
University of Warwick institutional repository: http://go.warwick.ac.uk/wrap

A Thesis Submitted for the Degree of PhD at the University of Warwick

http://go.warwick.ac.uk/wrap/50020

This thesis is made available online and is protected by original copyright.

Please scroll down to view the document itself.

Please refer to the repository record for this item for information to help you to
cite it. Our policy information is available from the repository home page.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/9560858?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://go.warwick.ac.uk/wrap


Random Matrices, Large Deviations and

Reflected Brownian Motion

by

Janosch Ortmann

Thesis

Submitted to The University of Warwick

for the degree of

Doctor of Philosophy

Mathematics Institute

January, 2011



Table of Contents

Abstract v

Acknowledgments vi

Declaration viii

List of Notation ix

1 Introduction 1

2 Background Material 5
2.1 Catalan Structures and Combinatorics . . . . . . . . . . . . . . . . . 5

2.1.1 Dyck Paths and Non-Crossing Partitions . . . . . . . . . . . . 5
2.1.2 Lattices, Parking Functions and Permutations . . . . . . . . . 8
2.1.3 Block Structure for Non-Crossing Partitions . . . . . . . . . . 9

2.2 Free Probability Theory . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.1 Non-Commutative Probability Spaces . . . . . . . . . . . . . . 12
2.2.2 Freeness and Combinatorics . . . . . . . . . . . . . . . . . . . 14
2.2.3 Analytic Aspects and Transforms . . . . . . . . . . . . . . . . 17
2.2.4 Semicircular Processes . . . . . . . . . . . . . . . . . . . . . . 19
2.2.5 Law of Large Numbers and Central Limit Theorem . . . . . . 20
2.2.6 The Full Fock Space, Creation and Annihilation . . . . . . . . 22
2.2.7 Free Probability and Random Matrix Theory . . . . . . . . . 23
2.2.8 Free Brownian Motion and Bridge . . . . . . . . . . . . . . . . 25

2.3 Large Deviations Theory . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3.1 Basic Notions . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3.2 Contraction principles . . . . . . . . . . . . . . . . . . . . . . 30
2.3.3 Cramér’s Theorem and Sanov’s Theorem . . . . . . . . . . . . 32
2.3.4 Projective Limits . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.4 Reflected BM and Queuing Theory . . . . . . . . . . . . . . . . . . . 37
2.4.1 RBM in a Polyhedral Domain . . . . . . . . . . . . . . . . . . 37
2.4.2 RBM in an Orthant . . . . . . . . . . . . . . . . . . . . . . . 39
2.4.3 Queuing Networks . . . . . . . . . . . . . . . . . . . . . . . . 40

ii



TABLE OF CONTENTS iii

3 Large Deviations for Non-Crossing Partitions 43
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2 Process Level Large Deviations . . . . . . . . . . . . . . . . . . . . . 44

3.2.1 Joint Sanov and Cramér . . . . . . . . . . . . . . . . . . . . . 45
3.2.2 The Sample-Path Result . . . . . . . . . . . . . . . . . . . . . 51

3.3 Construction of the Uniform Measure on NC(n) . . . . . . . . . . . . 54
3.4 Large Deviations for Non-Crossing Partitions . . . . . . . . . . . . . . 56

3.4.1 The Upper Bound . . . . . . . . . . . . . . . . . . . . . . . . 57
3.4.2 The Lower Bound . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.5 A Formula for the Maximum of the Support . . . . . . . . . . . . . . 64
3.5.1 All Free Cumulants Positive . . . . . . . . . . . . . . . . . . . 66
3.5.2 Non-Negative Free Cumulants . . . . . . . . . . . . . . . . . . 68

3.6 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.6.1 Freely Infinitely Divisible Distributions . . . . . . . . . . . . . 71
3.6.2 Series of Free Random variables . . . . . . . . . . . . . . . . . 72

4 Functionals of the Free Brownian Bridge 75
4.1 Series Representations for the Bridge . . . . . . . . . . . . . . . . . . 75
4.2 Square Norm of the Free Brownian Bridge . . . . . . . . . . . . . . . 77

4.2.1 The R-transform . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.2.2 Free Infinite Divisibility . . . . . . . . . . . . . . . . . . . . . 80
4.2.3 The Maximum of the Support . . . . . . . . . . . . . . . . . . 83

4.3 The Signature of the Free Brownian Bridge . . . . . . . . . . . . . . . 84
4.3.1 Signature and Rough Paths . . . . . . . . . . . . . . . . . . . 84
4.3.2 Using the Lévy Representation . . . . . . . . . . . . . . . . . 86
4.3.3 The Distribution of the Tensor Product and Meanders . . . . 86
4.3.4 The Distribution of the Signature . . . . . . . . . . . . . . . . 90
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Abstract

In this thesis we present results in large deviations theory, free probability and the
theory of reflected Brownian motion.

We study the large deviations behaviour of the block structure of a non-crossing
partition chosen uniformly at random. This allows us to apply the free moment-
cumulant formula of Speicher to express the spectral radius of a non-commutative
random variable in terms of its free cumulants.

Next the distributions of three quadratic functionals of the free Brownian bridge
are studied: the square norm, the signature and the Lévy area of the free Brown-
ian bridge. We introduce two representation of the free Brownian bridge as series
involving free semicircular variables, analogous to classical results due to Lévy and
Kac. The latter representation extends to all semicircular processes. For each of
the three quadratic functionals we give the R-transform, from which we extract in-
formation about the distribution, including free infinite divisibility and smoothness
of the density. We also apply our result about the spectral radius to compute the
maximum of the support for Lévy area and square norm. In both cases we obtain
implicit equations.

The final chapter of the thesis is devoted to the study of a generalisation of
reflected Brownian motion (RBM) in a polyhedral domain. This is motivated by
recent developments in the theory of directed polymer and percolation models, in
which existence of an invariant measure in product form plays a role. Informally,
RBM is defined by running a standard Brownian motion in the polyhedral domain
and giving it a singular drift whenever it hits one of the boundaries, kicking the
process back into the interior. Our process is obtained by replacing this singular
drift by a continuous one, involving a continuous potential. RBM has an invariant
measure in product form if and only if a certain skew-symmetry condition holds. We
show that this result extends to our generalisation. Applications include examples
motivated by queueing theory, Brownian motion with rank-dependent drift and a
process with close connections to the δ-Bose gas.
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Chapter 1

Introduction

The theory of free probability was introduced by Voiculescu [123, 124, 125], origi-

nally as a tool in operator algebras, in order to study type II von Neumann algebras.

Its two central ingredients are the concept of a non-commutative probability space

on the one hand and a new type of independence, based on free rather than tensor

products, on the other.

Probabilists’ interest stems from the fact that random matrices can naturally be

considered as non-commutative random variables and that many ensembles studied

in random matrix theory are asymptotically free, that is, they become free as the

size of the matrix tends to infinity. This allows one to compute joint asymptotic

spectral distributions.

More recently free probability theory has also proved a useful tool in wireless

communications [64, 77, 79, 118, 119], quantum information theory [5, 7] and the

study of randomly disordered systems, in connection with the Anderson model [80,

110].

In all of these areas the R-transform is a powerful tool for computations. Given

an R-transform we can, at least in theory, obtain the corresponding probability

measure. However in order to do so one needs to find the functional inverse of

the R-transform for which a closed-form expression may not exist. This raises the

1



1. Introduction 2

question what information can be inferred from the R-transform without inverting it.

In Chapter 3 we present a formula for the right edge of the support of a probability

measure in terms of its free cumulants.

As a key ingredient we establish a large deviations principle for the block struc-

ture of uniformly random non-crossing partitions. A law of large numbers, stating

that the proportion of blocks of size k tends to 2−k as the size n of the set to be par-

titioned goes to infinity, follows. This result in random combinatorics, in the spirit

of [27, 35, 121], can be extended, via well-chosen bijections, to other combinatorial

structures, including the descents of Dyck paths, the lengths of chains in ordered

trees and the blocks of non-nesting partitions.

The large deviations result allows us to apply Varadhan’s lemma to Speicher’s

free moment-cumulant formula in order to express the right edge of the support of a

probability measure µ as a variational formula involving its free cumulants, provided

these are non-negative.

The semicircle law, which arises as the asymptotic spectral distribution of Wigner

matrices [129] is in many ways the free analogue of the Gaussian distribution. We

have the concept of a semicircular process, of which the free Brownian motion is

a prominent example. It can be considered as the limit of Brownian motion on

the space of N × N Hermitian matrices as the size N tends to infinity. From the

free Brownian motion we obtain the free Brownian bridge in the same way as in

classical probability theory. In Chapter 4 we introduce two representations of the

free Brownian bridge as series of freely independent semicircular random variables,

one of which extends easily to all semicircular processes.

These representations allow us to prove various properties of three quadratic

functionals of the free Brownian bridge: it’s L2-norm, its signature and its Lévy

area. In each case we compute the R-transform and show free infinite divisibility.

For L2-norm and Lévy area we show that the underlying distributions have smooth
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densities with respect to Lebesgue measure and give implicit equations for the den-

sity. Using the spectral radius result from Chapter 3 we also compute the right edge

of the support. For the signature a connection with certain combinatorial objects

called irreducible meanders appears somewhat unexpectedly.

There has been much recent development on the study of positive-temperature per-

colation and polymer models [33, 84, 88, 103, 104]. These turn out to be closely

related to random matrix theory on the one hand and the study of the KPZ equa-

tion [58], which was proposed to describe a class of surface growth models, on the

other. An important role is played by an exactly solvable discrete directed percola-

tion model which was introduced in [89] and further studied in [26, 76, 84, 104, 111].

In [84] the partition function of the polymer model is related to a diffusion process

whose generator is given in terms of the Hamiltonian of the quantum Toda lattice.

The proof uses a multi-dimensional generalisation of results by Matsumoto–Yor

[68, 69, 71], concerning exponential functionals of Brownian motion. For connec-

tions between these models, Whittaker functions and representation theory we refer

to the recent survey [86].

The polymer model introduced in [89] can also be viewed as a network of gen-

eralised Brownian queues in tandem. A crucial role is played by an analogue of

the output or Burke theorem, which states that the output of the M/M/1 queue

up to a fixed time t is independent of the queue length at time t. This leads to a

product-form invariant distribution for the series of queues.

Queueing networks [34, 50, 51, 96] provide examples of reflected Brownian mo-

tion (RBM) in a polyhedral domain, introduced and studied by Harrison and

Williams [53, 130]. The analogue of the output theorem in this setting is the ex-

istence of an invariant measure in product form. The main result in [130] is that

RBM in a polyhedral domain has an invariant measure in product form if and only

if a certain skew-symmetry condition holds.
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Motivated by this we introduce a multidimensional diffusion we call generalised

RBM (GRBM). Rather than giving the Brownian motion a singular drift whenever it

hits one of the boundaries, we now impose a continuous drift. Its magnitude depends,

via a potential U , on the position of the process relative to the polyhedral domain.

A special case, the exponentially RBM, corresponds to the choice U(x) = −e−x,

which corresponds to the generalised Brownian queue.

We show that for the GRBM existence of an invariant measure in product form

is still equivalent to the skew-symmetry condition of Harrison–Williams, inde-

pendent of the function U .

By introducing a parameter β (which can be viewed as inverse temperature) and

letting β −→∞, we recover the diffusion studied by Harrison–Williams. In this

sense our process really is a generalisation of reflected Brownian motion.

Apart from examples motivated by queueing networks we also study the analogue

of Brownian motion with rank-dependent drift [92] and draw connections to the δ-

Bose gas recently studied and related to reflected Brownian motion by Prolhac–

Spohn [95].



Chapter 2

Background Material

This chapter is devoted to those aspects of combinatorics, large deviations theory,

free probability theory and reflected Brownian motion that we require later on.

2.1 Catalan Structures and Combinatorics

We present here some background on combinatorics, in particular Catalan struc-

tures. Our focus will lie on non-crossing partitions and Dyck paths.

2.1.1 Dyck Paths and Non-Crossing Partitions

Definition 2.1.1. A partition π of the set n = {1, . . . , n} is said to be crossing if

there exist distinct blocks V1, V2 of π and xj, yj ∈ Vj such that x1 < x2 < y1 < y2.

Otherwise π is said to be non-crossing. Equivalently, label the vertices of a regular

n-gon 1, . . . , n then π is non-crossing if and only if the convex hulls corresponding

to the blocks are pairwise disjoint. We denote the set of all non-crossing partitions

of n by NC(n).

Non-crossing partitions were first introduced by G. Kreweras [60] and has first

attracted attention from combinatorialists. Later they have also been studied in

connection with low-dimensional topology and geometric group theory, symmetric

5



2. Background Material 6

groups [72], algebraic combinatorics and mathematical biology [93, 105]. We will

explore in some detail further connections with parking functions and free probability

theory.

Figure 2.1: The partition {{8}, {9}, {10, 7, 6}, {11, 5}, {12, 4, 3, 2, 1}}
is non-crossing, {{5, 1}, {8}, {9, 3}, {10, 7, 6}, {12, 4, 2}} is crossing.

A Dyck path of semilength n is a lattice path in Z2 that never falls below the

horizontal axis, starting at (0, 0) and ending at (2n, 0), consisting of steps (1, 1)

(upsteps) and (−1, 1) (downsteps). Every such path consists of exactly n up- and

downsteps each. The set of Dyck paths of semilength n is denoted by P(n). A max-

imal sequence of upsteps is called an ascent, while a maximal sequence of downsteps

is referred to as a descent.

The cardinalities of P(n) and NC(n) are both given by the nth Catalan number

Cn =
1

n+ 1

2n

n

 .

There is a remarkably large collection of combinatorial objects with this property,

usually referred to as Catalan structures. These include triangulations of convex
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(n + 2)-gons, binary trees with n vertices and pairs of standard Young tableaux of

the same shape, consisting of n squares and at most 2 rows. A long list of examples

was compiled by Stanley [114] (Exercise 6.1.9), where many results and references

on Catalan structures can also be found.

There is a well-known bijection Φ: P(n) −→ NC(n) which maps the descents of

p ∈ Pn to the blocks of Φ(p) [30, 131]. Given p ∈ Pn label the upsteps from left

to right by 1, . . . , n. Label each downstep by the same index as its corresponding

upstep, that is the first upstep to the left on the same horizontal level. Then the

descents induce an equivalence relation on n: two labels are equivalent if and only if

the corresponding downsteps are part of the same descent. The associated partition

is then easily seen to be non-crossing.

Conversely, given π = {V1, . . . , Vr} ∈ NC(n) write the elements of each block Vj

in descending order, then sort the blocks in ascending order by their largest elements.

This gives the descent structure of Φ−1(π), which can be complemented by ascents

in a unique way to form a Dyck path.

Figure 2.2: An example for the bijection Φ.

Given the vast number of Catalan structures it is not surprising that there exist



2. Background Material 8

other bijections which map the blocks of a non-crossing partition to an interesting

substructure. We mention here the lengths of chains in ordered trees [94] and the

blocks of non-nesting partitions [97].

As a small generalisation let us mention the k-divisible non-crossing partitions

for some k ∈ N. A non-crossing partition of the set m is said to be k-divisible if the

size of each block is divisible by k. Of course such a partition can only exist if m

is a multiple of k and we denote by NC(k)(n) the set of all k-divisible non-crossing

partitions of kn. The image of NC(k)(n) under the bijection Φ described above can

be identified [6] with the set of k-Dyck paths, i.e. the paths with upsteps (1, 1) and

downsteps (1,−k). The cardinality of NC(k)(n) is given [44] by the Fuss-Catalan

numbers

NC(k)(n) =
1

n

(k + 1)n

n− 1

 .

See Armstrong [3] for a survey of a more general object on Coxeter groups.

2.1.2 Lattices, Parking Functions and Permutations

The set of non-crossing partitions can be given a partial order � (called the reverse

refinement order) defined by setting π � σ if and only if every block of π is com-

pletely contained in one of the blocks of σ. The maximal element of NC(n) with

respect to this order is the partition 1n with a single equivalence class. The partition

consisting of n singleton blocks, denoted 0n, is the minimal element. By Proposi-

tion 9.17 in Nica–Speicher [83], the partial order � induces a lattice structure on

NC(n), that is for any π, σ ∈ NC(n) there exists

(i) a join π ∨ σ, that is an element τ ∈ NC(n) such that τ � σ and τ � π that

has τ � τ ′ for any other τ ′ with that property

(ii) a meet π ∧ σ, i.e. τ � σ, µ that is the largest with this property.
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The lattice of non-crossing partitions can also be embedded into the Cayley graph

of the symmetric group Sn. This map, due to Biane [17] allows us to relate our

large deviations result to the cycle structure of the permutations lying on a geodesic

from the identity element in Sn to the maximal cycle (1 . . . n).

A geodesic between two points a, b on any non-oriented graph G = (V,E) is a

path from a to b in G of minimal length. For vertices v1, v2 we denote by [v1, v2] the

set of vertices of G that lie on some geodesic from v1 to v2. This is an ordered set,

indeed another lattice, with w1 ≤ w2 if and only if w1 lies on some geodesic from v1

to w2.

If G is the Cayley graph of Sn with the collection of all transpositions as generator

set then [17] gives an order-preserving bijection Ψ from [e, (1 . . . n)] to NC(n). The

map Ψ is given by associating to a permutation the partition given by its cycle

structure. In particular Ψ maps bijectively the cycle structure of [e, (1 . . . n)] to the

block structure of NC(n), so we get a large deviations principle, of speed n and with

rate function J given above, for the cycle structure of uniformly random elements

of [e, (1 . . . n)].

In [18] P. Biane uses this bijection to re-derive a bijection between maximal

chains in the lattice NC(n+ 1) and parking functions on n, originally established by

Stanley [113]. A parking function is a sequence of natural numbers (a1, . . . , an)

such that its increasing rearrangement (a(1), . . . a(n)) has a(j) ≤ j for all j.

2.1.3 Block Structure for Non-Crossing Partitions

We survey here previously known enumerative and asymptotic results about the

block structure of non-crossing partitions. For a given π ∈ NC(n) we denote by

Bk(π) the number of blocks of size k in π, and by B(π) the total number of blocks

of π.

The number of elements π ∈ NC(n) which have rj blocks with j elements for
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each j ∈ n is given [60] by

n!∏n
j=1 rj!

(
n+ 1−

(∑n
j=1 rj

))
!
.

The number of non-crossing partitions of n with k blocks is given [40] by the

Narayana numbers

N(n, k) =
1

n

n
k


 n

k − 1

 .

Therefore the expected number of descents in w is n+1
2

. One could also deduce

this latter fact using the Kreweras complement K : NC(n) −→ NC(n), which is

defined as follows: consider additional numbers 1, . . . , n and interlace them with

1, . . . , n so that j lies between j and j + 1. Then the Kreweras complement K(π)

of π ∈ NC(N) is the biggest element (with respect to the inverse refinement order)

of those σ ∈ NC(1, . . . , n) with the property that the partition π ∪ σ of the set

{1, 1, . . . , n, n), formed by taking all the blocks of π and all those of σ together, is

non-crossing. Then [83] K is a lattice anti-isomorphism (i.e. a bijection such that

σ � π implies K(σ) � K(π) such that for any π ∈ NC(n),

B(π) +B
(
K
(
π
))

= n+ 1.

From this it follows directly that the expected number of blocks is n+1
2

.

Let further T (n, k) denote the number of π ∈ NC(n) with k singleton blocks and

denote its generating function by G(t, z), then [131, p.3153]

G(t, z) =
∞∑
n=1

∞∑
k=0

T (n, k)tkzn =
1 + (1− t)z −

√
1− 2(1 + t)z + (2t+ t2 − 3)z2

2z (1 + (1− t)z)
.
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Denote the total number of singletons in all π ∈ NC(n) by αn, then

∞∑
n=1

αnz
n =

∞∑
n=1

n∑
k=0

kT (n, k)zn =
∂

∂t
G(t, z)

∣∣∣∣
t=1

=
z√

1− 4z
=
∞∑
n=0

2n

n

 zn+1.

So the expected number of singletons in a non-crossing partition chosen uniformly

at random is given by

1

Cn

2n− 2

n− 1

 =
n2 + n

4n− 4
' n

4
.

Asymptotically we therefore have about n
2

descents, roughly half of which are sin-

gletons. This might suggest that about half of the remaining descents is of length 2

and so on, and indeed we will see in Chapter 3 below that this is the case.
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2.2 Free Probability Theory

We dicuss here some concepts and results from free probability theory. More on

the subject can be found, for example, in the books [55, 127, 128] and the survey

aimed at probabilists by Biane [19]. For the concepts in classical probability that

we mention we refer to the books [98, 100, 101].

2.2.1 Non-Commutative Probability Spaces

Before defining the basic object of study in free probability we need to recall some

notions from functional analysis. More details can be found in the book by Murphy

[78].

Definition 2.2.1. A complex algebra A with unit 1A and an involution ∗ : A −→ A

such that 1∗A = 1A is said to be a ∗-algebra. A ∗-algebra equipped with a norm ‖·‖

is called a C∗-algebra if A is complete with respect to ‖·‖, ‖1A‖ = 1 and for all

a, b ∈ A we have

‖a∗‖ = ‖a‖, ‖a∗a‖ = ‖a‖2, ‖ab‖ ≤ ‖a‖

Elements a ∈ A are said to be normal if a∗a = aa∗, self-adjoint if a∗ = a and

positive if there exists self-adjoint b ∈ A such that a = b2.

Definition 2.2.2. A non-commutative probability space is a ∗-algebra A together

with a state φ, that is a linear functional φ : A −→ C such that φ(1A) = 1 and

φ(a) ≥ 0 whenever a is positive.

Whenever topological concepts like convergence are involved we will additionally

assume that (A, φ) is a C ∗-probability space, that is A is a C∗-algebra and φ conti-

nous. We will always implicitly assume φ to be tracial (meaning φ(ab) = φ(ba) for

all a, b ∈ A) and faithful (i.e. φ(a∗a) = 0 implies a = 0).
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We think of elements a ∈ A as non-commutative random variables and consider

φ(a) to be the expectation of a ∈ A. This is motivated by the fact that for a classical

probability space (Ω,F ,P) the spaceA of bounded complex-valued random variables

equipped with the state A 3 X 7−→ E(X) ∈ C is a non-commutative probability

space in the sense of our definition.

If a ∈ A is self-adjoint there exists a compactly supported measure µa on R,

called the distribution of a, such that

φ(an) =

∫
tn µa(dt) ∀n ∈ N.

The existence of a distribution is analogous to classical probability theory. We note,

however, that in our setting the distribution is always compactly supported. In

this sense we are therefore only considering bounded random variables. There is a

theory of unbounded non-commutative random variables, using affiliated elements

of operator algebras, but we do not require this here and instead refer to the papers

by Maassen [67] and Bercovici–Voiculescu [13].

Example 2.2.3. Let (Ω,F ,P) be a classical probability space, fix N ∈ N and let

AN be the algebra of N × N random matrices with all moments, that is N × N

matrices whose entries are elements of

L∞−(Ω,F ,P) =
⋂
p≥1

Lp(Ω,F ,P).

Equipped with the state φN given by φN(a) = EtrN(a) (where trN denotes the

normalised trace which maps the identity matrix to 1) this forms a non-commutative

probability space. If a ∈ A is normal then the spectral theorem guarantees the

existence of N (not necessarily distinct) eigenvalues λ1, . . . , λN of a. The distribution
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µa of a is then characterised by its action on continuous test functions f ∈ C(R):

∫
fdµa =

1

N

N∑
j=1

E [f(λj)] .

Note that if a ∈ AN is self-adjoint the eigenvalues λ1, . . . , λN of a are real and hence

the support of µa is a subset of the real line.

Example 2.2.4. Let H be a complex separable Hilbert space and fix h ∈ H with

‖h‖ = 1. Let A = B(H), the C∗-algebra of bounded operators on H. Equipped

with the faithful normal trace φ given by

φ(a) = 〈a(h), h〉

the pair (A, φ) is a non-commutative probability space. In fact, by the GNS con-

struction [78], every non-commutative probability space can be realised in this way.

See also Section 2.2.6.

2.2.2 Freeness and Combinatorics

Having introduced non-commutative probability spaces we now turn to the second

ingredient in free probability: free independence. We discuss this following the

combinatorial approach by Speicher [107, 108, 109], relying on the presentation

by Biane [19]. See also Nica–Speicher [81, 83]. An analytic approach to free

probability will be presented in Section 2.2.3 below.

Definition 2.2.5. C∗-subalgebras B1, . . . ,BN of A are said to be freely independent,

or free, if for every set of indices {rj}mj=1 ⊆ {1, . . . , N} and collection {aj ∈ Brj : 1 ≤

j ≤ m} such that rj 6= rj+1 and φ(aj) = 0 ∀ j we already have

φ(a1, . . . , am) = 0.
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Random variables a1, . . . , aN are said to be free if the unital C∗-algebras generated

by the aj are free.

Suppose a1, a2 ∈ A are free. Then we can calculate directly the joint moments of

the aj. For example:

φ(a1a2) = φ(a1)φ(a2) (2.2.6)

φ(a1a2a1a2) = φ(a1)2φ(a2
2) + φ(a2

1)φ(a2)2 − (φ(a1)φ(a2))2 . (2.2.7)

In fact, all joint moments of a1, a2 are determined by the restriction of φ to the

subalgebras A1 = A(1, a1), A2 = A(1, a2). This compares well with the fact that

we can calculate the joint distribution of an independent family of independent

classical random variables given their marginal distributions. However, trying to

find explicit formulae for higher moments by hand quickly leads to complicated

formulae. This was elegantly solved by combinatorial means by R. Speicher.

Definition 2.2.8. The free cumulants ofA are defined to be the maps kn : An −→ C

(n ∈ N) defined indirectly by the following system of equations:

φ(a1, . . . , an) =
∑

π∈NC(n)

kπ[a1, . . . , an] (2.2.9)

where kπ denotes the product of cumulants according to the block structure of π.

That is, if V1, . . . , Vr are the components of π ∈ NC(n) then

kπ[a1, . . . , an] = kV1 [a1, . . . , an] . . . kVn [a1, . . . , an]

where, for V = (v1, . . . , vr) we just have kV [a1, . . . , an] = k|V |[av1 , . . . , avr ].

Note that (2.2.9) has the form φ(a1, . . . , an) = kn[a1, . . . , an]+ lower order terms, so

that we can find the kn inductively. Alternatively, (2.2.9) defines the kn by Möbius
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inversion. This fits in a larger frameworks of multiplicative functions on lattices of

partitions, which is explained in [83].

Because of the definition and the fact that φ is linear it follows that for each n

the function kn is n-multilinear in its arguments.

We will write kn(a) for kn(a, . . . , a). The R-transform of a random variable a ∈ A

is defined, as formal power series, by

Ra(z) =
∞∑
n=0

kn+1(a)zn. (2.2.10)

Theorem 2.2.11. For a1, . . . , an ∈ A the following two conditions are equivalent:

(i) a1, . . . , an are free,

(ii) mixed cumulants vanish: for all n ≥ 2 we have, whenever i(1), . . . , i(m) ∈ n

such that there exist p, q ∈ n with i(p) 6= i(q),

km
(
ai(1), . . . , ai(m)

)
= 0.

Corollary 2.2.12. If a, b ∈ A are free then for all n ∈ N we have

kn(a+ b) = kn(a) + kn(b).

So, if a1 and a2 are free, then the distribution of a1 + a2 is uniquely determined by

those of a1 and a2.

For each pair of probability measures µ1, µ2 with compact support there exist a

non-commutative probability space (A, φ) and free a1, a2 ∈ A such that the distri-

bution of aj is µj. So we get a binary operation on the space of compactly supported

probability measures, called free convolution and denoted �.

As a special case of Definition 2.2.8 we get the following moment-cumulant for-

mula relating the free cumulants and moments of a non-commutative random vari-
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able.

Proposition 2.2.13. For a ∈ A we have the following formula:

φ(an) =
∑

π∈NC(n)

kπ. (2.2.14)

On the level of formal power series [112] we have the following relation between

the Cauchy transform Gµa of µa,

Gµa(z) =

∫
µ(dt)

z − t
=
∞∑
n=0

φ(an)z−n−1

and the R-transform of a:

Corollary 2.2.15. Let a ∈ A and G,R denote its Cauchy and R-transforms re-

spectively. Considering these as formal power series we have

G

(
R(z) +

1

z

)
= z.

2.2.3 Analytic Aspects and Transforms

In contrast to the combinatorial approach with generating functions described above

we now describe certain analytic considerations, using holomorphic functions. Through-

out this section fix an element a of a non-commutative probability space (A, φ) and

denote its distribution by µa.

Since µa is compactly supported, the Cauchy transform Gµa defines an analytic

map from C+ into C−, which extends analytically to a neighbourhood Ua of ∞.

Rather than as a formal power series we can now consider the right-hand side as a

holomorphic power series, valid on Ua. We will also write Ga for Gµa .

In this analytic framework we can reformulate Theorem 2.2.15 as follows. Because of

compact support of µa the definition of the R-transform (2.2.10) defines an analytic
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function on a neighbourhood of zero [55, Theorem 3.2.1]. Moreover the Cauchy

transform Ga of a is locally invertible on a neighbourhood of infinity and the inverse

Ka satisfies

Ka(z) = Ra(z) +
1

z
.

Remark 2.2.16. Using the continuity of φ and multilinearity of the cumulants we

now obtain the following properties of the R-transform:

1. If an converges to a in the operator topology ofA then there exists a neighbour-

hood U of zero where Rn, R are defined for all n ∈ N and Ran(z) −→ Ra(z)

as n→∞ for every z ∈ U .

2. If a, b ∈ A are free then Ra+b(z) = Ra(z) +Rb(z)

3. For λ ∈ C we have Rλa(z) = λRa(λz).

So the R-transform plays the role of the logarithm of the Fourier transform in

classical probability theory: it is linear, additive on (freely) independent random

variables, and determines the underlying distribution. Moreover its Taylor coeffi-

cients are also related to the moments by summing over a lattice of partitions: in

the classical case over all, in the free case over the non-crossing partitions.

However, in contrast to the Fourier transform, it is not straightforward to read

off properties of µ from its R-transform. The most direct way is to find the Cauchy

transform (by inverting Rµ(z) + 1
z
) and the applying Stieltjes inversion [55, p. 94]:

Theorem 2.2.17. Let µ be a compactly supported probability measure them

µ = lim
y↓0

[
− 1

π
ImGµ(x+ iy)

]
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where the limit is in the weak topology on M1(R). Moreover t0 ∈ R is an isolated

point of the support of µ if and only if Gµ can be extended meromorphically to a

neighbourhood of t0 such that this extension has a simple pole at t0. When µ has a

continuous density f with respect to Lebesgue measure then

f(x) = − 1

π
lim
y↓0

Gµ(x+ iy).

2.2.4 Semicircular Processes

Definition 2.2.18. A collection S = (sj)j∈I of non-commutative variables on A is

said to be a semicircular family with covariance (c(i, j))i,j∈I if the cumulants are

given by

kπ[sj1 , . . . sjn ] =


∏

p∼πq c(jp, jq) if π is a pair partition

0 otherwise.

If S consists of a singleton s1 and r = 2
√
c(1, 1) then the distribution of s1 is the

centred semicircle law of radius r, that is the measure σr on R given by

σr(dt) =
2

πr2

√
r2 − t2 1[−r,r](t) dt.

In particular σ2 is also called the standard semicircle law and non-commutative

random variables with law σr (σ2) are referred to as (standard) semicirculars.

The semicircle law plays a similar role to the Gaussian distribution on classical

probability theory. In particular there exists a central limit theorem (see below),

and the only non-vanishing free cumulant is the second: the R-transform of a non-

commutative random variable whose distribution is the centred semicircle law of
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radius r is given by

R(z) =
r2

4
z.

Recall that the centred Gaussian distribution is characterised by the fact that only

the second classical cumulant is nonzero.

Moreover a collection of random variables with a joint semicircular law is deter-

mined by its covariance. To be more precise we recall the following

Proposition 2.2.19 (Nica–Speicher [83], Proposition 8.19). Let (si)i∈I be a semi-

circular family of covariance (c(i, j))i,j∈I and suppose I is partitioned by I1, . . . , Id.

Then the following are equivalent:

1. The collections {sj : j ∈ I1}, . . . , {sj : j ∈ Id} are free

2. We have c(r, j) = 0 whenever r ∈ Ip and j ∈ Iq with p 6= q.

In particular {sj : j ∈ I} is a free family if and only if C = (c(r, j))r,j∈I is diagonal.

Definition 2.2.20. A process (X(t))t≥0 on A is said to be a semicircular process if

for every t1, . . . , tn ∈ [0,∞), the set (X(t1), . . . , X(tn)) is a semircular family.

By the considerations above the finite-dimensional distributions of a semicircular

process are determined by the covariance structure of the process, i.e. by the func-

tion C : [0,∞)2 −→ C defined by

C(s, t) = φ(X(s)X(t)).

.

2.2.5 Law of Large Numbers and Central Limit Theorem

In order to discuss asymptotic freeness we will need to make precise the meaning

of joint convergence for several sequences of free random variables. Unlike when
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only a single variable is involved, we can no longer use measure theory (because of

non-commutativity) and are forced to work with moments only. Recall that for a

single non-commutative random variable convergence in distribution is equivalent

to convergence in moments.

Let C〈X1, . . . , XN〉 denote the algebra of non-commutative polynomials in the

variables X1, . . . , XN .

Definition 2.2.21. Let a1, . . . aN ∈ A for some non-commutative probability space

A. The linear functional µa1,...,aN : C〈X1, . . . , XN〉 −→ C defined by

µa1,...,aN
(
P
(
x1, . . . , xN

))
= φ (P (a1, ldots, aN))

is called the joint distribution of a1, . . . aN .

Definition 2.2.22. Let I be a finite set. For each n ∈ N let
{
a

(n)
j : j ∈ I

}
be a

family of random variables in a noncommutative probability space (An, φn) with

joint distribution µn. The family of random variables is said to converge in (joint)

distribution to a1, . . . , aN for some non-commutative probability space (A, φ) if the

joint distribution of a1, . . . , aN is µ and

lim
n→∞

µn(P ) = µ(P ) ∀P ∈ C〈{Xj : j ∈ I}〉.

A law of large numbers for free random variables was established by Bercovici–

Pata [11]. We state it here in the context of self-adjoint random variables with real,

compact support and refer to [11] the statement in full generality.

Theorem 2.2.23. Let (Xn)n∈N be a sequence of free identically distributed random

variables whose common distribution µ is compactly supported in R. Then the non-

commutative law of 1
n

∑n
k=1Xk converges weakly to a point mass at m1(µ).

Furthering the analogy of semicircular distribution in free probability to the

Gaussian law in the classical theory we have the following free central limit theorem.
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It can be verified directly using free cumulants. For details we refer to [128] or

Chapter 8 of [83].

Theorem 2.2.24 (Free Central Limit Theorem). Let (aj)j∈N be a free family of

random variables such that

(i) φ(aj) = 0 for all j ∈ N;

(ii) supj∈N
∣∣φ(akj )

∣∣ <∞ for all k ∈ N;

(iii) limn→∞
1
n

∑n
j=1 φ

(
a2
j

)
= r2/4.

Then the sequence (sn)n∈N of random variables defined by

sn =
1

n

n∑
j=1

aj

converges in non-commutative distribution to the centred semicircle law of radius r.

2.2.6 The Full Fock Space, Creation and Annihilation

In order to deal with convergence issues it will be useful to choose a specific non-

commutative probability space. LetH0 be an infinite-dimensional separable complex

Hilbert space and define the full Fock space to be

T ((H0)) =
∞⊕
n=0

H⊗n0 (2.2.25)

where by convention H⊗0
0 = CΩ for a distinguished unit vector Ω. Equip the C∗-

algebra B(T ((H0))) of continuous linear functionals on T ((H0)) with the tracial

state φ given by

φ(a) = 〈a(Ω),Ω〉. (2.2.26)
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Definition 2.2.27. For h ∈ H0 define the creation and annihilation operators to

be l(h) and l∗(h) respectively where

l(h)(h1 ⊗ . . .⊗ hn) = h⊗ h1 ⊗ . . .⊗ hn (2.2.28)

l∗(h)(h1 ⊗ . . .⊗ hn) = 〈h, h1〉h2 ⊗ . . .⊗ hn. (2.2.29)

Let s(h) be the self-adjoint element of B(T ((H0))) defined by s(h) = l(h) + l∗(h).

The following result is Theorem 2.6.2 in [128].

Lemma 2.2.30. Let (en)n∈N be an orthonormal sequence in H0 and put ξn = s(en).

(i) If A denotes the sub-C∗-algebra of B(T ((H0))) generated by (ξn)n∈N then φ is

a faithful tracial state on A.

(ii) The set {s(en) : n ∈ N} forms a semicircular family in A with covariance

kernel C(m,n) = δmn.

Since all of the results in this thesis are only concerned with the distributions of

non-commutative probability spaces we can and will assume throughout that A

is a C∗-subalgebra of B(T ((H0))), the space of bounded linear operators on the

full Fock space, and that φ is as in (2.2.26). In particular, all semicircular random

variables that appear later on will be defined in terms of the creation and annihilation

operators.

2.2.7 Free Probability and Random Matrix Theory

In this section we draw the connection between free probability and random matrix

theory. For background on random matrix theory we refer to the books by Mehta

[74], Anderson–Guionnet–Zeitouni [2] and Blower [24], and the St Flour

lecture notes by Guionnet [49].

Recall from Example 2.2.3 that N × N random matrices can be considered as

non-commutative random variables.
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Consider two independent N×N Hermitian random matrices AN , BN . We know

the distributions of their eigenvalues

µAN =
1

N

N∑
k=1

δλk(AN )

µBN =
1

N

N∑
k=1

δλk(BN )

where λk(C) denotes the kth largest eigenvalue of the matrix C. However the eigen-

values of AN + BN depend on more than µAN and µBN . In particular there is no

convolution relationship. Under certain assumptions on the random variables defin-

ing AN and BN it happens that, as N → ∞, random matrices AN , BN converge

to free non-commutative random variables sA, sB. By freeness the distribution of

sA + sB then only depends on the distributions of sA and sB.

The observation that certain random matrix ensembles become asymptotically

free is the beginning of the relationship between free probability theory and random

matrices. It is due to Voiculescu [126]. For the sake of definiteness we state the

precise result in the case of random matrices sampled from the Gaussian Unitary

Ensemble (GUE).

Theorem 2.2.31. Fix an integer N . For each s ∈ N let (Y (s, n))n∈N be a sequence

random matrices, each taken from the n×n GUE ensemble such that every matrix is

independent from all the others. Let ∆n denote the algebra of deterministic diagonal

n× n matrices and D(t, n) ∈ ∆n for each (t, n) ∈ N ×N such that (D(t, n))t∈N has

a joint limit distribution as n → ∞ and supn ‖D(t, n)‖ < ∞ for each t. Then the

sequence of 2N-tuples of random variables

(D(1, n), . . . , D(N, n), Y (1, n), . . . Y (N, n))n∈N

converges to a 2N − tuple of free non-commutative random variables, the second N
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entries of which are distributed according to the semicircle law.

We express this by saying that the sequences {Y (s, n) : n ∈ N} are asymptotically

free. See Chapter 4 of [128]. Similar results hold if we replace the GUE by the Gaus-

sian Orthogonal Ensemble (GOE) or choose the unitary group with Haar measure.

In fact, the crucial assumption is that the entries are centred, have second moment

1
n

and m-th moment uniformly bounded by O(n−m/2), see [128], Theorem 4.4.1.

In particular if we have a pair of sequences of GUE(n) matrices they will converge

in moments to (s1, s2) where s1, s2 are free semicircular (non-commutative) random

variables.

Example 2.2.32. Let Y (n) be an element of the n × n GUE ensemble and D(n)

a self-adjoint diagonal n × n matrix such that µD(n) −→ ν for ν ∈ PK(R). Choose

f ∈ C(R;R) and let µ be the asymptotic spectral distribution of

X(n) = D(n) + f(Y (n)). (2.2.33)

Theorem 2.2.31 implies that µ = ν � f∗µs. (where µs denotes the standard semi-

circle distribution). Note that with the R-transform we have a convenient tool for

computing free convolutions.

2.2.8 Free Brownian Motion and Bridge

In classical probability theory a Brownian motion is a process with stationary and

independent increments, characterised by the property that fixed-time marginals are

Gaussian. As we saw above, there exist analogues in free probability theory for all

these concepts. This motivates the definition of a free Brownian motion.

Definition 2.2.34. A non-commutative process X : [0,∞) −→ A is said to be a

free Brownian motion if

(i) the distribution of X(t) is a centred semicircular law with radius t;
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(ii) X(t)−X(s) is free from {X(r) : r ≤ s};

(iii) X(t)−X(s) has the same distribution as X(t− s).

It is clear that properties (i) – (iii) uniquely characterise the law (that is, the finite-

dimensional distributions) of X. A concrete realisation of free Brownian motion can

be constructed on the full Fock space [23, 32, 61, 106].

Let HN be the space of N × N Hermitian matrices, equipped with the inner

product

〈A,B〉N = trN(AB).

Hermitian Brownian motion can be defined [20] as the centred Gaussian process

[98] MN on HN with covariance

E [〈AMN(t), BMN(s)〉N ] = (s ∧ t) trN(AB).

For any fixed t the random matrix MN(t) has the same distribution as a re-scaled

GUE.

We can also consider MN as a free stochastic process, taking values in the

non-commutative probability space (AN , φN) of Example 2.2.3. Then it follows

from asymptotic freeness for GUE random matrices that MN converges in non-

commutative distribution to a free Brownian motion. That is, there exists a free

Brownian motionX such that for every t1, . . . , tk ≥ 0 the k-tuple of non-commutative

random variables (MN(t1), . . . ,MN(tk)) converges in joint distribution to the k-tuple

(X(t1), . . . , X(tk)).

There is also a free multiplicative Brownian motion, which can similarly be con-

sidered as the non-commutative limit of Brownian motion on the unitary group. We

will not consider this process here and instead refer to Biane [15] and Bercovici–

Voiculescu [14].
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Definition 2.2.35. A centred semicircular process (βT (t))t∈[0,T ] on A is said to be

a free Brownian bridge on [0, T ] if its covariance structure is given by

φ(βT (s)βT (t)) = s ∧ t− st

T
.

Remark 2.2.36. In analogy with classical probability it can be easily checked that

if β is a free Brownian bridge on [0, 1] and ξ0 is a free standard semicircular free

from {β(t) : t ∈ [0, 1]}, then X(t) = ξ0t+ β(t) defines a free Brownian motion.

2.3 Large Deviations Theory

Large deviations theory can be described as the study of rare events, more pre-

cisely how their probability behaves asymptotically on an exponential scale. We

present here some of the main ideas. Our presentation is based on that of Dembo–

Zeitouni [37], in which proofs omitted here can be found. We also refer to the

books by den Hollander [38] and Deuschel–Stroock [39]. See also Ellis [45]

for applications in statistical mechanics.

Throughout this section let E be a Polish space, that is a complete separable

metric space, equipped with its Borel sigma-algebra. It will be sufficient for us to

consider only large deviations for measures on Polish spaces. Some of the results

below hold true in greater generality, see in particular [37, 39].

We will often encounter the set [0,∞] which we equip with the topology of the

one-point compactification of [0,∞). By definition we consider the infimum of the

empty set to be +∞.

2.3.1 Basic Notions

Definition 2.3.1. A function I : E −→ [0,∞] is said to be lower semi-continuous

if for every α ∈ [0,∞) the corresponding level set ΨI(α) = {x ∈ E : I(x) ≤ α} is
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closed. Such a map is called a rate function if I(x) 6=∞ for at least one x ∈ E. A

rate function I is said to be good if the level sets ΨI(α) are all compact.

Definition 2.3.2. A sequence of measures (µN)N∈N taking values on a Polish space

is said to satisfy a large deviations principle (LDP) of speed a = (aN)N∈N with rate

function I if a is a strictly increasing sequence of positive real numbers diverging to

infinity and

lim inf
N→∞

1

aN
log µN(G) ≥ − inf

x∈G
I(x) (2.3.3)

lim sup
N→∞

1

aN
log µN(F ) ≤ − inf

x∈F
I(x) (2.3.4)

for every open set G and every closed set F . (2.3.3) and (2.3.4) are often referred to

as the large deviations lower bound and upper bound respectively. If (2.3.4) holds

for all compact subsets of E then (µN)N∈N is said to satisfy a weak LDP.

If (XN)N∈N is a sequence of random variables taking values in E and the sequence

of distributions µN satisfies an LDP then we also say that the sequence (XN)N∈N

satisfies the LDP.

Remark 2.3.5. Equations (2.3.3) and (2.3.4) are equivalent to the following two

conditions, which are often easier to check:

(i) Lower bound: for every x ∈ E and every measurable subset A of E whose

interior contains x,

lim inf
N→∞

1

aN
log µN(A) ≥ −I(x). (2.3.6)

Equation (2.3.6) emphasises the local nature of the LDP lower bound.

(ii) Upper Bound: For every α ∈ [0,∞) and every measurable subset A of E such
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that I(x) > α for all x ∈ A,

lim sup
N→∞

1

aN
log µN ≤ −α. (2.3.7)

Strenghtening a weak LDP to a full one requires that most of the mass of the

probability measures is concentrated, on an exponential scale, on compact sets. To

be more precise:

Definition 2.3.8. A family of probability measures µN is said to be exponentially

tight if for every α ∈ [0,∞) there exists a compact subset Kα of E such that

lim sup
N→∞

1

aN
log µN (E \Kα) < −α. (2.3.9)

From Lemma 1.2.18 in [37] it follows that if (µN)N∈N is exponentially tight and

satisfies a weak LDP with rate function I then I is good and a full LDP holds for

(µN)N∈N.

We will also need to know how the LDP behaves under certain inclusions, which

is the content of the following simple result.

Proposition 2.3.10. Let E be a Polish space and A a measurable subset such that

µN(A) = 1 for all n ∈ N. Equip U with the subspace topology induced by E.

(a) If A is closed in E and (µN)N∈N satisfies the LDP in A with a given rate function

I : A −→ [0,∞] then (µN)N∈N also satisfies the LDP in E, of the same speed

and with rate function Ĩ : E −→ [0,∞] defined by

Ĩ(x) =


I(x) if x ∈ A

+∞ otherwise.

(b) If (µN)N∈N satisfies the LDP in E with rate function I such that I(x) = ∞

whenever x /∈ A then the same LDP holds in A.
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Note that in the set-up of Proposition 2.3.10 (b), A closed implies I(x) = ∞ for

x /∈ A.

One of the first applications of the LDP is that it allows one to compute the

logarithmic asymptotics of exponential functionals, by what is now called Varadhan’s

Lemma. Let (XN)N∈N be a sequence of E-valued random variables and denote the

law of XN by µN .

Theorem 2.3.11 (Varadhan’s Lemma). Suppose that (µN)N∈N satisfies the LDP

with speed (aN)N∈N and good rate function I and let φ : E −→ R be a continuous

function such that one of the follwing two conditions holds: either the tail condition,

lim
M→∞

lim sup
N→∞

1

aN
log E

{
eaNφ(ZN ) 1{φ(XN )≥M}

}
= −∞

or the moment condition: there exists γ > 1 such that

lim sup
N→∞

1

aN
log E

{
eγaN φ(ZN )

}
<∞.

Then

lim
N→∞

1

aN
log E

{
eaNφ(XN )

}
= sup {φ(y)− I(y) : y ∈ E} . (2.3.12)

2.3.2 Contraction principles

A natural question to ask is what kind of transformations preserve the LDP. The

first main result we present is the contraction principle, asserting that if a sequence

of measures satisfy an LDP then so do their push-forwards under a fixed continuous

function. Recall that for a measure µ on X the push-foward under a function

f : X −→ Y is the measure on Y given by µ ◦ f−1(A) = µ(f−1(A)).

A related result gives conditions under which we can draw the converse implica-

tion. Finally we describe an LDP for the sequence of product measures (µN⊗νN)N∈N
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provided both (µN)N∈N and (νN)N∈N satisfy an LDP. This allows us to build up

large deviations principles on a ‘larger’ space, a theme to which we will return in

Section 2.3.4.

Theorem 2.3.13 (Contraction Principle). Let f : X −→ Y be a continuous function

between Polish spaces. If a sequence of measures (µN)N∈N on X satisfies an LDP

with good rate function I then the sequence (µN ◦ f−1)N∈N satisfies the LDP of the

same speed and with good rate function Îf given by

Îf (y) = inf
{
I(x) : x ∈ f−1 ({y})

}
.

Note that the rate function I in Theorem 2.3.13 is assumed to be good. If I is not

a good rate function then Îf may fail to be a rate function.

If the function f is a continuous injection then we can deduce the LDP for

(µN)N∈N from that of (µN ◦ f−1)N∈N, provided we have exponential tightness. More

precisely:

Theorem 2.3.14 (Inverse contraction principle). Let X, Y be Polish spaces and

f : X −→ Y continuous and injective. Let further (µN)N∈N be an exponentially tight

sequence of probability measures on X. If (µN ◦ f−1)N∈N satisfies the LDP on Y

with rate function I then (µN)N∈N satisfies the LDP of the same speed and with rate

function I ◦ f .

We note that here goodness of the rate function is not part of the assumptions,

while goodness in the conclusion of the rate function I ◦ g follows from exponential

tightness.

We conclude this section with the following result on product measures. It can

be found as Corollary 2.9 in Lynch–Sethuraman [65]. See Exercise 4.2.7 in [37]

for a more general version.
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Theorem 2.3.15. Let (µN)N∈N and (νN)N∈N be exponentially tight sequences of

probability measures on Polish spaces X, Y respectively, satisfying large deviations

principles of the same speed (aN)N∈N and respective good rate functions I1, I2. Then

the sequence of product measures (µN ⊗νN)N∈N satisfies the LDP on X×Y of speed

(aN)N∈N and with the good rate function I : X × Y −→ [0,∞] given by

I(x, y) = I1(x) + I2(y).

2.3.3 Cramér’s Theorem and Sanov’s Theorem

For a sequence (XN)N∈N of i.i.d. E-valued random variables we summarise here

large deviations results for the associated empirical means, defined by

XN =
1

N

N∑
k=1

Xk ∈ E (2.3.16)

and emprical measures

L
(X)
N =

1

N

N∑
k=1

δXk ∈M1(E). (2.3.17)

We will also discuss extensions to path-wise results.

Let µ be a probability measure on a locally convex topological Hausdorff space.

The logarithmic moment generating function is defined by the function Λµ : E∗ −→

R defined by

Λµ(λ) = log

∫
E

eλ(x)µ(dx).
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While Λµ(λ) > −∞ for all λ ∈ E∗ it can happen that Λ(λ) = +∞, and we denote

the subset of those λ ∈ E∗ with Λ(λ) ∈ R (the effective domain of Λ) by DΛµ . We

also denote by Λ∗µ the Fenchel–Legendre transform of Λ, that is

Λ∗µ(x) = sup {λ(x)− Λµ(λ) : λ ∈ E∗} .

Theorem 2.3.18 (Cramèr’s Theorem). Let (XN)N∈N be a sequence of i.i.d. random

variables taking values in a Banach space E, with common law µ. The sequence(
XN

)
N∈N of empirical means satisfies a weak large deviations principle on E, of

speed N and with rate function Λ∗µ.

If E = Rd and DΛµ contains a neighbourhood of zero we get a full LDP for

(XN)N∈N and Λ∗µ is a good, convex rate function.

Next we turn to the empirical measures of the XN , whose large deviations be-

haviour is described by Sanov’s theorem. Recall [100] that for a Polish space E the

set M1(E) of probability measures on E, equipped with the weak topology, is itself

a Polish space. In particular the weak topology on M+(E) is compatible with the

complete separable metric β given for µ, ν ∈M+(E) by

β(µ, ν) = sup

{∫
fdµ−

∫
fdν : ‖f‖L + ‖f‖∞

}

where ‖ · ‖L, ‖ · ‖∞ denote the Lipschitz and supremum norms respectively.

For probability measures µ, ν on E we define their relative entropy (or Kullback-

Leibler divergence) by [48]

H (ν|µ) =


∫

log
(

dν
dµ

)
dν if ν � µ

+∞ otherwise.

Theorem 2.3.19 (Sanov’s Theorem). Let (XN)N∈N be i.i.d. random variables tak-

ing values in a Polish space E, of common law µ. Then the sequence of empirical



2. Background Material 34

measures
(
L

(X)
N

)
N∈N

(considered as random elements of M1(E)) satisfies the LDP

of speed N with good convex rate function H(·|µ).

Finally we discuss some sample path versions of Cramér’s and Sanov’s theorems.

The path version of Cramér’s theorem in Rd was established by Varadhan [120].

In the form we are stating it, the following result is due to Mogulskii [75]. Of

course, by Proposition 2.3.10, the results presented below apply to closed subsets

of Rd. Denote by L∞[0, 1] the space of bounded Rd-valued functions on the unit

interval [0, 1], equipped with the supremum norm.

Theorem 2.3.20. Let (XN)N∈N be a sequence of i.i.d. Rd-valued random variables,

of common law ν such that the logarithmic moment generating function of ν is finite

on a neighbourhood of zero. Define, for N ∈ N, the L∞[0, 1]-valued random variable

ZN by

ZN(t) =
1

N

bntc∑
j=1

Xj

and denote its law by µN . The sequence (µN)N∈N satisfies an LDP in L∞[0, 1], of

speed N and with good rate function I defined by

I(φ) =


∫ 1

0
Λ∗ν

(
φ̇(t)

)
dt if φ ∈ A0

+∞ otherwise

where A0 denotes the set of absolutely continuous elements φ of L∞[0, 1] such that

φ(0) = 0.

The following sample path version of Sanov’s theorem was established by Dembo–

Zajic [36]. Their result extends beyond the setting in which we state it here. In

chapter 3 we will prove a joint pathwise Sanov-Cramér theorem for i.i.d R-valued

random variables whose moment generation function is finite on a neighbourhood of
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zero. We denote by D the space of càdlàg functions from [0, 1] to M+(Rd), equipped

with the norm

d∞(µ,ν) = sup
{
β
(
µ(t), ν(t)

)
: t ∈ [0, 1]

}
.

Theorem 2.3.21. Let (XN)N∈N be a sequence of i.i.d. Rd random variables of

common law ν such that Λν is finite on a neighbourhood of zero. Define further the

D-valued random variable LN by

LN(t) =
1

N

bNtc∑
j=1

δXj

and denote its law by µN . Then the sequence (µN)N∈N satisfies the LDP on D of

speed N and with convex good rate function

I∞(ξ) =


∫ 1

0
Λ∗
(
ξ̇(t)

)
dt if ν ∈ A0

+∞ otherwise.

Here A0 denotes the set of maps ξ : [0, 1] −→M+(E) that are absolutely continuous

with respect to the total variation norm, have ξ(t) − ξ(s)(E) ∈ Mt−s(E) and such

that the limit

ξ̇(t) = lim
ε→0

1

ε

(
ξ
(
t+ ε

)
− ξ
(
t
))

exists in the weak topology for Lebesgue-almost all t ∈ [0, 1]. The function Λ∗ is

defined by

Λ∗(ξ) = sup

{∫
fdξ − log

∫
ef (y)ν(dy) : f ∈ Cb(E)

}
.
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2.3.4 Projective Limits

Because it avoids topological and analytical difficulties it is often easier to establish

large deviations results on finite-dimensional spaces. Projective limits allow one

to build up ‘large’ spaces from finite-dimensional building blocks. The Dawson–

Gärtner theorem uses these projective limits to lift large deviations results from such

subspaces to the larger space. We will use projective limits as a key ingredient in the

proof of our joint Cramèr–Sanov theorem for i.i.d. random variables (Chapter 3).

In order to define projective limits we first need some topological preliminaries.

Definition 2.3.22. A partially ordered set (J,�) is said to be right-filtering if for

any j, k ∈ J there exists l ∈ J such that both j � l and k � l. A projective system is

a collection of Hausdorff topological spaces {Yj : j ∈ J} indexed by a right-filtering

set (J,�), together with continuous maps pjk : Yj −→ Yk for each j, k ∈ J such that

whenever j � k � l we have pjl = pjk ◦ pkl.

It follows directly form the definition that for each j ∈ J the map pjj must be the

identity map on Yj.

Definition 2.3.23. The projective (or inverse) limit of such a projective system

(Yj, pjk; j, k ∈ J) is the topological subspace of the product space
∏

j∈J Yj consisting

of all elements y = (yj)j∈J with the property that yj = pjk(yk) whenever j � k. We

denote the projective limit by X = lim←−Yj and by pj : X −→ Yj the restriction to X

of the canonical projection from the product space.

Theorem 2.3.24 (Dawson–Gärtner). Let (µN)N∈N be a sequence of probability

measures on X. If for each j ∈ J the sequence of probability measures (µN ◦p−1
j )N∈N

satisfies the LDP on Yj with good rate function Ij, then (µN)N∈N satisfies the LDP

of the same speed and with good rate function I : X −→ [0,∞] given by

I(y) = sup {Ij (pj (y)) : j ∈ J} .
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2.4 Reflected BM and Queuing Theory

In this section we introduce reflected Brownian motion (RBM) in a polyhedral do-

main. There are two cases to consider: RBM in a general domain, driven by a

standard Brownian motion and RBM in an orthant driven by a Brownian motion

with general (possibly singular) covariance. We follow Harrison–Wiliams [53]

and Williams [130] for the former and Harrison–Reiman [52] for the latter case.

Since the main motivation and many examples come from the study of queueing

networks we also review some basic notions from queueing theory, based on the

presentation in O’Connell–Yor [89].

2.4.1 RBM in a Polyhedral Domain

Let us first discuss RBM in a general domain. In the Harrison–Williams setting

the polyhedral domain G ⊆ Rd in which the process runs is the intersection of k ≥ d

half-spaces. More precisely let n1, . . . , nk ∈ Rd be unit vectors and b ∈ Rk then the

domain G

G =
k⋂
j=1

Gj :=
k⋂
j=1

{
x ∈ Rd : nj · xj ≥ bj

}
.

We assume that each of the faces

Fj =
{
x ∈ G : nj · x = bj

}
has dimension d − 1. In general G may be bounded or unbounded, but we assume

that {n1, . . . , nk} spans Rd, which means that no line can lie entirely within G.

The reflections are defined by vectors q1, . . . , qk ∈ Rd such that qj ·nj = 0 for all j.

We denote by N and Q the k×d matrices whose jth rows are nj and qj respectively.

The requirement that {n1, . . . , nk} spans all of Rd is equivalent to existence of an
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invertible d× d submatrix N of N .

Informally, reflected Brownian motion ω in G may be described as follows: inside

the domain G the process ω behaves like a standard Brownian motion with drift

−µ ∈ Rd, at the boundary it receives a singular drift pointing towards the interior

– in direction vj := qj + nj whenever it hits the face Fj – and it almost surely never

hits any point in the intersection of two or more faces.

In general, such a process may not exist. The boundary of the state space is not

smooth, and the directions of reflection are discontinuous across non-smooth parts

of the boundary, so this does not fit within the Stroock–Varadhan theory [115] of

multidimensional diffusions. Williams [130] showed that if the input data satisfy

the skew-symmetry condition

nj · qr + nr · qj = 0 ∀j, r ∈ k (2.4.1)

then there exists a reflected Brownian motion which can be defined as the unique

solution to a submartingale problem. It was also shown in [130] that, under the

skew-symmetry condition, reflected Brownian motion has an an invariant measure

in product form:

Theorem 2.4.2. Suppose that the skew-symmetry condition (5.1.1) holds, then

RBM corresponding to (N,Q, µ, b) has a unique invariant measure whose density

with respect to Lebesgue measure is given by

p(x) = exp {2γ(µ) · x} (2.4.3)

where γ(µ) is defined as follows. By assumption, N has an invertible d×d submatrix

N . Denote the corresponding submatrix of Q by Q, then

γ(µ) =
(
I −N−1

Q
)−1

µ. (2.4.4)
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The fact that γ(µ) is independent of the choice of submatrix follows from the skew-

symmetry condition. Harrison–Williams [53] also consider reflected Brownian

motion in a smooth domain and establish similar results in that setting.

The fact that γ(µ) is independent of the choice of submatrix follows from the

skew-symmetry condition. Harrison–Williams [53] also consider reflected Brow-

nian motion in a smooth domain and establish similar results in that setting.

2.4.2 RBM in an Orthant

We now turn to reflected Brownian motion in the orthant S = (0,∞)d, driven by

a general-covariance Brownian motion. Our definition almost exactly mirrors that

of Harrison–Reiman [52]. However, we have changed the sign of the reflection

matrix Q to make it compatible with the Harrison–Williams setup. This will

be useful when we consider our generalised version in Chapter 5.

Let d ∈ N and B be a d-dimensional Brownian motion with drift µ and covariance

matrix A = σσT , started inside S. That is, there exists a k-dimensional standard

Brownian motion β and a k×d matrix σ with unit rows such that B(t) = σβ(t)−µt.

Let Q be a d × d matrix with non-negative entries and zeroes on the diagonals.

Harrison–Reiman prove that there exists a unique pair of continuous Rd-valued

processes (Y, Z) with

Z(t) = B(t) + Y (t)(I +Q)

and such that

(i) Z(t) ∈ S for all t ≥ 0

(ii) for each j ∈ d the real-valued process Yj is continuous, non-decreasing and

such that Yj(0) = 0

(iii) Yj only increases at such times t where Zj(t) = 0.
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The process Z is called reflected Brownian motion in the orthant S with respect to

the matrix Q, driven by B.

If k = d and σ is an invertible matrix then it is easy to see that the process

σ−1(Z) is a reflected Brownian motion in the polyhedral domain σ−1(S) in the

sense of Harrison–Williams.

In chapter 5 we will introduce generalisations of both these processes, replacing

the singular drift by a continuous one that depends on how far the process fails to be

in the relevant domain. We will then show that the same skew-symmetry condition

still yields an invariant measure in product form.

2.4.3 Queuing Networks

We present here some basic notions and results from queueing theory, based on the

presentation in [89], where analogues of Burke’s theorem to the so-called generalised

Brownian queue were used to compute the free energy density of a certain directed

polymer in a random medium. See also Moriarty–O’Connell [76]. Connections

between tandem queues and directed percolation were investigated by O’Connell

[85].

We will describe the M/M/1 queue, the Brownian queue and the generalised

Brownian queue, stating for each case the relevant version of Burke’s theorem. An

introduction to queueing theory may be found in the book by Kelly [59], see also

[4, 28, 99].

The classical M/M/1 queue can be viewed as follows: the arrivals follow a

Poisson process with parameter λ. A single server serves customers at the front

of the queue, one at a time, where service times are distributed according to the

exponential distribution with parameter µ > λ. The M/M/1 queue is an example

of a birth and death process on N0 = N ∪ {0} with birth rate λ and death rate µ.

More formally let A, S be independent Poisson processes on R with intensities
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λ, µ respectively. The process Q defined by

Q(t) = sup {A(t)− A(s)− S(t) + S(s), 0: −∞ ≤ s ≤ t}

is called the queue-length process of the M/M/1 queue. We refer to A and S as

the arivals and service process respectively. The departure process D is defined by

requiring that for s < t we have

D(t)−D(s) = A(t)− A(s) +Q(s)−Q(t).

Burke’s theorem [29] states that

1. the departures process D is itself a Poisson process with intensity λ

2. {D(t)−D(s) : s ≤ t} is independent of {Q(s) : s ≥ t} for any fixed t ∈ R.

By letting the parameters λ, µ tend to infinity in the right way (which corresponds

to considering a heavy-traffic limit), one can obtain a continous-time, Brownian

version of Burke’s theorem.

Following [89] we define a real-valued process B = (B(t) : t ∈ R) indexed by the

reals a standard Brownian motion indexed by R if B(0) = 0 and the two processes

(B(t) : t ≥ 0) and (B(−t) : t ≥ 0) are two independent standard Brownian motions.

Let now B, C be two such standard Brownian motions indexed by R, fix m > 0 and

define the queue-length and departures processes q, d by

q(t) = sup {B(t)−B(s) + C(t)− C(s) +m(s− t) : −∞ < s ≤ t} (2.4.5)

d(t) = B(t) + q(0)− q(t). (2.4.6)

The process d is also referred to as the output process. The system (B,C, q, d) is

called the Brownian queue.

The Brownian analogue of Burke’s theorem [54] is as follows:
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1. d is a standard Brownian motion indexed by R

2. for each t ∈ R, {d(s), s ≤ t} is independent of {q(s) : s ≥ t}.

The generalised Brownian queue is obtained from the above by replacing the

supremum in (2.4.5) by log
∫

exp. More precisely, let once more B, C bet two

independent standard Brownian motions indexed by R and m > 0. For t ∈ R we

define

r(t) = log

∫ t

−∞
exp {B(t)−B(s) + C(t)− C(s) +m(s− t)} ds

f(t) = B(t) + r(0)− r(t).

The relevant version of Burke’s theorem was shown in [89] to follow from results of

Matsumoto–Yor [70], and states that f is a standard Brownian motion indexed

by R and that for each t, the values of f up to t are independent from those of r

after t.



Chapter 3

Large Deviations for Non-Crossing

Partitions

3.1 Introduction

In this chapter we study the block structure of a non-crossing partition chosen

uniformly at random. Recall from Section 2.1 that any partition π of the set

n = {1, . . . , n} can be represented on the circle by marking the points 1, . . . , n

and forming the convex hulls of the representatives of each block. The partition is

then said to be non-crossing if none of the hulls intersect.

We study the empirical measure defined by the blocks of a uniformly random

non-crossing partition π of n. That is, if π has r blocks of sizes B1, . . . , Br we

consider the random probability measure on N defined by

λn =
1

r

r∑
j=1

δBj . (3.1.1)

We will prove that the sequence
(
λn
)
n∈N satisfies a large deviations principle of

speed n on the space M1(N) of probability measures on the natural numbers.

This result is obtained via a construction of a uniformly random non-crossing

43
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partition by suitably conditioned independent geometric random variables. As a

stepping-stone we establish a joint large deviations principle for the process versions

of empirical mean and measure of that independent sequence.

A main application of the large deviations result comes from free probability

theory. Recall that the free cumulants characterise the underlying probability dis-

tribution. However, obtaining the density involves locally inverting an analytic

function which may not lead to a closed-form expression. In such a situation one

would still hope to deduce some properties of the underlying probability measure,

for example about its support.

The free analogue of the moment-cumulant formula expresses the moments of a

non-commutative random variable in terms of its free cumulants. More precisely the

moments can be written as the expectation of an exponential functional (defined in

terms of the free cumulants) of a non-crossing partition, chosen uniformly at random.

Knowing the large deviations behaviour of the latter allows us to apply Varadhan’s

lemma to describe the asymptotic behaviour of the moments. This in turn yields

the maximum of the support of the underlying distribution in terms of the free

cumulants.

3.2 Process Level Large Deviations

Let (Xn)n∈N be an i.i.d. sequence of geometric random variables with parameter

1
2

and denote their common law by G2. We define processes Sn, Ln, indexed by

the unit interval and taking values in the space of real numbers and positive finite

measures on N respectively by

Sn(t) =
1

n

bntc∑
j=1

Xj +

(
s− bnsc

n

)
Xbnsc+1 (3.2.1)

Ln(t) =
1

n

bntc∑
j=1

δXj +

(
s− bnsc

n

)
δXbnsc+1

. (3.2.2)
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In this section we prove a large deviations principle for the pair (Sn,Ln). We start

by proving a joint LDP for the pair of end-points (Sn(1),Ln(1)) via a projective

limit argument. We then adapt arguments from Dembo–Zajic [36] to obtain the

path-wise result.

Remark 3.2.3. By the sample-path version of Sanov’s theorem we already have an

LDP for Sn and Ln separately. The reason for obtaining this joint large deviations

principle is that for our main large deviations result we need to use the mean as well

as the empirical measure but the map µ 7−→ m1(µ) is not continuous in the weak

topology. An alternative would have been a priori to strengthen the topology on

M+(N) to the Monge–Kantorovich topology, the coarsest topology that makes the

map m1 continuous and is finer than the weak topology. However results by Schied

[102] show that in this topology Sanov’s theorem only holds for distributions which

possess all exponential moments. This does not hold for G2 since

∫
R

etxG2(dx) = +∞

for all t ≥ log 2.

3.2.1 Joint Sanov and Cramér

Denote by M+(N) the space of finite measures on N and let M1(N) be the subset

of probability measures. Recall that M+(N) is equipped with the topology of weak

convergence, induced by the complete separable metric β given for µ, ν ∈ M+(N)

by

β(µ, ν) = sup

{∣∣∣∣∫ fdµ−
∫
fdν

∣∣∣∣ : ‖f‖L + ‖f‖∞ ≤ 1

}
(3.2.4)

where ‖ · ‖L denotes the Lipschitz norm. So M+(N) is a Polish space, and so is

M1(N) when equipped with the subspace topology.
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Our goal here is to establish a joint large deviations principle on Y := R×M+(N)

(equipped with the product topology) for the empirical mean and measure of the Xn,

i.e. for (Sn, Ln). where Sn := Sn(1) ∈ R and Ln := Ln(1) ∈ M1(N). By Cramér’s

theorem and Sanov’s theorem respectively, the laws of Sn, Ln already satisfy a large

deviations principle on R and M1(N) individually. The point here is to show that

this also holds for the pair. Recall that m1(µ) denotes the mean of a probability

measure µ.

Proposition 3.2.5. Let ηn denote the law of (Sn, Ln). Then (ηn)n∈N satisfies a

large deviations principle in Y with good rate function I1 given by

I1(x, p) =


H(p|G2) if p ∈M1(N) and m1(p) = x

+∞ otherwise

(3.2.6)

where H(·|·) denotes the relative entropy of two probability measures, i.e.,

H(ν|G2) =
∞∑
m=1

νm log
( νm

2−m

)
= m1(ν) log(2)−H(ν)

and H(p) = −
∑

m pm log(pm) is the entropy of a probability measure p.

Proof. The weak topology on M1(N) is induced by the dual action of the space Cb(N)

of bounded continuous functions on N. Fix a finite collection f1, . . . , fd ∈ Cb(N). The

random variables
(
Xn, f1(Xn), . . . , fd(Xn)

)
∈ Rd+1 are independent and identically

distributed, so by Cramér’s theorem 2.3.18 their laws satisfy a large deviations

principle on Rd+1 with good convex rate function given by

Λ∗f1,...,fd(x1, . . . , xd+1) = sup

{
d+1∑
j=1

λjxj − Λf1,...,fd (λ1, . . . , λd+1) : λ ∈ Rd+1

}
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where Λf1,...,fd is the logarithmic moment generating function of the random variable(
X1, f1(X1), . . . , fd(X1)

)
, that is

Λf1,...,fd (λ1, . . . , λd+1) = logEeλ1X1+
∑d
j=1 λj+1fj(X1)

The idea is now to take a projective limit approach. We first construct a suitable

projective limit space in which R×M+(N) can be embedded. The proposition will

follow from an application of the Dawson–Gärtner theorem (Theorem 2.3.24).

DenoteW = Cb(N) and letW ′ be its algebraic dual, equipped with the τ(W ′,W)-

topology, that is the weakest topology making the maps W ′ 3 f 7−→ f(w) ∈ R

continuous for all w ∈ W . Let further J be the set of finite subspaces of W ,

partially ordered by inclusion. For each V ∈ J define YV = R×V ′ and equip it with

the τ(R× V ′,R× V )-topology. Defining now projection maps pU,V for each U ⊆ V

by

pU,V : YV −→ YU

pU,V (x, f) = (x, f |U) ,

we obtain a projective system (YV , pU,V : U ⊆ V ∈ J). Denote by X̃ its projective

limit, equipped with the subspace topology from the product topology. Let further

X = R×W ′ and define Φ: X −→ X̃ by

Φ(x, f) = ((x, f |V ) : V ∈ J) .

This is clearly a bijection. Using the definition of the weak topology in terms of

open balls, as in Chapter 8 of Bollobás [25], it is clear that Φ is actually a

homeomorphism.
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Next we embed R×M1(N) into X : for (x, µ) ∈ R×M1(N) let

Ψ(x, µ) =

(
x,

[
h 7−→

∫
h dµ

])
∈ X .

Then Ψ is a homeomorphism onto its image, which we denote by E . Let η̃n be

the image measure of ηn under Ψ. By the Dawson–Gärtner theorem and the finite-

dimensional large deviations principle mentioned above, these satisfy a large devia-

tions principle on X with good rate function IΨ given by

IΨ(x, f) = sup
{

Λ∗λ1,...λd (x, f(λ1), . . . , f(λd)) : λ1, . . . λd ∈ W
}
.

By Cramér’s and Sanov’s theorem respectively we have exponential tightness for

the sequences (Sn)n∈N and (Ln)n∈N separately. Therefore the sequence of pairs

((Sn, Ln))n∈N is exponentially tight in R ×M1(N). The inverse contraction prin-

ciple (Theorem 2.3.14) now yields the desired LDP for (Sn, Ln) with the good rate

function I1 = IΨ ◦Ψ. That is,

I1(x, µ) = sup
f1,...,fd∈Cb(N)

Λ∗f1,...,fd

(
x,

∫
f1 dµ, . . . ,

∫
fd dµ

)
.

It remains to show that I1 is actually of the form (3.2.6). Suppose first that we have

m1(µ) = x.

Fix f1, . . . , fd ∈ Cb(N), let (λ1, . . . , λd+1) ∈ Rd+1 and define φ(y) = λ1y +∑d
j=1 λj+1fj(y). By Jensen’s inequality,

logE
[
eφ(X1)

]
= log

∫
eφ(y) dG2

dµ
(y)µ(dy) ≥

∫ [
φ(y)− log

(
dµ

dG2

(y)

)]
µ(dy)

=

∫
φ dµ−H(µ|G2) = λ1x+

d∑
j=1

λj+1

∫
fj dµ−H(µ|G2).

So Λ∗f1,...,fd
(
x,
∫
f1 dµ, . . . , f1 dµ

)
≤ H(µ|G2) and therefore I1(x, µ) ≤ H(µ|G2)
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whenever m1(µ) = x.

If µ is a Dirac mass then µ = δx and x ∈ N, by the assumption that m1(µ) = x.

So H(µ|G2) = x log 2. On the other hand, choosing d = 1 and f1(y) = 1y<x in the

supremum definition of I1 we obtain the inequality I1(x, µ) ≥ x log 2. Suppose now

that µ is not a Dirac mass. Define ej ∈ Cb(N) by ej(m) = δjm. Write spt (µ) =

{nk : k ∈ J}. Then,

I1(x, µ) ≥ sup
{

Λ∗en1 ,...,end
(x, µn1 , . . . , µnd) : d ∈ J

}
= sup

λ∈(−∞,log(2))×Rd

{
λ1x+

d∑
j=1

λj+1µnj − logE
[
eλ1X1+

∑d
j=1 λj+1enj (X1)

]
:

}
.

Fix d ∈ J , and let g(λ) denote the function inside the supremum. The effective

domain of Λen1 ,...,end
is (−∞, log(2))×Rd. Because µ is not a Dirac mass the function

g(λ) goes to −∞ whenever |λ| tends to∞. So the supremum of g is attained at some

λ0 ∈ (−∞, log(2))×Rd. Then λ0 is a local maximum for g, whence ∇g(λ0) = 0, or

equivalently ∇Λen1 ,...,end
(λ0) = (x, µn1 , . . . , µnd)

T . So we can define an exponential

tilting νλ0 of µ by

νλ0(dy) = eλ1y+
∑d
j=1 λj+1enj (y)−Λen1 ,...,end

(λ0) µ(dy).

The probability measure νλ0 has mean x and satisfies
∫
enj dµ =

∫
enj dνλ0 for all

j ∈ {1, . . . , d}. Moreover,

H (νλ0 |G2) = λ1x+
d∑
j=1

λj+1µnj − Λen1 ,...,end
(λ0) ≤ Λ∗en1 ,...,end

(x, µn1 , . . . , µnd)



3. Large Deviations for Non-Crossing Partitions 50

and therefore,

I1(x, µ) ≥ sup
d∈J

inf
{
H (ν|G2) : m1(ν) = x, νnj = µnj∀j ∈ {1, . . . , d}

}
= H (µ|G2) .

Finally suppose that m1(µ) 6= x. To see that I1(x, µ) = +∞ we introduce, for each

d ∈ N, the function ξd ∈ Cb(N) by

ξd(x) =


x if x ≤ d

0 otherwise.

For each ε ∈
(
0, 1

2
|x−m1(µ)|

)
there exists D such that for all d ≥ D we have

m1(µ) ≤
∫
ξd dµ+ ε.

It follows that for all λ1, λ2 ∈ R and d ≥ D,

I1(x, µ) ≥ λ1x+ λ2 (m1(µ)− ε)− logEeλ1X1+λ2ξd(X1)

= (λ1 + λ2)x− logEe(λ1+λ2)X1 + λ2 (m1 (µ)− x− ε) .

Taking the supremum over all λ1 we obtain

I1 (x, µ) ≥ Λ∗(x) + λ2 (m1 (µ)− x− ε)

for any λ2 ∈ R. Since ε < m1(µ)− x by construction it follows that I1(µ) =∞.

It now follows from Proposition 2.3.10 that the LDP also holds in the larger

space Y = R ×M+(N), by setting I1(x, µ) = ∞ whenever µ is not a probability
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measure.

3.2.2 The Sample-Path Result

Theorem 3.2.7. Let ξn denote the law of (Sn,Ln) on C ([0, 1];Y), the space of

continuous functions from the unit interval to Y. The sequence (ξn)n∈N satisfies a

large deviations principle on C ([0, 1];Y) with good rate function I2 given by

I2(x,p) =


∫ 1

0
H (ṗ(s)|G2) ds if (p,x) ∈ E

+∞ otherwise

(3.2.8)

where E is the space of elements (m,p) of absolutely continuous maps [0, 1] −→ Y

such that (m(0),p(0)) = 0, the map s 7−→m(s) is differentiable almost everywhere,

p(t)− p(s) ∈Mt−s(N) and the limit

ṗt = lim
ε→0

pt+ε − pt
ε

exists in the weak topology for almost every t ∈ [0, 1] and has the property that

m1(ṗ(·)) = m(·).

For (Ln(·)) on its own the analogous result can be found in Dembo–Zajic [36] and

we will use a similar approach, using the joint large deviations principle for empirical

mean and measure established above. We first prove exponential tightness for the

pair of paths:

Lemma 3.2.9. ((Sn(·),Ln(·)))n∈N is exponentially tight in C ([0, 1];Y).

Proof. The topology on Y is induced by the metric d given by

d ((x1, µ1) , (x2, µ2)) = |x1 − x2|+ β(µ1, µ2).

By Lemma A.2 in [36] we get exponential tightness for the laws ξn of (Sn,Ln) if
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(a) for each fixed t ∈ Q ∩ [0, 1] the sequence ((Sn(t),Ln(t)))n∈N is exponentially

tight and

(b) for every ρ > 0,

lim
δ→0

sup
n∈N

1

n
log ξn {f : wf (δ) ≥ ρ} = −∞

where wf (δ) = sup|t−s|≤δ d
(
f(t), f(s)

)
is the modulus of continuity of f .

Exponential tightness of ((Sn(t),Ln(t)))n∈N for every fixed t ∈ Q ∩ [0, 1] is a direct

consequence of Proposition 3.2.5. Moreover, for 0 ≤ s < t ≤ 1,

d ((Sn(t),Ln(t)) , (Sn(s),Ln(s))) ≤ t− s
n

max
j
Xj +

t− s
n

where the maximum on the right-hand side runs over the (finite) set of j such that

bnsc ≤ j ≤ bntc. For any δ, ρ > 0 and n ∈ N it follows therefore that

1

n
logP

{
sup
|t−s|<δ

d ((Sn(t),Ln(t)) , (Sn(s),Ln(s))) ≥ ρ

}

≤ 1

n
logP

{
δ

n

(
max
1≤j≤n

Xj + 1

)
≥ ρ

}
= −

(nρ
δ
− 1
)

log 2 ≤ −
(ρ
δ
− 1
)

log 2.

The right-hand side diverges to −∞ as δ → 0. So condition (b) also holds and

(ξn)n∈N is exponentially tight.

Lemma 3.2.10. For any fixed 0 = t0 < t1, . . . , < tm ≤ 1 the sequence (Zn)n∈N of

random variables defined by

Zn = ((Sn (tj)− Sn (tj−1) ,Ln (tj)−Ln (tj−1)))mj=1 ∈ Y
m
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satisfies a large deviations principle in Ym with good rate function given by

It1,...,tm ((x1, µ1), . . . , (xm, µm)) =
m∑
j=1

(tj − tj−1) I1

(
xj

tj − tj−1

,
µj

tj − tj−1

)
.

Proof. Let n be large enough so that ntj < ntj+1 − 1. A direct calculation yields,

for any f = (λj, gj)
m
j=1 ∈ (Ym)∗,

lim
n→∞

1

n
logE enf(Zn) =

m∑
j=1

(tj − tj−1) Λ2

(
λj

tj − tj−1

,
gj

tj − tj−1

)
=: Λ3(f)

where Λ2(λ, g) = log E [exp (λX1 + g(δX1))].

By Corollary 4.6.14 of [37] this implies that the laws of Zn satisfy a large devia-

tions principle on E with good rate function Λ∗1 given by

Λ∗1

(
(xj, µj)

m
j=1

)
= sup

{
f
(

(xj, µj)
m
j=1 − Λ3(f) : f ∈ E∗

)}
=

d∑
j=1

(tj − tj−1) Λ∗2

(
xj

tj − tj−1

,
µj

tj − tj−1

)
.

Since I1 is convex it follows from the results of Section 3.2.1 and Theorem 4.5.10(b)

in [37] that Λ∗2 = I1 and the lemma is proved.

The proof of Theorem 3.2.7 now follows closely that of Theorem 1 of [36]. An

application of the contraction principle to the map

(z1, . . . , zm) 7−→ (z1, z1 + z2, . . . , z1 + . . . zm)

yields the large deviations principle for the laws of (Sn(t1),Ln(t1), . . . ,Sn(tm),Ln(tm))

with good convex rate function given by

Ît1,...,tm ((x1, µ1), . . . , (xm, µm)) =
m∑
j=1

(tj − tj−1) I1

(
xj − xj−1

tj − tj−1

,
µj − µj−1

tj − tj−1

)
.



3. Large Deviations for Non-Crossing Partitions 54

Applying the Dawson–Gärtner theorem as in the proof of Lemma 3 in [36] yields an

LDP for the laws of the pair process (Sn,Ln) on C([0, 1];Y) with good rate function

I2(x,µ) = sup
t1<...<tm

Ît1,...,tm
(
x (t1) ,µ (t1) , . . . ,x (tm) ,µ (tm)

)
.

Obviously m1 (µ(t)) 6= x(t) for some t implies I2(x,µ) =∞. Lemma 4 in [36] then

implies that I2 is of the form (3.2.8). This completes the proof of Theorem 3.2.7.

Finally let (Xn)n∈N, (Yn)n∈N be two sequences of i.i.d. random variables of common

law G2 and define LXn , LYn , SXn , SYn analogously to (3.2.1, 3.2.2). By Corollary 2.9

of Lynch–Sethuraman [65] we obtain the following

Corollary 3.2.11. The sequence of the laws of (SXn ,L
X
n ,S

Y
n ,L

Y
n ) satisfies a large

deviations principle on C ([0, 1],Y2) with good rate function I where for (x,p,y, q) ∈

Y2,

I(x,p,y, q) =


∫ 1

0
[H (ṗ(s)|G2) +H (q̇(s)|G2)] ds if (x,p), (y, q) ∈ E

+∞ otherwise.

3.3 Construction of the Uniform Measure on NC(n)

Let us now turn to the construction of the uniform measure on NC(n) using con-

ditioned geometric random variables. Since the sets NC(n) and P(n) are finite, a

uniform distribution exists. A Dyck path chosen uniformly at random is also re-

ferred to as Bernoulli excursion. We will study the descent structure of ω. Because
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of our bijection between P(n) and NC(n) this is equivalent to studying the blocks

of a uniformly random element of NC(n).

We now construct a Bernoulli excursion using conditioned geometric random vari-

ables. For any n ∈ N let wn : N2n −→
⋃
k∈N P̂(k) (where P̂(k) is the set of all length

2k lattice paths on Z, starting at zero and consisting of steps (1, 1) and (1,−1))

denote the map that reconstructs a path from a sequence of ascents and descents.

That is, bn(x1, y1, . . . , xn, yn) is the path described by x1 upsteps, y1 downsteps, then

x2 upsteps and so on, terminating with yn downsteps.

Let Xn, Yn be i.i.d. random variables with common law given by the geometric

distribution with parameter 1
2
. We will view these as the subsequent ascents and

descents of a simple random walk Σ on R starting at 0 with an upstep. Denote by

Tn :=
n∑
j=1

(Xj + Yj)

the combined length the first n up- and downsteps take in total and let τ̂n be the

number of descents completed after 2n steps of the simple random walker:

τ̂n = max{k ∈ N : Tk ≤ 2n}.

We will later work with a renormalisation of τ̂n, namely τn = τ̂n
2n

. We denote by En

the event that wτn (X1, Y1, . . . , Xτn , Yτn) is a Dyck path of semilength n:

En =

{
Tτ̂n = 2n,

τ̂n∑
j=1

Xj =
τ̂n∑
j=1

Yj,
r∑
j=1

(Xj − Yj) ≥ 0 ∀ j < τ̂n

}
. (3.3.1)

The following lemma is now straightforward to check.

Lemma 3.3.2. Conditioned on En the distribution of wτ̂n (X1, Y1, . . . , Xτ̂n , Yτ̂n) on
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P(n) is uniform. Hence, conditioned on En, the random measure λn defined by

λn =
1

τ̂n

τ̂n∑
j=1

δYj (3.3.3)

is the empirical measure of the descents of a Bernoulli excursion or, equivalently,

the block sizes of a uniformly random element of NC(n).

3.4 Large Deviations for Non-Crossing Partitions

Recall that λn = 1
τ̂n

∑τn
j=1 δYj is the empirical measure of the blocks of a non-crossing

partition picked uniformly at random. Define further σn = m1(λn) = 1
τ̂n

∑τ̂n
j=1 Yj.

Let νn denote the law of (σn, λn, τn) on Y× [0, 1]. The main result of this section

is the following.

Theorem 3.4.1. The sequence (σn, λn, τn)n∈N satisfies a large deviations principle

in Y × [0, 1] with good convex rate function J given by

J(m,µ, t) =


log 4− 1

m
H(µ)− 1

m
log (m− 1) + log

(
1− 1

m

)
if m1(µ) = m = 1

2t

+∞ otherwise.

(3.4.2)

It is straightforward to verify that J(m,µ, t) = 0 if and only if (m,µ, t) = (2,G2,
1
4
).

The following law of large numbers now follows immediately.

Corollary 3.4.3. The empirical measure λn of the block structure of a uniformly

randomly chosen non-crossing partition converges weakly almost surely to the geo-

metric distribution of parameter 1
2
.

We will first prove the upper bound, Proposition 3.4.11 and then the lower bound,

Proposition 3.4.13. For both the following lemma is useful.
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Lemma 3.4.4. The logarithmic asymptotics of the probability of En are given by

lim
n→∞

1

n
logP(En) = 0. (3.4.5)

Proof. Writing En in terms of the simple random walk Σ that has ascents X1, X2, . . .

and descents Y1, Y2, . . .,

En =
{

Σ2n = 0, Σk > 0 ∀ k < 2n, Σ2n+1 = +1
}
.

Therefore, using the Markov property of Σ,

P
(
En
)

= P {Σ2n+1 = +1 | Σ2n = 0} · P {Σ2n = 0, Σk ≥ 0 ∀ k < 2n}

=
1

2
· Cn

4n

because the second probability on the right is just that of running a simple random

walk for 2n steps and obtaining a Dyck path. A direct computation using Stirling’s

formula [43, p.64] yields that 1
n

logCn −→ 4 as n→∞. Equation (3.4.5) follows.

For any path x : [0, 1] −→ R with x(0) = 0 and x(t)− x(s) ≥ t− s for all t > s ≥ 0

we let τ(x) be the right-inverse of x at 1, i.e.

τ(x) = inf {s ∈ [0, 1] : x(s) ≥ 1} .

If p(t)−p(s) is a measure on N of mass t− s it follows that m1 (p(t))−m1 (p(s)) ≥

t− s. So the map E2 −→ [0, 1] given by (x,p,y, q) 7−→ τ(x+ y) is continuous.

3.4.1 The Upper Bound

We are now in a position to prove the large deviations upper bound. We will first

give a bound via the process version and then show that this can be written in terms
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of the stated rate function

Lemma 3.4.6. For every closed F ⊆ Y × [0, 1] we have

lim inf
n→∞

1

n
log νn(F ) ≤ −2 inf

{
I(x,p,y, q) : (x,p,y, q) ∈ F̂

}
(3.4.7)

where the (closed) subset F̂ of E2 is defined by

F̂ =

{
(x,p,y, q) :

(
1

τ
y(τ),

1

τ
q(τ), τ

)
∈ F,x(τ) = y(τ), x(s) ≥ y(s)∀s ≤ τ

}

and τ = τ(x+ y).

Proof. Recall that λn = 1
τn
LY2n(τn). Therefore,

1

n
log νn(F ) =

1

n
logP

{(
1

τn
SY2n(τn),

1

τn
LY2n(τn), τn

)
∈ F ; En

}
− 1

n
logP(En).

By Lemma 3.4.4 the second term on the right-hand side converges to 0. Further,

τn = inf
{
k

2n
: 1

2n
(Xj + Yj) ≥ 1

}
, so that τn is the least integer multiple of 1

2n
less

than τ(LX2n+LY2n), with equality if and only if SX2n(τn)+SY2n(τn) = 1. This certainly

holds on En, so we can write the event En in terms of the L, S: for ease of notation

we denote τS := τ(SX2n + SY2n). Then

En =

{
SX2n(τn) = SY2n(τn) =

1

2
, SX2n(s) ≥ SY2n(s) ∀ s ≤ τn

}
=

{
SX2n(τS)) = SY2n(τS) =

1

2
, SX2n(s) ≥ SY2n(s) ∀ s ≤ τS, τS = τn

}
⊆
{
SX2n(τS)) = SY2n(τS) =

1

2
, SX2n(s) ≥ SY2n(s) ∀ s ≤ τS

}
.

Denote the last event by Ẽn. It follows that

lim sup
n→∞

1

n
log νn(F ) ≤ 2 lim sup

n→∞

1

2n
logP

{(
1

τS
SY2n(τS),

1

τS
LY2n(τS), τS

)
∈ F ; Ẽn

}
.
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Since τS is a continuous function of (SX2n,L
X
2n,S

Y
2n,L

Y
2n), the set on the right-hand

side is closed in E2 and we can apply Corollary 3.2.11 to obtain (3.4.7).

We now investigate the right-hand side of (3.4.7). For any (x,p,y, q) define new

paths p̃ and q̃ by

p̃(s) =


s

τ(x+y)
p (τ (x+ y)) if s ∈ [0, τ (x+ y)]

p (τ (x+ y)) + (s− τ (x+ y))G2 if s ∈ [τ (x+ y) , 1]

(3.4.8)

and analogously q̃, replacing p by q. If further x̃(t) = m1(p̃(t)) and ỹ(t) = m1(q̃(t))

for all t then τ (x+ y) = τ (x̃+ ỹ) =: τ . Also (x̃, p̃, ỹ, q̃) ∈ F̂ and

I(x̃, p̃, ỹ, q̃) = τ

(
H

(
1

τ
p(τ)|G2

)
+H

(
1

τ
q(τ)|G2

))
.

Moreover, by convexity of H(·|G2) (cf. [36], Lemma 4),

I(x,p,y, q) ≥ τ

(
H

(
1

τ
p(τ)|G2

)
+H

(
1

τ
q(τ)|G2

))
.

It is clear that 1
τ
p(τ), 1

τ
q(τ) are probability measures, and that for every pair

of probability measures (p, q) such that (m1(p), p, 1
2m1(p)

) ∈ F the corresponding

straight-line path
(
(3.4.8) with τ(x+ y) = 1

2m1(p)

)
lies in F̂ . Therefore

inf
F̂
I = inf

{
τ [H (p|G2) +H (q|G2)] : (m1(q), q, τ) ∈ F,m1(p) = m1(q) =

1

2τ

}
.

On the other hand H(q|G2) = −H(q) +m1(p) log(2) and it is well-known that

sup {H(q) : m1(q) = m} = Θ(m) := log(m− 1)−m log

(
1− 1

m

)
. (3.4.9)
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Hence,

inf
F̂
I = inf

{
log(2)− τH(p)− τΘ

(
1

2τ

)
: (m1(p), p, τ) ∈ F,m1(p) =

1

2τ

}
.

(3.4.10)

We have established the upper bound:

Proposition 3.4.11. For every closed F ⊂ Y × [0, 1],

lim inf
m→∞

1

m
log νm(F ) ≤ − inf {J(s, p, t) : (s, p, t) ∈ F} . (3.4.12)

3.4.2 The Lower Bound

We now turn to proving the lower bound. By the local nature of large deviations

lower bounds, cf. (2.3.6), it is enough to prove the following.

Proposition 3.4.13. Fix (m,µ, t) ∈ Y × [0, 1] and ρj > 0 for j ∈ {1, 2, 3} and let

G = (m− ρ2,m+ ρ2)×B(µ, ρ1)× (t− ρ3, t+ ρ3). Then

lim inf
n→∞

1

n
log νn

(
G
)
≥ −J(m,µ, t) (3.4.14)

where B(µ, r) denotes the ball in M1 of radius r, centred on µ with respect to β, the

metric of (3.2.4) inducing weak topology.

Proof. We can assume that m1(µ) = m = 1
2t

since otherwise J(m,µ, t) = ∞ and

(3.4.14) is trivial. From the definition of νn we have, as before,

log
(
νn(G)

)
= logP {(σn, λn, τn) ∈ G} − logP(En).
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Recall that limn→∞
1
n

logP(En) = 0. Moreover E =
⋃
r En,r where

En,r =

{
r∑
j=1

Xj =
r∑
j=1

Yj,

k∑
j=1

Xj ≥
k∑
j=1

Yj ∀ k < r τn =
r

2n

}
.

On En,r we have r
2n

= τn ∈ (t− ρ3, t+ ρ3) and the condition σn ∈ (m− ρ2,m+ ρ2)

is equivalent to r ∈
(

n
m+ρ2

, n
m−ρ2

)
. Therefore

P {(λn, σn, τn) ∈ G;En} =
∑
r∈In

P

{
1

r

r∑
j=1

δYj ∈ B(µ, ρ1); En,r

}

where In = N ∩ (2n(t− ρ3), 2n(t+ ρ3)) ∩
(

n
m+ρ2

, n
m−ρ2

)
. Fix now w > 0 and let N1

be large enough to have N1w > 2
ρ1

. Then if r ∈ I(w)
n = In ∩ (wn,∞) and n ≥ N1,

β

(
1

r

r∑
j=1

δYj ,
1

r

r−1∑
j=1

δYj

)
=

1

r
<
ρ1

2
.

Using independence of the Xj, Yj and the fact that P(Z = a) = P(Z > a) for any Z

with law G2,

P {(λn, σn, τn) ∈ G; En} ≥
1

4

∑
r∈I(w)

n

P

{
1

r

r−1∑
j=1

δYj ∈ B
(
µ,
ρ1

2

)
, E ′n,r, τn =

r

2n

}

≥ 1

4

∑
r∈I(w)

n

P

{
1

r

r∑
j=1

δYj ∈ B
(
µ,
ρ1

4

)
, E ′n,r, τn =

r

2n

}

for n ≥ 2N1. Here,

E ′n,r =

{
1

r

r∑
j=1

Xj ≥ n,
1

r

r∑
j=1

Yj ≥ n,

a∑
j=1

Xj ≥
1

r

a∑
j=1

Yj ∀a < r, τn =
r

2n

}
.
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Recall that λn = 1
τn
LY2n(τn), that τn − 1

n
≤ τS := τ(SX2n + SY2n) ≤ τn and that the

S-processes are increasing in time. It follows that

E ′n,r =

{
SX2n(s) ≥ SY2n(s)∀ s < τn, S

X
2n(τn) ≥ 1

2
, SY2n(τn) ≥ 1

2
, τn =

r

2n

}
⊇
{
SX2n(s) ≥ SY2n(s)∀ s < τS, SX2n(τS) ≥ 1

2
, SY2n(τS) ≥ 1

2
, τn =

r

2n

}
.

Denote by Ẽn,r the latter event and define Ẽn =
⋃
r∈I(w)

n
En,r. We obtain

P {(σn, λn, τn) ∈ G; En} ≥
1

4
P
{

1

τn
LY2n ∈ B

(
µ,
ρ1

4

)
; Ẽn

}
.

Let now N2 be large enough such that n ≥ N2 implies n > 2
w
∨ 2

ρ3
∨ 4w2

ρ1
∨ 8

wρ1
and

1
m1+2ρ2

− 1
n
< 1

m1+ρ2
. Then

β

(
1

τn
LY2n(τn)− 1

τS
LY2n(τS)

)
≤ β

(
1

τn
LY2n(τn)− 1

τS
LY2n(τn)

)
+ β

(
1

τS
LY2n(τn)− 1

τS
LY2n(τS)

)
≤
∣∣∣∣ 1

τn
− 1

τS

∣∣∣∣ β (LY2n(τn), 0
)

+

∣∣τn − τS∣∣
τS

<
1

nw
<
ρ1

8

and further, using the fact that
∣∣τn − τS∣∣ < 1

n
repeatedly,

{
τS ∈ It

}
⊆ {τn >

w

2
, τ ∈ (t− ρ3, t+ ρ3) ∩

(
1

m+ ρ2

,
1

m− ρ2

)

where It = (w,∞) ∩
(
t− ρ3

2
, t+ ρ3

2

)
∩
(

1
2m+4ρ1

, 1
2m−2ρ1

)
. It follows that

P
{

1

τn
LY2n ∈ B

(
µ,
ρ1

4

)
; Ẽn

}
≥ P

{
1

τS
LY2n

(
τS
)
∈ B

(
µ,
ρ1

8

)
, τS ∈ It,

(
SX2n,S

Y
2n

)
∈ ISw

}
.

(3.4.15)
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Here,

ISw = {(x, y) : x(s) > y(s)− w ∀s < τ(x+ y), x(τ(x+ y)), y(τ(x+ y)) >
1

2
− w}.

The right-hand side of (3.4.15) is of the form (SX2n,S
Y
2n,S

X
2n,S

X
2n) ∈ U for an open

subset U of C ([0, 1];Y2). So we can apply Corollary 3.2.11, then let w → 0 and

obtain

lim inf
n→∞

1

n
log νn(G) ≥ −2 inf

{
I(x, p, y, q) : β

(
1

τ
q(τ), µ

)
<
ρ1

8
, τ ∈ Iτ , (x, y) ∈ IS

}
(3.4.16)

where τ := τ(x + y) and IS = {(x, y) : x(s) ≥ y(s)∀s < τ, x(τ) = y(τ) = 1
2
}.

Let (x, p) ∈ E be such that x(s) = m1(p(s)) ∀ s, for any s ∈ [0, t), the inequality

x(s) ≥ sm1(µ) holds and x(t) = 1
2
. Define further q̃ : [0, 1] −→M+(N) by

q̃(s) =


sµ if s ∈ [0, t]

tµ+ (s− t)G2 if s ∈ [t, 1]

and ỹ(t) = m1(p̃). Then (x, p), (ỹ, q̃) ∈ E and τ(x + ỹ) = t ∈ It. By construc-

tion (x, ỹ) ∈ IS. Moreover,
∫ 1

0
H
(

˙̃q(s)|G2

)
ds = tH(µ|G2) and (by convexity)∫ 1

0
H(ṗ(s)|G2) ds ≥ tH(1

t
p(t)|µ). So by (3.4.16), and the same argument as for

(3.4.10),

lim inf
n→∞

1

n
log νn(G) ≥ −2 inf

{
I (x,p, ỹ, q̃) : x(s) ≤ sm1(µ), x(t) =

1

2

}
= −2 inf

{
t (H (µ|G2) +H (p|G2)) : m1(q) =

1

2

}
≥ −J(m,µ, t).

This concludes the proof of the lower bound for (νn)n∈N, and hence of Theorem 3.4.1.
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3.5 A Formula for the Maximum of the Support

In this section we apply our large deviations result to a problem from free probability

theory. Recall that the R-transform of a compactly supported probability measure

µ is defined by

Rµ(z) = Kµ(z)− 1

z
=
∞∑
n=0

kn+1(µ)zn.

where Kµ is the local inverse of the Cauchy transform Gµ of µ around infinity, and

that the coefficients (kn (µ))n∈N are called the free cumulants of µ. If µ has compact

support it is determined by its R-transform. So, given an R-transform we can, at

least in theory, obtain the corresponding probability measure. However in order to

do so one needs to find the functional inverse of R(z) + 1
z

for which a closed-form

expression may not exist. Using the large deviations principle of Section 3.4 we

can deduce the right edge of the support of µ, provided that the free cumulants are

non-negative.

As we saw in Section 2.2, the problem of determining a measure from its R-

transform occurs in free probability: if a1, a2 are free non-commutative random

variables of law µ1, µ2 respectively then the law µ of a1 + a2 has the property that

kn(µ) = kn(µ1) + kn(µ2) and the law ν of λa1 has kn(ν) = λkn(µ1) for any λ ∈ R.

This linearity property allows the computation of laws of free random variables,

similarly to the moment generating function in commutative probability theory.

Because the R-transform determines the underlying probability measure one

might still hope to recover some information about the measure, for example about

the support, even when the Cauchy transform cannot be obtained explicitly. The

special case where the underlying law is a free convolution of a semicircular law with
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another distribution has been studied deeply by P. Biane [16].

In this section we describe how the maximum of the support of µ can be deduced

from the free cumulants.

Recall that the moments and free cumulants of µ are related by the free moment-

cumulant formula:

mn(µ) =

∫
tnµ(dt) =

∑
π∈NC(n)

∞∏
j=1

kj(µ)Bj(π) (3.5.1)

where Bj(π) is the number of blocks of size j in π.Our starting point is the observa-

tion that the edge of the support of a measure can be deduced from the logarithmic

asymptotics of its moments: namely if ρµ is the maximum of the support of µ then

log ρµ = lim sup
n→∞

1

n
log

∫
tnµ(dt). (3.5.2)

Suppose for the moment that all cumulants are positive (which is indeed the first case

we will consider, in Section 3.5.1). Then we can re-write (3.5.1) as the expectation

of an exponential functional of a uniformly random non-crossing partition. Namely,

if θ : N −→ R is given by θj := log kj, and Ên = E(·|En) (where En is the event we

conditioned in Section 3.3) and Cn, the nth Catalan number, is the cardinality of

NC(n)) then

∫
tnµ(dt) =

∑
π∈NC(n)

exp

(
∞∑
j=1

log(kj)Bj(π)

)
= Cn Ên

[
e2nτn 〈θ,λn〉

]
.

In Section 3.5.1 we evaluate the logarithmic asymptotics of this expectation by

Varadhan’s Lemma, using the large deviations principle we have proved above.

Using the fact that limε→0 ε log ε = 0 one might suppose that a similar result will

still hold when some of the cumulants are allowed to be zero. This is indeed the

case and we will prove this in Section 3.5.2.
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Remark 3.5.3. For γ ∈ R the shift operation given by Sγ(µ)(E) = µ({x− γ : x ∈

E}) shifts the maximum of the support by γ to the right. Also Sγ(µ) = µ�δγ which

leaves all cumulants invariant, except for the first which is incremented by γ. So we

can always take the first cumulant to be anything we like.

3.5.1 All Free Cumulants Positive

We first consider the case where all free cumulants are positive. Examples include

the free Poisson distribution.

Theorem 3.5.4. Let µ be a compactly supported probability measure on [0,∞) such

that its free cumulants (kj)j∈N all positive. Then the right edge ρµ of the support of

µ is given by

log ρµ = sup

{
1

m1(p)

∞∑
m=1

pm log

(
km
pm

)
+

Θ
(
m1(p)

)
m1(p)

: p ∈M1
1(N)

}
(3.5.5)

where M1
1(N) = {p ∈ M1(N) : m1(p) < ∞} is the set of probability measures on N

with finite mean and Θ was defined in (3.4.9).

This variational problem can often be solved by Lagrange multipliers or similar

methods. Some examples are given below.

Remark 3.5.6. Equation (3.5.5) looks somewhat similar to Varadhan’s spectral

radius formula [37, Exercise 3.1.19], giving the spectral radius of a (deterministic)

N ×N matrix in terms of its entries. Namely, let B = (bij)
N
i,j=1 be irreducible and

have strictly positive entries then the spectral radius (absolutely largest eigenvalue)

ρB of B is given by

log ρB = sup

{
N∑

i,j=1

q(i, j) log

(
b(i, j)

qf (j|i)

)
: q ∈M1 (N ×N) ,

N∑
j=1

q(·, j) =
n∑
j=1

q(j, ·)

}
(3.5.7)
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where qf (j|i) = q(i,j)∑
r q(i,r)

. Despite the apparent formal similarities we do not seem

to be able to relate this formula to ours. This is because the free cumulants of a

deterministic matrix are given by a very complicated function of its entries.

Proof of Theorem 3.5.4. By Stirling’s formula, 1
n

logCn −→ log 4 as n −→ ∞, so

that

lim sup
n→∞

∫
tn µ(dt) = log 4 + lim sup

n→∞

1

n
log Ên

[
eng(λn,τn)

]
(3.5.8)

where g : M1(N)× [0, 1] −→ R is defined by g(µ, t) = 2t〈θ, µ〉.

It is a direct application of the contraction principle, Theorem 2.3.13, that

(λn, τn)n∈N satisfies a large deviations principle on M1(N) × [0, 1] with rate func-

tion J̃13 given by J̃13(µ, t) = J(m1(µ), µ, t).

Suppose first that the sequence (kn)n∈N is bounded by K ∈ (0,∞). Then g is

continuous and bounded, with norm ‖g‖∞ ≤ 2 logK. So for any γ > 1,

lim sup
n→∞

1

n
log Ên

[
enγg(τn,λn)

]
≤ 2γ log(K) <∞.

Hence the moment condition for Varadhan’s Lemma (Theorem 2.3.11) applies and

so

lim
n→∞

1

n
log Ên

[
eng(λn,τn)

]
= sup

{
g(µ, t)− J̃13(µ, t) : (µ, t) ∈M1(N)× [0, 1]

}
.

Let ρ̂µ denote the left-hand side above and note that ρµ = ρ̂µ + log 4. So

log(ρµ) = sup

{
1

m

∞∑
n=1

pn log kn +
1

m
H(p)− 2 log

(
1− 1

m

)
: m1(p) = m

}

which is (3.5.5).

We now turn to the general case, that is, we remove the assumption that the

sequence of free cumulants is bounded. Because µ is compactly supported, its R-
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transform is analytic on a neighbourhood of zero, by Theorem 3.2.1 in Hiai–Petz

[55]. So there exist Γ, R ∈ (0,∞) with kn ≤ ΓRn for all n ∈ N. Define the dilation

operator of scale 1
R

by DR−1(µ)(A) = µ
(
R−1A

)
,
(
where tA = {tx : x ∈ A}

)
and let

k̂n = R−nkn be the nth cumulant of DR−1(µ). The sequence
(
k̂n

)
n∈N

is bounded, so

the above applies to ρDR−1 (µ) = ρµ
R

. In particular,

log ρDR−1(µ) = sup

{
1

m

∞∑
n=1

pn log k̂n +
1

m
H(p) +

1

m
Θ(m) : m1(p) = m

}

= sup

{
1

m

∞∑
n=1

pn log kn +
1

m
H(p) +

1

m
Θ(m) : m1(p) = m

}
− log(R)

which completes the proof of Theorem 3.5.4.

3.5.2 Non-Negative Free Cumulants

We now consider non-commutative random variables of which all free cumulants are

non-negative but some of them are allowed to take the value zero. We will denote

by L the set of n ∈ N such kn 6= 0. As a prominent example we mention the centred

semicircle distributions, where L = {2}.

It turns out that the variational formula (3.5.5) still holds, provided we follow

the convention that 0 log 0 = 0.

Theorem 3.5.9. Let µ be a compactly supported probability measure whose free

cumulants (kn)n∈N are all non-negative. Then the maximum of the support ρµ of µ

is given by

log (ρµ) = sup

{
1

m1(p)

∑
n∈L

pn log

(
kn
pn

)
− Θ(m1(p))

m1(p)
: p ∈M1

1(L)

}
(3.5.10)

where M1
1(L) denotes the set of p ∈M1

1(N) such that p(Lc) = 0.

Proof. Since the set {p ∈M1(N) : m1(Lc) = 0} is closed the direction ‘≤’ in (3.5.10)

follows directly from Exercise 2.1.24 in Deuschel–Stroock [39]. So we only



3. Large Deviations for Non-Crossing Partitions 69

need to show that the logarithm of the maximum of the support of our measure is

bounded below by the variational formula. Let p be the free Poisson distribution

with parameter 1 and recall that p has support [0, 4]. For ε > 0 let νε = Dε−1(p), the

ε-dilation of p (see the proof of Theorem 3.5.4). Then kn(νε) = εn. By the remarks

after Example 3.2.3 in [55] (page 98) the maximum of the support of µε := µ� νε is

no bigger than the sum of those of µ and νε. Moreover Theorem 3.5.4 applies to µε

so that

log (ρµ) + 4ε ≥ log (ρµε)

= sup

{
1

m1(p)

∞∑
n=1

pn log

(
kn + εn

pn

)
+

Θ(m1(p))

m1(p)
: p ∈M1

1(N)

}

≥ sup

{
1

m1(p)

∞∑
n=1

pn log

(
kn + εn

pn

)
+

Θ(m1(p))

m1(p)
: p ∈M1

1(L)

}

≥ sup

{
1

m1(p)

∞∑
n=1

pn log

(
kn
pn

)
+

Θ(m1(p))

m1(p)
: p ∈M1

1(L)

}

using the fact that ε > 0. Letting ε tend to zero yields the ‘≥’ direction of (3.5.10).

3.6 Examples

We conclude this chapter with a few examples where our formula can be applied.

The main requirement, that the free cumulants be non-negative, is satisfied in a

wide range of cases.

Example 3.6.1. As a warm-up let us consider two (known) examples where the

variational problem can be solved to give an explicit formula for the maximum of the

support. The simplest example is the centred semicircle law of radius r. Then, in

the notation of Section 3.5, L = {2} and k2(σr) = r2

4
. The only probability measure
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on L is δ2 which has m1(δ2) = 2. Therefore,

log ρσr =
1

2
log k2 +

1

2
Θ(2)

= log
(r

2

)
+

1

2

(
2 log

(
1− 1

2

))
= log(r).

Next let λ ≥ 1 and consider the free Poisson distribution pλ with parameter λ, i.e.,

pλ(dt) =
1

2πt

√
4λ− (t− 1− λ)2 1[(1−

√
λ)2,(1+

√
λ)2](t) dt.

The free cumulants are given by kn = λ for all n ∈ N and therefore

log ρpλ = sup

{
2τ log(λ) + 2τH(p) + 2τΘ

(
1

2τ

)
: m1(p) =

1

2τ

}
= 2 sup

τ≤ 1
2

[
τ log λ+ 2τΘ

(
1

2τ

)]
.

Putting Ψλ(τ) = τ log λ+2τΘ
(

1
2τ

)
we easily verify that Ψ′λ(τ

∗) = 0 for τ ∗ =
√
λ

2(
√
λ+1)

and that this critical point is the absolute maximum of Ψλ on
[
0, 1

2

]
. Another direct

computation yields log ρpλ = 2Φλ(τ
∗) = 2 log

(
1 +
√
λ
)

, i.e. ρpλ =
(

1 +
√
λ
)2

.

Example 3.6.2. Let us consider µ = p � u where p is the free Poisson law of

parameter 1 and u is the uniform distribution on [−1, 1]. This corresponds, for

example, to the limiting distribution of T ∗NTN + diag(ρ1, . . . , ρN) where TN is an

N × N real random matrix with i.i.d. entries of mean 0 and variance 1 and all

moments bounded and ρN(j) = j − 1− N
2

. The R-transform of µ is given by

Rµ(z) = Rp(z) +Ru(z) =
1

1− z
+ coth(z)− 1

z

which cannot be inverted explicitly. We obtain an implicit equation for the maximum



3. Large Deviations for Non-Crossing Partitions 71

of the support of µ, i.e. the limiting largest eigenvalue:

ρµ =
π(m− 1)

mγ

where (γ,m) is the unique pair of positive reals satisfying the equations

1

m− 1
=

γ

1− γ
+ coth(γ)

λ(m− 1)

1− γ
+ (m− 1) coth(γ) =

m− 1

γ
+
γ2 + (1− γ)2

mγ(1− γ)2
+
γ

m

(
1− coth2(γ)

)
.

3.6.1 Freely Infinitely Divisible Distributions

Let µ be freely infinitely divisible. That is, for every n ∈ N there exists a compactly

supported probability law µn such that µ is the n-fold free convolution of µn with

itself:

µ = µn � . . .� µn︸ ︷︷ ︸
n times

.

Freely infinitely divisible probability measures have been studied by Barndorff-

Nielsen – Thorbjørnsen [8, 9]. Many of their properties are non-commutative

analogues of those enjoyed by classical infinitely divisible distributions, for example

they lead to the concept of free Lévy processes. There exists an analogue of the

Lévy-Khintchine representation, a version of which is given in [55], where Theorem

3.3.6 states that µ is freely infinitely divisible if and only if there exist α ∈ R and a

positive finite measure ν with compact support in R such that the R-transform Rµ

of µ can be written, for z in a neighbourhood of (C \ R) ∪ {0}, as

Rµ(z) = α +

∫
z

1− xz
ν(dx). (3.6.3)
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We call ν the free Lévy–Khintchine measure associated to µ. By Remark 3.5.3

we lose no generality by setting k1(µ) = α = 0. Setting m0(ν) := ν(R) we can

express the cumulants of µ in terms of the sequence (mn(ν))n≥0 by observing that

kn(µ) = mn−2(ν) for n ≥ 2.

So if µ is freely infinitely divisible and the moments of its free Lévy-Khintchine

measure are all non-negative the variational formula for the maximum of the support

of µ from Theorem 3.5.9 applies.

3.6.2 Series of Free Random variables

Let ξ1, ξ2, . . . be a sequence of free self-adjoint random variables of identical distri-

bution µ1 and consider the series

ξ =
∞∑
n=1

n−βξn

where β > 0 is chosen large enough for the series to converge in the operator norm.

Let kn(µ1) denote the free cumulants of µ1 then the R-transform Rξ of ξ is given by

Rξ(z) =
∞∑
n=1

n−βRξ1

(
n−βz

)
=
∞∑
n=1

n−β
∞∑
r=0

kr(µ1)
(
n−βz

)r
.

Let U be a neighbourhood of zero where Rξ1 is analytic then we have absolute

convergence on U and hence may interchange the order of the two summations:

Rξ(z) =
∞∑
r=0

∞∑
n=1

n−rβkr(µ1)zr =
∞∑
r=0

ζ(βr)kr(µ1)zr−1

where ζ denotes the Riemann zeta function. So we conclude that the free cumulants

of ξ are given in terms of those of ξ1 by kn = ζ(βn) kn(µ1).

It may not be possible to locally invert the corresponding analytic function R0

in closed form. In this case our formula comes in useful and we obtain:
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Corollary 3.6.4. Suppose that the free cumulants of µ1 are all non-negative. Then

the right edge ρ0 of the support of the law of the series ξ0 is given by

log (ρ0) = sup

{
1

m1(p)

∞∑
n=1

pn log

(
ζ(βn)k

(0)
n

pn

)
− Θ(m1(p))

m1(p)
: p ∈M1

1(L)

}
. (3.6.5)

In some cases we can solve this variational problem and obtain a more or less explicit

formula for the maximum of the support.

Example 3.6.6. Suppose µ1 is the free Poisson distribution of parameter λ ≥ 1.

We set β = 2 and study
∑

n n
−2ξn where the ξn are free and all distributed according

to the free Poisson law. The corresponding R-transform is

R(z) =
λ (1−

√
z cot (

√
z))

2z

for which no closed-form inverse exists. However there is a unique maximiser for the

corresponding variational problem (3.6.5), given by pn = λζ(2n)
Z

emtn and determined

by its mean m. That mean is given implicitly by

λ(m− 1)− 2 =
√

4λm2 − 2λm− 2(λ− 2) cot

(√
4λm2 − 2λm− 2(λ− 2)

λ(m− 1)

)

which has a unique solution m∗ in the relevant interval. The right edge is therefore

given by

ρ = log
λ2m2

∗(m∗ − 1)

4λm2
∗ − 2λm∗ − 2(λ− 2)

.

The choice λ = 1 corresponds to the square integral of a free Brownian bridge which

we will study in Chapter 4.

Another example, where the ξn are distributed according to the commutator of the

standard semicircle law with itself, can also be found in Chapter 4. The commutator
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of two free random variables a and b is [a, b] = i (ab− ba), see Nica–Speicher [82].

The free random variable [a, b] is bounded and self-adjoint, provided a and b are.

In Chapter 4 implicit equations for the maximum of the support of [a, b] will be

obtained when a and b are two free standard semicircular random variables.



Chapter 4

Functionals of the Free Brownian

Bridge

4.1 Series Representations for the Bridge

We start off by pointing out free analogues of two representations of the classical

Brownian bridge as series of independent Gaussian random variables. Series of free

random variables were analysed in [10].

The first is the analogue of a representation by Lévy [63]. Let (en, fn : n ∈ N)

be an orthonormal sequence in the full Fock space H and define ξn = s(en) and

ηn = s(fn), so that {ξn, ηm : (n,m) ∈ N2} is a set of free standard semicircular

variables in A.

Proposition 4.1.1. The process β2π defined by

β2π(t) =
∞∑
n=1

cos(nt)− 1

n
√
π

ξn +
∞∑
n=1

sin(nt)

n
√
π
ηn (4.1.2)

is a free Brownian bridge on [0, 2π].

Proof. By continuity and linearity of the operator s(·) it follows that the right-hand

side of (4.1.2) converges in A and that β2π(t) is a centred semircular variable. A

75
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direct computation verifies that β2π has the right covariance kernel.

Next we show how Kac’s representation [56] for the classical Brownian bridge on

the unit interval can be translated into the setting of free probability. His method

extends to all centred semicircular (or indeed Gaussian) processes, as follows. Every-

thing relies on the following classical result from functional analysis, see Bollobas

[25]

Theorem 4.1.3 (Mercer’s theorem). Let K : [0, 1]× [a, b] −→ R be a non-negative

definite symmetric kernel. Let TK be the operator on H associated to K, that is,

TK(f)(s) =

∫ 1

0

K(s, t) f(t) dt. (4.1.4)

Then there exists an orthonormal basis (fn)n∈N of L2[0, 1] consisting of eigenfunc-

tions of TK such that the corresponding eigenvalues λn are non-negative, fn ∈ C[0, 1]

whenever λn 6= 0 and

K(s, t) =
∞∑
n=1

λnfn(s)fn(t) (4.1.5)

where the convergence is absolute and uniform, and hence also in L2[0, 1].

We can use Mercer’s theorem to represent any centred semicircular process as a

series of free standard semicircular random variables, noting that if Y is a centred

semicircular process indexed by [0, 1] then its covariance function K defined by

K(s, t) = φ(Y (s)Y (t)) is a non-negative kernel on [0, 1] which is also symmetric, by

traciality of φ.

Corollary 4.1.6. Let K,H, (λn, fn)n∈N be as in Mercer’s theorem and let (ηn)n∈N

be a sequence of free standard semicirculars, defined in terms of creation and anni-
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hilation operators as in Section 2.2.8. Then the process Y defined by

Y (t) =
∞∑
n=1

√
λnfn(t) ηn (4.1.7)

is a centred semicircular process of covariance K.

Proof. As before convergence in the operator topology of A follows from linearity

and continuity of the operator s(·). Further it is once more immediate that Y is a

centred semircircular process. Its covariance kernel is given by

φ(Y (s)Y (t)) =
∞∑

m,n=1

√
λmλnfm(s)fn(t)φ(ηmηn)

=
∞∑
n=1

λnfn(s)fn(t) = K(s, t)

by Mercer’s theorem.

For the free Brownian bridge on [0, 1] we have K(s, t) = s ∧ t − st. Solving the

corresponding eigenvalue-eigenvector equation we obtain Kac’s representation in

the free setting.

β1(t) =
∞∑
n=1

√
2 sin(nπt)

nπ
ηn. (4.1.8)

4.2 Square Norm of the Free Brownian Bridge

In this section we consider the square-norm of a free Brownian bridge β on interval.

Recall that A is a C∗-algebra so that we can consider β as a map from [0, 1] into a

Banach space which is easily seen to be continuous. We can therefore use Riemann

integration to define
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Γ =

∫ 1

0

β(t)2 dt

where β is a free Brownian bridge on [0, 1]. In this section we discuss the distribution

of the non-commutative random variable Γ, using the representation (4.1.8). Kac

[56] showed that the Laplace transform of the commutative analogue of Γ is given

by

f̂(p) =

( √
2p

sinh
√

2p

)(1/2)

.

Other properties, in particular the density function f , were computed, most recently

by Tolmatz [117].

We give here the R-transform of Γ and an expression for its moments involving

a sum over non-crossing partitions. Further below we show that the distribution

µΓ of Γ is freely infinitely divisible. This gives us some analytic tools to show that

there exist a, b ∈ [0,∞) with a < b such that the support of µΓ is [a, b] and that µΓ

has a smooth positive density on [a, b]. We give an implicit equation and a sketch

for the density.

Finally we use a result from Chapter 3 to characterise the maximum b of the

support of µΓ. In particular we show that b < 1
2
.

4.2.1 The R-transform

The Kac representation of semicircular process is well suited for computing quadratic

functionals. Let Y be a semicircular process with covariance kernel K and series

representation as in Corollary 4.1.6. By orthonormality of the eigenfunctions,

∫ 1

0

Y 2(s) ds =
∞∑
n=1

λnη
2
n.
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Now the distribution of η2
n is well-known: the square of a standard semicircular ran-

dom variable is a free Poisson element of unit rate and jump size (Nica–Speicher

[83], Proposition 12.13). So the free cumulants of η2
n are all equal to 1 and hence its

R-transform is given by Rn(z) = 1
1−z , see [83, p. 205].

Using the properties of the R-transform mentioned in Remark 2.2.16 we can now

compute the R-transform of
∫ 1

0
Y 2(s) ds. In the case where Y is a free Brownian

bridge we obtain the following

Proposition 4.2.1. The R-transform of the square norm Γ of the free Brownian

bridge is given by

RΓ(z) =
1−
√
z cot(

√
z)

2z
. (4.2.2)

Proof. The eigenvalues of K are given by λn = 1
nπ

. So for |z| < π2 we have

RΓ(z) =
∞∑
n=1

1

π2n2
Rn

( z

π2n2

)
=
∞∑
n=1

1

n2π2 − z
=

1−
√
z cot(

√
z)

2z

as claimed.

The free cumulants of Γ are therefore given by

km =
ζ(2m)

π2m
= (−4)m+1 B2m

2(2m)!

where Bn is the nth Bernoulli number and ζ the Riemann zeta function. With (2.2.9)

we obtain a formula for the moments involving a sum over non-crossing partitions:

φ (Γn) =
1

π2n

∑
σ∈NC(n)

mσ∏
r=1

ζ(2lσr ) = (−4)n
∑

σ∈NC(n)

mσ∏
r=1

B2lσr

(2lσr )!

where mσ denotes the number of equivalence classes of a non-crossing partition σ
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and lσr is the size of the rth equivalence class of σ.

While there does not seem to exist a closed-form expression for the inverse of

KΓ(z) = RΓ(z) − 1
z

(and hence, by the Stieltjes inversion formula, for the density)

we will describe some properties of the law µΓ of Γ. We will prove that µΓ is freely

infinitely divisible, has a positive analytic density on a single interval and give an

equation for the right end point of that interval.

4.2.2 Free Infinite Divisibility

The concept of infinite divisibility has a natural analogue in free probability theory.

Noting that the square norm of the free Brownian bridge is freely infinitely divisible

we will use the approach of P. Biane in his appendix to the paper [12] to prove that

the law of Γ has a smooth density on its support and give an implicit formula for

that density.

Definition 4.2.3. A compactly supported probability measure µ is said to be freely

infinitely divisible (or �-infinitely divisible) if for every n ∈ N there exists a com-

pactly probability measure µn such that

µ = µ�n
n = µn � . . .� µn︸ ︷︷ ︸

n times

where � denotes free convolution (Section 2.2).

Since for each n the free random variable η2
n has a free Poisson distribution and is

therefore freely infinitely divisible it follows that Γ is also �-infinitely divisible.

Recall that the Cauchy transform GΓ of Γ is an analytic map from the upper half

plane C+ into the lower half plane C−, which is locally invertible on a neighbourhood

of infinity, and that its local inverse is given by the K-transform KΓ where

KΓ(z) = RΓ(z) +
1

z
=

3−
√
z cot (

√
z)

2z
.
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From Proposition 5.12 in Bercovici–Voiculescu [13] and the infinite divisibility

of Γ it is straightforward to deduce the following result.

Lemma 4.2.4. The law µΓ of the square norm of the free Brownian bridge can have

at most one atom. Moreover its Cauchy transform GΓ is an analytic injection from

C+ whose image is the connected component Ω in C− of

Ω̂ = {z ∈ C− : Im (KΓ(z)) > 0}

that contains iy for small values of y.

It will be useful to characterise the boundary ∂Ω.

Lemma 4.2.5. For every t ∈ (π, 2π) there exists unique r(t) > 0 such that the

imaginary part of (KΓ(r(t)eit)) vanishes. Moreover

∂

∂z
ImKΓ(z)

∣∣∣∣
z=r(t)eit

6= 0 ∀ t ∈ (π, 2π). (4.2.6)

Proof. Fix t ∈ (π, 2π). The imaginary part of KΓ can be written in polar co-

ordinates by

ht(r) := ImKΓ

(
r eit

)
= −3 sin(t)

2r
+
γ sinh(σ

√
r) cosh(σ

√
r) + σ sin(γ

√
r) cos(γ

√
r)

2
√
r
(
sin2(γ

√
r) + sinh2(σ

√
r)
)

where σ = sin(t/2) and γ = cos(t/2). Define gt(r) = 2r ht(r
2). Then

gt(r) = −6σγ

r
+

σ sin (2γr) + γ sinh (2σr)

2
[
sin2(γ

√
r) + sinh2(σ

√
r)
] .

The function gt blows up to +∞ as r ↓ 0. In particular gt is strictly positive on

(0, R2(t)) for some R2(t) > 0. Further there must be R1(t) > 0 with g′t(r) negative

on (0, R1(t)). Splitting into the three cases whether t ∈
(
π, 3π

2

)
or t ∈

[
3π
2
, 5π

3

]
or t ∈

(
5π
3
, 2π
)

we can check directly that there exists R3(t) ∈ (0, R1(t)) such
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that gt(r) < 0 for all r > R3(t). Further details on this lengthy but elementary

computation can be found in Appendix A.

Hence gt has a unique zero ρt, which must lie in (R2(t), R3(t)) ⊂ (0, R1(t)).

Hence g′t(ρ(t)) < 0 and the result follows.

Therefore Ω̂ is actually simply connected: it is given by the area enclosed by the

real axis and the curve λ = {rteit : t ∈ (π, 2π)}. In particular Ω = Ω̂ and ∂Ω

is a continuous simple curve. So Carathéodory’s theorem applies, wherefore the

analytic bijection GΓ : C+ −→ Ω extends to a homeomorphism (denoted ĜΓ) from

C+ ∪ R ∪ {∞} to the closure Ω of Ω in C ∪ {∞}.

Since Ω is bounded, so is its closure, whence ĜΓ is finite on C+ ∪ R ∪ {∞}.

The set of isolated points of the support of µΓ is exactly the set of t ∈ R such that

ĜΓ(t) =∞ so spt(µΓ) must be an interval [a, b]. From the Stieltjes inversion formula

(see for example [55], p.93) it now follows that if we put for x ∈ [a, b]

Φ(x) = − 1

π
lim
y→0

Im (GΓ(x+ iy)) = − 1

π
Im
(
ĜΓ(x)

)
(4.2.7)

then µΓ has density Φ with respect to Lebesgue measure on [a, b]. Since KΓ is the

inverse of GΓ and because of (4.2.6) the implicit function theorem applies and hence

Φ is smooth on [a, b]. Moreover it follows that

sptµΓ = KΓ

(
∂Ω ∩ C−

)
= [KΓ (rπ+) ∧KΓ (r2π−) , KΓ (rπ+) ∨KΓ (r2π−)] .

where rπ+ = lims↓0 rπ+s and r2π− = lims↓0 r2π−s.

The operator Γ is positive so the support of µΓ must be contained in [0,∞). (We

will show below that in fact the support is contained in [0, 1/2].) Let us summarise

the results of this section.

Proposition 4.2.8. There exist b > a ≥ 0 and a positive smooth function Φ: [a, b] −→
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R such that

µΓ(dt) = Φ(t)1[a,b](t). (4.2.9)

The function Φ is given by Φ(x) = − 1
π
r(τx) sin(τx) where τx ∈ (π, 2π) is the unique

solution to KΓ (r(τx) e
iτx) = x.

Figure 4.1: Sketch of the density of the L2-norm of the free Brownian
bridge, based on numerical computations

4.2.3 The Maximum of the Support

We now study the maximum of the support of µΓ, for which we will apply Theo-

rem 3.5.4. It turns out the variational problem given by the theorem can be solved

using the method of Lagrange multipliers. There exists a unique maximiser p∗ for

the supremum on the right-hand side of (3.5.5). Using the series expansion of ζ(2n)

and interchanging summation we obtain

p∗n =
1

m∗ − 1
ζ(2n)

(γ
π

)2n
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where γ is a rational function of m∗ and m∗ is the unique solution on
(

3
2
,∞
)

of the

equation

m− 3 =
√

4m2 − 2m− 6 cot

(√
4m2 − 2m− 6

m− 1

)
(4.2.10)

After some computations which are detailed in Appendix A, we obtain an implicit

equation for the right edge of the support of µΓ:

Proposition 4.2.11. The number b from Proposition 4.2.8 is given by

b =
(m∗)2 −m∗

4 (m∗)2 − 2m∗ − 6

where m∗ is the unique solution of (4.2.10) on
(

3
2
,∞
)
.

Remark 4.2.12. The function B : m 7−→ m2−m
4m2−2m−6

is strictly decreasing on
(

3
2
, 2
)
.

Since the left-hand side of (4.2.10) is bigger than the right-hand side for m = 8
5

but

smaller for m = 2 it follows that m∗ ∈
(

8
5
, 2
)

and hence b ≤ B
(

8
5

)
< 1

2
. It follows

that the support of µΓ is contained in
[
0, 1

2

]
.

Remark 4.2.13. Using the implicit characterisation of the density as in section 4.2.2

one could obtain, via a lengthy computation, another implicit characterisation for

b.

4.3 The Signature of the Free Brownian Bridge

4.3.1 Signature and Rough Paths

In T. Lyons’s paper [66] a new approach to differential equations driven by rough

paths is proposed. For a general Banach-valued path p : R+ −→ E we define, when

this makes sense, the signature of p to be the process S(p) taking values in the tensor

algebra T ((E)) =
⊕∞

n=0E
⊗n whose nth component is given by the n-times iterated
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integral against p:

S(p)n(t) =

∫
0<t1<...<tn<t

dp (t1)⊗ . . .⊗ dp (tn).

The signature is then used to solve general differential equations of the form

dS(t) = S(t)⊗ dp (t).

In order to show that this works if the path in question is a free Brownian motion X,

Capitaine–Donati-Martin [31] define an integral of a class of suitable processes

P against X that yields a process taking values in the tensor product A ⊗ A and

prove that X itself is contained in P. The integral is defined taking Riemann-

type approximations, so it is straightforward to extend it to processes with finite

variation. Using Remark 2.2.36 we can therefore define the second component of the

signature of a free Brownian bridge β on [0, 2π] by

Z(t) =

∫ t

0

β ⊗ d β t ∈ [0, 2π]

where the integral is in the sense of [31], see also Victoir [122].

If A is a von Neumann algebra and φ a faithful tracial state on A then its tensor

product φ⊗ φ is a faithful tracial state on the von Neumann tensor product A⊗A

of A with itself, see for example [122], p. 109. So we can consider (A⊗A, φ⊗φ) as

a non-commutative probability space in its own right. We will discuss here the law

of Z(2π) with respect to this space.

We will also use the notation Â, φ̂ for A⊗A, φ⊗ φ respectively.
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4.3.2 Using the Lévy Representation

The representation (4.1.2) and a straightforward calculation using orthogonality of

the trigonometric functions yield

Proposition 4.3.1. The Lévy area of the free Brownian bridge at time 2π has the

same law as the random variable

Z(2π) =
∞∑
n=1

1

n
(ξn ⊗ ηn − ηn ⊗ ξn) . (4.3.2)

Since ξn, ηn have symmetric distributions, so do ξn ⊗ ηn and ηn ⊗ ξn. Hence the

R-transform of Z(2π) is given by

RZ(2π)(z) = 2
∞∑
n=1

1

n
Rξ⊗η

( z
n

)
. (4.3.3)

Remark 4.3.4. By the definition of φ̂ we have φ̂
(
(ξ ⊗ η)k

)
= φ(ξk)2 for k ∈ N.

Recall that Ra(z) =
∑∞

m=0 km+1(a)zm where km(a) denotes the mth cumulant of

a. In particular k1(ξ ⊗ η) = φ(ξ)2 = 0 so that (on a neighbourhood of zero)

Rξ⊗η(z) = zP (z) for some analytic function P . Rewriting (4.3.3) yields

RZ(2π)(z) = 2z
∞∑
n=1

1

n2
P
( z
n

)
, (4.3.5)

in particular the right hand side of (4.3.3) converges in a neighbourhood of zero.

4.3.3 The Distribution of the Tensor Product and Meanders

We proceed to compute the R-transform of ζ := ξ ⊗ η with ξ, η free standard

semicirculars. Recall that the odd moments of ξ vanish and that φ(ξ2n) is given by
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the nth Catalan number

φ(ξ2n) = Cn :=
1

2n+ 1

2n

n

 . (4.3.6)

Since ξ, η are self-adjoint, so is ζ. Hence its law is a probability measure ν with

compact support in R. In particular ν is determined by its moments which are given

by

∫
tmν(dt) = φ ((ξ ⊗ η)m) = φ(ξm)φ(ηm) =


(Ck)

2 if m = 2k

0 if m is odd

(4.3.7)

i.e. ν is the law of ζ1ζ2 where the ζi are independent commutative random variables

with standard semicircular distribution. Therefore ν is absolutely continuous with

respect to Lebesgue measure with density φ given by

φ(u) =
1

4π2

∫ 2

−2

√
4− s2

√
4−

(u
s

)2

1[−2,2]

(u
s

) ds

s
. (4.3.8)

The Catalan numbers Cn are well-known in combinatorics. They give, for example,

the number of Dyck paths of length 2n. Similarly there is a combinatorial inter-

pretation of the squares of the Catalan numbers, as detailed in Lando–Zvonkin

LandoZvonkin93 and Di Francesco–Golinelli–Guitter [46]: consider an in-

finite line in the plane and call it the river. A meander of order n is a closed

self-avoiding connected loop intersecting the line through 2n points (the bridges).

Two meanders are said to be equivalent if they can be deformed into each other by

a smooth transformation without changing the order of the bridges. If a meander of

order n consists of k closed connected non-intersecting (but possibly interlocking)

loops it is said to have k components.
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Figure 4.2: (i) 1-component meander of order 3; (ii)
order 2, 2 components; (ii) order 3, 2 components

A multi-component meander is said to be k-reducible if a proper non-trivial collection

of its connected components can be detached from the meander by cutting the river

k times between the bridges. Otherwise the meander is said to be k-irreducible.

Figure 4.3: meanders that are (a) 1-reducible but 2-
irreducible; (b) 1- and 2-reducible but 3-irreducible (c) 3-
reducible
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The 2-irreducible meanders have been studied extensively in [62] (where they are

called irreducible meanders). Our connection to these objects is the following

Proposition 4.3.9. Let qn denote the number of 2-irreducible meanders of order

2n and kn = kn(ξ ⊗ η) the nth cumulant of ξ ⊗ η. Then

kn(ξ ⊗ η) =


qm if n = 2m

0 if n is odd

(4.3.10)

Proof. We first prove by induction that kn = 0 if n is odd, which will follow from

the fact that φ̂((ξ ⊗ η)n) = 0 for n odd. Assume that km = 0 whenever m < n is

odd. From (2.2.9) it follows that

kn = −
∑

π∈NC(n)
π 6=1

kπ

where kπ = kV1 . . . kVr if V1, . . . , Vr are the equivalence classes of π and 1 denotes

the identity partition, i.e. [k]1 = n. Every π ∈ NC(n) \ {1} must contain at least

one equivalence class of size m for some odd integer m < n. Since km is a factor of

kπ and km = 0, the inductive hypothesis implies kn = 0 as required. Hence

Rξ⊗η(z) =
∞∑
n=1

k2nz
2n−1.

Define the moment series of ξ ⊗ η by

M(z) =
1

z
G

(
1

z

)
= 1 +

∞∑
n=1

φ̂ ((ξ ⊗ η)n) zn.

It is a consequence of the relationship between Cauchy and R-transform that

M(z) = 1 + zM(z)R(zM(z)). (4.3.11)
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We will introduce one more generating series. Put

ρ(z) =
∞∑
n=1

qnz
2n−1.

From (7.10) in [46] we have

M(z) = 1 + zM(z) ρ(zM(z)). (4.3.12)

Combining (4.3.11) and (4.3.12) yields ρ = R as power series. That k2n = qn now

follows from comparing coefficients.

4.3.4 The Distribution of the Signature

So we have an explicit expression for the R-transform of ξ ⊗ η. We will use this to

obtain the R-transform of Z(2π).

Recall that all odd cumulants of ξn ⊗ ηn and ηn ⊗ ξn vanish, hence the same is

true of Z(2π).

Proposition 4.3.13. The 2nth cumulant of Z(2π) is 2 ζ(2n) qn where ζ is the Rie-

mann zeta function.

Proof. Recall that ζ(m) =
∑∞

n=1 n
−m. So

RZ(2π)(z) = 2
∞∑
n=1

1

n
Rξ⊗η

( z
n

)
= 2

∞∑
n=1

1

n

∞∑
m=1

km

( z
n

)m−1

= 2
∞∑
n=1

∞∑
m=1

n−2mqmz
2m−1

=
∞∑
m=1

2 ζ(2m)qmz
2m−1

where interchanging the sums over m and n is justified by absolute convergence.

Definition 4.3.14 (see [112], p. 107). Let (an)n∈N, (bn)n∈N be two sequences with
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generating functions f, g respectively. The Hadamard product of f, g is defined to

be the generating function of (anbn), denoted f � g. That is

f � g(z) =
∞∑
n=1

anbnz
n.

So RZ(2π) is twice the Hadamard product of the generating functions of the 2-

irreducible meanders and that of the sequence {ζ(2m) : m ∈ N}.

From (6.3.14) in Abramowitz–Stegun [1] we have for |z| < 1,

∞∑
n=2

ζ(n+ 1)zn = −γ −Ψ(1− z)

where γ is the Euler constant and Ψ is the Digamma function defined by

Ψ(z) =
d

dz
log Γ(z) =

Γ′(z)

Γ(z)
.

Since the generating series can be considered as functions inside their radius of

convergence, we can use complex analysis to compute their Hadamard product.

Namely

Lemma 4.3.15. Let f, g be generating functions of (an)n∈N, (bn)n∈N and suppose

that they are analytic on a neighbourhood of 0. Then

(f � g)(z2) =
1

2πi

∫
γ

f(zw) g
( z
w

) dw

w
(4.3.16)

on a neighbourhood U of 0, where γ is a smooth closed curve around 0 and contained

in U .

Proof. Let U1, U2 be neighbourhoods of 0 on which f and g respectively are analytic.
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Then for z ∈ U = U1 ∩ U2,

1

2πi

∫
γ

f(zw) g
( z
w

) dw

w
=

[
f(zη) g

(
z

η

)]
η0

=

[
∞∑
n=0

an(zη)n
∞∑
m=0

bm

( z
w

)m]
η0

=

[∑
m,n

anbmz
n+mηn−m

]
η0

=
∞∑
n=0

anbnz
2n = f � g(z2)

where [·]η0 denotes the constant term in a Laurent series in η.

Corollary 4.3.17. Let ε ∈ (0, ρ) where ρ is the radius of convergence of RZ(2π) and

choose the canonical branch of the square root on B(0, ρ). Then for z ∈ B(0, ρ)

RZ(2π)(z) = −z
1/2

πi

∫
Γ

Ψ(1− z1/2w)Q
( z
w

)
dw (4.3.18)

where Γ = ∂B(0, ε) and Q is the generating series of the qm (recall that qm denotes

the number of 2-irreducible meanders of order 2n).

Proof. By Proposition 4.3.13 we have RZ(2π) = 2Q� Λ where, using (4.3.16)

Λ(z) =
∞∑
n=1

ζ(m)zm = −zΨ(1− z)− γz.

Lemma 4.3.15 now yields

(Q� Λ)(z2) =
1

2πi

∫
Γ

Λ(zw)Q
( z
w

) dw

w

= − 1

2πi

∫
Γ

zw (Ψ(1− zw) + γ) Q
( z
w

) dw

w

= − 1

2πi

∫
Γ

zΨ(1− zw)Q
( z
w

)
dw

− γ z

2πi

∫
Γ

Q
( z
w

)
dw.
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The argument of the integral in the second summand has a power series with only

even powers of w so the integral itself must vanish. We therefore have

(q � Φ)(z2) =
z

2πi

∫
Γ

Ψ(1− zw) q
( z
w

)
dw

Remark 4.3.19. In [46] it has been shown that the radius of convergence of Q is

4
π
− 1. Since ζ(m) −→ 1 as m −→ ∞, it follows that the radius of convergence of

RZ(2π) is also 4
π
− 1. It also follows that the R-transform of each ξn ⊗ ηn extends to

a Pick function on (1− 4
π
, 4
π
, 1), see Section 4.4 below. Hence by Theorem 4.4.7 the

law of ξn ⊗ ηn is �-infinitely divisible. Since free infinite divisibility is preserved by

free linear combinations and weak limits, it follows that Z(2π) is also �-infinitely

divisible.

Unfortunately it seems that there is no explicit formula for Q. It is therefore not

apparent how a similar analysis to that for the square norm could be applied in

order to obtain further details about the distribution of Z(2π).

4.4 Lévy Area of the Free Brownian Bridge

In this section we use the Lévy representation

β(t) =
∞∑
n=1

cos(nt)− 1

n
√
π

ξn +
∞∑
n=1

sin(nt)

n
√
π

ηn (4.4.1)

of the free Brownian bridge to compute the distribution of the free analogue of the

classical Lévy area process defined by

L(t) =
i

2

∫ t

0

[β(s), dβ(s)] =
i

2

∫ t

0

(β(s)dβ(s)− dβ(s)β(s)) . (4.4.2)
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When β is a two-dimensional commutative Brownian motion this is very similar to

the object studied by Lévy [63]. By standard properties of the non-commutative

integral [23] and self-adjointness of β we have

∫ t

0

β(s)dβ(s) =

(∫ t

0

dβ(s)β(s)

)∗
.

A straightforward calculation yields that the left hand side equals, for t = 2π,

∫ 2π

0

β(s)dβ(s) =
∞∑
n=1

1

n
(ξnηn − ηnξn) (4.4.3)

which is easily seen to be anti-self-adjoint. This is the reason for the factor of i in

(4.4.2): multiplying an anti-self-adjoint operator by i yields a self-adjoint random

variable whose distribution is therefore supported in R. Thus L := L(2π) is equal

to either side of (4.4.3) multiplied by i.

The summands are commutators of free semicircular random variables. Commu-

tators have been studied by Nica–Speicher [82], where the semicircle distribution

is discussed in Example 1.5(2). If cn = i (ξnηn − ηnξn), then the support of µcn is

[−r, r] where r =
√

11+5
√

5
2

and

Rcn(z) =
2z

1− z2
= 2

∞∑
m=1

z2m−1. (4.4.4)

From this we can now compute the R-transform of the classical Lévy area. Let that

function be denoted RL then

RL =
∞∑
n=1

1

n
Rcn

( z
n

)
=
∞∑
n=1

2z

n2 − z2

=
1

z
− π cot(πz). (4.4.5)

We can deduce the free cumulants of L, either from the Taylor series of (4.4.5) or
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by calculating

RL =
∞∑
n=1

2

n

∞∑
m=1

( z
n

)2m−1

=
∞∑
m=1

2

(
∞∑
n=1

n−2m

)
z2m−1

=
∑
m=1

2ζ(2m)z2m−1

where the interchanging of the infinite sums is justified by absolute convergence.

The free cumulants of Lare therefore given by

km(L) =


2ζ(m) if m is even

0 otherwise.

(4.4.6)

Free infinite divisibility is characterised by an analytic property of the R-transform.

An analytic function f : C+ −→ C+ is called a Pick function. For a, b ∈ R with a < b

we denote by P(a, b) the set of Pick functions f which have an analytic continuation

g : C \R∪ (a, b) −→ C such that g(z) = g(z). The following result is Theorem 3.3.6

of Hiai–Petz [55]:

Theorem 4.4.7. A compactly supported probability measure µ is �-infinitely divis-

ible if and only if its R-transform extends to a Pick function in P(−ε, ε) for some

ε > 0.

It is easy to see that the common R-transform of the cn extends to a Pick function

in P(−1, 1). Therefore each cn is �-infinitely divisible.

Corollary 4.4.8. The distribution of L is �-infinitely divisible.

As in Section 4.2 we can use free infinite divisibility together with the analytic

properties of the R-transform and the formula for the maximum of the support

from Chapter 3 to describe further the distribution in question.

The law of L is symmetric and therefore has vanishing odd free cumulants. So

we now need to apply Theorem 3.5.9 (rather than Theorem 3.5.4) as for the square
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norm.

The inverse of the Cauchy transform of L is given by

KL = RL +
1

z
=

2

z
− π cot(πz).

Similarly to the situation in Section 4.2.2 there exists, for every t ∈ (π, 2π), unique

r(t) > 0 such that Im [KL (r(t)eit)] = 0 and

∂

∂z
Im [KL(z)]

∣∣∣∣
z=r(t)eit

6= 0 ∀t ∈ (π, 2π). (4.4.9)

We obtain the following characterisation of the distribution of L:

Proposition 4.4.10. The non-commutative random variable L is distributed ac-

cording to µL(dt) = ΦL(t)1[−ρL,ρL] dt where ΦL(x) = − 1
π
r(τx) sin(τx) and τx is the

unique solution on (π, 2π) to

2

r(τx) eiτx
− π cot

(
πr(τx) e

iτx
)

= x. (4.4.11)

for every x ∈ (−ρL, ρL). The number ρL is given by

ρL =
m∗π√
m2
∗ − 2

(4.4.12)

where m∗ is the unique solution on (
√

2,∞) of

m− 2 =
√
m2 − 2 cot

(√
m2 − 2

m− 1

)
. (4.4.13)

A sketch of the density of µL is given below.
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Figure 4.4: *
Density of the free Lévy area

Proof of Proposition 4.4.10. The law µL of L is symmetric about 0. Together with

the analytic arguments of Section 4.2.2, suitably modified, this implies the existence

of ρL > 0 such that the density ΦL of µL is smooth, positive on (−ρL, ρL) and zero

everywhere else. The function ΦL is given by ΦL(x) = − 1
π
r(τx) sin(τx) where τx is

characterised by (4.4.11).

For the remainder of the statement we apply Theorem 3.5.9. Only the free cu-

mulants of even order are nonzero, so that the set L from Theorem 3.5.9 is given by

{2n : n ∈ N}. Otherwise the calculations are very similar to those in the proof of

Proposition 4.2.11: we apply the methods of Lagrange multipliers and deduce that

the supremum on the right-hand side of (3.5.10) is attained by a unique maximiser

which is characterised by equation (4.4.13). The argument of the supremum evalu-

ated at this maximiser yields the right edge of the support, and is given by (4.4.12).

This completes the proof of the proposition.

Remark 4.4.14. As for the square norm (cf. Remark 4.2.13), one could use the

conformal mapping approach to find another implicit characterisation for the edges

of sptµL.



Chapter 5

Analogues of Reflected Brownian

Motion

In this chapter we study a generalisation of reflected Brownian motion introduced in

Section 2.4. Rather than giving the process a singular drift whenever it hits one of

the faces, we now impose a continuous drift. Its magnitude depends, via a potential

U , on how far the process is away from being inside G.

5.1 Generalised RBM

For k, d ∈ N let {n1, . . . , nk} be a set of unit vectors spanning the whole of Rd and

qj ∈ Rd such that qj · nj = 0 for all j. We denote by N,Q the k × d matrices whose

jth rows are given by nj, qj respectively and the polyhedral domain G ⊂ Rd by

G =
{
x ∈ Rd : nj · x ≥ bj ∀ j ∈ k

}
for some b1, . . . , bk ∈ R. We assume throughout that G 6= 0. For each j ∈ k we set

vj := nj + qj.

Let B be a Brownian motion with drift −µ and general covariance matrix A =

(ajk)j,k = σσT , such that ajj = α > 0 for any j. Denote the generator of B by

98
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a. We will assume throughout that the nj, qj satisfy the (modified) skew-symmetry

condition:

nj · qr + nr · qj =
2arj
α

∀ r 6= j. (5.1.1)

Our focus lies on the cases when either a = 1
2
∆−µ·∇ (i.e. the covariance matrix of B

is the identity), or d = k andN = I (i.e. the domain is an orthant). This corresponds

to a generalisation of the processes introduced by Harrison–Williams [53, 130]

and Harrison–Reiman [52] respectively. Note that in the former case (5.1.1)

reduces to the skew-symmetry condition from [53, 130], cf. (2.4.1).

Let further U be a twice continously differentiable function, on which we make

the following assumption.

Assumption 5.1.2. The continuously differentiable function U : R −→ R is suf-

ficiently regular to ensure that the second-order differential operator GU defined

by

GU = a− µ · ∇+
k∑
r=1

U ′ (nr · x− br) vr · ∇ (5.1.3)

is the infinitesimal generator of a diffusion process with continuous sample paths in

Rd. Moreover, if ρ is a smooth density on Rd satisfying G∗Uρ = 0, then ρ(x) dx is an

invariant measure for this diffusion. Here G∗U denotes the formal adjoint of GU .

Definition 5.1.4. Let the function U satisfy Assumption 5.1.2. The Rd-valued

diffusion with infinitesimal generator GU is called generalised reflected Brownian

motion (GRBM) corresponding to the potential U and the data (N,Q, µ,A).

The choice U(x) = −e−x satisfies Assumption 5.1.2. We refer to the process with this

choice of U as the exponentially reflected Brownian motion (ERBM) corresponding

to (N,Q, µ,A).
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We will consider the cases when either a = 1
2
∆ (i.e. the covariance matrix of

B is the identity), or d = k and N = I (i.e. the domain is an orthant). This

corresponds to a generalisation of the results by Harrison–Williams [53, 130]

and Harrison–Reiman [52] respectively.

Remark 5.1.5. Apart from the requirement that the nj contains a basis of Rd one

could allow k < d, that is fewer half-spaces than the dimension we are in. We

can then decouple the ‘superfluous’ dimensions as follows. Denote by E1
∼= Rk the

span of {n1, . . . , nk} and by E2 its orthogonal complement in Rd. Let further Pj

be orthogonal projection from Rd onto Ej. By orthogonal invariance of Brownian

motion it follows that P1(X) and P2(X) are independent. Further P2(X) is just a

standard (d− k)-dimensional Brownian motion, whereas P2(X) is generalised RBM

in Rk with the data (P1(N), P1(Q), P1(µ), I).

With this in mind we will assume throughout that k ≥ d.

5.2 Main Results

Let us state the main abstract results, the proofs of which can be found in Section 5.4.

5.2.1 GRBM in a General Domain

We first consider the Harrison–Williams setting. Our main result is that, under the

skew-symmetry condition, generalised reflected Brownian motion has an invariant

measure in a certain product form.

Theorem 5.2.1. Suppose that U satisfies Assumption 5.1.2 and that the nj, qj sat-

isfy the skew-symmetry condition (5.1.1). Then the Rd-valued diffusion with gener-

ator

GU =
1

2
∆ +

(
k∑
r=1

U ′ (nr · x− br) vr − µ

)
· ∇
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has as invariant measure of the form νU(dx) = pU(x) dx with

pU(x) = exp

{
2

(
k∑
r=1

U (nr · x− br)− γ(µ) · x

)}
dx (5.2.2)

where γ(µ) is given by

γ(µ) =
(
I −N−1

Q
)−1

µ. (5.2.3)

Here, N is an invertible d×d submatrix of N and Q is the corresponding submatrix

of Q.

Remark 5.2.4. The existence of an invertible submatrix N of N was assumed. By

the remarks after equation (1.7) in [53] (p. 463) the matrix (I −N−1
Q), and hence

γ(µ), is independent of the choice of N , provided the skew-symmetry condition

(5.1.1) holds. Further [53, (4.7), (7.13)] we have |γ(µ)|2 = γ · µ.

Applied to the special case U(x) = −e−x, Theorem 5.2.1 gives the invariant measure

for exponentially reflected Brownian motio.

Corollary 5.2.5. Suppose that the skew-symmetry condition (5.1.1) holds, then

the exponentially reflecting Brownian motion corresponding to (N,Q, µ, I) has an

invariant measure ν in product form. More precisely, ν is absolutely continuous

with respect to Lebesgue measure with density

ν(dx) =
1

Z
exp

{
−2

(
γ(µ) · x+

k∑
j=1

ebj−nj ·x

)}
.

Remark 5.2.6. When d = k then ν can be realised as the distribution of a Rd-

valued random variable X(∞) such that

(n1 ·X(∞), . . . , nd ·X(∞))
(d)
=
(
− log

(γ1

2

)
, . . . ,− log

(γd
2

))
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where the γj are independent gamma random variables with parameters qj and the

vector θ is given by

θ = 2(N +Q)−Tµ.

Remark 5.2.7. Let β > 0 and set Uβ(x) = − 1
β
e−βx for β > 0. The diffusion

with generator GUβ should converge, as β →∞ to the Harrison–Williams reflected

Brownian motion. Moreover (cf. [33], section 4.1) the log-gamma random variables

converge to the exponential distribution, and we recover the main result of [130]. In

this sense our results can be considered as a generalisation of those of [53, 130].

5.2.2 General Covariance

We now turn to exponential Brownian motion in an orthant, driven by a d-Brownian

motion with drift −µ that is allowed to have a general, possibly singular covariance.

It can be realised as B(t) = σβ(t)− µt for a standard Brownian motion β with no

drift, possibly of a different dimension, and a matrix σ, which is generally rectan-

gular. The covariance matrix A = (ajk) = σσT of B is assumed to have the same

entry α > 0 on all its diagonal entries (or, equivalently, the rows of the rectangular

matrix σ all have the same length
√
α).

In this case the generator of the generalised RBM is given by

GU =
1

2

∑
j,l

aj,l∂xj∂xk +
d∑
j=1

[
d∑
r=1

qrjU
′ (xr) + U ′ (xj)− µj

]
∂xj .

Applied to this setting the modified skew-symmetry condition (5.1.1) reads

qjr + qrj =
2arj
α

(5.2.8)

Theorem 5.2.9. Suppose that U : R −→ R satisfies Assumption 5.1.2 and that for
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all j 6= r the modified skew-symmetry condition (5.2.8) holds. Then the GRBM

in an orthant, corresponding to (I,Q, µ,A) and the potential U has an invariant

measure whose density with respect to Lebesgue measure is given by

pU(x) =
1

Z
exp

{
2

[
d∑
j=1

U (xj)−
√
α (2A− α (I +Q))−1 µ · x

]}
. (5.2.10)

5.3 Examples

5.3.1 One-Dimensional ERBM and Dufresne’s Identity

As a warm-up let us consider one-dimensional exponentially RBM. Here we can use

a particular realisation of the process and Dufresne’s identity.

In this situation n = 1 and q = 0. All conditions, including skew-symmetry

(5.1.1), are satisfied. Let further µ > 0. The generator of X in this simple case is

given by

G
(µ)
1 =

1

2

d2

dx2
+
(
e−x − µ

) d

dx
.

By Itô’s formula and stochastic integration by parts [57, 98] the process X given by

X(t) = log

∫ t

0

eB
(µ)(s)−B(µ)(t) ds

is a diffusion with generator G
(µ)
1 . The invariant measure of X is that of η = log(ξ)

where ξ
(d)
= 4A

(2µ)
∞ and the process A(µ) is defined by [41, 42]

A
(µ)
t =

∫ t

0

e2(B(s)−µs) ds.

Recall Dufresne’s identity [41, Corollary 4].
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Proposition 5.3.1. Let µ > 0, then

(
2A(µ)
∞
)−1 (d)

= γµ

where γµ has the Gamma distribution with parameter µ.

Hence ξ
(d)
= 2

γ2µ
and so the invariant distribution of the process X is realised by

η = − log ξ−1 (d)
= − log

(γ2µ

2

)
.

which recovers our result in this simple example. Let us also note that, replacing

the potential e−x by 1
β
e−βx (as in Remark 5.2.7) it can be verified directly that both

Harrison–Williams RBM and the exponential distribution appear in the scaling limit

as β →∞.

5.3.2 RBM in a Weyl Chamber

Reflected Brownian motion in the Weyl chamber

Ω =
{
x ∈ Rd : x1 > x2 > . . . > xd

}
,

with normal reflection is a realisation of Brownian motion with rank-dependent drift,

studied by Pal–Pitman [92]. This is defined by taking d standard Brownian mo-

tions X1, . . . , Xd with increasing re-ordering X(1), . . . , X(d) and drift µ with −µ ∈ Ω

such that at each time t the process X(j) has drift µj. It can also be viewed as a

Doob transform of the Delta-Bose gas, see Prolhac–Spohn [95]. In our generalised

setting the generator is given by

GU =
1

2
∆ +

d−1∑
r=2

[U ′(xr − xr+1)− U ′(xr−1 − xr)− µr] ∂xr

+ [U ′(x1 − x2)− µ1] ∂x1 − [U ′(xd−1 − xd)µd] ∂xd .
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Because of normal reflection the skew-symmetry condition is automatic and hence

the system has a stationary distribution in product form with density

pµ(x) =
1

Zµ
exp

{
2

(
d−1∑
j=1

U (xj+1 − xj)− µ · x

)}
.

5.3.3 Examples Motivated by Queueing Theory

As mentioned in the introduction, the primary motivation of studying reflected

Brownian motion in a polyhedral domain came from queueing theory. We present

here some examples of exponential reflected Brownian motion that correspond to

networks consisting of several instances of the generalised Brownian queue intro-

duced in [89]. For background on queueing theory we refer to Section 2.4.3 and the

references given there.

Example 5.3.2. Let B1, B2, B3 be three Brownian motions with drifts νj such that

for j ∈ {1, 2} we have µj := νj+1−νj > 0. Let X1, X2 be the queue-length processes

of two generalised Brownian queues in tandem, that is

X1(t) = log

∫ t

0

exp {B1(t)−B1(s)−B2(t) +B1(s)} dt

D(t) = B1(t) +X1(0)−X1(t)

X2(t) = log

∫ t

0

exp {D(t)−D(s) +B3(s)−B3(t)} dt.

This corresponds to ERBM in an orthant with reflection and covariance matrices

given by

Q =

 0 0

−1 0

 , A =

 2 −1

−1 2


i.e. the scaling parameter is α = 2. It is straightforward that these choices satisfy

the skew-symmetry condition (5.2.8), so we get a stationary distribution in product
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form. More precisely, by (5.2.10) the stationary distribution has density

p(x, y) =
1

Z
exp

{
−2

[
µ1 + µ2√

2
x+

µ2√
2
y + e−x + e−y

]}
.

Example 5.3.3. Let us consider another example motivated by queueing theory,

namely a system of two generalised Brownian queues set up so that the departures

from the first queue become the arrivals in the second, and the unused service process

of the first is the service process of the second queue. The corresponding ERBM is

defined by the data

Q =

 0 0

−2 0

 , A =

 1 −1

−1 1


so we don’t need to re-scale. It is straightforward to check the skew-symmetry

condition:

q12 + q21 = −2 = 2a12

and hence we get a product-form stationary distribution, which has density

p(x, y) =
1

Z
exp

{
−2
[
(µ1 + 2µ2)x+ µ2y + e−x + e−y

]}
.

Example 5.3.4. We can take this one step further: take three queues such that

the arrivals and services of each subsequent queue are given by the departures and

unused services of the previous one. Then

Q =


0 0 0

−2 0 0

2 −2 0

 , AAT =


1 −1 1

−1 1 −1

1 −1 1


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and again we are in the right scale for unit vectors. Similarly to the two-dimensional

case we can check skew-symmetry, so we get another stationary distribution in

product form, this time with density given by

p(x, y, z) =
1

Z
exp

{
−2
[
(µ1 + 2µ2 + 2µ3)x+ (µ2 + 2µ3) y + µ3z + e−x + e−y + e−z

]}
The two previous examples generalise as follows. Fix d ∈ N and a sequence

α1, α2, . . . ∈ Rd such that αj · αj = 2 for all j. Let η be a Brownian motion in Rd

with drift µ and define y1, . . . , yd by the system of SDEs

dyk(t) =


d (α1 · η(t)) + e−y1(t) dt if k = 1

d (αk · η(t)) +
(∑k−1

j=1 (αk · αj) e−yj(t) + e−yk(t)
)

dt if k > 1

A special case of this process is discussed in [86], section 7.3. See also [21, 22].

Proposition 5.3.5. The d-dimensional diffusion y has a stationary distribution π in

product form. The marginals are of the form − log(γθk/2) where the γθk are gamma

random variables with parameters θk. The vector θ is given by θ = θ(µ) = 1√
2
Cµ

where,

Cjk =



0 if j > k

1 if j = k

−αj · αj+1 if k = j + 1

−sαk−1
. . . sαj+1

(αj) · αk otherwise

Proof. The process y is RBM in a d-dimensional orthant, driven by the process η
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given by

η(t) =


αT1
...

αTd

 β(t)

with β a standard Brownian motion. The covariance matrix of η is therefore given

by ajk = αj · αk, while the reflection matrix is Q = (qjk) where

qjk =


0 if j ≥ k

αj · αk otherwise.

We assumed that αj · αj = 2 so the scaling parameter is α = 2. We can check that

the skew symmetry condition holds: whenever r 6= j we have

qjr + qrj = αj · αr =
2ajr
α

since one of the summands on the left equals the right-hand side and the other

vanishes. So we can apply Theorem 5.2.9 to complete the proof.

5.4 Proofs of the Main Results

In this final section we prove Theorems 5.2.1 and 5.2.9. By Assumption 5.1.2 we

only need to show that G∗p = 0 where G∗ is the formal adjoint of the generator G

and p is as in (5.2.2) and (5.2.10) respectively.
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5.4.1 General Polyhedral Domain

The generator of GRBM in a general polyhedral domain, driven by a standard

Brownian motion, is of the form G = 1
2

∆ + Ω · ∇ where

Ω(x) =
k∑
r=1

U ′ (nr · x− br) vr − µ

Using integration by parts the formal adjoint of G is given by

G∗ =
1

2
∆−Ω · ∇ −∇ ·Ω.

We remark that p has the form p(x) = exp {W (x)} where

W (x) = 2

[
k∑
r=1

U (nr · x− br)− γ · x

]
.

Let us remark that

Ω(x) =
1

2
∇W (x) + (γ − µ) +

k∑
j=1

U ′ (nr · x− br) qr.

Because qj · nj = 0 for all j we have ∇ · Ω = 1
2

∆W . Further ∇p = p∇W and

therefore ∆p =
(
∆W + |∇W |2

)
p. Hence it follows that

G∗p =
1

2
∆p−

[
1

2
∇W + (γ − µ) +

k∑
j=1

U ′ (nr · x− br) qr

]
· ∇p− 1

2
Wp

=
1

2

[
∆W +

1

2
|∇W |2

]
p− 1

2
|∇W |2 p+ (γ − µ) · ∇Wp

−
k∑
r=1

U ′ (nr · x− br) qr · ∇p−
1

2
∆Wp.
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Hence,

G∗p(x)

p(x)
= (µ− γ) · ∇W (x)−

k∑
r=1

U (nr · x− br) qr · ∇W (x)

= 2
k∑
j=1

U ′ (nj · x− bj) (µ− γ) · nj − 2 (µ− γ) · γ

−
∑
r,s

U ′ (nr · x− br)U ′ (ns · x− bs)nr · qs − 2
k∑
r=1

U ′ (nr · x− br) γ · qs

= 2
k∑
r=1

U ′ (nr · x− br) [Nµ− (N −Q)γ]r .

where we have used the skew-symmetry condition and [y]r denotes the rth entry of

a vector y. The fact that the last line is equal to zero follows from the fact that

Nµ = (N − Q) for any choice of invertible submatrix N of N (and corresponding

submatrix Q of Q) and that each row of N must occur in at least one invertible

submatrix, because of Lemma 5.4.1 below.

In the proof above we have used the following simple lemma from Linear Algebra.

Lemma 5.4.1. Let k > d and E = {y1, . . . , yk} ⊂ Rd a set of vectors whose span

is the whole of Rd. If there exists r ∈ k such that any collection of d elements of E

containing yr is linearly dependent then yr = 0.

Proof. The assumption that E spans Rd is equivalent to E containing a basis. By

re-ordering we may therefore assume that {y1, . . . , yd} is such a basis. If now the

set {y1, . . . , ŷj, . . . , yd+1} (meaning the vector yr is left out) is linearly dependent for

r ∈ d then yd+1 is in the span of {y1, . . . , ŷr, . . . yd}. By assumption this is true for

every r ∈ d, so

yd+1 ∈
d⋂
r=1

span {y1, . . . , ŷr, . . . , yd} = {0}

which completes the proof.
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5.4.2 Orthant with General Covariance

Finally we turn to proving Theorem 5.2.9, giving the invariant measure for gener-

alised RBM in an orthant, driven by a Brownian motion with general covariance,

whose generator is denoted by a.

The generator of this process is now of the form

G =
1

2
∇ · a∇+ Ω · ∇

where Ω is given by

Ω(x) =
d∑
j=1

U ′ (nj · x) (ej + qj)− µ.

The formal adjoint of G is given by G∗ = 1
2
∇ · a∇−Ω · ∇ − ∇Ω̇, and we need to

prove that G∗p = 0 where p(x) = exp {W (x)},

W (x) = 2

(
d∑
j=1

U (xj)− δ(µ) · x

)
.

and δ(µ) = (2a− I −Q)−1 µ. Noting that

Ω(x) =
1

2
∇W (x) +

d∑
j=1

U ′ (xj) qj + δ(µ)− µ

and hence ∇ · Ω = 1
2

∆W it follows that

G∗p =
1

2
(∇ · a∇+∇W · a∇W ) p−

[(
1

2
∇W +

d∑
j=1

U ′ (nj · x) qj

)
· ∇W

]
p

+ (µ− δ(µ)) · ∇Wp− p

2
∆W.
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Dividing by p and then using ∇W (x) = 2
(∑

j U
′ (nj · x)nj − δ(µ)

)
we obtain

G∗p(x)

p(x)
=

1

2
∇ · (a− I)∇W (x) +

1

2
∇W (x) · ∇ (a− I)∇W (x)

−
d∑
j=1

U ′ (xj) qj · ∇W (x) + (µ− δ(µ)) · ∇W (x)

=
1

2

d∑
j=1

[
U ′′ (xj) (a− I)jj

]
+ 2

∑
j,r

U ′ (xj)U
′ (xr) (a− I)jr

− 2
d∑
j=1

U ′ (xj) [δ(µ) · (a− I) ej + ej · (a− I) δ(µ)] + 2δ(µ) · (a− I) δ(µ)

+ 2
d∑
j=1

U ′ (xj) [qj · δ(µ) + (µj − δ(µ)j)]

− 2
∑
j,r

U ′ (xj)U
′ (xr) qjr + 2δ(µ) · (δ(µ)− µ)

The first term vanishes because the diagonal entries of a are all equal to 1. Using

the fact that a is symmetric we have

G∗p(x)

p(x)
= 2

∑
j,r

U ′ (xj)U
′ (xr)

[
(a− I)jr − qjr

]
+ 2

d∑
j=1

U ′ (xj) [qj · δ(µ) + (µj − δ(µ)j)− 2ej · (a− I) δ(µ)]

+ 2δ(µ) · (a− I) δ(µ) + 2δ(µ) · (δ(µ)− µ)

The first line equals zero because of the skew-symmetry condition, whereas the other

two lines vanish due to the definition of δ(µ).

This completes the proof of Theorem 5.2.9.



Appendix A

Computations for the Square

Norm

A.1 Unique Solution in Polar Co-Ordinates

Let β be a free Brownian bridge and put Γ :=
∫ 1

0
β2(s) ds. Let RΓ, KΓ, GΓ denote

the R-, K-, Cauchy transform of Γ respectively. From the main paper we have

KΓ(z) =
3−
√
z cot (

√
z)

2z
. (A.1.1)

The purpose of this section is to establish

Theorem A.1.2. For every t ∈ (π, 2π) there exists unique ρ0(t) > 0 such that

Im
(
K
(
ρ0(t)eit

))
= 0 (A.1.3)

Let us first remark that

Re
(
cot(Reiθ)

)
=

sin(R cos(θ)) cos(R cos(θ))

sin2(R cos(θ)) + sinh2(R sin(θ))

Im
(
cot(Reiθ)

)
= − sinh(R sin(θ)) cosh(R sin(θ))

sin2(R cos(θ)) + sinh2(R sin(θ))
.
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Put γ = γ(t) = cos(t/2), σ = σ(t) = sin(t/2), and note that t 7−→ γ(t) and

t 7−→ σ(t) are both bijections on (π, 2π). Then

ImK(r eit) =
1

2
Im

(
3 eit

r

)
−
{

1

2
√
r
Im
(
eit/2 cot

(√
r eit/2

))}
=
−3 sin(t)

2r
+

γ√
r

sinh(σ
√
r) cosh(σ

√
r)

sin2(γ
√
r) + sinh2(σ

√
r)

+
σ√
r

sin(γ
√
r) cos(γ

√
r)

sin2(γ
√
r) + sinh2(σ

√
r)

(A.1.4)

= −3 sin(t)

r
+
γ sinh(σ

√
r) cosh(σ

√
r) + σ sin(γ

√
r) cos(γ

√
r)

sin2(γ
√
r) + sinh2(σ

√
r)

(A.1.5)

Denote the right-hand side of (A.1.5) by L(r, t) and define gt(r) := 2rL(r2, t). Then,

using the fact that sin(t) = 2 sin(t/2) cos(t/2) we have

gt(r) = −6σγ

r
+
σ sin(γr) cos(γr) + γ sinh(σr) cosh(σr)

sin2(γ
√
r) + sinh2(σ

√
r)

(A.1.6)

and clearly Theorem A.1.2 is proved if we establish the following result.

Theorem A.1.7. For each t ∈ (π, 2π) there exists unique r = rt > 0 such that

gt(rt) = 0. Moreover rt has the property that g′t(rt) < 0.

Our strategy of proof is as follows: fix t ∈ (π, 2π). For convenience we will often

suppress the suffix t and write g(r), γ, σ etc. We know that

lim
r→0

g(r) = +∞

so there must be R2 > 0 sucht that g(r) > 0 ∀ r ∈ (0, R2). Our strategy is to prove

the following:

(a) ∃R1 > 0 ∀ r ∈ (0, R1) : g′(r) < 0

(b) ∃R3 ∈ (0, R1) ∀ r > R3 : g(r) < 0.
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If this holds, then there must be a zero of g in [R2, R3]. Since g is decreasing on

that interval it must be unique on that interval, label it r0(t). Since g is positive on

(0, R2) and negative on (R3,∞), that r0(t) is in fact the only root of g on (0,∞).

We will be distinguishing between several cases. Since we will need it frequently

in the subsequent sections we note here that

g′(r) =
6σγ

(
sin2(γr) + sinh2(σr)

)2 − r2 sin(2γr) sinh(σr) cosh(σr)

r2
(
sin2(γr) + sinh2(σr)

)2 (A.1.8)

A.1.1 First Case: t ∈ (π, 3π
2 ).

If t ∈
(
π, 3π

2

)
then σ ∈ ( 1√

2
, 1) and −γ ∈ (0, 1√

2
). In this case it turns out that the

function g is actually always decreasing:

Lemma A.1.9. Under these assumptions on t (and hence σ and γ) we have g′(r) <

0 for all r > 0.

Proof. We will split the proof of this result into two subcases as to whether σ4 ≥ 1
3

or not.

(a) σ ∈ (3−1/4, 1]. Denote the numerator of (A.1.8) by h(r) so that

h(r) = 6σγ
(
sin2(γr) + sinh2(σr)

)2 − r2 sin(2γr) sinh(σr) cosh(σr) (A.1.10)

≤ 6σγ sinh4(σr)− 2γr3 sinh(σr) cosh(σr)

≤ 2γ

σ3

(
3σ4 sinh4(σr)− (σr)3 sinh(σr) cosh(σr)

)
≤ 2γ

σ3
sinh(σr)

(
sinh3(σr)− (σr)3 cosh(σr)

)
< 0

since the function defined by p(x) = sinh4(x)− x3 cosh(x) is positive on [0,∞)

and σγ sinh(σr) < 0.

(b) σ ∈ (2−1/2, 3−1/4). For this range of σ we have −3σγ >
√

2 and σ > −γ > σ
2
.

Retain notation for h(r) as in (A.1.10). We split into sub-subcases according to
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whether σr is bigger or smaller than π/4.

(i) σr ≤ π
4
. Then −γr,−2γr are both less than 2σr ≤ π

2
and since the sine

function is increasing on
[
0, π

2

]
we have

• sin2
(
γ(r)

)
≥ sin2

(
σr
2

)
• sin(−2γr) ≤ sin(2σr).

So, using σ−1 ≤
√

2 we have

h(r) ≤ 2

3σγ
(
sin2(σr/2) + sinh2(σr)

)2︸ ︷︷ ︸
−f1(σr)

+ (σr)2 sin(−2γr) sinh(σr) cosh(σr)︸ ︷︷ ︸
f2(σr)


We are done if we can show that f 1

1 (x) > f 2
2 (x). Using the fact that

(3σγ)2 > 2 and the identity cosh2 = 1 + sinh2 we obtain

f 2
1 (x) > 2

(
sin2(x/2) + sinh2(x)

)4

≥ 2 sinh8(x) + 8 sin2(x/2) sinh6(x) =: f̃1(x)

f 2
2 (x) = x4 sin2(x) sinh2(x) + x4 sin2(2x) sinh4(x) =: f̃2(x)

and it is straightforward to check that f̃1(x) > f̃2(x) if x ∈ (0, π/4).

(ii) σr > π
4
. Then we can estimate even more crudely, still using −3σγ >

√
2

and putting x = σr:

h(r) < 2
[
3 sin γ sinh4(σr) + (σr)2 sinh(σr) cosh(σr)

]
< 2 sinh(x)

−√2 sinh3(x) + x2 cosh(x)︸ ︷︷ ︸
P (x)

 .
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But P (π/4) < 0 by direct calculation and

P ′(x) = −3
√

2 sinh2(x) cosh(x) + 2x cosh(x) + x2 sinh(x) < 0

for x > π/4 since then
√

2 sinh(x) > 1. Hence P (x) < 0 for x > π/4 and

so h(r) < 0 for (ii) also.

This concludes (b) and hence the proof.

So it only remains to show that g(a) < 0 for some a > 0:

Lemma A.1.11. We have g(7/σ) < 0.

Proof. Note that

g(r) <
−6σγ

r
− σγr

sinh2(σr)
+
γ

4

sinh(σr) cosh(σr)

1 + sinh2(σr)

< −γ
[

1

σr
+

σr

sinh2(σr)
− sinh(σr)

4 cosh(σr)

]

and a direct calculation yields that the function in square brackets takes a negative

value for σr = 7.

This concludes the proof of Theorem A.1.7 for t ∈
(
π, 3π

2

)
.

A.1.2 Second Case: t ∈
[

3π
2 ,

5π
3

)
Then σ ∈

[
1
2
, 1√

2

)
and −γ ∈

(
1√
2
,
√

3
2

]
. Further −σγ < 1

2
. Write

gt(r) =
g1(r) + g2(r) + g3(r) + g4(r)

r
(
sin2(γr) + sinh2(σr)

)
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so that

g1(r) = −6σγ sin2(γr) (A.1.12)

g2(r) = −6σγ sinh2(σr) (A.1.13)

g3(r) = σr sin(γr) cos(γr) (A.1.14)

g4(r) = γr sinh(σr) cosh(σr) (A.1.15)

Lemma A.1.16. Under the above assumption on t let r > 9
−2γ

. Then gt(r) < 0.

Proof. We have

2

3
g4(r) + g1(r) <

(
2γr

3
− 6σγ

)
sinh(σr) cosh(σr)

< (3− 6σγ) sinh(σr) cosh(σr) < 0.

Our assumptions on t imply that −σ
γ
> 1√

3
and so σγ > 9

2
√

3
whence by direct

calculation we have sinh(σr) cosh(σr) > 45. So

1

6
g4(r) + g1(r) =

γr

6
sinh(σr) cosh(σr)− 6σγ sin2(γr) < 0.

Finally

1

6
g4(r) + g3(r) =

γr

6
sinh(σr) cosh(σr) +

σr

2
sin(2γr) < −9

2

σr

6
+
σr

2
< 0.

Lemma A.1.17. If r < π
−4γ

then gt(r) > 0.

Proof. Note that since σ < −γ the fact that −γr < π
4
< 1 certainly implies σr < 1.
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Then

g1(r) + g3(r) = −6σγ sin2(γr)︸ ︷︷ ︸
>0

+σr sin(γr) cos(γr)︸ ︷︷ ︸
<0

≥ −σ sin(γr) (6γ sin(γr)− r)

≥ −σ sin(γr)
(
3γ2r − r

)
> 0

since γ2 > 1
2
. Also

g2(r) + g4(r) = −6σγ sinh2(σr) + γr sinh(σr) cosh(σr)

= −γ
σ

sinh(σr)
(
6σ2 sinh(σr)− σr cosh(σr)

)
≥ −γ

σ
sinh(σr)

(
3

2
sinh(σr)− σr cosh(σr)

)
> 0

since 3
2

sinh(x)− x cos(x) > 0 for x < π/4.

For the proof of the following lemma note that the denominator of (A.1.8) is always

positive and (as previously) denote the numerator by h(r).

Lemma A.1.18. For r > − π
4γ

we have g′t(r) < 0.

Proof. Let r > π
4γ

. Now −γ > σ >
√

3γ so that −γr > π
4

implies σr > π
4
√

3
. We will

consider three separate case:

(a) γr >
√

3π
2

which implies σr > π/2 and sinh(σr) > 1. Also 1
2
> −σγ >

√
3

4
and

σ > 1
2

so that

h(r) < −3
√

3

2

(
sin2(γr) + sinh2(σr)

)2
+ 4(σr)2 sinh(σr) cosh(σr)

< sinh(σr)

−3
√

3

2
sinh2(σr) + 4(σr)2 cosh(σr)︸ ︷︷ ︸

Q(σr)


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A direct calculation verifies Q
(
π
2

)
< −6, moreover Q′(x) < 0 for x > π

2
. Thus

h(r) < 0 for the case (a).

(b)
√

3π
2
≥ −γr ≥ π

2
. Then −2γr ∈ (π, 2π), so sin(−2γr) < 0 and hence both

summands of h(r) are negative.

(c) π
2
> −γr > π

4
. Then σr ∈

(
π

4
√

3
, π

2

)
. Using the assumptions as in (a), plus the

fact that sin(−2γr) ≤ 1,

h(r) < −3
√

3

2

(
sin2(γr) + sinh2(σr)

)2
+ 2(σr)2 sinh(2σr).

From the fact that sin(·) is increasing on
(
0, π

2

)
and that −γr > σr it follows

that sin2(γr) > sin2(σr) and so

h(r) < −3
√

3

2

(
sin2(σr) + sinh2(σr)

)2
+ 2(σr)2 sinh(2σr)

and it is straightforward to verify that this is negative for σr ∈
(

π
4
√

3
, π

2

)
.

Thus for the Second Case we have:

• gt(r) > 0 for r < π
−4γ

• gt(r) < 0 for r > 9
2γ

• g′t(r) < 0 for r > π
−4γ

.

which establishes Theorem A.1.7 for this Case.
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A.1.3 Third, and Last Case: t ∈
[

5π
3 , 2π

)
Here we have σ ∈

(
0, 1

2

)
and −γ ∈

(√
3

2
, 1
)

. Throughout this section we retain

notation g1(r), . . . , g4(r) from (A.1.12-A.1.15) and h from (A.1.10).

Lemma A.1.19. Under these conditions we have g′t(r) < 0 for r < 3
−γ .

Proof. We split this into subcases:

(a) −γr ∈
[
π
2
, 3
]
: then −2γr ∈ (π, 2π) so that sin(−2γr) < 0 and hence both

summands of h are negative.

(b) −γr ∈
(
π
4
, π

2

)
: This is the most complicated subcase and requires further split-

ting.

b i) If σ ∈ (0, 1/3) then −γ ∈
(√

8
3
, 1
)

and so, using the fact that if α ∈ (0, 1)

and x > 0 then sinh(αx) < α sinh(x) and sinh(2x) = 2 sinh(x) cosh(x),

h(r) < 6σγ sin4(γr) +
r2

2
sin(−2γr) sinh(2σr)

< 6σγ sin4(γr) +
r2

2
sin(−2γr)

σ

−γ
sinh(−2γr)

= − σ

γ3

(
−6γ4 sin4(γr) +

(γr)2

2
sin(−2γr) sinh(−2γr)

)
< − σ

γ3

(
−128

27
sin4(γr) +

(γr)2

2
sin(−2γr) sinh(−2γr)

)

and we can verify directly that this is negative for −γr ∈
(
π
4
, π

2

)
.

b ii) If σ ∈ [1/3, 1/2) then σ > −γ
3

and so

h(r) < 6σγ
(

sin2(γr) + sinh2
(γr

3

))2

+
r2

2
sin(−2γr) sinh(2σr)

≤ − σ

γ3

[
−6γ4

(
sin2(γr)) + sinh2

(γr
3

))2

+
(γr)2

2
sin(−2γr) sinh(2γr)

]
< −σ

γ

[
−27

8

(
sin2(γr)) + sinh2

(γr
3

))2

+
(γr)2

2
sin(−2γr) sinh(2γr)

]

which can be easily shown to take negative values only for −γr ∈
(
π
4
, π

2

)
.
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(c) −γr ∈
(
0, π

4

]
. Then

h(r) < − σ

γ3

[
−27

8
sin4(γr) +

(γr)2

2
sin(−2γr) sinh(2γr)

]

which takes negative values only for −γr ∈
(
0, π

4

)
.

This completes the proof of Lemma A.1.19

Lemma A.1.20. Under the conditions of this Case and for r ≥ 3
−γ we have gt(r) <

0.

Proof. The proof comes in various subcases.

(a) σ ∈
(
0, 1

15

]
. Then certainly −σγ < 1

15
and

2

15
g4(r) + g2(r) =

2γr

15
sinh(σr) cosh(σr)− 6σγ sinh2(σr)

≤ sinh2(σr)

(
2

5
− 6σγ

)
< 0

so that

g(r) ≤ 13

15
g4(r) + g1(r) + g2(r)

< −13

5
sinh(σr) cosh(σr)− 6σγ sin2(−γr) +

σr

2
sin(−2γr)

= −2σ sinh(σr) cosh(σr)− 6σγ sin2(−γr)

− 3

5
sinh(σr) cosh(σr) +

σr

2
sin(−2γr)

< −2σr + 6σ − 3

5
σr +

σr

2
<
−6

γ
σ + 6σ − 3

5
σr +

σr

2
< 0

(b) σ ∈
(

1
15
, 1

2

)
and −γr ∈ [3, π]. Then σr > 3√

224
> 1

5
and −σγ <

√
3

4
. Therefore

g(r) <

(
3
√

3

2
− 3

)
sinh(σr) cosh(σr) +

3
√

3

2
sin2(3) +

σr

2
sin(6) < 0.
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(c) σ ∈
[

1
5
, 1

2

)
and−γr ∈

(
π, 3π

2

]
. Then−σ

γ
∈
[

1√
24
, 1√

3

)
and hence σr ∈

[
π√
24
,
√

3π
2

)
.

It follows that sinh(σr) cosh(σr) > 5
4
σr and so

g(r) < σ

[
−6γ sin2(γr) +

(
3
√

3

2
+ γr

)
· 5

4
r + r sin(γr) cos(γr)

]

= −σ
γ

[
6γ2 sin2(γr)− 5

4

(
3
√

3

2
+ γr

)
γr − γr sin(γr) cos(γr)

]

< −σ
γ

[
144

25
sin2(γr)− 5

4

(
3
√

3

2
+ γr

)
γr − γr sin(γr) cos(γr)

]
< 0.

(d) σ ∈
[

1
5
, 1

2

)
and −γr > 3π

2
. Since −σ/γ is in the same range as for (c) we have

σr > 3π
2
√

24
whence

g(r) <
3
√

3

2
+

3
√

3

2
sinh2(σr) +

σr

2
− 3π

2
sinh(σr) cosh(σr)

<
3
√

3

2
+
σr

2
+ 3

(√
3

2
− π

2

)
sinh(σr) cosh(σr) < 0

(e) σ ∈
[

1
15
, 1

5

)
and −γr > π. Then −σγ <

√
24

25
and σr > π√

224
, so

g(r) < −6γ2σr

γr
+

6
√

24

25
sinh2(σr) +

σr

2
− π sinh(σr) cosh(σr)

<

(
6

π
+

1

2

)
σr +

6
√

24

25
sinh2(σr)− π sinh(σr) cosh(σr) < 0.

A.2 Solving the Variational Problem

We turn to solving the variational problem to obtain the logarithm of the right edge

ρ of the square norm, using the method of Lagrange multipliers. The free cumulants

are given by km = ζ(2m)
π2m so that, denoting I(p) = −

∑
n pn log(pn) for a probability
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measure p on N we have

log ρ = −2 log π

+ sup

{
τ

(
∞∑
n=1

pn log ζ(2n) + I(p) + I(q)

)
: m1(p) = m1(q) =

1

2τ

}

Write G(τ, p, q) := τ (
∑∞

n=1 pn log ζ(2n) + I(p) + I(q)) and define Λ by

Λ(τ, p, q, λ) = G(τ, p, q) + λ1

(
∞∑
n=1

pn − 1

)
+ λ2

(
∞∑
n=1

npn −
1

2τ

)
+ λ3

(
∞∑
n=1

qn − 1

)

+ λ4

(
∞∑
n=1

nqn −
1

2τ

)
.

Since the rate function of the underlying LDP is convex it is enough to find a unique

critical point for Λ. The equations ∂Λ
pn

= ∂Λ
qn

= 0 yield

pn =
1

Zp
ζ(2n)enλ2/τ (A.2.1)

qn =
1

Zq
enλ4/τ . (A.2.2)

Moreover equating the derivative of Λ with respect to τ with zero we obtain

0 =
∞∑
n=1

pn log ζ(2n) + I(p) + I(q) +
λ2 + λ4

2τ 2
. (A.2.3)

On the other hand we can evaluate the entropies I(p), I(q) of p and q, using equations

(A.2.1) and (A.2.2):

I(p) = − logZp +
∞∑
n=1

pn log ζ(2n) +
λ2

2τ 2
(A.2.4)

I(q) = − logZq +
λ4

2τ 2
. (A.2.5)
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Adding equations (A.2.4) and (A.2.5) and substituting into (A.2.3) we obtain logZp+

logZq = 0 or ZpZq = 1. Further we can express the function to be maximised in

terms of λ2, λ4 and τ as follows:

G(τ, p, q) = −λ2 + λ4

2τ
. (A.2.6)

Solving the equations ∂Λ
∂λj

for j = 3, 4 we obtain two expressions for Zq:

Zq =
∞∑
n=1

enλ4/τ =
eλ4/τ

1− eλ4/τ
(A.2.7)

Zq
2τ

=
∞∑
n=1

neλ4/τ =
eλ4/τ

(1− eλ4/τ )2 . (A.2.8)

Combining (A.2.7) and (A.2.8) yields 2τ = 1− eλ4/τ or λ4/τ = log(1− 2τ). Hence,

Zp =
1

Zq
= e−λ4/τ − 1 =

1

1− 2τ
− 1 =

2τ

1− 2τ
. (A.2.9)

But we can also express Zp as the partition function for p:

Zp =
∞∑
n=1

ζ(2n) eλ2n/τ =
∑
n,k

n−2k eλ2n/τ =
∞∑
n=1

∞∑
m=1

(
eλ2/τ

n2

)k
=
∞∑
n=1

eλ2/τ

n2 − eλ2/τ
=

1− cot γ

2
(A.2.10)

where γ = πeλ2/τ . Further,

Zp
2τ

=
∞∑
n=1

nζ(2n)eλ2/τ =
γ2 + γ2 cot2 γ − γ cot γ

4
. (A.2.11)
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Combining equations (A.2.11) and (A.2.9) we obtain

1

1− 2τ
=
γ2 + γ2 cot2 γ − γ cot γ

4
. (A.2.12)

Moreover using (A.2.10) and (A.2.9) we get

γ cot γ = 1− 4τ

1− 2τ
=

1− 6τ

1− 2τ
. (A.2.13)

Putting this into (A.2.12):

1

1− 2τ
=
γ2 +

(
1−6τ
1−2τ

)2 − 1−6τ
1−2τ

4
(A.2.14)

and rearranging:

γ2 =
4 (1− τ − 6τ 2)

(1− 2τ)2 . (A.2.15)

Since 1− τ − 6τ 2 = 6
(

1
3
− τ
) (
τ + 1

2

)
the right-hand side of (A.2.14) is positive for

τ ∈
[
−1

2
, 1

3

]
. Since τ is the inverse of twice the mean of a probability measure it

must be positive. Hence the maximiser (p∗, q∗, τ ∗) has τ ∗ ∈ (0, 1
3
]. Putting (A.2.15)

back into (A.2.13):

2
√

1− τ − 6τ 2 cot

(
2
√

1− τ − 6τ 2

1− 2τ

)
= 1− 6τ (A.2.16)

which has a unique solution τ ∗ on (0, 1
3
). The above equations determine the max-

imiser elements p∗, q∗, and then

log ρ = 2G(τ ∗, p∗, q∗)− 2 log π = log (1− 2τ ∗)− log(4)− log
(
1− τ − 6 (τ ∗)2) .

(A.2.17)
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Re-writing this in terms of m∗ = 1
2τ∗

yields the equations given in the paper.
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dition frontière. application aux systèmes de files d’attente. Ann. Inst. Henri
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