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ABSTRACT 

Being able to select relevant visual information from among irrelevant 

information is critical for the successful accomplishment of many day to day 

activities. However, the locus of attentional selection is not always under the 

control of the observer. Certain events and stimuli in the visual environment have 

been shown to control selection against observers’ intentions and goals. These are 

said to capture attention in an automatic and stimulus driven manner. The events 

and stimuli that capture attention can be static (colour, shape, size, etc.) or 

dynamic (motion, flicker, etc.).  

This thesis examines the effect of dynamic stimuli on attentional selection 

by using a visual search paradigm. The findings suggest that neither motion per se 

nor the onset of motion captures attention. They also suggest that when low 

refresh rate motion is used, capture occurs, but this effect cannot be attributed to 

capture by motion onset (Chapter 3). Further, the second study suggests that 

attention capture is observed using low refresh rate motion onsets because they 

are not masked as compared with the static items in the display. Thus capture is 

put down to a relatively better visual quality and stimulus encoding rather than 

motion (Chapter 4). The findings from this thesis also suggests that when back 

and forth oscillatory motion is used, capture re-emerges, but this effect is best 

attributed to a change in direction that happens to be temporally unique (Chapter 

5). Another important finding is that in attention capture by abrupt onset, only one 

onset is prioritised in search (Chapter 6). The findings overall argue for a strong 

role of low level factors in attention capture by dynamic stimuli. 
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[Attention] is the taking possession by the mind, in clear and vivid form, of 

one out of what seem several simultaneously possible objects or trains of thought 

[…] It implies withdrawal from some things in order to deal effectively with 

others… 

- William James (1890, pp. 403-404) 

 

Introduction 

Vision plays a very important role in our day to day life, guiding 

interactions with the outside world. As effortless as it may seem, the task of 

navigating through an ever changing and sometimes unpredictable environment is 

not easy. The visual and other perceptual systems have evolved over the years to 

efficiently deal with this seemingly difficult task. This efficiency is achieved by 

selecting only a small proportion of all the available information for further 

processing. The process by which selection of the relevant information is achieved 

is referred to as Attention. There are two broad areas of research in this domain 

that are important to the current thesis. The first concerns the stage at which 

attentional selection takes place and second concerns the actual mechanisms of 

selection. 

With regard to the stage at which stimuli are selected for processing, there 

are two major views, the early selection view and the late selection view. The 

early selection view was proposed by Donald Broadbent (Broadbent, 1952, 1958) 

who studied how selection occurs during auditory processing. According to him, 
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selection was necessary because of the severe capacity limitation faced by the 

faculty of higher processing. He used a dichotic listening task in which two 

different sets of messages were played to each ear and the participants were asked 

to shadow one of them (i.e., by repeating the message aloud while listening). In 

this task, it is assumed that attention was necessary to select information that is 

presented to one ear (or channel) while ignoring the other. Participants were then 

tested on different aspects of the information presented to the unattended channel. 

It was found that they were unable to report the semantic content of the messages, 

but could remember if the speaker was male or female. He proposed the filter 

theory, according to which stimuli are selected for higher order processing early in 

the processing stage. According to him, selection was based on the basic physical 

properties of the auditory stimuli like pitch, loudness etc. This view also suggests 

that the information that is not selected is not processed at all and is lost forever. 

 Other studies, however, attributed the findings from shadowing 

experiments to the time lapse between the shadowing task and testing (Glucksberg 

& Cowen, 1970; Norman, 1969), suggesting that the information might have been 

partially processed, but eventually forgotten. They suggested that attention was 

necessary to enable the transfer of information from the sensory register to long 

term memory. Thus, the early selection view considered attention as a filter that 

only let through relevant information while keeping out the irrelevant. Treisman 

(1960) extended the filter theory to account for the occasional failure of the 

attentional filter to keep back irrelevant information. According to her filter 

attenuation theory, the information that does not fit the filter is not completely 
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ignored, but just attenuated, i.e., fewer resources are allocated to its processing. 

Thus the filter was set by assigning a lower threshold for the relevant stimuli as 

compared to the irrelevant. However, when a stimuli that is contextually relevant, 

like one’s own name, is present in the attenuated stream, it automatically passes 

through the threshold and is processed. Neisser and colleagues provided further 

evidence for such exceptions to the attentional filter. Using a selective reading 

methodology, Neisser (1969) showed that even words that were frequently 

repeated often went unnoticed, whereas participants own names were picked up. 

In contrast to the early selection view, the late selection view (Deutsch & 

Deutsch, 1963; Norman, 1969) proposes that all stimuli undergo a preliminary 

processing on their content, which aids in selection. The proponents of this view 

argued that there was no processing limitation until the level of categorization and 

that such limitation applies only to higher cognitive functions such as memory. 

Thus, they claim that attention is required only for the creation of a long term 

representation, and not processing. Even though the late selection view better 

explains the reason why some unattended information was later recognized and 

why unattended stimuli can often be processed up to a semantic level, it has not 

received as much empirical support as the early selection view (for example, see 

Lachter, Forster & Ruthruff, 2004). However, a redefinition of the mechanisms of 

attentional selection has made it possible to understand attentional selection in a 

more pragmatic way. For example, the concept of a pre-attentive stage 

(Broadbent, 1977; Neisser, 1967; Treisman, 1985) better explains some of the 

evidence favouring a late selection view. 
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Visual Search 

Visual search has become one of the most commonly used paradigms to 

study visual selective attention. The general appeal of this paradigm is its relative 

simplicity that nonetheless allows for a detailed study of the mechanisms that 

underlie selection. In a visual search task, participants are typically asked to 

search for a specific stimulus (the target) in a display containing a number of other 

irrelevant items (distractors). The time taken to complete the search (Reaction 

Times or RT) and error rates are measured over a large number of trials. The basic 

assumption that defines the use of these measures is that RT is linearly related to 

the amount of information transmitted (Hick, 1952; Hyman, 1953). That is, given 

a perfect correlation between stimulus and performance, RT is assumed to 

increase by a constant for each additional unit of processing required and that the 

slope reflects the efficiency of processing. Thus, the difference in RT between two 

tasks that differ only on levels of processing is equivalent to the time it takes to 

complete the additional processing. Another advantage of the methodology lies in 

its versatility. As Nakayama and Martini (2011) point out, a wide range of stimuli 

(letter, numbers, faces, Gabor patches etc.) can be combined with a number of 

different features (colour, shape, size, contrast, movement etc.) to generate search 

displays. This versatility can be very helpful in dissecting the different processes 

involved in attentional selection. 

There are several major theories of visual search. The most popular of 

them is the Feature Integration Theory (FIT) (Treisman & Gelade, 1980) which 

postulates that search proceeds in two distinct stages, the pre-attentive and the 
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attentive. Treisman, Sykes and Gelade (1977) proposed that all the information 

was categorized based on primitive features like colour, shape, orientation, etc. at 

the pre-attentive stage. In FIT, Treisman and Gelade (1980) explain how visual 

search proceeds either in a parallel or in a serial manner depending on the 

relationship between the target and the distractors. They showed that the search 

for a target that is defined by a single feature (for example, determining if a red X 

is present among green Xs) can be accomplished at the pre-attentive level. That is, 

a spatial allocation of attention was not necessary for such a task. Such a search is 

also known as a feature search. In a feature search, RTs are not affected by the 

number of items in the display (display size). Thus, when RTs are plotted as a 

function of display size, they yield flat search slopes and search is considered to 

be parallel. 

 In contrast, when the target was defined by a conjunction of features (for 

example, a Red X among Green Xs and Red Os), search cannot be accomplished 

at the pre-attentive level as targets and distractors share common colour and form 

features. Hence, attention has to be allocated to the location of each object in a 

serial manner in order to find the target. Therefore, RTs increase as a function of 

display size in a conjunction search task, giving a steep search slope. According to 

Feature Integration Theory (FIT), the increase in slope reflects the additional level 

of processing that is required to find the target in a conjunction search task as 

compared to a feature search task. 

Even though FIT offers a simple and elegant explanation of the visual 

search mechanism, there are many findings that do not fit within the framework of 
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FIT. For example, according to FIT, all conjunction searches should produce steep 

search slopes. However, many studies have shown that not all conjunction 

searches proceed in a serial manner. For example, a conjunction of motion and 

form was found to be more parallel than serial, and the addition of stereo depth 

enabled its conjunction with motion or colour to be parallel (McLeod, Driver & 

Crisp, 1988; Nakayama & Silverman, 1986; Steinman, 1987). These findings 

imply that, even for a conjunction target, the visual system is able to narrow 

search down to a relevant subset of features based on information available at the 

pre-attentive stage. Feature Integration theory cannot account for this finding. 

The Guided Search Model (Wolfe, Cave & Frenzel, 1989) better accounts 

for the inconsistencies in the findings between FIT and findings from later studies. 

This model advocates that pre-attentive salience computations carried out during a 

conjunction search task can be effectively used to guide visual attention. In 

support of the GSM, they showed that a target defined by the conjunction of three 

features is found faster than a target defined by the conjunction of only two 

features. The revised models of Guided Search (Wolfe, 1990) specify that the role 

of parallel processing is to identify potential target locations. The information 

from the feature maps are used to create an activation map based on stimulus 

salience. The salience could be determined by both top-down and bottom-up 

components. A combined activation map gives an activation value of target 

probability for every location in which an object is present. Attention is deployed 

in the order of decreasing salience. 
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Thus, even though FIT assumes a strict dichotomy between serial and 

parallel search processes, other theories of attention have largely ignored such a 

dichotomy suggesting that pre-attentive salience computations can always guide 

attention. Attentional Engagement Theory (Duncan & Humphreys, 1989, 1992), 

for example, suggests that as the difference between targets and distractors 

increases, search efficiency also increases. According to AET, salience 

computations are used to segment parts of the display that are different from the 

rest. Duncan and Humphreys (1989) laid out two necessary conditions for an 

efficient search. First, the target should be different from the distractors in one 

dimension and second, the distractors should be more or less homogeneous in that 

dimension. 

The theories of attention clarify the role of pre-attentive computations in 

the eventual guidance of attention. They specify the means by which information 

in the visual environment is registered by the visual system as its constituent 

features. Moreover, they also show how attentional processes can make use of this 

information to select objects for further processing. 

 

Orienting of Attention 

Before looking into the specific factors that determine salience of a 

stimulus, it is necessary to understand the different ways in which attentional 

control is exerted. The first of them is concerned with the goals and task set of the 

observer and the second with the specific features of the stimulus and the display 

(Posner & Snyder, 1975). The former is often referred to as top-down or 
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endogenous control of attention, while the latter is referred to as bottom-up or 

exogenous control. Though in real life attention is allocated by a combination of 

these two factors, it is useful to separate them out in order to make the study of 

these mechanisms more efficient. Two major paradigms that are extensively used 

to study the orienting of attention are the cueing paradigm and the visual search 

paradigm. 

 

Studies using the Cueing Paradigm 

The orienting of attention proceeds endogenously when observers actively 

control the allocation of their attention to an object or location. Most of our goal-

driven everyday behaviour, like driving or playing a sport, proceeds smoothly as a 

result of successful endogenous selection. In the classic study on endogenous 

cueing by Posner (1980), a central arrow cue was used to trigger attention to a 

desired location (See Figure 1.1). The nature of these cues is often considered 

symbolic because the cue in itself does not trigger attention to the location of the 

target. It is the assigned meaning of the cue understood by the observer that 

renders them meaningful. The cues could be arrows, words or digits, which 

inform the observer where the target will appear (Jonides, 1981; Posner 1980; 

Theeuwes, 1989). When the cue correctly points to the location of the target that 

follows, it is considered a valid cue and when it doesn’t, an invalid cue. 

The effectiveness of an endogenous cue is determined by the overall 

informativeness or validity of the cue. When there are an equal number of valid 

and invalid cues (i.e., a cue validity of 50%) in an experiment, the cue is 
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considered overall un-informative. Since the cue points to an incorrect location as 

much as it points to the correct, using the cue to guide search does not benefit 

performance.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1. Example display taken from Posner (1980). The trials started with a 

central fixation cross. In a neutral trial, the central cue did not provide any 

information regarding the upcoming target. In the valid trial, the fixation cross 

changed into an arrow that correctly pointed to the target location, whereas in the 

invalid trial it pointed to a wrong location. The proportion of valid and invalid trials 

in an experiment determines the overall informativeness of the cue.  
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In contrast, when there are more valid cues than invalid cues in an 

experiment (for example, a cue validity of 80%), the cue is considered overall 

informative. That is, using the cue to guide search will result in correct selection 

more often than not. It was shown that when the cues are informative, valid cues 

benefit performance in terms of producing faster RTs and higher accuracy and 

invalid cues cost performance in terms of slower RTs and higher error rates 

(Jonides, 1981; Posner, 1980). This cost and benefit pattern between valid and 

invalid cues show that participants shift their attention to the location indicated by 

the cue.  

Interestingly, when the cues are valid in a lesser proportion of trials (for 

example, at 20% cue validity), a reversal of the cueing benefit is observed; i.e., the 

target is detected faster in the invalid trials as compared to the valid trials. This 

further suggests that the performance benefit that occurs with an endogenous cue 

results from participants’ internalisation of the information contained in the cue. 

They are able to actively decide whether or not they let attention be guided to a 

location based on the informative value of an endogenous cue. Moreover, even in 

the absence of explicit information regarding cue validity, observers are able to 

efficiently use or ignore a symbolic cue depending on its overall validity (Jonides, 

1981; Müller & Rabbitt, 1989; Posner, 1980; Posner & Cohen, 1984). 

Efficient guidance or capture is also mediated by the time interval between 

the onset of the cue and the onset of the target (cue-target-onset-asynchrony or 

CTOA). An endogenous cue requires a CTOA of at least 150 ms for it to be 

effective, reaching its maximum effectiveness at ~300 ms (Cheal & Lyon, 1991; 
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Jonides, 1981; Tsal, 1983). It has been suggested that it takes time for the 

participants to process the information contained in the cue and actively allocate 

attention based on this information.  

However, attentional allocation is not always as straightforward or 

successful as it seems. Sometimes, events and stimuli in the visual field 

automatically draw our attention to themselves. Such a shift of attention that is 

automatic and inconsistent with, or against, the intentions of the observer is called 

exogenous control of attention. The stimuli that elicit such an involuntary 

orienting are said to have captured attention. Exogenous control has been 

extensively studied using luminance cues. The reflexive nature of the exogenous 

cue means that it affects performance even when the cue is uninformative of the 

target location; for example at a cue validity of 50% (Posner, 1980; Jonides, 

1981).  

As opposed to a central arrow, exogenous cues often consist of a brief 

luminance patch flashed in the periphery near a possible target or distractor 

location. The presentation of the cue is followed by target presentation, either at 

the same location as the cue (valid cue) or at a different location (invalid cue). 

Independent of cue validity, valid exogenous cues lead to an improvement in 

performance (in terms of faster RT and better accuracy) while invalid exogenous 

cues lead to a cost, when compared with neutral cues. This suggests that the cue 

involuntarily (automatically) draws attention to its location, giving an RT 

advantage in detecting the targets that appears immediately at that location and a 

disadvantage in detecting a target that appears at a different location (Jonides, 
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1981). This RT cost is attributed to the additional time it takes to disengage 

attention from the cued location, and allocate it to the target location. 

Even though exogenous cues are thought to capture attention, complete 

automaticity of any mental process is established using three criteria – first, 

minimal use of mental resources; second, resistance to suppression; and third, lack 

of sensitivity to changes in expectancy (Hasher & Zacks, 1979; Shiffrin & 

Schneider, 1977). Jonides (1981) tested the automaticity of attentional allocation 

using both endogenous and exogenous cues. He asked participants to determine 

the presence of L or R among other letters of the alphabet. Both types of cues 

were valid on 70% of the trials and invalid on 30%. The performance in the search 

task was analysed over three different experiments that manipulated load, 

suppressibility and cue-validity. He found that an additional memory task 

interfered with the effectiveness of the symbolic cue, but not the peripheral cue, 

suggesting that the exogenous cue use little mental resources. 

However, when the cues were un-informative, the endogenous cue was 

easier to ignore than the exogenous (peripheral) cue, suggesting that exogenous 

cues are processed automatically. In addition, while changes in overall cue 

validity affected the effectiveness of the endogenous cue, they did not have an 

effect on the effectiveness of the exogenous cue. Overall, the results suggest that 

exogenous cues capture attention reflexively, against the goals of the observer and 

are more immune to suppression than central cues. Later studies have shown that 

exogenous cues capture attention even when observers are not consciously 
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unaware of the effect of such cues (Danziger, Kingstone, & Rafal, 1998; 

McCormick, 1997). 

Further emphasizing the reflexive nature of the exogenous cue, it has been 

shown to have a shorter time course of activation as compared to endogenous cues 

(Jonides 1981; Muller & Rabbitt, 1989; Posner, 1980). Peripheral luminance cues 

can affect performance with a CTOA as short as 25 ms, reaching their maximum 

effectiveness at ~100 ms. The slow rising benefit in performance that comes from 

the symbolic cue is more sustained as compared to the peripheral cue (Cheal & 

Lyon, 1991).  

Endogenous and exogenous cues have differential effects on attentional 

engagement and inhibitory mechanisms (Posner & Cohen, 1984). For example, a 

peripheral exogenous cue with a longer CTOA (> 300 ms) leads to faster RTs 

with invalidly cues targets as compared to validly cued targets. This phenomenon 

is known as Inhibition of Return (IOR). IOR with central cues follows a 

significantly slower time course (typically only after about 600 ms). This and 

other differences (for example, see Briand & Klein, 1987; Funes, Lupiáñez, & 

Milliken, 2007; Klein, 1994) between the two types of cues clearly suggest that 

they are separate mechanisms of attentional control (Briand & Klein, 1987; 

Friedrich, Egly, Rafal, & Beck, 1998; Muller & Humphreys, 1991), one 

controlled by the observer, while the other by the stimulus features. 

Even though the spatial cueing task offers an excellent paradigm to study 

automatic orienting, it is limited by the types of cues that automatically attract 

attention. For instance, the most common peripheral cue is a luminance flash and 
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thus one can say that luminance cues capture attention. However, using a cueing 

paradigm, it is difficult to estimate the different features that might capture 

attention. Moreover, some symbolic cues, like a gaze cue or a central arrow cue 

have been shown to elicit automatic responses (Friezen & Kingstone, 1998; Ristic 

& Kingstone, 2006). Thus, using a cueing paradigm one cannot clearly separate 

top-down and bottom-up effects. In such instances an entirely different paradigm 

might be required to determine the nature of purely bottom-up capture of 

attention. 

 

Studies using the Visual Search Paradigm 

In contrast to the cueing paradigm, a visual search paradigm offers more 

flexibility in the type of stimuli that can be tested for attention capture. For 

example, using a visual search paradigm, it is possible to test the attentional 

effects of colour changes, motion or the sudden appearance of a new object 

among old objects (abrupt onset) etc. (Jonides & Yantis, 1988; Hillstrom & 

Yantis, 1994; Theeuwes, 1990). The visual search paradigm also enables pitting 

different types of stimuli against each other, like an object that starts moving 

(motion onset) and an abrupt onset (Christ & Abrams, 2008). 

The research on stimulus-driven attention capture has been primarily 

driven by two types of feature singletons (also referred to as feature 

discontinuities) – dynamic and non-dynamic. When an object differs from all the 

other objects in a display by a single feature, it can be considered a feature 

singleton. The non-singletons may or may not be different from each other in 
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another dimension. For example, a red circle among other circles which are all 

green is a singleton in the dimension of colour. Even when the green coloured 

objects have different shapes, the red circle is a singleton in the dimension of 

colour.  

A singleton is also conceptualised as a discontinuity of a feature by 

emphasising that pre-attentive salience computations will prioritise the singleton 

because it is different from the other items in the display. Singletons that are 

defined as a discontinuity of non-dynamic object properties like colour, shape, 

size or luminance can be categorised as static singletons. Some feature 

discontinuities are dynamic in nature. For example, singletons that are defined as 

moving among stationary or vice-versa; or by the sudden appearance or 

disappearance of objects in the search space; or by transient luminance changes 

like flicker can be considered dynamic discontinuities (for example, see Pinto, 

Olivers & Theeuwes, 2006). 

Most of the theories of search (Duncan & Humphreys, 1989; Treisman & 

Gelade, 1980; Wolfe, Cave & Frenzel, 1989) would predict that a feature 

singleton can be efficiently detected at the pre-attentive stage. The salience 

computations at the pre-attentive stage would indicate a feature singleton to be the 

most salient item in the display. Thus, when participants are required to determine 

the presence or absence of a feature singleton, it will decidedly lead to flat search 

slopes. However, such a task reflects an endogenous or top-down control, driving 

attention in line with task demands. In order to be considered attention capture, a 
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feature singleton should produce a flat search slope even when it is irrelevant to 

the search task. 

Irrelevant Singleton Paradigm. In the experiments that use a visual search 

task to study attention capture, task irrelevance of the feature singleton is ensured 

using what is known as a 1/d paradigm. In a 1/d paradigm, the probability of the 

feature singleton being the target is a function of the display size (d). That is, in a 

display with 5 items, the singleton will be the target only on 20% of the trials (i.e. 

in only 1/5 trials and in a display with d items, only 1/d trials). The 1/d paradigm 

ensures that a flat search slope indicates bottom-up capture and not efficient 

guidance resulting from top-down strategizing. Most studies using this paradigm 

make use of a search task where attentional guidance is difficult. For example, 

Yantis and Egeth (1999) had participants search for a vertical bar among bars 

slanted at an angle of 30° in either direction of the target. In the first baseline 

experiment, they showed that such a search proceeds in a serial manner. This was 

indicated by RTs that increased as a function of display size. 

In three other experiments, they examined how a colour singleton that was 

either predictive or non-predictive of the target affects search times for a target 

defined by orientation. A colour singleton was either present or absent, but when 

present it always coincided with the target making it fully task relevant. 

Unsurprisingly, in this condition search yielded flat search slopes for both the 

target absent and the target present conditions. However, when the target 

coincided with the singleton only at chance level (1/d), a positive slope was 

observed for RTs in both singleton and non-singleton target conditions.  
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This speaks against automaticity, showing that irrelevant colour singleton 

fails to capture attention in a purely bottom-up manner. They also showed a 

similar pattern for a singleton defined by motion, demonstrating a failure to 

capture attention. However, search was efficient when the target was either a size 

or a luminance singleton. The sensitivity of the search task to the overall 

probability of a singleton being the target or not speaks in favour of a top-down 

determinant in allocating attention and not bottom-up capture. 

Other studies that have used the irrelevant singleton paradigm also failed 

to find evidence supporting purely stimulus-driven attention capture with many 

types of feature singletons. For example, Folk and Annette (1994) varied the 

feature contrast between the irrelevant singleton and the rest of the display (by 

adding texture to the display to decrease the contrast and comparing it with trials 

with no such texture) to examine if this mediates attention capture. They did not 

find a reduction in search slopes even when there was a background texture.  

The results suggest that even though feature discontinuities that are 

defined locally may affect guidance, they do not capture attention. Other studies 

showed that motion, shape and colour singletons that were irrelevant to search did 

not capture attention (Hillstrom & Yantis, 1994; Lamy & Tsal, 1999). However, 

abrupt onset singletons captured attention, and motion captured attention when it 

indicated the appearance of a new object, suggesting a special role for new objects 

in attention capture. 

In summary, the findings from the irrelevant singleton paradigm suggest 

an asymmetry in capture by both dynamic and non-dynamic feature singleton. For 
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example, a size, luminance or abrupt onset singleton might capture attention while 

a colour and motion singleton does not (Jonides & Yantis, 1988; Theeuwes 1990). 

These findings also suggest that the various feature dimensions may be processed 

differently by the visual system, hinting at more than one mechanism to process 

local featural differences. 

Additional Singleton Paradigm. Even though the 1/d paradigm ensures 

that the singleton does not predict the target location, it still coincides with the 

target in some trials. Thus, even though the singleton status is irrelevant to search, 

the singleton is still a relevant object in the search context. Hence, for a search 

that proceeds in order of salience, it might make sense to start the search with the 

singleton even though it does not reliably predict the target. In other words, even 

though it might be more efficient to ignore the singleton status of an object in a 

search display, it might be easier to start searching with the salient item, especially 

since it could be the target on some of the trials. 

A stricter criterion to determine capture by a singleton would be to use a 

paradigm where the singleton is never the target. In such studies, the singleton is 

presented only on a proportion of the trials and is never the target. The capture 

effect of such a singleton is indicated by an increase in RT when it is present as 

compared to when it is absent. This increase is attributed to the singleton 

capturing attention. Moreover, the information available after salience 

computations might specify only the presence of a singleton, but not specify the 

particular dimension along which this singleton is defined. In such cases, the 

interference from the singleton might be strong even when it is irrelevant for 
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search. Conversely, if two dimensions can be processed independently, then one 

might expect little interference by a singleton in an irrelevant dimension. 

Pashler (1988) tested the extent to which two dimensions can be processed 

separately. He tested whether features that varied along an irrelevant dimension 

produce interference and if so, how much of it depends on participants' knowledge 

about the identity of the target. He asked participants to determine the side of the 

display on which a feature singleton appeared. In four experiments, he used the 

dimensions of shape and colour and looked at how the pre-knowledge of one 

dimension (the target dimension) interacted with the homogeneity or 

heterogeneity of the other dimension (the distractor dimension). He found that 

prior knowledge of the identity of the target had no significant effect on the 

detection of a singleton target in spite of a random variation in an irrelevant 

dimension.  

In other words, there was no interference from an additional singleton in 

an irrelevant dimension when the identity of the singleton was known in advance. 

This suggests that the visual system is able to efficiently segregate the different 

feature dimensions at a pre-attentive level. However, significant interference was 

observed when a singleton distractor in the irrelevant dimension was present, 

whose identity was not known in advance. Even though the study did not directly 

measure attention capture, the results suggest that often, when searching for a 

singleton target, the presence of other singletons in the display is likely to 

interfere with efficient attentional allocation, leading to a performance cost. 
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The additional singleton paradigm measures the cost of having an 

additional singleton in an irrelevant dimension on search. For example, Theeuwes, 

(1990) used search displays where the target was defined and reported along 

separate dimensions. This arrangement ensured that participants had to attend to 

the location of the target to make a response (Bravo & Nakayama, 1992; Duncan, 

1985; Mounts & Melara, 1999). Participants searched for a left or right oriented 

'T' among H). 

The response was based on the direction in which the T was pointed. 

Additionally, the targets and the distractors were presented inside either a unique 

or a non-unique surrounding defined either by shape (Experiment 1) or by colour 

(Experiment 2). The probability of the target being inside a singleton was only at 

chance. In the control condition, however, the singleton always predicted the 

location of the target. The results showed that colour and shape singletons (as 

defined by the unique surround) failed to capture attention when they were 

irrelevant to the search task (Expt. 1 & 2), but when they served as a reliable cue 

(Control), they captured attention. In two further experiments, he tested if a 

unique change leads to capture. He used the same stimuli as in Experiment 1 and 

2, but now the unique surround changed to a non-unique surround 250 ms after 

the onset of the search display. He found that only an abrupt change in shape 

tends to yield flat search slopes, not an abrupt change in colour. 

Theeuwes (1991a, 1992) further examined the attentional effects of 

features when they belonged either to the relevant or to the irrelevant dimension 

(See Figure 1.2). Participants were required to discriminate the orientation of a 
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line segment that was presented inside a predefined singleton (again, defined by 

the surround) target. The target would consistently be presented in a singleton 

defined by a specific dimension (colour, luminance etc), but the specific feature 

(red, green etc if the dimension was colour) varied randomly from trial to trial.  

 

 

Figure 1.2. Example of the display using additional singleton paradigm in which a 

shape singleton defines the target. In the left panel, there is no additional singleton, but 

in the right panel there is an additional singleton (represented by the dotted circle –a 

colour singleton).  

 

For example, in Experiment 1, the line segment was presented in either a 

bright singleton among dim distractors or in dim among bright; or in green 

coloured singleton among red distractors or in red among green. The specific 

colour or luminance varied from trial to trial, but the dimension along which the 

singleton was defined was kept constant. (In Experiment 2, the target could be a 

circle among diamonds or vice versa.) Importantly, in some of the trials, an 

additional singleton in an irrelevant dimension would be presented (i.e., when 
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shape was the relevant dimension, one of the distractors would randomly be a 

colour singleton). The target was always presented in the relevant singleton. 

He found strong interference by a colour singleton distractor when 

searching for a form singleton target, but not vice versa. Additionally, this 

interference from an irrelevant singleton occurred when the irrelevant dimension 

was overall more salient than the relevant dimension, but not when it was less 

salient (i.e., when a shape singleton was presented as an irrelevant distractor 

singleton, it interfered with search only when the targets and distractors were less 

salient colour singletons like yellowish red vs. yellowish green making the 

dimension of form overall more salient than the dimension of colour). He also 

showed that this bottom-up capture did not go away with increased practice 

(Theeuwes, 1992). These results suggest that attention capture is strongly salience 

based and thus stimulus-driven. The persistence of capture in spite of training 

suggests a robust effect that cannot be easily controlled in a top-down manner. To 

summarize, the findings from the additional singleton paradigm shows that a 

saliency map supersedes any top-down featural prioritisation during attentional 

allocation. 

 

The role of the Attentional Window in capture 

Capture in an additional singleton paradigm is modulated by what is 

referred to as the size of the attentional window, suggesting that events and 

feature singletons capture attention when attention is spread across the display, 

but not when it is focused. Indeed, the idea that focused attention reduces 
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distractor interference is not new. For example, LaBerge, Brown, Carter and Bash 

(1991) showed that distractor letters that appeared on either side of a central target 

letter (flankers) interfered less with target detection when participants were in a 

focused attentional state. Many later studies have shown that singletons do not 

capture attention when attention is focused at a location (Belopolsky, Zwaan, 

Theeuwes, & Kramer, 2007; Theeuwes, 1991; Theeuwes, van der Burg, & 

Belopolsky, 2008; Yantis & Jonides, 1990). For example, Yantis and Jonides 

(1990) used a endogenous cueing task with 80% cue validity. In some of the trials, 

an abrupt onset was also shown in the display. If the onset captured attention in 

spite of the intention of the observer to attend only to the cued location, it suggests 

that capture by onsets is highly automatic. However, they found that abrupt onsets 

failed to capture attention when attention was already allocated to another 

location. 

Although this finding argues against true bottom-up capture, it is possible 

that the interrupt signal generated by the appearance of an abrupt onset item was 

not strong enough to interfere with search when attention was focused elsewhere. 

Thus, when the interrupt signal associated with an onset is stronger, it might 

capture attention. To test this, Yantis and Jonides (1990) used a paradigm that 

allowed some degree of target interference (e.g., see Eriksen & Schultz, 1979; 

Yantis & Johnston, 1990). Every trial had a display size of three with two of them 

named as target letters. One of two target letters was pre-cued using a central 

arrow cue and participants were asked to base their response on the cued target 

letter. On half of the trials, the cued target had an abrupt onset whereas on the 
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other half, either the un-cued target or the distractor had an abrupt onset. They 

found that the presence of an un-cued target slowed reaction times, irrespective of 

whether it had an abrupt onset or not. This suggests that when attention is already 

focused on a particular location, an onset does not capture attention. 

A better comparison between top-down control and bottom-up capture 

could be obtained when the onset is presented before such an attentional state is 

maintained. Theeuwes (1991b) compared the effect of the central cue-display 

onset asynchrony and peripheral cue-target onset asynchrony on attention capture 

by abrupt onsets and offsets. He used three central cue-to-target onset 

asynchronies (CTOA) (-600, -300 and 200) and four peripheral onset or offset 

CTOA (-160, -80, 0 and 80) and found that abrupt onsets did not capture attention 

when attention was already focused elsewhere in the display (-600 and -300). 

However, when attention was distributed (200 ms), search consistently started at 

the location of the onset. Additionally, irrespective of the CTOA after which the 

onset stimulus was presented, abrupt onsets failed to have an attentional effect 

under focused attention. 

Some researchers have viewed this as evidence for top-down set for 

location and the finding is often interpreted as an instance where top-down control 

can successfully override bottom-up capture of attention (for example, see Folk 

and Remington, 1999). However, evidence has also accrued in favour of capture 

even when attention is spatially focused. For example, Neo and Chua (2006) 

showed that abrupt onsets capture attention even under focused attention, as long 

as the onsets are an infrequent event. Moreover, Folk, Leber and Egeth (2002) 
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showed that when participants were engaged in an RSVP (a Rapid Serial Visual 

Presentation task in which  individual visual stimuli are presented very rapidly in 

the same spatial position, and participants are asked to detect a target stimulus 

defined by a certain feature like a red letter among green distractor letters) task 

where the target was defined as a colour singleton, an irrelevant colour singleton 

presented in the periphery caused an attentional blink to a subsequent target. This 

has been interpreted as attention capture by the irrelevant singleton. However, a 

central distractor designed to engage attention in the RSVP stream prevented 

subsequent capture by a distractor in the periphery. Thus, they argued that rather 

than having a focused attentional state, attentional engagement is necessary for 

overriding bottom-up capture (Folk, Ester, & Troemel, 2009). 

 

Top-down effects on attention capture 

Contrary to the claim of Theeuwes (1991, 1992) that capture is entirely 

determined by bottom-upsalience computations, Bacon and Egeth (1994) showed 

that top-down control can prevent bottom-up capture. They suggested that 

observers could choose one among two search modes, depending on how much 

they know about the target. This idea is also supported by the findings from 

Pashler (1988) that there is little interference when searching for a known target 

(red circle), as compared to an unknown target (a colour singleton circle). Bacon 

and Egeth (1994) suggested that knowing the specific feature enables observers to 

tap into the feature map to detect the target, resulting in little interference from a 

singleton in the irrelevant dimension. However, when the specific feature is not 
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known, they have to rely on pre-attentive salience computations to detect the 

singleton in the display. In such a scenario, another salient item in the display is 

more likely to capture attention. They called the former type of search a feature 

search mode and the latter a singleton detection mode. These two search modes 

might be inherently top-down or bottom-up. That is, in a feature search mode, 

participants are intentionally looking for a known target and they are successful, 

whereas in a singleton detection mode, they have to rely on the information from 

the stimulus to guide their attention. 

Bacon and Egeth (1994) further showed that participants could be forced 

to do a feature search in a task where they would otherwise engage in singleton 

detection. They did this by making the relevant feature a non-singleton and then 

by having singleton distractors defined in the irrelevant dimension. These ensured 

that a singleton detection mode was not sufficient to detect the singleton target in 

an efficient manner. An efficient search was possible only by adopting a feature 

search mode. The results suggested that there was cross-dimensional interference 

(e.g., interference by a colour singleton when the relevant feature is shape) only 

under a singleton detection mode, but not under a feature search mode. 

However, Theeuwes (2004) suggested that results of Bacon and Egeth 

(1994) could be confounded by the use of a heterogeneous display which reduces 

the salience of the singleton and might not reflect the adoption of a different 

search strategy by the observers. He showed that the capture effect could reappear 

by increasing the saliency of the singleton in the displays used by Bacon and 

Egeth (1994). In summary, Theeuwes and colleagues use the findings from the 
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additional singleton paradigm to propose a model which argues that when 

attention is diffused, visual selection is completely stimulus-driven and that 

successful top-down control, when it occurs, is a result of a massive recurrent 

feedback processing that overrides the stimulus-driven selection (see Theeuwes, 

2010, for a review). 

Contingent Involuntary Orienting 

Further evidence of top-down influence on attention capture was proposed 

by the contingent involuntary orienting hypothesis (Folk, Remington & Johnston, 

1992; Folk, Remington & Wright, 1994). According to the contingent capture 

account, capture is always goal driven. Contingent capture studies make use of a 

pre-cueing paradigm where a feature cue was presented at the location of the 

target, either matching with the target feature or not. Within a block, the cue was 

either 100% valid or 100% invalid. It was found that when the search display is 

preceded by an irrelevant colour cue, colour captured attention and an onset did 

not; when the cue was an onset, the capture effect was reversed – an irrelevant 

onset captured attention, colour did not. This was also found to be true for a 

motion cue. That is, when there is more than one feature discontinuity, one of 

which is relevant, it interferes with selection.  

The results suggest that attention capture by a particular feature is 

contingent on the relevance of the feature to the task at hand. That is, if the 

observer is required to constantly monitor a certain type of feature discontinuity in 

order to efficiently detect the target, then such a discontinuity will capture 

attention. This proposition is somewhat similar to that of Bacon and Egeth's 
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(1994) search modes and speak in favour of capture being determined by top-

down goals of the observer. The use of the pre-cueing paradigm have made it 

difficult to determine if the absence of capture for a non-matching cue in fact 

results from the inability to transfer the attention from the cue to the target (see 

Rauschenberger, 2003 for an analysis between capture effects using auto- and 

allo-cues). Others have suggested that the CTOA of 150 ms that is generally used 

in the pre-cueing studies make it difficult to measure the capture effects, if quick 

disengagement follows (see Theeuwes, Olivers & Belopolsky, 2010, for this and 

other difficulties posed by the paradigm and other interpretations of their 

findings).  

The debate about selection being stimulus-driven or goal-driven is far 

from being resolved. More recently, it has been argued that the interference from 

an irrelevant additional singleton results from non-spatial filtering costs and does 

not reflect attention capture (Folk, Remington & Wu, 2009; Wykowska & 

Schubö, 2011). However, other studies have shown that this might not be the case 

(Schreij, Theeuwes & Olivers, 2010). In spite of differences in paradigms and 

interpretations, certain factors are known to have a strong mediating power on 

stimulus driven capture. The most important of them is the extent of attentional 

focus and the time course of selection. Other factors that could influence capture 

includes the perceptual load and uniqueness of a dynamic change (Cosman & 

Vecera, 2009, 2010; von Mühlenen, Rempel, & Enns, 2005)  
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Attention Capture by Dynamic Discontinuities 

Abrupt Onsets 

A dynamic singleton that is quite robust in its attentional effects is an 

onset singleton (i.e., the sudden appearance of a new object among old objects). 

Many electrophysiological and psychophysical studies in the early 1970's showed 

that the visual system is differentially sensitive to transient and sustained visual 

events like abrupt onset and offset or relative motion (Fukada & Saito, 1971; 

Cleland, Levick, & Sanderson, 1973; Kulikowski & Tolhurst, 1973; Tolhurst, 

1975). Yantis and Jonides (1984) systematically tested the attentional effects of an 

abrupt onset as compared to a gradual onset. They adopted the so-called 'no-onset 

procedure' as described by Todd and van Gelder (1979). In their study, the search 

display was preceded by a preview display that consists of figure-8 place-holders 

(an object that is made up of 7 line segments, that looks like a digital 8; letters of 

the alphabet can be made from these by removing corresponding line segments) 

for a short time (1000 ms) (see Figure 1.3). Then, the irrelevant line segments 

from the figure-8 stimulus are gradually removed (gradual onset) to reveal the 

search display. 

Simultaneously with the gradual onset, Yantis and Jonides (1984) added a 

new stimulus to the display, which now had an abrupt onset compared to the 

gradual onset of the other stimulus. The abrupt onset stimulus was as likely to be 

the target as the gradual onset stimuli, making the 'onset status' of the stimulus 

irrelevant to search. They also used stimuli which shed the line segments abruptly 

rather than gradually (referred to as no-onset stimuli).They found that the RT to 
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find an abrupt onset target was unaffected by changes in display size, suggesting 

that attention is automatically allocated to an abrupt onset in spite of the onset 

feature being irrelevant to the search task.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3. Example display taken from Yantis and Jonides (1984), for display size 4 

and with gradual and abrupt onset stimuli. Participants are first informed of the 

identity of the target. The place-holder display is presented for 1000ms, which then 

gradually changes to letters over 80ms. An abrupt onset letter is added to the final 

display. Dashes represent fading line segments. In the above example, the target letter 

is P and in the onset condition, is an onset while in the no-onset condition, it is not. 

 

Duration          ONSET        NO-ONSET 

1 s 

RT 

80  

1 s . . 

. . 

. . 

. . 
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As far as abrupt onsets are concerned, they capture attention as long as 

attention is not already focused on a target location. They have been tested 

extensively and are shown to fulfil all the three criterions of automaticity, vis-à-

vis minimal use of mental resources, resistance to suppression and lack of 

sensitivity to changes in expectancy (Yantis & Jonides, 1988). However, the 

mechanism underlying the onset effect (i.e., the finding that onsets are prioritised 

over other objects) is a matter of some controversy. The most popular and the 

most tested is the new object account which proposes that the abrupt onsets 

capture attention because they signal a new object in the visual field.  

New Object Account. The argument made in favour of the perceptual 

newness draws substantially from the concept of object files (Kahneman, 

Treisman & Gibbs, 1992). According to Kahneman et al. (1992), for every object 

that is perceived, a corresponding object file is created and maintained by the 

visual system. These object files are updated periodically and any changes that 

happen to an existing object are updated in the object file. Even though they do 

not make a strong claim as to whether attention is required for updating, they 

confer that the object files are automatically updated when attention is allocated to 

the object. In the context of abrupt onsets, it has generally been argued that the 

sudden appearance of a new object in the visual field requires the creation of a 

corresponding object file and that this automatically draws attention to the 

location of the new object (Christ & Abrams, 2006; Yantis & Jonides, 1990). 

Early evidence for a special role of new objects in attention capture was 

given by Hillstrom and Yantis (1994). In their Experiment 1, they showed that 
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motion can be used as an effective cue to guide attention when it is task relevant, 

but that an irrelevant motion does not capture attention. In Experiment 2, they 

tested the possibility that new objects that are not associated with an abrupt onset 

could capture attention. They used a global/local task (for example, see Navon, 

1977) and asked participants to indicate the identity of the global letter. There was 

always a unique letter among the letters that made up the local level, which was 

either compatible or incompatible with the global letter. Moreover, the unique 

letter either had an onset, motion or in the baseline condition, neither of these. 

They found stronger compatibility effects when the unique letter was moving or 

had an abrupt onset as compared to the baseline condition.  

When motion started before the letters were revealed, the compatibility 

effects disappeared, showing that only events associated with the appearance of a 

new object captured attention. Lending further support to the new object account, 

Christ and Abrams (2006) found that attention was captured involuntarily when 

an object was segregated from a group of objects. They used different types of 

motion, namely, motion onset, continuous motion, and motion offset and found 

that irrespective of type of motion used to segregate objects, a newly segregated 

target was found significantly faster (more than 100 ms on average) than a target 

that remained in the old group. This gives some support for a preferential 

processing of objects that undergo a higher level change than say changes to 

object properties like luminance, colour etc. 
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Figure 1.4. Example display from Rauschenberger and Yantis (2001). The 

subjective square was perceptually old, perceptually new, or absent. On half of 

the trials, the square was absent; on the other half, it was present. When present, 

they were either new or old with equal probability. 

 

It has also been found that new objects captured attention even when such 

an object was illusory. Instead of using real objects, Rauschenberger and Yantis 

(2001) used 'pacman' shaped disc segments (See Figure 1.5) that could be 

arranged such that they resulted in the formation of an illusory square in the 

display (a Kanizsa square). Participants were asked to indicate the presence or 

absence of the target, a semi-circular disc segment. In some of the trials, the 

subjective square was presented at the beginning of the trial - along with the 

place-holders (which were black circular discs), making it an old object.  
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In some trials, they were presented along with the search display making it 

a new object, while in other trials there was no subjective square present. They 

found that only when the subjective square present in the display was new, it 

resulted in slower response times, but did not when it was old, suggesting that the 

perceptual newness of the illusory object captured attention. However, it has been 

shown that there is object precedence in search irrespective of its newness. For 

example, Yeshurun, Kimchi, Shashoua and Carmel (2009) showed that search 

performance was better when the target appeared inside the perceptual object than 

outside. This benefit did not go away when the target presentation was followed 

by display offset, suggesting that attention was allocated to the location of the 

perceptual object in an involuntary fashion.  

In line with the idea of object files, Wong, Peterson and Hillstrom (2007) 

tested to see if changes in semantic or structural information were as efficient as 

an abrupt onset in producing an oculomotor capture. They used search displays 

that consisted of six uniquely shaped stimuli. Participants were asked to move 

their eyes to a colour singleton and make a response based on the direction in 

which the target 'c' presented inside was pointing. Simultaneous with target 

presentation, one of the two events occurred: There could be an abrupt onset in 

any random location in the display, or one of the unique shapes morphed into 

another (changed the shape over a sequence of frames).  

There was also a control condition where neither of these happened. They 

found that, as compared to the control condition, participants were significantly 

quicker to detect the target when it was presented in either the abrupt onset or the 
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morph. There was no difference in detection efficiency between the morph and the 

onset. However, when occulo-motor capture was measured, an onset reliably 

elicited an eye movement towards itself, whereas the morphs did not. This shows 

that although changes in semantic information could warrant attentional capture, 

they do not capture the eyes as reliably as an abrupt onset. 

It has been well established that the eyes follow attention (Itti & Koch, 

2001). Considerable evidence has accrued showing that abrupt onsets capture the 

eyes even when they are completely task irrelevant (Mulckhuyse, van Zoest & 

Theeuwes, 2008; Theeuwes, Kramer, Irwin & Zelinsky, 1999). For example, 

Theeuwes et al. (1999) asked participants to saccade to a colour/luminance 

singleton target. An abrupt onset distractor was also presented in the search 

display. They found that on a significant proportion of trials (30 to 40%), 

participants erroneously initiated an eye movement towards the onset.  

Mulckhuyse et al. (2008) also pointed out that top-down and bottom-up 

factors work together to ensure efficient processing after the initial capture 

response. That is, quick disengagement is often efficiently executed after the 

erroneous oculomotor response (see also, Theeuwes, Kramer, Hahn and 

Irwin,1998). Furthermore, Kramer, Cassavaugh, Irwin, Peterson and Hahn (2001) 

examined the oculomotor effect of single or multiple onset distractors on a 

singleton search task. They observed that, even though an irrelevant onset 

distractor did not direct a saccade to its location, it interfered with search 

strategies and increased reaction times. They also found that having two abrupt 

onset distractors was no more disruptive than having a single onset distractor. 
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Yantis and Gibson (1994) suggested that 'newness' can be rather 

perceptual in the sense that when an existing object disappeared for about 100 ms 

and reappeared again it has the same effect as an abrupt onset. However, this does 

not agree with the findings of Kahneman, Treisman and Gibbs (1992) who 

showed that even a temporal gap of 590 ms between object fields did not interfere 

with object continuity. In spite of overwhelming evidence supporting the new 

object account, there have been criticisms. 

Role of Luminance. The most prominent of the criticisms against the new 

object account is that an abrupt onset is accompanied by a large local increase in 

luminance, whereas the luminance decrease accompanying the transformation of 

figure-8 to letters is relatively smaller. For example, if a letter, say 'S' is 

introduced as an abrupt onset, it would involve the onset of 5 line segments that 

form the figure 'S', whereas if it is introduced as a no-onset, it would involve 

deletion of only two line segments from the figure-8. This asymmetry might make 

the onsets more favourable than the no-onsets. To circumvent this asymmetry, 

Miller (1989) used a place-holder display with more line segments that need to be 

deleted to reveal the letter, as compared to a typical figure-8 place-holder. This 

arrangement was helpful in matching the luminance change for the no-onset 

stimuli, with that of an abrupt onset. The results showed that, although an onset 

transient was detected ~36 ms faster than an offset, it was no longer insensitive to 

the load. As display size increased, it took longer to find the onset transient. The 

results suggest that when luminance changes are controlled for, abrupt onsets no 

longer reliably captured attention. 



38 

 

On a related note Miller (1989) pointed out that, instead of undermining 

the ability of an abrupt onset to capture attention, this finding indicates possible 

attentional effects of an abrupt offset. Watson and Humphreys (1995) however 

showed that abrupt onsets and offsets have equivalent effects on attention. They 

used stimuli with onsets or offsets, but without an accompanying new object (i.e., 

only part of the stimulus underwent offset or onset). They found that both onsets 

and offsets had very similar effects on search performance, suggesting that an 

increase or decrease in luminance does not differentially affect performance. The 

finding implies that as long as the overall change is kept constant, the direction of 

change does not affect attention.  

In order to further differentiate between the effects of luminance changes 

and those of new objects, Franconeri, Hollingworth and Simons (2005) used a 

paradigm that made it possible to introduce new objects by removing any abrupt 

luminance changes. They used occluders that changed size (either expanded or 

contracted) and the abrupt onset could occur either behind the occluder or in front 

of the occluder. They found that abrupt onsets received an RT benefit only when it 

appeared in front of the occluder, but not when it appeared behind it. Thus it was 

shown that a luminance transient was necessary for an abrupt onset to capture 

attention.  

However, the conclusion can be criticised on the basis of methodological 

uncertainties. For example, given that attention capture is sensitive to changes in 

object status even for a very short time frame (cf. Yantis & Gibson, 1996) it is 

possible that, along with removing the luminance transient, the occluder also 
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changed the status of the place-holders as old objects, removing any difference 

between the old and the new. However, Chua (2009) used an occluder that hid the 

objects only for about 10 ms, likely removing any possible disruption to object 

continuity. Their findings closely resembled that of Franconeri et al., suggesting 

that luminance changes were necessary for onsets to capture attention. However, 

they also extended these findings to show that when the context facilitated the 

encoding of the new object, it captured attention. (See also Chua, 2011, where 

capture was observed when the encoding of the old objects was facilitated and 

absent when such an encoding was difficult or impossible.) 

On the other side of the argument, a luminance transient was deemed 

neither necessary, nor sufficient, to produce capture by abrupt onsets and makes a 

strong argument in favour of the new object account (Yantis, 1993; Yantis & 

Gibson 1994; Yantis & Jonides 1994). For example, it has been shown that onsets 

capture attention even when they are equiluminant with the background (Davoli, 

Suzko & Abrams, 2007; Yantis & Hillstrom, 1994). Moreover, Gellatly, Cole and 

Blurton (1999) showed that when stimuli are matched in luminance to the 

background, the onset effect was considerably reduced, but not eliminated. Enns, 

Austen, Di Lollo, Rauschenberger and Yantis (2001) showed that the attentional 

effect of huge luminance changes does not compare to those produced by an 

abrupt onset. They used a visual search task to assess the effect of a change in 

luminance on capture by abrupt onsets.  

The distractors changed from black to white or white to black on a grey 

back ground, while the abrupt onsets were either black or white. Hence, the 
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change in luminance was larger for the luminance change stimuli as compared to 

abrupt onsets. Despite this, abrupt onsets were more effective in capturing 

attention. Even though these findings do not offer direct support for the new 

object account, it shows that the capture effect remains relatively unaffected even 

in the absence of luminance changes. 

 In summary, the case for luminance transients in attention capture by 

abrupt onsets is not a strong one. Even though matching stimulus luminance with 

the background leads to a reduction in the capture effect, it is not abolished (Christ 

& Abrams, 2008; Davoli et al., 2007; Gellatly et al., 1999). In contrast, when the 

appearance of the new object is hidden from the observer, onsets were treated as 

equivalent to a no-onset (Franconeri et al., 2005; Chua, 2009). From these 

findings, it is clear that low level luminance changes have a role in onset capture, 

but the appearance of a new object seems to have a bigger role. 

Role of Masking. Another opposition to the new object account as an 

explanation of onset capture was provided by Gibson (1996a). He argued that in a 

standard display with an abrupt onset, the placeholders act as pre-masks, making 

the abrupt onset the only item that is not masked. Thus, the better visual quality of 

the abrupt onset leads to capture because it is better encoded and is available for 

processing before the no-onsets are. Participants were asked to find a predefined 

target letter among distractor letters. Gibson (1996a) used three different 

placeholder conditions – bright, dim and onset (no placeholder). In the bright 

conditions, the luminance of the placeholders was equivalent to that of the search 

display, while in the dim condition they had a lower luminance as compared to the 
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search display. Finally, in the onset condition, there were no placeholders, so that 

all the elements in the placeholder condition had an abrupt onset. The final search 

displays were identical in all the three conditions. 

The results showed that participants were fastest in the onset condition, 

followed by dim placeholder condition. The slowest RTs were found in the bright 

condition. In a second experiment, he combined bright and dim placeholders with 

either an onset or no-onset target. In the dim placeholder condition, onsets did not 

capture attention but strong capture was observed when the placeholders were 

bright. The results overall suggests that attention was automatically guided to the 

stimulus that had a better visual quality. However, Yantis and Jonides (1996) 

reinterpreted the advantage of an all onset display in terms of a faster processing 

associated with capture by onsets (see also Gibson (1996b), who provides further 

evidence for a masking explanation). 

To summarize, the most popular explanation of capture by onsets is given 

by the new-object account, according to which onsets are prioritised because they 

initiate the creation of object files (Hillstrom & Yantis, 1994). However, this 

explanation is not without criticisms. One alternative explanation is that a local 

change in luminance is what triggers attention and that without such a change 

abrupt onsets might not capture attention (Franconeri, Hollingworth & Simons, 

2003). However, it has been shown that even though controlling for luminance 

changes reduces the onset effect, it is not abolished, suggesting that capture is not 

all driven by the luminance changes (Gellatly, Cole & Blurton, 1999). Yet another 

explanation of the onset effect was given by the masking account (Gibson, 
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1996a). Even though evidence has been provided suggesting that this explanation 

is unlikely, it is disputable (Gibson, 1996b; Yantis & Jonides, 1996). 

 

Motion and the Onset of motion 

A moving object among other stationary object represents a dynamic 

discontinuity that might capture attention. One of the earliest studies that made 

use of motion as a feature in visual search was conducted by Nakayama and 

Silverman (1986). They examined if the conjunction of a static feature like colour 

and a dynamic feature, like motion also resulted in a standard serial search. They 

used two different colours and two different motion directions, combining a 

particular colour with a specific direction of motion. The target was defined as the 

item that violated this association. The results from this study showed that such a 

conjunction resulted in a particularly difficult serial search because search slopes 

increased with increasing display size. However, when they used a stereoscopic 

method to induce depth in the display, and presented the two directions of motion 

at separate depths, the search turned out to be parallel. This finding indicates that 

a discontinuity in motion at a certain depth (all the distractors moved in one 

direction while the target moved in the opposite direction) can be detected 

automatically by the visual system. 

More explicit evidence of a lack of serial search in conjunctions involving 

motion was provided by Mcleod, Driver and Crisp (1988) who showed that 

reaction times did not increase significantly with display size when observers 

were asked to indicate the absence or presence of a moving X among moving O's 
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and stationary X's. They also replicated this finding with moving 'R' among 

stationary 'P' and moving 'Q' which, in the absence of motion, is a serial search. 

This shows that adding the property of motion leads to a clear grouping of the 

items in the display based on motion. Hence what has been a conjunction search at 

the level of features ceases to be so when motion is one of the defining properties 

of the target. It also indicates that motion in the visual field can be detected pre-

attentively. 

The most popular accounts of capture by motion come from hypotheses 

regarding behavioural urgency and animacy (Abrams & Christ, 2003; Franconeri 

& Simons, 2003; Pratt, Radulescu, Guo, & Abrams, 2010). The results in favour 

of capture by motion are not clear cut. Most of the studies that tested the effects of 

motion per se did not find capture (Hillstrom & Yantis, 1994; Folk, Remington & 

Wright, 1994). For example, Hillstrom and Yantis (1994) tested if a motion 

singleton captured attention. They used search displays where one of the search 

items possessed a motion attribute while the others did not. When motion reliably 

predicted target location, search was efficient – as evidenced by a flat search 

slope. However, when motion was task irrelevant, then reaction times increased as 

a function of display size. Thus, it is evident that even though motion can reliably 

be used to guide attention when required, it did not interfere with top-down goals 

and hence, did not capture attention in a bottom-up manner. 

However, the pre-cueing paradigm mostly produced reliable capture as 

long as the cue and target matched. For example, Folk, Remington and Wright 

(1994) found that motion captured attention when it was used to cue the location 
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of a forthcoming moving target. They used different types of static and dynamic 

targets and paired them with a motion cue. A 100% invalid motion pre-cue 

interfered with the processing of a target defined by motion, but not colour or 

onset. There were also significant RT benefits when the cue was 100% valid. This 

shows that motion triggers a contingent involuntary orienting to the location of the 

cue and hinders performance when the cue is invalid and aids it when it is valid. 

However, as noted before, there are methodological concerns with the use of pre-

cues. 

Preliminary evidence in favour of capture by motion was given by 

Franconeri and Simons (2003), who tested the range of dynamic stimuli that 

might capture attention. In three experiments, they compared the attention 

capturing effects of eight types of discontinuities – one static (colour) and seven 

dynamic (abrupt onset, linear motion, jitter motion, looming motion, receding 

motion, disocclusion and motion over occlusion). They used displays with figure-

8 placeholders and motion started 150 ms before the search display was revealed. 

They found that all dynamic discontinuities except receding motion capture 

attention – as evidenced by their respective search slopes. Colour did not capture 

attention.  

They proposed the behavioural urgency hypothesis which claims that 

attention is captured by events that are behaviourally relevant – i.e., they warrant 

an urgent response. However, it has been criticised that capture is mediated by the 

uniqueness of the motion event. Precisely, because motion started 150 ms prior to 

the beginning of search, the motion event should have been highly salient (for 
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example, see the Unique Event Account – von Mühlenen et al. (2005)). Even 

though other studies have found evidence supporting capture by looming motion 

(Franconeri & Simons, 2005; von Mühlenen & Lleras, 2007; Skarratt, Cole & 

Gellatly, 2009), researchers have found it difficult to replicate attention capture by 

motion when it did not start just before or during the presentation of the search 

display (von Mühlenen, etal., 2005). 

 For example, Abrams and Christ (2003) used displays similar to that used 

by Franconeri and Simons (2003). Figure-8 placeholders started moving at the 

beginning of the trial and continued moving even after the search display was 

revealed by shedding the relevant line segments. They did not find attention 

capture by motion. Instead, however, they proposed that the onset of motion in a 

display is salient enough to capture attention. Their display consisted of four 

figure-8 placeholders, two of which moved and two that did not. After 3200 ms, 

the search display was revealed by shedding relevant line segments (I will refer to 

this as display transition).  

At display transition, one of the moving placeholders stopped moving 

while one of the stationary placeholders started moving; the remaining moving 

item continued moving while the stationary item remained stationary. The target 

was equally likely to be any of the four items, namely a motion offset, motion 

onset, continuous motion or static, respectively. They found that motion onset 

reliably captured attention in spite of the onset of motion being completely 

irrelevant to the task. Continuous motion and motion offset did not. 
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In subsequent experiments, they found that motion onset elicited an IOR 

response and that reaction times were insensitive to an increase in display size 

when the target was a motion onset item as opposed to a static item. On a same 

note, using a similar paradigm, they also showed that the onset of receding motion 

captures attention (Abrams & Christ, 2005). They also found that it is not 

dependent on changes in luminance associated with the motion (Guo, Abrams, 

Moscovitch & Pratt, 2010). They also compared the attentional effects of motion 

onset against that of a new object and found that although there is a definitive RT 

advantage of an onset of motion, it is not as much as that given by the sudden 

appearance of a new object (Christ & Abrams, 2008). Indeed, when accompanied 

by a high energy luminance mask, the attentional benefits afforded by motion 

onset were completely abolished whereas that afforded by a new object remained. 

The evidence accrued in favour of attention capture by the onset of motion 

is somewhat confusing. There are a number of studies by Abrams and colleagues 

that argue that the onset of motion captures attention. However, there are 

instances where the effect goes away- for example, the use of an energy mask. 

Also, there are certain types of motion onset that capture attention while there are 

others that do not – for example, looming versus receding motion. One key to 

solving the confusion come from the study by von Mühlenen et al. (2005).  

They found that any feature change captures attention as long as it occurs 

at a temporal gap when no other event is occurring. This explains why motion 

captured attention in Franconeri and Simons' (2003) experiments. (It does not, 

however, resolve why they did not find capture with receding motion.) 
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Importantly, von Mühlenen et al. did not find capture with motion onset when 

motion onset started simultaneously with the search display. Even though there 

are a number of theories to account for the RT patterns observed using the onset 

of motion (behavioural urgency, animacy etc.), none of them can reliably predict 

when an onset of motion captures attention and when it does not. Also, the 

theories do not indicate the possible mechanism underlying attention capture by 

motion onsets. The present thesis aims to investigate the apparent discrepancies 

surrounding attention capture by motion and at the same time provide an insight 

into the possible mechanisms underlying capture. 



48 

 

Chapter 2: Pilot Study – Attention capture with multiple dynamic events. 
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Introduction 

In a serial search model, attention capture can be equated to automatic 

prioritisation of a particular item in the search. For example, a capture effect by 

abrupt onset often means that search begins at the location of that particular item. 

When plotting RTs as a function of display size, this leads to a flat search function 

for when the target is the onset. This is because search can terminate without 

examining the other items in the display. One of the key questions of this thesis is 

how attention is guided to multiple simultaneous events, such as onsets, which are 

known to capture attention when they occur as a singleton. For example, when two 

onsets are presented simultaneously, the overall RT benefit for an onset target should 

be reduced because the probability of the target being the onset that I selected is 

halved (i.e., within the serial search framework, priority is now shared amongst two 

items).  

It was previously argued that up to four onsets can be prioritized and searched 

before searching the remainder of the display (Yantis & Johnson, 1990; Yantis & 

Jones, 1991). In fact, their model assumes that always all onsets are tagged, but then 

the tags decay over time, allowing only about 3-4 onset items to be searched with 

priority. Once the tags have decayed, the onset and no-onset items become 

indistinguishable.
1
 According to this model, one would expect a substantial 

attenuation of the onset effect when the number of onsets is increased. This is simply 

                                                
1  Whether all onsets are tagged (and the tags decay), or whether only a limited number of 

onsets are tagged, will not be addressed in this thesis (see Yantis & Jones, 1991, for an 

investigation of the tag decay process). For simplicity it is assumed that the number of tags is 

limited. 
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because the average number of onsets to be searched before finding the target would 

linearly increase with each additional onset (i.e., from 1, 1.5, 2, 2.5 items etc. for 1, 

2, 3 or 4 onsets).  

This same model would predict an attenuation of the capture effect while 

pitting different types of events against each other. For example, Christ and 

Abrams(2008) used a visual search display with four types of stimuli: abrupt onset, 

motion onset, continuous motion, and static stimuli (they called these new object, 

new motion, old motion and old object, respectively). Stimulus type was irrelevant to 

the search task. Based on RT differences, they suggested that while abrupt onset and 

motion onset captured attention, continuous motion did not. Whether these capture 

effects for abrupt onsets and motion onsets interacted or attenuated each other is not 

clear from their study, nevertheless, there are certain indicators for such an 

interaction. For example, in their Experiment 2, they inserted a high energy mask (a 

blank white screen) of 200 ms between the placeholder display and the search 

display. This abolished the motion onset effect and substantially attenuated the onset 

effect. However, in Experiment 3, when the abrupt onset stimulus was removed from 

the display, the motion onset effect re-emerged in spite of the energy mask. This 

suggests that capture by abrupt onsets attenuate the motion onset effect. However,it 

is not clear whether capture by motion onsets in turn attenuate the onset effect. 

Two pilot experiments were conducted in order to fully explore the possible 

interaction between different events that might capture attention. In the first 

experiment, static, onset and continuous motion stimuli were intermixed in all 

possible factor combinations. As continuous motion does not capture attention, no 
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attenuation to capture by onsets in conditions where it co-occurs with static or 

moving stimuli was expected. In the second experiment, continuous motion was 

replaced with motion onset. Since motion onset is expected to capture attention, an 

attenuation of capture by both onset and motion onset when they co-occur with each 

other was expected. 

 

Pilot Experiment 1 

Pilot Experiment 1 was designed as an exploratory study to look at the effect 

of various target distractor combinations on search performance. More specifically, 

how do continuous motion, abrupt onset and static items presented simultaneously in 

a display affect prioritization in search. Participants searched for targets U or H 

among distractors S and E in a display with three items. The display size was fixed at 

three in order to look at the RT differences as a first step to understand attentional 

prioritisation. In this and some of the subsequent experiments, RT differences are 

taken as the primary indicator of capture. The target as well as distractors could be 

any among abrupt onset, static and motion. This results in six possible distractor 

combinations, namely, static-static, onset-onset, motion-motion, onset-static, motion-

static and onset-motion. In previous studies it has been shown that a continuously 

moving stimulus does not capture attention (Hillstrom & Yantis, 1994). Hence in the 

present experiment, it was expected that no costs would occur when onsets are 

presented simultaneously with continuous motion stimuli. However, in trials with 

more than one onset, search times may be slower than in trials with no or only one 

onset. 
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Method 

Participants. A group of ten undergraduate students (3 male, 7 female, mean 

age 20.1) from the University of Warwick participated in return for course credit. 

They all had normal or corrected to normal visual acuity. Participants were naïve as 

to the purpose of the study.  

Apparatus and Stimuli. The stimuli consisted of a fixation cross, figure-8 

placeholders, and letters, presented in grey drawn on a black background. The 

fixation cross had a size of 0.6° of visual angle and was presented at the centre of the 

screen. The figure-8 placeholders and letters subtended 1° × 2° and were made of 

seven line segments (length 1.0°, thickness 0.13°). The letters were “H,” “U,” “S,” 

and “E” and were made by removing the corresponding line segments from the 

figure-8 s. The stimuli were placed on the three imaginary corners of a randomly 

oriented equilateral triangle centred on fixation (the fixation–letter distance was 

12.5°). Letters in the search display were stationary or moved on a circular path 

(radius = 1.3°) at a constant speed of 8.7°/s, at which speed a full rotation took 960 

ms (see Figure 2.1). The moving direction was varied randomly between clockwise 

and anticlockwise.  

Procedure and Design. A trial started with the presentation of a placeholder 

display that consisted of a fixation cross and two figure-8 placeholders. After 960 

ms, the placeholder display was replaced by the search display, which always 

contained three letters. When present, the static and moving letters were revealed by 

deleting the irrelevant line segments from the corresponding placeholders, whereas 

the onset letter appeared at the previously unoccupied location. The target was 
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equally likely to be an abrupt onset, a moving or a stationary item. Distractor 

combination was also systematically varied: static-static, moving-moving, onset-

onset, static-moving, static-onset, moving-onset, giving a total of six possible 

distractor combinations. 

 

 

Figure 2.1. Example display showing an onset target “H” and a moving distractor 

“S” and a static distractor “E” for Pilot Experiment 1. 

 

Participants were asked to look for “H” and “U” targets among “S” and “E” 

distractors and to respond with the arrow keys. Half of the participants used the left 

arrow for “H” and the right arrow for “U,” and vice versa for the other half. They 

were instructed to respond to the target as fast as they could whilst trying not to make 

more than 5% errors. The search display stayed on until the participant responded or 

until 10 s had elapsed. In the case of wrong responses, immediate feedback reading 

“error” was given on the screen, and participants had to press the space bar to 

continue the experiment. The next trial started after an interval of 1 s. Each 
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participant completed 20 practice trials followed by 540 experimental trials. The 

experimental trials were divided into 10 blocks of 54 trials each, with short breaks 

between blocks. There were 30 trials in each target type - distractor combination. 

 The experiment systematically varied three factors: target identity (“H” or 

“U”), target type (static, onset, or moving), and distractor combination (onset-onset, 

motion-motion, static-static, onset-motion, onset-static and static-motion). All 

possible factor combinations were presented in a random order. For the analysis, 

target identity was not further considered. 

 

Results 

 

Figure 2.2. Mean correct RT in Pilot Experiment 1 as a function of distractor 

combination, with separate lines for static, onset and motion target types. 

 

RTs. Mean correct RTs were calculated separately for each participant and 

factor combination, excluding outlier trials with RTs smaller than 200 ms or larger 

than 2,000 ms (1.2%). Figure 2.2 shows the averaged RTs as a function of distractor 

combination, with separate lines for each target type. 
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The RTs were submitted to a 3×6 repeated measures ANOVA with the 

factors target type (static, onset, or moving) and distractor combination (static-static, 

onset-onset, motion-motion, static-onset, static-motion and onset-motion). There was 

a significant main effect of target type, F(2, 18) = 56.54, p < .001: Post-hoc LSD 

tests revealed that onset targets were found faster than static targets, which in turn 

were found faster than moving targets (599, 674 and 724 ms respectively). Neither 

the effect of distractor combination (F = 1.5, p = 0.19) nor its interaction with target 

type (F < 1) were significant. 

Table 2.1.  

Mean Percentage Error in Pilot Experiments 1 and 2 

 Target Type 

     Distractor Combination Static Onset Moving 

Pilot Experiment 1    

     Static-Static 2.5 5.0 5.0 

     Onset-Onset 6.5 2.0 4.5 

     Motion-Motion 6.0 3.5 3.5 

     Static-Onset 5.3 3.8 4.0 

     Static-Motion 4.5 5.5 6.5 

     Onset-Motion 8.0 4.8 5.5 

Pilot Experiment 2    

     Static-Static 5.0 4.6 3.8 

     Onset-Onset 7.1 2.1 4.6 

     Motion-Motion 6.7 2.5 3.8 

     Static-Onset 6.7 4.2 6.0 

     Static-Motion 6.0 4.0 5.8 

     Onset- Motion 4.6 4.6 5.6 

Errors. Mean percentage errors were calculated separately for each 

participant and factor combination (see Table 2.1). The 3 × 6 repeated measures 

ANOVA did not show any significant differences as error rates were comparable 

across conditions (5.4 vs. 4.1 and 4.8%). 
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Discussion 

The results of Pilot Experiment 1 show that the RT to find an onset target is 

overall faster than the RT to find a static target. They also show that it takes longer to 

find a continuously moving target than to find a stationary target. However, 

distractor combination had no significant effect on search times. 

These results suggest that the presence of a moving item in the display did 

not interfere with attention capture by abrupt onsets. However, surprisingly, the 

presence of more (one or two) onset distractor did also not reduce the capture effect 

by abrupt onsets. This is surprising because one would expect some costs when there 

are multiple onsets in the display. Even though the cost of having multiple abrupt 

onsets have not been quantified, Yantis and Johnson (1990) showed that up to four 

onsets are prioritised and searched before searching through the remaining items in 

the display. In their study RTs increased as the number of onsets in a display 

increased. However, in their study, the total display size also increased with an 

increase in the number of onsets as they always had an equal number of onset and 

static items. 

Another possible explanation for the lack of increase in RT with increasing 

number of onsets is the relatively small display size. In the present study, the display 

size was always three. It is possible that all three locations were selected 

simultaneously for processing and any difference in RT is attributed to perceptual 

differences between the three stimulus types and not owing to attentional 

prioritization. A larger display size would help to prevent such a confound as it has 

been shown that only up to 4 locations can be selected simultaneously with high 
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precision (Franconeri, Alvarez & Enns, 2007). This possibility will be further 

explored in Chapter 6 where the number items in the display is eight and the number 

of onsets is systematically varied from 0 to 8 items. 

 

Pilot Experiment 2 

Pilot Experiment 2 further explored the possible attenuation of capture in 

multi-element displays. It was supposed that attenuation might occur in the 

simultaneous presence of more than one type of stimulus, when both of them capture 

attention. It has been shown that even though continuous motion does not capture 

attention, the onset of motion does (Abrams & Christ, 2003; Franconeri & Simons, 

2005). Hence in the second pilot experiment, continuous motion was replaced with 

motion onset (that is, the stimulus started moving only during display transition, 

where the placeholders were replaced by letters).  

 

Method 

Participants. Fourteen undergraduate students (6 male, 8 female, mean age 

19.6) from the University of Warwick participated in return for course credit. They 

all had normal or corrected to normal vision.  

Apparatus, Stimuli, Procedure and Design. The apparatus and stimuli were 

the same as in Pilot Experiment 1, except that now motion started simultaneously 

with the figure-8 placeholders changing to letters. All aspects of the procedure and 

design were identical to that of the Pilot Experiment 1.  
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Results 

RTs. Figure 2.3 shows the averaged RTs as a function of distractor 

combination, with separate lines for each target type. RTs were submitted to a 3 × 6 

repeated measures ANOVA with the factors target type (static, onset, or motion 

onset) and distractor combination (static-static, onset-onset, motion-motion, static-

onset, static-motion and onset-motion). 

 

 

Figure 2.3. Mean correct RT in Pilot Experiment 2 as a function of distractor 

combination, with separate lines for static, onset and motion onset targets. 

 

There was a significant main effect of target type, F(2, 26) = 21.83, p < .001: 

Post-hoc LSD tests revealed that onset targets were found significantly faster than 

static targets, but there was no significant difference in RTs between static and 

moving target types (674, 727 and 732 ms, respectively). There was also a significant 

main effect of distractor combination, F(5, 65) = 3.9, p < .01: LSD tests revealed that 

this is due to the RTs being on average 29 ms slower in the condition where both 
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distractors are static, than in the other five conditions. The two-way interaction 

between target type and distractor combination was not significant F(10, 130) = 1.36, 

ns. 

Errors. Mean percentage errors were calculated separately for each 

participant and factor combination (see Table 2.1). The 3 × 6 repeated measures 

ANOVA revealed only a marginally significant main effect for Target type, F(2, 22) 

= 2.87, p = .08, due to slightly increased error rate with static targets, compared to 

onset and motion onset targets (6.0 vs. 3.7 and 4.9%).  

 

Discussion 

The results of Pilot Experiment 2 showed that search was overall faster when 

the target had an abrupt onset as compared to when it was stationary or when it 

started moving. This suggests that an abrupt onset, but not a motion onset captured 

attention. This is inconsistent with findings in the literature (see, Abrams & Christ, 

2003, 2005; Christ & Abrams, 2008; Christ et al., 2008; Franconeri & Simons, 2003) 

where capture was observed with motion onset. One key to resolving this issue might 

come from the Unique Event Account (UEA) of attention capture, proposed by von 

Mühlenen, Rempel and Enns (2005). According to the UEA, capture by most events 

is modulated by their temporal uniqueness. That is, motion onset, for example, would 

capture attention when motion starts just before or after the placeholder display 

changes to the search display (display transition). However, when motion onset 

begins at display transition, capture does not occur as the motion onset signal is 

masked by other simultaneous changes to the display (like the figure-8s changing to 
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letters). In Franconeri and Simons’ study, motion began always 150 ms before 

display transition while in the present experiment it began during display transition. 

Thus, it is possible that the absence of capture by motion onset in the present study is 

due to motion onset being a non-unique event. 

The absence of capture by motion onset might also explain why there is no 

attenuation of capture effect for abrupt onset targets when the distractors are 

heterogeneous. Moreover there is no attenuation resulting from the presence of 

multiple onset distractors, replicating the results of Pilot Experiment 1. 

The present two pilot experiments leave open two important questions: (1) 

Why is there no capture by motion onset in the present experiment in spite of many 

replications of this effect by Abrams and Colleagues (Abrams & Christ, 2003, 2005; 

Christ & Abrams, 2008; Christ et al., 2008)? (2) Why is there no significant 

attenuation to capture by abrupt onsets when multiple onsets are presented? These 

two questions form the basis of the experimental work done in the course of my PhD 

and they will be both addressed in the following empirical chapters. 
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Overview of the Empirical Chapters 

In the following sections I present four empirical chapters examining 

attention capture by motion onsets and abrupt onsets. The first three chapters are 

concerned with explaining the nature of attention capture by motion onsets, while the 

last looks at the effect of number of onsets that are prioritised in search. The first 

chapter reports two experiments that test the role of motion refresh rate in attention 

capture. The results suggest that capture is strongly mediated by motion refresh rate. 

The findings also contest Abrams and colleagues findings, which seem to strongly 

depend on their use of low refresh rate (i.e., jerky) motion.  

The second chapter further explores the reasons for capture by jerky motion. 

Five experiments suggest that low level changes play a strong role in attention 

capture and they suggest a possible single mechanism that accounts for attention 

capture by abrupt onsets and by motion onsets (as shown by Abrams and colleagues). 

The third chapter reports three experiments that show a new aspect of motion change 

that captures attention – namely a change in the direction of motion.  

Finally, the fourth chapter explores the attention capture by multiple onsets. 

The overall display size was fixed and the number of onsets was systematically 

varied. The results suggest that only a single onset is automatically prioritised when 

the onset status is irrelevant to the search task. However, when the onset status 

becomes task relevant, selective processing of more than one item can be achieved.  
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Overall, the results of all four empirical chapters support a more unitary 

mechanism of capture, which is sensitive to low level perceptual factors and which 

speaks for a purely stimulus driven account of capture. 
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Chapter 3: Motion onset does not capture attention when subsequent 

motion is “smooth" 
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Introduction 

Motion in the visual field carries important information that is critical for an 

observer to successfully deal with everyday events (Gibson, 1950), such as a 

suddenly approaching car or a waving hand. The human visual system is known to 

have specialized motion processing capabilities, and one might suspect that motion 

automatically attracts attention, in order to prioritize the processing of information 

associated with the motion. However, research in the laboratory has, in general, not 

supported this idea (e.g., Hillstrom & Yantis, 1994; Yantis & Egeth, 1999; for 

reviews, see Rauschenberger, 2003; Theeuwes, 2010). For example, Hillstrom and 

Yantis used a visual search task and showed that a moving stimulus (or a stimulus 

containing a moving texture) was not easier to find than a stationary stimulus unless 

the motion was predictive of the target’s location or the motion resulted in the 

appearance of a new object. 

However, these ideas have been contested by a number of studies showing, 

for example, that motion can have an effect on attention under certain conditions. For 

example, capture occurred when motion was used as a cue for a motion-defined 

target, but not for a target that was defined in another dimension, such as color or 

abrupt onset (Folk, Remington, & Wright, 1994). Others have suggested that 

attention capture occurs only with certain types of motion, such as linear, oscillating, 

and looming motion (Franconeri & Simons, 2003; Skarratt, Cole, & Gellatly, 2009; 

von Mühlenen & Lleras, 2007). Moreover, von Mühlenen, Rempel, and Enns (2005) 

argued that capture does not solely depend on motion type, but also on the timing of 

motion (e.g., motion starts 150 ms before search begins). 



65 

 

Finally, Abrams and Christ (2003) supported Hillstrom and Yantis’s (1994) 

finding that motion per se does not capture attention, but instead that the onset of 

motion is what captures attention. They used a visual search task with four stimuli, 

each having a task-irrelevant motion attribute: continuous motion, motion onset, 

motion offset, and static. They showed that although a continuously moving target 

was not easier to find than a static target, a motion-onset target was, supporting their 

motion-onset account. In two other studies, they replicated this benefit for a motion 

onset when comparing it with abrupt onsets (Christ & Abrams, 2008) and also when 

testing older people (Christ, Castel, & Abrams, 2008). The reasoning behind the 

motion-onset account is that continuous motion, as such, is far too common in our 

natural environment to be informative of behaviourally urgent events. However, the 

onset of motion can be important for the categorization of objects as animate or 

inanimate—which, in evolutionary terms, might be vital for the detection of prey and 

predators (e.g., Scholl & Tremoulet, 2000). 

von Mühlenen et al. (2005) also found that the onset of motion (and not 

motion per se) captures attention, but only if the onset is temporally unique. 

According to their unique-event account, any sudden change is capable of capturing 

attention as long as it occurs at a time when nothing else is happening in the visual 

field. While the motion-onset account assumes that motion onset enjoys a special 

status in attention capture (like abrupt onsets), the unique-event account assumes that 

motion onset is like any other sudden change (i.e., colour, luminance, or shape 

changes), which will capture attention only when it is temporally unique. 
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Contradictory to von Mühlenen et al.’s (2005) findings, Abrams and Christ 

(2003) found capture for motion onset when it was not unique—for example, when it 

co-occurred with display transition, where figure-8 placeholders changed to letters. 

There were a number of notable differences between the two studies: First, in von 

Mühlenen et al.’s study, motion attributes were varied across different experiments, 

whereas in Abrams and Christ’s (2003) study, motion attributes co-occurred within 

the same trial. Second, von Mühlenen et al. used slope differences (RT as a function 

of display size) as a measure for attentional capture, whereas Abrams and Christ 

(2003) primarily used differences in the RTs. Finally (and I believe most critically), 

von Mühlenen et al. used relatively smooth motion (85 Hz), whereas Abrams and 

Christ (2003) used rather jerky motion (15 Hz). Perhaps the form of crude motion 

used by Abrams and Christ (2003, as well as by in Christ & Abrams, 2008, and 

Christ et al., 2008) produced abrupt changes that captured attention. If this were the 

case, capture would occur only with jerky, but not with smooth, motion. 

In order to test this hypothesis, an experiment that could replicate Abrams 

and Christ’s (2003) finding while also manipulating the motion refresh rate was 

designed. In contrast to von Mühlenen et al. (2005), it was decided not to vary 

display size in this study, in order to prevent the number of trials from escalating, and 

because it was consider it to be less critical for the purpose of our study. 

Consequently, absolute RT differences, which are generally considered to be less 

reliable than slope differences (e.g., Simons, 2000), were used as an indicator for 

attentional capture. However, this seemed a justifiable compromise, given that our 

primary concern was to see whether the RT difference in Abrams and Christ’s 
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studies—irrespective of whether it indicated attention capture—critically depended 

on the jerky motion that they used. 

 

Experiment 3 

Experiment 3 used the same basic methodology as Christ and Abrams (2008). 

The trial sequence showed two figure-8 placeholders followed by three letter stimuli 

(one static, one onset, and one moving stimulus).
2
 The moving stimulus was 

refreshed at 100, 33, 17, or 8 Hz, leaving intervals of 10, 30, 60, or 120 ms, 

respectively, between consecutive frames. In Experiment 3, the moving stimulus 

started moving at the display transition (from figure-8 to letters). It was predicted 

that the RT difference between the static and moving target types would critically 

depend on the motion refresh rate. 

 

Method 

Participants. A group of 14 undergraduates (5 male, 9 female; mean age 19.7 

years) from the University of Warwick participated in return for course credit. All of 

them reported normal or corrected-to-normal vision and were naïve to the purpose of 

the experiment. 

                                                

2
 Christ and Abrams (2008) used a fourth stimulus type, termed a “new moving object,” in 

which the target was a moving abrupt-onset stimulus. This stimulus type was not included 

here because their results in this condition did not differ from the static abrupt-onset 

condition. 
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Apparatus and Stimuli. The participants were seated in a dimly lit, sound-

attenuated room in front of a 19-in. CRT monitor at a distance of approximately 57 

cm. The monitor was driven at 100 Hz at a resolution of 1024 × 786 pixels. The 

experiment was controlled by a PC-compatible computer using custom-written 

software. Participants’ responses were recorded using the left and right arrow keys 

on a standard keyboard. 

The stimuli consisted of a fixation cross, figure-8 placeholders, and letters, 

presented in grey drawn on a black background. The fixation cross had a size of 0.6° 

of visual angle and was presented at the centre of the screen. The figure-8 

placeholders and letters subtended 1 × 2° and were made of seven line segments 

(length 1.0°, thickness 0.13°). The letters were “H,” “U,” “S,” and “E” and were 

made by removing the corresponding line segments from the figure-8s. The stimuli 

were placed on the three imaginary corners of a randomly oriented equilateral 

triangle centred on fixation (the fixation–letter distance was 12.5°). 

Letters in the search display were stationary or moved on a circular path 

(radius = 1.3°) at a constant speed of 8.7°/s, at which speed a full rotation took 960 

ms (see Fig. 3.1). The moving direction was varied randomly between clockwise and 

anticlockwise. The refresh rate of the moving stimulus was systematically varied 

among 100, 33, 17, and 8 Hz. For example, a 100-Hz stimulus was updated every 10 

ms (displaced by 0.09º), producing the impression of smooth motion, whereas an 8-

Hz stimulus was updated every 120 ms (displaced by 1.05º), producing the 

impression of jerky motion. This meant that motion speed was held constant while 

motion quality was systematically varied. 
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Procedure and Design. A trial started with the presentation of a placeholder 

display that consisted of a fixation cross and two figure-8 placeholders. After 960 

ms, the placeholder display was followed by the search display, which always 

contained three letters. The static and moving letters were revealed by deleting the 

irrelevant line segments from the corresponding placeholders, whereas the onset 

letter appeared at the previously unoccupied location. Stimulus movement began 

when the placeholders changed to letters (see Figure 3.1). 

 

 

Figure 3.1. Example display from Experiment 3. Stimulus movement began when 

the placeholders changed to the letter stimuli 

 

Participants were asked to look for “H” and “U” targets among “S” and “E” 

distractors and to respond with the arrow keys. Half of the participants used the left 

arrow for “H” and the right arrow for “U,” and vice versa for the other half. They 

were instructed to respond to the target as fast as they could whilst trying not to make 

more than 5% errors. The search display stayed on until the participant responded or 

until 10 s had elapsed. In the case of wrong responses, immediate feedback reading 
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“error” was given on the screen, and participants had to press the space bar to 

continue the experiment. Otherwise, the next trial started after an interval of 1 s. 

Each participant completed 20 practice trials followed by 480 experimental trials. 

The experimental trials were divided into 10 blocks of 48 trials each, with short 

breaks between blocks. 

The experiment systematically varied three factors: target identity (“H” or 

“U”), target type (static, onset, or moving), and motion refresh rate (100, 33, 17, or 8 

Hz). All possible factor combinations were presented in a random order. For the 

analysis, target identity was not considered further. 

 

Results 

RTs. Mean correct RTs were calculated separately for each participant and 

factor combination, excluding outlier trials with RTs smaller than 200 ms or larger 

than 2,000 ms (1.6% of all trials). Figure 3.2 shows the averaged RTs as a function 

of motion refresh rate, with separate lines for each target type. As can be seen, a 

moving target was found as quickly as an onset target or as slowly as a static target, 

depending on the motion refresh rate. 

Individual mean RTs were submitted to a 3 × 4 repeated measures ANOVA 

with the factors target type (static, onset, or moving) and motion refresh rate (100, 

33, 17, or 8 Hz). There was a significant main effect of target type, F(2, 26) = 23.16, 

p < .001: Post-hoc LSD tests revealed that onset targets were found significantly 

faster than moving targets, which in turn were found significantly faster than static 

targets (756, 813, and 862 ms, respectively). There was also a significant main effect 
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for motion refresh rate, F(3, 39) = 5.64, p < .01: LSD tests revealed that RTs in the 

8-Hz condition were significantly slower (on average, 29 ms) than RTs in the other 

three conditions. The two-way interaction was also significant, F(6, 78) = 3.13, p = 

.01. 

 

 

Figure 3.2. Mean correct RTs as a function of motion refresh rate in Experiment 3, 

with separate lines for each target type.  

 

To further explore the two-way interaction, three separate 2 × 4 split-up 

ANOVAs were conducted comparing each possible pair of target type levels. A 

significant target type × motion refresh rate interaction was found in the static–

moving pair, F (3, 39) = 4.9, p < .01, and in the onset–moving pair, F (3, 39) = 3.85, 

p = .01, but not in the static–onset pair (F < 1). As can be seen in Figure 3.2, the 

static line appears parallel to the onset line, but not to the moving line. Separate 

Bonferroni adjusted t tests revealed that moving targets were found significantly 

faster than static targets at 8 Hz and 17 Hz, but significantly slower than onset targets 
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at 33 Hz and 100 Hz (all p < .01). To summarize, a rather “smoothly” (100 or 33 Hz) 

moving target was not found any faster than a static target, whereas a rather “jerkily” 

(17 or 8 Hz) moving target was found as quickly as an onset target. 

 

Table 3.1. 

Mean percentage errors in Experiments 3 and 4  

 Target Type 

Motion Refresh Rate Static Onset Moving 

Experiment 3    

     100 Hz 5.7 2.7 5.7 

     33 Hz 5.5 2.5 4.5 

     17 Hz 6.3 3.8 3.8 

     8 Hz  4.5 2.7 5.4 

Experiment 4    

     100 Hz 4.4 4.8 5.0 

     33 Hz 6.9 3.3 5.0 

     17 Hz 3.3 3.1 3.1 

     8 Hz 3.8 2.9 5.0 

 

Errors. Mean percentage errors (see Table 3.1) were calculated separately for 

each participant and variable combination. A 3 × 4 ANOVA with the factors target 

type and motion refresh rate revealed a significant main effect of target type, F(2, 26) 

= 5.68, p < .01, due to fewer errors in the onset condition than in the static and 

moving conditions (2.9% vs. 5.5% and 4.8%, respectively). While the two-way 

interaction was not significant, F(6, 78) = 1.13, n. s., errors overall showed a very 

similar pattern to the RTs, suggesting that the RTs are not confounded by speed–

accuracy trade-offs. 
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Discussion 

The results showed that a moving target is easier to find than a static target 

only when the motion refresh rate is low. This perfectly corresponds with previous 

findings: On the one hand, the results in the 100-Hz condition replicated the pattern 

found by von Mühlenen et al. (2005) with display size three (829, 833, and 738 ms 

vs. 618, 615, and 576 ms for static, moving, and onset targets, respectively), showing 

no evidence for capture by motion onsets. This represents, in our view, the key 

finding of Experiment 3, because it invalidates Abrams and Christ’s (2003) account, 

according to which a motion onset should always capture attention.  

The absence of capture denies motion onset a special role in attention capture, 

leaving motion onset on a par with any other feature change. However, this absence 

can easily be explained within the theoretical framework provided by von Mühlenen 

et al.’s (2005) unique-event account, according to which motion onset should not 

capture attention when it occurs simultaneously with a display transition (i.e., when it 

is not temporally unique). 

On the other hand, the RTs in the 17-Hz condition for static, moving, and 

onset targets replicated Christ and Abrams’s (2008) RTs (872, 800, and 756 vs. 766, 

690, and 614 ms, respectively).
3
 It is also in line with other similar findings by 

Abrams and colleagues (Abrams & Christ, 2003; Christ et al., 2008), for which they 

                                                
3
 Our participants were somewhat slower and made more errors than Christ and Abrams’s 

(2008) participants, but this is most likely due to differences in the homogeneity of the 

distractors (i.e., in a given trial, we used different distractor letters, whereas they used 

identical letters). 
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used 15-Hz motion.
4
 Whereas Abrams and Christ interpreted their finding as 

evidence for capture by motion onset, the present study suggests that this effect was 

induced by motion jerkiness.  

One possible effect of motion jerkiness could be that the relatively large 

displacement of the moving stimulus produces a kind of transient flicker that 

captures attention (e.g., Ludwig, Ranson, & Gilchrist, 2008; Spalek, Kawahara, & Di 

Lollo, 2009). This and other explanations will be taken up again in the General 

Discussion. To sum up, the present study reconciles these apparently conflicting 

results by showing that the RT benefit for motion-onset targets depends on the 

motion refresh rate. 

Figure 3.2 might suggest that the interaction between target type and motion 

refresh rate is driven by an RT increase in the static condition (68 ms) rather than by 

a decrease in the motion condition (-26 ms), as would be expected if motion onset 

captures attention. However, this could be due to an overall main effect of motion 

refresh rate that is superimposed on the interaction (e.g., due to the increased 

perceptual noise/flicker at lower refresh rates).  

An indication of such an overlay effect comes from the fact that RTs in the 

onset condition showed an increase (53 ms) similar to that of RTs in the static 

condition (this was also true for Experiment 4). Moreover, this main effect was 

                                                
4
 In one of their studies (Abrams & Christ, 2005), they used smooth, 60-Hz motion in a 

cueing paradigm. They showed that only the onset of irrelevant motion reduced the 

inhibition-of-return effect. They interpreted this finding as further evidence for their motion-

onset account. However, since the motion onset occurred around 400 ms before the target 

appeared, this finding is also in line with the unique-event account. 
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mostly due to the 8-Hz condition (overall 30-ms slower RTs as compared to the other 

three conditions), where motion jerkiness might have been particularly disruptive. 

 

Experiment 4 

In Experiment 4, motion onset was replaced with continuous motion, in 

which the stimulus started moving at the beginning of the trial and continued to 

move throughout the trial (see Figure 3.3). The aim was to test whether motion 

refresh rate had the same attentional effect when the motion-onset signal was absent. 

Finding the same kind of interaction as in Experiment 3 would indicate that attention 

is altered by jerky motion per se, whereas the absence of such an interaction would 

indicate that attention is altered by jerky motion only in combination with motion 

onset. In other words, Experiment 4 tested whether jerky motion affects the 

perception of motion per se (e.g., by adding noise) or instead affects the onset of 

motion (e.g., by boosting or delaying the perceived onset of motion). 

 

Method 

Participants. A group of 12 students from the University of Warwick (4 

male, 6 female; mean age, 21.3 years) participated in return for £5. All reported 

normal or corrected-to-normal vision and were naïve to the purpose of the 

experiment. None had participated in Experiment 3. 
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Apparatus, Stimuli, Procedure, and Design. The apparatus, stimuli, 

procedure, and design were the same as in Experiment 1, except that the motion 

started at the beginning of the placeholder display (see Figure 3.2). 

 

 

Figure 3.3. Example display from Experiment 4, with continuous motion 

 

Results 

RTs. Mean correct RTs, excluding outliers (1.3%), are presented in Figure 

3.4. A 3 × 4 ANOVA with the factors target type (static, onset, or moving) and 

motion refresh rate (100, 33, 17, or 8 Hz) revealed a significant effect for target type, 

F(2, 22) = 52.76, p < .001: LSD tests revealed that moving targets were found 75 ms 

slower than static targets, which in turn were found 103 ms slower than onset targets 

(all ps < .001). There was also a significant main effect of motion refresh rate, F(3, 

33) = 25.99, p < .001: LSD tests revealed that the 8-Hz condition was 35 ms slower 

than the 17-Hz condition, which in turn was on average 25 ms slower than the 33 Hz 

and 100-Hz conditions (all ps < .05, except for the difference between the 33 Hz and 

100-Hz conditions: p = .6 1). Critically, the two-way interaction was not significant, 

F < 1. 
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Errors. Mean percentage errors are presented in Table 3.1. A 3 × 4 ANOVA 

with the factors target type and motion refresh rate revealed no significant effects (all 

ps > .1), indicating that the RT results were not confounded by speed–accuracy trade-

offs. 

 

 

Figure 3.4. Mean correct RTs as a function of motion refresh rate in Experiment 4, 

with separate lines for each target type 

 

Discussion 

Experiment 4 did not show an RT benefit for continuously moving targets, 

with either smooth or jerky motion. That is, task-irrelevant continuous motion can 

easily be ignored, irrespective of whether the motion is jerky or not. This result is 

also consistent with previous findings (Abrams & Christ, 2003; Hillstrom & Yantis, 

1994; von Mühlenen et al., 2005) and suggests that jerkiness interferes only with the 

onset of motion (Experiment 3), not with motion per se (Experiment 4). 
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Finding a target that was continuously moving actually took longer than 

finding a stationary target. This somewhat unexpected RT cost is consistent with 

previous findings. For example, Abrams and Christ (2003) found a similar 

disadvantage of around 20 ms—which was, however, not statistically significant. 

Likewise, von Mühlenen et al. (2005) reported a pilot experiment in which search 

efficiency was impaired when the target was continuously moving. This could be 

explained by visual degradation of the continuously moving stimulus, either because 

the visual quality was reduced (e.g., retinal smearing, reduced luminance contrast) or 

because the cross-referencing of shape features becomes less reliable (for a similar 

account, see von Mühlenen & Müller, 2000). 

 

General Discussion 

The results from the present study can be summarized as follows: When 

motion is smooth, neither the onset of motion nor continuous motion captures 

attention. However, when motion is jerky, the onset of motion (but not continuous 

motion) appears to capture attention. It was argued that the first finding fits with von 

Mühlenen et al.’s (2005) unique-event account, but not with Abrams and Christ’s 

(2003) motion-onset account. The second finding still needs further explanation. In 

the discussion of Experiment 3, it was suggested that the transient flicker that 

accompanies jerky motion might capture attention. However, Experiment 4 ruled out 

this possibility, by showing that jerkiness did not capture attention when motion was 

continuous. This suggests that jerkiness affects only the onset of motion. Maybe the 

temporal delay between two frames turns the moving stimulus into a new object (see 
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Yantis & Gibson, 1994). However, our moving stimulus—despite its jerkiness— 

always had an inter stimulus interval of 0 ms, producing a strong impression of 

second-order motion (i.e., of a single object moving from locations A to B). 

Other explanations could be that jerkiness boosts the motion-onset signal, 

making it strong enough to capture attention, or it delays the perceived onset of 

motion, turning it into a temporally unique event that captures attention. A possible 

reason for the perceived delay could be that the very first displacement of the moving 

stimulus goes unnoticed because of interference from the other changes co-occurring 

in the display (i.e., the onset and segment removals). Therefore, only the second 

displacement is noticed, which becomes the perceived onset of motion. More 

empirical work is required to better understand the nature of this interaction between 

motion onset and jerkiness. 

According to Abrams and Christ (2006), attention capture is not caused by 

lower-level changes in luminance-defined contours, but instead by higher-level 

changes in the perceived location of the object. The present study has clearly 

demonstrated that such a change in the perceived location is not sufficient for 

attention capture, because capture did not occur with smooth motion, despite the 

evident change in the perceived location of the object. Thus, the present study allows 

for a new interpretation of Abrams and Christ’s (2003) findings, where lower-level 

changes play an important role in attentional prioritization. This is also in line with 

the broader view that attention capture has a strong bottom-up component that is 

primarily saliency driven (e.g., Theeuwes, 2010). It remains an open question 

whether the temporal uniqueness of an event, as described by von Mühlenen et al.’s 
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(2005) account, leads to an increase in the saliency of that event or whether it leads 

to an increase in the priority of that event at a later processing stage. Nevertheless, 

the unique-event account provides a useful framework that can account for a wide 

range of findings. 
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Chapter 4: The role of motion, flicker and abrupt displacement in attention 

capture 
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Introduction 

The debate regarding the ability of motion to capture attention is more than a 

decade old. While most of the studies seem to conclude that motion per se does not 

capture attention, the evidence is less conclusive for the onset of motion (Abrams 

and Christ, 2003; von Mühlenen, Rempel & Enns, 2005; Sunny and von Mühlenen, 

2011). For example, Abrams and colleagues (Abrams & Christ, 2003, 2005; Christ & 

Abrams, 2008, Christ, Castel & Abrams, 2008) showed that an object that started 

moving (motion onset) was automatically prioritized over an object that remained 

stationary (static), was continuously moving (continuous motion), or had stopped 

moving (motion offset). They argued from an evolutionary perspective that the onset 

of motion is important because it could aid fast and reflexive detection of prey or 

predators. In their motion onset account they argued that capture occurs because of a 

higher level change in the status of an object from stationary to moving rather than 

from a low-level change signalling the motion onset (Abrams & Christ, 2006). 

Further evidence for this comes from Franconeri & Simons (2005), who showed that 

motion onset captured attention even when the physical onset of motion was not 

perceived (i.e., it occurred during a saccade). 

Contradictory to this position that capture depends on higher-level 

representations, von Mühlenen et al. (2005) argued that lower-level changes to basic 

object features are crucial in attention capture. They proposed that any change, 

including motion onset, captures attention only when it occurs during a period of 

temporal calm (i.e., when nothing else is happening in the display). According to 

their unique event account, changes that happen simultaneously with display 
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transition (i.e., when the placeholders change to search letters) fail to capture 

attention because the change becomes masked by the other changes in the display. 

However, this dependence of capture on the timing of events was not in line with the 

findings of Abrams and Christ (2003, 2005), who found capture even when motion 

began during display transition. 

Experiment 3 and 4 (2011) offered a resolution for this apparent discrepancy, 

pointing to the refresh rate of motion as the critical difference between the two 

studies. Abrams and Christ (2003) used a relatively low refresh rate of 15 Hz leaving 

the impression of rather jerky motion while von Mühlenen et al. (2005) used a 

refresh rate of 75 Hz leaving the impression of smooth motion. Experiment 3 and 4 

systematically varied motion refresh rate, and showed that the attention capture for 

motion onsets stimuli only occurred with jerky – but not with smooth motion (see 

Figure 3.1). Experiment 3 showed that continuous motion could be ignored, even 

when motion was jerky. Thus jerkiness per se cannot account for capture at lower 

motion refresh rates. Only the combination of jerky motion and motion onset 

captures attention. 

The absence of capture with smooth motion was in line with von Mühlenen et 

al.’s (2005) unique-event account, according to which motion onset should not 

capture attention when it occurs simultaneously with display transition. However the 

reasons for attention capture by the onset of jerky motion are not fully understood. 

The differential effects of smooth and jerky motion could be further understood 

by looking at the physical differences between the two. All motion generated on a 

computer monitor consists of deleting an object from one location after a specified 
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period of time and redrawing it at a different location for a period of time. When the 

duration for which the object is shown at one location is short and/or the distance 

between two simultaneous locations is small, then the object appears to move rather 

smoothly to the new location. However, when the duration and/or distance increase, 

then the stimulus appears more to “jump” to the new location, giving the impression 

of a 'jerky motion'. Even though in both instances the stimulus is clearly perceived as 

moving from one location to another, capture could nevertheless be mediated by 

some specificity of these spatial and temporal factors. 

The current chapter presents a series of experiments that will further explore 

why the onset of jerky, but not smooth motion captures attention. The basic idea is to 

further break apart motion into its components, and to test whether a certain 

component is necessary or even sufficient to capture attention. 

Experiment 5 

When motion is jerky, the relatively large displacement of the moving stimulus 

produces a stream of abrupt changes, which is perceived as a transient flicker. Maybe 

motion is not required at all, and this type of flicker simply captures attention. 

Indeed, Seitz, Nanez, Holloway and Watanabe (2006) showed that training in motion 

perception lowers the threshold for perceiving flicker, suggesting that these are based 

on related mechanisms. These studies suggest that the abrupt luminance changes 

associated with flicker might produce attentional effects and that they might be 

comparable to those produced by jerky motion. 

Other studies looking at the attentional effects of flicker also suggested that the 

dynamics of visual flicker might be used to guide attention. For example, in a visual 
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search task Spalek, Kawahara, and Di Lollo (2009) showed that a flickering target 

captured attention (i.e., it “popped out”) when it flickered at a different frequency 

than the distractors. This occurred irrespective of the specific frequency of the targets 

and the distractors (4, 10, 20 Hz), leading to the conclusion that flicker is a primitive 

visual feature. Additionally, in a contrast discrimination task, Ludwig, Ranson, and 

Gilchrist (2008) asked participants to fixate a target that had a different contrast in 

comparison to the distractors. They found that a flicker distractor was particularly 

disruptive to performance as compared to a motion onset, an abrupt onset or an 

abrupt offset distractor. 

Experiment 5 examines whether the onset of flicker in a non-moving stimulus 

has the same effect on attention as the onset of jerky motion. If abrupt luminance 

change is the critical component that captures attention in jerky motion, then a 

flickering object should also be automatically prioritised in search. Flicker frequency 

was varied at rates comparable to the motion refresh rates used Experiments 3 and 4. 

 

Method 

Participants. Twelve students from the University of Warwick (2 male, 10 

female, mean age 19.62 years) participated in return for course credit. Participants 

were drawn from the same pool for the other experiments in this chapter too. All 

reported normal or corrected to normal visual acuity and were naïve to the purpose of 

the experiment. 

Apparatus and Stimuli. The experiment was controlled using custom written 

software, by an IBM-PC compatible computer. Stimuli were presented on a 19" CRT 



86 

 

monitor driven at 100 Hz at a resolution of 1024 x 768 pixels.  The participants were 

seated in a dimly lit sound attenuated cubicle, at a distance of 57 cm from the 

monitor. Participants’ responses were recorded using left and right arrow keys on a 

standard keyboard. 

Stimuli consisted of a fixation cross (0.6°), figure-8 placeholders, and letters 

(both 1° x 2°), presented in grey drawn on black background. The letters were ‘H’, 

‘U’, ‘S’ and ‘E’ and were made by removing the corresponding line segments from a 

figure-8 placeholder. Stimuli were placed on the three imaginary corners of an 

equilateral triangle with a randomly varying orientation, centred on fixation 

(fixation-letter distance was 12.5°). The static and flicker letters were revealed by 

deleting the irrelevant line segments from the corresponding placeholders, whereas 

the onset letter appeared at the previously unoccupied corner of the triangle (see 

Figure 4.2). Flicker at four different frequencies (100, 33, 17 and 8 Hz) were used.  

At all the frequencies, the stimulus was displayed for 20 ms, and then erased for 0, 

10, 40 or 100 ms corresponding to 100, 33, 17 or 8 Hz respectively. 

Procedure and Design. A trial started with the presentation of a placeholder 

display for 960 ms that consisted of a fixation cross and two figure-8 placeholders. 

This was followed by the search display containing three letters. The search display 

remained until the participant responded or 10 seconds had elapsed. Participants 

were asked to look for the target letter ‘H’ or ‘U’ among ‘S’ and ‘E’ distractors and 

to respond with the arrow keys. Half of the participants used the left arrow for H and 

right arrow for U, and vice versa for the other half. They were instructed to respond 

to the target as fast as they could while keeping the error rate to a minimum (not 
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more than 5%). Error responses were followed by an immediate visual feedback and 

the prompt to press the space bar to continue. The next trial, started automatically 

after an interval of 1 second. Each participant completed 20 practice trials followed 

by 480 experimental trials. The experimental trials were divided into 10 blocks of 48 

trials each, with short breaks between blocks. 

 

 

Figure 4.1. Example display for Experiment 5-8. Stimulus flicker (indicated by cross 

hatch) in Experiment 5 or stimulus displacement in Experiment 6-8 began at display 

transition when the placeholders changed to letters. The size of the (initial) 

displacement was systematically varied from 0.09 to 1.05° visual angle. Smooth 

motion in Experiment 6 is indicated by curved arrow. Gray placeholders in the 

search displays (Experiment 6, 7 & 8) indicate the displacement and were not 

visible. 

 

The experiment systematically varied three factors: target identity (H or U), 

target type (static, onset, flicker), and flicker frequency (8, 17, 33, 100 Hz). All 
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possible factor combinations were presented in random order. Note that a stimulus 

flickering at 100 Hz was perceptually identical to a static stimulus. For the analysis, 

target identity was not further considered, yielding 40 trials for each combination of 

target type and flicker frequency. 

 

Results 

RTs. Mean correct RTs were calculated separately for each participant and 

factor combination, excluding outlier trials with RTs smaller than 200 ms or larger 

than 2000 ms (1.3% of all trials). The RTs were submitted to a 3x4 Repeated 

Measures ANOVA with the factors target type (static, flicker, or onset), and flicker 

frequency (8, 17, 33, 100 Hz). There was a significant main effect of both target 

type, F(2, 22) = 8.29,  p <.01 with onsets found significantly faster than either a 

static, F(1, 11) = 18.29,  p <.001) or a flicker, F(1, 11) = 4.99,  p <.05) target. There 

was no difference in RTs between an onset and a motion onset (F = 2). There was 

also a main effect of flicker frequency, F(3, 33) = 3.65, p <.05. Moreover, the 

interaction between target type and flicker frequency was significant, F(6, 66) = 

2.57, p <.05.  

Errors. Mean percentage errors were calculated separately for each 

participant and factor combination. As can be seen from Table 4.1, the averaged 

error rates were relatively low (on average 3.9%), suggesting that most participants 

had no problem following the instructions keeping errors below 5%. A 3x4 Repeated 

Measures ANOVA showed a significant main effect of target type, F(2, 22) = 8.01, p 

<.01, due to participants making more errors when the target was a flickering than 
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when it was either an onset or a static item. There was no difference in errors 

between onset and static target types. There was neither a main effect of flicker 

frequency, nor did it interact with target type (both F < 1.5). Thus, regarding target 

type, errors were higher in conditions in which the RT was slower, indicating the 

possibility of a speed accuracy trade-off. 

Table 4.1.  

Mean Percentage Errors for various refresh rates (Hz) in Experiments 5 and 

displacements (degrees) in Experiments 6 and 7. 

 Target Type 

     Flicker frequency /  

     displacement 

Static Onset Flicker / 

displaced 

Experiment 5    

     100 Hz  5.2 3.8 6.3 

     33Hz 5.6 3.5 5.4 

     17 Hz 4.2 5.4 8.3 

     8 Hz 5.0 3.3 6.7 

Experiment 6    

     0.09° 4.0 1.5 5.4 

     0.26° 4.8 2.1 3.5 

     0.52° 3.8 2.1 4.2 

     1.05° 4.8 1.5 2.9 

Experiment 7    

     0.09° 2.7 2.7 3.1 

     0.26° 2.3 4.0 1.7 

     0.52° 2.5 2.5 2.9 

     1.05° 3.8 1.5 3.5 

 

Inverse-Efficiency Score. RTs were adjusted for errors by calculating 

inverse-efficiency scores, using the formula: inverse-efficiency scores = RT/((100- 

ER)/100) as suggested by Townsend and Ashby (1983). Figure 4.3 shows the 

inverse-efficiency scores as a function of flicker frequency with separate lines for 
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each target type. As can be seen, a flicker target was not found any faster than a static 

target and flicker frequency did not affect search performance. 

The mean inverse-efficiency scores for each participant was submitted to a 

3x4 repeated measures ANOVA with the factors target type (static, flicker or onset) 

and flicker frequency (100, 33, 17, or 8 Hz) There was only a significant main effect 

for target type, F(2, 22) = 10.6, p < 0.001: Post-hoc LSD tests revealed that 

participants were on average 48 ms faster (based on the inverse efficiency score) in 

finding the target when it was an onset than when it was either a static or a flicker 

stimulus, with no difference between the latter two target types.  Note that non-

corrected RTs showed a small but significant advantage for flicker compared to static 

in the 17 Hz condition, t(11) = 2.29, p < .05, but this effect disappeared when 

correcting for errors, t(11) = 0.65, ns. 

 

Figure 4.2. Mean Inverse-efficiency scores as a function of flicker frequency in 

Experiment 5, with separate lines for each target type.  
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Discussion 

The results of Experiment 5 show that search does not become more efficient 

when the target letter flickered, as compared to when it was static. This indicates that 

a luminance flicker does not capture attention when flicker is not relevant to the 

search task. Thus, the present experiment suggests that the attentional effect found 

for the onset of jerky found in Experiments 3 and 4 is not due to flicker. 

The findings contrast with those of Spalek et al. (2009), who showed that 

flicker could be effectively used to detect a target item. However, in their study the 

flicker defined the target item, making flicker relevant to the search task. Thus, 

participants were likely to have a top-down attentional set for the detection of flicker 

(Folk, Remington & Wright, 1994). In contrast, flicker was task irrelevant in the 

present experiment and so observers had no reason to set themselves to detect flicker.  

This suggests that the visual system could effectively use flicker as a feature to 

guide search, but also that flicker does not automatically capture attention. The 

present study is similar to that of Pinto, Olivers and Theeuwes (2006), who asked 

participants to find if a vertical or horizontal line segment was present among 

slanting line segments. The items in the display flickered at different frequencies 

(between 2.86 and 6.67 Hz), but were irrelevant to the task. They found that flicker 

had no effect on task performance. 

 

Experiment 6 

Experiment 5 showed that abrupt luminance changes associated with flicker 

are not sufficient to capture attention. Thus, attention capture with jerky motion does 
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not seem to be caused by the concurrent abrupt luminance changes. Experiment 6 

tests whether capture by jerky motion is linked to the events that occur immediately 

at the beginning of search or whether it is linked to the continued jerkiness of 

motion. If capture is determined by changes to low level features, more than by a 

higher-level change in the dynamic status of an object, it might occur at a very early 

stage of processing (Donk & van Zoest, 2008; Kim & Cave, 1999; see Theeuwes, 

2010, for a review). If, indeed, the RT benefit observed with jerky motion is due to 

bottom up capture, then “continued” jerkiness of motion might not be essential for 

attention capture.  

In Experiment 6 therefore continued motion was smooth (100 Hz) after a first 

“jerky” displacement. More precisely, at display transition the motion stimulus was 

displaced by one step of 1.05, 0.52, 0.26 or 0.09° (factor displacement) and then 

remained stationary for 120, 60, 30 or 10 ms, respectively, in order to keep speed 

constant for all displacements. Thereafter motion was smooth. These initial 

displacements and their delays correspond spatio-temporally exactly to the motion 

refresh rates (8, 17, 33 and 100 Hz) used in Experiments 3 and 4 (i.e., the two 

experiments differed only with respect to whether the subsequent motion was smooth 

or jerky). 

 

Method 

Participants. Twelve undergraduates (1 male, 11 female, mean age 18.76) 

from the University of Warwick participated in return for course credit.  



93 

 

Apparatus, Stimuli, Procedure and Design. The apparatus, stimuli, 

procedure and design were the same as in Experiment 5, except that the flicker 

stimulus was replaced by a moving stimulus (see Figure 4.2). At display transition, 

the placeholder of the motion stimulus was deleted while the corresponding letter 

was redrawn at the new displaced location, where it remained still for a duration 

which varied proportionally to the size of the first displacement. The size of the 

initial displacement was either 0.09, 0.26, 0.52 or 1.05°, and the corresponding delay 

was 10, 30, 60 or 120 ms.  

Thereafter the motion stimulus continued to move smoothly at 100 Hz on a 

circular path (radius = 1.3°) at the same constant speed of 8.7°/s, at which a full 

rotation took 960 ms. Note that the smallest displacement of 0.09° followed by the 

10 ms delay corresponds to the smooth 100-Hz motion, thus in this condition there 

was no interruption after the initial displacement. Moving direction was randomly 

varied between clockwise and anti-clockwise. 

 

Results 

RTs. Mean correct RTs were calculated separately for each participant and 

factor combination, excluding outlier trials with RTs smaller than 200 ms or larger 

than 2000 ms (0.9% of all trials). Figure 4.4 shows the averaged RTs as a function of 

initial displacement with separate lines for each target type. 

A 3x4 repeated measures ANOVA conducted on the mean correct RTs with 

the factors target type (static, moving, or onset), and initial displacement (0.09, 0.26, 

0.52, or 1.05°) showed a significant main effect of target type, F(2, 22) = 34.6, p < 
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.001: Posthoc LSD tests revealed that overall, onset targets were found significantly 

faster than the moving targets, which in turn were found significantly faster than 

static targets (678, 710, and 773ms, respectively). 

The two-way interaction was also significant, F(6, 66) = 7.82, p < .001. Three 

split-up 2x4 ANOVAs revealed that target type interacted with initial displacement 

between the static/moving pair, F(3, 33) = 14.08, p<.001, and between the 

onset/moving pair, F (3,33) = 11.13, p <.001, but not in the static/onset pair (F < 2). 

Separate Bonferroni adjusted t-tests revealed that the moving targets were found 

significantly faster than the static targets at all but the smallest 0.09° displacement – 

and significantly slower than onset targets at the 0.09° displacement (all p < .001). In 

other words, finding a smooth motion onset target with no initial displacement (0.09° 

displacement) was not different from finding a static target, whereas a jerky motion 

onset target with an initial displacement (1.05, 0.52, or 0.26° displacement) was 

found as quickly as an onset target. 

Errors. Mean percentage errors were calculated separately for each 

participant and factor combination. As can be seen from Table 4.1, the averaged 

error rate was low (overall 3.4%). A 3x4 ANOVA with the factors target type and 

initial displacement revealed a significant main effect for target type, F(2, 22) = 9.7; 

p < 0.001, due to fewer errors in the onset condition than in the static and moving 

condition (1.7 vs. 4.7 and 3.0%, respectively). Overall errors showed a similar 

pattern to the RTs, ruling out speed-accuracy trade-off effects. 
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Figure 4.3. Mean correct RTs as a function of initial displacement in Experiment 6, 

with separate lines for each target type. 

Discussion 

Experiment 6 shows that attention capture by the onset of jerky motion 

depends entirely on the initial abrupt displacement. On the one hand, when the initial 

displacement was very small (0.09°), giving the impression of a smooth motion 

onset, then the moving stimulus had no processing advantage in comparison to the 

static stimulus. This result consolidates the findings from chapter 3, as it provides 

further empirical support for the absence of capture by the onset of smooth motion.  

On the other hand, when the displacement was large (0.26, 0.52, or 1.05°) 

giving the impression of a jerky motion onset, then the moving stimulus had a clear 

processing advantage as compared to the static stimulus. The RT benefit was in fact 

(quantitatively) not distinguishable from the RT benefit to an onset target. This result 

is important, because it shows that continued jerkiness of motion is not necessary for 
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attention capture, and that capture is mediated by the events that occur immediately 

at the beginning of search. 

A direct comparison of Figure 4.1 and 4.4 shows that the pattern of results in 

this experiment closely resembles that of Experiment 3, except for the main effect of 

motion refresh rate (which was absent in the current experiment). It was suggested 

that this main effect is due to the continued jerkiness adding overall noise to the 

display, making search overall more difficult. The absence of such an effect in the 

current experiment supports this notion, as the subsequent use of smooth motion 

might have removed the perceptual noise in the current experiment. 

Experiment 7 

Experiment 6 showed that a brief disruption (i.e., a displacement followed by a 

delay) at the beginning of motion is sufficient to capture attention. One possible 

explanation could be that the initial displacement delays the perceived onset of 

motion, turning it into a temporally unique event that captures attention. Sunny and 

von Mühlenen (2011) postulated that the perceived delay could be caused by the 

interference from the other changes co-occurring in the display (i.e., the appearance 

of the onset and the segment removals), such that the initial displacement of the 

moving stimulus goes unnoticed because of this interference. This could have the 

effect that only the second displacement is noticed, which becomes the perceived 

onset of motion. 

The fact that smooth motion onset without a delay (e.g., Sunny & von 

Mühlenen, 2011; von Mühlenen et al., 2005) does not capture attention supports this 

delayed motion onset account. Experiment 7 now presented a displacement without 
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the subsequent motion, thus removing the delay. Under the delayed motion onset 

account it is hypothesized that no capture would occur when the motion onset is 

absent. Experiment 7 was in all respects identical to Experiment 6, except that the 

displaced stimulus remained stationary after the initial displacement. 

 

Method 

Participants. Twelve undergraduates (2 male, 10 female, mean age 19.2 

years) from the University of Warwick participated in return for course credit. 

Apparatus, Stimuli, Procedure and Design.  The apparatus and stimulus 

were the same as in Experiment 6 except that the moving stimulus was replaced by a 

displaced stimulus. That is, one stimulus was displaced by 0.09, 0.26, 0.52 or 1.05°, 

but then instead of moving smoothly, it simply remained stationary (see Figure 4.2). 

The procedure and design were the same as in Experiment 6. 

 

Results 

RTs. Mean correct RTs were calculated separately for each participant and 

factor combination, excluding outliers (1.1%). Figure 4.5 shows RTs as a function of 

motion refresh rate with separate lines for each target type.  

A 3x4 repeated measures ANOVA conducted on the mean correct RTs with 

the factors target type (static, displaced, or onset), and displacement (0.09, 0.26, 0.52, 

1.05°) showed a significant main effect of target type, F(2, 22) = 20.43, p <.001: 

Posthoc LSD tests revealed that overall, onset targets were found significantly faster 
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than the displaced targets, which in turn were found significantly faster than static 

targets (769, 804, and 836 ms, respectively). There was also a significant main effect 

of displacement, F(3, 33) = 13.23, p<.001. 

 

Figure 4.4. Mean correct RTs as a function of displacement in Experiment 7, with 

separate lines for each target type. 

The two-way interaction was also significant, F(6, 66) = 3.65, p <.01 and three 

separate 2x4 split-up ANOVAs comparing each possible pair of target type levels 

found an two-way interaction in the static/displaced pair, F(3, 33) = 3.24, p <.05, and 

in the onset/displaced pair, F(3, 33) =6.96,  p <.001, but not in the static / onset pair 

(F< 2). Separate Bonferroni adjusted t-tests revealed that the displaced targets were 

found significantly faster than static targets at displacements of .52 and 1.05° and 

significantly slower than onset targets at a displacement of 0.09°. To summarize, 

abruptly displaced targets were found increasingly faster with increasing 

displacement size.  
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Errors. Mean percentage errors (see Table 4.1) were calculated separately for 

each participant and factor combination. A 3x4 ANOVA with the factors target type 

and displacement did not reveal any significant main effect, but a marginally 

significant interaction, F(6, 66) = 2.25, p =.054. Overall errors showed a pattern 

similar to that of the RTs, ruling out speed-accuracy trade-offs. 

 

Discussion 

The results of Experiment 7 show that a small abrupt displacement of half a 

degree captures attention as strongly as an abrupt onset. This is contradictory to the 

delayed-onset hypothesis and it sheds new light on why jerky motion onset captures 

attention. Attention capture by motion onset reported by a number of studies that 

used jerky motion (Abrams & Christ, 2003; 2005; Christ & Abrams, 2008, Christ et 

al., 2008) seems to be caused by the first abrupt displacement and not by a higher 

level change in the status of an object from stationary to moving. This conclusion is 

further supported by the fact that the displacement was barely noticeable. When 

asked at the end of the experiment, ten out of twelve participants reported that they 

did not notice any displacement. The present findings provide further evidence for 

the role of a relatively small low level change in attention capture and are consistent 

with a bottom up model of attention capture.  

Prima facie, these results are not in line with von Mühlenen et al.’s (2005) 

unique event account, according to which an abrupt displacement is not expected to 

capture attention as it co-occurs with other changes in the display. As such it puts 

abrupt displacement in the same category as abrupt onsets, which have been shown 
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to capture attention even when they are not temporally unique. It therefore does not 

seem so far off to consider whether similar mechanisms are responsible for capture 

by both displacements and onsets. This will again be taken up in Experiment 9 and in 

the general discussion. 

 

Experiment 8 

Experiments 5-7 used absolute RT differences as an indicator for attentional 

capture, as did Abrams and colleagues (Abrams & Christ, 2003; 2005; Christ & 

Abrams, 2008; Pratt, Radulescu, Guo & Abrams, 2010) and Sunny and von 

Mühlenen (2011). However, a stronger test for capture would be to use search slopes 

instead of absolute RT differences (e.g., Simons, 2000). Experiment 8 therefore 

tested whether the capture effect for abrupt displacements was observed in the search 

slopes when presenting RT as a function of display size. Display size was 

systematically varied from 3, 5, to 7 items, and displacement was fixed at 0.52° (at 

which capture effect in Experiment 7 was numerically strongest). 

 

Method 

Participants. Thirteen undergraduates (7 male, 4 female, mean age 22.3) 

from the University of Warwick participated in return for course credit.  

Apparatus and Stimuli. The apparatus and stimuli were the same as in 

Experiment 7, except for the following changes: The initial display contained either 

2, 4 or 6 placeholders followed by the search display with 3, 5 or 7 letters. They were 
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placed on the circumference of an imaginary circle (radius 12.5°) centred on fixation, 

such that neighbouring letters in the search display were always equidistant from 

each other.  

Procedure and Design. Procedure and Design were the same as in 

Experiment 7, apart from some changes to the design: The number of stimuli in the 

display was systematically varied among 3, 5, and 7 items. Each display always 

contained one onset stimulus and one displaced stimulus, the rest was filled up with 

static stimuli, one, three, or five, depending on display size. Displacement size was 

fixed at 0.52°. Each participant completed 20 practice trials followed by 480 

experimental trials. At every display size, the target was equally likely to be the 

onset, displaced or the static stimulus. The experiment systematically varied three 

factors: target identity (H or U), target type (static, displaced, onset), and display size 

(3, 5 and 7). 

 

Results 

RTs. Mean correct RTs were calculated separately for each participant and 

factor combination, excluding outlier trials with RTs smaller than 200 ms or larger 

than 2000 ms (1.7% of all trials). Figure 4.6 shows RTs as a function of display size 

with separate lines for each target type.  

A 3x3 repeated measures ANOVA conducted on the mean correct RTs with 

the factors Target Type (static, displaced, onset), and Display Size (3, 5, 7) showed 

significant main effects for both target type, F(2, 24)=23.26, p <.001 and display 

size, F(2, 24) = 126.87, p <.001: Posthoc LSD tests revealed that overall, both onset 
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and displaced targets were found significantly faster than static targets,  while there 

was no significant difference between displaced and onset targets  

 

 

Figure 4.5. Mean correct RTs as a function of display size in Experiment 8, with 

separate lines for each target type. 

 

The two-way interaction was also significant, F(4, 48) = 4.62,  p <.01 and 

three separate 2x3 split-up ANOVAs comparing each possible pair of target type 

levels found a significant interaction for the static / displaced pair, F(2, 24) = 7.16, p 

<.001, and for the static / onset pair, F (2, 24) = 9.43,  p <.001, but not for the onset 

/displaced pair (F < 1). This means, RT slopes in the displaced and onset condition 

did not differ from each other, but they were both faster than the static RT slope 

(26.0 and 23.6 vs. 44.3 ms/item, respectively). 
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Errors. A 3x4 ANOVA on mean percentage errors (see Table 4.2) with the 

factors target type and display size did not show any significant effects (all p > .10). 

Table 4.2.  

Mean Percentage Errors in Experiment 8 and 9 

 Display Size 

     Target Type 3 5 7 

Experiment 8    

     Static 1.7 2.6 1.9 

     Onset 1.7 0.2 1.4 

     Displaced 1.7 1.0 1.2 

Experiment 9    

     Static  4.7 3.3 2.7 

     Onset 2.6 2.6 2.4 

     Displaced 2.6 1.8 2.1 

 

Discussion 

Overall, the results of Experiment 8 confirm the finding of Experiment 7, 

showing that a displaced target captures attention as strongly as an onset target. 

There was no difference in the search slope between an onset and displaced targets 

and they were both less steep compared to static targets. Although the displaced and 

onset slopes were significantly reduced in comparison to the static slopes, one might 

note that they are steeper than what is expected under perfect capture conditions. 

However, there were always two simultaneous events (i.e., an onset and a 

displacement) that compete for attention, leading to an overall slope increase. 

 Sunny and von Mühlenen (2010) used search displays containing multiple 

simultaneous onsets that were task irrelevant and showed that only one onset is 

automatically prioritized during search. The fact that the slopes for onset and 
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displaced targets were statistically equivalent suggests that both onsets and displaced 

items compete equally for attention. Therefore, on average, the onset item would be 

inspected first on half the trials while the displaced item would be inspected first in 

the other half. This explains not only the slope for RTs to onset and displaced targets, 

but also why they are both half as steep as the static slope. 

The current results of Experiments 7 and 8 pose some difficulty for the new 

object account (Yantis & Jonides, 1996; Hillstrom & Yantis, 1994; see Egeth & 

Yantis, 199,7 for a review), according to which an abrupt onset captures attention 

because it signals the appearance of a new object. Most participants did not notice 

the abrupt displacements; it therefore seems very unlikely that they had perceived the 

displaced stimulus as a new object. Nevertheless, it is possible that the displacement 

together with the change in identity from a placeholder to letter constitutes a 

substantial change to its object file, which also requires attention, like the creation of 

a new object file (Kahneman, Treisman & Gibbs, 1992).  

Previous studies have shown that the RT benefit for new objects is abolished 

when the amount of change in old and new objects is equated (Miller, 1989; Watson 

& Humphreys, 1995; also see Watson, Braithwaite & Humphreys, 2008, for a similar 

effect on visual marking). Moreover, Yantis and Gibson (1994) showed that when 

there was an ISI of more than 100 ms between the placeholder and the letter stimulus 

it captures attention in the same manner as an onset. In the current study, the ISI was 

always 0 ms, as a moving stimulus was always deleted and redrawn in the same 

refresh frame; but at a different location. It is possible that a displacement of 0.52° or 
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1.02° in the present Experiments 7 and 8 might have the same effect as a temporal 

gap of 100 or 133 ms in Yantis and Gibson’s (1994) study. 

Experiment 9 

The results of Experiment 7 and 8 show that a small abrupt displacement of 

half a degree captures attention as strongly as an onset, in terms of overall RT 

benefit, as well as overall RT slope benefit. One conclusion could be that abrupt 

displacements represent a new class of events that capture attention. Within the 

framework of the unique event account (von Mühlenen et al., 2005), abrupt 

displacements would (like onsets) be an exception to the rule, as they capture 

attention irrespective of whether they are temporally unique or not.  

The results of Experiment 7 suggested that the same mechanism might 

operate in attention capture by onsets and abrupt displacements. One possible single-

mechanism explanation could be based on the new-object account (Hillstrom & 

Yantis, 1994), according to which capture occurs because both, onset and displaced 

items, require the creation of a new object file (Kahneman, Treisman & Gibbs, 

1992). Another explanation could be based on Gibson’s (1996a, 1996b) masking 

account, according to which capture occurs because the static items are forward 

masked by their figure-8 placeholders, giving the onset and the displaced item a head 

start in processing.  

Experiment 9 is aimed at distinguishing between these two alternative 

accounts. It uses exactly the same method as Experiment 8, except that now the 

displacement occurred 60 ms before display transition. Because of the displacement, 

the new-object account would predict that capture occurs like in the previous 
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experiments. However, the masking account would predict no capture, because the 

displaced item is now preceded by a placeholder at exactly the same location.  

Method 

Participants. Twelve undergraduate students (4 male, 8 female, mean age 

21.5 years) from the University of Warwick participated in return for course credit.  

 

 

Figure 4.6. Example display for Experiment 9. Stimulus displacement by 0.52° 

occurred 60 ms before display transition. The grey placeholder in the displaced 

display was not visible. 
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Apparatus, Stimuli, Procedure and Design. The task and stimuli were the 

same as in Experiment 8, except that the displacement happened 60 ms before the 

display transition (see Figure 4.7). The procedure and design were the same as in 

Experiment 8.  

 

Results 

RTs. Mean correct RTs were calculated separately for each participant and 

factor combination, excluding outlier trials with RTs smaller than 200 ms or larger 

than 2000 ms (1.2% of all trials). Figure 4.8 shows RTs as a function of display size 

with separate lines for each target type.  

 

 

Figure 4.7. Mean correct RTs as a function of display size in Experiment 9 with 

separate lines for each target type.   
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A 3x3 repeated measures ANOVA conducted on the mean correct RTs with 

the factors Target Type (static, displaced, onset), and Display Size (3, 5, 7 items) 

showed significant main effects of target type, F(2, 22) = 29.66, p <.001 and display 

size, F(2, 22) = 51.78, p <.001 : Posthoc LSD tests revealed that overall, onset 

targets were found significantly faster than displaced targets, which in turn were 

found significantly faster than static targets (847, 878 and 939 ms respectively).  

The two-way interaction was also significant, F(4, 44) = 3.46, p <.01 and 

three separate 2x3 split-up ANOVAs comparing each possible pair of target type 

levels found a significant interaction for the static / onset pair, F(2, 22) = 5.31, p 

<.01, and for the onset / displaced pair F(2, 22) = 3.5, p <.05; but not for the static / 

displaced pair, F(2, 22) = 0.61, p = .553. The RT slope for static and displaced 

targets did not differ from each other, and both were larger than the slope for onset 

targets (38.8 and 35.8 vs. 17 ms/item, respectively). 

Errors. A 3x3 Repeated measures ANOVA on the errors (see Table 4.2) with 

the factors target type and display size showed a significant effect for target type, 

F(2, 22) = 4.03, p < .05, due to higher error rate with static target compared to onset 

or displaced targets (4.0 versus 2.8 and 2.5%, respectively). Overall errors show a 

similar pattern to the RTs, ruling out speed-accuracy trade-offs. 

 

Discussion 

The results of Experiment 9 are consistent with the masking account, but not 

with the new-object account. According to the masking account the abrupt 
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displacement should not capture attention because it was now masked by the 

preceding figure-8 placeholder. The masking account could in fact account for all 

capture effects observed in the present chapter (Experiment 6-8). Moreover, it also 

explains why the onset of jerky, but not smooth motion captures attention: When 

motion is smooth, there is greater overlap in locations between two frames of motion 

as compared to when the motion is jerky. Finally, the masking account also explains 

why the static flicker in Experiment 5 did not capture attention: The flicker item was 

masked like the static item because the item location did not change. To stretch these 

findings further, I believe that a similar mechanism operates in Yantis and Gibson 

(1994) and the present findings. It seems that a 133 ms gap is not long enough time 

to turn an object into a new object, at least not at a perceptual level. However, if 

figure-8s act as masks, a 133 ms gap might be long enough time to reduce or even 

remove the masking effect.  

Indeed, this argument has already been made by Gibson (1996a), who 

showed that capture by an onset was abolished when the onset was masked. In the 

preliminary experiment, the items in the display were either all onsets or all no-

onsets. In the no-onset condition, the effect of masking was studied by varying the 

brightness of the placeholders, while keeping the brightness of the final display the 

same. The results suggested that there was an overall RT difference between bright, 

dim and no-placeholder conditions in spite of them having the same final luminance. 

It was argued that masking by placeholders, both dim and bright, affected a stage of 

processing that is prior to selection.  
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In a second experiment, attention capture by an abrupt onset was put in the 

context of a masked placeholder. The results suggested that an onset captured 

attention only when presented simultaneously with bright placeholders, but not with 

dim, suggesting that capture results from better/earlier encoding of onsets when the 

distractors are masked. He suggested that the absence of a mask makes the abrupt 

onset available earlier for processing as compared to the other masked stimuli.  

Based on these findings it is possible to argue that the display size attenuation 

with onsets need not result from bottom-up capture, but from an early advantage to 

the onset items that result from their better encoding (but see Yantis & Jonides, 1996, 

and Gibson’s, 1996b, reply). This framework can be easily extended to include 

capture by an abrupt displacement because the displaced item appears at a location 

that was not occupied by a placeholder.  

General Discussion 

The current study presents five experiments attempting to explain attention 

capture by the onset of jerky motion (Abrams & Christ, 2003, 2005; Christ & 

Abrams, 2008, Christ, Castel & Abrams, 2008; Sunny & von Mühlenen, 2011), but 

not smooth motion (Sunny & von Mühlenen, 2011; von Mühlenen et al., 2005). 

Experiment 1 shows that flicker on its own without motion has no effect on attention. 

Whereas Experiment 2 shows that continued motion jerkiness is not essential, 

Experiment 3 and 4 suggest that subsequent motion might not be required at all to 

obtain a capture effect. In fact all results presented in this study can all be explained 

by the assumption that a single abrupt displacement is enough to capture attention.  
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There are a number of other studies that reported capture with smooth motion 

onset (Abrams & Christ, 2005; Franconeri & Simons, 2003; Skarrat, Cole & 

Gellatly, 2009; von Mühlenen et al., 2005). However, in all these studies the motion 

onset was temporally unique, starting before display transition, and hence the unique 

event account explains capture. Moreover, the results of Experiment 5 puts capture 

by abrupt displacement down to a better visual quality due to absence of masking 

(Gibson, 1996a).  

The common principle is that the processed stimulus that becomes available 

first captures attention. Gibson (1996a), showed that capture by an onset was 

abolished when the onset was masked. He also suggested that the absence of a mask 

makes the abrupt onset available earlier for processing as compared to the other 

masked stimuli (but see Yantis & Jonides, 1996, and Gibson’s, 1996b reply).  

The masking account can in fact account for all capture effects observed in 

the present study. A stimulus captures attention when it is not preceded by a 

placeholder at exactly the same location. In Experiment 2, the moving stimulus 

captured attention, because of its initial displacement. In Experiment 3 and 4, the 

displaced stimulus captured attention for the same reason.  

The masking account also well explains the absence of a capture effects in 

Experiment 1 and 5. In Experiment 1 the flicker stimulus did not capture attention 

because there was no temporal gap between the placeholder and the letter (i.e., the 

letter followed immediately after the placeholder). In Experiment 5, the displaced 

stimulus does not capture attention because there was a placeholder preceding the 

letter for 60 ms.  
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Moreover, masking also explains why the onset of jerky, but not smooth 

motion captures attention: When motion is smooth, there is greater overlap in 

locations between two frames of motion as compared to when the motion is jerky. To 

sum up, as long as the letter stimulus is separated from the pre-mask by a temporal or 

a spatial gap, it captures attention. For example, Yantis and Gibson (1994) showed 

that a 133 ms temporal gap was long enough to eliminate the masking effect 

(however note that in their interpretation, the 133 ms turned the stimulus into a new 

object).  

 The current results of Experiment 3 and 4 pose some difficulty for the new 

object account (Yantis & Jonides, 1996; Hillstrom & Yantis, 1994; See Egeth & 

Yantis, 1997 for a review), according to which only an abrupt onset capture attention 

because it signals the appearance of a new object. In the present study, the abrupt 

displacement could not have been perceived as a new object. Most participants did 

not notice the abrupt displacements; it therefore does not seem very plausible that 

they had perceived the displaced stimulus as a new object. Some researchers might 

argue that the displacement together with the change in identity from placeholder to 

letter constitutes a substantial change to the object file, which also requires attention 

(cf. Kahneman, Treisman & Gibbs, 1992).  

The present results overall suggests that the same mechanism might operate 

in attention capture by onsets and displacements. Another explanation could be based 

on Gibson’s (1996a, 1996b) masking account, according to which capture occurs 

because the static items are forward masked by their figure-8 placeholders, giving the 

onset and the displaced item, a head start in processing.  
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Conclusion 

The present study allows for a new interpretation of Abrams and Christ’s 

(2003) finding: In their study motion onset only captured attention because the 

motion was jerky. The present study suggests that this effect is due to the initial 

abrupt displacement of the moving item. The absence of capture with smooth motion 

(Experiment 4; von Mühlenen et al., 2005) refutes Abrams and Christ’s motion onset 

account, according to which a motion onset should always capture attention. This 

leaves motion onset on a par with any other feature change, such as colour or 

luminance changes.  

The core idea behind the unique-event account is that any sudden change is 

capable of capturing attention as long as it is temporally unique. The finding that an 

abrupt displacement captured attention the same way as an abrupt onset (despite 

being non-unique) is a new and interesting finding. It was speculated that they both 

might escape masking, either because there was no placeholder in the case of onsets, 

or because the placeholder was at a different location in the case of displacements. 

However, whether other exceptions can also be explained by this single masking 

mechanism or whether separate mechanisms are required remains an open question 

for future research. 
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Chapter 5: A change in the direction of motion captures attention, but only 

when it is unique. 
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Introduction 

Motion is a very common feature in the visual environment; it is also an 

important feature that can be used to guide visual attention. For example, at the 

arrivals in the airport, people tend to instinctively use waving as an action to attract 

one another’s attention. This is a good instance of one particular type of motion, like 

waving, standing out among other types of motion, like people walking about etc. 

Previous studies have shown that motion can be used as an effective cue in guiding 

search. In a visual search paradigm, McLeod, Driver and Crisp (1988) showed that 

the search for a conjunction of the features shape and motion proceeds in a parallel 

manner. However, since motion is a very common feature, it seems unlikely that all 

motion grabs attention in an automatic stimulus driven manner.  

Indeed, research has shown that motion, in general, does not capture attention 

(e.g., Hillstrom & Yantis 1994; Yantis & Egeth, 1999). For example, Hillstrom and 

Yantis (1994) used motion that was either predictive or un-predictive of the target 

location. They found that participants used motion to guide attention to the target 

location when motion was predictive, but when it was not, a moving stimulus was 

not any easier to find than a stationary stimulus. An exception was when motion 

resulted in the appearance of a new object. Thus, research in general supports the 

view that motion per se does not capture attention.  

More recently it has been suggested that motion captures attention, when they 

represent events that are behaviourally urgent. For example, Franconeri and Simons 

(2003, 2005) suggested that objects approaching an observer would represent such an 

urgent event, whereas objects moving away might not. In line with this idea, they 
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showed that looming motion generally captures attention while receding motion does 

not. This result was supported by a number of other studies that showed that looming 

motion captures attention while receding motion does not (Takeuchi, 1997; Skarratt, 

Cole & Gellatly, 2009; von Mühlenen & Lleras, 2007).  

An alternative account of capture is based on the idea that features suggesting 

animacy in the visual environment capture attention. Indeed, motion is a strong 

indicator of animacy and many studies have shown that certain patterns of motion 

lead observers to attribute animacy and causality to objects (Michotte, 1963; for a 

review, see Scholl & Tremoulet, 2000). Abrams and Christ (2003, 2005) showed 

that, although a continuously moving target was not easier to find than a static target, 

a motion onset target was. Their results suggest that the onset of motion captures 

attention because it indicates the presence of an animate object in the visual field. In 

two other studies they replicated this benefit for motion onset when comparing it 

with abrupt onsets (Christ & Abrams, 2008) and also when testing older people 

(Christ, et al., 2008).  

There are, however, recent findings that in general question the validity of 

both behavioural urgency and animacy as explanations for attention capture. For 

example, Experiments 3 and 4 showed that motion onset does not capture attention 

when subsequent motion is smooth. They used a visual search task in which 

participants were asked to find targets "U" or "H" among distractor letters. The 

motion refresh rate was systematically varied from 100 (very smooth) to 8 Hz (very 

jerky). They showed that motion onset did not capture attention when motion was 

smooth but it did when motion was jerky. These findings suggest that the capture 
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effect by motion onset can be put down to the low refresh rate and argue for the role 

of low level change signals in mediating attention capture (Sunny & von Mühlenen, 

2011). 

Further support for the role of low level mechanisms in attention capture is 

offered by the unique event account, which emphasize the role of temporal 

uniqueness in capture. von Mühlenen, Rempel and Enns (2005) showed that capture 

occurs when an event happens just before or after but not together with display 

transition (i.e., when a placeholder display changes to the search display). It was 

reasoned that the temporal uniqueness makes the low level change signals stronger, 

making them harder to ignore. These results suggest that lower level change signals 

are more critical in driving attention capture, than higher level object changes. 

Recently however, more evidence has emerged that suggests that higher level 

expectancy in motion plays a role in capture. For example, an unexpected change in 

motion of an object that implies an internal energy source was shown to capture 

attention (Howard & Holcombe, 2010; Pratt, Radulescu, Guo & Abrams, 2010). In 

both the studies, change was defined in terms of a change in direction. It is possible 

that direction change is a strong low level signal that could capture attention. It has 

previously been shown that low level luminance changes, like flicker per se do not 

capture attention (Pinto, Olivers & Theeuwes, 2006; Experiments 5 and 9). 

Nevertheless, a different kind of motion that allowed a greater disruption might lead 

to capture. Experiments 3 and 4, the path of the motion onset stimulus was 

continuous, with the moving stimuli following a circular path. This continuity, along 
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with smooth 100 Hz motion might not have left room for any low level disruption. In 

the present context, by 'disruption' I mean an abrupt change to the motion path. 

 

Experiment 10 

Experiment 10 aimed to test whether or not attention was captured by a 

change in motion direction. The basic methodology was the same as in Chapter 3 as 

it offers a platform to test the effect of direction change against the baselines of static 

and onset items. The type of motion was changed from circular to linear (back and 

forth), with a direction change every 10, 30, 60 or 120 ms. The motion was always 

smooth and the stimuli moved at a constant speed. I hypothesise that the extent of 

attentional capture will change as a function of the time of the first direction change.  

 

Method 

Participants. A group of twelve undergraduates (5 male, 7 female, mean age 

18.8) from the University of Warwick participated in return for course credit. All of 

them reported normal or corrected to normal vision and were naïve to the purpose of 

the experiment.  

Apparatus and Stimuli. The participants were seated in a dimly lit sound 

attenuated room in front of a 19” CRT monitor at a distance of approximately 57 cm. 

The monitor was driven at 100 Hz at a resolution of 1024 x 786 pixels. The 

experiment was controlled by an IBM-PC compatible computer using custom written 
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software. Participants’ responses were recorded using left and right arrow keys on a 

standard keyboard.  

Stimuli consisted of a fixation cross, figure-8 placeholders, and letters, 

presented in grey drawn on a black background. The fixation cross had a size of 0.6° 

of visual angle and was presented at the centre of the screen. The figure-8 

placeholders and letters subtended 1° by 2° and were made of seven line segments 

(length 1.0°, thickness 0.13°). The letters were ‘H’, ‘U’, ‘S’ and ‘E’ and were made 

by removing the corresponding line segments from the figure-8. Stimuli were placed 

on the three imaginary corners of a randomly oriented equilateral triangle centered 

on fixation (fixation-letter distance was 12.5°). Letters in the search display were 

stationary or moving back and forth. The moving stimulus travelled 1.05°, 0.52°, 

0.26° or 0.09° and then changed the direction by 180°. The direction change was in 

cycles of 120, 60, 30 or 10 ms oscillation for amplitudes of 1.05°, 0.52°, 0.26° or 

0.09° respectively. This oscillation was repeated until the participant responded 

wherein the trial ended or after 10 seconds had elapsed. Motion refresh rate was 

always 100 Hz, giving the impression of smooth motion and the motion speed was 

8.7°/s. Motion direction was clockwise or anticlockwise - orthogonal to an imaginary 

line connecting the centre of the letter to the fixation.  

Procedure and Design. A trial started with the presentation of a preview 

display that consisted of a fixation cross and two figure 8 place-holders. After 960 

ms, the preview display was followed by the search display which always contained 

three letters. The static and moving letters were revealed by deleting the irrelevant 

line segments from the corresponding place-holders, whereas the onset letter 



120 

 

appeared at the previously unoccupied location. Stimulus oscillation began when the 

placeholders changed to letters (see Figure 5.1).  

 

 

Figure 5.1. Example display in Experiment 10. Stimulus movement began when the 

placeholders changed to the letter stimuli. Here, the target letter 'H' is an onset, 'S' is 

moving and 'E' is static.  

 

Participants were asked to look for ‘H’ and ‘U’ targets among ‘S’ and ‘E’ 

distractors and to respond using the left and right arrow keys on the key board. Half 

of the participants used the left arrow for H and right arrow for U, and vice versa for 

the other half. They were instructed to respond to the target as fast as they could 

whilst trying to make not more than 5% errors. The search display stayed on until the 

participant responded or 10 seconds had elapsed. In the instance of wrong responses 

immediate feedback was given on the screen reading “error” and participants had to 

press the space bar to continue the experiment. Otherwise the next trial started after 

an interval of 1 second. Each participant completed 20 practice trials followed by 
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480 experimental trials. The experimental trials were divided into 10 blocks of 48 

trials each, with short breaks (10 seconds) between blocks.  

The experiment systematically varied three factors: target identity (H or U), 

target type (static, onset, moving), and oscillation (10, 30, 60, or 120 ms). All 

possible factor combinations were presented in random order. For the analysis, target 

identity was not further considered.  

 

Results 

RTs. Mean correct RTs were calculated separately for each participant and 

factor combination, excluding outlier trials with RTs smaller than 200 ms or larger 

than 2000 ms (1.5% of all trials). Figure 5.2 shows RTs as a function of oscillation 

(ms) with separate lines for each target type. As can be seen, search time for a static 

target was slowest while those for an onset target were fastest. In comparison, RT to 

a moving target was overall faster than to a static target but slower compared to an 

onset target.  

Individual mean RTs were submitted to a 3x4 repeated measures ANOVA 

with the factors target type (static, onset, moving), and oscillation (10, 30, 60, or 120 

ms). There was a significant main effect of target type, F(2, 22) = 20.66, p < .001: 

Posthoc LSD tests revealed that onset targets were found significantly faster than 

moving targets, which in turn were found significantly faster than static targets (702, 

770, and 828ms, respectively). The main effect of oscillation was not significant F < 

1, however the interaction between target type and oscillation was significant F(6, 

66) = 2.77, p <.01.  
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Figure 5.2. Mean correct RTs as a function of motion refresh rate in Experiment 10, 

with separate lines for each target type. 

 

To further explore the 2-way interaction, three separate 2x4 split-up 

ANOVAs were conducted comparing each possible pair of target type levels. A 

significant interaction was found in the static/moving pair, F(3, 33) = 3.84, p < .01, 

and in the onset/moving pair, F(3, 33) = 3.57, p = .05, but not in the static/onset pair 

(F< 1). In Figure 5.2, the static line appears to be parallel to the onset line, but not to 

the moving line. Separate Bonferroni adjusted t-tests revealed that moving targets 

were found significantly faster than static targets at all but 10 ms oscillation, which 

was perceptually very similar to no oscillation (all p <.05). Moreover, there was no 

significant difference between an onset and moving target at 60 ms oscillation 

suggesting strongest capture at that temporal cycle. RT to a moving target was faster 
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than RTs to a static target at all rates of oscillation other than 10 ms, at which the 

target appeared more or less static. The capture effect was strongest at 60 ms where 

the RT to a moving target was not significantly different from RT to an onset target. 

To summarize, a direction change captured attention even at the small temporal cycle 

of 30 ms.  

 

Table 5.1.  

Mean Percentage Errors in Experiment 10  

 Target Type 

Oscillation Static Onset Moving 

     10 3.8 2.5 3.5 

     30 4.0 2.1 3.8 

     60 3.1 2.7 2.9 

   120 3.3 3.1 3.5 

 

Errors. Mean percentage errors (see Table 5.1) were calculated separately for 

each participant and variable combination. A 3x4 ANOVA with the factors target 

type and oscillation did not reveal any significant main effects or their interaction (all 

F ≤1). 

 

Discussion 

In the present experiment, it was tested whether motion onset captures 

attention when the motion is oscillatory. It was hypothesized that the absence of 

capture observed Chapter 3 is at least partly due to the non-disruptive nature of 

smooth circular motion. The results showed a definite prioritization of oscillatory 
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moving stimuli as compared with static stimuli. Moreover, the capture effect 

increased with larger oscillation, almost equaling capture by onsets at 60 ms 

oscillation
5
. 

Prima facie, the results suggest that motion onset captures attention when the 

motion path is oscillatory. However, the key to capture in this experiment might be a 

change in direction, rather than the onset of motion. This claim is supported by 

findings from Chapters 3 and 4 in which 100 Hz motion as used in the present 

experiment did not capture attention and the findings of Howard and Holcombe 

(2010) as well as Pratt et al. (2010) who showed that unexpected changes in the 

direction of motion captures attention. However, there are important differences 

between the present study and the studies that looked at unexpected changes to 

motion direction. 

For example, Howard and Holcombe (2010) used an object tracking 

paradigm where participants were asked to report the orientation of one of the two 

objects (referred to as the queried target as opposed to the non-queried target) they 

were tracking. The objects that were tracked bounced against four invisible walls, 

changing the motion path. They found that when the target orientation was queried 

within 200 ms of the last bounce of a non-queried target, error rates were higher for 

the queried target. They suggested that the bounce of the non-queried target captured 

attention, resulting in an attention cost for the queried target. However, this did not 

occur when the targets bounced against a wall that was visible. They concluded that 

                                                
5 At 120 ms oscillation, the capture effect seems to reduce as the RT to a moving target is 

significantly slower than RT to an onset target. We think that this might be due to attention 

being captured by the abrupt onset item before the first direction change happened. 



125 

 

only bounces against an invisible wall can be considered as unexpected and thus 

capture attention. 

In a similar experiment, Pratt et al. (2010) showed that dynamic changes to 

objects were detected faster when they occurred following an unexpected rather than 

expected change in motion. For example, when an object unexpectedly changed its 

motion direction or speed, it captured attention, but did not when the change in speed 

or motion direction was a result of a collision with another object or the boundary. 

They proposed that only unexpected changes indicate an internal energy source and 

thus animacy and concluded that animate rather than inanimate changes (in motion) 

capture attention.  

The oscillatory motion used in the present study is more similar to the 

unexpected motion used by both Howard and Holcombe (2010) and Pratt et al. 

(2010) than the expected motion because in the present study, there was no physical 

object against which the moving object collided to initiate a direction change. Thus it 

is possible that the same mechanism operates in both the present experiment as well 

as the two studies mentioned above.  

 

Experiment 11 

Experiment 11 was designed to test other factors that might mediate 

attentional prioritization of a motion onset stimulus that changes direction. For 

example, when the direction change is more gradual, maybe the prioritization is 

eliminated. Moreover, it has already been shown that speed has an effect on capture, 
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with faster stimuli demonstrating stronger capture (Pratt et al. (2010). In Experiment 

11, therefore, there were two different types of direction change (gradual, abrupt) and 

two different speeds (fast and slow). The moving distance was 0.52° in slower speed 

whereas it was 1.02° with faster speed. Thus, the change in direction happened at a 

uniform oscillation of 120 ms from the onset of motion. This method will also help 

to determine if the capture effect in Experiment 10 was affected by the distance 

moved by the object before a direction change occurred. In contrast to Experiment 

10, the stimulus moved in its central axis, meaning the first direction change 

occurred at 60 ms with every subsequent change following a 120 ms cycle. 

 

Method 

Participants. Twelve students  from the University of Warwick (3 male, 9 

female mean age, 19.8 years) participated in return for £5. All reported normal or 

corrected to normal vision and were naïve to the purpose of the experiment. None 

had participated in Experiment 10. 

Apparatus and Stimuli. The apparatus and stimuli were similar to that of 

Experiment 10 except for the following differences. There were two different speeds- 

fast (8.7°/s ) and slow (4.3°/s); and two types of motion change (gradual and abrupt). 

When the direction change was abrupt, the motion speed was constant over the 

oscillatory cycle, but when it was gradual motion speed decreased considerably 

before the direction change happened. As in Experiment 10, Experiment 11 also used 

linear motion. However, unlike Experiment 10, the direction of motion was 

randomly assigned (between 0 to 359°). In Experiment 11, the motion path was an 
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arc, and was horizontal moving from left to right or right to left. The arc formed the 

part of a circle with a radius 1.3° in visual angle.  

Procedure and Design. Procedure and design were similar to that of 

Experiment 10, except for the following changes. Instead of systematically varying 

oscillation from 0.09° to 1.02°, speed and oscillation type with two levels each was 

varied. The two levels, slow & fast and gradual & abrupt were fully factorially 

combined. Thus, the independent variables were target type (static, moving and 

onset), oscillation type (gradual and abrupt) and speed (fast and slow).  

 

Results 

RTs. Mean correct RTs were calculated separately for each participant and 

factor combination excluding outliers (1.3%) for Experiment 11a and 11b (see Figure 

5.3). These were presented to a 2x3x2x2 with the factors experiment (11a or 11b) as 

a between subjects factor and target type (static, moving, onset) oscillation type 

(gradual or abrupt) and speed (fast, slow) within subjects. There was only a main 

effect of target type F(2, 20) = 16.99, p<.001. Posthoc LSD tests showed that a both 

an onset (740 ms) and a moving target (753 ms) were found faster than a static target 

(814 ms). There was no difference in RTs between an onset and a moving target. 

Errors. Mean percentage errors are presented in Table 5.2. An ANOVA on 

the errors with the same factors as in RT did not reveal any significant effects (all p 

>.1). 
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Figure 5.3. Mean correct RTs as a function of motion refresh rate in Experiment 11, 

with separate lines for each target type.  

 

Table 5.2.  

Mean Percentage Errors in Experiment 11  

 Slow Fast 

Target Type Abrupt Gradual Abrupt Gradual 

     Static 3.1 1.5 2.5 1.6 

     Moving 1.9 2.1 1.7 1.9 

     Onset 2.1 1.9 1.9 1.9 

 

Discussion 

The present experiment showed that speed and direction change (gradual or 

abrupt) had no effect on attention capture. Overall the results replicate the findings 

from Experiment 10, suggesting that a change in motion direction captures attention.  

This is in line with the findings of Pratt et al. (2010) as well as Howard and 
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Holcombe (2010) showing that an unexpected change in motion direction captures 

attention. The present results however have shown that a change in direction captures 

attention even when it is not ‘unexpected’. 

Moreover, it was also shown that that speed does not have any effect on 

capture by oscillating stimuli. In contrast, Pratt et al. (2010) showed that the capture 

effect is stronger at higher speed, but their effect with an increase in speed was 

independent of a change in direction. Even though there is no RT difference between 

animate and inanimate change in Pratt et al.’s study using a speed of ~ 4°/s, in the 

present study, there is an RT difference between static and direction change using 

stimuli moving at a similar speed. This could be because direction change captures 

attention irrespective of the speed of motion. Hence, at both speeds, capture must 

have been strong. That is, if continued changes in direction capture attention, then 

the capture effect will remain the same irrespective of the speed. Moreover for 

capture effect that is mediated by temporal uniqueness, there was no variation in the 

time the direction change happened.  That is, irrespective of the speed, the direction 

change always occurred 120 ms after display transition and hence the lack of change 

in the capture effect.  

Similarly, the capture effect was unaffected by whether the direction change 

happened gradually or abruptly. This also points towards the robustness of capture, 

suggesting that capture by a change in direction does not depend on whether such a 

change happens gradually or abruptly. Overall, the results suggest that direction 

change is a rather robust cue and captures attention, irrespective of motion speed or 

abruptness of the direction change. 
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Experiment 12 

The results from Experiments 10 and 11 suggest that a change in direction 

captures attention. However, these findings were based on overall RT measures. A 

stronger test of capture can be obtained by measuring search slopes. Thus, 

Experiment 12 was like Experiment 10, but with a display size variation. If the 

change in direction captures attention, a slope difference between the motion onset 

and static conditions would be expected; however if there is no capture, no slope 

difference will be expected. The abrupt onset was removed so that a possible capture 

effect with motion onset may not be attenuated by the presence of an abrupt onset.  

 

Method 

Participants. Twelve first year undergraduate students from the University of 

Warwick participated in return for course credit (5 male, 7 female, mean age 20.1). 

All of them reported normal or corrected to normal vision and were naïve to the 

purpose of the experiment. None of them participated in Experiment 10 or 11.  

Apparatus and Stimuli. The task and stimuli was comparable to that of 

Experiment 10, except for the following changes. There were either 3, 5 or 7 figure-8 

placeholders that subsequently changed to letters. They were placed on the 

circumference of an imaginary circle (radius 12.5°) centred on fixation such that the 

letters were equidistant from each other.  
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Procedure and Design. The procedure and design was similar to that of 

Experiment 10 except for the following changes. At the transition from placeholder 

to search, the figure-8 were replaced by letters (static) and one of the letters started 

moving in a 0.52 degree oscillation. Each display only contained one moving 

stimulus; the rest of the display was filled with static items. Each participant 

completed 20 practice trials followed by 480 experimental trials, divided into 10 

blocks of 48 trials each, with short breaks between blocks. The motion onset item 

was no more likely to be the target than the static item. Thus, the experiment 

systematically varied two factors: target type (static, moving), and display size (3, 5 

and 7).  

 

Results 

RTs. Mean correct RTs were calculated separately for each participant and 

factor combination, excluding outliers with RTs smaller than 200 ms or larger than 

2000 ms (1.2 % of all trials) (see Figure 5.4). A 2x3 ANOVA with the factors Target 

Type (static, moving), and Display Size (3, 5, 7) showed a significant main effect of 

target type, F(1, 12) = 29.3, p <.001 because it took significantly longer to find a 

static target as compared to a moving target (849 ms vs. 749ms). There was also a 

main effect of display size, F(2, 24) = 107.07, p <.001, due to an overall increase of 

39 ms/item with increasing display size. Most importantly, the two-way interaction 

between target type and display size was also significant, F(2, 24) = 13.39, p <.001 

because the search slopes were significantly larger for static than for moving targets 
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(52 ms vs. 26 ms/item). This suggests that it was easier overall to find a moving 

target compared with a static target.  

 

Figure 5.4. Mean correct RT as a function of display size (3, 5 or 7) in Experiment 

12, with separate lines for target that was static or moving.  

 

Table 5.3.  

Mean Percentage Errors in Experiment 12 for each target type and display size 

 Target Type 

     Display Size Static Moving 

     3 3.9 4.2 

     5 3.1 3.7 

     7 2.3 3.9 

 

Error. Mean percentage errors are presented in Table 5.3. A 3x4 ANOVA 

with the factors target type and motion refresh rate showed neither significant main 

effects or interaction effects of either target type, or display size (all p >.1). 
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Discussion 

The present experiment tested the effects of display size on finding a target 

that happens to change its motion direction. The results showed that, compared with 

a stationary target, search slopes were significantly different for a motion onset target 

when it changes direction. Overall, the results suggest that a change in direction 

captures attention. This finding confirms that the RT benefit observed for motion 

onset targets in Experiment 10 and 11 results from capture of attention rather than 

perceptual factors. It also suggests that attention capture by motion onsets in the 

present study and other studies using oscillatory motion is due to the direction 

change that co-occurs with the motion rather than to the onset of motion. 

Previous studies using oscillatory motion onset also support the current 

findings. For example, Hillstrom and Yantis (1994) used oscillatory motion onset 

(Experiment 3, late motion condition) and showed that it captures attention. 

However, they interpreted these findings as capture by a new object. They used 

hierarchical stimuli and used oscillatory motion to separate a local letter from the 

others. They argued that this separation from the group results in a new object, which 

in turn captures attention. They ruled out the role of motion by showing that when 

motion started at the beginning of the placeholder display there was no capture. 

However, in conjunction with the data from the present experiment, it seems that 

capture must have resulted from a change in direction that happened every 100 ms 

after the onset of the search display.  
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Similarly, Franconeri and Simons (2003) showed that oscillatory motion, 

along with other types of motion, capture attention. However, it is not clear whether 

the capture effect observed in their study resulted from a change in direction because 

their motion was also temporally unique. More recently, Cosman and Vecera (2010) 

showed that capture by motion onset is modulated by perceptual load. They found 

that motion onset captures attention only under conditions of low load, but not high 

load. They used oscillating motion with motion onset starting 100 ms prior to the 

display transition. 

 

General Discussion 

In three experiments, the present chapter clearly demonstrates that a change in 

the direction of motion captures attention. In Experiment 10, it was shown that the 

RT benefit for motion onset can be systematically strengthened by varying the 

oscillation of the motion onset. Experiment 11 replicated this finding and also 

showed that the capture effect does not depend on either the speed or the abruptness 

of the direction change. A strong RT benefit was observed with both a slow and fast 

speed and with a gradual and abrupt change in the direction. Experiment 12 showed 

that this RT benefit is indeed due to attention capture as there was a significant 

difference between search slopes for a static and a direction change target. The 

results clearly indicate that a change in the direction of motion captures attention.  

The present study also lends support to the claims in Chapters 3 and 4 that 

motion onset per se does not capture attention. When motion onset is smooth, using 

high refresh rates, and without any changes in direction capture was not observed. 
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However, when it was jerky, using a low refresh rate, the jerkiness led to capture 

Chapters 3 and 4. Later studies showed that this capture by jerky motion did not 

result from increase in low level luminance changes, but from the abrupt 

displacement that happens at low refresh rates. The current chapter further reinforces 

the finding that motion onset per se does not capture attention, but a change in the 

direction of motion does.  
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Chapter 6: Attention Capture by Abrupt onsets: Revisiting the priority tag 

model 
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Introduction 

Attention capture by abrupt onsets is a robust and a fairly undisputed finding. 

It has been replicated many times using various methodologies (e.g., Yantis & 

Jonides, 1984; Theeuwes, 1991; Todd & van Gelder, 1979). The most commonly 

used methodology is the placeholder search paradigm, where a preview display 

consisting of figure-8 placeholders is followed by a search display consisting of 

letters, along with a new letter at a previously un-occupied location (Yantis & 

Jonides, 1984). Participants search for a pre-specified target letter among various 

distractor letters. It is generally found that RTs are faster when the target is a new 

item (the onset item) as compared to when it is one of the old items (the no-onset 

items). Typically RTs increase as a function of display size for no-onset targets while 

they do not increase for onset targets, suggesting that abrupt onsets capture attention 

(Jonides & Yantis, 1988) even when the target type (being an onset or no-onset) is 

irrelevant to search. They also showed that singletons defined in dimensions such as 

colour or luminance do not capture attention when they are task irrelevant, implying 

that capture by an onset is somehow special. 

Even though capture by abrupt onsets has been a fairly robust finding, there 

was a controversy about the mechanism underlying this form of attention capture. 

According to Hillstrom and Yantis (1994), an abrupt onset constitutes the appearance 

a new object in the visual field and instantiates the creation of an object file (cf. 

Kahneman, Treisman & Gibbs, 1992), which requires the allocation of attention to 

the location of the object. Hillstrom and Yantis (1994) used letters that were 

perceptually new, but did not have an abrupt onset and showed that capture was 
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mediated by the status of the letter as new rather than by their abrupt onset (also see 

Christ & Abrams, 2006, for a similar finding using a different method). Further 

support for the new object account comes from studies showing that illusory objects 

can also capture attention as long as they are perceived as new (Rauschenberger & 

Yantis, 2001; Yeshurun, Kimchi, Shashoua & Carmel, 2009). However, the 

placeholder search paradigm remains the predominant methodology used to study 

onset effects.  

Several alternative accounts have been proposed to account for the RT benefit 

with abrupt onsets. One of them is based on the fact that, in most studies using a 

placeholder search paradigm, there is more local luminance change associated with 

the appearance of the onset letter as compared to the appearance of a no-onset letter. 

For example, Miller (1989) showed that when the overall change in luminance was 

held constant between the onset items and the no-onset items (i.e., the number of line 

segments that were deleted to form the no-onset letter were the same as the number 

of segments that made up the onset letter), onsets did not capture attention.  

Further support for this claim was provided by Watson and Humphreys 

(1995) who showed that, as long as the overall change in luminance was kept 

constant, an increase in luminance had the same attentional effect as a decrease in 

luminance. However, other studies have found that attention capture by new objects 

cannot entirely be accounted for by changes in luminance. For example, Enns, 

Austen, Di Lollo, Rauschenberger, and Yantis (2001) showed that a new object with 

low contrast was found faster than an old object that underwent a large luminance 
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change. Moreover, Gellatly, Cole and Blurton (1999) showed that a new object 

captured attention even when it was equiluminant with the background.  

Another explanation for the onset effect was provided by Gibson (1996a) 

who argued that an abrupt onset captures attention because it is available earlier than 

the no-onset items for selection because of their better visual quality. In a series of 

experiments, he was able to show that search was faster in all-onset displays as 

compared to all no-onset displays suggesting that the placeholders that precede the 

no-onset letters might act as a pre-mask.  

The mask had the effect of slowing down the processing of the no-onset item, 

in comparison to the onset item, which is not masked. Attention is then simply 

allocated to the item that is first available. Therefore, capture was put down to faster 

stimulus encoding rather than its status as a new object (but also see Yantis & 

Jonides, 1996; Gibson, 1996b). However, the masking account has been rejected as 

an explanation for the onset effect on the grounds that no RT difference is observed 

between onset and no-onset stimuli using a detection task if attention is already 

allocated to their location (Yantis & Hillstrom, 1994; Yantis & Jonides, 1984). It is 

usually argued that the onset effect results from an attentional advantage to the onset 

items rather than a sensory deficit suffered by the no-onset items.  

Further evidence for the special status of onsets in attention capture comes 

from the finding that up to four onsets are automatically prioritized in visual search 

(Yantis & Johnson 1990; Yantis & Jones, 1991). Yantis and Johnson (1990) used a 

placeholder search paradigm with various display sizes (for example, 6, 8, 12, and 16 

in Experiment 3). In addition every display had an equal number of onsets and no-
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onset items. For example, in their Experiment 3, every trial started with the 

presentation of eight placeholders. After 1000 ms, all placeholders changed to letters 

and at the same time new letters were added to the display such that the number of 

old and new objects in the display was the same. The target was an onset on half the 

trials and a no-onset item on the other half of trials.  

They found that the type of target (onset or no-onset) interacted with display 

size between 6 and 8 but not between 8 and 16. They took this as indirect evidence 

for participants selectively searched through up to four onsets before searching 

through the remaining items in the display. They concluded that all onsets receive a 

priority tag, enabling search through about four items before the tags decay over 

time.  

Consistent with this idea that search times are directly linked to the rate of 

information extraction, Yantis and Jones (1991) showed that the number of items that 

was prioritized was reduced from four to three when the visibility of the stimuli was 

decreased. The findings of Yantis and colleagues (Yantis & Johnson, 1990; Yantis & 

Jones, 1991) were surprising if one considers that the onset items were not more 

likely to be the target than the no-onset items. Their findings also spoke against a 

salience based account of capture, which assumed that capture effects are rather short 

lived allowing attention to be quickly disengaged (e.g., Donk & van Zoest, 2008; 

Kim & Cave, 1999).  

In order to get a better estimate of the number of onsets that are automatically 

prioritized in a search task, it would be better if the number of onsets is 

systematically increased without a change to the overall display size. This way, if 
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RTs increase with an increase in the number of onsets in the display, it can be more 

readily attributed to capture by multiple onsets.  

Priority tag model 

For simplicity, the following priority tag model assumes that search operates 

as a serial process.
6
 In this model, the expected number of comparisons that have to 

be done before the target is found is represented by y, which is determined by three 

factors, namely, the display size n, the number of onsets x, and the number of priority 

tags m. Irrespective of whether the target is an onset or not, the expected number of 

comparisons y should generally always increase with display size n. However the 

effect of the number of onsets x depends critically on the number of priority tags m. 

In the following, y is calculated separately for when m ≤ x and for when m > x. The 

calculation of y also depends on whether the target is an onset or a no-onset item.  

Equation 1 gives the expected number of comparisons y required to find the 

target when the target is an onset and the number of priority tags is smaller than or 

equal to the number of onsets (m ≤ x). 

         
 

 
 
     

 
    

 

 
    

     

 
            (1) 

According to the priority tag model, a subset of m onsets (the priority set) is 

first searched and the search process terminates when the target is found. This is 

represented in the left part of Equation 1, where the probability that the target is in 

the priority set m/x is multiplied by the expected number of comparisons required to 

find the target in that set (m+1)/2. When the target is not part of the priority set, 

                                                
6
For a discussion of serial and parallel processing see Nakayama and Silverman (1986) and 

Townsend (1971, 1990) 
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search continues through the remaining items (the no-priority set), irrespective of 

whether these are onset or no-onset items. This is represented in the right part of the 

Equation 1, where the probability that the target is in the no-priority set 1–m/x is 

multiplied by the expected number of comparisons required to find the target in the 

no-priority set. This latter expected number of comparisons consists of the sum of 

comparisons made when searching through the entire priority set m and the 

comparisons required to find the target in the non-priority set n-(m+1)/2. Equation 1 

can then be reduced to  

   (1a) 

Equation 2 gives the expected number of comparisons y required to find the 

target when the target is an onset and the number of priority tags is greater than the 

number of onsets (m > x); 

          
    

 
           (2) 

m > x means that all onsets are part of the priority set. Because the target is 

specified to be an onset, it follows that the target must be part of the priority set, and 

the no-priority set is therefore excluded from search. Because the priority set consist 

of x onsets, the expected number of comparisons required to find the target is simply 

(x+1)/2. 

Equation 3 gives the expected number of comparisons y required to find the 

target when the target is a no-onset item and the number of priority tags is smaller 

than or equal to the number of onsets (m ≤ x). 

             
     

 
             (3) 
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The priority set consists of m onsets, and because the target is specified to be 

a no-onset item, the entire priority set is searched first. This is represented by m in 

the left part of Equation 3. The right part of Equation 3 contains the number of 

comparisons required to find the target in the non-priority set (n-m+1)/2. Equation 3 

can be reduced to 

             
     

 
             (3a) 

Finally, Equation 4 gives the expected number of comparisons y required to 

find the target when the target is an onset and the number of priority tags is greater 

than the number of onsets (m > x) 

          
     

 
              (4) 

The priority set consists of x onsets, and because the target is specified to be a 

no-onset item, the entire priority set is searched first. This is represented by x in the 

left part of Equation 4. The right part of Equation 4 contains the number of 

comparisons required to find the target in the non-priority set (n-x+1)/2. Equation 4 

can be reduced to 

    (4a) 

This model provides a framework making different predictions for the expected 

number of comparisons y as a function of n and x for various values for the 

parameter m. Figure 6.1 plots as an example (n = 8) the expected number of 

comparisons in six separate graphs for different number of priority tags (m = 0, 1, 2, 

4, 6, and 8) as a function of number of onsets (x = 0 to 8), with separate lines for 

onset targets and no-onset targets. As can be seen in Figure 6.1, the zero-tag model 
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(m = 0) predicts that the onset has no effect at all, whereas the eight-tag model (m = 

8) predicts a linear increase with each additional onset as well as a main effect of 

target type (i.e., onset targets require four comparisons less than no-onset targets). 

All other variations of m predict some form of interaction between target type and 

number of onsets.  

In order to test this model a first experiment was conducted with display size 

fixed at eight and with target type (onset, no-onset) and number of onsets (x = 0, 1, 2, 

4, 6, or 8) systematically varied. The idea was to see how well the empirical data fit 

with this model, which can take different values for number of priority tags (m = 0-

8). The m value that provides the best fit between the model and the data would 

determine the number of onsets that could be prioritized in the task used in a given 

experiment. 

Experiment 13 

Experiment 13 used a visual search task in which participants were asked find 

‘U’ or ‘H’ among other letters in the display. A placeholder search paradigm was 

used and the number of onsets was systematically varied from 0-8 while the overall 

display size was fixed at 8. Fixing the display size would be useful in interpreting RT 

changes as a function of number of onsets to changes in prioritization of onsets. 

 

Method 

Participants. Twenty two undergraduates (8 male, 14 female, mean age 19.4) 

from the University of Warwick participated in return for course credit. All of them 
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reported normal or corrected to normal vision and were naïve to the purpose of the 

experiment. 

 

Figure 6.1. Expected number of comparisons y as a function of number of onsets x 

with separate lines for onset and no-onset targets. There are six graphs for variations of 

priority tags m. 
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Apparatus and Stimuli. The participants were seated in a dimly lit sound 

attenuated room in front of a 19” CRT monitor at a distance of approximately 57 cm. 

The monitor was driven at 100 Hz at a resolution of 1024 x 786 pixels. The 

experiment was controlled by an IBM-PC compatible computer using custom written 

software. Participants’ responses were recorded using left and right arrow keys on a 

standard keyboard. Stimuli consisted of a fixation cross, figure-8 placeholders, and 

letters, presented in grey drawn on a black background. The fixation cross was 0.6°x 

0.6° visual angle and was presented at the centre of the screen. The figure-8 

placeholders and letters subtended 1° by 2° and were made of seven line segments 

(length 1.0°, thickness 0.13°). The letters were ‘H’ and ‘U’ as targets and, ‘S’, ‘E’, 

'F', 'O', 'C', 'P', and 'A' as distractors. The letters were made by removing the 

corresponding line segments from the figure-8. The stimuli were placed on the 

circumference of an imaginary circle (radius 12.5°) centred on fixation, such that the 

letters were equidistant from each other.  

Procedure and Design. A trial started with the presentation of a preview 

display that consisted of a fixation cross and figure-8 placeholders. The number of 

placeholders varied among 8, 7, 6, 4, 2 or 0 so that the corresponding number of 

onsets in the display varied from 0, 1, 2, 4, 6, to 8 respectively. After 1000 ms the 

preview display was replaced by the search display which always contained eight 

letters. The no-onset letters were revealed by deleting the irrelevant line segments 

from the corresponding place-holders, whereas the onset letters appeared at 

previously unoccupied locations (see Figure 6.2). The target was equally likely to be 

an onset or a no-onset item (see Table 6.1). 
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Figure 6.2. Example display in Experiment 13 with four onsets and four no-onset 

items. Display size was fixed at 8, but the number of onsets varied from 0, 1, 2, 4, 6, to 

8.  

 

Participants were asked to look for ‘H’ and ‘U’ targets among other distractor 

letters and to respond with the left and right arrow keys. Half of the participants used 

the left arrow for H and right arrow for U, and vice versa for the other half. They 

were instructed to respond to the target as fast as they could whilst trying not to make 

more than 5% errors. The search display stayed on until the participant responded or 

10 seconds had elapsed. If no response was made within ten seconds, that trial was 

marked as an error. In the instance of wrong responses immediate feedback was 

given on the screen saying “error” and participants had to press the space bar to 

move on to the next trial. There was an inter trial interval of 1 second. For every 

number of onsets (x) condition, the target was an onset only on 1/x of the trials 

presenting that condition in order to ensure that the target type did not predict the 

target location. For example, when there was one onset, the target was a no-onset 
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item in 7/8 of the trials and an onset in only 1/8 of the trials, but when there were 

four onsets the target was an onset or no-onset item in equal number of trials (see 

Table 6.1). 

Each participant completed 20 practice trials followed by 400 experimental 

trials. The experimental trials were divided into 8 blocks of 50 trials each, with short 

enforced breaks between blocks. The experiment systematically varied three factors: 

target identity (H or U), target type (no-onset, onset), and number of onsets (0, 1, 2, 

4, 6 or 8). All possible factor combinations were presented in random order. For the 

analysis, target identity was not further considered.  

 

Results 

RTs. Mean correct RTs were calculated for each target type and number of 

onset combination excluding 1.1% outliers (see Figure 6.3). A 2 x 4 Repeated 

Measures ANOVA with the factors target type (no-onset or onset) and number of 

onsets (1, 2, 4, or 6, excluding 0 and 8 onset in order to have a fully factorial design) 

were calculated. This showed a significant main effect of target type F(1, 21) = 

96.51, p <.001: onset targets were on average found 113 ms faster than no-onset 

targets. The effect of number of onset was also significant F(3, 63) = 6.79, p <.001.  

RTs increased on average by 46 ms from one to six onsets. Moreover, the 

interaction between target type and number of onsets was significant F(3, 63) = 8.23, 

p <.001. In order to further explore the interaction, two additional 1-way ANOVAs 

with the factor number of onsets showed no significant effect when the target was a 
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no-onset item, F<1, but a highly significant effect when it was an onset, F(4, 84) = 

16.18, p <.001, due to an RT increase of 103 ms from one onset to six onsets. 

 

 

Figure 6.3. The markers show the mean correct RTs for static (no-onset) and onset 

targets in Experiment 13. The lines and R
2
 show the result of a multiple regression 

analysis, predicting RT based on the 1-tag model, which provided the best fit. 

 

Errors. Mean percentage errors were calculated separately for each 

participant and factor combination (see Table 6.1). Error rates were relatively low 

(on average 3.7%), suggesting that participants had no problem keeping errors below 

5%. A 2 x 4 repeated measures ANOVA with the factors target type (no-onset, onset) 

and number of onsets (1, 2, 4, or 6 items) revealed a significant main effect for target 

type, F(1, 21) = 6.03, p < .05, due to the somewhat higher error rate with no-onset 

than with onset targets (4.4 vs. 2.9%, respectively). Although the two-way 

interaction between target type and number of onsets was not significant, F < 1, 
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errors overall showed a very similar pattern to the RTs, suggesting that RTs were not 

confounded by speed-accuracy trade-offs. 

 

Table 6.1.  

Number of trials (N) and Errors (%) for target type and number of onsets in 

Experiment 13 

  Target Type 

  No-Onset  Onset 

No. of onsets Total no. of 

trials 

N Error (%)  N Error (%) 

     0 20 20 4.1  0 - 

     1 160 140 4.3  20 2.4 

     2 80 60 4.6  20 2.2 

     4 40 20 4.8  20 2.8 

     6 80 20 4.3  60 3.0 

     8 20 0 -  20 3.9 

Total (Mean) 400 260 (4.4)  140 (2.9) 

 

Model fitting. A multiple regression analysis was used to determine the 

model parameters that make the best predictions for the RTs observed in Experiment 

13. It is assumed that RTs depend on the expected number of comparisons as 

predicted by Equations 1-4 and for the different values of m as outlined in Figure 6.1. 

Consistent with the observation that RTs are in general faster with all-onsets displays 

than all no-onset displays (see Gibson, 1996), the factor target type is also included 

in the regression equation adding a constant to the formula when the target is a no-

onset item. 

                        (5) 
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The regression weight (a) is for the expected number of comparisons as 

predicted by the m- tag model, the regression weight (b) is for the target type (0=no-

onset, 1=onset) and (c) is a constant representing all other processes involved in 

making a visuo-motor response (see Equations 1-4). The results of eight multiple 

regressions calculated separately for different values for number of priority tags (m= 

1-8) are presented in Table 6.2. As can be seen in the last column, the 1-tag model 

provides the best fit (r
2
=.977), with the goodness of fit continuously decreasing with 

increasing number of tags.  

 

Table 6.2.  

Summary of eight regression analyses predicting RT in Experiment 13 for Priority 

tag models (m), with the factors expected number of comparisons a, target type b, 

and the constant c. 

M a (SE) b (SE) c (SE) R
2
 

0 - 
a
 - 

a
 - 

a
 - 

a
 

1 31.6 (4.2) -74.1 (10.3) 764 (21.7) .977 

2 27.7 (4.0) -59.5 (12.4) 774 (21.8) .974 

3 26.7 (4.7) -52.9 (16.0) 774 (26.8) .963 

4 23.6 (5.8) -53.1 (21.3) 786 (33.8) .939 

5 21.4 (6.4) -56.8 (24.6) 797 (38.3) .920 

6/7/8 
b
 18.8 (6.9) -62.4 (27.5) 810 (41.7) .900 

Note. a The 0-priority tag model predicts no variation  b The 6-, 7-, and 8-priority-tag models make the 

same prediction for this data set. 

 

In order to compare the various tag-models, the same multiple regression 

analysis was calculated separately for each participant and each number of priority 

tags (m). A one-way ANOVA on these R
2
 values with the factor tag, showed a 

significant effect, F(5, 105) = 6.78, p < .001. Posthoc LSD comparisons revealed that 
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the difference between each level pair was significant (p<.05), except the difference 

between the 1-tag model and the 2-tag model (p=.34). This means that the 1- and 2-

tag model provides a significantly better fit than the 3-8 tag models. Also, the 3-tag 

model provide a better fit than the 4-8 tag model, the 4-tag model than the 5-8 tag 

model, and the 5-tag than the 6-8 tag model. 

 

Discussion 

In Experiment 13, the effects of multiple onsets on attention capture were 

tested. Search displays with eight elements were used and the number of onsets was 

systematically varied. The results of a multiple regression analysis showed that the 

data was best supported by a model where only one onset is prioritized in search. 

Moreover, the pattern of RTs in Figure 6.2 shows the same numeric trend as the 

model in Figure 6.1 when only one onset is prioritised. For example, the RT increase 

for the onset target was largest when the number of onsets was increased from one to 

two. With every subsequent increase, the slope gradually decreases. This corresponds 

exactly to what is predicted by the 1-tag model. Moreover, the results showed no 

effect of the number of onsets when the target was a no-onset item, which 

corresponds well with the 0- or 1-tag model.  

However, the present findings are in contrast to previous studies showing that 

more than one onset (up to 4) is automatically prioritized in search (Yantis & 

Johnson, 1990; Yantis & Jones, 1991). This could be due to some methodological 

differences between the present study and Yantis and colleagues’ studies. For 

example, Yantis and colleagues always had in every trial an equal number of onset 
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and no-onset items. That means paying attention to all onsets was “rewarded” in half 

the trials, whereas in the current study it was rewarded only in 35% of the trials. That 

is, there is more incentive in the present experiment to ignore onsets than in Yantis 

and colleagues’ studies. Another difference was that in the present study display size 

was fixed at eight and only the number of onsets was varied from trial to trial, 

whereas in Yantis and colleagues’ studies display size was varied to up to 16 items. 

It could be that their estimation of the deflection point in the RT slope is skewed by 

an overall flattening of the RT slope typically found at larger set sizes.  

Strictly speaking, searching for a letter among other letters is only a 

moderately difficult task and after a certain point one would expect target identity to 

guide search rather than target type, which is irrelevant to the task. This is in line 

with purely bottom up models of attention capture which suggest that capture occurs 

because of increased salience of certain items at the first sweep of information 

through the brain (Theeuwes, 2010). However, after the initial feed forward sweep, 

re-entrant processes take over and the identity of the letters would be actively 

prioritized over its onset status. Thus, it would seem that the initial boost enjoyed by 

abrupt onsets is not sustained past the first location that is automatically attended to. 

Thus, the present experiment suggests that attention capture is better explained by a 

bottom up salience based model rather than an automatic priority tagging model.  

 

Experiment 14 

Experiment 14 tests whether the number of onsets that are prioritized 

becomes larger when onsets differed from the no-onset items in another easily 



154 

 

distinguishable feature. That is, all onset letters appeared now in red whereas all no-

onset letters stayed grey – the same colour as their corresponding placeholders. 

Having this additional feature could have three possible effects: First, because target 

type is irrelevant for the search task, the added colour might help to better ignore the 

irrelevant target type. In this case the best prediction would come from the 0-tag 

model. Second, the added colour could have the opposite effect, that is, it aids the 

automatic prioritization of onsets. In this case the best prediction would come from a 

multi-tag model (e.g., 3-8 tag models). Third, the added colour could have no effect 

on the search process. In this case the best prediction would come from the 1-tag 

model. In order to allow better estimates for the various tag models, two additional 

levels for number of onsets were added, that is, number of onsets was systematically 

varied from 0, 1, 2, 3, 4, 5, 6, to 8.  

 

Method 

Participants. Twelve students from the University of Warwick (3 male, 9 

female mean age, 19.5 years) participated in return for course credit. None had 

participated in Experiment 13. 

Apparatus, Stimuli, Procedure and Design. The apparatus and stimuli were 

the same as in Experiment 13, except that the all onset letters were presented in red. 

All aspects of the procedure and design were similar to that of Experiment 13, except 

that the conditions with 3 and 5 onsets were added, increasing the total number of 

trials in the experiment to 560 (see Table 6.3). 
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Results 

RTs. Mean correct reaction times were calculated for each target type and 

number of onsets combination (See Figure 6.4).  

 

 

Figure 6.4. The markers show the mean correct RTs for static and onset targets in 

Experiment 14. The lines and R
2
 show the best fit from a multiple regression analysis, 

predicting RT based on the 1-tag model. 

 

A 2x6 Repeated Measures ANOVA with the factors target type (no-onset or 

onset) and number of onsets (1, 2, 3, 4, 5 or 6, excluding 0 and 8) showed a 

significant main effect of target type F(1, 11) = 24.44, p < .001: onset targets were 

found 139 ms faster than no-onset targets. The effect of the number of onsets was 

also significant F(5, 55) = 3.68, p < .01: On average RTs increased by 25 ms from 

one onset to six onsets. However, the interaction between target type and number of 

onsets did not reach significance F(5, 55) = 1.39, p = .24. The 1-way ANOVAs for 
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no-onset targets with the factor number of onsets (now including 0 onset) showed no 

significant effect, F<1; however the ANOVAs for onset targets including 8 onsets 

showed a highly significant effect, F(6, 66) = 4.99, p <.001, due to an RT increase of 

122 ms from 1-8 onsets.  

 

Table 6.3.  

Number of trials (N) and mean percentage errors (%) for each combination of target 

type and number of onsets in Experiment 14. 

 Target Type 

 No-Onset  Onset 

Number of onsets N Error (%)  N Error (%) 

0 20 2.5  0 - 

1 140 3.5  20 2.1 

2 60 4.6  20 1.4 

3 50 4.4  30 3.3 

4 20 3.6  20 1.8 

5 30 3.6  50 3.9 

6 20 3.9  60 4.2 

8 0 -  20 2.1 

Total (Mean) 340 (3.7)  220 (2.7) 

 

Errors. Mean percentage errors were calculated separately for each 

participant and factor combination (see Table 6.3). Error rates were relatively low 

(on average 3.2%), suggesting that participants had no problem keeping errors below 

5%. A 2 x 6 repeated measures ANOVA with the factors target type (no-onset, onset) 

and number of onsets (1, 2, 3, 4, 5, or 6 items, excluding the 0 and 8 onset 

conditions) revealed only a marginally significant main effect for target type, F(1, 

11) = 4.78, p = .051, due to the somewhat higher error rate with no-onset targets than 
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with onset targets (3.7 vs. 2.7%, respectively). Again, there was no indication that 

RTs were confounded by speed-accuracy trade-offs. 

 

Table 6.4.  

Summary of eight regression analyses predicting RT in Experiment 14 for priority 

tag models (m), with the factors number of inspected items (a), onset target (b), and 

the constant c. 

M a (SE) b (SE) c (SE) R
2
 

0 - 
a
 - 

a
 - 

a
 - 

a
 

1 34.7 (3.8) -77.9 (8.0) 797 (19.0) .979 

2 30.5 (3.2) -58.4 (9.4) 806 (17.7) .980 

3 29.1 (3.4) -45.8 (11.4) 805 (19.5) .976 

4 27.2 (3.9) -41.2 (14.4) 810 (23.2) .966 

5 25.6 (4.1) -41.1 (16.1) 816 (25.2) .959 

6/7/8 
b
 24.4 (4.2) -42.8 (17.0) 821 (26.1) .955 

Note. a The 0-priority tag models predicts no variation  b The 6-, 7-, and 8-priority-tag models make 

all the same prediction. 

 

Model fitting. As for Experiment 13, a multiple regression analysis was used 

to determine the model parameters that make the best predictions for the RTs 

observed in Experiment 14 (see Equation 5). The results of eight multiple regression 

analyses calculated separately for different values for number of priority tags are 

presented in Table 6.4. As can be seen from the last column, the 1- and 2-tag model 

provides again the best fit (R
2 
= 0.979 and R

2 
= 0.980, respectively). However, the 

best fit values R
2
 for each tag model was in a smaller range in this experiment (0.955 

to 0.980) as compared to Experiment 13 (0.900 to 0.977). This was also confirmed in 

a one-way ANOVA on the individual R
2
, which showed no significant effect for 
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number of tags, F < 1. This means that in Experiment 14 all models provide a very 

good fit with R
2
 values in the range of 0.96 to 0.98. 

 

Discussion 

Experiment 14 was conducted to test whether adding a distinctive feature to 

the onsets changes their attentional priority, either by strategies adopted by the 

participants or by changing their salience. As in Experiment 13, the best fit came 

from the 1- and 2-tag models. However, there was no significant difference in terms 

of best fits between the 1- and 2-tag models and the other multi-tag models. A 

possible reason for this smaller range of best fits might come from individual 

differences in the use of this colour feature. When looking at the individual 

distribution of best-fit R
2
 values, in Experiment 13 the vast majority of participants 

(18 out of 22) seemed to use a 1- or 2-tag model. However, in Experiment 14 half of 

the participants (6 out of 12) seemed to use a multi-tag (3-8) model. This seems to 

indicate that when the onsets were coloured in red some of the participants were 

switching from a single-tag to a multi-tag strategy, where they pay particular 

attention to the coloured onset items. This would be a strategic top-down driven 

effect. 

However, from Figure 6.4 it is clear that there is a numeric trend that it is 

more similar to the predictions for the model in which only one onset is prioritised. 

For example, it is clear that RT slope for onset targets is largest when the number of 

onsets increased from one to two. With every subsequent increase, the RT slope 

gradually decreases. Moreover, RT slope for no-onset target increases as the number 
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of onsets increase from zero to one, but any subsequent increase in onsets does not 

affect the RT to find a no-onset target. If more onsets were prioritised in search, there 

would have been a definitive increase in search slopes when the target was a no-

onset item.  

However, it is important to note that 50% of the participants seemed to use a 

1- or 2-tag model. This suggest that increasing the absolute salience of the onsets by 

drawing them in red did not affect capture for these participants because like target 

type, colour does not predict target location. Thus, participants do not have any 

incentive to attend to onset over no-onset items. That is, it seems that once attention 

is captured reflexively by an abrupt onset, participants are able to exert top-down 

control to focus on the task at hand and overcome subsequent capture. The finding 

that automatic capture is not sustained beyond one onset is, once again, not in line 

with the findings of Yantis and colleagues (Yantis & Johnson, 1990; Yantis & Jones, 

1991).  

Experiment 15 

The results of Experiments 13 and 14 suggest that the majority of participants 

(70%) automatically prioritize and search only one or possibly two abrupt onsets in a 

display. However, it might be potentially possible to tag and search through more 

items with priority when it is demanded by the task. However this has not been tested 

previously in the context of attention capture with abrupt onsets. In the present 

experiment the task relevance of target type was manipulated such that participants 

always knew whether the target was an onset or a no-onset item. In order to allow 

participants to make best use of this information, target type was blocked such that in 
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half of the experiment, the target was an onset whereas in the other half, it was a no-

onset item.  

Because participants always knew in advance set in which the target would 

appear, it was assumed that they would always prioritize the relevant target type. 

Hence Equations 1 and 2 are applied to both target types separately, because they 

assume that the target is always part of the priority set.  

Method 

Participants. Twelve students from the University of Warwick (3 male, mean 

age, 18.5 years) participated in return for course credit. None had participated in 

Experiment 13 or 14. 

Apparatus, Stimuli, Procedure and Design. Apparatus, stimuli and 

procedure were the same as in Experiment 13.  The design was very similar to that of 

Experiment 14, with the following differences. The target type was blocked with half 

the participants starting the condition where the target is an onset first and vice-versa 

for the other half. The number of onsets in each target type condition varied from 0 

to 8. Because the target type was fixed, the number of trials in which the target was 

an onset and the trials in which it was a no-onset item was the same, giving a total of 

512 trials (see Table 6.5) 

 

Results 

RTs. Mean correct reaction times were calculated for each target type and 

number of onset combination (see Figure 6.5).  
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Figure 6.5. The markers show the mean correct RTs for static and onset targets in 

Experiment 15. The lines and corresponding R
2
 show the result of two separate 

multiple regression analyses, predicting RT based on the 3-tag model for no-onset 

targets and the 8-tag model for the onset targets. 

 

A 2x8 Repeated Measures ANOVA with the factors target type (no-onset or 

onset) and number of search-relevant items (1, 2, 3, 4, 5, 6, 7, or 8) showed a 

significant interaction, F(7, 77) = 3.61, p < .01. This interaction was due to the 

absence of a significant target type effect (p =.12) when there was only one search-

relevant items (probably because the location of the target was 100% predicted by 

the one present or the one missing placeholder). This condition was excluded and a 

new 2x7 Repeated Measures ANOVA calculated, with the factors target type and 

number of search-relevant items (2-8). It showed a main effect of target type F(1, 11) 

= 32.09, p < .001: onset targets were found 108 ms faster than no-onset targets. The 

effect of number of search-relevant items was also significant F(6, 66) = 54.70, p < 

500

600

700

800

900

1,000

1,100

1,200

1 2 3 4 5 6 7 8

Number of search-relevant items (x)

R
T

 (
m

s
)

No-onset

Onset

R
2
 = .964

R
2
 = .970



162 

 

.001: On average RTs increased by 298 ms from 2 search-relevant items to 8 search-

relevant items. However, the interaction between target type and number of onsets 

did not reach significance F(6, 66) = 1.61, p = .16. 

 

Table 6.5.  

Number of trials (N) and mean percentage errors (%) for each combination of target 

type and number of onsets in Experiment 15. 

 Target Type 

 No-Onset  Onset 

Number of search-

relevant items 

N Error (%)  N Error (%) 

1 32 4.2  32 2.9 

2 32 2.6  32 6.0 

3 32 3.4  32 2.6 

4 32 4.2  32 3.9 

5 32 4.7  32 2.3 

6 32 5.2  32 4.2 

7 32 4.7  32 3.4 

8 32 2.1  32 4.7 

Total (Mean) 256 (3.9)  256 (3.8) 

 

Errors. Mean percentage errors were calculated separately for each 

participant and factor combination (see Table 6.5). Error rates were relatively low 

(on average 3.8%), suggesting that participants had no problem keeping errors below 

5%. A 2 x 8 repeated measures ANOVA with the factors target type and number of 

search-relevant items revealed no significant effects (all p > .17), indicating that RTs 

were confounded by speed-accuracy trade-offs. 
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Table 6.6. 

Summary of eight regression analyses predicting RT in Experiment 15 separately for 

onset and no-onset targets for various priority tag models (m), with the factors 

number of inspected items (a), and the constant c. 

     M a (SE) c (SE) R
2
 

No-Onset    

     1 191.7 (21.3) 158 (86.6) .941 

     2 95.8 (10.6) 589 (39.2) .942 

     3 89.2 (7.7) 637 (26.5) .964 

     4 87.6 (11.7) 655 (38.6) .918 

     5 89.9 (12.1) 654 (38.9) .917 

     6 91.5 (13.1) 653 (41.7) .906 

     7/8 92.6 (13.1) 650 (41.4) .909 

Onset    

     1 190 (23.2) 42 (93.9) .931 

     2 95 (11.6) 471 (42.5) .931 

     3 88 (8.4) 517 (29.0) .957 

     4 89 (8.1) 528 (26.8) .960 

     5 91 (8.6) 528 (27.8) .957 

     6 94 (7.8) 523 (24.9) .967 

     7/8 95 (7.5) 521 (23.9) .970 

 

Model fitting. As for Experiment 13 and 14, multiple regression analysis was 

used to determine the model parameters that make the best predictions for the RTs 

observed in Experiment 15 (see Equation 5). The results of 2 x 8 multiple regression 

analyses calculated separately for different values for number of priority tags and 

target type are presented in Table 6.5. Looking at the R
2
, for no-onset targets the 3-

tag model provides the best fit (R
2 
= 0.964), whereas for onset targets the 8-tag 

model provides the best fit (R
2 
= 0.970). This was also confirmed in a two separate 



164 

 

one-way ANOVA on the individual R
2
, of which both showed a significant effect for 

number of task-relevant items (both p <.01).  

 

Discussion 

The present experiment tested whether participants can selectively search 

through a subset of distractors when it is relevant to the search task. The results 

showed that RTs increased as the number of search relevant distractors increased 

while searching through both onset and static items. The results suggest that multiple 

items can be selectively searched through both onset and no-onset items with 

reasonable efficiency. Importantly, however there was a difference between onsets 

and no-onset items in the number of items that can be selected.  

When the relevant set was made of onset items, the best fit was obtained in 

the 8 onset condition. Moreover, the fit seems to be equally good while searching 

through eight onsets and while searching through only one (range .931 to .970). This 

suggests that participants are able to search selectively through the onsets and ignore 

the no-onset items in conditions where the target is an onset item. One possible 

mechanism by which participants do this could be by actively inhibiting the location 

of the figure-8 placeholders by visual marking (Watson & Humphreys, 1997). In 

visual marking, participants successfully inhibit the location of known distractors 

(the preview) in a top-down manner so that they can selectively search through a new 

set of distractors. In spite of the methodological differences between the present 

study and studies using the placeholder search paradigm there are many reasons to 

believe why the data can be best explained by visual marking. For example, in visual 
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marking, it is generally shown that a change to the preview display abolishes the 

marking (Watson, Braithwaite & Humphreys, 2008; Watson, & Humphreys, 2002).  

In line with this, when the placeholders change to letters in the present study, 

it should have led to a failure in marking. However, successful inhibition could have 

been made possible in the present experiment due to various differences in design 

and stimuli relative to visual marking experiments. First, visual marking studies 

generally make use of targets and distractors that are defined by conjunction of two 

features, like colour and target identity/shape making it a difficult serial search where 

attentional guidance is difficult. However, in the present experiment, searching for U 

or H among other distractor letters should have been driven by their identity rather 

than feature conjunctions, making it relatively easier (also see Theeuwes, Kramer & 

Atchley, 1998, who showed that marking can occur even when all the items in the 

display are of the same colour and using multiple target items). Moreover, in visual 

marking studies, the items are presented in a random arrangement spread over the 

visual field, making it difficult to predict the location in which the new items are 

going to appear. However, in the present experiment the items were arranged in a 

circle making it easier to predict the locations of the onsets.  

The present experiment also relates to discussions in the marking literature 

about the role of the abrupt onset of the search display in their prioritization. For 

example, Donk and Theeuwes (2003) found results that suggest that participants 

prioritize new items in spite of the absence of an incentive to prioritize. This finding 

indicates that search is overall faster when targets also happen to be new objects in 

the display. I this context, they speculated that multiple onsets might receive 
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attentional priority in a bottom-up manner. However, this result could have been due 

to the intermixing of trials in which the target could be an old or a new item and does 

not necessarily reflect prioritization by multiple onsets. Moreover, in contrast to the 

onset best fit, the best fit (R
2
 of .964) for finding the target among relevant no-onset 

items suggest that only up to 3 no-onset items could be selectively searched with 

priority. Because the number of items that are prioritised for each target type, it 

seems that participants may be adopting a different strategy to selectively search 

through the no-onset items as compared to the onset items.  

Selective search through the no-onset items can be explained by the visual 

indexing theory, also called the FINST for ‘fingers of instantiation’ (Pylyshyn, 

1989). According to FINST, it is possible to index or tag a small numbers of items in 

the visual field and these indexes can be used to track changes to these object. This 

indexing mechanism is controlled in a top-down manner and limited to about 4 

items. The present results for the no-onset targets are consistent with this prediction 

of FINST. Moreover, it is assumed that this indexing is object-based, making it 

impossible to index empty locations, making FINST unsuitable while searching 

through a target among the onset items.   

Note that it is difficult to determine whether or not onsets capture attention 

when the relevant set is made of no-onset items. Indeed, there is RT difference 

between onsets and no-onset items in all conditions, except when the number of 

relevant items was one. When it was one, there was only one relevant item in the 

display and participants could predict the location of the target from the information 

available from the placeholder display. A narrow attentional window adopted during 
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search would have led to the absence of capture by onsets in that condition. 

However, overall, there is a difference in RT between the onset and the no-onset 

conditions. This difference in intercept has previously been noted by Gibson (1996a) 

who argued that faster RTs in displays with all onsets as compared to displays with 

all no-onsets results from a slower updating of the object files in the no-onset 

displays.  

General Discussion 

The present chapter describes three experiments testing the automatic nature 

of attention capture by multiple simultaneous abrupt onsets. Experiments 13 and 14 

showed that when onsets are irrelevant to the task, only one onset captures attention. 

Experiment 14 further showed that this is the case even when the onsets are readily 

distinguishable from the no-onset items. Experiment 15 showed that when target type 

is relevant to the task, participants are able to search selectively through all the onsets 

and up to four no-onset items.  

The findings of the present chapter, especially Experiment 13 and 14, are not 

in line with the priority tag model put forth by Yantis and Jones (1991). They 

proposed three possible models of capture, depending on whether 0, 1 or multiple 

onsets are prioritized. Of particular relevance are models 2 and 3 where either one or 

multiple onsets, respectively, are automatically prioritized.  

Model 2 subsumes a saliency based mechanism of capture for onsets. 

According to this model, only one onset is prioritized during search and the RT to an 

onset target in a multiple onset display is mediated by the probability of the target 

being an onset. Such a model would speak strongly in favour of the role of salience 
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in attention capture and would include abrupt onset in a category of features that 

capture attention when it is salient.  

On the contrary, Model 3 assumes that all the onset items are tagged as high 

priority and searched before starting to search through the no-onset items. This 

model emphasizes the special status of abrupt onsets in attention capture because the 

priority tagging is assumed to be automatic and requires additional resources for 

maintenance. Thus, it is likely to be mediated by higher cognitive functions like 

memory rather than saliency maps. Yantis and colleagues’ evidence in favour of a 

multiple priority tag model undermines the role of salience in attention capture by 

abrupt onsets. However, the findings of the present chapter prompt a re-evaluation of 

the role of salience or other low level transient features as a mediator of attention 

capture by abrupt onsets.  
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Chapter 7: General Discussion 
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Summary of the Empirical Chapters 

This thesis presents a series of four studies investigating attention capture by 

dynamic stimuli in multi element displays. Most of the empirical tests are designed 

to test the theories of capture by motion onsets. Chapter 3 reports two experiments 

that examine the role of the refresh rate of motion in attention capture by motion 

onsets. Previous findings of attention capture by motion onsets (Abrams & Christ, 

2003, 2005; Christ & Abrams, 2008; Christ et al., 2008; Franconeri & Simons, 2005) 

were followed up as it was suspected that capture in those studies were confounded 

by the refresh rate of the motion onset stimulus they used.  

The findings of Chapter 3 indeed confirms this suspicion by showing that 

only the onset of jerky motion captured attention while the onset of smooth motion 

did not. Contrary to previous findings, the results suggest that motion onsets per se 

do not capture attention. Moreover, capture did not occur even with jerky motion for 

continuously moving items, suggesting that capture cannot be entirely attributed to 

transient signals that accompany jerky motion. It was concluded that theories of 

capture like the motion onset account, which subscribe to higher level mechanisms 

and evolutionary reasons, cannot explain these effects. However, explanations like 

the unique event account, which subscribe to low level factors like temporal 

uniqueness, are helpful at least in partially explaining the results.  

Even though the findings from this study suggest an important role of low 

level motion changes in capture, it does not reveal the precise mechanisms governing 

attention capture. Neither does it explain why the onset of jerky - but not smooth 



171 

 

motion captures attention. Hence, the next study was aimed at understanding how 

jerky motion onsets affect attentional prioritization. Following up from the bottom-

up models of attention capture, it was hypothesized that motion as such might not be 

required at all and that simple flicker might capture attention. 

Chapter 4 further explores the reasons for the differential effect of low refresh 

rate on attentional allocation to motion, in particular to motion onset. It was aimed to 

determine the precise reason for capture by jerky but not by smooth motion onset. In 

Experiment 5, it was hypothesized that the continuous luminance transients 

associated with jerky motion might capture attention. This was tested by looking at 

the effect of flicker on its own at various frequencies on attention capture. The flicker 

frequencies were comparable to the motion refresh rates used in the previous study. 

However, the results showed that flicker does not capture visual attention.  

Next, study aimed to deconstruct the steps involved in the onset of jerky 

motion. In Experiment 6, the motion onset stimulus had smooth motion except for 

the first step, where the stimulus jumped as it would in jerky motion. Now, capture 

was found to vary as a function of jump size. That is, as the distance of the jump 

increases, the capture effect becomes stronger. Moreover, Experiment 7 and 8 

showed that just a single jump without the subsequent motion (i.e., an abrupt 

displacement) is enough to capture attention. That is, an object that is displaced 

abruptly was shown to capture attention in spite of the absence of a higher level 

perception of change in location. 

This effect is interesting when seen in conjunction with Experiment 9, in 

which the item is displaced as a figure-eight and then changes into a letter, as 
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compared Experiment 8, in which it was displaced as a letter. The results show that  

the capture effect for abrupt displacement is now abolished, and the RTs are not 

different between static and displacement. It is argued that static letters become 

masked by the figure-eight place-holder, which delays the transmission of the letter 

signal for further processing. Thus, abrupt onsets and jerky motion onsets are 

attended first because they are both available for processing before the static item.  

Taken together, the findings of Chapter 4 provide further support for the role 

of low level factors in attention capture. The results overall suggest that automatic 

attentional allocation is quite strongly affected by stimulus properties and low-level 

salience and visual quality. Thus, low level factors like masking can have a strong 

effect on the processing of visual signals.  

In Chapter 5, a paradigm that was similar to those used in Chapters 3 and 4 

was used, but with stimuli that moved back and forth instead of on a circular path. 

Capture was observed in this scenario, and remained unaffected by speed and 

smoothness of the direction change. That is, both fast and slow oscillations captured 

attention equally strongly and so did both gradual and abrupt direction changes. It 

was speculated that capture is probably mediated by a change in the direction of 

motion, rather than by a different type of motion. In further support of capture by 

direction change, Experiment 12 confirmed that the capture effect by direction 

change is also reflected in a difference in search slopes. The findings from this 

chapter also further support the conclusions in Chapters 3 and 4 that motion-onset 

per se does not capture attention. 
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Chapter 6 connects to the findings of chapters 3 and 4 by further testing the 

masking hypothesis for capture by abrupt onsets. Experiment 9 (chapter 4) had 

shown that capture by motion onset occurs because the static no-onset letters are all 

masked by the preceding figure-eight. Considering that the placeholder search 

paradigm is used to study capture by abrupt onsets, it is possible that the results of 

onset capture might have been confounded by masking. However, the role of 

masking has been previously tested and some evidence was found to support this 

hypothesis (see Gibson, 1996a. 1996b). However, there have been counter 

arguments, claiming that even when they are masked, onsets capture attention 

(Yantis & Jonides, 1996). Also, the new object account claims that more than one 

onset is prioritised in search by way of priority tagging. However, if capture is put 

down to masking, it is highly unlikely that more than one onset would receive an 

advantage. In case of masking, this would not be possible. In this context, the priority 

tag model of onset capture needs to be re-examined.  

Three experiments were conducted using a similar visual search paradigm in 

order to examine the effects of multiple abrupt onsets on attention capture. To begin 

with, the number of onsets that are automatically prioritized was estimated. Previous 

studies have suggested that in visual search up to four onsets can be prioritized 

(Yantis & Jones, 1991; Yantis & Johnson, 1990). This finding favours the new-

object account where items in a display are put in a priority queue and selectively 

searched through, rather than processing first the item that becomes available first. In 

the masking model, one onset might receive a priority due to better visual quality, 

but there would be no mechanism to keep track of which items in the display are 
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onsets and which are not. Hence, after the first onset is processed, all other items in 

the display would be treated equally, ignoring their status as new objects.  

Yantis and colleagues (Yantis & Johnson, 1990; Yantis & Jones, 1991) found 

that, even though the RT for an onset target increases linearly as the number of 

abrupt onsets increases, search rates remain unaffected for displays with more than 

four onsets. Thus, they concluded that during search up to four onsets are 

automatically prioritized and searched first before all the other items are searched.   

In Experiment 13, a placeholder search paradigm was used and the number of 

abrupt onsets in the display was systematically varied from 0 to 8. The target being 

an onset or a no-onset was irrelevant to the search task and this was achieved by 

ensuring that an onset item in a display was no more likely to be the target than the 

no-onset item. The results suggest that automatic prioritization did not extend beyond 

one onset item. In Experiment 14, the onsets were made readily distinguishable from 

the no-onsets by presenting them in red. It has previously been shown that colour is a 

feature that can be ignored in search when it is task irrelevant. Thus providing the 

colour cue could have been helpful in overcoming the onset effect.  However, the 

onset effect remained at only one onset item that becomes prioritised automatically, 

further supporting the masking account, which assumes that only one onset item 

could benefit from not being masked by the figure-eight placeholder (cf. Gibson, 

1996a).  

In Experiment 15, the target condition was blocked depending on whether the 

target is an onset or a no-onset. Participants were encouraged to actively search only 

through the relevant set while ignoring the distractors in the irrelevant set. The 
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results suggest that participants could prioritise all the items in the relevant set when 

the target was an onset. However, when the target was a no-onset, participants could 

prioritize only up to four items in the relevant set. The results show that the visual 

system treats onsets and no-onsets differently and that attention is differently 

allocated. It is possible that this difference arises more from the difference in strategy 

used by the participants in accomplish the search task in these different scenarios.  

In order to search through onsets, the best strategy would be to inhibit the 

placeholders, while in order to search through the no-onsets, the participant would 

have to inhibit empty location in which the onsets would be expected to appear, what 

would be quite difficult. Thus the amount of interference or changes from the 

inhibited set will explain which set would be easier to search through.  

While top-down inhibition of the placeholders might be helpful in selectively 

searching through the onsets, FINST based indexing (Pylyshyn, 1989) aids searching 

through the no-onsets. That is, automatic prioritisation by abrupt onsets might not be 

mediated by priority tagging as was previously suggested. Yantis and colleagues’ 

(Yantis & Jones, 1991; Yantis & Johnson, 1990) evidence in favour of a multiple 

priority tag model undermines the role of salience in attention capture by abrupt 

onsets. However, the findings of Chapter 6 prompt a re-evaluation of the role of 

salience or other low level transient features as a mediator of attention capture by 

abrupt onsets. The results also reinforce the findings from the previous chapters that 

low-level salience is more important for capture than higher level perceptual events. 

Overall, the thesis endorses a bottom-up rather than top-down model to explain 

attention capture. 
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Theories of Capture 

Behavioural-urgency and Animacy 

In order to draw a conclusion, it would be important to revisit the theories of 

capture and to examine how much the findings from the present thesis have 

contributed to these theories. The most popular accounts of capture by motion onsets 

are the animacy account by Abrams and colleagues (Abrams & Christ, 2003; Pratt et 

al., 2010) and the behavioural urgency hypothesis by Franconeri and Simons (2005). 

The essence of both of these accounts is quite similar. While the animacy theories 

propose that the onset of motion is a feature that can be used to differentiate between 

animate and inanimate objects, the behavioural urgency hypothesis claims that an 

object that begins to move is behaviourally highly relevant.  

Using evolutionary arguments, both theories concede that animacy and 

behavioural urgency captures attention. In some sense the behavioural urgency 

hypothesis can also account for explanations of capture as given by the animacy 

theories. For example, it can be argued that it is important to quickly detect the 

presence of animate objects in the surroundings as this information could be coupled 

with a quick behavioural response. That is, the animate object might be a predator, in 

which case survival depends on quick responses; or it might be a prey in which case 

also, the speed of response is critical for survival. Hence it seems that at least a 

behavioural level both the theories can be treated similarly.  

Thus, in essence both these theories are evolutionary explanations of attention 

capture. In this context, the theory refers to physiologically determined automatic 
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responses that have come about as a result of adaptive processes over generations. 

However, the explanations given for the animacy account does not seem to 

correspond too well with this reasoning. For example, according to Abrams and 

Christ (2006), attention capture is not caused by lower-level changes in luminance-

defined contours, but instead by higher-level changes in the perceived location of the 

object. That is, this explanation emphasize the role of conscious perception of a 

change in the location of an object in automatic attentional selection and not 

unconscious, luminance changes. This definition is problematic in a framework that 

sees attentional selection as a precursor to conscious perception. Nevertheless, the 

present study has clearly demonstrated that such a change in the perceived location is 

not sufficient for attention capture, because capture did not occur with smooth 

motion, despite the evident change in the perceived location of the object. Thus, the 

present study allows for a new interpretation of Abrams and Christ’s (2003) findings, 

where lower-level changes play an important role in attentional prioritization.  

Unique Event Account 

Chapters 3 and 4 tests to see whether the Unique Event Account (von 

Mühlenen et al., 2005) is a better explanation of the capture effect than the 

evolutionary theories. According to the Unique Event Account, attention capture is 

mediated by the overall perceptual noise in the display during the presentation of the 

motion onset. That is when motion begins at a time when no other changes occur in 

the display, it captures attention. This account essentially endorses a bottom up view 

of attentional control to the extent that it puts down capture to the availability of a 

strong transient signal that is free from other competing signals. In that sense, Unique 
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Event Account only as much as lay down certain conditions required for strong 

capture. This is also in line with the broader view that attention capture has a strong 

bottom-up component that is primarily saliency driven (e.g., Theeuwes, 2010). It 

remains an open question whether the temporal uniqueness of an event, as described 

by the UE account, leads to an increase in the saliency of that event or whether it 

leads to an increase in the priority of that event at a later processing stage. The 

findings from the present thesis go beyond the Unique Event Account by providing 

an explanation of capture by motion onset. 

New Object Account 

The new object account (Hillstrom & Yantis, 1994) is one of the most 

debated and tested theories of capture by abrupt onsets. Abrupt onsets have been 

shown to capture attention consistently and across different paradigms. Most studies 

use displays that are made of figure-eight placeholders which then change to letters 

simultaneously with the presentation of the abrupt onset. That is, the final display 

consists of objects whose history classifies them as onsets and no-onsets. It was 

argued that abrupt onsets capture attention because they are new in the visual scene 

and is automatically prioritized. Some studies looked at the role of differences in 

local luminance between onsets and no-onsets as reasons for capture. Even when 

such differences were controlled for, these studies failed to completely abolish the 

capture effects by abrupt onsets. Nevertheless, it was shown that when local 

luminance differences between onsets and no-onsets were matched, it reduced the 

capture effect significantly, but did not abolish it (cf. Miller, 1989).  
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This and other evidence directly testing the new object hypothesis further 

supports the new object account (Yeshurun et al., 2009; Wong, Petersen & Hillstrom, 

2007; Rauschenberger & Yantis, 2001). However, it may seem that the results from 

these studies might be confounded by various factors. For example, Hillstrom and 

Yantis (1994, Experiment 1) used different types of motion and found the lowest 

slopes for back and forth oscillation. In their Experiment 2, they used the same type 

of motion at a low refresh rate (10 Hz) and this defined the appearance of a new 

object. Thus, in line with the findings from previous chapters, it could be the onset of 

jerky motion that captured attention, rather than the appearance of a new object.  

In other studies, there are confounds with regard to the size of the new object. 

For example, in Rauschenberger and Yantis, (2001), the size of the subjective square 

is twice as large as that of the other display items. Even though this square was not 

always the target, the conclusion cannot be accepted as long as the interaction effects 

between size and newness is verified. The same applies to Yeshurun et al. (2005), 

where the capture effect of the perceptual object can perhaps be attributed to the fact 

that the object was at least 4 times larger than the distractors. Thus it may seem that 

the evidence favouring the new object account is not as strong as previously thought. 

Hence, it also seems worthwhile to revisit the alternate explanations of capture by 

onsets.  

As noted previously, one well fitting explanation of the onset effect is the 

masking hypothesis, according to which the onsets are attended to or processed first 

because it is available to the visual system earlier than the no-onsets (Gibson, 1996a, 

1996b). In other words, the figure-eight might render the no-onsets difficult to 
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encode and thus slowing their processing down. Gibson (1996a) tested this 

hypothesis by testing how varying the luminance of the mask changes the overall 

search rates. He used three different placeholder conditions – bright, dim and onset 

(no placeholder). In the bright conditions, the luminance of the placeholders was the 

same as that of the letter, while in the dim condition the placeholders were dimmer 

than the letters. In the onset condition, there were no placeholders, meaning that all 

the elements had an abrupt onset. The final search displays were identical in all the 

three conditions. 

The results showed that participants were fastest in the onset condition, 

followed by dim placeholder condition. The slowest RTs were found in the bright 

condition. In a second experiment, bright and dim placeholders were combined with 

either an onset or no-onset target. In the dim placeholder condition in which the 

placeholders for the no-onset stimuli were dimmer than the letters, onsets did not 

capture attention. However, strong capture was observed in conditions in which the 

placeholders were brighter than the letters. The results overall suggests that attention 

was automatically guided to the stimulus that had a better visual quality and that this 

effect was stronger in conditions in which masking was stronger in the distractors.  

However, Yantis and Jonides (1996) reinterpreted the advantage of an all 

onset display in terms of a faster processing associated with capture by onsets. They 

argued that the pattern of results found in Gibson’s (1996a) study is the opposite of 

what is expected based on the general principles of forward-masking. They also 

argue against masking as the critical factor in Gibson’s findings based on their 

previous research where they test for masking by placeholders. For example, Yantis 
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and Jonides (1984) conducted a control experiment in which detection times were 

measured separately for onset and no-onset letters. They showed that there is no 

difference in RT between two stimuli which were attended to, irrespective of whether 

or not a placeholder preceded them. However, later studies have shown that there are 

other forms of masking that changes based on attentional control settings (Enns & Di 

Lollo, 1997). For example, in object substitution masking, four dots that were placed 

around a target object were shown to act as a mask when attention was not focused 

on the object. In the present thesis too, the critical factor could be whether attention 

is focused on a search item or not. 

Yantis and colleagues’ (Yantis & Jones, 1991; Yantis & Johnson, 1990) 

evidence in favour of a multiple priority tag model undermines the role of salience in 

attention capture by abrupt onsets. However, the findings of the present chapter 

prompt a re-evaluation of the role of salience or other low level transient features as a 

mediator of attention capture by abrupt onsets. According to a masking explanation, 

it seems not very plausible that in a display containing multiple onsets, more than 

one onset will be prioritized for search as the masking effects are transient and short-

term. 

 

Conclusions 

In general, the findings of the present thesis speak in favour of a strong role 

for low level feature changes and properties in attention capture. For example, the 

results from Chapters 4 and 6 suggest that attention capture by motion onsets and 
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abrupt onsets are strongly mediated by low level factors such as masking 

(respectively the absence of masking). Further evidence against the involvement of 

higher level perception in attention capture comes from Chapter 2, which shows that 

a higher-level change in object status from stationary to moving is not sufficient for 

capture. The results also speak against the view that capture results from an 

evolutionary requirement to prioritize animate objects. It can be explained by very 

simple low level factors, such as temporal uniqueness and better visual quality.  

The overall findings call for a re-conceptualisation of capture by dynamic 

events. In the literature on attention capture by static features and singletons, findings 

are often explained in terms of low level salience computations. However, research 

on attention capture by dynamic events predominantly subscribes to explanations 

that are driven by higher level factors. For example, attention capture by motion 

onsets is often explained as directly resulting from an evolutionary need for the 

visual system to prioritise animate objects over inanimate objects. Or it is explained 

as a way to respond in a more efficient manner to events that are behaviourally 

urgent. However compelling and intuitively convincing these accounts may seem, 

they are often not more than generic explanations that do little to advance our 

understanding of the processes involved in attentional selection and prioritisation. 
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