(U(Z)) = b and λ(U(Z), X, V ) =

λ are constant for every U(Z) ∈ [U,∞). For every U(Z) ∈ [0, U), assume that

∂λ(U(Z), X, V )/∂U(Z) exists and is negative. In addition, there exists some

point Ub ∈ [0, U) s.t. b(U(Z)) = b1 for U ∈ [0, Ub) and b(U(Z)) = b2 for

U(Z) ∈ [Ub,∞), respectively. Without loss of generality it is imposed that

b1 > b2.14

This is the simplified setup of van den Berg (1990). The constancy assumption in

J2 after U together with J1 imply that the model has a unique solution. Moreover,

the assumption of b(U(Z)) being a declining step function (which captures the effect

of a possible benefit reduction after 182 days) allows us to split the time axis [0, U)

into two intervals on which b(U(Z)) is constant. Take for instance the first interval

[0, Ub). The reservation wage function for every U(Z) ∈ [0, Ub) is characterized by

the following differential equation:

∂ω∗(U(Z), X, V )

∂U(Z)
= ρω∗(U(Z), X, V )− ρb1 − λ(U(Z), X, V )

×
∫ ∞
ω∗(U(Z),X,V )

(ω − ω∗(U(Z), X, V ))dFω(ω;X)

Notice also that the hazard rate θ(U(Z), X, V ) can be rewritten as θ(U(Z), Z, V ) =

λ(U(Z), X, V )(1 − Fω(ω∗(U(Z), X, V );X). By Theorem 2 of van den Berg (1990),

the reservation wage function ω∗(U(Z)), which is continuous and differentiable in

U(Z) for all U(Z) ∈ [0, Ub) by J1 and J2, satisfies:

(i) ω∗0(X, V ) > ω∗(U(Z), X, V ) for every U(Z) ∈ (0, Ub), where ω∗0(·, ·) denotes the

solutions under the assumption of constant parameters from time 0 onwards.

(ii) For every U(Z) ∈ (0, Ub), it holds that ∂ω∗(U(Z), X, V )/∂U(Z) < 0.

In other words, the reservation wage ω∗(U(Z), X, V ) is monotonically declining for

all U(Z) ∈ (0, Ub) only if the function b(U(Z)) and λ(U(Z), X, V ) are strictly de-

14Imposing b2 > b1, albeit not a very realistic scenario, would simply alter the direction of
inequalities in the following theorem.
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creasing in U(Z). Obviously, these assumptions are fairly restrictive and might

sometimes be violated.

The remainder of this section will be dedicated to assessing the monotonicity of the

reservation wage function using unemployment data from the BHPS, a nationally

representative survey on individuals from more than 5,000 households in the UK.

It contains detailed questions on the current labour market situation of adults in

each household. Unemployment spells and labour market states are constructed

using the case-by-case correction method of inconsistencies (Method C) developed

by Paull (2002). The starting point of the sampling period is chosen to be October

1996, which conincides with the introduction of jobseeker’s allowance in the UK. To

examine the robustness of the empirical results, three different endpoints have been

selected for the analysis, namely 31st of December 2002, 2005 and 2007. The first

date has been selected due to major reforms of the British tax credit system in April

2003. It is conjectured that this legislation change could affect reservation wages

since a provisional system (Working Family Tax Credits) leading up to this reform

has recently been found to have impacted the latter (Brown and Taylor, 2009).

Moreover, the end year 2007 has been chosen to avoid censoring of unemployment

spells at the end of the observation period.

The hourly reservation wage is constructed combining answers from the two ques-

tions “What is the lowest weekly take home pay you would consider accepting for

a job?” and “About how many hours in a week would you expect to have to work

for that pay?” that non-employed individuals are asked during the interview. The

sample then includes all individuals of working age (16-65) who indicate such an

hourly wage and who satisfy the rationality condition, which requires a reservation

wage below the reported expected wage. Notice that even individuals who indicated

to be economically inactive are included in the sample if they have a valid reserva-

tion and expected wage. The decision to incorporate these observations is based on

recent advances in labour market research questioning the clear-cut distinction be-

tween inactive and labour-seeking agents and instead interpreting the indication of

a reservation wage as a signal for labour market attachment (see Brown and Taylor

(2009) and references therein). Finally, to test robustness, observations below the
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nationally binding minimum wage (which became applicable after 1999) have been

dropped in all three but a basic 1996-2002 sample specification.15

For all empirical specifications, the sample is split into male and female subsamples.

The continuous instrumental variables are unemployment benefits and other bene-

fit income. In order to incorporate also discrete variables as instruments, principal

component analysis was employed. The latter is a common statistical technique to

aggregate multivariate data into a (smaller) set of linearly uncorrelated variables,

the so called principal components. Despite the fact that the underlying asymptotic

properties have been derived under the assumption of normally and continuously

distributed variables, Kolenikov and Angeles (2009) point out in a recent simulation

study on socioeconomic status measurements that the bias for using discrete vari-

ables in principal component analysis appears to be rather small if it contains mostly

categorical data with several categories that is not transformed into binary indica-

tors. Thus, ordinal and count variables such as number of dependent children, age,

and education have been included in the analysis alongside variables such as having

a companion (being married or living as a couple), having a working spouse, and

regional dummy variables (only number of dependent children, having a companion,

and having a working spouse are considered to be part of Z1). Only the first two

principal components have been retained. Moreover, as pointed out previously, the

maintained assumption is that all instrumental variables impact reservation wages

exclusively through elapsed unemployment duration. This is formalized by writing

U(·) as a function of the instrument vector Z.

The bandwidth sequence is determined using the leave-one-out cross-validation method.

That is, the bandwidth is determined according to hn = C ·min{sd(·); 0.8 ·iqr}·n− 1
5 ,

where iqr denotes the interquartile range and C is chosen through cross-validation

from the grid {0.9, 0.925, . . . , 1.175, 1.2}.16 Turning to the summary statistics of Ta-

ble 3.2 in Appendix A2, which displays key features of the hourly reservation wage

as well as the elapsed unemployment distribution for the 1996 to 2002 sample, one

can observe that, irrespective of an elimination of reservation wages below the mini-

15This only applies to spells recorded after 1999 when the minimum wage became applicable.
16The biweight kernel has been used in all specifications.
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mum wage (“Min. Wage Correction”), the reservation wage distribution for females

has a slightly lower mean and higher variance than the one for males. By contrast,

in both specifications, female subsamples display a larger average elapsed duration

(and greater variance). The share of multiple spells is 20.6% (19.58%) for males and

15.71% (15.48%) for females and thus fairly evenly distributed across gender. Turn-

ing to Table 3.3 displaying statistics for the 1996-2005 and the 1996-2007 samples,

one observes that, as expected, the means of the hourly reservation wage increase

as more recent years are included. Likewise, average elapsed durations fall, which

is again not surprising given the positive developments in the British labour market

during the early 2000s.

The plots in Figures 3.1, 3.2, 3.3, and 3.4 display −µ̂(x, ·) from equation (3.8) for

the first 250 days of elapsed unemployment duration for the different specifications.

Figures 3.1 and 3.2 concern the estimated hourly reservation wage functions for

males (x = 1), while Figures 3.3 and 3.4 show the equivalent figures for females

(x = 0). Firstly, notice that the patterns are fairly robust across samples for both

men and women: for men (Figures 3.1 and 3.2), one observes a fairly steep decline

during the first 50-75 days of elapsed duration, which is followed by an increase that

eventually exceeds the starting value. The initial fall seems to be more pronounced

when observations after 2002 are taken into account, too, while the rise after the

turning point at around 75 days is more marked for the 1996-2002 sample. Moreover,

in particular for the extended 1996-2005 and 1996-2007 samples, there appears to be

a ‘dent’ in the reservation wage curve after around 175-200 days, which conincides

with the regime change from contribution to income based jobseeker’s allowance after

six months for people with sufficient contributions.17 For women, a similar albeit

much less pronounced pattern can be observed. A moderate initial decline during

the first 50 days of elapsed duration is followed by a marked increase outweighing

by far the initial loss.

Putting the observations from the graphs to the (formal) test, Table 3.4 displays the

results for the null of a decreasing reservation wage function across all the different

17180 days also marks the starting point of the gateway period for unemployed qualifying for
the ‘New Deal’ programme.
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specifications. The compact interval T is chosen to be bounded by the 2% and 50%

quantile for each sample and contains nineteen equally spaced points within those

bounds.18 Estimator and kernel function are as described in Section 3.5. An upfront

log transformation of elapsed duration has been performed and the bandwidth has

been determined by 1.25 ·n− 1
5 in compliance with Theorem 6.19 Examining the test

results in Table 3.4, one can observe a clear-cut rejection of monotonically declining

reservation wages even at a 1% significance level for all specifications. Furthermore,

with the exception of the 1996-2005 sample, larger test statistics are obtained for

females throughout reflecting their upwards sloping reservation wage curves.

In summary, this section has demonstrated that the behaviour of the reservation

wage function is more complicated than typically assumed, which might not be cap-

tured by standard linear estimation techniques. For instance, linear two stage least

squares regressions for the different samples (with the exogenous and instrumental

variables from before) yielded estimated coefficients for elapsed unemployment dura-

tion ranging from −0.0028 to −0.0045 (with t-statistics from |t| = 2.00 to |t| = 2.20)

for males and from −0.0017 to 0.0016 (with t-statistics from |t| = 0.48 to |t| = 0.78)

for females. Thus, being able to better understand the impact of elapsed unemploy-

ment duration on (hourly) reservation wages remains an important task for future

research and has, as outlined in the introduction, implications for the design of

appropriate labour market policies.

3.7 Conclusion

This paper proposes a test for monotonicity of the regression function when the

(continuous) regressor of interest is endogenous. It is argued that this kind of test is

relevant for various empirical setups. As an important application, the paper studies

the behaviour of hourly reservation wages as a function of elapsed unemployment

duration in the UK using the British Household Panel Survey as data source. The

relationship between reservation wage and elapsed unemployment duration is diffi-

18The 50% quantile roughly corresponds to 200 days of elapsed unemployment duration.
19Results are fairly robust to changes in the bandwidth sequence. In fact, modifications of the

multiplier to 1 and 1.5 yielded very similar test outcomes (available upon request).
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cult to measure due to the simultaneity of both variables. Using instruments such

as the number of dependent children, having a working spouse, the logarithm of

unemployment benefit or other benefit income to construct control functions, it is

shown that the reservation wage function does typically not decline monotonically.

Rather, various specifications seem to suggest that, after an initial decline, the func-

tion increases again after 75 to 100 days of unemployment and even exceeds the

initial reservation wage level after around 200 days. This finding is robust across

different specifications for both men and women, albeit much less pronounced for

the latter. This has policy implications and could, upon further and more detailed

investigation, give new insights into the behaviour of unemployed individuals.

Technically, the paper combines different conditional mean estimators with a test

based on Ghosal, Sen, and van der Vaart (2000) and derives its asymptotic proper-

ties: the conditional mean estimator(s) can be constructed using either estimated

control functions or variables that represent exogenous perturbations of the en-

dogenous regressor (Matzkin, 2004). Either nonparametric estimator can then be

plugged into a modified test statistic, which is chosen to be the supremum of a

suitably rescaled second order U-process. The asymptotic distribution of the test

statistic can be approximated by a stationary Gaussian process. A Monte Carlo

simulation study evaluates the finite sample behaviour of the test. It is shown that,

even in small samples, the test behaves well if the null hypothesis is violated. If the

null hypothesis is satisfied, the test appears to be rather sensitive to the bandwidth

choice. Finally, the application in section 3.6 demonstrates the test’s applicability

to actual data with the test results being throughout in line with observations from

the graphs.

A straightforward extension of the current paper is to the case of heteroscedasticity,

where the model in (3.1) is altered to Wi = m̃
(
Xi, Ui

)
+ σ(Xi)εi. This specifica-

tion is of interest for various empirical setups with monotonicity still being testable

by the procedures developed in this paper since the key identification condition

E[σ(Xi)εi|Xi = x, Z1i = z1, Vi = v] = σ(x) · E[εi|Vi = v] remains satisfied. Another

important extension concerns the amplification of the current setup to nonparamet-

ric IV estimators at the first stage: given a suitable moment condition of the form
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E
[
εi

∣∣∣Zi] = 0, estimators similar to the one suggested in Chen and Pouzo (2009)

could be used to recover m(·, ·). This estimator of m(·, ·) could then be plugged

into (3.10) as a substitute for µ̂(·, ·). Finally, to improve the external validity of

the results, potential selection bias problems should also be taken into account in

the future: in a recent paper on reservation wages collected from the Italian Labour

Force Survey, Sestito and Viviano (2011) point out two selection biases that affect

the reservation wage distribution and that require either a restriction of the data set

or an appropriate adjustment mechanism. To address these three aspects remains

the key objective for future research.
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A3 Appendix

A3.1 Proofs

Lemma A1. Under assumptions A1 to A4, it holds that:

sup
x∈X

sup
u∈U

∣∣∣µ̂(x, u)− µ(x, u)
∣∣∣ = Op(n

− 1
2 )

Lemma A2. Define:

M̂n,µ(x, t) =
2

n(n− 1)

∑
1≤i<j≤n

(
µ(x, Uj)−µ(x, Ui)

)
sign

(
Ui−Uj

) 1

h2
n

Kh(Ui−t)Kh(Uj−t) (A-3.1)

so that M̂n,µ̂(x, t) = Ûn,x(t) from (3.10). Moreover, let:

M̂p
n,µ(x, t) =

2

n

n∑
i=1

∫ (
µ(x, ω)− µ(x, Ui)

)
sign

(
Ui − ω

) 1

h2
n

Kh(ω − t)dF (ω)Kh(Ui − t) (A-3.2)

be the projection of M̂n,µ(x, t) with M̂p
n,µ̂(x, t) = Ûpn,x(t), where Ûpn,x(t) is defined in (3.14). Then,

under assumptions A1 to A4, it holds that:

sup
t∈T

sup
x∈X

∣∣∣M̂n,µ(x, t)− M̂p
n,µ(x, t)

∣∣∣ = Op(n
−1h−2

n )

Lemma A3. There exists a sequence of Gaussian processes Gn(·) indexed by t, with con-
tinuous sample paths and with:

E
[
Gn(t)

]
= 0, E

[
Gn(t1)Gn(t2)

]
= E

[
Ψn,t1(U)Ψn,t2(U)

]
, t, t1, t2 ∈ T

where Ψn,t(U) =
∫ (
µ̃(ω)− µ̃(U)

)
sign

(
U −ω

)
1
h2
n
Kh(ω− t)dF (ω)Kh(U − t) with µ̃(U) = µ(x, U),

such that:
sup
t∈T

∣∣∣√nM̂p
n,µ(x, t)−Gn(t)

∣∣∣ = Op(n
− 1

2h−1
n log(n))

Lemma A4. Under assumptions A1 to A4, the following holds:

(i) sup
t∈T

∣∣∣hnσ2
n,x(t)− σ2

x(t)
∣∣∣ = o(1)

(ii) lim inf
n−→∞

hn inf
t∈T

σ2
x(t) > 0

(iii) sup
t∈T

∣∣∣σ̂2
n,x(t)− σ2

n,x(t)
∣∣∣ = Op(n

− 1
2h−2

n )

where σ̂2
n,x(t) and σ2

n,x(t) are defined in (3.12) and (3.13), while σ2
x(t) = f3(t)∇Uµ(x, t)

∫
q(v)K2(v)dv.

Lemma A5. For the sequence of Gaussian processes {Gn(t) : t ∈ T } obtained in Lemma A3,
there corresponds a sequence of stationary Gaussian processes {ξn(s) : s ∈ Tn} with continuous
sample paths s.t.:

E
[
ξn(s)

]
= 0, E

[
ξn(s1)ξn(s2

]
= ρ(s1 − s2), s1, s2, s ∈ Tn

93



where ρ(·) was defined in (3.16) and:

sup
t∈T

∣∣∣ Gn(t)

σn,x(t)
− ξn(h−1

n (t− a))
∣∣∣ = Op(hn

√
log(h−1

n ))

with σn,x(t) as in Lemma A4.

Lemma A6. Under assumptions A1 to A5, it holds that:

sup
t∈T

sup
x∈X

∣∣∣M̂n,µ̂(x, t)− M̂p
n,µ(x, t)

∣∣∣ = Op(n
− 1

2 )

Proof of Theorem 6. The proof consists of several steps, which follow closely the proof of
Theorem 3.1 in Ghosal, Sen, and van der Vaart (2000). In particular, Lemma A2-A5 replace
Lemma 3.1-3.4 in Ghosal, Sen, and van der Vaart (2000). Lemma A1 on the other hand establishes

that sup
x∈X

sup
u∈U

∣∣∣µ̂(x, u) − µ(x, u)
∣∣∣ = Op(n

− 1
2 ). Given that nh3

n −→ ∞ by Theorem 6, this is slower

than the rate established in Lemma A2 and thus sup
x∈X

sup
t∈T

∣∣∣Ûn,x(t) − Upn,x(t)
∣∣∣ = Op(n

− 1
2 ) is the

overall rate obtained in Lemma A6. Notice however that an identical adjustment is not required
for Lemma A4 since its rate is slower than the parametric one. �

Proof of Theorem 8. The proof follows the same steps as the one of Theorem 5.1 in Ghosal,
Sen, and van der Vaart (2000). As in their proof, if the null is violated for a specific t ∈ T
(∇Um(x, t) < 0), one can straightforwardly show that:

hnUn,x(t)
p−→ −∇Um(x, t)

∫ ∫
|u− ν|K(u)K(ν)f(t)2dudν

which is positive. Since also h
1
2
n σ̂n,x(t) tends to a positive limit and Sn can be shown to be of order

Op(n
− 1

2h
3
2
n ), the test statistic only exceeds the order of bn if the bandwidth condition satisfies

nh3
n/ log(n) −→∞. �

Proof of Theorem 9. The proof follows identical steps to the one of Theorem 6. However,
Lemma A6 is replaced by the uniform convergence result in Mammen, Linton, and Nielsen (1999).
That is, using A1 and A3 as well as A2*, A4*, and A5*, for a specific x ∈ X , Theorem 4 of
Mammen, Linton, and Nielsen (1999) yields:

sup
U∈(0,1)

∣∣∣m̂(x, U)−m(x, U)
∣∣∣ = op(h

2
n)

�

Proof of Lemma A1. In the following, write µ̂(x, u) = 1
n

n∑
j=1

µ̂(x, u, V̂j), where µ̂(·, ·, ·) was de-

fined in (3.9), and µ(x, u) for E
[
µ(x, u, Vj)

]
with µ(·, ·, ·) defined in (3.6). Then, it holds that:

sup
x∈X

sup
u∈U

∣∣∣ 1
n

n∑
j=1

µ̂(x, u, V̂j)− µ(x, u)
∣∣∣ ≤ sup

x∈X
sup
u∈U

∣∣∣ 1
n

n∑
j=1

{
µ̂(x, u, V̂j)− µ̂(x, u, Vj)

}∣∣∣
+ sup
x∈X

sup
u∈U

∣∣∣ 1
n

n∑
j=1

µ̂(x, u, Vj)− µ(x, u)
∣∣∣

=I1 + I2

The first term can be addressed through a combination of arguments from Lemma A1 and Lemma
B4, B5 in Gutknecht (2011). In the following, a sketch of the basic steps will be provided. First,
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notice that I1 can be further decomposed into:

sup
x∈X

sup
u∈U

∣∣∣∣∣ 1n
n∑
i=1

{
ŝ(x, u, V̂i)− ŝ(x, u, Vi)

f̂(x, Vi)
− f̂(x, u, Vi)− f̂(x, u, Vi)

f̂(x, u, Vi)
× µ̂(x, u, V̂i)

}∣∣∣∣∣
where

ŝ(x, u, V̂i) =
1

nh3

n∑
j=1

ÎiWjKh(x−Xj)×Kh(u− Uj)×Kh(V̂i − V̂j)

and

f̂(x, u, V̂i) =
1

nh3

n∑
j=1

ÎiKh(x−Xj)×Kh(u− Uj)×Kh(V̂i − V̂j)

with f̂(x, u, Vi) and ŝ(x, u, Vi) defined analoguously using Ii, Vj , respectively. Only the first term
is examined, while the second follows by identical steps. Using standard arguments (see Lemma
A1 in Gutknecht (2011) for details) and some algebra, one can show that the leading terms of the
numerator are:

I11 = sup
x∈X

sup
u∈U

∣∣∣ 1

n2h3

n∑
i=1

n∑
j=1

(
Îi − Ii

)
WjKh(x−Xj)×Kh(u− Uj)×Kh(Vi − Vj)

∣∣∣
and

I12 = sup
x∈X

sup
u∈U

∣∣∣ 1

n2h3

n∑
i=1

n∑
j=1

IiWjKh(x−Xj)×Kh(u− Uj)×Kh(V̂i − V̂j)
∣∣∣

The term I11 can be adressed using the same argument as in Lemma B4 of Gutknecht (2011). That
is, omitting the dependence of the indicator function on x, u for notational simplicity, notice that
Îi − Ii = I{va ≤ V̂i ≤ vb} − I{va ≤ Vi ≤ vb} =

(
I{V̂i ≤ vb} − I{Vi ≤ vb}

)
+
(
I{V̂i ≥ va} − I{Vi ≥

va}
)
, where va, vb denote the endpoints of the marginal support of V with va < vb. Focusing on(

I{V̂i ≤ vb} − I{Vi ≤ vb}
)

and reverting to condition A2, the term can be rewritten as:

sup
x∈X

sup
u∈U

∣∣∣ 1

n2h3

n∑
i=1

n∑
j=1

(
I{Vi ≤ vb + Vi − V̂i} − I{Vi ≤ vb}

)
WjKh(x−Xj)×Kh(u− Uj)×Kh(Vi − Vj)

∣∣∣
= sup
x∈X

sup
u∈U

∣∣∣ 1

n2h3

n∑
i=1

n∑
j=1

(
F (vb + Vi − V̂i)− F (vb)

)
WjKh(x−Xj)×Kh(u− Uj)×Kh(Vi − Vj)

∣∣∣+ op(1)

= sup
x∈X

sup
u∈U

∣∣∣ 1

n2

n∑
i=1

n∑
j=1

(
F (1)(V b)(V̂i − Vi)

)
E
[ 1

h3
WjKh(x−Xj)×Kh(u− Uj)×Kh(Vi − Vj)

]∣∣∣+ op(1)

where the term of smaller order after the first equality follows by adding and subtracting
(
F (vb +

Vi−V̂i)−F (vb)
)
. The second equality on the other hand is obtained by a mean value expansion (V b

denotes the intermediate value) accompanied by addition and subtraction of E[(1/h3)WjKh(x −
Xj ×Kh(u−Uj ×Kh(Vi−Vj)], a change of variables, and an application of Rosenthal’s inequality

(using A1 and A3), which yields the op(1) term. Since (V̂i − Vi) = (ĝ(Zi)− g(Zi)), one can show
that the last expression can be approximated by a second order U-statistic (see Lemma B4 in
Gutknecht (2011) for details). Then, applying Lemma 3.1 of Powell, Stock, and Stoker (1989) and
deriving the projection of this degenerate second order U-statistic, gives the convergence rate for
I11:

sup
x∈X

sup
u∈U

∣∣∣ 1

n2h3

n∑
i=1

n∑
j=1

(
Îi − Ii

)
WjKh(x−Xj)×Kh(u− Uj)×Kh(Vi − Vj)

∣∣∣ = Op(n
− 1

2 )

The term I12, on the other hand, can be adressed using arguments from Lemma B5 in Gutknecht
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(2011). A mean value expansion around (Vi − Vj) yields:

sup
x∈X

sup
u∈U

∣∣∣ 1

n2h4

n∑
i=1

n∑
j=1

IiWjKh(x−Xj)×Kh(u− Uj)×K(1)
h (V i − V j)

{
(V̂i − V̂j)− (Vi − Vj)

}∣∣∣
where K

(1)
h denotes the derivative of the kernel function and (V i − V j) some intermediate value.

Rewriting again (V̂i − Vi) = (ĝ(Zi)− g(Zi)), one obtains:

sup
x∈X

sup
u∈U

∣∣∣ 1

n2h4

n∑
i=1

n∑
j=1

IiWjKh(x−Xj)×Kh(u−Uj)×K(1)
h (V i−V j)

{
(ĝ(Zi)−g(Zi))+(ĝ(Zj)−g(Zj))

}∣∣∣
Using the steps of Lemma B5 in Gutknecht (2011) (that is, adding and subtracting E[(1/h4

n)IiWjKh(x−
Xj) × Kh(u − Uj) × K(1)

h (V i − V j)], applying integration by parts, change of variables, and an
application of Rosenthal’s inequality (using A1 and A3), and finally approximating the statistic
by a second order U-statistic) yields the same convergence rate for I12 as before:

sup
x∈X

sup
u∈U

∣∣∣ 1

n2h3

n∑
i=1

n∑
j=1

IiWjKh(x−Xj)×Kh(u− Uj)×Kh(V̂i − V̂j)
∣∣∣ = Op(n

− 1
2 )

The second term I2 on the other hand can be bounded by:

sup
x∈X

sup
u∈U

∣∣∣ 1
n

n∑
j=1

{
µ̂(x, u, Vj)− µ(x, u, Vj)

}∣∣∣+ sup
x∈X

sup
u∈U

∣∣∣ 1
n

n∑
j=1

µ(x, u, Vj)− µ(x, u)
∣∣∣ = I21 + I22

Since µ̂(x, u, Vi) is a consistent estimator for µ(x, u, Vi) and E[µ(x, u, Vi)
2] < ∞ for every x ∈ X

and u ∈ U , one obtains by standard arguments:

sup
x∈X

sup
u∈U

∣∣∣ 1
n

n∑
j=1

{
µ̂(x, u, Vj)− µ(x, u, Vj)

}∣∣∣ = Op(n
− 1

2 )

Likewise, since µ(x, u, Vj) is continuous (and hence bounded) on W and using A2, the same rate
can be obtained for I22. Hence the result of the lemma follows. �

Proof of Lemma A2. The proof is similar to that of Lemma 3.1 in Ghosal, Sen, and van der
Vaart (2000). Hence only differences will be pointed out. Consider the following class of functions
F = {ft,x : (t, x) ∈ T × X}, where:

ft,x : (t, x) =
(
µ(x, U1)− µ(x, U2)

)
sign

(
U2 − U1

) 1

h2
n

Kh(U2 − t)Kh(U1 − t)

This class is contained in the product of the three classes:

F1 =
{
h−2
n

(
µ(x, U1)− µ(x, U2)

)
sign

(
U2 − U1

)
× I
{
|U2 − U1| ≤ 2hn

}
: x ∈ X

}
F2 =

{
Kh(U1 − t) : t ∈ T

}
F3 =

{
Kh(U1 − t) : t ∈ T

}
with envelopes h−2

n C|U1 − U2| × I
{
|U2 − U1| ≤ 2hn

}
, ‖Kh‖∞, and ‖Kh‖∞, respectively. Since

Kh is of bounded variation and µ(·, ·) satisfies a Lipschitz condition, by Lemma 2.6.15, 2.6.16, and
2.6.18 of van der Vaart and Wellner (1996) F is a Vapnik-Cervonekis (VC) class with the envelope
Ch−2

n , where C is some generic finite constant. Then, applying Theorem 2.6.7 of van der Vaart and
Wellner (1996) and following the steps of Lemma 3.1 in Ghosal, Sen, and van der Vaart (2000),
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one obtains (Theorem A.2):

E
[
sup
t∈T

sup
x∈X

∣∣∣M̂n,µ(x, t)− M̂p
n,µ(x, t)

∣∣∣] ≤ Cn−1h−2
n

Notice that, similar to Lee, Linton, and Whang (2009), the rate by which the term can be bounded
slightly differs from the one in Ghosal, Sen, and van der Vaart (2000) since replacing the estimator
by the true µ(x, U) results in error of order op(1) by the convergence result of Lemma A1. �

Proof of Lemma A3. Unlike in the bivariate case of Ghosal, Sen, and van der Vaart (2000),
there is no need to show that Theorem 1.1 of Rio (1994) holds. Instead, one can directly appeal to
Theorem 3 and the subsequent Corollary of Komlos, Major, and Tusnady (1975). In the following,
write:

Ψn,t(U) =

∫ (
µ̃(ω)− µ̃(U)

)
sign

(
U − ω

) 1

h2
n

Kh(ω − t)dF (ω)Kh(U − t)

As pointed out by Ghosal, Sen, and van der Vaart (2000), since U is supported on a compact interval
with positive and continuous density, a simple affine transformation can be used to normalize the
empirical process and t, which is necessary to satisfy the formal setup of Komlos, Major, and
Tusnady (1975), who require U to have a uniform distribution on [0, 1]. The transformation can
subsequently be reversed by an inverse transformation. Also notice that:

sup
t∈T

(
hn ·Ψn,t(U)

)
= O(1)

Defining a sequence of centered Gaussian processes with covariance:

E
[
Gn(t1)Gn(t2)

]
= E

[
Ψn,t1(U)Ψn,t2(U)

]
one can apply Theorem 3 and the subsequent Corollary of Komlos, Major, and Tusnady (1975)
using {hnΨn,t(U)} and the Brownian bridge just defined. The same arguments as in Ghosal, Sen,
and van der Vaart (2000) hold and switching back to the original equation, the result follows.
�

Proof of Lemma A4. Assertions (i) and (ii) are identical to the proof of Lemma 3.3 in Ghosal,
Sen, and van der Vaart (2000). In (iii), to deal with the fact that σ̂n,x(t) depends on the estimated
µ(x, U), let σ̃2

n,µ(t, x) be identical to σ̂2
n(t) except for µ̂(x, U) being replaced by µ(x, U), which

results in an error of smaller order by the uniform convergence result of Lemma A1 and the
bandwidth conditions stated in Theorem 6. As in Lemma A2, this will lead to a slightly larger
bound than in Ghosal, Sen, and van der Vaart’s (2000) paper. Again, using the modified σ̃2

n,µ(t, x)
and following the steps of Lemma 3.3 in Ghosal, Sen, and van der Vaart (2000) yields:

sup
t∈T

sup
x∈X

∣∣∣σ̃2
n,µ(t, x)− E

[
σ̃2
n,µ(t, x)

]∣∣∣ = Op(n
− 1

2h−2
n + n−1h−3

n + n−
3
2h−4

n )

�

Proof of Lemma A5. Let Gn denote the class of functions {gn,t(U) : t ∈ T } where gn,t(U) =
Ψn,t(U)
σn(t) . Let Gn stand for the class of functions {gn,t : t ∈ T } with gn,t(U) =

Ψn,t(U)
σn(t) where:

Ψn,t(U) =

∫ (
µ̃(ω)− µ̃(U)

)
sign

(
U − ω

) 1

h2
n

Kh(ω − t)dωKh(U − t)

and

σn(t) =
(∫ (∫ (

µ̃(ω)− µ̃(Y )
)

sign
(
Y − ω

) 1

h2
n

Kh(ω − t)dω
) 1

h2
n

K2
h(Y − t)dY

) 1
2

f(U)
1
2

As explained in Remark 8.3 of Ghosal, Sen, and van der Vaart (2000), it is possible to extend
Lemma A3 to show that there is a sequence of Browian bridges {Bn(g) : g ∈ Gn ∪ Gn} with

E
[
Bn(g)

]
= 0 and E

[
Bn(g1)Bn(g2

]
= cov(g1, g2) for g, g1, g2 ∈ Gn ∪ Gn and with continuous
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sample paths w.r.t. the L1 metric such that Gn(t) = σn(t)Bn(Ψn,t(U)), where Gn(t) was defined
in Lemma A3. Set ξn(t) = Bn(gn,t) and note that γn(t) = Gn(t)/σn(t)− ξn(t) is also a mean zero
Gaussian process with:

E
[
γn(t1)γn(t2)

]
= E

[(
gn,t1 − gn,t1

)(
gn,t2 − gn,t2

)]
The rest of the proof follows as in the proof of Lemma 3.4 of Ghosal, Sen, and van der Vaart (2000).
Notice that a mean value expansion in the numerator and denominator is required to obtain the
form of the covariance ρ(·) in (3.16). �

Proof of Lemma A6. Notice that:∣∣∣∣∣M̂p
n,µ̂(x, t)− M̂p

n,µ(x, t)

∣∣∣∣∣ =

∣∣∣∣∣ 2n
n∑
i=1

{∫ (
µ̂(x, ω)− µ̂(x, Ui)

)
sign

(
Ui − ω

) 1

h2
n

Kh(ω − t)dF (ω)Kh(Ui − t)

−
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)

sign
(
Ui − ω

) 1

h2
n

Kh(ω − t)dF (ω)Kh(Ui − t)

∣∣∣∣∣
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n∑
i=1
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µ̂(x, ω)− µ(x, ω)

)
sign

(
Ui − ω

) 1

h2
n

Kh(ω − t)dF (ω)Kh(Ui − t)

∣∣∣∣∣
+
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n∑
i=1

(
µ̂(x, Ui)− µ(x, Ui)

)∫
sign

(
Ui − ω

) 1

h2
n

Kh(ω − t)dF (ω)Kh(Ui − t)

∣∣∣∣∣
Using A5, the first term is bounded by:

C sup
x∈X

sup
u∈U

∣∣∣∣∣µ̂(x, u)− µ(x, u)

∣∣∣∣∣ 1

nhn

n∑
i=1

Kh(Ui − t)

where C is some generic finite constant independent of t and x. Using assumptions A1 to A3 and
standard empirical process theory, one sees that:

sup
t∈T

∣∣∣ 1

nhn

n∑
i=1

Kh(Ui − t)
∣∣∣ = Op(1)

Moreover, by the uniform convergence result of Lemma A1 and the bandwidth conditions of The-
orem 6, the second term can be bounded by:

C sup
x∈X

sup
u∈U

∣∣∣∣∣µ̂(x, u)− µ(x, u)

∣∣∣∣∣ 1

nh2
n
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(
Ui − ω
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Kh(ω − t)dF (ω)Kh(Ui − t)

≤C sup
x∈X

sup
u∈U

∣∣∣∣∣µ̂(x, u)− µ(x, u)

∣∣∣∣∣ sup
t∈T

∣∣∣∣∣ 1

nh2
n

n∑
i=1

∫
sign

(
Ui − ω

)
Kh(ω − t)dF (ω)Kh(Ui − t)

∣∣∣∣∣
=Op(n

− 1
2 )

where the inequality follows from assumptions A2, A3, while the convergence rate is taken from
Lemma A1. C is again a generic, finite constant. Combining this result with the result of Lemma
A2 yields the claim of the lemma since n−1h−2

n is of smaller order given that nh3
n −→∞. �
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A3.2 Tables & Figures

Table 3.1: Monte Carlo Simulation

H0 is true, α = .5

h = 0.8 · n− 1
5

n = 100 0.10733
n = 200 0.13467
n = 300 0.16067

h = 1 · n− 1
5

n = 100 0.03677
n = 200 0.03133
n = 300 0.03400

h = 1.2 · n− 1
5

n = 100 0.02067
n = 200 0.00733
n = 300 0.00267

H0 is false, α = .5

h = 0.8 · n− 1
5

n = 100 0.98333
n = 200 1.00000
n = 300 1.00000

h = 1 · n− 1
5

n = 100 0.96733
n = 200 0.99933
n = 300 1.00000

h = 1.2 · n− 1
5

n = 100 0.94333
n = 200 1.00000
n = 300 1.00000
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Table 3.2: Descriptive Statistics

Males, 1996-2002

Variable Hourly Res. Wage (Pounds) Elapsed Duration (Days)
Obs. 1, 034 1, 034
Mean 5.169163 224.824

Std. Dev. 2.156003 291.4457
25% quantile 3.953016 56
50% quantile 4.751848 155
75% quantile 5.636979 316

Females, 1996-2002

Variable Hourly Res. Wage (Pounds) Elapsed Duration (Days)
Obs. 974 974
Mean 4.828762 288.6828

Std. Dev. 2.211663 317.3773
25% quantile 3.690456 82
50% quantile 4.349572 212
75% quantile 5.279831 345

Min. Wage Correction: Males, 1996-2002

Variable Hourly Res. Wage (Pounds) Elapsed Duration (Days)
Obs. 914 914
Mean 5.427778 222.7144

Std. Dev. 2.147863 284.8766
25% quantile 4.152823 55
50% quantile 5.099003 158
75% quantile 5.901098 316

Min. Wage Correction: Females, 1996-2002

Variable Hourly Res. Wage (Pounds) Elapsed Duration (Days)
Obs. 846 846
Mean 5.070153 281.9728

Std. Dev. 2.262114 326.456
25% quantile 3.945885 81
50% quantile 4.514527 210.5
75% quantile 5.399568 344
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Table 3.3: Descriptive Statistics (contd.)

Min. Wage Correction: Males, 1996-2005

Variable Hourly Res. Wage (Pounds) Elapsed Duration (Days)
Obs. 1, 203 1, 203
Mean 5.759774 206.8678

Std. Dev. 2.565025 259.0299
25% quantile 4.312823 51
50% quantile 5.208333 143
75% quantile 6.387328 304

Min. Wage Correction: Females, 1996-2005

Variable Hourly Res. Wage (Pounds) Elapsed Duration (Days)
Obs. 1, 105 1, 105
Mean 5.323397 260.9674

Std. Dev. 2.412956 295.9899
25% quantile 4.174159 74
50% quantile 4.887904 205
75% quantile 5.636979 338

Min. Wage Correction: Males, 1996-2007

Variable Hourly Res. Wage (Pounds) Elapsed Duration (Days)
Obs. 1, 307 1, 307
Mean 5.842997 201.1446

Std. Dev. 2.642724 251.3508
25% quantile 4.36205 50
50% quantile 5.274261 137
75% quantile 6.436663 296

Min. Wage Correction: Females, 1996-2007

Variable Hourly Res. Wage (Pounds) Elapsed Duration (Days)
Obs. 1, 203 1, 203
Mean 5.456375 253.9609

Std. Dev. 2.497814 287.4156
25% quantile 4.223865 73
50% quantile 4.970179 201
75% quantile 5.958292 335
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Table 3.4: Test Outcomes - H0: Montonically Declining Rerservation Wages

CV 1% CV 5% CV 10% Test Statistic

Men: 1996-2002 3.7730 3.0322 2.7050 11.5773
Men: 1996-2002, Min. Wage 3.7661 3.0167 2.6858 10.8199
Women: 1996-2002 3.7679 3.0208 2.6909 13.1156
Women: 1996-2002, Min. Wage 3.7642 3.0123 2.6803 12.3965
Men: 1996-2005, Min. Wage 3.7719 3.0297 2.7019 11.5756
Women: 1996-2005, Min. Wage 3.7699 3.0253 2.6965 8.6792
Men: 1996-2007, Min. Wage 3.7805 3.0482 2.7248 12.9244
Women: 1996-2007, Min. Wage 3.7772 3.0412 2.7161 14.5392
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Figure 3.1: Men - Estimated Reservation Wage Function

(a) 1996 - 2002 Sample

(b) 1996 - 2002 Sample (“Min. Wage Correction”)
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Figure 3.2: Men - Estimated Reservation Wage Function (contd.)

(a) 1996 - 2005 Sample (“Min. Wage Correction”)

(b) 1996 - 2007 Sample (“Min. Wage Correction”)
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Figure 3.3: Women - Estimated Reservation Wage Function

(a) 1996 - 2002 Sample

(b) 1996 - 2002 Sample (“Min. Wage Correction”)
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Figure 3.4: Women - Estimated Reservation Wage Function (contd.)

(a) 1996 - 2005 Sample (“Min. Wage Correction”)

(b) 1996 - 2007 Sample (“Min. Wage Correction”)
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