University of Warwick institutional repository: http://go.warwick.ac.uk/wrap

A Thesis Submitted for the Degree of PhD at the University of Warwick

http://go.warwick.ac.uk/wrap/50146

This thesis is made available online and is protected by original copyright.
Please scroll down to view the document itself.
Please refer to the repository record for this item for information to help you to cite it. Our policy information is available from the repository home page.

Gorenstein rings and Kustin-Miller unprojection

Stavros Papadakis

A thesis submitted to the University of Warwick for the degree of Doctor of Philosophy.

Mathematics Institute
University of Warwick
August 2001

Contents

Acknowledgements iv
Declaration v
Summary vi
1 Introduction 1
1.1 Introduction 1
1.2 Structure of thesis 2
1.3 Notation 3
2 Theory of unprojection 6
2.1 Local unprojection 6
2.1.1 Step 4 of the proof of Theorem 2.1.10 12
2.2 Projective unprojection 16
2.2.1 Ordinary projective space 17
2.2.2 A reformulation of projective unprojection 18
2.3 Simplest example 20
2.4 Birational geometry of unprojection 21
2.5 Link with Kustin-Miller theorem 22
2.5.1 An application 26
2.6 More general unprojections 27
3 Tom \& Jerry 29
3.1 Here come the heroes 29
3.1.1 Tom 29
3.1.2 Jerry 30
3.2 Tom ideal is prime 30
3.2.1 Definition of X_{1} 30
3.2.2 Definition of X_{2} 31
3.2.3 Definition of X_{3} 31
3.2.4 Proving irreducibility 32
3.2.5 Definition of the map $\phi_{2}: X_{2} \rightarrow X_{1}$ 32
3.2.6 Definition of the map $\phi_{3}: X_{3} \rightarrow X_{2}$ 33
3.2.7 Proof of Theorem 3.1.1 34
3.2.8 Second proof of Theorem 3.1.1 34
3.3 Fundamental calculation for Tom 35
3.3.1 The original Tom 38
3.4 Generic projective Tom 39
3.5 Local Tom 40
3.5.1 The commutative diagram 40
3.5.2 Local Tom 42
3.6 A Maple routine that calculates Tom 42
3.7 Triadic decomposition for Tom 44
3.7.1 Definition of s for elementary Tom 46
3.7.2 Definition of s for general Tom 48
3.7.3 Justification of triadic decomposition 49
3.8 Fundamental calculation for Jerry 51
3.8.1 The original Jerry 54
3.9 Generic projective Jerry 54
3.10 Local Jerry 55
3.10.1 The commutative diagram 55
3.10.2 Local Jerry 56
3.11 A Maple routine that calculates Jerry 57
3.12 Special Jerry 58
4 Catanese's rank condition 59
4.1 Catanese's rank condition 59
4.1.1 3×3 case 60
4.1.2 4×4 case 61
4.1.3 Proof of existence 64

Acknowledgements

It is a pleasure to express my deep gratitude to my supervisor Miles Reid, whose generosity in supplying guidance and ideas contributed immensely in the present work. His continued patient advice, encouragement and friendliness has been greatly appreciated during the past four years of my studies at Warwick.

Of the many other people who helped me, I am especially grateful to David Mond for useful discussions and encouragement.

I am very grateful to Greek State Scholarships Foundation (IKY) for providing the financial support during my research at Warwick, and to the Mathematics Institute for giving me the opportunity to study in a stimulating environment.

Part of this work was carried out at RIMS, Kyoto University during September-December 2000. I thank RIMS for providing excellent hospitality and financial support.

I am also thankful to my family for their support.
This thesis is dedicated to Bob Dylan; thank you for the poetry and the songs Bob!

Declaration

Section 2.3 and most results of Section 2.1 are joint research [PR] with M. Reid. Unless otherwise stated, the rest of the thesis is, to the best of my knowledge, original personal research.

Summary

Chapter 1 briefly describes the motivation for the thesis and presents some background material.

Chapter 2 develops the foundations of the theory of unprojection in the local and projective settings.

Chapter 3 develops methods that calculate the unprojection ring for two important families of unprojection, Tom \& Jerry.

Finally, Chapter 4 proves some algebraic results concerning Catanese's rank condition for symmetric matrices of small size.

Chapter 1

Introduction

1.1 Introduction

Gorenstein rings appear often in algebraic geometry. For example, the anticanonical ring

$$
R=\bigoplus_{m \geq 0} H^{0}\left(X, \mathcal{O}_{X}\left(-m K_{X}\right)\right)
$$

of a (smooth, just for simplicity) Fano n-fold and the canonical ring

$$
R=\bigoplus_{m \geq 0} H^{0}\left(X, \mathcal{O}_{X}\left(m K_{X}\right)\right)
$$

of a (smooth) regular surface of general type are Gorenstein. Another example is the ring

$$
R(X, D)=\bigoplus_{m \geq 0} H^{0}\left(X, \mathcal{O}_{X}(m D)\right)
$$

associated to an ample divisor D on a (smooth) K3 surface.
If $R=k\left[x_{1}, \ldots, x_{n}\right] / I$ is a Gorenstein graded ring, quotient of a polynomial ring, of codimension at most three, then there are good structure theorems. Serre proved that if the codimension is at most two then R is a complete intersection, while in 1977 Buchsbaum and Eisenbud [BE] proved a more general version of the following theorem. For generalities about Pfaffians see Section 1.3; for a proof see e.g. [BE] or [BH] Section 3.4.

Theorem 1.1.1 (Buchsbaum and Eisenbud [BE]) Let R be a polynomial ring over a field, and $I \subset R$ a homogeneous ideal of codimension three
such that R / I is a Gorenstein ring. Then I is generated by the $2 n \times 2 n$ Pfaffians of a skewsymmetric $(2 n+1) \times(2 n+1)$ matrix M with entries in R. Conversely, assume $I \subset R$ is a (not necessarily homogeneous) ideal of codimension 3 generated by the $2 n \times 2 n$ Pfaffians of a skewsymmetric $(2 n+1) \times(2 n+1)$ matrix M. Then the ring R / I is Gorenstein.

In the 1980s, Kustin and Miller attacked the problem of finding a structure theorem for Gorenstein codimension four with a series of papers [KM1][KM6], [JKM]. Unfortunately they were not successful, although they managed to classify their Tor algebras [KM6], and get information about their Poincaré series [JKM]. Moreover, in [KM4] they introduced a procedure which constructs more complicated Gorenstein rings from simpler ones by increasing the codimension.

Some years later Altınok [Al] and Reid [R0] rediscovered what was essentially the same procedure while working with Gorenstein rings arising from K3s and 3 -folds. The important observation is that under extra conditions which are reasonable in birational geometry this procedure corresponds to a contraction of a (Weil) divisor, possibly after a factorialization which would allow the divisor to be contractible (compare Sections 2.3, 2.4 and [R1] for examples). Therefore it is a modern and explicit version of Castelnuovo contractibility. It has found many applications in algebraic geometry, for example in the birational geometry of Fanos [CPR] and [CM], in the construction of weighted complete intersection K3s and Fanos [Al], and in the study of Mori flips [BrR]. [R1] contains more details about these and other applications.

The main topic of the present work is the study of some of the algebraic aspects of this procedure that we call Kustin-Miller unprojection, or for simplicity just unprojection.

1.2 Structure of thesis

The structure of the present work is as follows.
Chapter 2 is about the foundation of unprojection. In Section 2.1 we define it in the local setting (Definiton 2.1.3), and prove the fundamental result that it is Gorenstein (Theorem 2.1.10). In Sections 2.2 to 2.4 we give the formulation of unprojection in the setting of projective and birational geometry and some examples. In Section 2.5 we present a method, originally developed by Kustin and Miller [KM4], prove that it calculates the equations
of the unprojection (Theorem 2.5.2), and give an application that generalises a calculation of [CFHR]. Finally, in Section 2.6 we discuss possible generalisations.

In Chapter 3 we study Tom and Jerry. These are two families of Gorenstein codimension four rings arising as unprojections, originally defined and named by Reid. The main results are Theorems 3.5.2 and 3.10.2 where we calculate their equations using multilinear and homological algebra. In addition, in Sections 3.6 and 3.11 we give relative Maple algorithms, and in Section 3.7 we present a combinatorial procedure which, conjecturally, also calculates Tom.

Finally, in Chapter 4 we study the algebra of Catanese's Rank Condition for 'generic' symmetric matrices of small size (Lemma 4.1.2, Theorem 4.1.5) and relate it with the unprojection (Example 4.1.7, Remark 4.1.8).

1.3 Notation

Unless otherwise mentioned all rings are commutative and with unit. By abuse of notation, when s is an element of a commutative ring R we sometimes write R / s for the quotient of R by the principal ideal (s) generated by s.

Radical If I is an ideal of a ring R we define the radical of I to be the ideal

$$
\operatorname{Rad} I=\left\{a \in R: a^{n} \in I \text { for all sufficiently large } n\right\} .
$$

It is equal to the intersection of all prime ideals of R containing I.
Codimension Assume $I \subset R$ is an ideal with $I \neq R$, and set

$$
V(I)=\{p \in \operatorname{Spec} R: I \subseteq p\} .
$$

Following Eisenbud [Ei], we define the codimension of I in R to be the minimum of $\operatorname{dim} R_{p}$ for $p \in V(I)$. Many authors use the term height of I for the same notion.

Grade Assume R is a Noetherian ring and $I \subset R$ an ideal with $I \neq R$. The common length of all maximal R-sequences contained in I will be called the grade of I. The basic inequality is that the grade of I is less than or equal the codimension of I, see e.g. $[\mathrm{BH}]$ Section 1.2.

Depth Assume R is a Noetherian local ring with maximal ideal m, and N is a finite R-module. The common length of all maximal N-sequences contained in m will be called the depth of N.

Cohen-Macaulay rings A local Noetherian ring R is called Cohen-Macaulay if the depth of R as R-module is equal to the dimension of R. More generally, a Noetherian ring R is called Cohen-Macaulay, if for every maximal ideal m of R the localisation R_{m} is Cohen-Macaulay.

Gorenstein rings A local Noetherian ring R is called Gorenstein if it is Cohen-Macaulay, the dualising module ω_{R} exists, and ω_{R} is isomorphic to R as R-modules. More generally, a Noetherian ring R is called Gorenstein, if for every maximal ideal m of R the localisation R_{m} is Gorenstein. There are many equivalent characterizations of Gorenstein rings, see for example $[M]$.

Pfaffians Assume $A=\left[a_{i j}\right]$ is a $k \times k$ skewsymmetric (i.e., $a_{j i}=-a_{i j}$ and $a_{i i}=0$) matrix with entries in a Noetherian ring R.

For k even we define a polynomial $\operatorname{Pf}(A)$ in $a_{i j}$ called the Pfaffian of A by induction on k. If $k=2$ we set

$$
\operatorname{Pf}\left(\left(\begin{array}{cc}
0 & a_{12} \\
-a_{12} & 0
\end{array}\right)\right)=a_{12}
$$

For even $k \geq 4$ we define

$$
\operatorname{Pf}(A)=\sum_{j=2}^{k}(-1)^{j} a_{1 j} \operatorname{Pf}\left(A_{1 j}\right),
$$

where $A_{1 j}$ is the skewsymmetric submatrix of A obtained by deleting the first and the j th rows and the first and the j th columns of A. An interesting property is that

$$
(\operatorname{Pf}(A))^{2}=\operatorname{det} A
$$

Now assume that $k=2 l+1$ is odd. In the present work, by Pfaffians of A we mean the set

$$
\left\{\operatorname{Pf}\left(A_{1}\right), \operatorname{Pf}\left(A_{2}\right), \ldots, \operatorname{Pf}\left(A_{k}\right)\right\},
$$

where for $1 \leq i \leq k$ we denote by A_{i} the skewsymmetric submatrix of A obtained by deleting the i th row and and the i th column of A. Moreover, there is a complex \mathbf{L} :

$$
\begin{equation*}
0 \rightarrow R \xrightarrow{B_{3}} R^{k} \xrightarrow{B_{2}} R^{k} \xrightarrow{B_{1}} R \rightarrow 0 \tag{1.1}
\end{equation*}
$$

associated to A, with $B_{2}=A, B_{1}$ the $1 \times k$ matrix with i th entry equal to $(-1)^{i+1} \operatorname{Pf}\left(A_{i}\right)$ and B_{3} the transpose matrix of B_{1}. We have the following theorem due to Eisenbud and Buchsbaum [BE].

Theorem 1.3.1 Let R be a Noetherian ring, $k=2 l+1$ an odd integer and A a skewsymmetric $k \times k$ matrix with entries in R. Denote by I the ideal generated by the Pfaffians of A. Assume that $I \neq R$ and the grade of I is three, the maximal possible. Then the complex \mathbf{L} defined in (1.1) is acyclic, in the sense that the complex

$$
0 \rightarrow R \xrightarrow{B_{3}} R^{k} \xrightarrow{B_{2}} R^{k} \xrightarrow{B_{1}} R \rightarrow R / I \rightarrow 0
$$

is exact. Moreover, if R is Gorenstein then the same is true for R / I.
For more details about Pfaffians and a proof of the theorem see e.g. [BE] or [BH] Section 3.4.

Chapter 2

Theory of unprojection

2.1 Local unprojection

Let $X=\operatorname{Spec} \mathcal{O}_{X}$ be a Gorenstein local scheme and $I \subset \mathcal{O}_{X}$ an ideal defining a subscheme $D=V(I) \subset X$ that is also Gorenstein and has codimension one in X. We assume in this section that all schemes are Noetherian. We do not assume anything else about the singularities of X and D, although an important case in applications is when X is normal and D a Weil divisor.

Since X is Cohen-Macaulay, the adjunction formula (compare [R2], p. 708 or [AK], p. 6) gives

$$
\omega_{D}=\operatorname{Ext}^{1}\left(\mathcal{O}_{D}, \omega_{X}\right)
$$

To calculate the Ext, we Hom the exact sequence $0 \rightarrow I \rightarrow \mathcal{O}_{X} \rightarrow \mathcal{O}_{D} \rightarrow$ 0 into ω_{X}, giving the usual adjunction exact sequence

$$
\begin{equation*}
0 \rightarrow \omega_{X} \rightarrow \operatorname{Hom}\left(I_{D}, \omega_{X}\right) \xrightarrow{\operatorname{res}_{D}} \omega_{D} \rightarrow 0 \tag{2.1}
\end{equation*}
$$

where res_{D} is the residue map. For example, in the case that X is normal and D a divisor, the second map is the standard Poincaré residue map $\mathcal{O}_{X}\left(K_{X}+D\right) \rightarrow \mathcal{O}_{D}\left(K_{D}\right)$.

Lemma 2.1.1 The \mathcal{O}_{X}-module $\operatorname{Hom}\left(I, \omega_{X}\right)$ is generated by two elements i and s, where i is a basis of ω_{X} and $s \in \operatorname{Hom}\left(I, \omega_{X}\right)$ satisfies
(i) s:I $\rightarrow \omega_{X}$ is injective;
(ii) $\bar{s}=\operatorname{res}_{D}(s)$ is a basis of ω_{D}.

Proof Choose bases $i \in \omega_{X}, \bar{s} \in \omega_{D}$ and any lift $s \mapsto \bar{s}$. Using i we identify $\omega_{X} \cong \mathcal{O}_{X}$. Then everything holds except (i). I contains a regular element w (in fact grade $I=\operatorname{codim} D=1$, by $[\mathrm{M}]$ Theorem 17.4). We claim that there exists $f \in \mathcal{O}_{X}$ such that $s+f j: I \rightarrow \mathcal{O}_{X}$ is injective. It is enough to find f such that $s(w)+f w$ is a regular element of \mathcal{O}_{X}. Let P_{1}, \ldots, P_{l} be the associated primes of \mathcal{O}_{X} ordered so that $s(w) \in P_{i}$ for $i<d$ and $s(w) \notin P_{i}$ for $i \geq d$. Because \mathcal{O}_{X} is Cohen-Macaulay (unmixed) they are all minimal. Prime avoidance ([Ei] Lemma 3.3) gives an element f with $f \in P_{i}$ for $i \geq d$ and $f \notin P_{i}$ for $i<d$. Then $s(w)+f w$ is regular. QED

We view s as defining an isomorphism $I \rightarrow J$, where $J \subset \omega_{X}=\mathcal{O}_{X}$ is another ideal. Choose a set of generators f_{1}, \ldots, f_{k} of I and write $s\left(f_{i}\right)=g_{i}$ for the corresponding generators of J. We view $s=g_{i} / f_{i}$ as a rational function having I as ideal of denominators and J as ideal of numerators. Unprojection is simply the graph of s.

Remark 2.1.2 The total ring of fractions $K(X)$ is defined as $S^{-1} \mathcal{O}_{X}$ where S is the set of non-zerodivisors, that is, the complement of the union of the associated primes $P_{i} \in \operatorname{Ass} \mathcal{O}_{X}$. Then $s: I \rightarrow J$ is multiplication by an invertible rational function in $K(X)$. For I contains a regular element w (see the proof of Lemma 2.1.1), and

$$
t=s(w) / w \in K(X)
$$

is independent of the choice of w, because

$$
0=s\left(w_{1} w_{2}-w_{2} w_{1}\right)=w_{1} s\left(w_{2}\right)-w_{2} s\left(w_{1}\right) \quad \text { for } w_{1}, w_{2} \in I
$$

Moreover,

$$
\begin{equation*}
I=\left\{a \in \mathcal{O}_{X}: a t \in \mathcal{O}_{X}\right\} . \tag{2.2}
\end{equation*}
$$

Indeed, assume at $\in \mathcal{O}_{X}$ for some $a \in \mathcal{O}_{X}$. Then

$$
0=\operatorname{res}_{D}(a s)=a \operatorname{res}_{D}(s) \in \omega_{D}
$$

so $a \in I$.
Definition 2.1.3 Let S be an indeterminate. The unprojection ring of D in X is the ring $\mathcal{O}_{X}[s]=\mathcal{O}_{X}[S] /\left(S f_{i}-g_{i}\right)$; the unprojection of D in X is its Spec, that is,

$$
Y=\operatorname{Spec} \mathcal{O}_{X}[s] .
$$

Clearly, Y is simply the subscheme of $\operatorname{Spec} \mathcal{O}_{X}[S]=\mathbb{A}_{X}^{1}$ defined by the ideal $\left(S f_{i}-g_{i}\right)$. Usually Y is no longer local, see Example 2.1.8.

Remark 2.1.4 Clearly $J=\mathcal{O}_{X}$ if and only if I is principal. We exclude this case in what follows.

Remark 2.1.5 We only choose generators for ease of notation here. The ideal defining Y could be written $\{S f-s(f): f \in I\}$. The construction is independent of s : the only choice in Lemma 2.1.1 is $s \mapsto u s+h i$ with $u, h \in \mathcal{O}_{X}$ and u a unit (here we use that \mathcal{O}_{X} is local), which just gives the affine linear coordinate change $S \mapsto u S+h$ in \mathbb{A}_{X}^{1}.

Remark 2.1.6 We recall a number of standard facts about valuations of a normal domain. For details see e.g. [Bour] Section VI. Suppose \mathcal{O}_{X} is a normal domain with field of fractions $K(X)$. For each prime ideal p of \mathcal{O}_{X} of codimension one, the local ring $\mathcal{O}_{X, p}$ is a discrete valuation domain. Therefore, there exists natural valuation map

$$
v_{p}: K(X)^{*} \rightarrow \mathbb{Z}
$$

satisfying

$$
\begin{equation*}
\mathcal{O}_{X, p}=\left\{a \in K(X): v_{p}(a) \geq 0\right\} \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{O}_{X}=\bigcap_{p} \mathcal{O}_{X, p} \tag{2.4}
\end{equation*}
$$

the intersection over all prime ideals p of codimension one.
The following lemma is also contained in [N3], p. 39.
Lemma 2.1.7 Define $\mathcal{O}_{X}\left[I^{-1}\right]$ to be the subring of $k(X)$ generated by \mathcal{O}_{X} and $t=s(w) / w$. If X is normal and integral then the natural map

$$
\mathcal{O}_{X}[s] \rightarrow \mathcal{O}_{X}\left[I^{-1}\right]
$$

with $s \mapsto t$ is an isomorphism of \mathcal{O}_{X}-algebras.

Proof Let S be an indeterminate and consider the surjective map

$$
\phi: \mathcal{O}_{X}[S] \rightarrow \mathcal{O}_{X}\left[I^{-1}\right]
$$

with $S \mapsto t$. To prove the lemma it is enough to show

$$
\operatorname{ker}(\phi) \subseteq\left(S f_{i}-g_{i}\right)
$$

A first remark is that if

$$
\left(a_{n} t^{n}+\cdots+a_{1} t+a_{0}\right) t \in \mathcal{O}_{X}
$$

with $a_{i} \in \mathcal{O}_{X}$, then $a_{n} t^{n}+\cdots+a_{1} t+a_{0} \in \mathcal{O}_{X}$. Indeed, if that is not true by (2.4) there exists codimension one prime p with $v_{p}\left(a_{n} t^{n}+\cdots+a_{1} t+a_{0}\right)<0$. It follows $v_{p}(t)<0$, so $v_{p}\left(\left(a_{n} t^{n}+\cdots+a_{1} t+a_{0}\right) t\right)<0$, a contradiction.

Assume now that $f(S)=a_{n} S^{n}+\cdots+a_{0} \in \operatorname{ker}(\phi)$. Using induction on the degree of $f(S)$ we prove $f(S) \in\left(S f_{i}-g_{i}\right)$.

If $f(S)$ is linear in S this follows from (2.2). Assume the result is true for all degrees less than $n+1$, and suppose

$$
a_{n+1} S^{n+1}+\cdots+a_{1} S+a_{0} \in \operatorname{ker} \phi
$$

Then

$$
\operatorname{tr}=-a_{0} \in \mathcal{O}_{X},
$$

where $r=a_{n+1} t^{n}+a_{n} t^{n-1} \cdots+a_{1}$. By what we said above $r \in \mathcal{O}_{X}$. Using the case $n=1$ there exist $q_{i} \in \mathcal{O}_{X}[S]$ with

$$
r=\sum q_{i} f_{i},
$$

so

$$
-a_{0}=t r=\sum q_{i} g_{i} .
$$

Using the inductive hypothesis we can find $p_{i} \in \mathcal{O}_{X}[S]$ with

$$
a_{n+1} S^{n}+\cdots+\left(a_{1}-r\right)=\sum p_{i}\left(S f_{i}-g_{i}\right)
$$

Then

$$
\begin{aligned}
a_{n+1} S^{n+1}+\ldots & +a_{1} S+a_{0}=S\left(a_{n+1} S^{n}+\cdots+a_{1}\right)+a_{0} \\
& =S\left(r+\sum p_{i}\left(S f_{i}-g_{i}\right)\right)-\sum q_{i} g_{i} \\
& =\sum\left(S p_{i}+q_{i}\right)\left(S f_{i}-g_{i}\right),
\end{aligned}
$$

which finishes the proof of the lemma. QED

Example 2.1.8 The lemma is not true without the normality assumption, as the example $X=$ nodal curve, $D=$ reduced origin implies. Set
$X:\left(x^{2}-y^{2}=0\right)$ and $D:(x=y=0)$. Then $t=x / y$ is an automorphism of $I=J=m$, and $Y \rightarrow X$ is an affine blowup, with an exceptional \mathbb{A}^{1} over the node. Also $t^{2}=1$, so $S^{2}-1 \in \operatorname{ker}(\phi)$, but clearly $S^{2}-1$ is not in the ideal $(S x-y, S y-x)$. Y is not local, even if we assume that X is the Spec of the local ring of the nodal curve at the origin.

Lemma 2.1.9 Write $N=V(J) \subset X$ for the subscheme with $\mathcal{O}_{N}=\mathcal{O}_{X} / J$.
(a) No component of X is contained in N.
(b) Every associated prime of \mathcal{O}_{N} has codimension 1 .

If X is normal then D and N are both divisors, with div $s=N-D$. More generally, set $n=\operatorname{dim} X$; then (a) says that $\operatorname{dim} N \leq n-1$, and (b) says that $\operatorname{dim} N=n-1$ (and has no embedded primes).

Proof I contains a regular element $w \in \mathcal{O}_{X}$. Then $v=s(w) \in J$ is again regular (obvious), and (a) follows.

Note first that $v I=w J$. We prove that every element of $\operatorname{Ass}\left(\mathcal{O}_{X} / v I\right)=$ $\operatorname{Ass}\left(\mathcal{O}_{X} / w J\right)$ is a codimension 1 prime; the lemma follows, since $\operatorname{Ass}\left(\mathcal{O}_{X} / J\right)=$ $\operatorname{Ass}\left(w \mathcal{O}_{X} / w J\right) \subset \operatorname{Ass}\left(\mathcal{O}_{X} / w J\right)$. Clearly,

$$
\operatorname{Ass}\left(\mathcal{O}_{X} / v I\right) \subset \operatorname{Ass}\left(\mathcal{O}_{X} / I\right) \cup \operatorname{Ass}(I / v I)
$$

For any $P \in \operatorname{Ass}(I / v I)$, choose $x \in I$ with $P=(v I: x)=\operatorname{Ann}(\bar{x} \in I / v I)$. One sees that

$$
\left\{\begin{array}{l}
x \in \mathcal{O}_{X} v \Longrightarrow P \in \operatorname{Ass}\left(\mathcal{O}_{X} / I\right) \\
x \notin \mathcal{O}_{X} v \Longrightarrow P \subset Q \text { for some } Q \in \operatorname{Ass}\left(\mathcal{O}_{X} / v \mathcal{O}_{X}\right)
\end{array}\right.
$$

Since every associated prime of $\mathcal{O}_{X} / v \mathcal{O}_{X}$ has codimension 1 , this gives

$$
\operatorname{Ass}\left(\mathcal{O}_{X} / v I\right) \subset \operatorname{Ass}\left(\mathcal{O}_{X} / I\right) \cup \operatorname{Ass}\left(\mathcal{O}_{X} / v \mathcal{O}_{X}\right)
$$

QED

Theorem 2.1.10 (Kustin and Miller [KM4]) The element $s \in \mathcal{O}_{X}[s]$ is regular, and the ring $\mathcal{O}_{X}[s]$ is Gorenstein.

Proof

Step 1 We first prove that

$$
\begin{equation*}
S \mathcal{O}_{X}[S] \cap\left(S f_{i}-g_{i}\right)=S\left(S f_{i}-g_{i}\right), \tag{2.5}
\end{equation*}
$$

under the assumption that $s: I \rightarrow J$ is an isomorphism.
For suppose $b_{i} \in \mathcal{O}_{X}[S]$ are such that $\sum b_{i}\left(S f_{i}-g_{i}\right)$ has no constant term. Write $b_{i 0}$ for the constant term in b_{i}, so that $b_{i}-b_{i 0}=S b_{i}^{\prime}$. Then $\sum b_{i 0} g_{i}=0$. Since $s: f_{i} \mapsto g_{i}$ is injective, also $\sum b_{i 0} f_{i}=0$. Thus the constant terms in the b_{i} do not contribute to the sum $\sum b_{i}\left(S f_{i}-g_{i}\right)$, which proves (2.5).

The natural projection $\mathcal{O}_{X}[S] \rightarrow \mathcal{O}_{X}$ takes $\left(S f_{i}-g_{i}\right) \rightarrow J=\left(g_{i}\right)$, and (2.5) calculates the kernel. This gives the following exact diagram:

The first part of the theorem follows by the Snake Lemma.
Step 2 To prove that N is Cohen-Macaulay, recall that

$$
\operatorname{depth} M=\inf \left\{i \geq 0 \mid \operatorname{Ext}_{\mathcal{O}_{X}}^{i}(k, M) \neq 0\right\}
$$

for M a finite \mathcal{O}_{X}-module over a local ring \mathcal{O}_{X} with residue field $k=\mathcal{O}_{X} / m$ (see [M], Theorem 16.7). We have two exact sequences

$$
\begin{align*}
0 & \rightarrow I \rightarrow \mathcal{O}_{X} \tag{2.6}
\end{align*} \rightarrow \mathcal{O}_{X} / I \rightarrow 0 .
$$

By assumption, \mathcal{O}_{X} and \mathcal{O}_{X} / I are Cohen-Macaulay, therefore

$$
\begin{array}{ll}
& \operatorname{Ext}_{\mathcal{O}_{X}}^{i}\left(k, \mathcal{O}_{X}\right)=0 \quad \text { for } 0 \leq i<n \\
\text { and } & \operatorname{Ext}_{\mathcal{O}_{X}}^{i}\left(k, \mathcal{O}_{X} / I\right)=0 \quad \text { for } 0 \leq i<n-1,
\end{array}
$$

where $n=\operatorname{dim} X$. Thus

$$
\begin{equation*}
\operatorname{Ext}_{\mathcal{O}_{X}}^{i}(k, I)=0 \quad \text { for } 0 \leq i<n \tag{2.7}
\end{equation*}
$$

and the Ext long exact sequence of (2.6) gives also

$$
\operatorname{Ext}_{\mathcal{O}_{X}}^{i}\left(k, \mathcal{O}_{X} / J\right)=0 \quad \text { for } 0 \leq i<n-1
$$

Therefore $\mathcal{O}_{N}=\mathcal{O}_{X} / J$ is Cohen-Macaulay.
Step 3 We prove that $\omega_{N} \cong \mathcal{O}_{N}$ by running the argument of Lemma 2.1.1 in reverse. Recall that $\operatorname{Hom}\left(I, \omega_{X}\right)$ is generated by two elements i, s, where i is a given basis element of ω_{X} viewed as a submodule $\omega_{X} \subset \operatorname{Hom}\left(I, \omega_{X}\right)$, and s is our isomorphism $I \rightarrow J \subset \omega_{X}$.

We write j for the same basis element of ω_{X} viewed as a submodule of $\operatorname{Hom}\left(J, \omega_{X}\right)$, and $t=s^{-1}: J \rightarrow I \subset \omega_{X}$ for the inverse isomorphism. Now $s: I \rightarrow J$ induces a dual isomorphism

$$
s^{*}: \operatorname{Hom}\left(J, \omega_{X}\right) \rightarrow \operatorname{Hom}\left(I, \omega_{X}\right),
$$

which is defined by $s^{*}(\varphi)(v)=\varphi(s(v))$ for $\varphi: J \rightarrow \omega_{X}$. By our definitions, clearly $s^{*}(j)=s$ and $s^{*}(t)=i$. Since s^{*} is an isomorphism, it follows that $\operatorname{Hom}\left(J, \omega_{X}\right)$ is generated by t and j. Therefore the adjunction exact sequence

$$
0 \rightarrow \omega_{X} \rightarrow \operatorname{Hom}\left(J, \omega_{X}\right) \rightarrow \omega_{N} \rightarrow 0
$$

gives $\omega_{N}=\mathcal{O}_{N} \bar{t}$. This completes the proof that \mathcal{O}_{N} is Gorenstein.
Step 4 The proof that $\mathcal{O}_{X}[s]$ is Gorenstein will be given in Subsection 2.1.1.

2.1. $1 \quad$ Step 4 of the proof of Theorem 2.1.10

In this subsection we will prove Step 4 of Theorem 2.1.10. First of all we prove some general lemmas that are needed.

Lemma 2.1.11 Let R be a Noetherian ring and $s \in R$ a regular element. The following are equivalent:
a) R / s is Gorenstein.
b) The localization R_{n} is Gorenstein, for every maximal ideal $n \subset R$ containing s.

Proof Assume R / s is Gorenstein. For every maximal ideal n containing s, the local ring $(R / s)_{n}=R_{n} / s$ is Gorenstein. Since R_{n} is local and s is a regular element, R_{n} is Gorenstein. Conversely, assume that the localization R_{n} is Gorenstein, for every maximal ideal $n \subset R$ containing s. Since the maximal ideals of R / s correspond to the maximal ideals of R containing s, and localization commutes with taking quotient, it follows that R / s localised at each maximal ideal is Gorenstein. Therefore, R / s is Gorenstein. QED

Lemma 2.1.12 Assume that $f: A \rightarrow B$ is a faithfully flat ring homomorphism between two Noetherian rings (for example B is a free A-module). If B is Gorenstein then the same is true for A.

Proof It follows from [BH] pp. 64 and 120. QED

Lemma 2.1.13 Assume that $f: A \rightarrow B$ is a flat ring homomorphism between two Noetherian rings, $n \subset B$ a prime ideal and $m \subset A$ the inverse image of n under f. Then the ring homomorphism

$$
f: A_{m} \rightarrow B_{n}
$$

is faithfully flat.

Proof By [M] Theorem $7.1 B_{n}$ is a flat A_{m} module. Since $m B_{n} \neq B_{n}$, the claim follows from [AM] p. 45.

Lemma 2.1.14 Suppose R is a local Gorenstein ring of dimension d with maximal ideal m, and $I \subset R$ a codimension one ideal with R / I Gorenstein. Assume $f(X) \in R[X]$ is a monic, irreducible over R / m polynomial, and $s: I \rightarrow R$ an injective homomorphism. Let T be an indeterminate and set $R^{\prime}=R[T] / f(T), I^{\prime}=I R^{\prime}$ and $s^{\prime}: I^{\prime} \rightarrow R^{\prime}$ for the induced homomorphism. Then R^{\prime} is local and Gorenstein, I^{\prime} has codimension one in $R^{\prime}, R^{\prime} / I^{\prime}$ is Gorenstein and s' is injective.

Proof The ideal $m^{\prime}=m R^{\prime}$ is a maximal ideal of R^{\prime}. Indeed,

$$
R^{\prime} / m^{\prime}=(R / m)[T] / f(T)
$$

is a field since $f(X)$ is irreducible over R / m. Every maximal ideal of R^{\prime} contains m^{\prime}, because by [AM] Corollary 5.8 it contains m. Hence, R^{\prime} is local.

Since $R[T]$ is Gorenstein and $f(T)$ is a regular element of $R[T], R^{\prime}$ is also Gorenstein. The ring $R^{\prime} / I^{\prime}=(R / I)[T] / f(T)$ is Gorenstein by a similar argument. Also $\operatorname{dim} R^{\prime}=d$, since R^{\prime} is finite over R. For similar reasons $\operatorname{dim} R^{\prime} / I^{\prime}=d-1$. It is clear that s^{\prime} is injective. QED

We now continue the proof of Step 4 of Theorem 2.1.10. We denote by m the maximal ideal of \mathcal{O}_{X}, and for simplicity set $\mathcal{O}_{Y}=\mathcal{O}_{X}[s]$. For a triple $\left(\mathcal{O}_{X}, \mathcal{O}_{Y}, n\right)$, where $\mathcal{O}_{Y}=\mathcal{O}_{X}[s]$ is an unprojection of \mathcal{O}_{X} and n is a maximal ideal of \mathcal{O}_{Y}, we will prove that $\mathcal{O}_{Y, n}$ is Gorenstein by induction on the degree

$$
\begin{array}{r}
\operatorname{deg}\left(\mathcal{O}_{X}, \mathcal{O}_{Y}, n\right)=\min \left\{r>0: \text { there exists } a_{0}, \ldots, a_{r-1} \in \mathcal{O}_{Y}\right. \text { with } \\
\left.a_{0}+\cdots+a_{r-1} s^{r-1}+s^{r} \in n\right\} .
\end{array}
$$

$\operatorname{deg}=1 \quad$ Assume $s+a_{0} \in n$. Using the proof of Lemma 2.1.1 there exists $u \in m \subset n$ with $s+a_{0}+u: I \rightarrow \mathcal{O}_{X}$ injective. Then using Steps $1-3$ of Theorem 2.1.10 we have that $s+a_{0}+u$ is a regular element of \mathcal{O}_{Y} and the quotient $\mathcal{O}_{Y} /\left(s+a_{0}+u\right)$ is Gorenstein. Therefore, $\mathcal{O}_{Y, n}$ is Gorenstein.
$\operatorname{deg}=r \quad$ Assume the result is true for all triples with degree at most $r-1$, and that $\operatorname{deg}\left(\mathcal{O}_{X}, \mathcal{O}_{Y}, n\right)=r$. Choose $f(s)=a_{0}+\cdots+a_{r-1} s^{r-1}+s^{r} \in n$.

Then $f(X)=a_{0}+\cdots+a_{r-1} X^{r-1}+X^{r} \in \mathcal{O}_{X}[X]$ is irreducible when considered modulo \mathcal{O}_{X} / m. Indeed, assume

$$
f(X)=p_{1}(X) p_{2}(X)+q(X)
$$

where $p_{1}, p_{2} \in \mathcal{O}_{X}[X]$ are monic of smaller degree than f, and $q \in m[X]$. Then $p_{1}(s) p_{2}(s)=f(s)-q(s) \in n$. Since n is prime this implies $p_{1}(s) \in n$ or $p_{2}(s) \in n$, contradicting the degree of the triple.

Therefore, by Lemma 2.1.14 we have an unprojection

$$
\mathcal{O}_{X}[T] / f(T) \subset \mathcal{O}_{Y}[T] / f(T) .
$$

Choose a maximal ideal n^{\prime} of $\mathcal{O}_{Y}[T] / f(T)$ containing n. Since it contains $f(s)$, the degree of the triple $\left(\mathcal{O}_{X}[T] / f(T), \mathcal{O}_{Y}[T] / f(T), n^{\prime}\right)$ is less than r, so $\left(\mathcal{O}_{Y}[T] / f(T)\right)_{n^{\prime}}$ is Gorenstein by the inductive hypothesis. The extension

$$
\mathcal{O}_{Y} \subset \mathcal{O}_{Y}[T] / f(T)
$$

is faithfully flat, since the second ring a free module over the first. Hence, by Lemma 2.1.13 the extension

$$
\mathcal{O}_{Y, n} \subset\left(\mathcal{O}_{Y}[T] / f(T)\right)_{n^{\prime}}
$$

is also faithfully flat, and by Lemma 2.1.12 $\mathcal{O}_{Y, n}$ is Gorenstein, which finishes the induction.

As a consequence, it follows immediately that \mathcal{O}_{Y} is Gorenstein, which finishes the proof of Theorem 2.1.10.

The original argument

We worked out the above slick proof of Step 3 by untangling the following essentially equivalent argument, which may be more to the taste of some readers.

We set up the following exact commutative diagram:

The first column is just the definition of \mathcal{O}_{D}. The second column is the identification of \mathcal{O}_{X} with ω_{X} composed with the adjunction formula for ω_{D}.

The first row is the multiplication $s: I \rightarrow J$ composed with the definition of \mathcal{O}_{N}. To make the first square commute, the map s_{2} must be defined by

$$
\begin{equation*}
s_{2}(a)(b)=s(a b) \quad \text { for } a \in \mathcal{O}_{X} \text { and } b \in I \tag{2.8}
\end{equation*}
$$

We identify its cokernel L below. The first two rows induce the map s_{3}. Since s_{2} takes $1 \in \mathcal{O}_{X}$ to $s \in \operatorname{Hom}\left(I, \omega_{X}\right)$, it follows that s_{3} takes $1 \in \mathcal{O}_{D}$ to $\bar{s} \in \omega_{D}$ as in Lemma 2.1.1, and therefore s_{3} is an isomorphism.

Now the second row is naturally identified with the adjunction sequence

$$
0 \rightarrow \omega_{X} \rightarrow \operatorname{Hom}\left(J, \omega_{X}\right) \rightarrow \omega_{N} \rightarrow 0
$$

The point is just that $s: I \cong J$, and s_{2} is the composite

$$
0 \rightarrow \omega_{X} \hookrightarrow \operatorname{Hom}\left(I, \omega_{X}\right) \xrightarrow{s^{*}} \operatorname{Hom}\left(J, \omega_{X}\right),
$$

by its definition in (2.8). The Snake Lemma now gives $\mathcal{O}_{N} \cong L=\omega_{N}$. Therefore, as before, N is Gorenstein.

2.2 Projective unprojection

Assume $Q=\left(q_{0}, \ldots, q_{r}\right)$ is a set of positive weights. Denote by

$$
R=k\left[x_{0}, \ldots, x_{r}\right]
$$

the polynomial ring with $\operatorname{deg} x_{i}=q_{i}$, and $\mathbb{P}=\operatorname{Proj} R$ the corresponding weighted projective space. Since our methods are algebraic, we do not need to assume anything else about the weights.

A closed subscheme $X \subseteq \mathbb{P}$ defines the satured homogeneous ideal $I_{X} \subset R$ and the homogeneous coordinate ring $S(X)=R / I_{X}$.

Notation If M is a graded R-module, we denote by M_{d} the degree d component of M, and by $M(n)$ the graded R-module with $M(n)_{d}=M_{n+d}$. If N is a finitely generated graded R-module, the R-module $\operatorname{Hom}_{R}(N, M)$ has a natural grading, with $\operatorname{Hom}_{R}(N, M)_{d}$ consisting of the degree d homomorphisms from N to M.

Definition 2.2.1 A subscheme $X \subseteq \mathbb{P}$ is called projectively Gorenstein if the homogeneous coordinate ring $S(X)$ is Gorenstein. Following Zariski, some authors also use the term arithmetically Gorenstein.

By $[\mathrm{BH}]$, Chapter 3.6, if X is projectively Gorenstein there exists (unique) $k_{X} \in \mathbb{Z}$ with $\omega_{S(X)}=S(X)\left(k_{X}\right)$.

Definition 2.2.2 $D \subset X \subseteq \mathbb{P}$ is an unprojection pair if X and D are projectively Gorenstein, $\operatorname{dim} X=\operatorname{dim} D+1$ and $k_{X}>k_{D}$, where $k_{X}, k_{D} \in \mathbb{Z}$ with $\omega_{S(X)}=S(X)\left(k_{X}\right), \omega_{S(D)}=S(D)\left(k_{D}\right)$.

Assume $D \subset X \subseteq \mathbb{P}$ is an unprojection pair, and set $l=k_{X}-k_{D}$, $I=I_{X}, \quad J=I_{D}$. As in (2.1) there is an exact sequence of graded R-modules

$$
\begin{equation*}
0 \rightarrow \omega_{S(X)} \rightarrow \operatorname{Hom}_{R}\left(J / I, \omega_{S(X)}\right) \xrightarrow{\text { res }} \omega_{S(D)} \rightarrow 0 \tag{2.9}
\end{equation*}
$$

which, using the assumptions, induces an exact sequence

$$
\begin{equation*}
0 \rightarrow S(X)(l) \rightarrow \operatorname{Hom}_{R}(J / I, S(X)(l)) \xrightarrow{\text { res }} S(D) \rightarrow 0 . \tag{2.10}
\end{equation*}
$$

Taking the homogeneous parts of degree 0 we have an exact sequence

$$
\begin{equation*}
0 \rightarrow S(X)_{l} \rightarrow \operatorname{Hom}_{R}(J / I, S(X))_{l} \xrightarrow{\text { res }} k \rightarrow 0 . \tag{2.11}
\end{equation*}
$$

Definition 2.2.3 An unprojection for the pair $D \subset X$ is a degree l homomorphism

$$
\begin{equation*}
s: J / I \rightarrow S(X) \tag{2.12}
\end{equation*}
$$

such that $\operatorname{res}(s) \neq 0$.
Set $I=\left(f_{1}, \ldots, f_{n}\right)$ with each f_{i} homogeneous, and $g_{i}=s\left(f_{i}\right) \in S(X)$. Since $\operatorname{deg} g_{i}-\operatorname{deg} f_{i}=l$ for all i, the ring

$$
A=S(X)[T] /\left(T f_{i}-g_{i}\right)
$$

has a natural grading extending the grading of $S(X)$, such that $\operatorname{deg} T=l$. Theorem 2.1.10 implies the following

Theorem 2.2.4 The graded ring A is Gorenstein.

2.2.1 Ordinary projective space

Under the assumption that $Q=(1, \ldots, 1)$, so $\mathbb{P}=\mathbb{P}^{r}$ is the usual projective space, we can reformulate the previous section in terms of coherent sheaves using the Serre correspondence between graded R-modules and coherent sheaves on \mathbb{P}. For simplicity, we also assume $\operatorname{dim} X \geq 2$. Similar geometric interpretation should exist also in the case of general Q or $\operatorname{dim} X=1$.

The following result is well known (see e.g. [Ei], p. 468 and [Mi], p. 79).
Theorem 2.2.5 Assume $X \subseteq \mathbb{P}^{r}$ with $\operatorname{dim} X \geq 1$. Then X is projectively Gorenstein if and only if the natural restriction map

$$
H^{0}\left(\mathbb{P}^{r}, \mathcal{O}_{\mathbb{P}}(t)\right) \rightarrow H^{0}\left(X, \mathcal{O}_{X}(t)\right)
$$

is surjective for all $t \in \mathbb{Z}$,

$$
H^{i}\left(X, \mathcal{O}_{X}(t)\right)=0, \quad \text { for } 0<i<\operatorname{dim} X \text { and } t \in \mathbb{Z}
$$

and there exists $k_{X} \in \mathbb{Z}$ with

$$
\omega_{X}=\mathcal{O}_{X}\left(k_{X}\right)
$$

Remark 2.2.6 For $\operatorname{dim} X=0$ see e.g. [Mi], p. 60.
Remark 2.2.7 Assume that $X \subseteq \mathbb{P}^{r}$ is projectively Gorenstein. It is well known that X is of pure dimension, locally Gorenstein and, provided $\operatorname{dim} X \geq 1$, connected. In addition, X is normal if and only if it is projectively normal if and only if it is nonsingular in codimension one.

Assume now that $D \subset X \subseteq \mathbb{P}^{r}$ is an unprojection pair with $\operatorname{dim} X \geq 2$ and $\omega_{S(X)}=S(X)\left(k_{X}\right), \omega_{S(D)}=S(D)\left(k_{D}\right), l=k_{X}-k_{D}>0$. Since X is locally Cohen-Macaulay, we have as in (2.1) an exact sequence of coherent sheaves

$$
\begin{equation*}
0 \rightarrow \omega_{X} \rightarrow \mathcal{H o m}\left(\mathcal{I}_{D}, \omega_{X}\right) \xrightarrow{\operatorname{res}_{D}} \omega_{D} \rightarrow 0 \tag{2.13}
\end{equation*}
$$

which, by twisting, induces an exact sequence

$$
\begin{equation*}
0 \rightarrow \mathcal{O}_{X}(l) \rightarrow \mathcal{H o m}\left(\mathcal{I}_{D}, \mathcal{O}_{X}(l)\right) \xrightarrow{\mathrm{res}_{D}} \mathcal{O}_{D} \rightarrow 0 \tag{2.14}
\end{equation*}
$$

Taking global sections, Theorem 2.2.5 implies the fundamental exact sequence

$$
\begin{equation*}
0 \rightarrow H^{0}\left(X, \mathcal{O}_{X}(l)\right) \rightarrow \operatorname{Hom}\left(\mathcal{I}_{D}, \mathcal{O}_{X}(l)\right) \xrightarrow{\operatorname{res}_{D}} H^{0}\left(\mathcal{O}_{D}\right) \rightarrow 0 . \tag{2.15}
\end{equation*}
$$

By the same theorem $H^{0}\left(\mathcal{O}_{D}\right)=k$. Hence, an unprojection s is just an element of $\operatorname{Hom}\left(\mathcal{I}_{D}, \mathcal{O}_{X}(l)\right)$ with $\operatorname{res}_{D}(s) \neq 0$.

2.2.2 A reformulation of projective unprojection

Under the strong assumption that D is a Cartier (effective) divisor of X we give another, simpler and in more classical terms, reformulation of projective unprojection.

Assume that $D \subset X \subseteq \mathbb{P}^{r}$ is an unprojection pair with $\operatorname{dim} X \geq 2$ and $\omega_{X}=\mathcal{O}_{X}\left(k_{X} H\right), \omega_{D}=\mathcal{O}_{D}\left(k_{D} H\right), l=k_{X}-k_{D}>0$, where H is a hyperplane
divisor of \mathbb{P}^{r}. Moreover, we suppose that D is a Cartier divisor of X. By [KoM] Proposition 5.73 we have the adjunction formula

$$
\omega_{D}=\omega_{X} \otimes \mathcal{O}_{X}(D) \otimes \mathcal{O}_{D}
$$

Hence,

$$
\begin{equation*}
\mathcal{O}_{X}(D) \otimes \mathcal{O}_{D}=\mathcal{O}_{D}(-l H) \tag{2.16}
\end{equation*}
$$

Lemma 2.2.8 a) For all $0 \leq i \leq l-1$ the natural injection

$$
H^{0}\left(X, \mathcal{O}_{X}(i H)\right) \hookrightarrow H^{0}\left(X, \mathcal{O}_{X}(i H+D)\right)
$$

is an isomorphism.
b) There is an exact sequence

$$
0 \rightarrow H^{0}\left(X, \mathcal{O}_{X}(l H)\right) \rightarrow H^{0}\left(X, \mathcal{O}_{X}(l H+D)\right) \rightarrow k \rightarrow 0
$$

Proof Taking into account Theorem 2.2.5, for every $i \in \mathbb{Z}$ the natural exact sequence

$$
0 \rightarrow \mathcal{O}_{X}(i H) \rightarrow \mathcal{O}_{X}(i H+D) \rightarrow \mathcal{O}_{D}(i H+D) \rightarrow 0
$$

induces an exact sequence
$0 \rightarrow H^{0}\left(X, \mathcal{O}_{X}(i H)\right) \rightarrow H^{0}\left(X, \mathcal{O}_{X}(i H+D)\right) \rightarrow H^{0}\left(D, \mathcal{O}_{D}(i H+D)\right) \rightarrow 0$.
In light of $(2.16), H^{0}\left(D, \mathcal{O}_{D}(i H+D)\right)=0$ for $i \leq l-1$ and $H^{0}\left(D, \mathcal{O}_{D}(l H+D)\right)=k . \quad$ QED

Using the lemma, we can say that an unprojection s is any element in $H^{0}\left(X, \mathcal{O}_{X}(l H+D)\right) \backslash H^{0}\left(x, \mathcal{O}_{X}(l H)\right)$ i.e., a rational function of homogeneous degree l with single pole on D. In addition, the unprojection rational map from X to the weighted projective space $\mathbb{P}\left(1^{r+1}, l\right)$ is defined by a basis of $H^{0}\left(X, \mathcal{O}_{X}(H)\right)$ together with s.

2.3 Simplest example

This section is taken from [PR]. We discuss a case that has many consequences in birational geometry, even though the algebra itself is very simple. Consider the generic equations

$$
\begin{equation*}
X:(B x-A y=0) \quad \text { and } \quad D:(x=y=0) \tag{2.17}
\end{equation*}
$$

defining a hypersurface X containing a codimension 2 complete intersection D in some as yet unspecified ambient space. The unprojection variable is

$$
\begin{equation*}
s=\frac{A}{x}=\frac{B}{y} . \tag{2.18}
\end{equation*}
$$

We can view s as a rational function on X, or as an isomorphism from (x, y) to (A, B) in \mathcal{O}_{X}. The unprojection is the codimension two complete intersection $Y:(s x=A, s y=B)$.

For example, take \mathbb{P}^{3} as ambient space, with x, y linear forms defining a line D, and A, B general quadratic forms. Then s has degree 1 , and the equations describe the contraction of a line on a nonsingular cubic surface to the point $P_{s}=(0: 0: 0: 0: 1) \in \mathbb{P}^{4}$ on a del Pezzo surface of degree 4. It is the inverse of the linear projection $Y \rightarrow X$ from P_{s}, eliminating s. But the equations are of course much more general. The only assumptions are that x, y and $B x-A y$ are regular sequences in the ambient space. For example, if A, B vanish along D, so that X is singular there, then Y contains the plane $x=y=0$ as an exceptional component lying over D. Note that, in any case, Y has codimension 2 and is nonsingular at P.

The same rather trivial algebra lies behind the quadratic involutions of Fano 3-folds constructed in [CPR], 4.4-4.9. For example, consider the general weighted hypersurface of degree 5

$$
X_{5}:\left(x_{0} y^{2}+a_{3} y+b_{5}=0\right) \subset \mathbb{P}(1,1,1,1,2)
$$

with coordinates x_{0}, \ldots, x_{3}, y. The coordinate point $P_{y}=(0: \cdots: 1)$ is a Veronese cone singularity $\frac{1}{2}(1,1,1)$. The anticanonical model of the blowup of P_{y} is obtained by eliminating y and adjoining $z=x_{0} y$ instead, thus passing to the hypersurface

$$
Z_{6}:\left(z^{2}+a_{3} z+x_{0} b_{5}=0\right) \subset \mathbb{P}(1,1,1,1,3)
$$

The 3 -fold Z_{6} contains the plane $x_{0}=z=0$, the exceptional \mathbb{P}^{2} of the blowup. Writing its equation as $z\left(z+a_{3}\right)+x_{0} b_{5}$ gives $y=\frac{z}{x_{0}}=-\frac{b_{5}}{z+a_{3}}$, and puts the birational relation between X_{5} and Z_{6} into the generic form (2.172.18). In fact Z_{6} is the "midpoint" of the construction of the birational involution of X_{5}. The construction continues by setting $y^{\prime}=\frac{z+a_{3}}{x_{0}}=-\frac{b_{5}}{z}$, thus unprojecting a different plane $x_{0}=z+a_{3}=0$. For details, consult [CPR], 4.4-4.9. See [CM] for a related use of the same algebra, to somewhat surprising effect.

2.4 Birational geometry of unprojection, an example

We present a simple example that shows that even when we fix the algebra of an unprojection, the geometric picture can vary.

Suppose we have an irreducible cubic hypersurface $X \subset \mathbb{P}^{3}$, with equation $A x-B y=0$, containing the codimension one subscheme D with $I_{D}=(x, y)$. According to Section 2.3, the unprojection variety is $Y \subset \mathbb{P}^{4}$ with ideal $I_{Y}=(s x-B, s y-A)$. There is a natural projection

$$
\phi: Y \longrightarrow X, \quad \text { with } \quad[x, y, z, w, s] \mapsto[x, y, z, w],
$$

with birational inverse the rational map (graph of s)

$$
\phi^{-1}: X \rightarrow Y, \quad \text { with } \quad[x, y, z, w] \mapsto\left[x, y, z, w, s=\frac{A}{y}=\frac{B}{x}\right] .
$$

Denote by $N \subset X$ the closed subscheme with $I_{N}=(A, B)$. Under ϕ^{-1}, D is (possibly after a factorialisation) contracted to the point $[0,0,0,0,1]$ while $\phi^{-1}(N)$ is the hyperplane section $s=0$ of Y.

Generic case The generic case is when X is smooth. As a consequence $N \cap D=\emptyset$. It is easy to see that ϕ^{-1} is a regular map, the usual blowdown of the -1 line D.

Special case When $N \cap D \neq \emptyset$ the birational geometry is more complicated. Assume, for example, that the equation of X is $x z(w+x)-y(z+y) w$.

Then $N \cap D=\left\{p_{1}=[0,0,1,0], p_{2}=[0,0,0,1]\right\}$. Both points are A_{1} singularities of X. We have the following factorization of $\phi^{-1}: X \rightarrow Y$

In the diagram $Z \rightarrow X$ is the blowup of X at the two points p_{1}, p_{2}, and $Z \rightarrow Y$ is the blowdown of the strict transform of D. Of course, Z is nothing but the graph of the projection $\phi: Y \rightarrow X$.

2.5 The link between Kustin-Miller theorem and our unprojection

Resolutions can be used to calculate unprojection and we will prove a more general version of the fact that the construction of Kustin-Miller [KM4] gives an unprojection in our sense, as described in Section 2.1.

We change to more convenient for our purposes 'algebraic' notation. Let R be a Gorenstein local ring and $I \subset J$ perfect (therefore Cohen-Macaulay) ideals of codimensions r and $r+1$ respectively. Unless otherwise indicated, all Hom and Ext modules and maps are over R.

Recall that we have the fundamental adjunction exact sequence (2.1)

$$
\begin{equation*}
0 \rightarrow \omega_{R / I} \xrightarrow{a} \operatorname{Hom}_{R}\left(J / I, \omega_{R / I}\right) \xrightarrow{\text { res }} \omega_{R / J} \rightarrow 0 \tag{2.19}
\end{equation*}
$$

with a the natural map

$$
a(x)(l)=l x, \quad \text { for all } l \in J \text { and } x \in \omega_{R / I} .
$$

In the following we identify $\omega_{R / I}$ with its image under a.
Let

$$
\begin{equation*}
\mathbf{L} \rightarrow R / I, \quad \mathbf{M} \rightarrow R / J \tag{2.20}
\end{equation*}
$$

be minimal resolutions as R-modules. According to [FOV] Proposition A.2.12, the dual complexes

$$
\begin{equation*}
\mathbf{L}^{*} \rightarrow \omega_{R / I}, \quad \mathbf{M}^{*} \rightarrow \omega_{R / J} \tag{2.21}
\end{equation*}
$$

are also minimal resolutions, where $*$ means $\operatorname{Hom}(-, R)$. More precisely we have an exact sequence

$$
\begin{equation*}
M_{r}^{*} \xrightarrow{b} M_{r+1}^{*} \xrightarrow{c} \omega_{R / J} \rightarrow 0, \tag{2.22}
\end{equation*}
$$

and we set

$$
\begin{equation*}
T=\operatorname{ker} c . \tag{2.23}
\end{equation*}
$$

For simplicity of notation, since M_{r+1}^{*} is free of rank (say) l, we identify it with R^{l}. There is an an exact sequence

$$
\begin{equation*}
0 \rightarrow T \rightarrow R^{l} \xrightarrow{c} \omega_{R / J} \rightarrow 0 \tag{2.24}
\end{equation*}
$$

For the canonical base $e_{i}=(0, \ldots, 1, \ldots 0) \in R^{l}$, we fix liftings

$$
\begin{equation*}
q_{i} \in \operatorname{Hom}\left(J, \omega_{R / I}\right) \tag{2.25}
\end{equation*}
$$

of the basis $\bar{e}_{i}=c\left(e_{i}\right) \in \omega_{R / J}$, under the map res in (2.19). Notice that $\operatorname{Hom}\left(J, \omega_{R / I}\right)$ is generated by $\omega_{R / I}$ together with q_{1}, \ldots, q_{l}. Moreover, clearly

$$
\begin{equation*}
T=\left\{\left(b_{1}, \ldots, b_{l}\right) \in R^{l}: \sum_{i} b_{i} q_{i} \in \omega_{R / I}\right\} . \tag{2.26}
\end{equation*}
$$

We denote by $s_{i}: J \rightarrow T$ the map

$$
s_{i}(t)=(0, \ldots, 0, t, 0, \ldots, 0),
$$

where t is in the i th coordinate. Define

$$
\Phi: \operatorname{Hom}\left(T, \omega_{R / I}\right) \rightarrow \operatorname{Hom}\left(J, \omega_{R / I}\right)^{l}
$$

with

$$
\Phi(e)=\left(e \circ s_{1}, \ldots, e \circ s_{l}\right) .
$$

Lemma 2.5.1 The map Φ is injective with image equal to

$$
L=\left\{\left(k_{1}, \ldots, k_{l}\right): \sum_{i} b_{i} k_{i} \in \omega_{R / I} \quad \text { whenever }\left(b_{1}, \ldots, b_{l}\right) \in T\right\} .
$$

Proof The ring R / I is Cohen-Macaulay, so there exists $t \in J$ that is R / I regular. Since $\omega_{R / I}$ is a maximal Cohen-Macaulay R / I-module, t is also $\omega_{R / I}$-regular (compare e.g. [Ei], p. 529). Assume $e \circ s_{i}=e^{\prime} \circ s_{i}$ for all i, and let $b^{\prime}=\left(b_{1}, \ldots, b_{l}\right) \in T$. Then

$$
t e\left(b^{\prime}\right)=e\left(t b^{\prime}\right)=\sum_{i} b_{i} e \circ s_{i}(t)=\sum_{i} b_{i} e^{\prime} \circ s_{i}(t)=t e^{\prime}\left(b^{\prime}\right) .
$$

Since t is $\omega_{R / I}$-regular we have $e=e^{\prime}$. Moreover, this also shows that the image of ϕ is contained in L.

Now consider $\left(k_{1}, \ldots, k_{l}\right) \in L$. Define $e: T \rightarrow \omega_{R / I}$ with $e\left(b_{1}, \ldots, b_{l}\right)=$ $\sum b_{i} k_{i}$. Then $e \circ s_{i}(t)=t k_{i}=k_{i}(t)$, so $\Phi(e)=\left(k_{1}, \ldots, k_{l}\right)$. QED

Now we present a method, originally developed in [KM4], and prove that it calculates a set of generators for

$$
\operatorname{Hom}\left(J, \omega_{R / I}\right) / \omega_{R / I},
$$

which was conjectured by Reid.
The natural map $R / I \rightarrow R / J$ induces a map of complexes $\psi: \mathbf{L} \rightarrow \mathbf{M}$ and the dual map $\psi^{*}: \mathbf{M}^{*} \rightarrow \mathbf{L}^{*}$. Using (2.21), we get a commutative diagram with exact rows

By the definition of T, there is an induced map $\psi^{*}: T \rightarrow \omega_{R / I}$. Notice that this map is not canonical, but depends on the choice of ψ; we fix one such choice. Set

$$
\Phi\left(\psi^{*}\right)=\left(k_{1}, \ldots, k_{l}\right) .
$$

Theorem 2.5.2 The R-module $\operatorname{Hom}_{R}\left(J, \omega_{R / I}\right)$ is generated by $\omega_{R / I}$ together with k_{1}, \ldots, k_{l}.

Proof Since $\omega_{R / I}$ together with the q_{i} generate $\operatorname{Hom}\left(J, \omega_{R / I}\right)$, we have equations

$$
\begin{equation*}
k_{i}=\sum_{j} a_{i j} q_{j}+\theta_{i}, \quad \text { with } \quad a_{i j} \in R, \theta_{i} \in \omega_{R / I} \tag{2.27}
\end{equation*}
$$

Clearly $\left(q_{i}\right)$ and $\left(\theta_{i}\right)$ are in the image of Φ, which by Lemma 2.5.1 is equal to L, set $\left(q_{i}\right)=\Phi(Q),\left(\theta_{i}\right)=\Phi(\Theta)$. We have an induced map $f_{0}: R^{l} \rightarrow R^{l}$ with

$$
f_{0}\left(b_{1}, \ldots b_{l}\right)=\left(b_{1}, \ldots, b_{l}\right)\left[a_{i j}\right] .
$$

Using (2.26), T is invariant under f_{0}, so there is an induced map $f_{1}: T \rightarrow T$ and, using (2.24), a second induced map $f_{2} \in \operatorname{Hom}\left(\omega_{R / J}, \omega_{R / J}\right)$, with $f_{2}\left(\bar{e}_{i}\right)=$
$\sum_{j} a_{i j} \bar{e}_{j}$. We will show that f_{2} is an automorphism of $\omega_{R / J}$, which will prove the theorem.

Using (2.20), (2.21) and the definition (2.23) of T, we get

$$
\begin{aligned}
\operatorname{Ext}^{r+1}\left(\omega_{R / J}, R\right) & =\operatorname{Ext}^{r}(T, R)=R / J \\
\operatorname{Ext}^{r}\left(\omega_{R / I}, R\right) & =R / I
\end{aligned}
$$

Moreover, by $[\mathrm{BH}]$ Theorem 3.3.11 the natural map $R / J \rightarrow \operatorname{Hom}\left(\omega_{R / J}, \omega_{R / J}\right)$ is an isomorphism. This, together with the formal properties of the Ext functor, imply that the natural map

$$
\operatorname{Ext}^{r+1}\left(-, \operatorname{id}_{R}\right): \operatorname{Hom}\left(\omega_{R / J}, \omega_{R / J}\right) \rightarrow R / J=\operatorname{Hom}(R / J, R / J)
$$

is the identity $R / J \rightarrow R / J$. Therefore it is enough to show that $\operatorname{Ext}^{r+1}\left(f_{2}\right)$ is a unit in R / J, and by (2.24) $\operatorname{Ext}^{r+1}\left(f_{2}\right)=\operatorname{Ext}^{r}\left(f_{1}\right)$, where for simplicity of notation we denote $\operatorname{Ext}^{*}\left(-, \mathrm{id}_{R}\right)$ by $\operatorname{Ext}^{*}(-)$.

By (2.27) and the injectivity of Φ (Lemma 2.5.1)

$$
\begin{equation*}
\psi^{*}=Q \circ f_{1}+\Theta ; \tag{2.28}
\end{equation*}
$$

therefore

$$
\operatorname{Ext}^{r}\left(\psi^{*}\right)=\operatorname{Ext}^{r}\left(f_{1}\right) \operatorname{Ext}^{r}(Q)+\operatorname{Ext}^{r}(\Theta)
$$

as maps $R / I \rightarrow R / J$. Since Θ can be extended to a map $R^{l} \rightarrow \omega_{R / I}$, $\operatorname{Ext}^{r}(\Theta)=0$. In addition, by the construction of $\psi^{*}, \operatorname{Ext}^{r}\left(\psi^{*}\right)=1 \in R / J$. This implies that $\operatorname{Ext}^{r}\left(f_{1}\right)$ is a unit in R / J, which finishes the proof. QED

The arguments in the proof of Theorem 2.5.2 also prove the more general
Theorem 2.5.3 Let

$$
f: T \rightarrow \omega_{R / I}
$$

be an R-homomorphism, and set $f_{i}=f \circ s_{i}$ for $1 \leq i \leq l$. Then $\omega_{R / I}$ together with f_{1}, \ldots, f_{l} generate $\operatorname{Hom}\left(J, \omega_{R / I}\right)$ if and only if

$$
\operatorname{Ext}^{r}(f): R / I \rightarrow R / J
$$

is surjective.
Theorems 2.5.2 and 2.5.3 can be used to justify the part of the calculations of [R1] Section 9 related to the definition of the unprojection rings.

2.5.1 Unprojection of a complete intersection inside a complete intersection

Let R be a Gorenstein local ring and $I \subset J$ ideals of R, of codimensions r and $r+1$ respectively. We assume that each is generated by a regular sequence, say

$$
\begin{equation*}
I=\left(v_{1}, \ldots, v_{r}\right), \quad J=\left(w_{1}, \ldots, w_{r+1}\right) . \tag{2.29}
\end{equation*}
$$

Since $I \subset J$, there exists an $r \times(r+1)$ matrix A with

$$
\left(\begin{array}{c}
v_{1} \tag{2.30}\\
\vdots \\
v_{r}
\end{array}\right)=A\left(\begin{array}{c}
w_{1} \\
\vdots \\
w_{r+1}
\end{array}\right)
$$

Definition 2.5.4 $\bigwedge^{r} A$ is the $1 \times(r+1)$ matrix whose i th entry $\left(\bigwedge^{r} A\right)_{i}$ is $(-1)^{i+1}$ times the determinant of the submatrix of A obtained by removing the i th column.

Lemma 2.5.5 (Cramer's rule) For all i, j the element

$$
\left(\bigwedge^{r} A\right)_{i} w_{j}-\left(\bigwedge^{r} A\right)_{j} w_{i}
$$

is in the ideal $\left(v_{1}, \ldots, v_{r}\right)$.

Proof Simple linear algebra (Cramer's rule). QED
We define $g_{i} \in R$ by

$$
\bigwedge^{r} A=\left(g_{1}, \ldots, g_{r+1}\right) .
$$

The special case $r=2$ of the following theorem was proven by direct methods in [CFHR] Lemma 6.11, compare also Section 2.3 for applications of the case $r=1$.

Theorem 2.5.6 $\operatorname{Hom}_{R / I}(J / I, R / I)$ is generated as R / I-module by two elements id and s, where

$$
s\left(w_{i}\right)=g_{i}, \quad \text { for } 1 \leq i \leq r+1 .
$$

Proof Since R / I is Gorenstein, we have $\omega_{R / I}=R / I$. By Lemma 2.5.5 s is well defined. Consider the minimal Koszul complexes corresponding to the generators given in (2.29) that resolve $R / I, R / J$ as R-modules,

$$
\begin{gathered}
\mathbf{M} \rightarrow R / I \\
\mathbf{N} \rightarrow R / J .
\end{gathered}
$$

The matrix A can be considered as a map $M_{1} \rightarrow L_{1}$ making the following square commutative

There are induced maps $\bigwedge^{n} A: M_{n} \rightarrow L_{n}$ (compare e.g. [BH], Proposition 1.6.8), giving a commutative diagram

Since the last nonzero map is given by $\Lambda^{r} A$ the result follows from Theorem 2.5.2. QED

2.6 More general unprojections

In Section 2.1 we defined the unprojection ring S for a pair $I \subset R$, where R is a local Gorenstein ring and I a codimension one ideal with R / I Gorenstein. By Theorem 2.1.10 S is Gorenstein.

An important question, raised by Reid in [R1] Section 9, is whether we can define a Gorenstein 'unprojection ring' S for more general pairs $I \subset R$. Corti and Reid have indeed found such examples, see loc. cit., but a general definition of S is still lacking.

Assume, for example, that R is a Gorenstein local normal domain and $I \subset R$ is an ideal of pure codimension one (i.e., all associated primes of I have codimension one). Taking into account Lemma 2.1.7, a natural candidate for
S is the ring $R\left[I^{-1}\right]$, that is the R-subalgebra of the field of fractions $K(R)$ of R generated by the set

$$
I^{-1}=\{a \in K(R): a I \subseteq R\}
$$

An important question which the present author has been unable to decide is whether $R\left[I^{-1}\right]$ is Gorenstein under the above assumptions.

More generally we can ask whether $R\left[I^{-1}\right]$ is Gorenstein, assuming just that I is a pure codimension one ideal of a Gorenstein ring R (compare also Example 2.1.8).

Chapter 3

Tom \& Jerry

3.1 Here come the heroes

In the following k will be the field of complex numbers \mathbb{C}. This is for simplicity, most arguments work in much greater generality.

3.1.1 Tom

We work over the polynomial ring $S=k\left[x_{k}, z_{k}, a_{i j}^{k}\right]$. More precisely we have indeterminates $x_{k}, z_{k}, a_{i j}^{k}$, for $1 \leq k \leq 4,2 \leq i<j \leq 5$.

The generic Tom ideal is the ideal I of S generated by the five Pfaffians of the skewsymmetric matrix

$$
A=\left(\begin{array}{cccc}
\cdot x_{1} & x_{2} & x_{3} & x_{4} \tag{3.1}\\
\cdot & a_{23} & a_{24} & a_{25} \\
& \cdot & a_{34} & a_{35} \\
-\mathrm{sym} & & \cdot & a_{45} \\
& & & \cdot
\end{array}\right)
$$

where

$$
a_{i j}=\sum_{k=1}^{4} a_{i j}^{k} z_{k} .
$$

The proof of the following theorem will be given in Section 3.2.
Theorem 3.1.1 The ideal I is prime of codimension three and S/I is Gorenstein.

3.1.2 Jerry

Here we work over the polynomial ring $S=k\left[x_{i}, z_{k}, c^{k}, a_{i}^{k}, b_{i}^{k}\right]$. More precisely we have indeterminates $x_{1}, x_{2}, x_{3}, z_{k}, a_{i}^{k}, b_{i}^{k}, c^{k}$, for $1 \leq k \leq 4,1 \leq i \leq 3$. The generic Jerry ideal is the ideal I of S generated by the five Pfaffians of the skewsymmetric Jerry matrix

$$
B=\left(\begin{array}{ccccc}
\cdot & c & a_{1} & a_{2} & a_{3} \tag{3.2}\\
& \cdot & b_{1} & b_{2} & b_{3} \\
& & \cdot & x_{1} & x_{2} \\
-\mathrm{sym} & \cdot & x_{3} \\
& & & & \cdot
\end{array}\right)
$$

where

$$
a_{i}=\sum_{k=1}^{4} a_{i}^{k} z_{k}, \quad b_{i}=\sum_{k=1}^{4} b_{i}^{k} z_{k}, \quad c=\sum_{k=1}^{4} c^{k} z_{k} .
$$

The methods of Section 3.2 also prove the following
Theorem 3.1.2 The ideal I is prime of codimension three and S/I is Gorenstein.

3.2 Tom ideal is prime

We give two proofs of Theorem 3.1.1. The first occupies Subsections 3.2.1 to 3.2.7, while the second is in Subsection 3.2.8.

3.2.1 Definition of X_{1}

Consider the affine space (over k) $\mathbb{A}_{1} \cong \mathbb{A}^{10}$ with coordinates $x_{1}, \ldots, x_{4}, w_{i j}$, for $2 \leq i<j \leq 5$, and the skewsymmetric matrix

$$
M_{1}=\left(\begin{array}{cccc}
\cdot & x_{1} & x_{2} & x_{3}
\end{array} x_{4},\left(\begin{array}{ccc}
\\
\cdot & w_{23} & w_{24} \\
w_{25} \\
& \cdot & w_{34} \\
w_{35} \\
& & \cdot \\
w_{45} \\
& & \\
& \cdot
\end{array}\right)\right.
$$

We define $X_{1} \subset \mathbb{A}_{1}$ (the affine cone over the Grassmanian $\operatorname{Gr}(2,5)$) by

$$
X_{1}=\left\{\left(x_{k}, w_{i j}\right) \in \mathbb{A}_{1} \text { that satisfy the Pfaffians of } M_{1}\right\} .
$$

It is a well known fact (see e.g. [KL]) that X_{1} is irreducible and $\operatorname{dim} X_{1}=7$.

3.2.2 Definition of X_{2}

Consider the affine space $\mathbb{A}_{2} \cong \mathbb{A}^{17}$ with coordinates

$$
x_{1}, \ldots, x_{4}, z_{1}, \ldots, z_{4}, a_{23}^{1}, \ldots, a_{23}^{4}, w_{24}, w_{25}, w_{34}, w_{35}, w_{45}
$$

and the skewsymmetric matrix

$$
M_{2}=\left(\begin{array}{cccc}
\cdot & x_{1} & x_{2} & x_{3}
\end{array} x_{4},\left(\begin{array}{ccc}
\\
\cdot & a_{23} & w_{24} \\
w_{25} \\
& \cdot & w_{34} \\
w_{35} \\
& & \cdot \\
w_{45} \\
& & \\
\cdot
\end{array}\right)\right.
$$

where

$$
a_{23}=a_{23}^{1} z_{1}+\cdots+a_{23}^{4} z_{4} .
$$

We define $X_{2} \subset \mathbb{A}_{2}$ by

$$
X_{2}=\left\{\left(x_{k}, z_{k}, a_{23}^{k}, w_{i j}\right) \in \mathbb{A}_{2} \text { that satisfy the Pfaffians of } M_{2}\right\} .
$$

3.2.3 Definition of X_{3}

Consider the affine space $\mathbb{A}_{3} \cong \mathbb{A}^{32}$ with coordinates $x_{k}, z_{k}, a_{i j}^{k}$, for $1 \leq k \leq 4,2 \leq i<j \leq 5$ and the skewsymmetric matrix

$$
M_{3}=\left(\begin{array}{cccc}
x_{1} & x_{2} & x_{3} & x_{4} \\
& \cdot & a_{23} & a_{24} \\
& \cdot & a_{32} \\
& & a_{34} & a_{35} \\
& & & \cdot \\
a_{45}
\end{array}\right)
$$

where

$$
a_{i j}=a_{i j}^{1} z_{1}+\cdots+a_{i j}^{4} z_{4} .
$$

We define $X_{3} \subset \mathbb{A}_{3}$ by

$$
X_{3}=\left\{\left(x_{k}, z_{k}, a_{i j}^{k}\right) \in \mathbb{A}_{3} \text { that satisfy the Pfaffians of } M_{3}\right\} .
$$

3.2.4 Proving irreducibility

We will use the irreducibility of X_{1} and pass through X_{2} to prove the irreducibility of X_{3}. We need a variant of the following general theorem which can be found for example in [Ha], p. 139 or [Sha], p. 77.

Theorem 3.2.1 Let $\phi: X \rightarrow Y$ be a surjective morphism of reduced projective schemes. Suppose all fibers of ϕ are irreducible of the same dimension and Y is irreducible. Then X is irreducible.

The theorem is not correct in general without the projectiveness assumption. (A counterexample in the affine case is the projection to the the x-axis of X, with $X \subset \mathbb{A}^{2}$ the union of the point $(0,0)$ with the hyperbola $x y=1$.) However, if we assume that $X \subseteq \mathbb{A}^{n}, Y \subseteq \mathbb{A}^{m}$ and the map $\phi: X \rightarrow Y$ are homogeneous with respect to gradings of the coordinates in \mathbb{A}^{n} and \mathbb{A}^{m}, in other words X and Y are cones over varieties in weighted projective spaces and ϕ respects this structure, the result still holds. In the following this condition will be satisfied by setting $\operatorname{deg} w_{i j}=2, \operatorname{deg} x_{k}=\operatorname{deg} a_{i j}^{k}=\operatorname{deg} z_{k}=1$.

3.2.5 Definition of the map $\phi_{2}: X_{2} \rightarrow X_{1}$

Define $\phi_{2}: X_{2} \rightarrow X_{1}$ with

$$
\phi_{2}\left(x_{k}, z_{k}, a_{23}^{k}, w_{i j}\right)=\left(x_{k}, \sum_{k=1}^{4} a_{23}^{k} z_{k}, w_{i j}\right) .
$$

Lemma 3.2.2 ϕ_{2} is surjective with every fiber irreducible of dimension 7.
Proof Indeed,

$$
\phi_{2}^{-1}\left(x_{k}, w_{i j}\right)
$$

is given in X_{2} by the single equation

$$
\sum_{k=1}^{4} a_{23}^{k} z_{k}=w_{23}
$$

so it is isomorphic with an irreducible hypersurface in \mathbb{A}^{8}. QED
Using Subsection 3.2.4 we have the following corollary.
Corollary 3.2.3 X_{2} is irreducible with $\operatorname{dim} X_{2}=14$.

3.2.6 Definition of the map $\phi_{3}: X_{3} \rightarrow X_{2}$

Define $\phi_{3}: X_{3} \rightarrow X_{2}$ with

$$
\phi_{3}\left(x_{k}, z_{k}, a_{i j}^{k}\right)=\left(x_{k}, z_{k}, a_{23}^{1}, \ldots, a_{23}^{4}, \sum_{k=1}^{4} a_{24}^{k} z_{k}, \ldots, \sum_{k=1}^{4} a_{45}^{k} z_{k}\right)
$$

Let $U_{2} \subset X_{2}$ be defined by

$$
U_{2}=\left\{\left(z_{1}, \ldots, z_{4}\right) \neq(0, \ldots, 0)\right\}
$$

and set

$$
U_{3}=\phi_{3}^{-1}\left(U_{2}\right) \subset X_{3} .
$$

Since X_{2} is irreducible by Corollary 3.2.3, U_{2} is also irreducible. Denote by $\psi: U_{3} \rightarrow U_{2}$ the restriction of ϕ_{3} to U_{3}.

Lemma 3.2.4 ψ is surjective with every fiber isomorphic to \mathbb{A}^{15}.

Proof Obvious. QED

Using Subsection 3.2.4 U_{3} is irreducible with $\operatorname{dim} U_{3}=29$. To show that X_{3} is irreducible it is enough to prove that U_{3} is dense in it. Notice that since $\operatorname{dim} X_{3} \backslash U_{3}=28=\operatorname{dim} U_{3}-1$, we have $\operatorname{dim} X_{3}=29$.

By Hilbert's Nullstellensatz, the ideal of $X_{3} \subset \mathbb{A}_{3}$ is $L=\operatorname{Rad} I$. As a consequence I has also codimension three, and since a polynomial ring over a field is Cohen-Macaulay it has grade equal to three. Since it is generated by Pfaffians, Theorem 1.3 .1 implies that S / I is Gorenstein. By unmixedness each component of X_{3} has dimension 29. The following general topological lemma completes the proof that X_{3} is irreducible of codimension three in \mathbb{A}_{3}.

Lemma 3.2.5 Let X be a topological space of finite dimension and $U \subseteq X$ an irreducible open subset such that $\operatorname{dim} X \backslash U<\operatorname{dim} U$ and each component of X has dimension at least equal to $\operatorname{dim} U$. Then U is dense in X.

Corollary 3.2.6 $X_{3} \subset \mathbb{A}_{3}$ is irreducible of codimension three.

3.2.7 Proof of Theorem 3.1.1

In Subsection 3.2.6 we proved that the radical $L=\operatorname{Rad} I$ of the ideal I of the generic Tom is prime of codimension three and that S / I is Gorenstein.

We claim that S / I is reduced, which will finish the proof of Theorem 3.1.1. Assume that it is not reduced. Consider the Jacobean matrix M of the five Pfaffian generators of I and and the ideal $J \subseteq S$ generated by the determinants of the 3×3 submatrices of M. By [Ei] Theorem 18.15, the ideal $(I+J) / I$ has codimension 0 in S / I. Since L is prime, L / I is the unique minimal ideal of S / I, hence $J \subseteq L$. This implies $V(L) \subseteq V(J)$. But an easy calculation shows that the point P with all coordinates $a_{i j}^{k}, x_{k}, z_{k}$ equal to zero except $x_{4}=a_{34}^{1}=a_{24}^{2}=a_{23}^{3}=1$ is in $V(L)$ but not in $V(J)$, a contradiction which finishes the proof of Theorem 3.1.1.

3.2.8 Second proof of Theorem 3.1.1

We give a second proof of Theorem 3.1.1 based on the ideas of [BV] Chapter 2. Set $R=S / I$ and $X=\operatorname{Spec} R$. We will prove that R is a domain.

Lemma 3.2.7 For all $i=1, \ldots, 4$ the element $z_{i} \in R$ is not nilpotent. Moreover, $R\left[z_{i}^{-1}\right]$ is a domain and $\operatorname{dim} R\left[z_{i}^{-1}\right]=29$.

Proof Due to symmetry, it is enough to prove it for z_{1}. By the form of the generators of I it follows immediately that $z_{1} \in R$ is not nilpotent. Consider the ring

$$
T=k\left[z_{1}\right]\left[z_{1}^{-1}\right]\left[x_{1}, \ldots, x_{4}, z_{2}, z_{3}, z_{4}\right]\left[a_{i j}^{k}\right],
$$

and the two skewsymmetric matrices N_{1} and N_{2} with

$$
N_{1}=\left(\begin{array}{cccc}
\cdot x_{1} & x_{2} & x_{3} & x_{4} \\
& \cdot & a_{23}^{1} & a_{24}^{1} \\
& a_{25}^{1} \\
& \cdot & a_{34}^{1} & a_{35}^{1} \\
-\mathrm{sym} & & \cdot & a_{45}^{1} \\
& & & \cdot
\end{array}\right)
$$

and $N_{2}=A$, the generic Tom matrix defined in (3.1). Denote by I_{i} the ideal of T generated by the Pfaffians of N_{i} for $i=1,2$. Consider the automorphism $f: T \rightarrow T$ that is the identity on $k\left[z_{1}\right]\left[z_{1}^{-1}\right]\left[x_{1}, \ldots, x_{4}, z_{2}, z_{3}, z_{4}\right], f\left(a_{i j}^{t}\right)=a_{i j}^{t}$ if $t \neq 1$ and $f\left(a_{i j}^{1}\right)=\sum_{k=1}^{4} a_{i j}^{k} z_{k}$ (f is automorphism since z_{1} is invertible
in T). Because N_{1} is the generic skewsymmetric matrix, I_{1} is prime of codimension 3 (see e.g. [KL]). Hence $I_{2}=f\left(I_{1}\right)$ is also prime of codimension 3, which proves the lemma. QED

Set $U_{i}=\operatorname{Spec} R\left[z_{i}^{-1}\right] \subset X$, by Lemma 3.2.7 U_{i} is irreducible. Since the prime ideal $\left(x_{k}, a_{i j}^{k}\right) \subset R$ is in the intersection of all U_{i}, we have that $V=\cup U_{i}$ is also irreducible of dimension 29. Moreover, $X \backslash V=\operatorname{Spec} S / J$ has dimension 28, where $J=\left(z_{1}, \ldots, z_{4}\right) \subset S$. Therefore, X has dimension 29, so I has codimension three. Since I is generated by Pfaffians, Theorem 1.3.1 implies that $R=S / I$ is Gorenstein. It follows that I is unmixed, so J is not contained in any associated prime of I.

Since $R\left[z_{1}^{-1}\right]$ is a domain, there is exactly one associated prime ideal P of R such that $z_{1} \notin P$. If P is the single associated prime ideal of R, then z_{1} is a regular element of R and R is also a domain. Suppose there is a second associated ideal $Q \neq P$. By what we have stated above and since $z_{1} \in Q$, there is some $z_{i} \notin Q$. Since $R\left[z_{i}^{-1}\right]$ is a domain, it follows as before that $z_{i} \in P$. Now $P R\left[z_{1}^{-1}\right]=0$, but the image of z_{i} in $P R\left[z_{1}^{-1}\right]$ is different from 0 (otherwise $z_{i} z_{1}^{t} \in I$ which clearly doesn't happen), a contradiction which finishes the second proof of Theorem 3.1.1.

3.3 Fundamental calculation for Tom

We work with the generic Tom over $S=k\left[x_{k}, z_{k}, a_{i j}^{k}\right]$ (see Section 3.1.1) and prove useful identities. Define I to be the ideal generated by the Pfaffians of the generic Tom matrix

$$
A=\left(\begin{array}{cccc}
\cdot x_{1} & x_{2} & x_{3} & x_{4} \tag{3.3}\\
\cdot & a_{23} & a_{24} & a_{25} \\
& \cdot & a_{34} & a_{35} \\
-\mathrm{sym} & & \cdot & a_{45} \\
& & & \cdot
\end{array}\right)
$$

where

$$
a_{i j}=\sum_{k=1}^{4} a_{i j}^{k} z_{k} .
$$

Explicitly, $I=\left(P_{0}, \ldots, P_{4}\right)$ with

$$
\begin{align*}
& P_{0}=a_{23} a_{45}-a_{24} a_{35}+a_{25} a_{34} \tag{3.4}\\
& P_{1}=x_{2} a_{45}-x_{3} a_{35}+x_{4} a_{34} \\
& P_{2}=x_{1} a_{45}-x_{3} a_{25}+x_{4} a_{24} \\
& P_{3}=x_{1} a_{35}-x_{2} a_{25}+x_{4} a_{23} \\
& P_{4}=x_{1} a_{34}-x_{2} a_{24}+x_{3} a_{23}
\end{align*}
$$

Clearly $I \subset J$, where $J=\left(z_{1}, z_{2}, z_{3}, z_{4}\right)$.
Since each P_{i}, for $1 \leq i \leq 4$, is linear in z_{j}, there exists (unique) 4×4 matrix Q independent of the z_{j} such that

$$
\left(\begin{array}{c}
P_{1} \tag{3.5}\\
\vdots \\
P_{4}
\end{array}\right)=Q\left(\begin{array}{c}
z_{1} \\
\vdots \\
z_{4}
\end{array}\right)
$$

We denote by Q_{i} the i th row of Q, and by \widehat{Q}_{i} the submatrix of Q obtained by deleting the i th row. Since (compare (1.1))

$$
x_{4} P_{4}=x_{1} P_{1}-x_{2} P_{2}+x_{3} P_{3},
$$

and, as we noticed above, Q is independent of the z_{j}, it follows that

$$
\begin{equation*}
x_{4} Q_{4}=x_{1} Q_{1}-x_{2} Q_{2}+x_{3} Q_{3} \tag{3.6}
\end{equation*}
$$

For $i=1, \ldots, 4$ we define a 1×4 matrix H_{i} by

$$
H_{i}=\bigwedge^{3} \widehat{Q}_{i}
$$

where Λ as in Definition 2.5.4.
Lemma 3.3.1 For all i, j

$$
x_{i} H_{j}=x_{j} H_{i} .
$$

Proof Equation (3.6) implies, for example, that

$$
\bigwedge^{3} \widehat{Q}_{3}=\bigwedge^{3}\left(\begin{array}{c}
Q_{1} \\
Q_{2} \\
Q_{4}
\end{array}\right)=\bigwedge^{3}\left(\begin{array}{c}
Q_{1} \\
Q_{2} \\
\frac{x_{3}}{x_{4}} Q_{3}
\end{array}\right)=\frac{x_{3}}{x_{4}} \bigwedge^{3} \widehat{Q}_{4}
$$

QED

Using the previous lemma we can define four polynomials g_{i} by

$$
\begin{equation*}
\left(g_{1}, g_{2}, g_{3}, g_{4}\right)=\frac{H_{j}}{x_{j}} \tag{3.7}
\end{equation*}
$$

and this definition is independent of the choice of j.
Lemma 3.3.2 For all i, j

$$
g_{i} z_{j}-g_{j} z_{i} \in I
$$

Proof The definition (3.5) of Q implies

$$
\left(\begin{array}{c}
P_{1} \\
P_{2} \\
P_{3}
\end{array}\right)=\left(\begin{array}{c}
Q_{1} \\
Q_{2} \\
Q_{3}
\end{array}\right)\left(\begin{array}{c}
z_{1} \\
\vdots \\
z_{4}
\end{array}\right)
$$

By Cramer's rule (Lemma 2.5.5)

$$
\left(H_{4}\right)_{i} z_{j}-\left(H_{4}\right)_{j} z_{i} \in I
$$

so

$$
x_{4}\left(g_{i} z_{j}-g_{j} z_{i}\right) \in I .
$$

I is prime by Theorem 3.1.1, so the result follows. QED

Remark 3.3.3 Of course, we can also express directly $g_{i} z_{j}-g_{j} z_{i}$ as a combination of the P_{k}. For example, Magma [Mag] gives:

```
g3*z4-g4*z3 =
    (x1*a241*a352 - x1*a251*a342 - x2*a241*a252 +
    x2*a242*a251 + x3*a231*a252 - x3*a232*a251 -
    x4*a231*a242 + x4*a232*a241)* P2+
    (-x1*a341*a352 + x1*a342*a351 - x2*a242*a351 +
    x2*a252*a341 - x3*a231*a352 + x3*a232*a351 +
    x4*a231*a342 - x4*a232*a341)* P3+
    (x1*a341*a452 - x1*a342*a451 - x2*a241*a452 +
    x2*a242*a451 + x3*a231*a452 - x3*a232*a451 +
```

```
x3*a241*a352 - x3*a252*a341 - x4*a241*a342 +
x4*a242*a341) * P4 +
(-x1*a351*a452 + x1*a352*a451 + x2*a251*a452 -
    x2*a252*a451 - x3*a251*a352 + x3*a252*a351 -
x4*a231*a452 + x4*a232*a451 - x4*a242*a351 +
x4*a251*a342) * P5
```

where we denote $a_{i j}^{k}$ by $a i j k$ etc.
Lemma 3.3.4 There is no homogeneous polynomial $F \in S$ with $g_{1}-F z_{1} \in I$.

Proof Assume that such F exists. Then after specializing to the original Tom (see Subsection 3.3.1) we have a contradiction with Lemma 3.3.5. QED

3.3.1 The original Tom

The subsection is due to Reid. Write $Y \subset \mathbb{P}^{8}$ for the Segre embedding of $\mathbb{P}^{2} \times \mathbb{P}^{2}$. It is easy to see that Y is projectively Gorenstein of codimension four. The defining equations are $\operatorname{rank} L \leq 1$, where L is the generic 3×3 matrix

$$
L=\left(\begin{array}{lll}
a & x_{3} & x_{4} \\
x_{1} & z_{1} & z_{2} \\
x_{2} & z_{3} & z_{4}
\end{array}\right)
$$

and $a, x_{1}, \ldots, x_{4}, z_{1}, \ldots z_{4}$ are indeterminates. Let $X \subset \mathbb{P}^{7}$ be the image of the projection of Y from the point $((1,0,0),(1,0,0)) \in \mathbb{P}^{2} \times \mathbb{P}^{2}$. Clearly, the ideal of X is generated by the five polynomials (the five minors of L not involving a)

$$
I(X)=\left(x_{3} z_{2}-x_{4} z_{1}, x_{3} z_{4}-x_{4} z_{3}, x_{1} z_{3}-x_{2} z_{1}, x_{1} z_{4}-x_{2} z_{2}\right) .
$$

These are the Pfaffians of the skewsymmetric 5×5 matrix

$$
M=\left(\begin{array} { c c c c }
{ \cdot } & { x _ { 1 } } & { x _ { 2 } } & { x _ { 3 } }
\end{array} x _ { 4 } \left(\begin{array}{ccc}
 \tag{3.8}\\
\cdot & 0 & z_{1}
\end{array} z_{2},\left(\begin{array}{cc}
\\
& \cdot \\
& z_{3}
\end{array} z_{4}\right)\right.\right.
$$

therefore we have a special Tom. X contains the complete intersection D, with $I(D)=\left(z_{1}, \ldots, z_{4}\right)$.

Equations (3.7) specialize to

$$
g_{1}=x_{1} x_{3}, \quad g_{2}=x_{1} x_{4}, \quad g_{3}=x_{2} x_{3}, \quad g_{4}=x_{2} x_{4} .
$$

Lemma 3.3.5 There is no homogeneous polynomial f with $g_{1}-f z_{1} \in I(X)$.
Proof Clear, since each monomial appearing in an element of $I(X)$ is divisible by at least one of the z_{j}. QED

3.4 Generic projective Tom

In this section we calculate the unprojection of the generic projective Tom variety. The ambient space is $\mathbb{P}=\mathbb{P}^{31}$ with homogeneous coordinates $x_{k}, z_{k}, a_{i j}^{k}$ for $1 \leq k \leq 4,2 \leq i<j \leq 5 . D$ is the complete intersection with ideal $I(D)=\left(z_{1}, \ldots, z_{4}\right)$, and X the codimension three projectively Gorenstein subscheme with ideal $I(X)=\left(P_{0}, \ldots, P_{4}\right)$ generated by the five Pfaffians (3.4) of the skewsymmetric matrix A defined in (3.3).

Since D is a complete intersection, $\omega_{D}=\mathcal{O}_{D}(-28)$. The minimal resolution for $I(X)$ has the form

$$
0 \rightarrow \mathcal{O}(-8) \rightarrow \mathcal{O}(-4) \oplus \mathcal{O}(-5)^{4} \rightarrow \mathcal{O}(-4) \oplus \mathcal{O}(-3)^{4} \rightarrow \mathcal{O}
$$

therefore $\omega_{X}=\mathcal{O}_{X}(-24)$.
The exact sequence (2.13) for the pair $D \subset X$ becomes

$$
0 \rightarrow \mathcal{O}_{X}(4) \rightarrow \mathcal{H o m}\left(\mathcal{I}_{D}, \mathcal{O}_{X}(4)\right) \rightarrow \mathcal{O}_{D} \rightarrow 0
$$

Taking global sections we have the exact sequence

$$
0 \rightarrow H^{0}\left(\mathcal{O}_{X}(4)\right) \rightarrow \operatorname{Hom}\left(\mathcal{I}_{D}, \mathcal{O}_{X}(4)\right) \xrightarrow{\operatorname{res}_{D}} H^{0}\left(\mathcal{O}_{D}\right) \rightarrow 0
$$

Each g_{i} defined in (3.7) is homogeneous of degree 5, therefore using Lemma 3.3.2 and the Serre correspondence there is a well defined map of sheaves

$$
g: \mathcal{I}_{D} \rightarrow \mathcal{O}_{X}(4)
$$

with $z_{i} \mapsto g_{i}$. Since $\operatorname{res}_{D}(g)=0$ contradicts Lemma 3.3.4, we have proved the following theorem.

Theorem 3.4.1 The map g is an unprojection, in the sense that $\operatorname{res}_{D}(g) \neq 0$ as an element of $H^{0}\left(\mathcal{O}_{D}\right)=k$.

3.5 Local Tom

3.5.1 The commutative diagram

In this subsection we work over the polynomial ring $S=\mathbb{Z}\left[x_{k}, z_{k}, a_{i j}^{k}\right]$ with indices as in Subsection 3.1.1. Let A be the skewsymmetric matrix defined in (3.3), $I \subset S$ the ideal generated by the Pfaffians of A (see (3.4)) and $J=\left(z_{1}, \ldots, z_{4}\right)$. The methods of Subsection 3.2.8 prove that I is a prime ideal of codimension three.

Consider the Koszul complex \mathbf{M} that gives a resolution of the ring S / J

$$
0 \rightarrow S \xrightarrow{B_{4}} S^{4} \xrightarrow{B_{3}} S^{6} \xrightarrow{B_{2}} S^{4} \xrightarrow{B_{1}} S \rightarrow 0,
$$

with

$$
\begin{aligned}
B_{1} & =\left(z_{1}, z_{2}, z_{3}, z_{4}\right), \\
B_{2} & =\left(\begin{array}{cccccc}
-z_{2} & -z_{3} & 0 & -z_{4} & 0 & 0 \\
z_{1} & 0 & -z_{3} & 0 & -z_{4} & 0 \\
0 & z_{1} & z_{2} & 0 & 0 & -z_{4} \\
0 & 0 & 0 & z_{1} & z_{2} & z_{3}
\end{array}\right)
\end{aligned}
$$

and

$$
B_{3}=\left(\begin{array}{cccc}
z_{3} & z_{4} & 0 & 0 \\
-z_{2} & 0 & z_{4} & 0 \\
z_{1} & 0 & 0 & z_{4} \\
0 & -z_{2} & -z_{3} & 0 \\
0 & z_{1} & 0 & -z_{3} \\
0 & 0 & z_{1} & z_{2}
\end{array}\right), B_{4}=\left(-z_{4}, z_{3},-z_{2}, z_{1}\right)^{t}
$$

Moreover, the skewsymetric matrix A defines as in (1.3.1) a complex \mathbf{L} :

$$
\begin{equation*}
0 \rightarrow S \xrightarrow{C_{3}} S^{5} \xrightarrow{C_{2}} S^{5} \xrightarrow{C_{1}} S \rightarrow 0 \tag{3.9}
\end{equation*}
$$

resolving the ring S / I. Here $C_{2}=A, C_{1}=\left(P_{0},-P_{1}, P_{2},-P_{3}, P_{4}\right)$, and C_{3} is the transpose matrix of C_{1}. Define the 4×1 matrix D_{3} with

$$
D_{3}=\left(-g_{4}, g_{3},-g_{2}, g_{1}\right)^{t}
$$

where the g_{i} are as in (3.7).

Theorem 3.5.1 There exist matrices D_{2}, D_{1}, D_{0} (of suitable sizes) making the following diagram commutative.

In addition we can assume that $D_{0}=1 \in \mathbb{Z}$.

Proof

Step 1 As in (2.21), the dual complexes

$$
S^{*} \rightarrow S^{5 *} \rightarrow S^{5 *} \rightarrow S^{*}
$$

and

$$
S^{*} \rightarrow S^{4 *} \rightarrow S^{6 *} \rightarrow S^{4 *}
$$

are exact. Using Lemma 3.3.2, there exists D_{2}^{*} making the (dual) square commutative. Then, the existence of D_{1}^{*} and D_{0}^{*} follows by simple homological algebra.

We get $D_{0} \in \mathbb{Z}$ by checking the degrees in the commutative diagram.
Step 2 We prove that we can take $D_{0}=1$ by a specialization argument to the original Tom (compare Subsection 3.3.1).

For the original Tom, an easy calculation using (the specialization of) the complexes \mathbf{L} and \mathbf{M} gives that we can take in (the specialization of) the diagram of the theorem

$$
\begin{gathered}
D_{2}^{\prime}=\left(\begin{array}{ccccc}
0 & -x_{2} & 0 & 0 & 0 \\
0 & 0 & 0 & -x_{4} & 0 \\
0 & 0 & x_{2} & x_{3} & 0 \\
0 & x_{1} & 0 & x_{3} & 0 \\
0 & 0 & 0 & 0 & x_{3} \\
0 & 0 & x_{1} & 0 & 0
\end{array}\right), \\
D_{1}^{\prime}=\left(\begin{array}{ccccc}
-z_{4} & 0 & x_{4} & 0 & -x_{2} \\
0 & 0 & -x_{3} & x_{2} & 0 \\
z_{2} & -x_{4} & 0 & 0 & x_{1} \\
0 & x_{3} & 0 & -x_{1} & 0
\end{array}\right)
\end{gathered}
$$

and $D_{0}^{\prime}=1$.
Using the uniqueness up to homotopy of a map between resolutions of modules induced by a fixed map between the modules, the last part of the theorem follows from $D_{0}^{\prime}=1$.

QED

3.5.2 Local Tom

Let R be a Gorenstein local ring, $a_{i j}^{k} \in R$ and $x_{k}, z_{k} \in m$, the maximal ideal of R, with indices as in Subsection 3.1.1. Let A be the skewsymmetric matrix (with entries in R) defined in (3.3), I the ideal generated by the Pfaffians of A (see (3.4)) and $J=\left(z_{1}, \ldots, z_{4}\right)$.

We assume that z_{1}, \ldots, z_{4} is a regular sequence and that I has codimension three, the maximal possible. Since R is Cohen-Macaulay, the grade of I is also three. By Theorem 1.3.1, the complex \mathbf{L} defined in (1.1) is the minimal resolution of R / I and R / I is Gorenstein. According to Section 2.1, we can unproject the pair $I \subset J$.

Recall that in (3.7) we defined elements g_{i} which are polynomials of $a_{i j}^{k}$ and x_{k}. Define a map $\psi: J / I \rightarrow R / I$ with $z_{i} \mapsto g_{i}$. By res we denote the residue map defined in (2.1).

Theorem 3.5.2 The element $\operatorname{res}(\psi) \in S / J$ is a unit, and the ideal

$$
\begin{equation*}
\left(P_{0}, \ldots, P_{4}, T z_{1}-g_{1}, \ldots, T z_{4}-g_{4}\right) \tag{3.10}
\end{equation*}
$$

of the polynomial ring $S[T]$ is Gorenstein of codimension four.

Proof The theorem follows immediately from Theorem 3.5.1 (since the diagram is defined over \mathbb{Z}), Theorem 2.5.2, and Theorem 2.1.10. QED

3.6 A Maple routine that calculates Tom

The following is a Maple [Map] routine that calculates Tom unprojection. The input is a Tom matrix, and returns the unprojection vector $\left(g_{1}, \ldots, g_{4}\right)$ defined in (3.7).

```
pfaf := proc (a,b,c,d,e,f);
    pfaf := a*f-b*e+c*d;
end:
tomunproj := proc (data) local N,P1,P2,P3,
    P4,P5,L, 04,o3,o2,o1;
N := data:
P1 := expand(pfaf ( N[2,3], N[2,4], N[2,5],
    N[3,4], N[3,5], N[4,5] )):
P2 := pfaf ( N[1,3], N[1,4], N[1,5], N[3,4],
    N[3,5], N[4,5] ):
P3 := expand(pfaf ( N[1,2], N[1,4], N[1,5],
    N[2,4], N[2,5], N[4,5] )):
P4 := expand(pfaf ( N[1,2], N[1,3], N[1,5],
    N[2,3], N[2,5], N[3,5] )):
P5 := expand(pfaf ( N[1,2], N[1,3], N[1,4],
    N[2,3],N[2,4], N[3,4] )):
L := matrix ( 3,4, [coeff(P2,z1),coeff(P2,z2),
    coeff(P2,z3),coeff(P2,z4), coeff(P3,z1),
    coeff(P3,z2),coeff(P3,z3),coeff(P3,z4),
    coeff(P4,z1),coeff(P4,z2), coeff(P4,z3),
    coeff(P4,z4)]);
divide( det(submatrix(L, [1,2,3], [1,2,3])),
    x4, 'temp'): o4 := -temp;
divide( det(submatrix(L, [1,2,3], [1,2,4])),
    x4, 'temp'):o3 := temp;
divide( det(submatrix(L, [1,2,3], [1,3,4])),
    x4, 'temp'):o2 := -temp;
divide( det(submatrix(L, [1,2,3], [2,3,4])),
    x4, 'temp'):o1:=temp;
    matrix (1,4, [01,02,03,04]):
end:
```

Example 3.6.1 For

$$
A=\left(\begin{array}{cccc}
\cdot x_{1} & x_{2} & x_{3} & x_{4} \\
\cdot & 0 & z_{1} & z_{2} \\
& & \cdot & z_{3}
\end{array} z_{4}\right)
$$

it returns

$$
\left(x_{1} x_{3}, x_{4} x_{1}+x_{1} x_{2}, x_{2} x_{3}, x_{2} x_{4}+x_{2}^{2}\right) .
$$

3.7 Triadic decomposition for Tom

In the following we give a combinatorial procedure which we conjecture (Conjecture 3.7.7) it calculates the Tom unprojection, reducing it to a sum of elementary cases. We do not have at present applications of the conjecture, our main motivation is the analogy with combinatorial results in representation theory and Schubert calculus.

We work over the polynomial ring $S=k\left[x_{k}, z_{k}, f_{i j}^{k}\right]$ for $1 \leq k \leq 4,2 \leq$ $i<j \leq 5$.

For this section a Tom matrix is one of the form

$$
A=A\left(a_{i j}^{k}\right)=\left(\begin{array}{cccc}
\cdot & x_{1} & x_{2} & x_{3}
\end{array} x_{4},\left(\begin{array}{ccc}
\\
& \cdot & a_{23} \\
a_{24} & a_{25} \\
& & \cdot \\
a_{34} & a_{35} \\
& & \\
\cdot & a_{45} \\
& & \\
& \cdot
\end{array}\right)\right.
$$

where

$$
a_{i j}=\sum_{k=1}^{4} a_{i j}^{k} z_{k},
$$

with $a_{i j}^{k} \in k\left[f_{i j}^{k}\right]$, the polynomial ring in a single indeterminate $f_{i j}^{k}$.
We denote by \mathcal{T} the set of all such A, and by $\mathcal{T}_{1} \subset \mathcal{T}$ the set of matrices $A \in \mathcal{T}$ with at least three $a_{i j}$ nonzero.

We define projection maps $\eta_{i j}^{k}: \mathcal{T} \rightarrow k\left[f_{i j}^{k}\right]$ with

$$
\begin{equation*}
\eta_{i j}^{k}(A)=a_{i j}^{k}, \tag{3.11}
\end{equation*}
$$

and the map

$$
\begin{equation*}
\text { red }: \mathcal{T} \rightarrow \mathcal{T} \tag{3.12}
\end{equation*}
$$

specified by the property $\eta_{i j}^{k}(\operatorname{red}(A))=1$ if $\eta_{i j}^{k}(A) \neq 0$ and 0 otherwise, i.e., that changes all nonzero coefficients $a_{i j}^{k}$ to one. For $A \in \mathcal{T}$ we call content of A and denote by $\operatorname{cont}(A)$ the product of all nonzero $\eta_{i j}^{k}(A)$

$$
\begin{equation*}
\operatorname{cont}(A)=\prod_{\eta_{i j}^{k}(A) \neq 0} \eta_{i j}^{k}(A) \tag{3.13}
\end{equation*}
$$

Definition 3.7.1 An almost elementary Tom matrix A is one with $\eta_{i j}^{k}(A) \neq 0$ for exactly three indices $\left(i_{l}, j_{l}, k_{l}\right), 1 \leq l \leq 3$ and moreover, the three such $\left(i_{l}, j_{l}\right)$ are distinct. It is called elementary if in addition $\eta_{i_{l} j_{l}}^{k_{l}}(A)=1$ for $1 \leq l \leq 3$.

Notation Since all matrices $A \in \mathcal{T}$ are skewsymmetric and have the same first row, we will not write down the first and the last row and the first two columns of A.

Example 3.7.2 The matrix $C_{1} \in \mathcal{T}_{1}$ with

$$
C_{1}=\left(\begin{array}{ccc}
0 & z_{1} & \left(8+f_{25}^{3}\right) z_{3} \\
& 2 z_{3} & 0 \\
& & 0
\end{array}\right)
$$

is almost elementary but not elementary with $\operatorname{cont}\left(C_{1}\right)=16+2 f_{25}^{3}$, while

$$
\operatorname{red}\left(C_{1}\right)=\left(\begin{array}{ccc}
0 & z_{1} & z_{3} \\
& z_{3} & 0 \\
& & 0
\end{array}\right)
$$

is elementary.
Definition 3.7.3 Assume $A \in \mathcal{T}_{1}$. An almost elementary Tom matrix B is a component of A if $\eta_{i j}^{k}(B)=\eta_{i j}^{k}(A)$ whenever $\eta_{i j}^{k}(B) \neq 0$. Clearly, A has a finite set of components $\left\{B_{i}\right\}$, we denote this set by $\operatorname{comp}(A)$.

Example 3.7.4 The set of components of

$$
A=\left(\begin{array}{ccc}
0 & z_{1} & z_{2}+\left(8+f_{25}^{3}\right) z_{3} \\
& z_{3} & 2 z_{4} \\
& & 0
\end{array}\right)
$$

is

$$
\begin{gathered}
\operatorname{comp}(A)=\left\{\left(\begin{array}{lll}
0 & z_{1} & z_{2} \\
& z_{3} & 0 \\
& & 0
\end{array}\right),\left(\begin{array}{ccc}
0 & z_{1} & z_{2} \\
& 0 & 2 z_{4} \\
& & 0
\end{array}\right),\left(\begin{array}{ccc}
0 & z_{1} & \left(8+f_{25}^{3}\right) z_{3} \\
& z_{3} & 0 \\
& & 0
\end{array}\right),\right. \\
\left.\left(\begin{array}{ccc}
0 & z_{1} & \left(8+f_{25}^{3}\right) z_{3} \\
& 0 & 2 z_{4} \\
& 0
\end{array}\right),\left(\begin{array}{ccc}
0 & 0 & z_{2} \\
& z_{3} & 2 z_{4} \\
& & 0
\end{array}\right),\left(\begin{array}{ccc}
0 & 0 & \left(8+f_{25}^{3}\right) z_{3} \\
& z_{3} & 2 z_{4} \\
& & 0
\end{array}\right)\right\} .
\end{gathered}
$$

Denote by V the free $k\left[f_{i j}^{k}, x_{k}\right]$-module

$$
\begin{equation*}
V=k\left[f_{i j}^{k}, x_{k}\right]^{4} . \tag{3.14}
\end{equation*}
$$

We will define a map

$$
\begin{equation*}
s: \mathcal{T} \rightarrow V \tag{3.15}
\end{equation*}
$$

such that whenever unprojection for a Tom matrix A makes sense, it will be given by $z_{i} \mapsto s_{i}$, where $s(A)=\left(s_{1}, s_{2}, s_{3}, s_{4}\right)$.

The main point is to define it for elementary Toms. The general definition will follow using the decomposition to components and the coefficient function cont.

3.7.1 Definition of s for elementary Tom

To keep track of an elementary Tom we need the following set of indices

$$
\begin{aligned}
& I_{1}=\{(i, j): 1 \leq i<j \leq 4\} \\
& I_{2}=\{1,2,3,4\} .
\end{aligned}
$$

We use the lexicographic ordering $<$ for I_{1} (e.g. $(1,2)<(1,4)<(2,3)$), and we define the sets

$$
\begin{aligned}
I_{3} & =\left\{\left(t_{k}, r_{k}\right) \in\left(I_{1} \times I_{2}\right)^{3}: t_{1}<t_{2}<t_{3}\right\} \\
I_{4} & =\left\{\left(t_{k}, r_{k}\right) \in I_{3}: r_{1}, r_{2}, r_{3} \text { are distinct }\right\} \subset I_{3} \\
I_{5} & =\left\{\left(t_{k}, k\right) \in I_{4}\right\} \subset I_{4} .
\end{aligned}
$$

An element $u=\left(t_{k}=\left(i_{k}, j_{k}\right), r_{k}\right) \in I_{3}$ specifies uniquely the elementary Tom matrix $A=A(u)$ with the property

$$
\begin{equation*}
A_{i_{k}+1, j_{k}+1}=z_{r_{k}}, \quad \text { for } 1 \leq k \leq 3 \tag{3.16}
\end{equation*}
$$

For example, the corresponding vector u to the matrix $\operatorname{red}\left(C_{1}\right)$ in Example 3.7.2 is $u=\{(131,143,233)\}$. In this way we identify the set of elementary Tom matrices with I_{3}. Moreover, using the natural projection $\left(t_{k}, k\right) \mapsto\left(t_{k}\right)$ we identify the set I_{5} with I_{6}, where

$$
I_{6}=\left\{\left(t_{k}\right) \in\left(I_{1}\right)^{3}: t_{1}<t_{2}<t_{3}\right\} .
$$

We define an auxiliary map

$$
q: I_{4} \rightarrow k\left[x_{1}, x_{2}, x_{3}, x_{4}\right] .
$$

First of all, assume $u=\left(i_{1} j_{1}, i_{2} j_{2}, i_{3} j_{3}\right) \in I_{6}$. Consider the sequence

$$
\begin{equation*}
e=\left(i_{1}, i_{2}, i_{3}, j_{1}, j_{2}, j_{3}\right) \in\left(I_{2}\right)^{6} \tag{3.17}
\end{equation*}
$$

If an index $a \in I_{2}$ appears more than two times in e we set $q(u)=0$. Otherwise, either there are exactly two distinct indices $a, b \in I_{2}$ appearing once in e, or a single index a doesn't appear in e. In the first case we set $q(u)=w(u) x_{a} x_{b}$, in the second $q(u)=w(u) x_{a}^{2}$. Now we define signs $w(u) \in\{1,-1\}$. If $u \notin\{(14,23,24),(13,23,24)\}$ we set $w(u)=(-1)^{p}$ with $p=i_{1}+i_{2}+i_{3}+j_{1}+j_{2}+j_{3}$, but we set $w(14,23,24)=-1, w(13,23,24)=1$.

Remark 3.7.5 The choice of the sign $(-1)^{p}$, $p=i_{1}+i_{2}+i_{3}+j_{1}+j_{2}+j_{3}$ has a straightforward combinatorial meaning. Consider the basic configuration $\{(i, j): 1 \leq i<j \leq 4\}$ with signs as in

$$
\left(\begin{array}{ccc}
- & + & - \\
& - & + \\
& & -
\end{array}\right)
$$

and three positions $\left(i_{l}, j_{l}\right)$ of the six. Then $(-1)^{p}$ is the product of the signs of the three positions.

So, using the identification of I_{5} with I_{6} we have defined $q(u)$ for $u \in I_{5}$. Now assume $u=\left(t_{k}, r_{k}\right) \in I_{4}$. Consider the unique permutation $\sigma \in \mathfrak{S}_{4}$, the symmetric group in four elements, with $\sigma\left(r_{k}\right)=k$ for $k=1,2,3$. Define $u_{1} \in I_{5}$ with

$$
u_{1}=\left(t_{k}, k\right)
$$

and set

$$
q(u)=\operatorname{sign}(\sigma) q\left(u_{1}\right),
$$

where sign: $\mathfrak{S}_{4} \rightarrow\{1,-1\}$ is the standard group homomorphism with kernel the alternating group.

Using the function q we define the function s for elementary Toms. Assume $u=\left(t_{k}, r_{k}\right) \in I_{3}$ and $A=A(u) \in \mathcal{T}$ the corresponding elementary Tom matrix. If $u \in I_{3} \backslash I_{4}$, i.e., some z_{i} is repeated in A we set $s(A)=0$. Assume now that $u \in I_{4}$. Let r_{4} be such that $\left\{r_{1}, r_{2}, r_{3}, r_{4}\right\}=\{1,2,3,4\}$. Then we define $s(A)$ to have 0 in the r_{1}, r_{2}, r_{3} coordinates and $(-1)^{r_{4}} q(u)$ in the r_{4} th. Therefore, we have defined the function s for elementary Tom matrices. In the next subsection we will extend the definition to general Tom matrices.

3.7.2 Definition of s for general Tom

Suppose that A is almost elementary. Then $\operatorname{red}(A)$ is elementary and we set

$$
s(A)=\operatorname{cont}(A) s(\operatorname{red}(A)) .
$$

For $A \in \mathcal{T}_{1}$ with component set $\operatorname{comp}(A)=\left\{B_{i}\right\}$, with B_{i} almost elementary Tom, we define

$$
s(A)=\sum_{i} s\left(B_{i}\right),
$$

the addition being pointwise in V.
Finally, if $A \in \mathcal{T} \backslash \mathcal{T}_{1}$, i.e., A has less than three nonzero coefficients $a_{i j}$ we set

$$
s(A)=(0,0,0,0) .
$$

We have completed the definition of the function $s: \mathcal{T} \rightarrow V$.
Example 3.7.6 We calculate $s(A)$ for

$$
A=\left(\begin{array}{lll}
0 & z_{1} & z_{2} \\
& z_{3} & z_{4} \\
& & z_{3}
\end{array}\right)
$$

the matrix of Example 3.6.1. Clearly

$$
\begin{array}{r}
\operatorname{comp}(A)=\left\{\left(\begin{array}{ccc}
0 & z_{1} & z_{2} \\
& z_{3} & 0 \\
& & 0
\end{array}\right),\left(\begin{array}{ccc}
0 & z_{1} & z_{2} \\
& 0 & z_{4} \\
& & 0
\end{array}\right),\left(\begin{array}{ccc}
0 & z_{1} & z_{2} \\
& 0 & 0 \\
& & z_{3}
\end{array}\right),\right. \\
\\
\left.\left(\begin{array}{ccc}
0 & z_{1} & 0 \\
& z_{3} & z_{4} \\
& & 0
\end{array}\right), \ldots,\left(\begin{array}{ccc}
0 & 0 & 0 \\
& z_{3} & z_{4} \\
& & z_{3}
\end{array}\right)\right\}
\end{array}
$$

Then

$$
s\left(\left(\begin{array}{ccc}
0 & z_{1} & z_{2} \\
& z_{3} & 0 \\
& & 0
\end{array}\right)\right)=\left(0,0,0, x_{2} x_{4}\right)
$$

since the occupied positions are $13,14,23$ (compare (3.16)), and the missing z_{i} is z_{4}. Similarly

$$
\begin{gathered}
s\left(\left(\begin{array}{ccc}
0 & z_{1} & z_{2} \\
& 0 & z_{4} \\
& & 0
\end{array}\right)\right)=\left(0,0, x_{2} x_{3}, 0\right), s\left(\left(\begin{array}{ccc}
0 & z_{1} & z_{2} \\
& 0 & 0 \\
& & z_{3}
\end{array}\right)\right)=\left(0,0,0, x_{2}^{2}\right), \\
s\left(\left(\begin{array}{lll}
0 & z_{1} & 0 \\
& z_{3} & z_{4} \\
& & 0
\end{array}\right)\right)=\left(0, x_{1} x_{4}, 0,0\right), s\left(\left(\begin{array}{lll}
0 & z_{1} & 0 \\
& z_{3} & 0 \\
& & z_{3}
\end{array}\right)\right)=(0,0,0,0), \\
s\left(\left(\begin{array}{ccc}
0 & z_{1} & 0 \\
& 0 & z_{4} \\
& z_{3}
\end{array}\right)\right)=\left(0, x_{1} x_{2}, 0,0\right), s\left(\left(\begin{array}{cc}
0 & 0 \\
z_{2} \\
& z_{3} \\
z_{4} \\
& \\
\hline
\end{array}\right)\right)=\left(x_{1} x_{3}, 0,0,0\right), \\
s\left(\left(\begin{array}{ccc}
0 & 0 & z_{2} \\
& z_{3} & 0 \\
r_{3} & z_{3}
\end{array}\right)\right)=(0,0,0,0), s\left(\left(\begin{array}{cc}
0 & 0 \\
& z_{3} \\
z_{4} \\
& \\
z_{3}
\end{array}\right)\right)=(0,0,0,0) .
\end{gathered}
$$

Therefore,

$$
s(A)=\left(x_{1} x_{3}, x_{4} x_{1}+x_{1} x_{2}, x_{2} x_{3}, x_{2} x_{4}+x_{2}^{2}\right),
$$

as predicted by the Maple routine in Example 3.6.1

3.7.3 Justification of triadic decomposition

Denote by A the 'generic' Tom with $\eta_{i j}^{k}(A)=f_{i j}^{k}$. According to Section 3.3, x_{4} divides the four elements h_{t} of $\bigwedge^{3} M=\left(h_{1}, \ldots, h_{4}\right)$, where

$$
M=\left(\begin{array}{llll}
x_{2} f_{45}^{1}-x_{3} f_{35}^{1}+x_{4} f_{34}^{1} & x_{2} f_{45}^{2}-x_{3} f_{35}^{2}+x_{4} f_{34}^{2} & x_{2} f_{55}^{3}-x_{3} f_{35}^{3}+x_{4} f_{34}^{3} & x_{2} f_{45}^{4}-x_{3} f_{35}^{4}+x_{4} f_{34}^{4} \\
x_{1} f_{45}^{1}-x_{3} f_{25}^{1}+x_{4} f_{24}^{1} & x_{1} f_{45}^{2}-x_{3} f_{25}^{2}+x_{4} f_{24}^{2} & \left.x_{1} f_{45}^{3}-x_{3} f_{25}^{3}-x_{4}\right\}_{24}^{3} & x_{1} f_{45}^{4}-x_{3} f_{25}^{4}+x_{4} f_{24}^{4} \\
x_{1} f_{35}^{4}-x_{2} f_{25}^{1}+x_{4} f_{23}^{1} & x_{1} f_{35}^{2}-x_{2} f_{25}^{2}+x_{4} f_{23}^{2} & x_{1} f_{35}^{3}-x_{2} f_{25}^{3}+x_{4} f_{23}^{3} & x_{1} f_{35}^{4}-x_{2} f_{25}^{4}+x_{4} f_{23}^{4}
\end{array}\right)
$$

and the unprojection is given by

$$
g_{t}=\frac{h_{t}}{x_{4}} \quad \text { for } 1 \leq t \leq 4
$$

In the previous subsections we defined a map

$$
s: \mathcal{T} \rightarrow V .
$$

Conjecture 3.7.7 We have

$$
\begin{equation*}
s(A)=\left(g_{1}, g_{2}, g_{3}, g_{4}\right) \tag{3.18}
\end{equation*}
$$

In the following we study in more detail the two parts of (3.18) in an effort to justify the conjecture.

For simplicity we argue without taking care of the signs. Set $M=\left[m_{i j}\right]$. Then

$$
\begin{aligned}
m_{1 k} & =x_{2} f_{45}^{k}-x_{3} f_{35}^{k}+x_{4} f_{34}^{k} \\
m_{2 k} & =x_{1} f_{45}^{k}-x_{3} f_{25}^{k}+x_{4} f_{24}^{k} \\
m_{3 k} & =x_{1} f_{35}^{k}-x_{2} f_{25}^{k}+x_{4} f_{23}^{k}
\end{aligned}
$$

We notice that if we change in h_{1} all higher indices from t to 1 we get h_{t} (up to sign!), for $2 \leq t \leq 4$. Moreover, by the definition of $s(A)=\left(s_{1}, s_{2}, s_{3}, s_{4}\right)$ the same property is true for the s_{i}. Therefore, it is enough to compare h_{4} with s_{4}.

Now

$$
h_{4}=\sum m_{1 i_{1}} m_{2 i_{2}} m_{3 i_{3}},
$$

the sum for $\left\{i_{1}, i_{2}, i_{3}\right\}=\{1,2,3\}$ (as usual we forget the signs!). But $m_{1 i_{1}} m_{2 i_{2}} m_{3 i_{3}}$ is $m_{11} m_{22} m_{33}$ after changing higher indices t to i_{t}. So it enough to concentrate on

$$
m=m_{11} m_{22} m_{33} .
$$

Consider the matrix

$$
L=\left(\begin{array}{lll}
x_{2} f_{45}^{1} & x_{3} f_{35}^{1} & x_{4} f_{34}^{1} \\
x_{1} f_{45}^{2} & x_{3} f_{25}^{2} & x_{4} f_{24}^{2} \\
x_{1} f_{35}^{3} & x_{2} f_{25}^{3} & x_{4} f_{23}^{3}
\end{array}\right)
$$

We define $L(i j k)=L_{1 i} L_{2 j} L_{3 k}$, then

$$
m=\sum L(i j k),
$$

the sum for $1 \leq i, j, k \leq 3$.
Since x_{4} divides m, terms $L(i j k)$ do not contribute in m whenever $\{i, j, k\} \subseteq\{1,2\}$. So we are left with terms $L(3, j, k), L(i, 3, k), L(i, j, 3)$.

Consider for example the term $L(3,1,1)=f_{34}^{1} f_{45}^{2} f_{35}^{3} x_{1}^{2} x_{4}$. We have

$$
s\left(\left(\begin{array}{ccc}
0 & 0 & 0 \tag{3.19}\\
& f_{34}^{1} z_{1} & f_{35}^{3} z_{3} \\
& & f_{45}^{2} z_{2}
\end{array}\right)\right)=\left(0,0,0, f_{34}^{1} f_{45}^{2} f_{35}^{3} x_{1}^{2}\right)=L(3,1,1) .
$$

Now, calculating each term $L(i j k)$ contributing to m, we get the following matrix of equations

$$
O=\left(\begin{array}{c}
L(3,1,1) / x_{4}=f_{34}^{1} f_{45}^{2} f_{35}^{3} x_{1}^{2} \\
L(3,1,2) / x_{4}=f_{34}^{1} f_{45}^{2} f_{25}^{3} x_{1} x_{2} \\
L(3,1,3) / x_{4}=f_{34}^{1} f_{45}^{2} f_{23}^{3} x_{1} x_{4} \\
L(3,2,1) / x_{4}=f_{34}^{1} f_{25}^{2} f_{35}^{3} x_{1} x_{3} \\
L(3,2,2) / x_{4}=0 \\
L(3,2,3) / x_{4}=f_{34}^{1} f_{25}^{2} f_{23}^{3} x_{3} x_{4} \\
L(3,3,1) / x_{4}=f_{34}^{1} f_{24}^{2} f_{35}^{3} x_{1} x_{4} \\
L(3,3,2) / x_{4}=f_{34}^{1} f_{44}^{2} f_{25}^{3} x_{2} x_{4} \\
L(3,3,3) / x_{4}=f_{34}^{1} f_{24}^{2} f_{23}^{3} x_{4}^{2} \\
L(1,3,1) / x_{4}=f_{45}^{1} f_{24}^{2} f_{35}^{3} x_{1} x_{2} \\
L(1,3,2) / x_{4}=f_{45}^{1} f_{24}^{2} f_{25}^{3} x_{2}^{2} \\
L(1,3,3) / x_{4}=f_{45}^{1} f_{24}^{2} f_{23}^{3} x_{2} x_{4} \\
L(2,3,1) / x_{4}=0 \\
L(2,3,2) / x_{4}=f_{35}^{1} f_{24}^{2} f_{25}^{3} x_{2} x_{3} \\
L(2,3,3) / x_{4}=f_{35}^{1} f_{24}^{2} f_{23}^{3} x_{3} x_{4} \\
L(1,1,3) / x_{4}=0 \\
L(1,2,3) / x_{4}=f_{45}^{1} f_{22}^{2} f_{23}^{3} x_{2} x_{3} \\
L(2,1,3) / x_{4}=f_{35}^{1} f_{45}^{2} f_{23}^{3} x_{3} x_{3} \\
L(2,2,3) / x_{4}=f_{35}^{1} f_{25}^{2} f_{23}^{3} x_{3}^{2}
\end{array}\right)
$$

As one can check, the elements of the matrix O are 'compatible' (in the sense of (3.19)) with the monomials in definition of $s(A)$ (at least up to sign). We believe that the previous arguments justify, but certainly not prove, Conjecture 3.7.7.

3.8 Fundamental calculation for Jerry

We work with the generic Jerry over $S=k\left[x_{i}, z_{k}, a_{i}^{k}, b_{i}^{k}, c^{k}\right]$ (see Section 3.1.2).
Define I to be the ideal generated by the Pfaffians of the generic Jerry matrix

$$
B=\left(\begin{array}{ccccc}
\cdot & c & a_{1} & a_{2} & a_{3} \tag{3.20}\\
& \cdot & b_{1} & b_{2} & b_{3} \\
& & \cdot & x_{1} & x_{2} \\
-\mathrm{sym} & & \cdot & x_{3} \\
& & & & \cdot
\end{array}\right)
$$

where

$$
a_{i}=\sum_{k=1}^{4} a_{i}^{k} z_{k}, \quad b_{i}=\sum_{k=1}^{4} b_{i}^{k} z_{k}, \quad c=\sum_{k=1}^{4} c^{k} z_{k} .
$$

Explicitly, $I=\left(P_{1}, \ldots, P_{5}\right)$ with

$$
\begin{align*}
& P_{1}=b_{1} x_{3}-b_{2} x_{2}+b_{3} x_{1} \tag{3.21}\\
& P_{2}=a_{1} x_{3}-a_{2} x_{2}+a_{3} x_{1} \\
& P_{3}=c x_{3}-a_{2} b_{3}+a_{3} b_{2} \\
& P_{4}=c x_{2}-a_{1} b_{3}+a_{3} b_{1} \\
& P_{5}=c x_{1}-a_{1} b_{2}+a_{2} b_{1}
\end{align*}
$$

Clearly $I \subset J=\left(z_{1}, z_{2}, z_{3}, z_{4}\right)$.
Unlike the Tom case, we only have two Pfaffians, P_{1} and P_{2}, linear in z_{k}. P_{3} is quadratic in z_{k} but after choosing to consider a_{2}, a_{3} as indeterminates it can be considered linear. Using this convention we write

$$
\left(\begin{array}{c}
P_{1} \tag{3.22}\\
P_{2} \\
P_{3}
\end{array}\right)=Q\left(\begin{array}{c}
z_{1} \\
\vdots \\
z_{4}
\end{array}\right)
$$

Q is a 3×4 matrix, with

$$
\begin{aligned}
Q_{1 k} & =b_{1}^{k} x_{3}-b_{2}^{k} x_{2}+b_{3}^{k} x_{1} \\
Q_{2 k} & =a_{1}^{k} x_{3}-a_{2}^{k} x_{2}+a_{3}^{k} x_{1} \\
Q_{3 k} & =c^{k} x_{3}-a_{2} b_{3}^{k}+a_{3} b_{2}^{k}
\end{aligned}
$$

We define h_{i} by

$$
\bigwedge^{3} Q=\left(h_{1}, \ldots, h_{4}\right)
$$

(\bigwedge as in Definition 2.5.4.)
Lemma 3.8.1 For $i=1, \ldots, 4$ there exist polynomials K_{i}, L_{i} with

$$
h_{i}=x_{3} K_{i}+\left(a_{2} x_{2}-a_{3} x_{1}\right) L_{i} .
$$

Therefore, we can write

$$
h_{i}=x_{3}\left(K_{i}+a_{1} L_{i}\right)-L_{i} P_{2} .
$$

Proof Let M be the matrix obtained from Q by substituting $x_{3}=0$. Since

$$
\begin{aligned}
& M_{1 k}=x_{1} b_{3}^{k}-x_{2} b_{2}^{k} \\
& M_{3 k}=-a_{2} b_{3}^{k}+a_{3} b_{2}^{k}
\end{aligned}
$$

we get

$$
M=\left(\begin{array}{ccc}
x_{1} & 0 & -x_{2} \\
0 & 1 & 0 \\
-a_{2} & 0 & a_{3}
\end{array}\right)\left(\begin{array}{cccc}
b_{3}^{1} & b_{3}^{2} & b_{3}^{3} & b_{3}^{4} \\
M_{21} & M_{22} & M_{23} & M_{24} \\
b_{2}^{1} & b_{2}^{2} & b_{2}^{3} & b_{2}^{4}
\end{array}\right)
$$

The lemma follows from elementary properties of determinants. QED
We fix the polynomials K_{i}, L_{i} defined (implicitly) in the proof of Lemma 3.8.1. For $i=1, \ldots, 4$ we define polynomials g_{i} by

$$
\begin{equation*}
g_{i}=K_{i}+a_{1} L_{i} . \tag{3.23}
\end{equation*}
$$

Lemma 3.8.2 For all i, j

$$
g_{i} z_{j}-g_{j} z_{i} \in I .
$$

Proof Using Cramer's rule (Lemma 2.5.5) (3.22) implies

$$
h_{i} z_{j}-h_{j} z_{i} \in I .
$$

Therefore

$$
x_{3}\left(g_{i} z_{j}-g_{j} z_{i}\right) \in I .
$$

I is prime by Theorem 3.1.2, so the result follows. QED

Lemma 3.8.3 There is no homogeneous polynomial $F \in S$ with $g_{3}-F z_{3} \in I$.

Proof Assume that such F exists. Then after specializing to the original Jerry (see Subsection 3.8.1) we have a contradiction with Lemma 3.8.4. QED

3.8.1 The original Jerry

The treatment here is due to Reid, for more details see [R1], Example 6.10.
Write $Y \subset \mathbb{P}^{7}$ for the image of the Segre embedding of $\mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}$. Y is projectively Gorenstein of codimension four. Let $X \subset \mathbb{P}^{6}$ be the image of the projection of Y from the point $((1,0),(1,0),(1,0)) \in \mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}$. If $z_{1}, \ldots, z_{4}, x_{1}, \ldots, x_{3}$ are homogeneous coordinates for \mathbb{P}^{6}, the homogeneous ideal of X is given by the Pfaffians of the skewsymmetric matrix

Namely,

$$
I(X)=\left(-z_{3} x_{2}+z_{4} x_{1}, z_{2} x_{3}-z_{3} x_{2}, z_{1} x_{3}-z_{3} z_{4}, z_{1} x_{2}-z_{2} z_{4}, z_{1} x_{1}-z_{2} z_{3}\right)
$$

Equations (3.23) specialize to

$$
g_{1}=z_{2} x_{3}, \quad g_{2}=x_{1} x_{2}, \quad g_{3}=x_{1} x_{3}, \quad g_{4}=x_{2} x_{3} .
$$

Lemma 3.8.4 There is no homogeneous polynomial f with $g_{3}-f z_{3} \in I(X)$.

Proof Clear, since each monomial appearing in an element of $I(X)$ is divisible by at least one of the z_{j}. QED

3.9 Generic projective Jerry

In this section we calculate the unprojection of the generic projective Jerry variety. The arguments are similar with those in Section 3.4, but in order to avoid working in a weighted projective space we change our base field to the algebraic closure F of the field of rational functions $k\left(c^{k}, a_{i}^{k}, b_{i}^{k}\right)$ for $1 \leq i \leq 3,1 \leq k \leq 4$. The ambient space is $\mathbb{P}_{F}=\mathbb{P}_{F}^{6}$ with homogeneous coordinates $x_{1}, x_{2}, x_{3}, z_{1}, \ldots, z_{4}$. D is the complete intersection with ideal $I(D)=\left(z_{1}, \ldots, z_{4}\right)$ and X is the codimension three projectively Gorenstein subscheme with ideal $I(X)=\left(P_{1}, \ldots, P_{5}\right)$ generated by the five Pfaffians written in (3.21) of the skewsymmetric matrix B defined in (3.20).

Since D is a complete intersection, $\omega_{D}=\mathcal{O}_{D}(-3)$. The minimal resolution for $I(X)$ has the form

$$
0 \rightarrow \mathcal{O}(-5) \rightarrow \mathcal{O}(-3)^{5} \rightarrow \mathcal{O}(-2)^{5} \rightarrow \mathcal{O}
$$

therefore $\omega_{X}=\mathcal{O}_{X}(-2)$.
The exact sequence for the pair $D \subset X$ defined in Section 2.13 becomes

$$
0 \rightarrow \mathcal{O}_{X}(1) \rightarrow \mathcal{H o m}\left(\mathcal{I}_{D}, \mathcal{O}_{X}(1)\right) \rightarrow \mathcal{O}_{D} \rightarrow 0
$$

Taking global sections there is an exact sequence

$$
0 \rightarrow H^{0}\left(\mathcal{O}_{X}(1)\right) \rightarrow \operatorname{Hom}\left(\mathcal{I}_{D}, \mathcal{O}_{X}(1)\right) \xrightarrow{\text { res }_{D}} H^{0}\left(\mathcal{O}_{D}\right) \rightarrow 0
$$

Each g_{i} defined in (3.23) is homogeneous (in the x_{i}, z_{k}) of degree 2, therefore using Lemma 3.8.2 and Serre correspondence we have a well defined map of sheaves

$$
g: \mathcal{I}_{D} \rightarrow \mathcal{O}_{X}(1)
$$

with $z_{i} \mapsto g_{i}$. Since $\operatorname{res}_{D}(g)=0$ contradicts Lemma 3.8.3, we have proved the following theorem.

Theorem 3.9.1 The map g is an unprojection, in the sense that $\operatorname{res}_{D}(g) \neq 0$ as an element of $H^{0}\left(\mathcal{O}_{D}\right)=k$.

3.10 Local Jerry

This section is the Jerry counterpart of Section 3.5, and the arguments are very similar.

3.10.1 The commutative diagram

In this subsection we work over the polynomial ring

$$
S=\mathbb{Z}\left[x_{k}, z_{k}, a_{i}^{k}, b_{i}^{k}, c^{k}\right]
$$

with indices as in Subsection 3.1.2. Let B be the skewsymmetric matrix defined in (3.2), $I \subset S$ the ideal generated by the Pfaffians of B (see (3.21)), and $J=\left(z_{1}, \ldots, z_{4}\right)$.

Consider as in Subsection 3.5.1 the Koszul complex M resolving S / J, the complex \mathbf{L} resolving S / I, and define the 4×1 matrix D_{3} with

$$
D_{3}=\left(-g_{4}, g_{3},-g_{2}, g_{1}\right)^{t}
$$

where the g_{i} are as in (3.23).
Except from the part $D_{0}=1 \in \mathbb{Z}$, the following theorem follows immediately using the arguments in the proof of Theorem 3.5.1.

Theorem 3.10.1 There exist matrices D_{2}, D_{1}, D_{0} (of suitable sizes) making the following diagram commutative.

Moreover, we can assume that $D_{0}=1 \in \mathbb{Z}$.
The part $D_{0}=1$ follows, as in the Tom case, by a specialization argument using the original Jerry defined in Subsection 3.8.1.

3.10.2 Local Jerry

Let S be a Gorenstein local ring, $a_{i}^{k}, b_{i}^{k}, c^{k} \in S$ and $x_{i}, z_{k} \in m$, the maximal ideal of S, with indices as above. Let B be the skewsymmetric matrix defined in (3.2), I the ideal generated by the Pfaffians of B (see (3.21)) and $J=$ $\left(z_{1}, \ldots, z_{4}\right)$.

We assume that z_{1}, \ldots, z_{4} is a regular sequence and that I has codimension three, the maximal possible. Since S is Cohen-Macaulay, the grade of I is also three. By Theorem 1.3.1, the complex \mathbf{L} defined in (1.1) is the minimal resolution of S / I and S / I is Gorenstein.

Recall that in (3.23) we defined elements g_{i} which are polynomials in $a_{i}^{k}, b_{i}^{k}, c_{i}^{k}, z_{k}$ and x_{i}. Define a map $\psi: J / I \rightarrow S / I$ with $z_{i} \mapsto g_{i}$. By res we denote the residue map defined in (2.19).

The proof of the following theorem is very similar to the proof of Theorem 3.5.2.

Theorem 3.10.2 The element $\operatorname{res}(\psi) \in S / J$ is a unit, and the ideal

$$
\left(P_{1}, \ldots, P_{5}, T z_{1}-g_{1}, \ldots, T z_{4}-g_{4}\right)
$$

of the polynomial ring $S[T]$ is Gorenstein of codimension four.

3.11 A Maple routine that calculates Jerry

The following is a Maple [Map] routine that calculates Jerry unprojection. The input is a Jerry matrix, it returns the unprojection vector $\left(g_{1}, \ldots, g_{4}\right)$ defined in (3.23).

```
pfaf := proc (a,b,c,d,e,f);
    pfaf := a*f-b*e+c*d;
end:
jerunproj := proc (data) local d3, d4,N,
        P1,P2,P3,L,04,o3,02, o1,004,003,002,
        oo1,det1,det2,det3,det4;
N := data:
P1 := pfaf (N[2,3] , N[2,4], N[2,5], N[3,4],
        N[3,5], N[4,5] ):
P2 := pfaf ( N[1,3], N[1,4], N[1,5], N[3,4],
        N[3,5], N[4,5] ):
P3 := pfaf ( N[1,2], d3, d4, N[2,4], N[2,5],
    N[4,5] ):
L := matrix ( 3,4, [coeff(P1,z1),coeff(P1,z2),
                coeff(P1,z3),coeff(P1,z4),
                coeff(P2,z1),coeff(P2,z2),
                coeff(P2,z3),coeff(P2,z4),
                coeff(P3,z1),coeff(P3,z2),
                coeff(P3,z3),coeff(P3,z4)]);
det4 := -det(submatrix(L, [1,2,3], [1,2,3])):
det3 := det(submatrix(L, [1,2,3], [1,2,4]));
det2 := -det(submatrix(L, [1,2,3], [1,3,4])):
det1 := det(submatrix(L, [1,2,3], [2,3,4]));
divide(subs(x3=0,det4),d3*x2-x1*d4,'temp4'):
divide(subs(x3=0,det3),d3*x2-x1*d4,'temp3'):
divide (subs(x3=0,det2),d3*x2-x1*d4,'temp2'):
divide(subs(x3=0,det1),d3*x2-x1*d4,'temp1'):
divide( det4-subs(x3=0, det4)+N[1,3]*x3*temp4,x3,
    '04'); 004 := subs(d3=N[1,4],d4=N[1,5],o4);
```

```
divide( det3-subs(x3=0, det3)+N[1,3]*x3*temp3,x3,
    'o3'); oo3:= subs(d3=N[1,4],d4=N[1,5],o3);
divide( det2-subs(x3=0, det2)+N[1,3]*x3*temp2,x3,
    'o2'); 002 := subs(d3=N[1,4],d4=N[1,5],o2);
divide( det1-subs(x3=0,det1)+N[1,3*x3*temp1,x3,
    'o1'); 001 := subs(d3=N[1,4],d4=N[1,5],o1);
jerunproj := matrix (1,4, [001,002,003,004]):
    end:
```


3.12 Special Jerry

A Jerry matrix M that often appears in applications (compare $[\mathrm{BrR}]$) is of the special form

$$
M=\left(\begin{array}{cccc}
\cdot x & \sum_{k} a_{1}^{k} z_{k} & \sum_{k} a_{2}^{k} z_{k} & \sum_{k} a_{3}^{k} z_{k} \tag{3.24}\\
\cdot & \sum_{k} b_{1}^{k} z_{k} & \sum_{k} b_{2}^{k} z_{k} & \sum_{k} b_{3}^{k} z_{k} \\
& \cdot & y_{3} & -y_{2} \\
& & \cdot & y_{1} \\
& & & \cdot
\end{array}\right)
$$

with all sums for $k=1,2,3$. Here the indeterminates are $x, y_{k}, z_{k}, a_{i}^{k}, b_{i}^{k}$, for $1 \leq i, k \leq 3, I$ is generated by the Pfaffians of M and $J=\left(x, z_{1}, z_{2}, z_{3}\right)$. Denote by s the unprojection variable, and consider the 'dual' skewsymmetric matrix

$$
N=\left(\begin{array}{cccc}
\cdot & s & \sum_{k} a_{k}^{1} y_{k} & \sum_{k} a_{k}^{2} y_{k} \tag{3.25}\\
\sum_{k} a_{k}^{3} y_{k} \\
\cdot & \sum_{k} b_{k}^{1} y_{k} & \sum_{k} b_{k}^{2} y_{k} & \sum_{k} b_{k}^{3} y_{k} \\
& \cdot & z_{3} & -z_{2} \\
& & \cdot & z_{1} \\
& & & \\
& & \cdot
\end{array}\right)
$$

with all sums for $k=1,2,3$. It easy to check that the three Pfaffians of N involving s calculate $s z_{j}$. Computer calculations suggest that the remaining relation is

$$
s x=-\sum y_{i_{1}} z_{j_{1}} D_{i_{2}, j_{2}} E_{i_{3}, j_{3}},
$$

where the summation is for $\left\{i_{1}, i_{2}, i_{3}\right\}=\left\{j_{1}, j_{2}, j_{3}\right\}=\{1,2,3\}, D=\mathrm{w}^{3}\left(\left[a_{i}^{k}\right]\right)$, $E=\mathrm{w}^{3}\left(\left[b_{i}^{k}\right]\right)$, and by $\mathrm{w}^{3}(A)$ of a 3×3 matrix A we mean the 3×3 matrix with $i j$ entry equal to the determinant of the submatrix of A obtained by deleting the i th row and the j th column.

Chapter 4

Catanese's rank condition

4.1 Some calculations on Catanese's rank condition

Let A be an $n \times n$ symmetric matrix (over a commutative ring R) and B the submatrix of A obtained by deleting the last row of A. Write I_{A} for the ideal generated by the determinants of the $(n-1) \times(n-1)$ submatrices of A, and I_{B} for the ideal generated by the determinants of the $(n-1) \times(n-1)$ submatrices of B. Clearly $I_{B} \subseteq I_{A}$.

Definition 4.1.1 The symmetric matrix A satisfies the Rank Condition if

$$
I_{A}=I_{B} .
$$

The Rank Condition was defined by Catanese in [C1], where he used it to study the canonical ring of regular surfaces of general type. More precisely, he gave a general procedure that constructs from a (sufficiently general) symmetric matrix satisfying the Rank Condition a Gorenstein ring. The aim of this chapter is to study the algebra of the Rank Condition for 'generic' symmetric matrices of small size (Lemma 4.1.2, Theorem 4.1.5) and to relate it with the unprojection (Example 4.1.7, Remark 4.1.8).

In the following k is an arbitrary field.

4.1.1 3×3 case

We work over the polynomial ring $R=k\left[x_{0}, x_{1}, x_{2}, z_{i}\right]$. Assume

$$
A=\left(\begin{array}{ccc}
x_{0} & x_{1} & C_{0} \\
x_{1} & x_{2} & C_{1} \\
C_{0} & C_{1} & D
\end{array}\right)
$$

where $C_{1}, D \in R$ and $C_{0} \in k\left[x_{2}, z_{i}\right]$ (i.e., x_{0} and x_{1} do not appear on C_{0}, we can always achieve this by subtracting columns and rows), and let B be the submatrix of A obtained by deleting the last row of A.

Lemma 4.1.2 a) If A satisfies the Rank Condition then x_{2} divides C_{0} and $C_{1} \in\left(x_{0}, x_{1}, x_{2}\right)$.
b) Conversely, if x_{2} divides C_{0} and $C_{1} \in\left(x_{0}, x_{1}, x_{2}\right)$, then there exists $D \in R$ such that $A=A(D)$ satisfies the Rank Condition.

Proof a) Since

$$
\left|\begin{array}{cc}
x_{0} & C_{0} \\
C_{0} & D
\end{array}\right| \in I_{A}=I_{B} \subseteq\left(x_{0}, x_{1}, x_{2}\right)
$$

it follows that $C_{0}^{2} \in\left(x_{0}, x_{1}, x_{2}\right)$. The elements x_{0} and x_{1} do not appear on C_{0}, therefore x_{2} divides C_{0}. Similarly,

$$
\left|\begin{array}{cc}
x_{2} & C_{1} \\
C_{1} & D
\end{array}\right| \in\left(x_{0}, x_{1}, x_{2}\right)
$$

implies $C_{1} \in\left(x_{0}, x_{1}, x_{2}\right)$.
b) A solution according to Catanese ([C1], p. 101) is the symmetric matrix

$$
A=\left(\begin{array}{ccc}
x_{0} & x_{1} & g x_{2} \tag{4.1}\\
& x_{2} & l_{0} x_{0}+l_{1} x_{1}+l_{2} x_{2} \\
& & l_{0} l_{2} x_{0}+\left(l_{1} l_{2}+g l_{0}\right) x_{1}+\left(l_{1} g+l_{2}^{2}\right) x_{2}
\end{array}\right)
$$

where l_{i} and g are arbitrary elements of R. QED

Example 4.1.3 In [C1], Section 4 Catanese describes a general procedure that in particular constructs a Gorenstein codimension three ring R from the matrix A defined in (4.1). First of all, consider $E=\left[e_{i j}\right]$, the adjoint matrix of A (i.e., the $i j$ entry of E is $(-1)^{i+j}$ times the determinant of the submatrix obtained by deleting the i th column and the j th row of A). An easy calculation gives

$$
\begin{aligned}
& e_{11}=-l_{1} e_{31}+l_{0} e_{32} \\
& e_{12}=-l_{2} e_{31}+g l_{0} e_{33} \\
& e_{22}=g e_{31}-l_{2} e_{32}+g l_{1} e_{33}
\end{aligned}
$$

By loc. sit. the quadratic relations for R are

$$
\begin{aligned}
y_{2}^{2} & =-l_{1} y_{2}+l_{0} y_{3} \\
y_{2} y_{3} & =-l_{2} y_{2}+g l_{0} \\
y_{3}^{2} & =g y_{2}-l_{2} y_{3}+g l_{1}
\end{aligned}
$$

It is easy to see that R can be described as the codimension three Gorenstein ring with ideal generated by the Pfaffians of the 5×5 skewsymmetric matrix

$$
\left(\begin{array}{cccc}
y_{2}+l_{1} & y_{3}+l_{2} & -l_{0} & 0 \\
& x_{0} & x_{2} & -y_{3} \\
& & -x_{1} & -g \\
& & & y_{2}
\end{array}\right)
$$

Remark 4.1.4 The symmetric matrix

$$
\left(\begin{array}{ccc}
x_{0}^{2} & 0 & x_{0} x_{1} \\
0 & x_{1}^{2} & 0 \\
x_{0} x_{1} & 0 & 0
\end{array}\right)
$$

satisfies the Rank Condition, but $x_{0} x_{1}$ is not an element of $\left(x_{0}^{2}, x_{1}^{2}\right)$.

4.1.2 4×4 case

We work over the polynomial ring $R=k\left[x_{0}, x_{1}, x_{2}, y_{0}, y_{1}, y_{2}, z_{i}\right]$. Let

$$
A=\left(\begin{array}{llll}
x_{0} & y_{2} & y_{1} & C_{0} \tag{4.2}\\
y_{2} & x_{1} & y_{0} & C_{1} \\
y_{1} & y_{0} & x_{2} & C_{2} \\
C_{0} & C_{1} & C_{2} & D
\end{array}\right)
$$

where $C_{1}, C_{2}, D \in R$ and $C_{0} \in k\left[x_{1}, x_{2}, y_{0}, z_{i}\right]$ (i.e., x_{0}, y_{2}, y_{1} do not appear on C_{0}, we can always achieve this by subtracting columns and rows), and write B for the submatrix of A obtained by deleting the last row of A.

The ideal J generated by the determinants of 2×2 submatrices of the matrix

$$
T=\left(\begin{array}{lll}
x_{0} & y_{2} & y_{1} \\
y_{2} & x_{1} & y_{0} \\
y_{1} & y_{0} & x_{2}
\end{array}\right)
$$

is prime, since it is the ideal of the Veronese surface $S \subset \mathbb{P}^{5}$ (see e.g. [Ha], p. 24). Denote the generators of J by

$$
\begin{array}{ll}
q_{1}=x_{1} x_{2}-y_{0}^{2}, & q_{2}=y_{2} x_{2}-y_{0} y_{1}, \quad q_{3}=y_{2} y_{0}-x_{1} y_{1}, \\
q_{4}=x_{0} x_{2}-y_{1}^{2}, & q_{5}=x_{0} y_{0}-y_{1} y_{2}, \quad q_{6}=x_{0} x_{1}-y_{2}^{2}
\end{array}
$$

Clearly $I_{B} \subseteq J$.
Theorem 4.1.5 a) Assume that A satisfies the Rank Condition. Then q_{1} divides C_{0} and $C_{1}, C_{2} \in J$.
b) Conversely, if q_{1} divides C_{0} and $C_{1}, C_{2} \in J$ then there exists $D \in R$ such that $A=A(D)$ satisfies the Rank Condition.

Proof a) Assume that A satisfies the Rank Condition. We have

$$
\left|\begin{array}{lll}
x_{0} & y_{1} & C_{0} \\
y_{2} & y_{0} & C_{1} \\
C_{0} & C_{2} & D
\end{array}\right| \in I_{B} \subseteq J,
$$

therefore

$$
\left|\begin{array}{lll}
x_{0} & y_{1} & C_{0} \tag{4.3}\\
y_{2} & y_{0} & C_{1} \\
C_{0} & C_{2} & D
\end{array}\right|=\sum l_{i} q_{i} .
$$

Substitute $x_{0}=y_{1}=y_{2}=0$ in (4.3) to get

$$
y_{0} C_{0}^{2}=\bar{l}_{1} q_{1}
$$

hence q_{1} divides C_{0}. Now

$$
\left|\begin{array}{lll}
x_{0} & y_{2} & C_{0} \\
y_{2} & x_{1} & C_{1} \\
C_{0} & C_{1} & D
\end{array}\right| \in I_{B} \subseteq J
$$

implies that $x_{0} C_{1}^{2} \in J$, therefore $C_{1} \in J$ since J is prime. By a similar argument $C_{2} \in J$.
b) It will be proved in Subsection 4.1.3. QED

Example 4.1.6 The symmetric matrix

$$
A=\left(\begin{array}{cccc}
x_{0} & y_{2} & y_{1} & c_{0}\left(x_{1} x_{2}-y_{0}^{2}\right) \\
& x_{1} & y_{0} & c_{1}\left(x_{0} x_{2}-y_{1}^{2}\right) \\
& & x_{2} & c_{2}\left(x_{0} x_{1}-y_{2}^{2}\right) \\
& & & D
\end{array}\right)
$$

with

$$
D=c_{1} c_{2} x_{0}\left(x_{0} y_{0}-y_{1} y_{2}\right)+c_{0} c_{2} x_{1}\left(x_{1} y_{1}-y_{0} y_{2}\right)+c_{0} c_{1} x_{2}\left(x_{2} y_{2}-y_{0} y_{1}\right)
$$

satisfies the Rank Condition. Actually, it is a specialization of the matrix constructed in the proof of part b) of Theorem 4.1.5.

Example 4.1.7 The symmetric matrix

$$
F=\left(\begin{array}{cccc}
(s+1) x_{0} & y_{2} & y_{1} & -s x_{0} y_{0}-y_{1} y_{2} \tag{4.4}\\
& (s+1) x_{1} & y_{0} & -s x_{1} y_{1}-y_{0} y_{2} \\
& & (s+1) x_{2} & -s x_{2} y_{2}-y_{0} y_{1} \\
& & & D
\end{array}\right)
$$

with

$$
D=-y_{0} y_{1} y_{2}+s(s+1) x_{0} x_{1} x_{2}-s\left(x_{0} y_{0}^{2}+x_{1} y_{1}^{2}+x_{2} y_{2}^{2}\right)
$$

satisfies the Rank Condition, but is not of the form (4.2).
We describe how we arrived at the matrix F. Consider the ideal I generated by the Pfaffians of the 5×5 skewsymmetric matrix

$$
N=\left(\begin{array}{cccc}
\cdot & x_{0} & y_{1} & x_{1}
\end{array} y_{0}\left(\begin{array}{ccc}
\cdot & 0 & y_{2} \tag{4.5}\\
z_{1} \\
& \cdot & \cdot \\
z_{0} & -s x_{2} \\
& & \\
& & \\
& & \\
& & \\
& &
\end{array}\right)\right.
$$

N is a Tom matrix, a deformation with parameter s of the matrix M defined in (3.8). Unproject I with respect to the ideal $J=\left(y_{2}, z_{1}, z_{0}, x_{2}\right)$ to get a
codimension four Gorenstein ideal T. Explicitly, $T=\left(R_{i}, S_{i}, T_{i}\right)$ for $0 \leq i \leq 2$, with

$$
\begin{array}{ccc}
R_{0}=x_{0} z_{0}-y_{1} y_{2}, & R_{1}=x_{1} z_{1}-y_{0} y_{2}, & R_{2}=x_{2} z_{2}-y_{0} y_{1}, \\
S_{0}=y_{0} z_{0}+s x_{1} x_{2}, & S_{1}=y_{1} z_{1}+s x_{0} x_{2}, & S_{2}=y_{2} z_{2}+s x_{0} x_{1}, \\
T_{0}=z_{1} z_{2}+s x_{0} y_{0}, & T_{1}=z_{0} z_{2}+s x_{1} y_{1}, & T_{2}=z_{1} z_{0}+s x_{2} y_{2},
\end{array}
$$

where z_{2} is the new unprojection variable.
After the linear change of coordinates $y_{i}=y_{i}+z_{i}$, the addition $T_{i}=T_{i}+R_{i}$ and the new change of coordinates $y_{i}=-y_{i}$ (all three transformations for $0 \leq i \leq 2$), we get equations

$$
\begin{gathered}
-z_{1} z_{2}+x_{0} z_{0}-y_{1} y_{2}+y_{1} z_{2}+y_{2} z_{1} \\
-z_{0} z_{2}+x_{1} z_{1}-y_{0} y_{2}+y_{0} z_{2}+y_{2} z_{0} \\
-z_{0} z_{1}+x_{2} z_{2}-y_{0} y_{1}+y_{0} z_{1}+y_{1} z_{0} \\
z_{0}^{2}-y_{0} z_{0}+s x_{1} x_{2} \\
z_{1}^{2}-y_{1} z_{1}+s x_{0} x_{2} \\
z_{2}^{2}-y_{2} z_{2}+s x_{0} x_{1} \\
(s+1) x_{0} z_{0}+y_{2} z_{1}+y_{1} z_{2}-s x_{0} y_{0}-y_{1} y_{2} \\
y_{2} z_{0}+(s+1) x_{1} z_{1}+y_{0} z_{2}-s x_{1} y_{1}-y_{0} y_{2} \\
y_{1} z_{0}+y_{0} z_{1}+(s+1) x_{2} z_{2}-s x_{2} y_{2}-y_{0} y_{1}
\end{gathered}
$$

Using the procedure described in [C1] Section 4 the symmetric matrix F follows. Indeed, the last three equations, which are the ones that z_{i} appear only linearly, give the first three rows of F, while the fourth row of F multiplied by $\left[z_{1}, z_{2}, z_{3}, 1\right]^{t}$ is a combination of the above polynomials.

Remark 4.1.8 The procedure in [C1] Section 4 produces from a (sufficiently general) symmetric 4×4 matrix A satisfying the Rank Condition a Gorenstein codimension four ring R (compare also Example 4.1.3). In Example 4.1.7 we did the opposite. We started from a codimension four Gorenstein ring belonging to the Tom family and calculated the corresponding symmetric matrix. It will be interesting to find out if all codimension four skewsymmetric Gorenstein rings produced by Catanese's method are related to the Tom and Jerry unprojection families.

4.1.3 Proof of existence

We now prove part b) of Theorem 4.1.5. The proof is based on computer calculations.

By the assumptions

$$
\begin{align*}
C_{0} & =k q_{1}, \tag{4.6}\\
C_{1} & =\sum_{i=1}^{6} l_{i} q_{i}, \\
C_{2} & =\sum_{i=1}^{6} m_{i} q_{i},
\end{align*}
$$

for some polynomials $k, l_{i}, m_{i} \in R$.

Notation We denote by $H_{i j}$ the determinant of the submatrix of A obtained by deleting the i th column and the j th row.

Lemma 4.1.9 Assume that I_{B} is prime, C_{0}, C_{1}, C_{2} as in (4.6) and $A=A(D)$ satisfies

$$
H_{11} \in I_{B}
$$

Then A satisfies the Rank Condition.

Proof The vanishing

$$
\left|\begin{array}{llll}
y_{2} & x_{1} & y_{0} & C_{1} \\
y_{2} & x_{1} & y_{0} & C_{1} \\
y_{1} & y_{0} & x_{2} & C_{2} \\
C_{0} & C_{1} & C_{2} & D
\end{array}\right|=0
$$

implies that

$$
y_{2} H_{11}-x_{1} H_{12}+y_{0} H_{13} \in I_{B},
$$

and similarly

$$
y_{1} H_{11}-y_{0} H_{12}+x_{2} H_{13} \in I_{B}
$$

Eliminate H_{13} to get

$$
\left(x_{2} y_{2}-y_{0} y_{1}\right) H_{11}-\left(x_{1} x_{2}-y_{0}^{2}\right) H_{12} \in I_{B}
$$

Using the assumptions $H_{12} \in I_{B}$. Similar arguments prove that all $H_{i j}$ are in I_{B}. QED

Since proving that I_{B} is prime doesn't seem to be very easy we will not be able to use Lemma 4.1.9. Nevertheless, it gives an idea for the proof of the existence of D. It says find D such that $H_{11} \in I_{B}$, and then it it highly probable that the Rank Condition holds for $A=A(D)$.

Hence, we are looking for D such that $H_{11} \in I_{B}$. Since

$$
H_{11}=q_{1} D+n,
$$

it is enough to find $n_{1} \in I_{B}$ such that q_{1} divides $n+n_{1}$, say $n+n_{1}=q_{1} n_{2}$ and then take $D=-n_{2}$. A long Maple [Map] aided hand calculation establishes that such n_{1} exists. More precisely, define the 1×11 matrix R_{1} with

$$
R_{1}=\left(k, l_{1}, l_{2}, \ldots, l_{6}, m_{1}, m_{2}, \ldots, m_{6}\right),
$$

the 6×1 matrix R_{3} with

$$
R_{3}=\left(\begin{array}{c}
q_{1} \\
q_{2} \\
\vdots \\
q_{6}
\end{array}\right)
$$

the 11×6 matrix R_{2} with

```
R_2 =
[[ -x_1m_3-1_3y_0+m_2y_0+2l_6y_2+l_2x_2, x_2l_4+2m_4y_0
    -x_1m_5+x_11_6, x_2m_4-x_1m_6+x_2l_5, 0, 0, 0],
    [ l_3y_1+l_6x_0+2m_1y_0-m_3y_2+x_2l_1, l_2x_2+m_2y_0 ,
        l_3x_2+m_3y_0-m_6y_2, x_2l_4+x_1m_5, x_2l_5-x_2m_4+
        2m_5y_0, l_6x_2+m_6y_0],
    [ m_1y_1+m_3x_0, l_3y_1+l_6x_0+m_1y_0+m_2y_1+m_5x_0,
            m_6x_0, 0, 0, 0],
    [ 0, 0, l_6x_0+m_1y_0-m_3y_2+l_3y_1, 4y_1, l_5y_1-m_4y_1
            -m_5y_2, l_6y_1-m_6y_2],
    [ 0, m_3x_0, 0, l_6x_0+2m_1y_0+m_2y_1+m_5x_0,
            m_1x_2+m_6x_0, 0],
    [ m_1x_0, 0, m_3x_0, -m_1x_1, l_6x_0+m_2y_1+m_5x_0, m_6x_0],
    [ 0, 0, 0, 0, -m_1x_1+m_2y_2-m_4x_0, l_6x_0],
    [-m_2y_2+m_4x_0+m_1x_1, m_2x_1, x_1m_3, m_ 4x_1,
            x_1m_5, x_1m_6],
    [0, m_4x_0-m_2y_2, -m_3y_2, -m_4y_2, -m_5y_2, -m_6y_2],
    [0, 0, m_4x_0, 0, 0, 0],
    [ 0, 0, 0, m_4x_0, m_5x_0, m_6x_0 ]]
```

and finally set

$$
\begin{equation*}
D=R_{1} R_{2} R_{3} \tag{4.7}
\end{equation*}
$$

Calculations using the computer program Magma [Mag] proved that for D as in (4.7) we have $H_{i j} \in I_{B}$ for all i, j. Therefore, $A=A(D)$ satisfies the Rank Condition, which finishes the proof of part b) of Theorem 4.1.5.

We hope in the future to give a more conceptual definition of D and proof of Theorem 4.1.5.

Bibliography

[Al] Altmok S., Graded rings corresponding to polarised K3 surfaces and \mathbb{Q}-Fano 3-folds. Univ. of Warwick Ph.D. thesis, Sep. 1998, $93+$ vii pp.
[AK] Altman A. and Kleiman S., Introduction to Grothendieck duality theory. Lecture Notes in Math. 146, Springer-Verlag 1970
[AM] Atiyah M. and Macdonald I., Introduction to commutative algebra. Addison-Wesley Publishing Co. 1969
[BE] Buchsbaum D. and Eisenbud D., Algebra structures for finite free resolutions, and some structure theorems for ideals of codimension 3. Amer. J. Math. 99 (1977), 447-485
[Bour] Bourbaki N., Commutative algebra. English translation, SpringerVerlag 1998
[BrR] Brown G. and Reid M., Mory flips of Type A (provisional title), in preparation
[BH] Bruns W. and Herzog J., Cohen-Macaulay rings. Revised edition, Cambridge Studies in Advanced Mathematics 39, CUP 1998
[BV] Bruns, W. and Vetter, U., Determinantal rings. Lecture Notes in Math. 1327. Springer 1988
[C1] Catanese F., Commutative algebra methods and equations of regular surfaces. Algebraic geometry, Bucharest 1982, Lecture Notes in Math. 1056, Springer 1984, 28-111
[C2] Catanese F., Homological algebra and algebraic surfaces. Algebraic geometry, Santa Cruz 1995, 3-56, Proc. Sympos. Pure Math. 62, Part 1, Amer. Math. Soc. 1997
[CFHR] Catanese F., Franciosi M., Hulek K. and Reid M., Embeddings of curves and surfaces. Nagoya Math. J. 154 (1999), 185-220
[CM] Corti A. and Mella M., Birational geometry of terminal quartic 3-folds I, in preparation
[CPR] Corti A., Pukhlikov A. and Reid M., Birationally rigid Fano hypersurfaces, in Explicit birational geometry of 3-folds, A. Corti and M. Reid (eds.), CUP 2000, 175-258
[Do] Dolgachev I., Weighted projective varieties, in Group actions and vector fields (Vancouver 1981), Lecture Notes in Math. 956, Springer 1982, 34-71
[Ei] Eisenbud D., Commutative algebra, with a view toward algebraic geometry. Graduate Texts in Mathematics 150, Springer-Verlag 1995
[FOV] Flenner H., O'Carrol L. and Vogel W. Joins and intersections. Springer Monographs in Mathematics. Springer-Verlag 1999
[GW] Goto S. and Watanabe K., On graded rings I. J. Math. Soc. Japan 30 (1978), 179-213
[Ha] Harris J., Algebraic geometry. Graduate Texts in Mathematics 133, Springer-Verlag 1995
[Har] Hartshorne R., Algebraic geometry. Graduate Texts in Mathematics 52, Springer-Verlag 1977
[HK] Herzog J. and Kunz E., (editors) Der kanonische Modul eines Cohen-Macaulay-Rings. Lecture Notes in Mathematics 238, Springer-Verlag 1971
[JKM] Jacobsson C., Kustin A. and Miller M., The Poincaré series of a codimension four Gorenstein ring is rational. J. Pure Appl. Algebra 38 (1985), 255-275
[KL] Kleppe H. and Laksov D., The algebraic structure and deformation of Pfaffian schemes. J. Algebra 64 (1980), 167-189
[KoM] Kollár J. and Mori S., Birational geometry of algebraic varieties. Cambridge Tracts in Mathematics 134, CUP 1998
[KM1] Kustin A. and Miller M., Algebra structures on minimal resolutions of Gorenstein rings of embedding codimension four. Math. Z. 173 (1980), 171-184
[KM2] Kustin A. and Miller M., A general resolution for grade four Gorenstein ideals. Manuscripta Math. 35 (1981), 221-269
[KM3] Kustin A. and Miller M., Structure theory for a class of grade four Gorenstein ideals. Trans. Amer. Math. Soc. 270 (1982), 287-307
[KM4] Kustin A. and Miller M., Constructing big Gorenstein ideals from small ones. J. Algebra 85 (1983), 303-322
[KM5] Kustin A. and Miller M., Deformation and linkage of Gorenstein algebras. Trans. Amer. Math. Soc. 284 (1984), 501-534
[KM6] Kustin A. and Miller M., Classification of the Tor-algebras of codimension four Gorenstein local rings. Math. Z. 190 (1985), 341-355
[M] Matsumura H., Commutative ring theory. Second edition, CUP 1989
[Mag] Magma (Computer algebra system): Bosma, W., Cannon, J. and Playoust, C., The Magma algebra system. I. The user language. J. Symbolic Comput. 24 (1997), 235-265. See also www.maths.usyd.edu.au:8000/u/magma
[Map] Maple V (Computer algebra system, Copyright by Waterloo Maple Inc.): Mathematical computation with Maple V : ideas and applications. Proceedings of the Maple Summer Workshop and Symposium (MSWS '93) held at the University of Michigan, Ann Arbor. Edited by Thomas Lee. Birkhäuser 1993
[Mi] Migliore J., Introduction to liaison theory and deficiency modules. Progress in Mathematics 165, Birkhäuser 1998
[N3] Nagata M., Local rings. Interscience Tracts in Pure and Applied Mathematics 13, Interscience Publishers 1962
[PR] Papadakis S. and Reid M., Kustin-Miller unprojection without complexes, to appear in J. Algebraic Geometry, math.AG/0011094, 15 pp.
[R0] Reid M., Unprojection and Gorenstein rings in small codimension. Personal notes
[R1] Reid M., Graded Rings and Birational Geometry, in Proc. of algebraic symposium (Kinosaki, Oct 2000), K. Ohno (Ed.) 1-72
[R2] Reid M., Nonnormal del Pezzo surfaces. Publ. Res. Inst. Math. Sci. 30 (1994), 695-727
[Sha] Shafarevich I., Basic algebraic geometry 1. Second edition, SpringerVerlag 1994

