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Abstract 

Transcriptional regulation controlling pathogen-responsive gene expression in Ara- 
bidopsis is believed to underlie the plant defence response, which confers partial 
immunity of Arabidopsis to infection by Botrytis cinerea. In this thesis networks 
of transcriptional regulation mediating the defence response are studied in various 
ways. 

First transcriptional regulation was predicted for all genes differentially expressed 
during B. cinerea infection by development of a novel clustering approach, Tem- 

poral Clustering by Affinity Propagation (TCAP). This approach finds groups of 
genes whose expression profile time series have strong time-delayed correlation, a 
measure that is demonstrated to be more predictive of transcriptional regulation 
than conventionally used similarity measures. TCAP predicts the known regula- 
tion of GI by LHY, and co-clusters ORA59 and some of its downstream targets. 
Predicted novel regulators of pathogen-responsive gene expression were then stud- 
ied in a reverse genetics screen, which discovered several novel but weakly altered 
susceptibility phenotypes. Comparison of predicted targets to known targets was 
complicated by the sparsity of mutant versus wildtype gene expression experiments 
performed during B. cinerea infections in the literature. 

To explore the context-dependence of transcriptional regulation, evidence of tran- 

scriptional regulation in different contexts was collected. This was compiled to gen- 
erate a qualitative model of transcriptional regulation during the defence response. 
This model was validated and extended by experimental analysis of transcription 
factor-promoter binding in Yeast and transcriptional activation in planta. Com- 

parative transcriptomics showed that downstream genes of some of these regulators 

- TGA3, ARF2, ERF1 and ANAC072 - are over-represented in the list of genes 
differentially expressed during B. cinerea infection, which is consistent with these 
targets being regulated by them during B. cinerea infection. 

Finally this qualitative model was used as prior information and was used along 
with gene expression time series to infer quantitative models of the gene regulatory 
network mediating the defence response. Some known regulation was predicted, 
and additionally ANAC055 was predicted to be a central regulator of pathogen- 
responsive gene expression. 
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Chapter 1 

Introduction 

1.1 Motivation 

The human food chain ultimately depends, either directly or through other ani- 
mals, on the availability of plant biomass. The availability of edible plant biomass 
is therefore a strong determinant of the availability of the food that humans con- 
sume. Because of supply and demand, reductions in the quantity of food that can 
be produced, or increases in our demand for food, raise the price of food. Our de- 

mand for food is increasing because of the size of our population, which has been 

growing since 1350 (Biraben, 1980). Our ability to produce large quantities of food 

can depend on many factors such as the availability of high-yield crop varieties, the 

cost of fertilisers, current climate conditions and the prevalence of plant diseases. 
For example, improvements in these factors have been credited with the `green revo- 
lution' that led to substantial increases in the production of food between 1960-2000 
(reviewed in Evenson and Gollin, 2003). 

In the United Nations Millennium Development Goals, goal one is to "end poverty 

and hunger". While the availability of food is only one of many factors affecting 

world hunger, it has been shown to be a key cause (reviewed in Bowbrick, 1986). 

Increased production of food can also have societal impacts, such as the increase 

in food security (reviewed in Rosegrant and Cline, 2003). Food security is a rising 

concern, due to the increasing world population and changing climatic conditions. 
For these reasons it is important to develop new methods that can increase the yield 

of crops. 

The ability of crops to resist infection by pathogens is a major factor affecting their 

yield. This is most noticeable when a plant is introduced to a disease to which it has 

not evolved resistance to. For example, the Irish Potato Famine was caused by the 

introduction of the oomycete pathogen Phytopthora infestans to Ireland (reviewed 
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in Ristain, 2002). 

1.2 Disease resistance in plants 

Animals have an adaptive immune system that allows them to develop immunity by 

exposure to most diseases; successful infections occur when pathogens evolve new 
mechanisms to evade detection. The immune system of plants, which is referred to 

as the defence response, is innate, i. e. resistance to a pathogen evolves over many 

generations rather than during the course of each plant's life (reviewed in Jones and 
Dangl, 2006). This means that the key to decreasing disease related yield loss in 

crops is to use varieties that are resistant to the pathogens that they are likely to 

encounter. 

The resistance of crop varieties can be improved by selective breeding, but this 

is time consuming and is limited by the genetic diversity of the source varieties (re- 

viewed in Roane, 1973). Greater knowledge of the molecular mechanisms that confer 

resistance to pathogens can be used to develop resistant varieties more rapidly. A 

similar approach has been successfully used to develop greater tolerance to flooding 

in rice. The isolation of a specific gene responsible for flood-resistance in a wild 

variety allowed the rapid development of flood-resistant versions of high-yield rice 

varieties (Xu et al., 2006a). This was achieved by marker assisted selection (reviewed 

in Ribault and Hoisington, 1998). 

1.2.1 The plant defence response 
Study of the defence response of plants to infection by pathogens has revealed two 

broad defence mechanisms: Pathogen Triggered Immunity (PTI) and Effector Trig- 

gered Immunity (reviewed in Chisholm et al., 2006; Jones and Dangl, 2006). PTI 

results from the recognition of elicitors of the defence response (reviewed in Boller 

and Feli, 2009). Elicitors of the defence response that are recognisably of pathogenic 

(i. e. non-self) origin are called Pathogen Associated Molecular Patterns (PAMPs; 

reviewed in Janeway and Medzhito, 2002); whereas endogenous (i. e. self) elicitors 

are called Danger/Damage Associated Molecular Patterns (DAMPs; reviewed in 

Matzinger, 2007). 

PAMPs are often highly conserved protein domains required by the pathogen for 

pathogenicity. A good example of a PAMP is bacterial flagellin, a protein required 

for bacterial mobility. Recognition by the plant Arabidopsis thaliana (Arabidopsis) 

of a peptide representing the most conserved domain of flagellin, flg22, results in ac- 

tivation of the expression of the Arabidopsis gene WRKY29; expression of WRKY29 
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leads to resistance of Arabidopsis to infection by bacterial pathogens such as Pseu- 
domonas syringae (Asai et al., 2001). i. e. recognition of the PAMP flg22 by Ara- 
bidopsis leads to PTI, which protects it from infection by P. syringae. Some PAMPS 

are not proteins; for example, chitin is a polymer of N-acetylglucosamine and forms 

the major component of fungal cell walls (reviewed in Bartnicki-Garcia, 1968). In 

a study by Ramonell et al. (2005) recognition of chitin by Arabidopsis led to the 
differential expression of many genes; knockout mutants of 9 of these genes were 
screened for altered susceptibility to the fungal pathogen Erysiphe cichoracearum. 
Three of the mutants were found to be more susceptible to infection, suggesting the 
differential expression of the corresponding genes was responsible for the activation 
of PTI of Arabidopsis to infection by E. cichoracearum. 

DAMPs are molecules produced by the plant that are damaged in characteristic 

ways by pathogens and therefore elicit the defence response (reviewed in Matzinger, 

2007). For example. Cervone et al. (1989) have shown that oligogalacturinides (OGs) 

are DAMPs formed by the interaction of a Botrytis cinerea protein, Polygalaturnase, 

with the plant cell wall. Ferrari et al. (2007) have shown that Arabidopsis treated 

with OGs are more resistant to infection by B. cinerea, showing that OGs act as an 

elicitor of the plant defence response. 

PTI resulting from the detection of PAMPs or DAMPS can successfully lead to 

either partial or full immunity of plants to infection by certain pathogens. How- 

ever, some pathogens have evolved to overcome PTI by secreting effector proteins 
into the plant; these proteins typically block recognition of PAMPs by the plant 
(reviewed in Abramovitch et al., 2006). Susceptibility of a plant to infection by a 

pathogen, which secretes effectors to blocks its recognition by the plant immune sys- 

tem, has been called Effector Triggered Susceptibility (reviewed in Chisholm et al., 
2006; Jones and Dangl, 2006). For example, He et al. (2006) have shown that the 

bacterial pathogen P. syringae secretes an effector called AvrPto into the plant, 

which suppresses the detection of flagellin. In response, some plants have evolved 

Effector Triggered Immunity, which corresponds to the detection by the plant of 

these pathogen secreted effector proteins (reviewed in Chisholm et al., 2006; Jones 

and Dangi, 2006). 

Plant pathogens have a range of lifestyles; biotrophic pathogens reduce yield by de- 

veloping a parasitic relationship, whereas necrotrophic pathogens necrotise/kill plant 

tissue to extract nutrients. Whereas PTI has been demonstrated for both biotrophic 

and necrotrophic pathogens, secretion of effectors into the plant by necro- trophic 

pathogens to suppress PTI has not yet been found. One defence response deployed 
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against biotrophic pathogens is localised cell death; Govrin and Levine (2000) have 

shown that cell death is an effective defence response against biotrophic pathogens 
like P. syringae, but is beneficial to necrotrophic pathogens like B. cinerea. The 

need for different responses to different types of pathogen is reflected by the use of 
different hormones in defence signalling (reviewed in McDowell and Dangl, 2000). 
Glazebrook et al. (2003) have shown that the balance between defence responses to 
biotrophic and necrotrophic pathogens partly relies on crosstalk between the sali- 
cylic acid (SA) and jasmonic acid (JA) hormone pathways, which are responsible 
for differential regulation of the expression of partially overlapping lists of genes. In 

general, defence responses to biotrophic pathogens rely on the SA pathway; whereas 
necrotrophic pathogens rely on the JA and ethylene (ET) pathways, which repress 
the SA pathway and therefore suppress the cell death response (reviewed in Mc- 
Dowell and Dangl, 2000; Glazebrook, 2005; Pieterse et al., 2009). 

Defence responses against biotrophic pathogens are usually reported as qualitative 
in nature; the defence response against necrotrophic pathogens seems to be more 
variable, with different levels of partial resistance observed. This has been termed 
Quantitative Disease Resistance (QDR; reviewed in Poland et al., 2008). Histor- 
ically, resistance to biotrophic pathogens has been more comprehensively studied, 
which is why this thesis concentrates on resistance to the necrotrophic pathogen B. 

cinerea. The generation of varieties with greater disease-resistance to necrotrophic 
pathogens is desirable as they could increase the yield of economically important 

crops. It is hoped that increased knowledge of the defence response of plants to 
infection by necrotrophic pathogens will allow disease reistant varieties to be de- 

veloped. In the case of crop resistance to infection by B. cinerea, crop varieties 

with increased resistance are required because the pathogen is rapidly developing 

resistance to previously effective chemical controls (reviewed in Rosslenbroich and 
Stuebler, 2000). 

1.2.2 The Arabidopsis-Botrytis pathosystem as a tractable exper- 
imental model of the plant defence response to infection by 

necrotrophic pathogens 

B. cinerea is a fungal plant pathogen that is able to infect over 200 different plants, 
including many grapes, vegetables, berries, stone fruits and Arabidopsis (Williamson 

et al., 2007; Jarvis, 1977; Koch and Slusarenko, 1990). Its effect pre- and post- 
harvest causes substantial reductions in yield for economically important crops 
(Droby and Lichter, 2004; Williamson et al., 2007). It is fortunate for researchers 

that B. cinerea can infect the model plant Arabidopsis (Koch and Slusarenko, 1990); 

while not economically important in itself, Arabidopsis is well studied, experimen- 
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tally convenient (reviewed in Fink, 1998) and is related to hosts of B. cinerea that 

are important for the human food chain. 

Arabidopsis is infected by B. cinerea spores/conidia, which germinate and then form 

appressoria, described by van Kan (2006) as infection structures that differentiate 

on the surface and form a penetration peg that breaches the cuticle. The exact tim- 
ing of penetration of Arabidopsis cells by B. cinerea appressoria after attachment of 
B. cienerea spores/conidia is not known, but conidia have been shown to germinate 

after six hours in water (Hawker and Hendy, 1963). Additionally, fast growth in 

B. cienera biomass on Arabidopsis leaves occurs, presumably during spore/conidia 

germination and hyphae formation (branching infection structure), up until a lag 

phase which occurs 20-28 hours post infection (hpi). This lag phase appears to 

correspond to the formation of dark lesions, presumably caused by penetration of 

plant cells by B. cinerea, which then grow (both in fungal biomass and lesion size) 
from 36 hpi onwards (Windram et al., in preparation). 

It is hoped that by studying the defence response of Arabidopsis, resistance mech- 

anisms will be highlighted that could be targeted by future controls, or modified 
by breeding or genetic engineering in a relevant host to decrease yield losses. The 

Arabidopsis genome has been sequenced (Bevan and Walsh, 2005), methods exist to 

disrupt or insert new sequences into its genome (reviewed in Krysan et al., 1999), and 

microarrays have been produced which can monitor the expression of its genes (Alle- 

meersch et al., 2005). These developments should allow the role of Arabidopsis genes 
in resistance against infection by B. cin, erea to be characterised relatively rapidly. 
This makes the Arabidopsis-Botrytis pathosystem a comparatively tractable model 

of plant defence response to necrotrophic pathogens. For example, Denby et al. 
(2004) have shown that quantitative resistance of Arabidopsis to infection by B. 

cinerea varies with Arabidopsis ecotype and B. cinerea isolate. Both Denby et al. 
(2004) and Rowe and Kliebenstein (2008) have shown that quantitative resistance 

of Arabidopsis to infection by B. cinerea is under complex genetic control, suggest- 

ing that it is the interaction of a set of genes that controls resistance, i. e. QDR of 
Arabidopsis to infection by B. cinerea is a polygenic trait. 

The differential expression of genes appears to be a key aspect of the defence re- 

sponse of Arabidopsis to infection by B. cinerea; Ferrari et al. (2007) have shown 

that 4,813 Arabidopsis genes are differentially expressed 48 hours post infection (hpi) 

with B. cinerea relative to uninfected leaves. i. e. the levels of mRNA corresponding 

to 4,813 Arabidopsis genes have been found to be statistically significantly different 

between infected and uninfected leaves. This corresponds to approximately 20% of 
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the genes which have corresponding probes on the microarrays used. Other studies 
have found smaller, but partially overlapping, lists of genes differentially expressed 
in Arabidopsis leaves during B. cinerea infection relative to uninfected leaves (for 

example AbuQamar et al., 2006; Rowe et al., 2010; Mulema and Denby, 2012). 

Mutants of some known regulators of gene expression have been shown to have 

altered susceptibility to infection by B. cinerea (15 such mutants are reviewed in 

Birkenbihl and Somssich, 2011). The number of known regulators of gene expression 
that have an effect on the defence response, and the scale of B. cinerea-responsive 

changes in Arabidopsis gene expression, suggest the existence of a gene regulatory 

network (GRN) that underpins the defence response of Arabidopsis to infection by 

B. cinerea. Even though some regulators are known, knowledge of the genes they 

regulate during B. cinerea infection is currently very sparse. If the structure of the 

GRN underpinning the defence response of Arabidopsis to infection by B. cinerea 

was known, it could be manipulated to increase resistance. For this reason it is 

highly desirable to increase knowledge of the structure of the GRN underpinning 
the defence response and to develop models that could predict the effect of genetic 

perturbations on the ability of Arabidopsis to resist infection by B. cinerea. To 

achieve this, novel modelling and experimental approaches will have to be devel- 

oped. 

1.3 Gene regulatory networks 

While the aim of this thesis is to identify and model GRNs underpinning the de- 

fence response of Arabidopsis to infection by B. cinerea, novel modelling and exper- 

imental approaches may also prove to be useful in the study of gene regulation in 

other contexts. This provides additional motivation because of the importance of 

gene regulation in many different contexts, both in plants and in other organisms. 

Gene regulation is the mechanism controlling the spatial and temporal expression 

of genes; changes in spatial gene expression have been shown to be instrumental in 

the development of embryos (Davidson and Erwin, 2006), and in the developmen- 

tal of different cell types from the same original stem cells in plants (for example 

Espinosa-Sotoa et al. (2004), other examples are reviewed in Pu and Brady (2009)) 

and animals (reviewed in Graf and Enver, 2009). Temporal changes of gene ex- 

pression have been found to control developmental (Breeze et al., 2011), seasonal 

(Aikawa et al., 2010) and diurnal (Locke et al., 2006; McClung, 2008) changes in 

plants. Gene regulation has also been shown to be critical for the differences between 

species, for example, many human-specific traits have been linked to the loss of DNA 

sequences controlling the expression of genes (McLean et al., 2011). This helps to 
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explain why many different species have highly conserved gene-coding sequences, 
despite highly divergent appearance and lifestyles. 

1.3.1 The regulation of gene expression 

The central dogma of molecular biology is that DNA (Deoxyribose Nucleic Acid) can 
be transcribed into RNA (Ribose Nucleic Acid), and that RNA can be translated 
into protein (as illustrated in Figure 1.1(a)). A gene, stored as a sequence of DNA 

bases, encodes mRNA (messenger RNA) which is produced from the gene by tran- 

scription. Transcription is the process of generating mRNA from a DNA template, 

which is performed by the enzyme RNA polymerase. Gene expression/transcription 
is regulated by transcription factors (TFs), which are proteins that can affect the 

transcription rate of genes by binding upstream of the gene and encouraging or 
blocking the recruitment of RNA polymerase to the transcriptional start site (as il- 

lustrated in Figure 1.1(b) and reviewed in Dynan and Tjian (1985)). Such upstream 

sequences containing binding motifs of TFs are referred to as promoters, as they al- 
low TFs to promote or inhibit transcription, and therefore expression, of the gene 
downstream of the transcriptional start site. This is called transcriptional regulation 

and is summarised conceptually in Figure 1.1(a). After transcription, mRNA is de- 

graded (Beelman and Parker, 1995). The concentration of mRNA, which is affected 
by both the transcription and degradation rate, is often referred to as gene expres- 

sion. The mRNA in turn encodes a protein, which is produced from the mRNA by 

translation. 

Transcriptional regulation is an important component of regulation within a cell, 

however it is by no means the only form of regulation. Other types of regulation 

include: epigenetics, mRNA splicing, translational regulation, post-translational 

modifications and protein-protein interactions. Many of these are able to regu- 

late transcription indirectly, for example Mazzucotelli et al. (2008) have reviewed 

post-transcriptional and post-translational regulation controlling transcription in 

the plant defence response to abiotic stress. 

Plant TF families have been reviewed in Meshi and Iwabuchi (1995); they have 

been shown to form large families that have similar protein structures and DNA- 

binding specificities. Knowledge of the function of Arabidopsis TFs, which account 

for approximately 5-10% of the Arabidopsis genome, is currently sparse (reviewed 

in Riechmann and Ratcliffe, 2000). `Omic' technologies are showing promise as a 

way to assign function to plant TFs (reviewed in Mitsuda and Ohme-Takagi, 2009). 
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1.3.2 The role of DNA binding and activation/repression domains 
in transcriptional regulation 

TFs are defined to be proteins that can bind to DNA and regulate gene expression. 
The function of TFs can be understood by studying their DNA-binding specificity 
and their effect on gene expression in certain contexts. 

DNA-binding domains recruit TFs to sequence motifs 

TFs were first identified by in vitro DNA-binding assays, which also demonstrated 
the variety of DNA-binding specificity of different DNA-binding domains (reviewed 
in Mitchell and Tjian, 1989). TFs bind to short DNA sequences called motifs, which 
are approximately 5-8 base pairs (bp) long (reviewed in Wray et al., 2003). Typi- 

cally a TF can only bind to specific variations of one or more core binding motifs 
(Badis et al., 2009). The DNA-binding specificity of a TF is determined by the 

sequence of its DNA interacting domain, which is typically 60-100 amino acids long 
(reviewed in Mitchell and Tjian, 1989). 

The ability of a TF to bind to a promoter can be experimentally tested in a number 
of ways, such as by electrophoretic mobility shift assays (EMSAs), Yeast one-hybrid 
(Y1H) or chromatin immunoprecipitation (ChIP). EMSAs measures the ability of 
a TF to bind to a given DNA sequence in vitro, by observing whether the protein 
reduces the speed at which the DNA can move through a gel during electrophoresis 
(Garner and Revzin, 1981). Y1H is a method to test the interaction of a TF and 

a DNA sequence in Yeast, this will be properly introduced in Chapter 3. ChIP is 

a method to immunoprecipitate DNA to which a protein is bound in plants. Im- 

munoprecipitated DNA can then be amplified by PCR, recognised by microarray 
or sequenced to reveal which sequences are bound by the protein (Collas, 2010). 

EMSAs are a comparatively low-throughput approach to study DNA-binding pro- 
teins; Y1H (performed against TF libraries) and ChIP (combined with microarrays 

or sequencing) are `interactomic' approaches that can be used to characterise many 
TF-DNA interactions in high-throughput. 

Activation/repression domains regulate gene expression 

The ability of TFs to bind to DNA has been shown to be necessary, but not suf- 
ficient, for regulation of gene expression (reviewed in Mitchell and Tjian (1989)). 

This is why TF binding does not necessarily lead to transcriptional regulation; the 

function performed by the binding of TFs is to allow other domains to be brought 

into play. Activation/repression of gene expression by a TF requires an activa- 
tion/repression domain which is separate from the DNA-binding domain. These do- 
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mains are typically 30-100 amino acids long (reviewed in Mitchell and Tjian (1989)). 

The independent function of DNA-binding and transcriptional activation/repression 
domains has been demonstrated by chimeric proteins combining domains from dif- 

ferent TFs, which are able to regulate gene expression (reviewed in Ptashne (1988)). 

To find genes regulated by a TF, the expression of genes in plants which have 

mutations in that TF's DNA sequence can be measured; this is called a mutant ver- 

sus wildtype gene expression experiment. Typically knockout mutants, that cannot 

express a certain gene, or over-expressor mutants, that highly express a certain gene, 

are used. Genes regulated by a TF will usually have altered expression in mutants 

of it; these can be revealed by reverse transcriptase-PCR (RT-PCR), microarray 

or sequencing. Alternatively, transcriptional regulation of a gene can be studied 
by fusing a reporter to the genes promoter; such a promoter-reporter fusion has 

the transcriptional activaty of the original gene (minus the effect of local chromatin 

conformation), but the mRNA and protein degradation of the reporter gene. A 

commonly used reporter gene in plants encodes the beta-glucuronidase (GUS) pro- 
tein from Escherichia coli (Jefferson et al., 1987). The expression of the reporter, in 

over-expressors or knockouts of certain TFs, can be used to identify transcriptional 

regulators. RT-PCR or promoter-reporter experiments are usually low-throughput, 

whereas microarray or sequencing can be used to identify genes whose expression is 

regulated by a TF in high-throughput. 

1.3.3 Gene Regulatory Networks 

Traditionally, molecular biology has been studied using reductionist approaches, 

which attempt to study biological processes by concentrating on single components. 

The reductionist approach has been enormously successful, and is responsible for 

much of our current understanding of molecular biology. However, many compli- 

cated biological processes can only be understood at a systems-level, where many 

different components interact in a manner that is too complex to understand if stud- 

ied in a reductionist way (reviewed in Regenmortel, 2004). For example, gene ex- 

pression can be controlled by the products of genes themselves, because of this gene 

regulation can form networks whose interconnectivity, feedback and feed-forward 

can produce complex dynamics of gene expression (reviewed in Alon, 2007). 

Direct transcriptional regulation is a directed pairwise relationship (A, B) between 

genes, where gene A encodes a TF that binds to the promoter of gene B and affects 

its expression; this is illustrated in Figure 1.2(a). Given a set of genes, the GRN 

describing the interconnectivity of transcriptional regulation in a specific biological 

context can be illustrated as a graph, where nodes represent genes and directed edges 
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Figure 1.2: Diagrams of transcriptional regulation. (a) TFs are proteins, which 
are produced by translation from the mRNA of a gene. and are capable of bind- 
ing to DNA. Some TFs are also capable of transcriptional activation or inhibition 
by changing the binding affinity of RNA Polymerase to the transcriptional start 
site. when this occurs it is called transcriptional regulation. (b) Transcriptional 
regulation can be represented as a simplified network diagram. 

11 



[7/PRR9J GI C 

Figure 1.3: The interconnectivity of the Arabidopsis circadian clock GRN as known 
in 2006. redrawn from Locke et al. (2006). 

(i. e. arrows) represent transcriptional regulation. For example the transcriptional 

regulation depicted in Figure 1.2(a) can be summarised as a graph. as depicted 

in Figure 1.2(b). The dynamics of gene expression depend on GRN structure and 
kinetics. which can only be properly understood within the context of the whole 
GRN. For example. the circadian clock in the model plant Arabidopsis is an example 

of a GRN. in which periodic expression of genes is achieved by multiple feedback 

loops of gene regulation (Locke et al.. 2006: McClung. 2008): this can be illustrated 

as a graph. as shown in Figure 1.3. It is obvious that mutations in any of these 

genes could have a strong impact on the dynamics of the expression of the other 

genes; this would not be obvious if the interconnectivity of the circadian clock GRN 

was not taken into account. 

Because thousands of Arabidopsis genes are known to be differentially expressed 
during B. cinerea infection (Ferrari et al., 2007) and many TFs are known to affect 
the susceptibility of Arabidopsis to infection by B. cinerea (reviewed in Birkenbihl 

and Somssich. 2011). gene expression during B. cinerea infection is likely to be reg- 

ulated combinatorially by an interconnected GRN. For example. over-expression of 
the TFs ERF1 or ORA59 reduces the susceptibility of Arabidopsis to infection by 

B. cinerea (Berrocal-Lobo et al.. 2002: Pre et al.. 2008). Both ERFI and ORA59 

are up-regulated during B. cinerea infection (Berrocal-Lobo et al.. 2002; Pre et al.. 
2008). CH1B is a gene which is up-regulated during B. cinerea infection (Pre et al.. 
2008); it is also known to be up-regulated by over-expression of either ERF1 (Solano 

et al.. 1998) or ORA59 (Pre et al.. 2008). ERF1 itself is known to be upregulated 
by the TF EIN3 (Solano et al.. 1998). This shows that TFs regulating B. cinerea re- 

sponsive gene expression can combinatorially regulate the expression of other genes 

and can themselves be regulated transcriptionally by other TFs. Knowledge of the 
interconnectivity of the GRN. underpinning the defence response of Arabidopsis to 
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infection by B. cinerea, is likely to be required before the effect of genetic perturba- 

tions on disease resistance can be predicted. 

Because current knowledge of the structure of this GRN is sparse, there are four 

major goals: identify the TFs responsible for controlling differential gene expres- 

sion during B. cinerea infection; gather together current knowledge of the structure 

of the GRN linking these TFs and their targets; validate/extend the knowledge of 
the structure of the GRN; and develop a quantitative model of the regulation of 
Arabidopsis gene expression during B. cinerea infection. These are the approaches 

pursued in this thesis. 

1.4 Transcriptional regulation controlling susceptibility 

of Arabidopsis to infection by Botrytis 

Many TFs have knockout or over-expresssor mutants which have been found to have 

altered susceptibility to B. cinerea (reviewed in Birkenbihl and Somssich, 2011). For 

example, mutants of the following TFs have been found to have altered suscepti- 
bility to infection by B. cinerea: ARF2, MYC2, ANAC019, ANAC055, ANAC092, 

TGA3, EIN3, ERF1, MYB46, MYB108, ZFAR1, WRKY70, WRKY33, ORA59, 

CAMTA3 and ATAF1 (Youn-Sung Kim et al., in preparation; Lorenzo et al., 2004; 

Bu et al., 2008; Windram, 2010; Zhu et al., 2011; Berrocal-Lobo et al., 2002; Ramirez 

et al., 2011; Mengiste et al., 2003; AbuQamar et al., 2006; Zheng et al., 2006; Pre 

et al., 2008; Galon et al., 2008; Wang et al., 2009). Of these, ANAC019, ATAF1, 

ERF1, MYB108, MYC2, WRKY70 and ZFAR1 have have been shown to be dif- 

ferentially expressed during B. cinerea infection, in the microarray experiments of 
AbuQamar et al. (2006) and Ferrari et al. (2007). Additionally, CAMTA3, ORA59 

and WRKY33 have been shown to be differentially expressed during B. cinerea infec- 

tion by Reverse Transcriptase-Polymerase Chain Reaction (RT-PCR) experiments 
(Galon et al., 2008; Pre et al., 2008; Zheng et al., 2006). 

Gene expression can be controlled by TFs, and also by chromatin modifiers. Chro- 

matin describes both DNA and the proteins called histones that bind to DNA; hi- 

stones are responsible for `packing' the DNA into a smaller volume, called a closed 

chromatin state. A closed chromatin state reduces or blocks transcription by re- 
ducing accessibility of the promoter and transcriptional start site (TSS). Chromatin 

modifiers are proteins which can alter the chromatin state of DNA (reviewed in Saha 

et al., 2006); when they alter the chromatin state around DNA regions that contain 

a gene, they can allow transcription to be controlled. For example, knockout mu- 
tants of HUBT, which encodes a RING E3 ligase which monoubiquitinates histone 
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H2B (Liu et al., 2007), have been shown to have increased susceptibility to infection 
by B. cinerea (Dhawan et al., 2009). Another chromatin modifier, SDG8, a his- 
tone methyltransferase, has been found to regulate defence related gene expression, 
and therefore its loss of function mutant sdg8_1 shows increased susceptibility to B. 

cinerea (Berr et al., 2010). Reporters fused to the promoters of HUB1 and SDG8 
have been shown to be up-regulated locally during B. cinerea infection (Dhawan 

et al., 2009; Berr et al., 2010). Additionally, a knockout mutant of SPLAYED 
(SYD), a gene encoding a SWI/SNF class chromatin remodeling ATPase, has been 

shown to be more susceptible to infection by B. cinerea (Walley et al., 2008). The 

altered susceptibility of mutants of TFs and chromatin modifiers is evidence of the 
important role of gene regulation in resistance of Arabidopsis to infection by B. 

cinerea. 

1.4.1 Inputs to the GRN controlling the defence response of Ara- 
bidopsis to infection by Botrytis 

Before the expression of genes can change in response to B. cinerea, infection must 
be detected by the plant. Pathogen perception typically takes place at the cell mem- 
brane, whereas transcriptional regulation takes place within the nucleus. For exam- 
ple, OGs are believed to be produced by the interaction of fungal polygalacturnases 
with the plant cell wall (reviewed in Cervone et al., 1989) and OG treatment has 
been shown to increase the resistance of Arabidopsis to infection by B. cinema (Fer- 

rari et al., 2007). The gene WAK1 has been shown to encode the receptor for OGs. 
WAK1 encodes a protein which contains an extracytoplasmic domain (ectodomain) 

which can interact with OGs in vitro (Decreux et al., 2006). Brutus et al. (2010) 

have shown that this domain is able to detect OGs; this was achieved by the produc- 
tion of a chimeric receptor which contained both the ectodomain of WAK1 and the 
kinase domain of the EFR receptor. The WAK 1 ectodomain was found to activate 
the EFR kinase domain in the chimeric protein following OG treatment, resulting 
in the activation of known EFR kinase regulated genes. They also showed that 

over-expression of WAK1 decreases the susceptibility of Arabidopsis to infection by 

B. cinerea, suggesting that WAK1 allows the plant to detect OGs produced during 

fungal attack and therefore to activate appropriate defence responses. Ferrari et al. 
(2007) have shown that detection of OGs by Arabidopsis results in the differential 

expression of 1,854 genes; 953 of which are also differentially expressed during B. 

cinerea infection. Some of the genes differentially expressed during OG treatment 

and B. cinerea infection encode TFs, whose mutants have altered susceptibility to 
B. cinerea, e. g. CAMTA9, ERF1, TGA3 and WRKY33 (introduced in Section 1.4). 

This shows that elicitors corresponding to B. cinerea infection can be detected by 

receptors located at the cell membrane leading to: differential expression of TFs 
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that control the defence response; and an enhanced resistance to infection by B. 

cinerea. 

Although chitin treatment has not been tested for its ability to activate the defence 

response of Arabidopsis to infection by B. cinerea, treatment with its deacetylated 

derivate chitosan has been shown to reduce the susceptibility of Arabidopsis to in- 
fection by B. cinerea (Povero et al., 2011). Additionally the TFs WRKY33 and 
WRKY70, which both have knockout mutants with increased susceptibility to in- 
fection by B. cinerea (Zheng et al., 2006; AbuQamar et al., 2006), are differentially 

expressed both during chitin treatment (Libault et al., 2007) and B. cinerea infection 

(AbuQamar et al., 2006). This suggests that the PAMP chitin, like OGs (which are 

perceived as DAMPs), are elicitors of the defence response of Arabidopsis against 
infection by B. cinerea. Both chitin and OGs are known to alter the expression 

of known regulators of the defence response and are therefore inputs to the GRN 

mediating the defence response of Arabidopsis to infection by B. cinerea. 

After the detection of elicitors of the defence response, some molecule or molecules 

must be responsible for signalling to regulators in the nucleus that B. cinerea in- 

fection has been detected. These signalling molecules may be small molecules or 

proteins, which couple pathogen perception to regulation of gene expression. As 

such these signalling mechanisms must function as inputs to the GRN controlling 
B. cinerea responsive changes in gene expression. Many signalling molecules and 

proteins have been implicated in the defence response of Arabidopsis to infection by 

B. cinerea, most of which are either hormones or protein kinases. 

Hormones have been implicated in the regulation of gene expression during B. 

cinerea infection, by experiments which have shown that mutants that are insensi- 

tive to hormone treatment also have altered susceptibility to B. cinerea infection. 

For example, Feys et al. (1994) have shown that the knockout mutant coil is insensi- 

tive to treatment with Methyl Jasmonate (MeJA), a derivative of JA. Subsequently 

coil was shown to be more susceptible to infection by B. cinerea (Thomma et al., 
1998; Ferrari et al., 2003a). Similarly Guzman and Ecker (1990) have shown that 

the knockout mutant eint is insensitive to ET treatment. Thomma et al. (1999) and 
Ferrari et al. (2003a) have shown that the eint mutant has increased susceptibility 

to infection by B. cinerea. A mutant, nprl (Cao et al., 1997), involved in signalling 

downstream of SA has not been found to have altered susceptibility to infection by 

B. cinerea (Thomma et al., 1999; Ferrari et al., 2003a); whereas a mutant, NahG, 

which expresses a bacterial enzyme, salicylate hydroxlyase, making it unable to 

accumulate SA (Delaney et al., 1994), has been shown to be more susceptible to in- 
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fection by B. cinerea (Govrin and Levine, 2002; Ferrari et al., 2003a). The difference 
in susceptibility between the nahG and nprl mutants fits with the proposal that SA 
is involved in the defence response through it's effect on other signalling pathways. 
These results show that the JA, ET and SA hormones are involved in signalling in 

response to B. cinerea infection, which fits with the differential expression of some 
B. cinerea responsive genes in mutants of these genes, as shown in Glazebrook et al. 
(2003). 

Although JA, ET and SA signalling pathways are important for controlling the 

expression of B. cinerea responsive genes, other hormone signalling pathways seem 
to be involved as well. Two additional hormones implicated in the defence response 

of Arabidopsis to infection by B. cinerea are auxin and abscisic acid (ABA). Three 

mutants, axrl, axr2 and axr6, that affect auxin signalling have also been shown to 
have increased susceptibility to B. cinerea (Llorente et al., 2008). Auxin is believed 

to regulate gene expression by modifying the degradation of Aux/IAA proteins 
which bind to Auxin Response Factor (ARF) TFs (Tiwari et al., 2003; Reed, 2001). 
Similarly, ABA has been shown to affect susceptibility of Tomato to infection by B. 

cinerea (Audenaert et al., 2002). Additionally, a knockout mutant of an Arabidopsis 
TF, zfarl, is has been shown to be more susceptible to infection by B. cinerea and 
more sensitive to ABA treatment during germination (AbuQamar et al., 2006). 

As well as signalling of pathogen perception by hormones, protein kinases have been 

shown to be responsible for B. cinerea responsive changes in gene expression. For 

example, Ferrari et al. (2007) have shown that resistance to B. cinerea induced by 

treatment with OGs - which are perceived by the plant as DAMPs - is independent 

of signalling by the JA, ET or SA hormone pathways. This was shown by inducing 

resistance to B. cinerea in the coil, eint, nahG and nprl lines with OG treatment. 

However, resistance induced by OG perception was abolished by a knockout mutant 

of PADS (Ferrari et al., 2007), this meant that OG induced resistance of Arabidop- 

sis to infection by B. cinerea depended on PADS. Ren et al. (2008) have shown 

that induction of PADS expression following B. cinerea infection depends on a pro- 
tein kinase cascade involving MAPKKKa/MEKK1-MKK4/MKK5-MPK3/MPK6. 
They also showed that a knockout of MPKS, which encodes a protein kinase in that 

cascade, is more susceptible to infection by B. cinerea. 

Recently the TF WRKY33 has been shown to be involved in the induction of PADS 

expression by MPK3/MPK6 during B. cinerea infection (Mao et al., 2011). More 

recently Lai et al. (2011a) have shown that PADS expression can still be induced in a 
knockout mutant of WRKYSS, which suggests that PADS expression may be under 
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combinatorial transcriptional regulation. Other kinases, such as the OG receptor 
WAK 1 and Botrytis Induced Kinase 1 (BIK 1) have also been shown to affect the 

susceptibility of Arabidopsis to infection by B. cinerea, implicating them in defence 

related signalling (Brutus et al., 2010; Veronese et al., 2006). 

In summary, the elicitors chitin and OGs, PAMPS and DAMPs respectively, are be- 
lieved to be recognised by Arabidopsis leading to increased resistance to B. cinerea. 
Signalling involving hormones (JA, ET, SA, ABA and auxin), as well as protein 
kinases (WAK1, BIK1 and the MPK3 kinase cascade), have been shown to affect 
the ability of Arabidopsis to resist infection by B. cinerea. Both pathogen percep- 
tion and signalling have been shown to change the expression of many genes, some 
of which are known to encode regulators of differential gene expression during B. 

cinerea infection. This suggests that pathogen perception by detection of elicitors 

and subsequent signalling cascades are inputs to the GRN controlling the defence 

response of Arabidopsis to infection by B. cinerea. 

1.4.2 Physiological outputs of the GRN controlling the defence re- 
sponse of Arabidopsis to infection by Botrytis 

It is expected that the changes in gene expression are partly an active response that 
improves the resistance of Arabidopsis to infection by B. cinerea. This is supported 
by the TF mutants which have altered susceptibility to infection by B. cinerea. It 

is also supported by the literature linking TFs to regulation of `physiological out- 

puts', i. e. enzymes directly mediating resistance of Arabidopsis to infection by B. 

cinerea. In the previous section an example was given of pathogen perception lead- 

ing to the induction of PADS expression by the TF WRKY33. pads was found 

in a mutant screen to be incapable of producing the anti-microbial compound ca- 

malexin in response to infection by P. syringae (Glazebrook and Ausubel, 1994). 

Additionally PADS has been found to encode an enzyme, CYP71B15, that catal- 

yses the final step in camalexin biosynthesis (Schuhegger et al., 2006). Camalexin 

concentration has been found to negatively correlate with susceptibility in various 

ecotypes of Arabidopsis (Denby et al., 2004). Therefore it appears that PADS is 

a `physiological output' of resistance, that is transcriptionally regulated by the TF 

WRKY33 during infection by B. cinerea to increase the production of camalexin 

and therefore increase the resistance of Arabidopsis to infection by B. cinerea. The 

role of the transcriptional regulator WRKY33 in the chain of events leading from 

OG treatment to PADS dependent resistance can be summarised as: OGs (elic- 

itor) -4 WAK1 (pathogen perception receptor) -+ MPK3 cascade (signalling) -* 
WRKY33 (transcriptional regulator) -* PAD3 (physiological output) --> camelexin 
(anti-fungal molecule). The process of pathogen perception, signalling, regulation 
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and manipulation of physiological outputs, as is seen with the regulation of PADS, 

is illustrated in Figure 1.4. 

While PADS is the best characterised physiological output, controlling resistance 

of Arabidopsis to infection by B. cinerea in response to transcriptional regulation, 

other good candidates exist. For example, Polygalacturonase Inhibiting Proteins 

(PGIPs) are known to be locally up-regulated during B. cinerea infection, both are 

also known to be up-regulated after OG treatment (Ferrari et al., 2003b). Over- 

expressors of PGIP1 and PGIP2 have been shown to have decreased susceptibility 
to B. cinerea infection; PGIPs reduce susceptibility of Arabidopsis to infection by B. 

cinerea by inhibiting fungal polygalacturonase, which would otherwise damage plant 

cells (Ferrari et al., 2003b). PGIP2 expression requires COIL, suggesting that it is 

downstream of the JA hormone signalling pathway (Ferrari et al., 2003b). Because 

PGIPs are up-regulated during B. cinerea infection, and can lead to resistance by 

inhibiting fungal proteins, they are good candidates for a physiological output reg- 

ulated by the GRN controlling B. cinerea responsive gene expression. Both PADS 

and PGIP1 expression were decreased in a knockout of ARF2 in seedlings of Ara- 

bidopsis (Vert et al., 2008), suggesting that ARF2 is able to repress their expression 
(possibly indirectly). 

For both PADS and PGIPI there is a clear mechanism by which they directly con- 

tribute to resistance of Arabidopsis to infection by B. cinerea, mutants of both have 

been shown to affect resistance, and their differential expression during infection 

suggests transcriptional regulation and some potential transcriptional regulators are 

known. In the future other potential physiological outputs will hopefully be char- 

acterised to that level. However, no other candidates were found in the literature 

with all of the above attributes. Some candidates fell short at only one of these 

attributes, for example chitinases and LACS2. 

The fungal PAMP chitin is hydrolysed by Arabidopsis chitinases. There are 22 Ara- 

bidopsis genes which are believed to encode chitinases, many of which are known to 

be induced by the interaction of Arabidopsis with pathogens (reviewed in Passarinho 

and Vries, 2002). It is believed that chitinases have a direct effect on resistance of 

Arabidopsis to B. cinerea infection, i. e. by inhibiting fungal growth by damaging the 

fungal cell wall (reviewed in Schlumbaum et al., 1986). However no literature was 

found showing that mutants of Arabidopsis genes encoding chitinases had altered 

susceptibility to infection by B. cinema. For example, a study which used anti-sense 

RNA to suppress the level of a chitinase in Arabidopsis produced inconclusive re- 

sults; while increased susceptibility was observed it was not found to be statistically 
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significant because of high variability of susceptibility between replicates (Samac 

and Shah, 1994). However, expression of a rice chitinase gene in cucumber has been 

shown to lead to reduced susceptibility to B. cinerea infection (Tabei et al., 1998), 
demonstrating that chitinases are able to inhibit growth of B. cinerea on plants. 
Upregulation of chitinases have been seen following B. cinerea infection (AbuQa- 

mar et al., 2006), as well as after chitin (in rice, Nishizawa et al. (1999)), MeJA 
(Thomma et al., 1998) or ET treatment (McGrath et al., 2005). As briefly intro- 
duced in Section 1.3.3, some TFs such as ERF1 and ORA59 are known to control 
the expression of the chitinase CHIB. Additionally, CHIB has been shown to be 
differentially expressed in a knockout of the TF MYC2 (Dombrecht et al., 2007). 
Except for the lack of a published Arabidosis chitinase mutant with altered suscep- 
tibility, chitinases, and especially CHIB as transcriptional regulators are known, are 

good candidates for physiological outputs, controlling resistance of Arabidopsis to 
infection by B. cinerea in response to transcriptional regulation. 

Mutants with morphological traits, such as cuticle defects, have also been found 

to have altered susceptibility to B. cinerea. For example, the lacs2_2 mutant has a 
higher cuticle permeability and therefore is better able to secrete antimicrobial com- 

pounds, making it very resistant to infection by B. cinerea (Bessire et al., 2007). It 
is not known whether LACS2 enhances resistance in a developmental or a pathogen 

responsive way, but it has been found to be differentially expressed during B. cinerea 
infection at 48 hpi suggesting that it is transcriptionally regulated in response to 

infection (Ferrari et al., 2007). Except for the lack of known transcriptional regula- 
tors, LACS2 is a good candidate for a physiological ouput, controlling resistance of 
Arabidopsis to infection by B. cinerea in response to transcriptional regulation. 

More speculatively, BAP1, which is known to be an inhibitor of programmed cell 
death that plays a role in the Arabidopsis defence response (Yang et al., 2007), has 

been found to be strongly up-regulated in the area close to the B. cinerea infection 

site (Mulema and Denby, 2012). This suggests that BAP1 may be involved in the 

defence response against B. cinerea, by preventing cell death which would benefit B. 

cinerea. BAP1 is known to be up-regulated in response to treatment by OGs (Fer- 

rari et al., 2007), and also in knockouts of the TFs ARF2 and MYC2 which are also 

known to have altered susceptibility to infection by B. cinerea (as introduced in Sec- 

tion 1.4) (Vert et al., 2008; Dombrecht et al., 2007). No literature could be found in 

which mutants of BAP1 were screened for altered susceptibility to B. cinerea; addi- 

tionally the `directness' of BAP1 in inhibiting programmed cell death is not known. 

For these two reasons a considerable amount of work is required to test whether 

BAP1 is actually a physiological output, controlling resistance of Arabidopsis to 

20 



infection by B. cinerea in response to transcriptional regulation. However, BAP1 
highlights the potential for inhibition of programmed cell death pathways to control 
resistance of Arabidopsis to infection by B. cinerea. This is plausible as B. cinerea 
has been shown to manipulate the defence response of tomato to encourage pro- 

grammed cell death, which increases the susceptibility of tomato to infection by B. 

cinerea (Oirdi et al., 2011). 

These potential physiological outputs, and probably many more, control the re- 
sistance of Arabidopsis to infection by B. cinerea. This means that their differential 

expression, as controlled by the GRN underpinning the defence response, is required 
for Arabidopsis to successfully resist B. cinerea infection. For this reason it would 
be desirable to elucidate the network of regulators responsible for their differential 

expression, as manipulation of that GRN should allow the resistance of Arabidopsis 

to infection by B. cinerea to be modified. 

1.5 Modelling approaches for gene regulatory networks 

Qualitative models, like graphs of GRN structure, can usefully summarise experi- 

mental findings, but they do not describe the dynamics of the regulation in a par- 
ticular context. For example, a graph of a subnetwork of the Arabidosis circadian 

clock GRN was shown in Figure 1.3; this qualitative model does not necessarily 
imply that the expression of these genes will repeat every 24 hours. These dynamic 

details emerge from a quantitative model of the regulation, and the values of pa- 

rameters of the model. An example of this is the model suggested in Locke et al. 
(2006) describing the dynamics of the Arabidopsis circadian clock GRN. By mod- 

elling the expression levels of the components of a GRN, quantitative models allow 

complex hypotheses to be made which can be tested by comparison of modelled and 

experimentally observed gene expression. This is why a quantitative model of the 

GRN controlling differential expression of genes in response to B. cinerea infection 

is highly desirable. It would allow a cycle of hypotheses and experimental validation 

which could reveal the transcriptional regulation controlling the defence response of 
Arabidopsis to infection by B. cinerea. 

1.5.1 Difficulties with using gene expression measurements to pre- 
dict gene regulation 

Modelling the effect of transcriptional regulation on gene expression is non-trivial. 
The expression of a gene may be regulated in a non-linear fashion, and may also 
be controlled simultaneously by many different transcription factors, as well as by 

epigenetic regulators such as chromatin state and DNA methylation (for example 
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Mazzucotelli et al., 2008). Furthermore, protein concentration may not correlate 

with RNA concentration for a given gene (Gygi et al., 1999). Gene expression is 

also a proxy measure of the balance between the mRNA transcription and RNA 

degradation rates (Beelman and Parker, 1995), only the former being controlled 
by transcriptional regulation. TFs may also require post-transcriptional activation 
before regulating direct targets (for example Mao et al., 2011). In fact, master 

regulators are likely to be regulated non-transcriptionally, as they will need to re- 

spond to environmental cues, e. g. TFs activated by kinase cascades, which are in 

turn activated by receptors that recognise pathogens. It is therefore clear that ac- 

curately predicting transcriptional regulation from gene expression is challenging, 

made harder by measuring gene expression from mixed populations of cell types. 

There are also mathematical problems that affect the accuracy of such predictions, 

resulting from the large number of variables observed relative to the amount of ob- 

servations made upon them (reviewed in Bellman, 1961; Cleaskens and Hjort, 2008). 

As a general rule the more complex the model of regulation, the fewer genes can 
be modelled together accurately given a finite amount of data. This results in a 
two-fold approach to modelling transcriptional regulation: determine which genes 

should be modelled together; and then use a modelling approach that is most suit- 

able given the amount of genes and existing knowledge about the complexity of their 

regulation. 

1.5.2 Determining which genes should be modelled together 

The method used to chose genes to model together will affect the usefulness of that 

model. Also, as discussed above, the fewer genes modelled together the easier it is 

to fit the models accurately. 

Genes whose mutants have altered phenotypes relevant to specific pro- 

cesses 

Gene function can be revealed by observing the effect of altered expression. This 

can be performed using altered expression mutants such as gene knockouts and over- 

expressors. If a specific biological process is being studied, then genes whose altered 

expression affects the process are described as displaying an altered phenotype. If 

these genes are TFs then it is likely that the altered phenotype is caused because the 

TFs no longer regulate the expression of genes in the way they did in the wildtype 

organism, i. e. TFs whose mutants have altered phenotypes are likely to be important 

components of the GRNs that coordinate the biological process. Therefore it makes 

sense to model together genes which display altered phenotypes in the same (or 

similar) biological processes as they are likely to regulate, or be regulated by, each 
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other. For example, it would make sense to model the expression of genes that have 

mutants which have altered susceptibility to B. cinerea, as they would be likely to 
be involved in the defence response of Arabidopsis to infection by B. cinema. 

Experimental evidence suggesting transcriptional regulation 

Experimental approaches can be used to study transcriptional regulation, as in- 

troduced in Section 1.3.2. Different experimental methods test different aspects of 
transcriptional regulation, such as the binding of TFs upstream of a gene or the 

effect of a TF on the expression of its target genes. Often these methods show likely 

transcriptional regulation rather validated transcriptional regulation, this can be 

because the experiment was performed either: in vitro; in Yeast; in plants but in 

a different context; with ectopic levels of the transcription factor; or in a way that 

fails to discriminate between direct and indirect regulation. It can be interesting to 

model the expression of these genes to see which of these likely regulatory events 

are supported by the expression data. This approach will be applied in Chapter 4. 

Genes differentially expressed during specific processes 

Both of the above methods are heavily biased towards genes which are already 
heavily studied, meaning that important unknown regulators are ignored. This 

can be a problem when key transcriptional regulators of a biological process have 

yet to be found. Transcriptomics can be used to find genes that are differentially 

expressed during specific biological processes, these are genes whose mRNA levels 

are being differentially regulated during the biological process. This regulation can 

either occur epigenetically, transcriptionally or by regulation of mRNA degradation. 

If some of the differentially expressed genes are TFs then it is likely that they are 

involved in transcriptional regulation during that biological process, so it makes 

sense to model them with the other differentially expressed genes. 

1.5.3 Information theory 

Information theory approaches that statistically model gene regulation, are appli- 

cable to large groups of genes. They typically work by calculating the `similarity' 

of gene expression profiles over time or conditions. It is hoped that genes whose 

profiles are more `similar' are more likely to be involved together in gene regulation. 

This approach is only able to infer undirected transcriptional regulation. That is, 

it infers pairs of genes in which the expression of one of the genes is affected by 

regulation by the protein encoded by the other, but not which of these genes is the 

regulator. An example of this is the paper by Carrera et al. (2009), which uses a 

continuous generalisation of mutual information introduced by Daub et al. (2004) 
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as a similarity measure and applies it to a compendium of microarray data. It is 
important in such approaches to demonstrate that the similarity measure can dis- 
tinguish between regulation and its absence, at least better than guesswork and 
ideally better than commonly used similarity measures. An example of this kind of 
benchmarking of similarity measures can be seen in Yona et al. (2006). 

Other commonly used measures of similarity are negative Euclidean distance, Pear- 

son's correlation coefficient (PCC) and Spearman's rank correlation coefficient. A 

similarity measure made for gene expression time series was introduced by Qian 

et al. (2001) that can find time-delayed correlation; this has been shown to correctly 

predict some known regulation. This will be introduced fully and applied in Chapter 

2. 

Information theory approaches to model gene regulation have the advantage that 

they can be applied to large groups of gene expression profiles. However there are 

a number of important disadvantages: 

1. Modelling large groups of genes means that many profiles will appear similar 
by chance alone. 

2. Similarity of gene expression profiles is more often caused by co-regulation 
than by regulation. 

3. Similarity measures are by definition pairwise, meaning that combinatorial 

regulation would be undetectable. 

4. It is not possible to determine the direction of regulation if a symmetric simi- 

larity measure is used 

5. Even if a similarity measure predicts transcriptional regulation well, its false 

positive rate may still be too high to be of practical use in a given setting. 
While better than guesswork, the success rate may not be high enough to 

justify the use of researcher time and project resources required to validate 

the predictions. 

1.5.4 Graphical models 

Graphical models can be used to model the regulation of medium sized groups 

of genes, depending on the size of the gene expression dataset and the complex- 

ity of the modelling approach. A graph, G, is defined as G := (V, E), where 

V :_ {V1, V2, """V,, } is a set of vertices and E :_ {El, E2, """ Em} is a set of edges. 
For example, the graph in Figure 1.5(a) can be defined by V :_{1,2,3,4} and 
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Figure 1.5: An example of a graph. which can be used to represent networks of 
transcriptional regulation. Blue circles are vertices. which can represent genes. and 
black arrows are edges. which can represent transcriptional regulation. (a) A simple 
graph. (b) A simple bipartite graph representing the same relationships with a 
Markovian dependence. 

E := {(1,3), (1,4). (2.4)}. When modelling gene regulation with a graphical model, 
each vertex can represent a gene and each edge can represent transcriptional regu- 
lation. i. e. (A, B) or A -> B can represent gene A transcriptionally regulating gene 
B. as in Figure 1.2. 

To connect gene expression data to a graph that represents its regulation, a proba- 
bilistic model must be defined. A commonly used approach is to model gene regu- 
lation using a. Bayesian network (BN). A BN is defined as a directed acyclic graph. 

a directed graph with no loops. with edges representing the conditional dependence 

between random variables represented by the vertices. The distribution of random 

variable. A. given data. X. is defined as follows: 

P(AIX) := 
P( I A) (A) (Bayes theorem) (1. i 

(i. 2) 
Where P(XIA) is the distribution of X given A. P(A) is a prior distribution over 
A and P(X) := fA P(XIA)dA is the marginal distribution of X. P(X ýA) is called 
the likelihood. P(A) is called the prior and P(X) is called the marginal likelihood. 
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Gene regulation over time can be modelled using dynamic Bayesian networks (BNs), 

where two nodes exist for each gene, representing gene expression levels at current 
and previous time points respectively (Murphy and Mian, 1999), for example Figure 

1.5(b). Dynamic BNs can model networks with loops by "unravelling the network 
in time", e. g. auto-regulation can be taken into account by allowing the random 

variable to depend on its value at the previous time point, this can be represented 
by a directed acyclic bipartite graph. 

BN models can be used to learn network structure de novo by working out the 

Bayesian distribution of graph structures given the data and prior distributions. 

If prior knowledge of the network structure exists, it can be integrated with the 

data using the prior (Heckerman et al., 1995). Graphical approaches to model gene 

regulation have the advantage that they can be applied to medium size groups of 

genes. They can also model combinatorial regulation, i. e. the regulation of a gene's 

expression by several different TFs simultaneously. However there are a number of 
important disadvantages: 

1. Given a dataset with a realistic number of observations, it can be hard to 

model non-linear regulation. 

2. The number of different possible graphs grows super-exponentially with the 

number of vertices (Robinson, 1973), making it increasingly hard to distinguish 

between each model given a limited number of observations. 

3. If prior information is used, prior weights must be set. 

4. As with information theory approaches, graphical modelling methods must 

have a sufficiently low false positive rate to generate predictions likely to be 

useful to experimental biologists. 

Literature on benchmarking graphical model inference approaches on 

gene regulatory networks 

A wide range of different graphical model based network inference approaches have 

been applied to the prediction of the structure of GRNs. Methods that use time- 

series of gene expression have been reviewed in Sima et al. (2009), which introduces 

the methods and then discusses the need for comparative studies on `ground truth' 

networks, i. e. GRNs of known structure. Unfortunately such networks are rare, 

which has limited researchers ability to perform comparative analyses of the accu- 

racy of methods that predict network structure. Recent progress has been made 
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by using simulated data, synthetic in vivo GRNs or GRNs whose structures are 
partially known. 

Simulated data has been used, for example in the DREAM challenges, where the 
`ground truth' was only revealed to predictors after predictions have been made. 
Assessment was also made `blind' to prevent conscious or subconscious bias in the 
comparison of the methods (Marbach et al., 2009; Prill et at., 2010; Marbach et al., 
2010). 

In Cantone et al. (2009) a synthetic biology approach was applied to benchmark 

various network modelling methods. A GRN was constructed in S. cerevisiae to 
be minimally affected by external influence, except by the switch from one type of 
growth medium to another. Because the GRN was constructed its exact network 
structure was known, which allowed the accuracy of predictions made by different 

methods to be compared. Because the synthetic network was generated in vivo the 
dataset produced is likely to be more realistic than simulated data. 

An alternative approach is to take a naturally occurring GRN that is reasonably 
well characterised, and to take literature knowledge to be an `approximate ground 
truth' against which predictions can be compared. This approach has been taken 
by both Morrissey et al. (2010) and Penfold and Wild (2011), using a time series of 
Arabidopsis gene expression to study the circadian clock GRN. 

In all benchmarking studies performed so far, correct prediction of network structure 
has been shown to be incredibly hard, i. e. predictions of transcriptional regulation 
typically have non-trivial false positive rates. Incorrect predictions can be made 
by using insufficiently informative data, by making incorrect model assumptions 
(correct assumptions aren't fully known), and because of the complexity of combi- 
natorial regulation. Because of this, accurate inference of GRN structure from gene 

expression data is an unsolved problem (Marbach et al., 2010). 

VBSSM 

One class of graphical model is the state space model (SSM)/Linear Gaussian 

Model/Kalman filter model, which is itself a dynamic BN in which some variables 

are considered to be unobserved (Brown and Hwang, 1997; Roweis and Ghahra- 

mani, 1999). In Beal et al. (2005) a SSM was applied to gene expression time series, 

where the unobserved variables can represent relevant unmeasured quantities, such 
as: genes whose expression has not been measured; protein levels; and the effect 
of degradation. In this section, the Variational Bayesian SSM (VBSSM) approach 
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introduced in Beal et al. (2005) is briefly introduced, following that paper. 

In a generic SSM the measured variables are represented as a vector Mt at each 
time point, and so the time series of observations is a sequence y. :_ (y1, YT), 
where T is the number of time-points. It is assumed that the value of yt depends on 
the values of the unobserved/hidden state variables xt at the same time point. It 
is also assumed that the value of the hidden states, xt, depends on the value, xt_1, 
of the hidden states at the previous time point, which is called a Markov Process 

assumption. This means that a sequence, x.: _ (xl, """, XT), of hidden states, xt, 
exist. This results in the following joint probability for a given x. and y.: 

T 

P(x., Y. ) = P(ii)P(yl1? i) 
HP(Itlxt-i)P(y lit) (1.3) 
t=2 

x1 is assumed to be normally distributed, and then dependencies are assumed to be 
linear and normally distributed, resulting in the following state space model: 

it = Axt-i + wt, ymt - N(0, Q) (1.4) 

yt = Cxt + 
_vt, v_t - N(0, R) (1.5) 

A contains the linear coefficients describing the dependency of the hidden state, xt, 
on its value at the previous time point, it_,. C contains the linear coefficients de- 

scribing the dependence of the observed (sometimes referred to as the emitted) state, 

yt, on the hidden state, xt, at the same time point. Q and R define the covariance of 
the noise vectors, wt and 

-vt, of the hidden states and observed variables respectively. 

In the application of this SSM to gene expression data, y is taken to be a vector of 

gene expression measurements at time point t. To allow a dependence between the 

expression of genes this generic normal-linear SSM is extended in the following way: 

ýt = Axt-i + Bya-i + wt, wt " N(0, Q) (1.6) 

Mt = Cxz + Dyt_1 + vt, v_t - N(0, R) (1.7) 

B contains the linear coefficients describing the dependency of, xt, the value of the 
hidden states at a time point, on the value, yt_1, of expression of all genes at the 

previous time point. D contains the linear coefficients describing the dependency 

of, yt, the expression of all genes at a time point on the value, yt_1, of expression 
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of all genes at the previous time point. In this way the hidden states and gene 

expression can all be allowed to affect each other at the next time point, providing 

a model of gene regulation and external influences over time. The equation for the 

gene expression data can be rewritten, by substitution of Equation (1.6), as: 

y = C(Axt 
-i 

+ Byt_1 + wt) + Dy 
-i 

+ Et (1.8) 

y= CAxt_ 1+ CByt_1 + Cwt + Dyt_1 + Et (1.9) 

Mt = CAxt_ 1+ (CB + D)yt_1 + Cwt + vt (1.10) 

And so to a first order (CB + D) represents the effect of the expression of each gene 

on the expression of all genes at the next time point. A threshold can be applied 

to this matrix to give an inferred network structure, approximately representing 

the dependency of each gene on the expression of other genes over time. Because 

transcriptional regulation is one way in which the expression of one gene can affect 

the expression of another, this SSM can be used to model GRNs. 

To predict the structure of a GRN, the distribution over parameters of the SSM 

is inferred given a gene expression time series dataset and prior distributions over 
the parameters. The distribution of these parameters can be inferred using a varia- 
tional Bayesian expectation-maximisation (EM), as detailed in Beal et al. (2005). 

1.5.5 Differential equation models 
Differential equations can be used to model transcriptional regulation by relating 

the rate of change of gene expression to the concentration of the TFs that transcrip- 

tionally regulate that gene. An Ordinary Differential Equation (ODE) is defined 

as: 

dx(t) 
_ ft) (1.11) 

dt 

Where dt) is the rate of change of x(t) with respect to time. Here x(t) could be the 

expression level of a gene. For example f (x, t) can be defined to take into account 

basal transcription, B, transcriptional activation, a, and mRNA degradation, b 

(Adapted from Honkela et al., 2010): 

dritt) 
=B+ a(t) - S(t)x(t) (1.12) 

A system of ODEs is the vector generalisation of an ODE, I. e. 
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dt 
f 4, t) (1.13) do (t) 

= 

Where x= [xl, x2, """, x,,, ]. Systems of ODEs can be used to model both transcrip- 

tion and translation. They can also be used to model networks of several genes 

regulating each other's transcription. They are well suited for modelling non-linear 

combinatorial regulation of transcription, translation and degradation of mRNA or 

proteins. However, the more complex the model the more parameters are needed. 
Where these parameters have not been determined experimentally, they will have 

to be inferred and the more parameters to infer the more samples are need. Here 

again more complex models become harder to fit given limited data. This typically 

limits ODE modelling approaches to small sets of genes, ideally with the network of 

regulation already known. 

Because the components and structure of the GRNs underpinning the defence re- 

sponse are insufficiently well known, information theory and graphical modelling 

approaches, rather than ODE modelling approaches, are applied in this thesis to 

predict the structure and dynamics of gene regulation during the defence response. 

1.5.6 Literature on the prediction of gene regulation from gene 

expression in Arabidopsis 

Recently several authors have attempted to use published microarray data to infer 

Arabidopsis GRNs using either information theory (Carrera et al., 2009) or discrete 

BNs (Needham et al., 2009). The work of Carrera et al. (2009) applies a continuous 

generalization of mutual information to data on the expression of approximately 
20,000 genes from a compendium of 1,436 microarrays. This approach is not able to 

infer the direction of transcriptional regulation. The work of Needham et al. (2009) 

is better in two respects: it applies BN inference to find probable causal networks, 

allowing the direction of transcriptional regulation to be inferred; and it applies net- 

work modelling to small sets of genes at a time, which may allow an improvement 

in accuracy. Two shortcomings with this approach are that discretised gene expres- 

sion data was used, and the genotypes of the biological samples were not taken into 

account, i. e. some samples are from mutants such as knockouts, which may have 

subtly different GRN structures due to the lack of a particular regulator. 

A different approach would be to use a time series of gene expression and to in- 

fer a continuous state space model (SSM) as described briefly in Section 1.5.4 and 

fully in Beal et al. (2005). This approach has been applied to predict the structure 

30 



of a GRN controlling senescence in Arabidopsis (Breeze et al., 2011). 

1.6 Aims and objectives 

It is clear that a GRN is involved in the regulation of the defence response of 
Arabidopsis to infection by B. cinerea. However, knowledge of its components and 
structure are currently sparse. We aimed to find novel components of this GRN, 

such as TFs regulating the defence response, and to characterise the GRN structure 
linking them by transcriptional regulation. We also aimed to predict the components 

and structure of this GRN in a way that is data-driven and relatively unbiased with 

respect to the literature, e. g. not just investigating TFs which are already suspected 
to play a role in the defence response. This will allow us to reveal novel aspects of the 
defence response. We also aimed to develop a quantitative model of the the GRN, 

to allow predictions about gene regulation to be made and tested experimentally to 

refine the model. 

1.7 Chapter outlines 

In Chapter 2a time series of gene expression during B. cinerea infection is intro- 

duced and used to predict regulators of differential expression in response to in- 

fection. Novel computational approaches to predict transcriptional regulation from 

gene expression time series are introduced, and predicted regulators tested in a re- 

verse genetics screen. 

In Chapter 3 experimental evidence of transcriptional regulation, between TFs and 

physiological outputs involved in the defence response, is compiled from the liter- 

ature. This is used to generate a qualitative model of the GRN underpinning the 

defence response of Arabidopsis to infection by B. cinerea. This qualitative model 
is tested and extended by cloned TF library yeast one-hybrid and transient trans- 

activation assays. Context-dependence of transcriptional regulation is studied by 

comparative transcriptomics. 

In Chapter 4 VBSSM is used to predict the dynamics of gene regulation between 

the genes suggested to regulate each other in the qualitative model of the previous 

chapter. VBSSM is first used with an uninformative prior, and then with informa- 

tive priors based on experimental evidence of gene regulation from the literature 

and the previous chapter. Predictions are compared to the temporal precedence of 
differential expression to highlight the most plausible predictions. 
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In Chapter 5 the results of the previous chapters are discussed and conclusions 

made. 
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Chapter 2 

Genome-wide inference of 
transcriptional regulation from 

gene expression time series and 
phenotype screening of inferred 

regulators of the defence 
response 

The aim of this chapter is predict specific transcriptional regulation between genes 
differentially expressed during B. cinerea infection. Knowledge of pathogen-responsive 
gene regulation would allow regulators to be targeted by genetic perturbations to 

alter the expression of downstream targets, and therefore the ability of Arabidopsis 

to resist infection. In this way, strategies to increase the resistance of Arabidop- 

sis to infection by B. cinerea may be revealed. These strategies may also work in 

agronomically important crops. To achieve this, various computational approaches 

will be applied to a time series of gene expression during B. cinerea infection. Then 

inferred regulators of the defence response will be tested in a reverse genetics screen 
to validate their role in the defence response. 

2.1 Introduction 

2.1.1 The forward and reverse genetic approaches 

In 1903 Wilhelm Johannsen introduced the terms genotype and phenotype, to distin- 

guish between the material an organism inherits from parents and their observable 
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characteristics. He explained these concepts in a review in an American journal 

a few years later (Johannen, 1911). The role of chromosomes in the genotypic 
inheritance of a phenotype was first demonstrated by William TH Morgan, who 
showed that a rare white-eye phenotype in the fruit-fly Drosophila melanogaster was 

inherited in a gender dependant way. This meant that the white-eye phenotype was 
recessive and was controlled by the X chromosome (Morgan, 1910). 

One of Morgan's students, Hermann Muller, demonstrated that mutations induced 
by radiation could be stably inherited and showed mendelian patterns of inheritance 

(Muller, 1927). This approach, the identification of altered phenotypes in a popula- 
tion with induced mutations and the subsequent identification of the chromosomal 
location of the gene or genes responsible, became known as the 'forward genetics' 

approach. Through forward genetics Beadle and Tatum (1941) showed that some 

mutations changed both a specific gene and a specific protein, leading them to sug- 

gest that each gene encoded one protein. 

Greater knowledge of genomic sequence has allowed researchers to apply an al- 
ternative to `forward genetics' called `reverse genetics' (for example Krysan et al., 
1999). In this approach, lines of known genotype are tested for altered phenotypes, 
allowing researchers to determine the phenotypic effect of a given mutation. This 

allows researchers to prioritise the study of the effect of mutations in certain regions, 

such as the coding sequence of genes differentially expressed in certain conditions or 

with a similar coding sequence to genes already known to have an effect on pheno- 
type. In principle `reverse genetics' can be used to increase the proportion of altered 

phenotypes discovered by screening only lines whose known function is likely to be 

required for a wildtype phenotype. In practice this can be complicated by redun- 
dancy, where combinatorial mutants are required to observe an altered phenotype 
(reviewed in Kafri et al., 2009). 

2.1.2 The effect of gene regulation on phenotype 

It was originally hypothesised by Jacob and Monod (1961) that the regulation of 

gene expression was an important factor in phenotypic effects; later this would be 

demonstrated experimentally. The interruption of transcriptional regulation can 

lead to dramatic phenotypes; this is clearly demonstrated in the phenotypic effects 

of mutations of cis-regulatory sequences (reviewed in Wray, 2007), i. e. sequences 

that lie upstream of a gene and are important for control of its transcription. Mu- 

tations in cis-regulatory sequences can cause phenotypic differences by altering the 

expression of a gene in a given context, with a downstream effect on development, 

primary metabolism or environmental adaptation. Gene expression can be altered 
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by mutations in cis-regulatory sequences, which can modify the binding affinities of 
interacting TFs to the location of the mutation and therefore alter the transcription 

rate. 

When organisms face environmental challenges they can use transcriptional reg- 

ulation to modify their transcriptome to increase their chances of surviving and 

reproducing. Plants must adapt to the stresses that present themselves, and this 

is enabled in part by transcriptional reprogramming. The importance of transcrip- 

tional regulation in plant adaptation to stress has been demonstrated by genetic 

studies showing that many TFs are required (Singh et al., 2002; AbuQamar et al., 
2006; Birkenbihl and Somssich, 2011), i. e. knockout or over-expressors of these TFs 

are unable to adapt normally to environmental stress. 

2.1.3 The analysis of microarray time series 

To study the changes in gene expression during an environmental stress, such as 
during B. cinerea infection, microarrays can be used. Gene expression analysis by 

microarrays is now a well-established approach in high-throughput molecular biol- 

ogy. Microarray experiments with a single time-point can be used to show which 

genes are differentially expressed in certain conditions. Time series microarray ex- 

periments are able to extend this to reveal the timing and dynamics of gene regula- 

tion (for a summary see Table 1 of Sima et al. (2009); for example primary literature 

see Spellman et al. (1998); Gasch et al. (2000); Arbeitman et al. (2002); Baugh et al. 

(2003); Orlando et al. (2008); Breeze et al. (2011)). These datasets allow the role of 

transcriptional regulation in an organism's response to developmental and environ- 

mental cues to be studied. 

To gain an understanding of these time series researchers must deduce the rela- 

tion of changes in gene expression to other changes occurring within the cell. This 

can be achieved by identifying regulators of expression in specific conditions and the 

effect of changes in expression on downstream processes. However, identification of 

transcriptional regulation is challenging given the context dependence, complexity 

and scale of genome-wide transcriptional dynamics. To help tackle these challenges 

many different computational approaches have been developed and applied. 

Microarrays are a high-throughput experimental method for measuring the tran- 

scriptome, i. e. quantifying the relative abundance of all mRNA molecules in a sam- 

ple. They contain DNA probes arranged in a grid. Each probe hybridises to cDNA 

(complementary DNA) generated from one specific mRNA sequence, as well as oc- 

casionally cross-hybridising weakly to other cDNA sequences. Fluorescent dyes are 
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incorporated into the cDNA and the intensity of fluorescence at each grid position 
is recorded to semi-quantitatively measure the concentration of the corresponding 
cDNA sequences. In this way the concentration of specific transcripts in the original 

sample can be quantified. 

Microarray data is subject to both biological and technical variation. Biological vari- 

ation can be intrinsic or due to poorly controlled experimental conditions. Technical 

variation is error caused by technical problems relating to sample dye incorporation, 

hybridisation and microarray printing defects. Technical variation can be decreased 

by applying quality control and normalisation methods. Quality control can be used 
to monitor technical variation and highlight when it gets beyond reasonable bounds. 

Microarrays that fail quality control can be repeated. Normalisation approaches can 
then be applied to further decrease technical variation by adjusting values to take 
into account dye biases, spatial hybridisation variation and print tip variations (for 

example, Wu et al., 2003). 

The first stage of the analysis of normalised gene expression is to identify genes 
that are differentially expressed between different samples. These are genes which 
have been transcribed at a different rate, or whose mRNA has been degraded at 

a different rate between the different samples. Differentially expressed genes can 
be identified using hypothesis tests such as t-tests or ANOVA. Microarray experi- 

ments performed in a time series allow for temporal differential expression analysis 
by methods that explicitly take time into account, for example Timecourse (Tai and 
Speed, 2006) or Gaussian Process two-sample (Stegle et al., 2009). The timing of 
differential expression can be identified from two-sample time series, for example 

control and treated samples, by analysing time points separately or by probabilistic 

modelling of the time series (Stegle et al., 2009). 

Notation 

After identification of differentially expressed genes, they can be studied further by 

comparing their expression. To introduce this properly, some basic notation will be 

introduced. 

A time series microarray dataset, X, is a 3-dimensional table containing the ex- 

pression values of genes 9= 11,2, " .., G}, for time points T= 11,2,. "", T}, in 

replicates R= {1,2, ""., R}. Let Xgtr be the mRNA expression value of gene gE9 

at time tET in replicate rER. For simplicity of notation Xgt is taken to be 

the mean mRNA expression value of gene g at time t averaged over replicates. The 

average expression profile for gene g is denoted X9. = [X91, X92, """, XXT]. 
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A gene expression profile, X9. 
, 

details the expression of a gene over different exper- 
imental conditions. In the case of microarray time series the conditions are discrete 

time points. It can be informative to cluster gene expression profiles to find groups 

of genes that are co-expressed, as they may be under similar regulatory control (for 

examples Tavazoie et al. (1999); Yona et al. (2006)). Co-expression can be mea- 

sured by comparing the expression profiles of genes, either by applying a similarity 

measure or by fitting statistical distributions to the data. Clustering algorithms are 

widely used for the purpose of inferring sets of co-expressed genes from gene expres- 

sion data (e. g. Eisen et al. (1998); Tavazoie et al. (1999); Ghosh and Chinnaiyan 

(2002); Heard et al. (2005); Thalamuthu et al. (2006)). Such algorithms seek to 

partition the set of genes into subsets whose average expression profiles are more 

similar within subsets than between them. Some commonly used clustering methods 

for gene expression data are introduced in the next two sections. 

Clustering gene expression based upon similarity measures 

It is common for gene expression profiles to be clustered based upon their similarity 
(or negative distance), where similarity is defined as a function, S, mapping a pair 

of gene expression profiles Xi. and Xj. to a similarity score. Formally, a similarity 

measure is a function S: Gx9R. 

Similarity measures The most widely used measures of similarity used for co- 

expression analysis include the (negative) Euclidean distance and PCC. Euclidean 

distance, d, is the standard measure of distance; it is based on the Euclidean norm. 

See Equation (2.1) for a definition of the Euclidean norm and Equation (2.2) for a 

definition of Euclidean distance. 

Given x= [Xi, X2, ... l Xn]5 11XII _. x? (2.1) 

d(X:., Xj. ) :_ JjXZ. - Xj. 11 (2.2) 

Equation (2.2) treats the expression profiles as points in a T-dimensional space 

and defines the distance between pairs of expression profiles by the length of a 

straight line connecting the points that represent them. PCC is a similarity measure 

that scores pairs of expression profiles highly if they are linearly proportional, see 

Equation (2.3) for a definition. 
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T 

PCC(Xi., Xý. ) :_ 
ýt=1(Xit -. Yi. )(Xjt _. g j. ) (2.3) 

zt=l (xit - Xi )2 ýt=1(xi, 
` 

xi 
.)2 

Where Xy.: = T j: T 
1 X9t is the mean expression value of gene gE 

PCC and (negative) Euclidean distance are equivalent, in rank terms, when ap- 

plied to standardised data, i. e. data that has been transformed to have mean equal 
to zero and standard deviation equal to one. Equivalent in rank terms means that 

there exists a strictly increasing function, f, mapping one to the other. The definition 

of strictly increasing for function f is as follows, Va >brf (a) >f (b). 

Given Xk. =0 and 711 
(Xkt - Xk")2 =1 `dk Eg (2.4) 

t=1 
T At - Xi. Xt- JC 

PCC(Xi., X;. ) 
ýt-1( )( i. ) (2.5) 

(T - 1)-1 J: 
=, 

(X it - JCZ. )2 l(Xjt - Xß. )2 

(T - 1) Et 
1(Xit - Xi. )(Xjt - 

Xý. ) (2.6) 
(Xit - Xi 

")2 
ýt 

1(Xj t- 
Xj")2 

T 

_ (T - 1) E XitXjt (2.7) 

t-i 

Which is rank equivalent to A(T - 1) 
-t=1 

(XitXjt) - C, where A and C are positive 

constants. So we can choose any positive values for A and C, for example A :=T? 1 
and C := Et 

1(X 
t+ Xýt). Then we have that: 

TTT 

ýt) (2.8) A(T - 1) E XitXjt -C 2XitXjt - 
E(X + X2 

t=1 t=1 t=1 
T 

) (2.9) 
_ 

ý(2XitXjt 
- X2t - X32 

t=1 

T 

- 
E(Xzt 

- Xjt)2 (2.10) 
t=1 

_ -IIXj. - Xj. 112 (2.11) 

= -d(XX., Xß. )2 (2.12) 

Because Euclidean distance is strictly non-negative and squaring is a strictly in- 
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creasing function for non-negative numbers, d(Xi., Xj. )2 is rank equivalent to the 
Euclidean distance d(XZ., Xj. ). 

Qian et al. (2001) have introduced a similarity measure that is based on PCC, but 

allows the detection of time delayed correlation in time series. This has been shown 
to predict known and infer novel transcriptional regulation. It has also been shown 
to score functionally related gene pairs highly, as effectively as PCC and Euclidean 

distance in most of the test cases (Yona et al., 2006). Here the maximal match 

score introduced in Qian et al. (2001) is referred to as '(i, j), which is defined in 

the following paragraph. The next three pages roughly reproduce the introduction 

of Kiddle et al. (2010). 

Given a time series of gene expression measurements Xgt 
, 

Algorithm 1 returns 

a matrix (i, j) of similarity scores for all gene pairs (i, j) Ex1. Data X9. for 

each gene profile are assumed to be normalized to mean zero and standard deviation 

one. For a given pair (i, j) the algorithm uses dynamic programming to build up a 

matrix fl+, which compares and scores each alignment between profiles Xi. and Xj. 
. 

Time-delayed anti-correlation is captured in a second matrix ft 
, whose entries are 

obtained in a similar manner. Finally, transient correlations are captured by explic- 
itly forcing each entry of Q+ and S2- to be non-negative. Then, similarity score '0 
is simply the highest entry in St+ or SZ-. The alignment matrices S2+ or S2- further 

yield a "match type", which may be positive/negative and simultaneous/delayed 

and describes the characteristics of the highest scoring alignment. 

Algorithm 1 Computation of similarity measure 0, following Qian et al. (2001), 

with the notation introduced in Kiddie et al. (2010). 
(1) Initialise Q+, Q+, 1 and Stet equal to zero Vt ETU0. ot to (2) Initialise t14= t2 = 1- 
(3) Calculate S2it2 and I2 tIt2 

Stitt = maýc(S2 +_1t2_1 + Xit, Xjc2, O) (2.13) 

52tlta = max(1 _jt2-I - X2e1XXt� 0) (2.14) 

(4) If tl <T and t2 <T then set tl = tl +1 and go to step 3. 
(5) If tl =T and t2 <T then set ti =1 and t2 = t2 +1 and go to step 3. 
(6) Let w+ = maxt, t, {Slits} and w- = maxt, t2{I t2}. Set: 
V)(i, j) = max{w+, w-}. 

Specifically, if w+ = the profiles have a positive local correlation, whereas if 

w= Vi the profiles have a negative local correlation. Likewise, if /i is achieved at 
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Q+ S2tlt2 
2 or with tl = t2 then the local correlation is simultaneous and equal to 

the absolute value of PCC(Xi., Xj. ) as long as the maximum of zero is never used 
in Equations (2.13) or (2.14) respectively. However, if zP is achieved at Si 

t2 or 2t1 
t2 

with tl # t2 then the local correlation is time delayed and will be approximately 

equal to a time delayed PCC. This is an approximate relation because zeros may be 

used in Equations (2.13) or (2.14) respectively, and because normalisation of expres- 

sion profiles to mean zero and standard deviation occurred across all time-points, 

not the subsets that are then being compared. The value of zli(i, j) remains the same 
if the order of all time points are reversed, reflecting the fact that it is calculated 
by a dynamic programming approach that is looking for similar sequences of gene 

expression values by aligning subsequences of gene expression profiles. 

Many methods exist for clustering gene expression profiles for a given similarity mea- 

sure, such as k-means (Steinhaus, 1956), Partitioning Around Medoids (PAM, Kauf- 

man and Roussseeuw (1990)), Affinity Propagation (AP, Frey and Dueck (2007)) 

and hierarchical clustering (Ward, 1963). 

K-means Given a user-set number of clusters K, (Euclidean) K-means seeks to 
find cluster assignments c(i), c: 9 ý-4 K_ {1, 

..., 
K} and corresponding cluster 

means {µk}kG, which minimise the following cost function: 

J({CW}> {l-Ik}) =EE JjXg. - µkII2 (2.15) 
kEIC g: c(g)=k 

Where II - II denotes the Euclidean norm, as defined in Equation (2.1). {c(g)}geg 

and {µk}keF are cluster assignments and cluster means, respectively. Clusters, Ck, 

are defined as Ck :_{gEGI c(g) =k}, and the cluster means are defined by 

/2k := CJ>gECk Xg. I 

K-means attempts to minimise cost function (2.15) by means of an iterative proce- 

dure in which the computation of cluster means alternates with the assignment of 

genes to clusters (Steinhaus, 1956). K-means can be applied to many other similar- 

ity measures, as long as a sensible mean can be defined for a group of gene expression 

profiles. 

K-centres (also called K-medoids) The K-means cost function, Equation (2.15), 

directly uses cluster means {µk}. In contrast, a matrix of similarities S(i, j), i, jEI 

between gene expression profiles may not give an analogue to the cluster mean. In 

this setting, a standard approach is to characterise a cluster by an observation within 
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that cluster, referred to as the centre (also known as the medoid or exemplar) of the 
cluster. This leads to the following cost function: 

J({e(g)}) =-E S(g, e(g)) (2.16) 
9E4: 9j4e(9) 

Where e: 9HEC9 is a cluster assignment function, which in this case maps 
genes to the (index of) the corresponding cluster centre/medoid/exemplar, which is 
itself a gene. Conversely, E= {El, E2, """, EK} is defined to be the set of cluster 
centres, i. e. 9 := e(g). Here clusters, Ck, are defined as Ck :={gE91 e(g) = Ek }. 

PAM is a K-means-like algorithm for optimising Equation (2.16) for a user-set num- 
ber of clusters K (Kaufman and Roussseeuw, 1990). Instead of using means to 

characterise a cluster, PAM uses data points as cluster centres. This allows PAM 
to cluster objects under any similarity measure defined upon them. Like K-means, 
PAM begins with an initial clustering and seeks to improve it iteratively. This means 
K-means and PAM are prone to finding local minima of their respective cost func- 
tions. Multiple initialisations are typically used to identify different local minima, 
in the hope that the lowest minimum discovered is the global minimum. 

Affinity Propagation More recently a novel algorithm, AP, has been introduced 
to cluster data under the K-centres cost function (Equation 2.16). Unlike PAM, 

which considers each potential cluster centre in turn, AP considers all potential 
cluster centres at once. This is achieved by a message-passing algorithm, whose ap- 
plication to gene expression profiles is briefly described in this section, for full details 

of AP see Frey and Dueck (2007). Two different kinds of messages are exchanged 
between expression profiles: responsibility r(i, j), which reflects profile j's suitability 

as a centre for profile i; and availability a(i, j), which reflects evidence in favour of 
i choosing j as its centre. 

Update equations. Initially, availabilities a(i, j) are set to zero; "self-similarities" 
S(i, i) are given a user-set value s; this is discussed below. Then, responsibilities 

and availabilities are updated sequentially using the following update equations: 

r(i, j) f- S(i, j) - max {a(i, j') + S(i, j')} (2.17) 
j"j54j 

Vi # j, a(i, j) f-- min 0, r(j, j) +E max {0, r(i', j)} (2.18) 
V: V fi, j} 
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a(j, j) f- E max{O, r(i , 
j)} (2.19) 

i': i'#j 

A damping factor AE [0,1) is used to prevent numerical oscillations: each message 
is set to a weighted combination of its value from the previous iteration and its 

updated value, weighted by A and 1-A respectively. Update equations are iterated 

until cluster centres remain unchanged for a user-set number of iterations. Then 

cluster centres e(i) are calculated by maximising over the sum of responsibility and 

availability: 

e(i) = argmaxa(i, j) + r(i, j) (2.20) 
jEl 

If e(i) = i, then i is a cluster centre. 

Algorithm parameters. The self-similarity value s influences the number of clusters 
discovered, higher values giving a greater number of clusters. However, in contrast to 

the parameter K in K-means and K-centres, this is not a hard specification; rather, 
the number of clusters found emerges from data, but is influenced by self-similarity s. 
In this sense, self-similarity is closer in spirit to a shrinkage/regularization strength 
or Bayesian hyperparameter than a pre-specified number of clusters. Importantly, 

this means that a default value for s can give good results for a wide range of 

problems; as a default s can be set to the median of the (off-diagonal entries of 
the) similarity matrix S. The damping factor has a default value of A=0.9. The 

maximum number of iterations is given a default value of 1,000. Finally, by default, 

convergence is declared if cluster centres remain unchanged for 100 iterations. 

Clustering gene expression based upon mixture models 

An alternative to clustering based on a similarity measure is to define similarity in 

terms of statistical distributions. This can be achieved by fitting mixture models 

to the expression data, with each mixture component representing a group of co- 

expressed genes. Mixture models can take into account the distribution of noise in 

the data and allow `fuzzy' assignments of genes to co-expressed groups, i. e. each 

gene is assigned a probability of belonging to each group rather than being assigned 

to a specific group. Thresholds can then be applied to assign genes to specific clus- 

ters. 

The mixture component each gene belongs to is treated as a hidden variable and 
is chosen to maximise the fit of the mixture model. Typically mixture models are 
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fitted to gene expression by optimising their fit, using EM or EM-like approaches. 
These iterate between calculating the expectation of the mixture model and choos- 
ing an estimate of the hidden variables that maximises this expectation (Dempster 

et al., 1977). These can be applied to gene expression to find groups of co-expressed 

genes. For example, Heard et al. (2005) have introduced a Bayesian EM-like method 

to cluster time series, using splines to represent the distribution of gene expression 

over time (Heard et al., 2006). 

Analysis of co-regulation 

Co-expression, and clustering methods to reveal groups of co-expressed genes, have 

been introduced in the preceding sections. Co-expressed genes can be functionally 

related (Yona et al., 2006), for example they may be under similar regulatory con- 

trol (Tavazoie et al., 1999). Genes under similar regulatory control are said to be 

co-regulated. Gene regulation can be inferred by identifying the TF or TFs likely to 

be responsible for the co-regulation of a group of genes. Sets of co-expressed genes 

can be analysed for further evidence of co-regulation by the analysis of their pro- 

moter sequences, for example by methods such as Multiple EM for Motif Elicitation 

(MEME), Motif Alignment and Search Tool (MAST) or Analysis of Plant Promoter 

Linked Elements (APPLES) (Baxter et al, in preparation; Bailey et al., 2006,2009). 

These methods scan promoter sequences for over-represented motifs, relative to a 

background model, searching either for de novo motifs or motifs which have been 

shown in the literature to be the binding sequence of a known TF or group of TFs. 

Over-represented motifs in the promoters of co-expressed genes are likely to be 

important for their regulation and probably represent the binding site of a TF that 

is regulating gene expression in particular conditions. If the motif is known to be 

associated with specific TFs, then it can help the researcher to identify a regulator 

of the co-expressed genes, inferring gene regulation, which can be tested experimen- 

tally. As an example, consider the plant specific WRKY TF family, which is named 

after the conserved amino acid sequence WRKYGQK (Eulgem et al., 2000). The 

WRKY box, (C/T)TGAC(T/C), is a consensus motif representing the core binding 

site of many (possibly all) WRKY TFs (de Pater et al., 1996; Rushton et al., 1996; 

Wang et al., 1998; Chen and Chen, 2000; Cormack et al., 2002). If this motif is 

found to be over-represented in the promoter of co-expressed genes, a WRKY TF 

is likely to bind there. However, it is not possible from motif information alone to 

determine which WRKY TF is binding. More recently, differences in the binding 

affinities of different WRKY TFs to different sequences adjacent to the core binding 

site have been found, but more needs to be done to allow specific direct transcrip- 

tional regulation to be inferred from sequence alone (Ciolkowski et al., 2008). Other 

43 



examples of conserved DNA-binding conservation have been documented in both 

plants (reviewed in Meshi and Iwabuchi, 1995) and mammals (reviewed in Mitchell 

and Tjian, 1989). 

In summary, groups of co-regulated genes can be found using current approaches, 
but genome-wide inference of specific regulators in a given condition is an open 

problem. This is because the binding specificities of TFs to DNA sequences are 

not well characterised, and because some DNA sequences can be bound by many 
different TFs. 

Inference of gene regulation from gene expression time series using net- 

work inference approaches 

Many different approaches exist to infer the structure of GRNs from gene expression 
time series, many based around dynamic BNs or SSMs (for a review see Sima et al., 
2009). In Chapter 1 one of these approaches, VBSSM, was introduced. 

However, to infer regulation from gene expression these approaches typically require 

at least as many microarray samples, n, as genes, g. Typically many more genes are 
differentially expressed in a condition than samples exist, i. e. g»n. This general 

problem is referred to in the literature as the "curse of dimensionality" (Bellman, 

1961) and has been extensively studied in the field of model selection (Cleaskens and 
Hjort, 2008). A second problem is that the space of potential regulatory networks 

grows super-exponentially with the number of genes modelled (Robinson, 1973). 

These can both be overcome by grouping similarly expressed genes and treating 

them as a single variable (Segal et al., 2003). However, if group A is inferred to 

regulate group B, then it is not clear which TFs in group A are being inferred to 

regulate which genes in group B. These groupings make the inferences non-specific 

except in the case where a regulatory group contains only one TF. 

In summary, network inference methods can be applied to gene expression time 

series to infer the specific regulators of genes even when no knowledge of DNA- 

binding specificity exists. Unfortunately, these approaches do not scale well, limiting 

the application of network inference to: instances where a few genes are differen- 

tially expressed, to subsets of differentially expressed genes, or to profiles which 

each represent a group of genes. In experiments where the number of differentially 

expressed genes, g, is much higher than the number of samples, n, network infer- 

ence models are typically either genome-wide or specific, but not both. This limits 

the ability of network inference models to provide experimentally hypotheses about 

transcriptional regulation in many practical settings. 
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Phenotype screens as an experimentally tractable first step in the vali- 
dation of inferred transcriptional regulation 

To provide experimental hypotheses Windram (2010) used VBSSM to infer tran- 

scriptional regulation from a time series of Arabidopsis gene expression during in- 

fection by B. cinerea (Denby et al., in preparation). Phenotype testing of mutants 

of inferred regulatory hubs was then used to confirm their importance in the defence 

response. This is a very indirect test of the inferred regulation, but it benefits from 

experimental tractability. To test each inferred regulatory connection would require 
a test of binding and the effect on expression, whereas to test for altered suscepti- 
bility to B. cinerea the researcher only needs to infect a knockout or overexpressor 

mutant of the regulator and observe the result. 

Genetic studies can reveal transcriptional regulators having a large effect on phe- 

notype. These important regulators can then be analysed in greater detail by more 
intensive experimental approaches. In this way it is hoped that researcher time can 
be used most productively, to validate inferences that are likely to be important for 

plant adaptation to environmental stress. 

2.1.4 Genetic approaches to study the function of genes involved 
in the defence response 

Genetic modification of Arabidopsis by Agrobacteria 

Plants can be genetically engineered by Agrobacterium tumefaciens, which secretes 

a plasmid into the plant to induce crown gall disease. This tumour inducing (Ti) 

plasmid, is capable of transferring part of its DNA sequence into the plant chromo- 

somal DNA (Chilton et al., 1980). This segment of the Ti plasmid, capable of being 

incorporated into the plant genome, is referred to as Transfer-DNA (T-DNA). Nat- 

urally occuring T-DNA contains approximately eight genes, which can be expressed 

in the plant (Satchel and Nester, 1986; Schrammeijer et al., 2000). These genes 

cause crown gall disease by encouraging cell division, they also increase production 

of opines, an important nutrient for A. tumefaciens. 

This naturally occurring process can be harnessed by researchers to manipulate the 

plant genome (Chilton, 1983). The genes in the T-DNA responsible for crown gall 

disease can be removed from the Ti plasmid without impeding its ability to trans- 

form plants (Leemans et at., 1981). Antibiotic resistance genes can be added into the 

T-DNA and then incorporated into the genome of plant cells in a liquid suspension, 

so that transformed cells can be selected on solid media containing an antibiotic 
(Bevan et al., 1983). Transformed shoots from solid media can be transferred to 
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soil and used to grow a transformed plant (Barton et al., 1983). Agrobacterium 

mediated plant transformation has been adapted, notably with vacuum infiltration 
(Bechtold and Pelletier, 1998) or floral dip steps (Clough and Bent, 1998) that elim- 
inate the need for plant tissue cultures. 

Incorporation of T-DNA occurs at semi-random locations in the plant genome 
(Zhang et al., 2007). This means that the T-DNA may disrupt functional ele- 
ments within the genome, or be incorporated in regions where the expression of its 
genes are repressed. This allows the disruption of native genes, but also means that 
T-DNA may be inserted at several different locations. It also means that transgenes 
incorporated into the plant genome by Agrobacteria are subject to a `location effect' 
that can modify their expression level. 

Arabidopsis gene knockout by T-DNA incorporation 

The location of incorporated T-DNA can be revealed by methods such as Thermal 
Asymmetric Interlaced-PCR (TAIL-PCR; Liu et al., 1995) or sequencing. When 
T-DNA is incorporated into the coding sequence of a gene, aberrant transcripts will 
be produced. This is referred to as a gene knockout (Krysan et al., 1999). If both 

alleles of that gene contain the same insertion, then the plant is homozygous for that 

gene and can no longer produce transcripts of the correct sequence. This typically 

prevents the production or function of the protein originally encoded by that gene. 
This is referred to as a homozygous knockout and can be used in a `reverse genetics' 

screen to reveal phenotypic effects of gene disruption (Krysan et al., 1999). 

An important resource for Arabidopsis `reverse genetics' screens is the Salk Insti- 

tute's homozygous T-DNA collection, a collection of transformed Arabidopsis lines 

(Alonso et al., 2003). The genome of each line will include incorporated `disarmed' 

T-DNA at a known position. The Salk Institute's collection contains different lines 

with T-DNA inserts in approximately 24,476 genes, roughly two thirds of the Ara- 

bidopsis genome, many of which will be knockouts. 

A disadvantage of gene knockout by T-DNA incorporation is that multiple T-DNA 

insertions sometimes occur, each lying at different locations on the chromosome 
(Zhang et al., 2007). This makes it harder for researchers to attribute phenotypic 

effect to individual insertions. Multiple independent gene knockouts can be screened 
to control for the effect of these other insertions. 
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Constitutive over-expression by the 35S promoter 

Novel genes can be introduced into the plant genome, by inserting them into the T- 
DNA of A. tumefaciens before using them to transform plants. This can be used to 

alter the expression of native genes by combining them with a strong promoter such 

as the Cauliflower Mosiac Virus 35S promoter (Sanders et al., 1987). A transgene 
fused to a 35S promoter is usually prefixed with 35S::, for example Y5S:: MYBL2 

which will be introduced later. The gene and strong promoter can be incorporated 
into T-DNA, and then into the plant genome. 

Forward and reverse genetics approaches have revealed key regulators of 
the defence response of Arabidopsis to infection by B. cinerea 

As discussed in the previous chapter, the defence response of Arabidopsis to B. 

cinerea typically leads to quantitative resistance, i. e. a reduction in pathogen 

growth. Pathogen growth can be quantified by RT-PCR of B. cinerea mRNA en- 

coding housekeeping genes, whose transcripts are produced at a constant rate in 

most conditions. Commonly used B. cinema `housekeeping' gene are BcActA and 
BcTubulin; the mRNA level of these genes seems to correlate with infection lesion 

area in studies using single droplet inoculation on single leaves (Mengiste et at., 
2003; Zheng et al., 2006). Alternatively, whole plants and/or spray inoculation can 
be used (Thomma et al., 1999; Berrocal-Lobo et at, 2002). Other measures of B. 

cinerea growth on Arabidopsis include disease severity ratings (Berrocal-Lobo et at., 
2002; Pre et al., 2008) and proportion of decayed plants (Veronese et al., 2006). Al- 

tered susceptibility phenotypes observed through these different measures seem to 

be broadly comparable, for example Denby et al. (2004) have been shown that sus- 

ceptibility of lines correlate between whole plant and detached leaf droplet infection 

assays. 

One `forward genetics' approach is to take many T-DNA lines, for which the lo- 

cation of insertion is not known and to screen them for altered phenotypes. Lines 

displaying phenotypes can then be studied to reveal the location of T-DNA, and 

therefore the genomic sequence responsible for the altered phenotype. This has 

been applied to study the genetics of quantitative resistance of Arabidopsis to in- 

fection by B. cinerea, and has revealed the bosi line to have a strong susceptibility 

phenotype and to be disrupted in the promoter and 5' untranslated region (UTR) 

of the TF encoding gene MYB108 (Mengiste et al., 2003). This strong susceptibil- 

ity phenotype will be used as a positive control in the phenotype screens presented 

later. An alternative `forward genetics' approach was taken by Bessire et al. (2007) 

who tested a collection of Ethylmethanesulfonate (EMS)-mutagenized Arabidopsis 

plants for altered susceptibility to B. cinerea. This revealed a line, botrytis-resistantl 
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(brel), that had a strong resistance phenotype. This phenotype was found to be 
due to a mutation in the coding sequence of the gene LA CS2 (Bessire et al., 2007). 

A study by AbuQamar et al. (2006) shows a `reverse genetics' approach, where 
T-DNA knockout lines of 14 TFs up-regulated during B. cinerea infection were 
screened for altered susceptibility to B. cinerea. Two of the 14 mutants, wrky70 
and zfarl, were found to have altered susceptibility to B. cinerea (AbuQamar et al., 
2006). There is now substantially more data available on Arabidopsis gene expres- 

sion during infection by B. cinema (Denby et al., manuscript in preparation; Ferrari 

et al., 2007; Mulema and Denby, 2012). This has led to a greater knowledge of dif- 
ferential expression, with an order of magnitude more differentially expressed genes 
than had been previously published. It is possible that the phenotype rate of 're- 

verse genetics' can be increased by using this gene expression data to identify key 

regulators of the defence response. 

The aim of this chapter is to discover novel regulators of the defence response by 

extending the approach of Windram (2010) i. e. using gene expression time series to 
infer gene regulation. Windram (2010) inferred gene regulation by applying network 
inference to gene lists chosen manually based on the literature. Inferred regulators 
were studied in a `reverse genetics' screen and an increase in phenotype rate was 

seen. It would be desirable to be able to infer regulation among larger gene groups 
to allow more novel regulators to be found and to remove the need for manual and 
therefore subjective selection of genes to model together. 

2.2 Results 

2.2.1 Analysis of a time series of gene expression in Arabidopsis 

leaves during B. cinerea infection 

Experimental conditions 

The experiment was performed by Oliver Windram, Priyadharshini Madhou, Cun- 

jin Zhang and Alex Tabrett, as described in this section. This section gives a brief 

overview of the experimental details, full technical details can be found in Denby et 

al., (in preparation). 

192 ColO Arabidopsis plants were grown in a 16: 8 hour light: dark cycle (lights on 

04: 00 to 20: 00), with leaf 7 marked after 25 days of growth. After three additional 
days, leaf 7 was detached from the plants and placed on 0.8% agar that had been 

allowed to set in the base of a propagator tray. The leaves were then treated with 
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5-7 (depending on leaf size) 10 al droplets of either a mock or B. cinerea spore con- 
taining solution at 10am and transferred to a growth room with approximately 90% 

humidity, but the same lighting and temperature settings. Mock solution consisted 

of sterile half strength grape juice. B. cinerea spore solution similarly consisted 

of half strength grape juice, but also contained B. cinerea spores from the Pepper 

strain at a concentration of 105 spores/mi. 

Analysis of transcripts by microarray hybridisation 

Microarray analysis was performed by Oliver Windram, Priyadharshini Madhou, 

Cunjin Zhang and Alex Tabrett, as described in this section. Technical details will 
be presented in Denby et al., (in preparation). 

Leaves were collected, snap frozen in liquid nitrogen and transferred to a -80 °C 

freezer every 2 hours for a total of 48 hours post infection (hpi) or mock treatment 

respectively. Four biological replicates of both mock and Botrytis-treated leaves 

were collected at each time-point. This gave two time series (mock/infected) of 24 

time-points each, with 4 biological replicates for each treatment and time-point. 

All the steps in this paragraph are described fully in Breeze et al. (2011). Total 

RNA was extracted from the leaves, purified and amplified. Amplified RNA was 

reverse transcribed, with cye dye incorporated into the cDNA. Labelled cDNA was 
then purified, concentrated and' hybridised to Complete Arabidopsis Transcriptome 

Microarray (CATMA) slides (Allemeersch et al., 2005). An average of 3 technical 

replicates were used to control for technical variation caused by dye, printing and 

spatial biases. 

9,838 genes are differentially expressed between infected and mock time 

series 

Expression values for each CATMA probe at each time point, in each biological 

replicate, were extracted using a mixed model ANOVA. This was performed by 

Oliver Windram in a version of the R package MicroArray ANOVA (MAANOVA, 

Wu et al., 2003), that had been adapted by Stuart McHattie (McHattie and Mead, 

in preparation). 

Katherine Denby analysed differential expression between the mock and infected 

time series; this paragraph describes her work. A list of 10,600 differentially ex- 

pressed genes were returned by a Gaussian process two-sample test with a cutoff 

decided by manual inspection. This list was supplemented by 236 additional genes 

found to be differentially expressed by an F-test performed within MAANOVA and 
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confirmed by manual inspection. 371 probes were removed when re-annotation indi- 

cated that they did not hybridise to open reading frames. 629 probes were removed 

as they were found to duplicate the gene matched by another differentially expressed 

probe. 

The resulting list of differentially expressed genes included 9,838 genes, 643 of which 
are labelled as TFs by the Arabidopsis thaliana Transcription Factor DataBase (At- 

TFDB - http: //arabidopsis. med. ohio-state. edu/AtTFDB). 

Analysis of co-expression and co-regulation 

The expression profiles of differentially expressed genes were analysed by cluster 
analysis. Two clustering methods were used, SplineCluster (Heard et al., 2005) 

which was applied by myself, Claire Hill and Oliver Windram, and AP clustering 
based on PCC (Frey and Dueck, 2007) which was applied by myself. Each clustering 

method was performed several times with a range of parameter values, returning 
different numbers of clusters. 

Promoters of co-clustered/co-expressed genes were analysed by Richard Hickman; 

this paragraph describes his work. Clusters of co-expressed genes were analysed 
for over-representation of known TF binding sequences in the 500 bp upstream of 
their transcriptional start site, using APPLES (Baxter et al., in preparation), as de- 

scribed in Breeze et al. (2011). Known binding motifs for plant TFs were collected 
in the form of Position Specific Scoring Matrices (PSSMs) from the TRANSFAC® 

database (Matys et al., 2006) and the Plant Cis-acting regulatory DNA Elements 

(PLACE) database (Higo et al., 1999). In addition, two NAM/ATAF/CUC (NAC) 

TF binding motifs were taken from the literature (Olsen et al., 2004). Motif over- 

representation was performed by comparing the number of motif hits in a set of pro- 

moter sequences to the occurrence of motif hits in a randomly generated sequence of 

one million bp, generated from a 3rd order Markov model with parameters learned 

from the whole Arabidopsis genome. 

The highest number of over-represented known motifs were found in a clustering 

performed using SplineCluster with iterative reclassification (Heard et al., 2005; 

Heard, Ahead of print), with a prior precision of 0.001, which clustered the differ- 

entially expressed genes into 44 groups (Supplemental Digital Information Table 1). 

These clusters contained a median of 214 genes, with a lower quartile of 96 genes and 

an upper quartile of 296.5 genes. While this clustering produced the optimal group- 

ing for motif analysis, other clusterings did allow different known motifs to be found. 
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Over-represented known motifs are likely to represent the binding sites of regu- 
lators of the co-expressed genes in Arabidopsis during infection by B. cinerea. A 
key challenge is to identify the specific TF or TFs acting through this binding site 
to regulate expression in this experimental condition. 

2.2.2 Inference of gene regulation by integrated analysis of gene 
expression and promoter sequence -a novel integrative ap- 
proach 

Cluster analysis can identify co-expressed genes, which may be co-regulated. Known 

motif over-representation analysis can then infer regulators that may be responsible. 
However, the DNA-binding specificity of TFs (i. e. the sequence motifs that they are 

able to bind) are poorly characterised in most organisms, even in model organisms 

such as Arabidopsis. An especially important knowledge gap involves how the se- 

quence binding specificity varies among highly conserved TFs. This usually limits 

motif analysis to inferring TF families responsible for co-regulation. Here, a novel 
integrative approach is introduced to infer specific regulators of co-regulated genes, 

and is applied to the gene expression time series introduced in Section 2.2.1. 

The approach that will be presented here is conceptual, consisting of three stages 
that can in principle be performed by any appropriate algorithm. These stages con- 

sist of: clustering co-expressed genes; over-representation analysis of experimentally 
derived binding motifs; and network inference based on the expression of potentially 

co-regulated genes and TFs associated with over-represented motifs found in their 

promoters. 

This novel integrative approach was applied to the time series of gene expression 
introduced in Section 2.2.1. In the application that follows, clusters and over- 

represented motifs are taken from the analysis presented in Section 2.2.1. I. e. 

co-expressed genes had been clustered by SplineCluster (Heard et al., 2005), and 

motif over-representation analysed using the APPLES software package (Baxter et 

al., in preparation). The final stage, network inference, is performed in VBSSM 

(Beal et al., 2005). 

Application to the time series of Arabidopsis gene expression during 

Botrytis infection 

Groups of co-expressed genes in Arabidopsis during B. cinerea infection have been 

identified in Section 2.2.1, and these groups of genes have been analysed for over- 

representation of known TF binding motifs in their promoters. Here, clusters were 

studied that had the known DNA-binding motif of either the APETALA2-Ethylene 
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Responsive Element Binding Proteins (AP2-EREBPs; Riechmann and Meyerowitz, 

1998), NAC (Olsen et al., 2004) or WRKY (Eulgem et al., 2000) defence related 
TF families over-represented in their promoters. Three additional clusters (16,26, 

and 29, Supplementary Digital Information table 1) were over-represented for the 
WRKY binding motif; they were not analysed with the integrative approach because 

in each >100 genes had over-representation of the WRKY motif in their promoter 

sequence. The time series used contains a total of 96 microarray measurements, and 

so modelling > 128 genes (genes in the clusters mentioned above and genes encoding 
differentially expressed WRKY TFs) using it is potentially problematic, as discussed 

in Section 2.1.3. 

VBSSM was applied to data from the B. cinerea infection time series introduced in 
Section 2.2.1. VBSSM was chosen because it had performed comparably well against 

competitors in a benchmark study on a synthetic in vivo yeast GRN (Penfold and 
Wild, 2011). VBSSM was applied to {Xgtr} for each of the four clusters, where gE 
the set of co-regulated genes or the set of potential regulators, tE {1,2,... 

, 24} and 

rE {1,2,3,4}. Figures 2.1-2.4 show the results for the four different clusters; in 

all cases 20 different VBSSM initialisations were used. The state space model was 
fitted with 1 to 20 hidden state vector dimensions, with the dimensionality of the 
hidden state vector that maximised the marginal likelihood (as determined by VB- 

SSM) chosen as the final model. In all network diagrams, any edge whose Gaussian 

posterior probability distribution (as determined by VBSSM) had a mean over 3 

standard deviations from zero in at least one initialisation is shown. This cut-off 

will be referred to as a z-score of 3. It is important to consider that inferred regula- 
tion may not in itself be significant, as randomly selected genes will be inferred to 

regulate each other, i. e. several randomly chosen groups of 50 genes were entered 
into VBSSM, and many inferred regulatory links were found with a threshold of 

z=3.1 

At4g32800 is inferred to co-regulate 38 genes Cluster 22 contained 307 genes 
(Figure 2.1(a) and Supplemental Digital Information Table 1), 56 of which had an 
Ethylene Responsive Element (ERE) (Figure 2.1(b) which matches the motif iden- 

tified in Ohme-Takagi and Shinshi (1995), its TRANSFAC® identifier is M01057) 

within 500 bp of their transcriptional start site. The expression of these 56 poten- 

tially co-regulated genes were modelled together with that of the 53 differentially 

expressed AP2-EREBP TFs and the resulting inferred GRN is shown in Figure 

'It may be that the marginal likelihood of the SSM, rather than that of specific edges, will 

allow SSMs inferred from random sets of genes to be distinguished from those inferred from the 

expression of genes which regulate each others expression. 
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Figure 2.1: Inferred regulation of potentially co-regulated genes. (a) The expression 
profiles of genes in cluster 22 and a TF (in red) which is inferred to regulate 38 of 
them. Gene expression profiles are averaged over biological and technical replicates, 
and then transformed to zero mean and standard deviation one. Expression of 
cluster members are shown in grey. The mean expression over all cluster members 
is plotted in blue. An interval of one standard deviation at each time point, for all 
cluster members. is indicated as a pair of dashed blue line. (b) shows the sequence 
logo of the ERE position specific scoring matrix (PSSM) which is over-represented 
in the promoters of these co-expressed genes. (c) shows gene regulation inferred 
by VBSSM, with 1 hidden state and a threshold z-score of 3. Blue nodes are co- 
expressed (co-clustered) genes and contain the known binding sequence of the AP2- 
ERE BP TF family. The yellow nodes indicate members of the AP2-ERE BP TF 
family. Green arrows indicate inferred positive regulation. Red arrows indicate 
predicated negative regulation. 
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2.1(c). (For a list of the differentially expressed AP2-EREBP TFs, and potentially 

co-regulated targets, that were modelled together see Appendix tables A. 1 and A. 2). 

At4g32800 is inferred to co-regulate the 38 genes: At1g01960, At1 g08720, At1 g11960, 
At1915240, Atlg19580, At1920693, At1926900, At1g64520, At1g75010, At2g01820, 

At2g17670, At2932400, At2g82410, At2g37195, 'At3901840, At3g11250, At3912280, 

At3917300, At3g22820, At3g24200, At3g45890, At3g50860, At3g59990, At3g60830, 

At3g62370, At4g07410, A4917910, At4g21710, At4925550, At5g10910, At5911030, 

At5913850, At5g24740, At5g26880, At5g27990, At5g59980, At5g66880 and At5g67530. 

To assess the robustness of this inference, VBSSM was applied again to the same 
dataset without the first time-point, inferring RAP2.6 to be the main regulator in- 

stead (Appendix figure B. 1). 

WRKY31 is inferred to co-regulate 9 genes Cluster 24 contained 56 genes 
(Figure 2.2(a) and Supplemental Digital Information Table 1), 12 of which had a 
WRKY binding motif (Figure 2.2(b) which matches the WRKY binding sequence 
identified in de Pater et al. (1996), its PLACE identifier is S000310) within 500 bp of 
their transcriptional start site. The expression of these 12 potentially co-regulated 

genes were modelled together with that of the 29 differentially expressed WRKY 

TFs and the resulting inferred GRN is shown in Figure 2.2(c). (For a list of the 

differentially expressed WRKY TFs, and inferred co-regulated targets, that were 

modelled together see Appendix table A. 3). 

WRKY31 is inferred to co-regulate the 9 genes; At1g05575, At1g26880, AtlgSO700, 

At1g69980, Atlg76600, At2g17500, At2947190, At3g25250 and Atljg21880. In ad- 
dition, WRKY60 is inferred to regulate At2g17500 and At2g21830, and WRKY89 

is inferred to regulate At1g75500. To assess the robustness of this inference, VB- 

SSM was applied again to the same dataset without the first time-point, inferring 

WRKY31 to be the main regulator again (Appendix figure B. 2). 

ANAC092 and ANAC019 are inferred to co-regulate 9 genes each, in- 

cluding two genes inferred to be jointly regulated Cluster 27 contained 195 

genes (Figure 2.3(a) and Supplemental Digital Information Table 1), 34 of which 

had a NAC-like binding motif (PSSM M00040 from TRANSFAC® as shown in Fig- 

ure 2.3(b) which fits to a subsequence of the consensus sequence presented in Olson 

et al. (2005)) within 500 bp of their transcriptional start site. The expression of 

these 56 potentially co-regulated genes were modelled together with that of the 34 

differentially expressed NAC TFs and the resulting inferred GRN is shown in Figure 
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Figure 2.2: Inferred regulation of potentially co-regulated genes. (a) shows the ex- 
pression profile of genes in cluster 24 and 3 TFs (in red. green and mauve) which 
are inferred to regulate some of them. Gene expression profiles are averaged over 
biological and technical replicates. and then transformed to zero mean and stan- 
dard deviation one. Expression of cluster members are shown in grey. The mean 
expression over all cluster members is plotted in blue. An interval of one stan- 
dard deviation at each time point, for all cluster members, is indicated as a pair of 
dashed blue line. (b) shows the sequence logo of the WRKY PSSM which is over- 
represented in the promoters of these co-expressed genes. (c) shows gene regulation 
inferred by VBSSAI. with 7 hidden states and a threshold z-score of 3. Blue nodes 
are co-expressed (co-clustered) genes and contain the known binding sequence of the 
WRKY TF family. The yellow nodes indicate members of the WRKY TF family. 

55 

V 
10 20 30 40 

Time in hours (hpi) 

(c) Inferred gene regulation 



F NCO-92 

C 
0 

y 
Q) 
ä 
x 

N 
Q) 
0 

m7T 
12345678 

Position 

(a) Average expression of genes in cluster and (b) NAC-like binding motif 
predicted regulators 

1ý 

I 
(c) Inferred gene regulation 

Figure 2.3: Inferred regulation of potentially co-regulated genes. (a) shows the ex- 
pression profile of genes in cluster 27 and two TFs (in red and green) which are 
inferred to regulate some of them. Gene expression profiles are averaged over bio- 
logical and technical replicates. and then transformed to zero mean and standard 
deviation one. Expression of cluster members are shown in grey. The mean expres- 
sion over all cluster members is plotted in blue. An interval of one standard deviation 

at each time point. for all cluster members. is indicated as a pair of dashed blue line. 
(b) shows the sequence logo of the NAC-like PSSM M00040. from TRANSFAC®. 

which is over-represented in the promoters of these co-expressed genes. (c) shows 
gene regulation inferred by VBSSA1. with 7 hidden states and a threshold z-score of 
3. Blue nodes are co-expressed (co-clustered) genes and contain the known binding 
sequence of the NAC TF family. The yellow nodes indicate members of the NAC 
TF family. 
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2.3(c). (For a list of the differentially expressed NAC TFs, and inferred co-regulated 
targets, that were modelled together see Appendix table A. 4). 

ANAC092 is inferred to co-regulate the 7 genes; At1g32120, AtSg4 8890, At8g52540, 
At3g53400, At3g60180, At4g14680 and At5g27520. ANAC019 is inferred to co- 
regulate the 7 genes; At1g21810, AtIg28480, At1g71100, At3s48890, At4g18950, 
At5g13500 and At5g27520. Two of these, At3g48890 and At5g27520, are inferred to 
be regulated by both ANAC019 and ANAC092. To assess the robustness of this in- 
ference, VBSSM was applied again to the same dataset without the first time-point, 
inferring ANAC055 to be the main regulator instead (Appendix figure B. 3). 

ANAC055 is inferred to co-regulate 43 genes Cluster 38 contained 326 genes 
(Figure 2.4(a) and Supplemental Digital Information Table 1), 47 of which had a 
NAC-like binding site (Figure 2.4(b) which fits to a subsequence of the consensus 
sequence presented in Olson et al. (2005)) within 500 bp of their transcriptional 
start site. The expression of these 47 potentially co-regulated genes were modelled 
together with that of the 34 differentially expressed NAC TFs and the resulting 
inferred GRN is shown in Figure 2.4(c). (For a list of the differentially expressed 
NAC TFs, and potentially co-regulated targets, that were modelled together see 
Appendix tables A. 4(a) and A. 5). 

ANAC055is inferred to co-regulate the 43 genes; At1g09180, At1g09960, At1g12200, 
Atlg12820, Atlg23100, At1927000, Atlg27100, At1g52550, At1g71180, At1g75270, 
At2901850, At2g26230, At2g29700, At2g39780, At2g40420, At2g43540, At3g11200, 

At3g12100, At3g18520, At3g48140, At3g51990, At3g55390, At3g57785, At3g60020, 
At3g61680, AT3G62830, At3g63260, A401410, A14g05590, A4g14010, At4g23590, 
At4g29580, At4g31300, At5gO3290, At5911090, At5g11960, At5g20120, At5g20650, 
At5g25050, At5g27710, At5g47200, At5g60580 and At5g64250. To assess the ro- 
bustness of this inference, VBSSM was applied again to the same dataset without 
the first time-point, inferring ANAC055 to be the main regulator again (Appendix 

figure B. 4). 

Comparison of results to existing literature 

Experimental studies of the TFs that have been inferred to regulate B. cinerea 

responsive gene expression, can be used to assess the plausibility of the inferred 

regulation. Altered B. cinerea susceptibility phenotypes and experimental analysis 

of transcriptional regulation can be compared to what has been inferred. 
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Figure 2.4: Inferred regulation of potentially co-regulated genes. (a) shows the ex- 
pression profile of genes in cluster 38 and a TF (in red) that is inferred to regulate 
43 of them. Gene expression profiles are averaged over biological and technical repli- 
cates. and then transformed to zero mean and standard deviation one. Expression 

of cluster members are shown in grey. The mean expression over all cluster mem- 
bers is plotted in blue. An interval of one standard deviation at each time point. 
for all cluster members. is indicated as a pair of dashed blue line. (b) shows the 

sequence logo of the NAC-like PSSM M00040 (from TRANSFAC®) which is over- 
represented in the promoters of these co-expressed genes. (c) shows gene regulation 
inferred by VBSSM. with 9 hidden states and a threshold z-score of 3. Blue nodes 
are co-expressed (co-clustered) genes and contain the known binding sequence of 
the NAC TF family. The yellow nodes indicate members of the NAC TF family. 
Green arrows indicate inferred positive regulation. Red arrows indicate predicated 
negative regulation. 
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Phenotype ANAC019, ANAC055, ANAC092, WRKY31 and the AP2-ERE BP 
TF At4g32800 have been inferred in this chapter to regulate genes in response to 
infection. All three NAC TFs inferred to regulate co-regulated genes have mu- 
tants which are known to have altered susceptibility to B. cinerea (Bu et al., 
2008; Windram, 2010). This confirms the importance of these NAC TFs in the 
defence response, but does not test the inferred regulation. Unfortunately mutants 
of WRKY31 or At4g82800 were not available and so it was not possible to test their 

effect on susceptibility to B. cinerea. 

Regulation In the case of ANA C092, microarray data already exists for an estra- 
diol inducible (i. e. transient) overexpressor compared to wildtype in liquid media 

grown seedlings (Balazadeh et al., 2010). This data has been analysed in Windram 
(2010), with 123 genes found to be differentially expressed. The differentially ex- 

pressed gene list has no overlap with the seven genes inferred to be targets in Figure 

2.3(c). 

In the case of ANAC019 and ANAC055, microarray data exists for knockout plants 

compared to wildtype during leaf senescence (Hickman et al., in preparation). None 

of the inferred targets of ANAC019 were differentially expressed in the anac019 
knockout leaves. One of the 43 inferred targets of ANAC055, At5g27710 is differ- 

entially expressed in the anac055 knockout plant, but this overlap is likely to occur 
by chance. (Number of differentially expressed genes after B. cinerea infection = 
9,838 ; number of these differentially expressed in senescing anacO55 plant = 230; 

number of inferred targets of ANA C055 = 43 and an overlap of 1 giving a cumulative 
hypergeometric p-value of 0.6392 ascalculated in MATLAB®). 

In this section specific transcriptional regulation has been inferred, based on both 

gene expression and known binding sequences of TF families. This methodology is 

less biased to the literature than the manual selection used in Windram (2010), but 

is limited to inferring regulation by TF families with well characterised DNA-binding 

sequences. 

2.2.3 Temporal clustering by affinity propagation predicts tran- 

scriptional regulation genome-wide 

All of the work presented in this section, except for the application of TCAP to the 

expression all 9,838 differentially expressed genes, was originally published in Kiddle 

et al. (2010). 

Identifying functionally related genes is an important task in the exploratory analy- 
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sis of gene expression time series. One such relation is transcriptional regulation and 
can be studied by clustering gene expression, as shown in Section 2.2.1. However, 

most clustering methods are designed to find co-expressed genes rather than to infer 

regulation, this is why network inference was used in the previous section. The gene 

expression profiles of the targets of a transcriptional activator could be correlated to 
it, but if a time series has sufficient temporal resolution then it should be possible 
to observe a delay between the transcriptional activation of a TF and its targets 
(Qian et al., 2001). Similarly, the expression profile of a transcriptional repressor 
may be anti-correlated to its targets (Qian et al., 2001,2003). The aim is predict 

genome-wide transcriptional regulation during B. cinerea by studying time-delayed 

correlation in the time series of gene expression introduced in Section 2.2.1. 

TCAP algorithm 

Here a novel method, Temporal Clustering by Affinity Propagation (TCAP), is in- 

troduced that infers gene regulation by taking into account these features in gene 

expression time series. The aim of TCAP is to group genes whose expression 

profiles show time-delayed correlation/anti-correlation. Later this will be shown 
to be relevant to predicting gene regulation. TCAP, which is implemented in 
MATLAB®, consists of three main stages: calculation of Qian similarity, clus- 
tering by AP and the creation of output files. It is available to download from 

http: //www. wsbc. warwick. ac. uk/stevenkiddle/tcap. htm]. 

Calculation of Qian similarity, ýb, is performed for every pair of genes following the 

definition in Section 2.1.3. As Qian similarity is symmetric (i. e. 'O, j) = V)(j, i)), 

it is only calculated for i>j. These similarity scores are then clustered by AP 

with the self-similarity parameter set to the median value of 0 across all gene pairs. 
The resulting clusters are stored in a spreadsheet and several plots are produced. 
These plots show the expression profiles of co-clustered genes in various ways, for 

example colour coding or aligning profiles by their time-delay, as returned by the 

Qian similarity algorithm defined in Section 2.1.3. 

Benchmarking results 

Validation of similarity measure 0 Expression time series, of genes and their 

known regulators, were used to validate the ability of similarity measure ' to cor- 

rectly predict transcriptional regulation. To this end two biological examples were 

used, from Saccharomyces cerevisiae (yeast) and Arabidopsis, respectively, in which 

the underlying biology is relatively well understood. 

The S. cerevisiae genome has been well studied and provides a number of vali- 
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dated TF-target pairs. Published microarray time series (Lasch et al., 2000; Qian 

et al., 2003; Spellman et al., 1998) of such regulatory pairs, consisting of validated 

positive examples and randomly selected negative examples, were used. The TF- 

target pairs and the compiled expression data was obtained from the supplementary 
data of Qian et al. (2003), which is described in the next paragraph. 

The positive examples had been chosen from TRANSFAC®(Matys et al., 2006) 

and the Saccharomyces cerevisiae Promoter Database (Zhu and Zhang, 1999); neg- 

ative examples had been identified by finding genes without the known binding site 

of the TF or permuting the target gene's (but not the TF's) expression profile. The 

expression profiles cover a total of 79 time points, which gives a relatively high time 

resolution. Unfortunately, expression profiles from different experiments had been 

concatenated, with insufficient labelling to allow them to be separated. The con- 

catenated time series also contained experiments with different sampling frequencies. 

Whilst not ideal for analysis using 0, which assumes even sampling frequencies and 

separate experiments, this dataset has well characterised interactions and a rela- 

tively large number of observations. 

The ability of the similarity score 0 to correctly distinguish between positive and 

negative examples of transcriptional regulation was studied by means of a receiver 

operator characteristic (ROC) analysis. Similarity scores 0(ij) for each TF-target 

pair - positive and negative - were thresholded to yield inferred positive TF-target 

pairs. The inferred regulatory TF-target pairs were then compared with the list of 
known positive and negative pairs to yield true positive and false positive rates as 

a function of threshold level. Varying the threshold gives a curve which is referred 

to as a ROC; this shows the sensitivity and specificity of the inferences across all 

possible thresholds on a single plot, giving a comprehensive view of the ability of 

the score to distinguish between positive and negative examples. 

Figure 2.5(a) shows ROC curves obtained from the S. cerevisiae dataset for the sim- 

ilarity score 7P, the widely used PCC and the absolute value of the PCC (IPCCI ). 

The (expected) curve which would be obtained by chance is also shown for compar- 

ison. Similarity score 0 performs better than both PCC and the absolute value of 

PCC in this instance, suggesting that the score is indeed able to detect instances of 

direct regulation. 

The results presented above pertain to direct regulatory relationships between TFs 

and validated targets. However, the complete set of pairwise relationships in a GRN 

naturally includes indirect as well as direct influences; e. g. if TF A directly regu- 
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Figure 2.5: Analysis of the ability of 7P to predict transcriptional regulation. (a) 
ROC plots obtained from uiicroarray data for validated examples of TF-target pairs 
in yeast (microarray data from Spellman et al. (1998); Gasch et al. (2000), TF- 
target pairs from supplementary data of Qian et al. (2003)). Similarity score '0 
outperforms both Pearson's correlation coefficient (PCC) and its absolute value. 
The dotted line corresponds to random guesswork. (b) ROC plots obtained from 

microarray data. comparing the expression profiles of genes from the A. thaliana 

circadian clock with that of random genes. Similarity score outperforms the other 
measures of similarity. performing roughly twice as well as measures neglecting time 
lags. 
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lates the expression of target gene B, which in turn directly regulates the expression 
of target gene C, the pair (A, C) is an example of an indirect transcriptional re- 
lationship. The ability of 0 to correctly distinguish indirect regulation, from no 
regulation, was tested by applying it to the gene expression of a well-studied GRN 
in Arabidopsis. A small network of six genes (LHY, CCA 1, TOGO, GI, PRR7 and 
PRR9), has been shown to form the core of the circadian clock GRN in Arabidopsis 
(Locke et al., 2006; McClung, 2008). The average expression profiles, of these six 
genes and 560 genes chosen at random from the Arabidopsis genome, were taken 
from the mock time series presented in Section 2.2.1. None of the 560 randomly 
chosen genes were annotated as belonging to the circadian clock (Ashburner et al., 
2000; Swarbreck et al., 2008). In the resulting set of pairs, those including only 
members of the known circadian clock module were treated as positive examples, 
while those with only one member of the circadian clock were considered to be false 

positives. As the similarity measure, 0, is symmetric there is (2) x1= 15 (the 

number of different undirected pairs of the 6 circadian clock genes) positive exam- 
ples and 6x 560 = 3,360 negative examples. 

ROC curves were constructed in a similar manner to the TF-target case above 
(Figure 2.5(b)). Similarity score / very clearly outperforms PCC and its absolute 
value in this instance. For example, 10 (out of 15) true positives are obtained at 
a cost of 141 false positives; in comparison, PCC requires 1,649 and absolute PCC 
requires 1,783 false positives. This suggests that z/) is indeed able to detect both 
direct and indirect regulations, even under highly sparse conditions, i. e. when true 
positives are scarce relative to false positives. 

Comparison of AP and PAM as methods to cluster based on Qian sim- 
ilarity The similarity measure 0 captures a quite different notion of similarity 
than a straightforward vector distance. In Figure 2.5 0 was demonstrated to be an 

appropriate similarity measure for predicting transcriptional regulation from gene 

expression time series. In other studies, such as those by Qian et al. (2001) and Yona 

et al. (2006), 0 is shown to perform comparably with other similarity measures at 
predicting other types of functional relations. 

Because 0 is not a simple (negative) vector distance, clustering under 0 represents 

a fundamentally different formulation of the clustering problem than many widely 

used methods (for examples Hastie et al., 2001; Ghosh and Chinnaiyan, 2002; Heard 

et al., 2005; Thalamuthu et al., 2006). In this sense, TCAP and these widely used 
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methods address different questions, which makes them difficult to compare directly. 
However, PAM (Kaufman and Roussseeuw, 1990) represents a natural choice for 

clustering under the similarity measure 0; indeed, it has been suggested for this 

purpose in previous work2 (Qian et al., 2001). 

Here PAM and AP are applied to Qian similarity matrices generated from gene 
expression data. Their effectiveness is assessed by comparing the cost, as defined 
by Equation (2.16), of the resulting clusterings (i. e. partitions of all genes into non- 

overlapping gene groups). These clustering methods were applied to two microarray 
time series: 4,489 genes over 18 time points from a published S. cerevisiae experi- 

ment (Spellman et al., 1998) and 6,000 genes over 24 time points from the B. cinerea 
infection experiment presented in Section 2.2.1. 

For each dataset both methods were applied to the full set of genes and also to 

smaller, randomly selected subsets, to investigate dependence on dimensionality. 

For each regime of dimensionality 10 runs of PAM and one run of AP (which is 
deterministic) was applied to the data. Since the same similarity measure was used 
in both cases, the underlying cost function (2.16) is identical. AP was applied using 
default parameters; AP is able to automatically learn a good number of clusters by 

setting the self-similarity to the median similarity value (Frey and Dueck, 2007). To 

ensure a fair comparison, the number of clusters returned by PAM was set to equal 
the number of clusters discovered by AP in each case. 

Figure 2.6(a) shows results obtained using the S. cerevisiae dataset of Spellman 

et al. (1998), which is a time course of expression profiles of genes from cells syn- 

chronized by the addition of alpha pheromone. Genes were selected because they 

did not having any missing values in their expression profiles. 

The Arabidopsis dataset contains the expression profiles of 6,000 genes in the B. 

cinerea infection time series introduced in Section 2.2.1. The 6,000 most differen- 

tially expressed genes, between infected and mock samples, were used for computa- 

tional tractability (because each method was applied to the data multiple times). 

Figure 2.6(b) shows results on the Arabidopsis data. In each case, box plots show 

values of the objective function obtained using PAM; AP is deterministic and gives 

a single result in each case. Figure 2.7 shows an analysis in which 400 PAM runs 

were used on the full Qian similarity matrix of the Arabidopsis dataset, with each 

run allowed the same compute time as a single run of AP. AP is completely deter- 

2K-means rather than PAM is actually suggested, but because of the inappropriateness of k- 

means for clustering based on 0 it can be assumed that authors actually meant the mediod equiv- 

alent to k-means, i. e. PAM. 
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Figure 2.6: Here the method proposed in Qian et al. (2001) is compared to TCAP. 

(a) They were both applied to data from Spellman et al. (1998), a time series 

consisting of 4.489 genes over 18 time points. Various subsets of this were clustered 

and the cost function, as given in Equation (2.16) and then divided by the number 

of genes in the subset. is reported. 10 runs of PAM. each allowed to take as long as 

a single run of AP. were applied to the data. (b) Both methods were applied to the 

time series introduced in Section 2.2.1. Various subsets of this were clustered and 
the cost function. as given in Equation (2.16) and then divided by the number of 

genes in the subset. is reported. 10 runs of PAM. each allowed to take as long as a 
single run of AP. were applied to the data. 
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Figure 2.7: Here the method proposed in Qian et al. (2001) is compared to TCAP. 
Here the A. thaliana data was clustered again by both methods. but with 400 runs 
of PAM (shown in the grey histogram) each allowed to take as long as a single run 
of AP (black line, representing the result of a single run of AP). 

ministic. and therefore not subject to variation due to initial conditions or stochastic 
steps. It is clear that PAM is performing significantly worse than AP at producing 
clusters to minimize cost function Equation (2.16). 

Application to the time series of Arabidopsis gene expression during in- 

fection by B. cinerea 

TCAP was applied to the time series expression profiles of the 6.000 most differ- 

ently expressed genes in Arabidopsis leaves during infection by B. cinerea. from the 

dataset introduced in Section 2.2.1. A default self-similarity of 0.762 (median of the 

off-diagonal entries of the similarity matrix) was used which resulted in 492 clusters, 
153 of these were singleton clusters and so were ignored (Supplemental Digital In- 

formation Table 2). The remaining 339 clusters contain a median value of 13 genes 
(lower quartile =6 and upper quartile = 24.5). The VirtualPlant software platform 

was used for Gene Ontology (GO) term overrepresentation analysis, with P-values 

calculated using the hypergeometric distribution (Ashburner et al.. 2000; Gutierrez 

et al.. 2005: Katari et al.. 2010). First clusters that demonstrate the method will be 

highlighted; the results obtained by applying TCAP to the expression of all 9.838 

differentially expressed genes will be shown later. 
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Figure 2.8: TCAP finds time-delayed correlation in gene expression time series. 
Gene expression profiles are averaged over biological and technical replicates, and 
then transformed to zero mean and standard deviation one. (a) A cluster returned 
by TCAP (cluster 208. Supplemental Digital Information Table 2). (b) The same 
cluster as in the previous figure. adjusted for time delays and anti-correlation. Some 

profiles in this plot have been shifted in time and/or vertically inverted according to 
their original snatch type. as determined by the algorithm to calculate ý/) that was 
introduced in Section 2.1.3. 
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TCAP can detect time delayed correlation First, the results of TCAP were 
studied to see if time delayed correlation had been detected. Here an example is 

given to demonstrate that TCAP was indeed able to uncover time-delayed correla- 
tion, and therefore to produce clusters that would not be found by methods based 

on simple vector distances. In Figure 2.8(a) a TCAP cluster is shown whose under- 
lying temporal patterns are sufficiently complex as to make the cluster appear, at 
first glance, devoid of any coherent pattern (cluster 208, Supplemental Digital In- 
formation Table 2). Figure 2.8(b) shows the same cluster, adjusted for time delayed 

correlations/anti-correlations: this is now highly coherent. 

TCAP clusters recover published regulation Every TCAP cluster which con- 
tains a TF can be interpreted as a inferred transcriptional module, with the TFs 

inferred as regulators, although it is biologically intuitive that delays between TFs 

and their targets will be non-negative, unless other regulators or feedbacks are in- 

volved in their regulation. To test the ability of TCAP to accurately infer regulation, 
its inferences were compared to regulation known in the literature. In Figure 2.9 

two clusters are shown which recapitulate known regulatory interactions. 

Figure 2.9(a) shows a cluster of 6 genes (cluster 258, Supplemental Digital Infor- 

mation Table 2) whose expression profiles seem to approximately repeat every 24 
hours. The cluster contains two genes, LHY and GI, encoding known components 

of the core circadian clock GRN, as well as 4 other genes (Atlg56S00, At3g47880, 

At3g54500 and At4g15430). Gene GI was found to score highly with LHY with a 
time-delayed and anti-correlated match. The time-delayed and anti-correlated rela- 
tionship between the two expression profiles fits extremely well with the known role 

of LHY as a transcriptional repressor of GI (Locke et at, 2006; McClung, 2008). 

In addition, another member of the cluster, At1g56300, belongs to a class of genes 
known as rapid wounding response (RWR) genes, which are also known to be regu- 
lated by the circadian clock (Walley et al., 2007). 

The de novo discovery of a small cluster containing these genes is striking in light 

of the fact that the relationship between these genes took many years and much re- 

search effort to uncover. The remaining cluster members appear to have no known 

link to the circadian clock; however, given the highly validated nature of other 

cluster members, these further genes provide intriguing hypotheses for additional 

downstream targets. 

Figure 2.9(b) shows a second cluster (cluster 12, which has 57 members, Supple- 

mental Digital Information Table 2) whose members form a striking and biologically 
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Figure 2.9: Clusters found by TCAP that recover known transcriptional regulation. 
Gene expression profiles are averaged over biological and technical replicates, and 
then transformed to zero mean and standard deviation one. (a) A circadian module. 
LHY (in blue) is known to be a transcriptional repressor of GI (in red). Atig56300 
(in green) is a Rapid Wounding Response gene. which are known to be regulated by 
the circadian clock. Here grey lines represent the expression levels of three additional 
cluster members. (b) A cluster containing 6 genes co-regulated by ORA59 (in green). 
ORA59 (in blue) and ERFI (in red) that is believed to jointly regulate PDFl. 2 with 
ORA59 (Pre et al., 2008). The expression of other cluster members are shown in 

grey. 
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coherent group. It is noteworthy that this cluster contains a regulator and known 

target genes of this regulator. The TF ORA59 is in this cluster, along with six 

genes (At1959950, At2g43580, A0923550, At3g56710, At4g11280 and At4g24350) 

that have been previously found to be up-regulated in an inducible overexpressor line 

of ORA59 (Pre et al., 2008). This overlap is unlikely to occur by chance. (Number of 
differentially expressed genes after B. cinerea infection excluding ORA 59 = 9,837 

, 
number of these differentially expressed in an inducible overexpressor of ORA59 = 
46 (Pre et al., 2008), number of inferred targets of ORA59 = 56 and an overlap 

of 6 giving a cumulative hypergeometric p-value of 2.03 x 10-7 calculated using 
MATLAB®). The genes in this overlap are also up-regulated in the B. cinerea time 

series. Moreover, ORA59 and another TF, ERF1, are believed to jointly regulate 
PDF1.2 (Pre et al., 2008) and ERF1 is also found in this cluster. PDF1.2 itself is 

not in the dataset as there is no probe for it on the microarrays used. Both ORA59 

and ERF1 are known to respond to the plant hormone ethylene; the cluster also 
has an over-representation, significant at 1%, of the GO term "response to ethylene 

stimulus". 

Little is known in Arabidopsis about the relative timing of expression of TFs and 
their direct targets, i. e. how long a delay there is in general between differential 

expression of a TF and a noticeable change in the expression of its targets. How- 

ever, in the case of 2.9(b), the temporal resolution of the dataset is apparently not 

sufficient to pick up a delayed correlation between the expression of the regulator 
ORA 59 and its targets. As the targets of ORA 59 were not originally studied in the 

context of the defence response to B. cinerea (Pre et al., 2008), it is also possible 

that these genes are not targets of ORA59 in this condition, and are instead being 

co-regulated with it. 

TCAP can group functionally related genes TCAP was applied to the time 

series expression profiles of the full list of 9,838 differently expressed genes intro- 

duced in Section 2.2.1, with a default self-similarity value of 0.731 (median of the 

off diagonal entries of the similarity matrix) and a maximum of 3,000 iterations to 

ensure convergence which produced 579 clusters; 111 of the clusters were singleton 

clusters and so were ignored (Supplemental Digital Information Table 3). The re- 

maining 468 clusters contain a median value of 16 genes (lower quartile =8 and 

upper quartile = 27). 

Cluster 334 (Supplemental Digital Information Table 3) has an overlap with the 

circadian cluster presented in Figure 2.9(a), i. e. it also contains LHY, GI and 

At1956800, but all the other members are different. This shows that some results 
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can be robust against input gene lists/clustering parameters. The cluster presented 
in Figure 2.9(b) appears to be less robust as there is no cluster containing ORA59, 
ERF1 and all of the 6 ORA 59 targets presented previously. However, cluster 8 which 
has 56 members (Supplemental Digital Information Table 3) appears to contain 17 

of the 57 genes originally found in the cluster presented in Figure 2.9(b). ERF1 
and two of the original ORA59 targets (At1g59950 and At2g48580) are in cluster 8, 

as well as two other ORA59 targets; At5g22300 and At5g27420 (Pre et al., 2008). 
ORA59 itself now appears in cluster 153 (Supplemental Digital Information Table 3) 
along with another ORA59 target, At3g49680, which was not present in the cluster 
shown in 2.9(b) (Pre et al., 2008). Although the exact ORA59 cluster is not robust 
in this case, there does appear to be robustness towards the grouping of ORA59 
targets. Moreover, robustness should increase if larger clusters are used. 

To see if TCAP could group functionally related genes, these clusters were anal- 
ysed for over-represented GO terms against a background of all the genes differen- 
tially expressed during B. cinerea infection. 45/468 of the clusters were found by 
VirtualPlant to have over-represented GO terms at a significance of 1% (FDR cor- 
rected p-value against GO terms but not against the number of clusters compared). 
For comparison, the cluster assignment function was shuffled to produce clusters of 
the same size with random members (using randsample. m in MATLAB(g) and GO 
term overrepresentation analysis was repeated, this gave 5/468 clusters with over- 
represented GO terms (assessed as before). This suggests that TCAP is finding 
functionally related genes at a greater than random rate. Many more GO terms will 
be found over-represented against the background of all genes, but many of these 

will be found without clustering, this was why only the differentially expressed gene 
list was used for the previous analysis. GO terms over-represented against the back- 

ground of all genes will be discussed as relevant to specific clusters in later sections. 

TCAP infers novel regulators of the defence response As well as identify- 
ing gene regulation that is known in the literature and grouping functionally related 

genes, TCAP grouped many genes with TFs that are inferred to control their ex- 
pression. In this section novel transcriptional regulation inferred by TCAP is shown 
and compared to the literature. 

Module 1- TCAP cluster with the highest average Qian similarity. TCAP cluster 
1 (Supplemental Digital Information Table 3) contains the TFs: ARFI, WRKY20, 

RAP2.6L (AP2-EREBP TF), ATML1, At1g25440 and At1g29000. Several gene 

expression plots are shown in Figure 2.10 (a) and (b). This module has the highest 

average Qian similarity of all the TCAP clusters. In Figure 2.5, higher values of 
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Figure 2.10: Transcriptional module inferred by TCAP. Here. module 1 was plotted 
in various ways to show time delayed correlations between gene expression profiles. 
Gene expression profiles are averaged over biological and technical replicates. and 
then transformed to zero mean and standard deviation one. (a) The average ex- 
pression profiles of all genes in module 1, anti-correlated genes are drawn as dashed 
lines. (b) The average expression profiles of all TFs in module 1. 
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7P have been shown to be more likely to correspond to correctly inferred TF-target 

pairs, and so this cluster is inferred to be linked by some transcriptional regulation, 
i. e. one or more of the TFs is inferred to regulate the other genes. Nothing appears 
to be known about regulatory targets of the TFs in this cluster. 

Module 2- TCAP cluster with the second highest average Qian similarity, TCAP 

cluster 2 (Supplemental Digital Information Table 3) contains the TFs: NUB, 

ATERF11, LBD41, ANAC055, AtERF1, At1g71520 (AP2-EREBP TF), At2g33710, 

At8g58600, At4g28811, At5g14280 and At5g56960. Several gene expression plots are 

shown in Figure 2.11 (a)-(b). This module has the second highest average Qian sim- 

ilarity of all the TCAP clusters. 

ANAC055 is already known to be important in the defence response, an overex- 

pressor of ANAC055 is more susceptible to infection by B. cinerea (Bu et al., 2008). 

One of the 73 inferred targets of ANAC055 from module 5, AT2G28860, is differ- 

entially expressed in a anacO55 knockout during leaf senescence (Hickman et al., in 

preparation). This overlap is likely to occur by chance. (Number of differentially 

expressed genes after B. cinerea infection excluding ANAC055 = 9,838 
, number of 

these differentially expressed in senescing anac055 plant = 230 
, number of inferred 

targets of ANAC055 = 73 and an overlap of 1 giving a cumulative hypergeometric 

p-value of 0.8233 as calculated in MATLAB®). 

The regulation may also be by another TF in this cluster, unfortunately mutant 

versus wildtype microarray studies of the other TFs in this cluster were not avail- 

able. Even though modules 1-2 have the highest average Qian similarities, because 

they both contain several TFs and none of their members show a time-delayed cor- 

relation, the inferences are not specific. As with the ORA59 cluster, time delays 

may have been observed if a higher temporal resolution was used. 

The next four TCAP clusters have been selected because they contained a TF and 

genes with a time-delayed correlation/anti-correlation to it; therefore these clusters 

provide inferences that are more specific, i. e. while a time delay between the tran- 

scription of a TF and its target is not always observed in gene expression time series, 

presumably because of complex regulation or low temporal resolution, when present 

it can suggest the direction of gene regulation. If the gene expression of two TFs 

correlates with a time delay, the earlier TF is presumably more likely to regulate 

the latter. 

Module 3- time-delayed correlation to a TF. TCAP cluster 71 (Supplemental Digital 
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Figure 2.12: Transcriptional module inferred by TCAP. Here. module 3 was plotted 
in various ways to show time delayed correlations between gene expression profiles. 
Gene expression profiles are averaged over biological and technical replicates, and 
then transformed to zero mean and standard deviation one. (a) The expression of 

all genes in module 3. coloured according to which time delayed component they 
belong to. The genes are coloured as follows: anti-correlated genes are drawn as 
dashed lines. red lines have a positive delay of 1, blue lines are not delayed. green 
lines have a negative delay of 1. (b) The expression of all TFs in module 3. 
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Information Table 3) contains the TFs: HSFC, ANAC072 and WRKY48. Several 

gene expression plots are shown in Figure 2.12 (a)-(b). Cluster 71 is highlighted 

because an early negative delay component contained the TF ANACO72. 

Several microarray experiments have been performed to identify possible targets 

of ANAC072 (Fujita et al., 2004; Tran et al., 2004). Fujita et al. (2004) used a 
S5S:: ANAC072 line as well as a constitutively expressed chimeric ANA C072 with a 
fused repression domain. Inferred ANA C072 targets from cluster 71 were compared 

with differentially expressed genes in these ANAC072 mutants; the only inferred 

target differentially expressed in this mutant was At4g37990. Considering only the 
ANAC072 targets that are differentially expressed after B. cinerea infection, and 

excluding ANAC072 itself from the analysis as its presence in its own cluster is a 

given, then the overlap of one gene is unlikely to occur by chance (the number of 
differentially expressed genes excluding ANA C072 = 9,837 

, the number of differen- 

tially expressed ANAC072 targets = 13, the number of genes in ANAC072 cluster 

excluding ANAC072 = 38 and an overlap of 1, giving a cumulative hypergeometric 

p-value of 0.0491 as calculated using MATLAB(g). Tran et al. (2004) identified 

ANAC072 targets using a 35S:: ANAC072 mutant, 21 of which are differentially ex- 

pressed during infection by B. cinerea. 

The mutant versus wildtype microarray experiments of Fujita et al. (2004) and 
Tran et al. (2004) have not been conducted during B. cinerea infection, and so these 
findings do not rule out the inferences made in cluster 71. Given that more overlap 
is found with the differentially expressed genes found in the study of Fujita et al. 
(2004), than in the study by Tran et al. (2004), it is also possible that study by 

Fujita et al. (2004) was performed with experimental conditions closer to that used 
in the B. cinerea infection experiment. 

Module !- Time-delayed correlation to a TF. TCAP cluster 60 (Supplemental Digi- 

tal Information Table 3) contains the TFs: SPL4, At3g11580, At3g28220 (AP2-ERE 

BP TF) and At5g18450. Several gene expression plots are shown in Figure 2.13 (a)- 

(b). Cluster 60 was chosen because it has TFs in three different delay components, 

representing two layers of inferred directed gene regulation. Nothing appears to be 

known about regulatory targets of the four TFs in this cluster. 

Module 5- Time-delayed correlation to a TF. TCAP cluster 166 (Supplemental 

Digital Information Table 3) contains the TFs: RGL1, DREB2A, CDF and NF- 

YB5. Several gene expression plots are shown in Figure 2.14 (a)-(b). Cluster 166 

was chosen because it has TFs in several different delay components. 
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Figure 2.13: Transcriptional module inferred by TCAP. Here, module 4 was plotted 
in various ways to show time delayed correlations between gene expression profiles. 
Gene expression profiles are averaged over biological and technical replicates, and 
then transformed to zero mean and standard deviation one. (a) The expression of 
all genes in module 4. coloured according to which time delayed component they 
belong to. The genes are coloured as follows: anti-correlated genes are drawn as 
dashed lines. red lines have a positive delay of 1. blue lines are not delayed. green 
lines have a negative delay of 1. cyan lines have a negative delay of 2 and yellow 
lines have a positive delay of 3. (b) The expression of all TFs in module 4. 
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Figure 2.14: Transcriptional module inferred by TCAP. Here. module 5 was plotted 
in various ways to show time delayed correlations between gene expression profiles. 
Gene expression profiles are averaged over biological and technical replicates. and 
then transformed to zero mean and standard deviation one. (a) The expression of 
all genes in module 5. coloured according to which time delayed component they 
belong to. The genes are coloured as follows: anti-correlated genes are drawn as 
dashed lines. black and dotted lines have a positive or negative delay of more than 
3. black lines have a positive delay of 3. purple lines have a negative delay of 2, 

red lines have a positive delay of 1. blue lines are not delayed. green lines have a 
negative delay of 1. cyan lines have a negative delay of 2 and yellow lines have a 
positive delay of 3. (b) The expression of all TFs in module 5. 
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Module 6- Time-delayed correlation to a TF. TCAP cluster 262 (Supplemental 

Digital Information Table 3) contains the TFs: MYBL2 and AtMYB15. Several gene 
expression plots are shown in Figure 2.15 (a)-(b). A TF in this cluster, MYBL2, 

scores highly for a match with the other genes with a time delay of 6 hours. This 

cluster has an over-representation, significant at 1%, of the GO term "response to 

abscisic acid (ABA)". ABA has been shown to play a role in the interaction between 
B. cinerea and plant hosts (AbuQamar et al., 2006; Audenaert et al., 2002), hence 

this cluster may represent a transcriptional module involved in the response to this 
hormone. 

2.2.4 Reverse genetics screen of inferred regulators of the defence 

response 

In the previous two sections two novel approaches to infer specific transcriptional 

regulation genome-wide have been introduced. The first approach inferred regula- 
tion either by TFs for which there were no mutants available, or TFs with mutants 
that had already been shown to have altered susceptibility to B. cinerea. TCAP 

modules 1-6 show inferred regulation by TFs. Mutants of some of these TFs were 
available and had not been screened for altered susceptibility to B. cinerea. 

Materials and methods 
Reverse genetics screen for altered susceptibility to Botrytis Arabidopsis 

seeds - for Co14 (wildtype), bosl (positive control, see section 2.1.4 or Mengiste et al. 
(2003)) and lines from Table 2.1 - were stratified in 0.1% agar at 4 °C for 3 days and 
then transferred to Arabidopsis soil mix (Scotts Levingtons F2s compost: sand: fine 

grade vermiculite in a ratio of 6: 1: 1). Plants were grown in a controlled environ- 

ment with a 16: 8 hour light: dark cycle at 20 °C, with 60% humidity and a light 

intensity of 100 umol photons . m-2. s-1. These plants were allowed to grow for 4-5 

weeks before mature leaves were detached and tested for susceptibility to B. cinerea. 

Detached leaves were placed onto 0.8% agar that had been allowed to set in the 

base of propagator trays. Spores were collected from B. cinerea cultures from the 

Pepper isolate, which had been grown on apricot halves (Tesco) incubated at 20 °C 

for two weeks, by scraping B. cinerea into sterile water and filtering with glass wool 

to remove hyphae. Spores were diluted to 105 spores/ml in 1: 1 (v/v) water and red 

pressed grape juice (Tesco). Each detached leaf was infected with a single 10 µl 
droplet of spore solution and incubated in a controlled environment at 90% humid- 

ity for 3 days, with a 16: 8 hour light: dark cycle at 20 °C and a light intensity of 
100 fcmol photons. m-2. s-1. A time course of photographs were taken of the leaves 

79 



., 1 

O 

(ID 
rID 

4) 

N 
bA 
O 

_2 

1.5 
U 

i-ý 

0 N 

0 

1.5- 
0 

0 10 20 30 40 
Hours post infection 

(a) Module 6 

r 

1 

n 

l 
is 

J\ 

10 20 30 40 
Hours post infection 

(b) TFs in 6 

MYB15 

MYBL2 

Figure 2.15: Transcriptional modules inferred by TCAP. Here. module 6 was plotted 
in various ways to show time delayed correlations between gene expression profiles. 
Gene expression profiles are averaged over biological and technical replicates, and 
then transformed to zero mean and standard deviation one. (a) The expression of 
all genes in module 6. coloured according to which time delayed component they 
belong to. The genes are coloured as follows: anti-correlated genes are drawn as 
dashed lines, black and dotted lines have a negative delay of 4. (b) The expression 
of all TFs in module 6. 

80 



at several time-points between 36 and 82 hpi, and the area of infection recorded from 

each photograph using ImageJ. A scale bar was used in the agar trays to provide a 
scale reference for the ImageJ analysis. 

Reverse genetics screening of inferred regulators of the defence response 

Available mutants of inferred regulators of defence responsive gene expression were 
acquired to allow their susceptibility to infection by B. cinerea to be assessed. This 

reverse genetics approach is similar to that used in the studies by AbuQamar et al. 
(2006) and Windram (2010), but in this study TCAP was used to prioritise differ- 

entially expressed TFs to screen. 

Altered expression mutants Knockout and overexpressor mutants of inferred 

regulators that were available from the literature, Salk Institute homozygous T- 

DNA collection (Alonso et al., 2003) or generated at Warwick were collected for use 
in reverse genetics screens (listed in Table 2.1). 

Table 2.1: Lines used in reverse genetics screen of inferred regulators of the defence 
response. All lines are T-DNA knockouts, except for 55S:: MYBL2 which is a con- 
stitutive overexpressor. All lines except mybl2_1 and 85S:: MYBL2 were obtained 
from Salk Institutes homozygous T-DNA collection. mybl2_1 was kindly provided 
by Dubos et al. (2008). 35S:: MYBL2 was generated at Warwick by the PRESTA 
consortium. 

Line Name SALK name Gene name AGI Module number 

nub-1 SALK_004964c NUB At1g13400 2 
nub-2 SALK_100548c NUB At1g13400 2 
lbd41_1 SALK_078678c LBD41 At3g02550 2 
at3g58600_1 SALK_132289c At3g53600 2 

at3g58600_2 SALK_027144c At3g53600 2 

at5g14280_1 SALK_011661c At5g14280 2 

at5g14280_2 SALK_054183c At5g14280 2 
anacO72_1 SALK_072276 ANAC072 At4g27410 3 
anac072_2 SALK_072286 ANAC072 At4g27410 3 
anacO72_3 SALK_063576c ANAC072 At4g27410 3 

wrky48_1 SALK_066438c WRKY48 At5g49520 3 

wrky48_2 SALK_144719c WRKY48 At5g49520 3 
at3g28220_1 SALK_128736c At3g23220 4 
rgl_1 SALK_041897c RGL1 At1g66350 5 
rgl_2 SALK_136162c RGL1 At1g66350 5 

mybl2_1 SALK_107780 MYBL2 At1g71030 6 
35S:: MYBL2 MYBL2 At1g71030 6 
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Phenotype screen results The resulting lesion size data for each line at each 
time point is compared to those for wildtype samples to determine altered sus- 
ceptibility. Comparisons are performed by hypothesis testing within MATLAB®, 

with the null hypothesis being that both mutant and wildtype lines have the same 

mean (or median) lesion area when measured at the same time. This means that 

the alternative hypothesis is that mutant and wildtype lines have a different mean 
(or median) lesion area when measured at the same time, which would mean that 
the mutation has resulted in altered susceptibility of the plant to B. cinerea. Hy- 

pothesis testing was performed using a t-test (two tailed and not assuming equal 

variances) (Student, 1908) and a non-parametric equivalent known as the Mann- 

Whitney-Wilcoxon (MWW) test (Wilcoxon, 1945). The normality of the data for 

each line was tested using the Kolmogorov-Smirnov test with the Lilliefors table 
(Lillefors, 1967), which can indicate whether a normal or non-parametric test is 

most appropriate (results re shown in Appendix C). A significance threshold of 5% 

was used in the hypothesis tests, i. e. when the p-value is less than 0.05 the null hy- 

pothesis was rejected. Multiple testing corrections have not been applied, but any 

mutant displaying altered susceptibility was retested to control for spurious pheno- 
types. The results are shown in Appendix C, and are summarised in Table 2.2. 

A novel altered susceptibility phenotype was observed in mutants of ANAC072, as 
found in three independent T-DNA knockout lines (Table 2.2 and example screen 
photos in Figure 2.16). The phenotype of these ANAC072 independent T-DNA 

knockout lines (anac072_1, anacO72_1 and anacO72_3) is a slightly decreased sus- 

ceptibility to infection by B. cinerea. Screen photos are shown in Figure 2.16 to 

demonstrate that even the strongest novel altered susceptibility phenotype found in 

this study is weak in comparison with the difference between the wildtype (Co14) 

and positive control (bosl). It also demonstrates the importance of biological repli- 

cation, because of the variability in lesion size within lines. 

Another novel phenotype is found in two independent NUB T-DNA knockout lines, 

nub-1 and nub-2, which also show a slightly decreased susceptibility to infection by 

B. cinerea. A contradictory phenotype is observed for nub-1 in one screen, but that 

screen had fewer biological replicates than the other screens. Given that decreased 

susceptibility was shown for nub-1 in 4 other more highly replicated screens and in 

a second independent knockout of NUB (nub-2), the contradictory result is likely to 

be spurious. 

An altered phenotype is observed in a LBD41 T-DNA knockout line (lbd41_1). This 

too shows a slightly decreased susceptibility to B. cinerea. Unfortunately an inde- 
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Table 2.2: Summary of results of reverse genetic screen for altered susceptibility to 
B. cinerea. Phenotype is observed if either the t-test or MWW test reject the null 
hypothesis at the 5% significance level. 

Line Name Proportion 

of screens 
with altered 
phenotype 
observed 

Results in 

each screen. 
(M=more 

susceptible, 
L=Less 

susceptible. 
N=neither) 

Proportion 

of time- 
points with 
altered 
phenotype 
observed 

Susceptibility screen 
figure / table num- 
ber (See Appendix 
C) 

anacO72_1 3/3 LLL 3/7 C. 4, C. 6 and C. 8 
anacO72_2 2/2 LL 3/4 C. 4 and C. 8 
anacO72_S 5/5 LLLLL 10/13 C. 4, C. 5, C. 6, C. 7 

and C. 8 
wrky48_1 3/5 MLMNN 4/12 C. 1, C. 3, C. 5, C. 7 

and C. 8 
wrky48_2 2/2 LL 2/6 C. 3 and C. 5 
at3g23220_1 0/1 N 0/2 C. 1 
rgLl 0/1 N 0/2 C. 1 

rgL2 2/2 MM 2/5 C. 1 and C. 5 
mybl2_1 0/1 N 0/3 C. 2 
SSS:: MYBL2 1/1 M 3/3 C. 2 
nub-1 5/5 MLLLL 6/12 C. 1, C. 3, C. 5, C. 7 

and C. 8 
nub-2 2/2 LL 4/6 C. 3 and C. 5 
lbd. 41_1 4/4 LLLL 8/9 C. 1, C. 4, C. 3 and 

C. 8 
atSg53600_1 0/1 N 0/2 C. 1 
atSg58600_2 2/2 ML 3/4 C. 1 and C. 8 
at5g14280_1 3/4 LLNL 6/12 C. 1, C. 4, C. 7, and 

C. 8 
at5g14280_2 2/2 LL 3/4 C. 1 and C. 4 
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(c) bosI at 50hpi 

Figure 2.16: Photos from the screen summarised in C. H. showing the weak resistance 
phenotype of mutants of ANAC072. Scale bars are shown in each photo. (a) shows 
the lesion size of lines Co14 (which is the wildtype control). anacO72_1 and anac072_2 

at 50 hpi. (b) shows the lesion size of line anac072_3 at 50 hpi. (c) shows the lesion 

size of line bosi. which is used as a positive control. at 50 hpi. 
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pendent T-DNA knockout was not available. An increased susceptibility phenotype 

seen in rgL2 is not seen in an independent knockout (rgl_1). The T-DNA location 

in the rgl_1 line is very near to the 3' UTR, meaning that it is possible that some 
functional truncated transcript is still produced. An alternative possibility is that 

the rgl_1 line is heterozygous for the T-DNA insertion, which has not been tested 
in this study. A promising result for 35S:: MYBL2 proved hard to repeat due to the 

extreme dwarfing observed in this line. 

In this chapter two novel methods to infer transcriptional regulation from gene 

expression time series have been introduced. They were used to infer regulators 

of the defence response, some of which were then screened in a `reverse genetics' 

screen. Mutants of some inferred regulators showed altered susceptibility to B. 

cinerea, although the altered phenotypes observed were weak in comparison to that 

of a previously published mutant. 

2.3 Discussion 

2.3.1 Computational and statistical discussion 

Multiple testing problems in bioinformatic analysis 

In bioinformatic analysis of high-throughput data, it is common to apply statisti- 

cal hypothesis tests to many thousands of objects at once. A good example is the 

analysis of differential expression in microarray datasets, where hypothesis tests are 

applied to tens of thousands of DNA probes. If this multiple testing is not taken 

into account then there is a danger of obtaining many false positives by chance. In 

practice biologists typically use multiple testing corrections such as the Bonferroni 

(Bonferroni, 1936; Miller, 1981), Benjamini-Hochberg (Benjamini and Hochberg, 

1995), or SAM corrections (Tusher et al., 2001), or resort to manual threshold se- 

lection. The appropriate balance between minimising false positives and minimising 

false negatives will always depend on the tolerance of downstream analysis to these 

errors. 

In Section 2.2.1 approximately a third of the Arabidopsis genome was found to be 

differentially expressed between the mock and B. cinerea infected samples. This is 

a comparatively high proportion of differentially expressed genes compared to other 

microarray studies, and has a number of potential explanations: the additional sta- 

tistical power provided by the relatively large number of biological samples used 
(192 biological samples in total); the dramatic nature of the biological treatment (a 

pathogen that is trying to kill Arabidopsis); and the desire, conscious or otherwise, 
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of the researchers to minimise false negatives. The final point is especially relevant 
in Systems Biology, where the aim is to study the relation between all important 

components of a process. In general it has not been shown that the most differ- 

entially expressed genes during a biological process are the most important for the 

progression of that process, and so a stringent list of differentially expressed genes 

may miss key components. However, the disadvantage of a less stringent list is that 
downstream analyses or experiments may be sensitive either to its false positive rate 

or to its size. 

Other multiple testing problems occur in the bioinformatic analyses that typically 
follow, for example in over-representation analysis of: differentially expressed genes 
from other microarray experiments, GO terms and promoter sequence motifs. A 

good example of this is the cumulative hypergeometric p-value between inferred 

targets of a TF and genes differentially expressed between a mutant of that TF and 

wildtype. While an overlap of a single gene between inferred and experimentally 

suggested targets of ANA C072 was found to be unlikely to happen by chance, this 

was not the only hypothesis test of this sort performed, and so the overlap is not so 

unlikely to occur by chance. 

`Optimal' clustering of similarly expressed genes 

When clustering gene expression a common challenge is to choose an appropriate 

number of groups to partition the genes into. This choice can be direct, as in choos- 
ing K for K-means, or indirect, as in choosing s for AP. Statistical methods can 
be used to determine the `optimal' number of clusters from the data, for example 

through the use of the silhouette plot (Kaufman and Roussseeuw, 1990). 

Both SplineCluster and AP have default values used to determine the number of 

clusters to return, both based on an optimisation process where the number of clus- 

ters emerges from both this default value and the data (Heard et al., 2005; Frey and 
Dueck, 2007). Therefore it is surprising that the number of clusters returned, using 
default parameter values, vary so much between SplineCluster and TCAP (when 

applied to the 9,838 differentially expressed genes with default values SplineCluster 

returned 38 clusters, whereas TCAP returned 468 non-singular clusters). This dif- 

ference appears to depend on both the similarity measure and the clustering method 

used, as clustering based on PCC rather than 0 in AP produced fewer clusters (when 

applied to the 9,838 differentially expressed genes with default values, PCC-AP re- 

turned 164 clusters, none of which were singular). This may reflect the fact that 0 

allows profiles to be deemed `similar' in more ways than PCC, reducing the variance 

of all pairwise similarities, i. e. if two profiles are similar according to PCC then they 
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will be similar according to 0, which does not necessarily hold in reverse. 

Ultimately a biologist would consider the `optimal' number of clusters the one with 
the best balance between specificity and sensitivity with regards to grouping together 
functionally related genes. Typically a biologist assesses this using GO terms, which 

represent known functional relations (Ashburner et al., 2000). An example of a way 
to analyse this is the biological homogeneity index (Datta and Datta, 2006), which 

assesses the consistency of functional annotation within clusters for a given cluster- 
ing. It is not clear whether the statistical and biological `optimal' clustering number 

will be equivalent. 

In this study the biologically `optimal' partition of differentially expressed genes 

was considered to be the one that showed the greatest diversity in over-represented 
known binding motifs in the promoters of the groups of genes. This choice reflected 
the interest of the group in discovering groups of co-regulated genes. This was 

achieved by SplineCluster with a prior precision of 0.001, rather than with the de- 

fault prior precision of 0.0001. However, it was noted that other partitions allowed 
the discovery of additional motifs not over-represented in the final choice. This 

demonstrates both that a single partition of genes into groups may lose important 

biological information and the benefit of selecting groups of genes based on indepen- 

dent biological information. However, if over-representation analysis is applied to 

many different gene partitions, multiple testing corrections may be required. Meth- 

ods exist for clustering jointly based on both expression data and information on 
functional relations (for example Reiss et al., 2006; Meng et al., 2009), which would 

avoid the need for multiple testing. However, if independent data is used to inform 

clusters there is the danger that the groupings will be biased towards known, rather 

than unknown, functional relations. 

Network inference 

Network inference, based on Markov process assumptions, is a sensible way to at- 

tempt to model transcriptional regulation from gene expression time series. However 

network inference applied to purely wildtype experiments attempts to model causal 

relationships based purely on the co-variation between gene expression profiles over 

time. This is a modelling limitation imposed by the data, which did not include 

perturbations/interventions at the level of individual genes. This is likely to be the 

reason that VBSSM infers regulatory connections among randomly selected gene 

expression profiles. It may be that the posterior probability of a SSM can be used 

to distinguish between useful and spurious inferences, but I am not aware that this 

has been demonstrated with VBSSM or any alternative Markov process based net- 
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work inference approach. 

Because Markov process modelling approaches, like VBSSM, model co-variation 

of gene expression over time, they will not be able to distinguish between heavily 

correlated variables. This is perhaps the reason that all network diagrams in Sec- 

tion 2.2.2 appear to contain regulatory `hubs', i. e. genes inferred to regulate a larger 

than average number of targets. Because co-expressed genes have been chosen be- 

cause they correlate highly, it is not surprising that VBSSM infers that they are 

regulated in a similar way. In the case of Figure 2.3 where two TFs, ANAC019 and 
ANAC092, are inferred to have the same number of targets among SplineCluster 

cluster 27, this suggests that either: the list of co-expressed/potentially co-regulated 

genes are not sufficiently well correlated to be modelled in the same way (suggesting 

that the cluster is larger than optimal); the replicates, which were averaged over for 

clustering, contain additional useful information; or that VBSSM is highly sensitive 

to noise and is therefore spuriously modelling the co-expressed genes. The fact that 

correlated variables may not be sufficiently different to be modelled separately in 

network inference suggests that network inference applied to members of the same 
TCAP cluster is likely to be relatively uninformative. 

Removal of the first time point of expression profiles in Section 2.2.2 and the appli- 

cation of VBSSM, revealed that some regulatory inferences are more sensitive than 

others to relatively small changes in the data. Results that are more robust may be 

more accurate than those that aren't. 

It may be useful to combine motif-informed network inference with the module 

network approach, where co-expressed genes are treated as a single variable for net- 

work inference. Motif information could then be used to design hard constraints or 

informative priors, possibly with a mixture of nodes representing either clusters of 

genes or single TFs with associated known binding motifs. 

Temporal clustering by affinity propagation 

Except for the earlier methods of Qian et al. (2001) and Balasubramaniyan et al. 
(2004), the ability to use time-delays within a cluster to infer regulators is a relatively 

unique feature of TCAP as a clustering method. AP is more effective at clustering 

under similarity measure 0 than its alternative, PAM, as has been shown in Figure 

2.6. TCAP is of comparable runtime to clustering methods such as SplineCluster 

(Heard et al., 2005), which makes it more suited to exploratory data analysis than 

more computationally intensive methods such as the one presented by Balasubra- 

maniyan et al. (2004). 
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TCAP, like VBSSM, infers the most likely regulation among a group of genes, rather 
than discriminating between the expression profiles of genes that regulate each other 
and those that do not. As with VBSSM this is probably a limitation imposed by 

the use of purely wildtype experiments. However, in the case of the circadian clock, 
which may or may not be representative of Arabidopsis GRNs in general, Figure 
2.5(b) demonstrates that zP can be used to discriminate between members of a GRN 

and random genes. 

The similarity measure 0 detects time-delayed correlation by aligning gene expres- 
sion during contiguous subsets of time-points. More specifically, given T time-points, 
1' will align T- Idl time-points from each expression profile, where d is the number 
of time-points delay detected, i. e. if 0 is achieved at S2it2 or SZ- then d= tl - t2. tit2 

A time-delayed correlation with a delay of d is based on the expression of each gene 

across (T - Idl) time points, it is clear that the higher the number of timepoints 

under which a gene correlates with another, the less likely that the correlation arose 
by chance alone. For example, a PCC of 0.95 across 3 time-points is less convincing 
than a PCC of 0.95 across 10. 

The similarity measure 0 penalises longer delays by definition (Algorithm 1 in sec- 
tion 2.1.3). This can be demonstrated by observing that is optimised, for a fixed 

d, when the expression profile subsets compared are perfectly correlated or anti- 

correlated, in which case argmaxX,., X3 Id O(Xi., Xj. ) =T- Idl -1.0 is used `raw' in 

TCAP, whereas in Qian et al. (2001) various methods to reduce this delay penalisa- 

tion are discussed. These were not implemented in TCAP because of their additional 

computational cost. This is perhaps why in the TCAP clustering of 9,828 genes, 

which can be seen in Supplemental Digital Information Table 3, only 558 genes were 

observed to have a time-delayed match to their cluster centre. 

In this chapter attempts have been made to benchmark the similarity measure 0, 

as a predictor of transcriptional regulation from gene expression time series. Bench- 

marking requires known positive and negative cases of transcriptional regulation, as 

well as expression profiles of the genes involved. First this was performed on a yeast 

gene expression time series (Figure 2.5(a)), with the positive and negative exam- 

ples, as well as expression data taken from Qian et al. (2003). The way this dataset 

was originally generated may positively or negatively bias the inferences. Of all the 

potential problems, the permutation of negative example target profiles is probably 

the most problematic, because it may positively bias the ROC curve. Permuting the 

time-points in an expression profile reduces its auto-correlation, which may reduce 
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the V1 score of anything compared to it. This was originally performed by Qian et al. 
(2003) to ensure that all negative examples were reliably negative, but this could 
lead to a misleading analysis of predictive ability. Other problems with this dataset, 

such as concatenation of separate experiments and variable time spacing, are less 

worrying because they would be unlikely to positively bias the analysis. 

In the second ROC analysis Arabidopsis gene expression time series data was used 

to benchmark the ability of 0 to predict transcriptional regulation (Figure 2.5(b)). 

In this application many of the methodological flaws of the yeast ROC have been 

avoided: approximate negative examples were chosen at random and target expres- 

sion profiles were not permuted; data from a single experiment is used; and all time 

points are evenly spaced. However the circadian clock network is still a topic of 

ongoing research and so the `true positives' reflect literature knowledge at the time, 

rather than perfectly reflecting the underlying biology. Another caveat with this 

analysis is that the circadian clock network is responsible for generating an endoge- 

nous oscillator of gene expression, as it controls the time-of-day dependent (diurnal) 

patterns of gene expression in Arabidopsis. This biological function may make the 

circadian clock less representative of Arabidopsis GRNs in general, as the time de- 

layed correlation of gene expression is directly linked to the GRNs function. These 

caveats also apply to the TCAP cluster that grouped together LHY and GI (Figure 

2.9(a)). While this result may not be representative, it is still striking, grouping to- 

gether a transcriptional repressor and a target based on temporal features that are 

not usually analysed genome-wide. Currently, few good datasets for benchmarking 

of predictors of transcriptional regulation exist, although this may change as syn- 

thetic biology matures (Cantone et al., 2009). 

TCAP builds on the temporal clustering method introduced in Qian et al. (2001), 

producing clusters with a higher average similarity to cluster centres (Figure 2.6). 

It is faster than comparable methods, for example that of Balasubramaniyan et al. 

(2004), but achieves this at the cost of being approximate and linear. Non-linear 

time delays, such as in the formulation of Balasubramaniyan et al. (2004), have not 

yet been benchmarked as a predictor of transcriptional regulation, but if they are 

found to outperform 0 then they could replace 7P in the TCAP algorithm. This is 

possible due to the flexibility of AP which is able to cluster under any similarity 

measure. A key point then would be to develop efficient algorithms for calculat- 

ing or approximating this measure, to make the modified TCAP fast enough for 

exploratory analysis of gene expression time series. This is important as the simi- 

larity of all pairs of gene expression profiles must be calculated before AP is applied. 
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AP was shown to substantially outperform PAM at clustering under z) in Figure 
2.6. This is similar to the results of Frey and Dueck (2007), where AP is shown 
to outperform PAM when applied to clustering: images, text, putative exons and 
American airports. This shows that AP outperforms PAM at clustering under a 

wide range of similarity measures. One of the main benefits of AP or PAM, in 

comparison to K-means, is their ability to cluster under unconventional similarity 
measures. This has been shown to be useful in this chapter, in Frey and Dueck 
(2007) as discussed and in a range of other bioinformatic applications such as in: 

sequence analysis, structural biology and biological network analysis (reviewed in 

Bodenhofer et al., 2011). 

The flexibility of AP with regard to similarity measure will allow the future im- 

provement of TCAP through measures that are, for example: more sensitive to 

time-delayed correlation; more sensitive to transient correlations; that take into ac- 

count uneven time-point spacing; or that can detect non-linear correlations. It may 
be possible to develop a probabilistic equivalent to TCAP based on hidden Markov 

models, maybe taking inspiration from the literature on probabilistic dynamic time 

warping (for example Oates et al., 1999). Applications of TCAP, and variants 
thereof, to other types of biological time series is a topic of ongoing collaborations. 

Differences and similarities between VBSSM and TCAP 

Both VBSSM and TCAP are methods that allow inference of transcriptional regu- 
lation from gene expression. Some of their similarities and differences are discussed 

in this section. Both VBSSM and TCAP infer transcriptional regulation by de- 

tecting time-delayed covariation of expression profiles, in the case of VBSSM this 

is a result of the Markov process assumption, whereas in TCAP this is a result of 

approximately calculating the correlation corresponding to all possible time delays. 

A key difference between VBSSM and TCAP is that the graphical model approach 

of VBSSM allows it to model combinatorial regulation, whereas TCAP relies on a 

pair-wise measure, 0, to infer transcriptional regulation. 

Another difference relates to the trade-off between genome-wide and specific in- 

ference, which was introduced at the start of this chapter. TCAP inferences are 

unspecific in the cases where multiple TFs are found to correlate positively and 

simultaneously (i. e. d=0, for examples see Figures 2.10 and 2.11), whereas VBSSM 

typically infers specific regulation (see for examples figures 2.1 - 2.4(c)). However, 

this decrease in specificity of inferences allows TCAP to be applied robustly to the 

expression of longer lists of genes. This is likely to be due to the relatively simple 

model of gene regulation (time-delayed correlation) used in TCAP, relative to the 
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complexity of the model (a SSM) used in VBSSM; the SSM has many parameters 
that must be fitted to the data, requiring sufficient data to constrain the model. 
Finally, VBSSM infers the value of unobserved variables. This may make it more 
robust by taking into account unobserved external influences. 

The results of VBSSM and TCAP are different, but related. For example, both 

methods sometimes infers that TFs and their targets are co-expressed (for example 
the expression of inferred regulator and targets in: VBSSM inferences presented 
in Figures 2.1(a) and TCAP Figures 2.10 and 2.11). Figure 2.3 shows an example 
of a inference of combinatorial regulation by VBSSM, two genes (At5g48890 and 
At5g27520) are inferred to be regulated by both ANAC019 and ANAC092. Figure 
2.4(a) shows the expression of a cluster of genes and its regulator as inferred by 
VBSSM; visually at least the TF and its targets show time-delayed correlation. 

2.3.2 Biological discussion 

In this chapter, a time series of (almost) genome-wide gene expression, in Arabidop- 

sis leaves during infection by B. cinerea, has been studied. Cluster analysis has 
been used to reveal co-expressed genes, some of which were found to have known 
TF binding motifs over-represented in their promoters. Transcriptional regulators 
of the defence response were inferred from their expression, either by finding time- 
delayed correlation or by applying network inference to TFs and groups of genes with 
the TFs known binding motif over-represented in their promoters. Finally, inferred 

regulators of the defence response were studied in a `reverse genetics' screen, which 
revealed several novel but weak altered susceptibility to B. cinerea phenotypes. 

Botrytis infection time series 
The time series of Arabidopsis gene expression during B. cinerea infection analysed 
in this Chapter represents a substantially richer dataset, with 24 timepoint instead 

of the three or less presented in previous studies (AbuQamar et al., 2006; Ferrari 

et al., 2007). One feature that has not been explored here is the relation between 

circadian and defence response related gene regulation, a natural topic given the 

span of the experiment over 48 hours. Recent work has shown that cold treatment 

responsive changes in gene expression are partially controlled by circadian/diurnal 

rhythms, and that changes to the expression of circadian clock components propa- 

gate to have a wide effect on the cold responsive transcriptome (Bieniawska et al., 
2008). The relation of B. cinerea responsive and circadian regulated gene expres- 

sion could be investigated by meta analysis of B. cinerea responsive changes in gene 

expression, or by investigation of the expression of circadian clock components dur- 

ing the time series. Indeed, it has recently been shown that the circadian clock is 
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dampened during B. cinerea infection (Windram et al., manuscript in preparation), 

and that pathogen growth is affected by time of infection (R Smith and K Denby, 

unpublished). This suggests that B. cinerea responsive gene expression may depend 

on time of infection, and time of day, in non-trivial ways. 

Validation of regulation inferred by VBSSM 

VBSSM was applied to the expression time series of potentially co-regulated genes 

and associated TFs to infer regulators of the defence response. Three of the seven 
inferred regulators, ANAC019/055/092, have already been shown to be important 
for the defence response of Arabidopsis to infection by B. cinerea (Bu et al., 2008; 

Windram, 2010). 

Inferred targets of these TFs were compared with targets suggested by the bio- 

logical literature, to see if known regulation had been recovered. One of the most 

common methods of finding targets of a TF is see which genes are differentially 

expressed in a mutant of that TF, for example knockout or overexpressor versus 

wildtype microarray experiments. No over-representation was seen in the overlap 
between these lists, produced from published microarray experiments, and the genes 
inferred to be regulated by them. 

Validation of regulation inferred by TCAP 

TCAP was used to infer transcriptional regulation from gene expression time series, 
it was shown to predict known and infer novel transcriptional regulation. One prob- 
lem with using TCAP to infer regulators of the defence response is that technically it 

infers regulation for all TFs that fall into non-singleton clusters. Practically, inferred 

regulation was highlighted if the average Qian similarity was very high (modules 1- 

2) or if a TF was found to have a positive time delayed correlation to other genes 
(modules 3-6). 

Some of the highlighted inferred regulators belong to TF families already associ- 

ated with the defence response of Arabidopsis to B. cinerea, for example the MYB 

(Martin and Paz-Ares, 1997; Mengiste et al., 2003), NAC (Bu et al., 2008), AP2- 

ERE BP (Berrocal-Lobo et al., 2002) and WRKY (Zheng et al., 2006) TF families. 

Of all the inferred regulators only ANA C055 had previously been shown to be im- 

portant for the defence response of Arabidopsis to infection by B. cinerea (Bu et al., 

2008). VBSSM also inferred that ANA C055 was a regulator of the defence response 
(Figure 2.4). 

Inferred targets of these TFs were compared with targets suggested by the bio- 
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logical literature, to see if known regulation had been recovered. Relevant data ex- 
isted for: a knockout of ANAC055 during senescence; a constitutive overexpressor 

of ANAC072; a constitutively expressed chimeric ANAC072 with a fused repres- 

sion domain; and an overexpressor of a constitutively active version of DREB2A. 

Of these, only one had an over-represented overlap, and this was only by one gene, 

excluding the TF in question (At4g37990 was seen in both module 3 and in Fujita 

et al. (2004) as differentially expressed in a 35S:: ANAC072 line). 

The vast majority of inferred gene regulation made in this chapter, by both TCAP 

and VBSSM, currently have no experimental backing. This can be partially at- 
tributed to the lack of appropriate experimental data in the literature, even mutant 

versus wildtype microarray experiments could not be found for most inferred reg- 

ulators. For those that did exist, very little if any over-representation of known 

targets in lists of inferred targets was observed. This suggests either that they are 
false positives, that they regulate redundantly or that the validation data used was 

not appropriate. None of the literature experiments had been performed during B. 

cinerea infection and so it is possible the literature datasets were not similar enough 
in biological context to be appropriate for validation of these inferences. Ideally 

Chromatin Immuno- Precipitation (ChIP) performed with an antibody that precip- 
itates the TF of interest, from leaf samples infected with B. cinerea, would be used 
for validation, but this sort of data is almost non-existent in the literature. Another 

approach to validate the predicted regulation would be to use Yeast-l-hybrid to test 

the ability of the inferred regulatory TF to bind the promoter of inferred targets. 

Reverse genetics screen of inferred regulators 

Most of the inferred regulators of the defence response had not been tested in reverse 

genetics screens in the literature, and so altered expression mutants were screened 
for altered susceptibility to B. cinerea. TFs whose mutants showed altered suscep- 

tibility to B. cinerea were likely to be important regulators of the defence response. 
Altered susceptibility to B. cinerea was found to be variable across screens, and not 

all data was distributed normally (Table 2.2 and Appendix C). Nevertheless, some 

mutants of inferred regulators were found to give repeatable but weak quantitative 

resistance against B. cinerea. 

This study was performed to see which inferred regulators had mutants which caused 

altered susceptibility to B. cinerea. Because the study was not designed to test 

whether the methodology used was effective at predicting regulators that would 

have mutants with an altered phenotype, no appropriate control group for that was 

used. This means that there is no internal control, such as randomly chosen TFs or 
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differentially expressed TFs, against which to test for over-representation of mutants 
giving altered susceptibility to B. cinerea. The closest substitute for an internal con- 
trol is the study by AbuQamar et al. (2006) who showed differential susceptibility 
in mutants of 2 out of 14 up-regulated TFs. Unfortunately, AbuQamar et al. (2006) 

used spray-infected whole plants to qualitatively show altered susceptibility. This 

makes it tricky to compare to the screen presented in this chapter, especially as they 

did not present biological replicates. The screens presented in this chapter revealed 
that at least one (ANAC072), and possibly a second (NUB), TF/s out of 9 had two 

independent T-DNA knockouts that displayed altered susceptibility to B. cinerea. 
This is comparable to the altered phenotype rate in the reverse genetic screen pre- 

sented in AbuQamar et al. (2006). However, a visual comparison suggests that the 

novel altered phenotypes found in AbuQamar et al. (2006) are considerably more 
dramatic. 

Most of the gene knockout lines that show B. cinerea susceptibility phenotypes in the 

literature have shown increased susceptibility (for examples Mengiste et al., 2003; 

AbuQamar et al., 2006; Zheng et al., 2006; Pre et al., 2008), whereas decreased sus- 

ceptibility was observed in all repeatable phenotypes of mutants of TCAP inferred 

regulators. Although all novel phenotypes presented here are subtle, it is known 

that resistance to necrotrophic pathogens is quantitative and polygenic, i. e. relies 

on many different genes with each contributing only slightly to measurable resis- 

tance (reviewed in Poland et al., 2008). 

This chapter demonstrates the variability of the B. cinerea susceptibility phenotype 

and shows how this can be taken into account by using biological replicates, mea- 

suring susceptibility quantitatively, applying hypothesis testing and by performing 

multiple independent screens. 

Redundantly acting TFs 

It is also obvious from the literature that it is not possible to use a lack of phenotype 

in a mutant of a single gene to show non-involvement of that gene in a given process, 

because that gene may act redundantly. This has been shown with the TGA2/5/6, 

WRKY18/40 and WRKY18/60 combinations; knockouts of these genes show no 

altered susceptibility to B. cinerea whereas combinatorial knockouts do (Zander 

et al., 2010; Xu et al., 2006b). In fact ANAC072 is suspected to act at least par- 

tially redundantly. This was shown in Fujita et al. (2004) where a knockout did not 

show an altered ABA sensitivity phenotype, but a constitutively expressed chimeric 

ANA C072 with a fused repression domain did. This may also explain the weakness 

of the altered susceptibility to B. cinerea observed with the ANAC072 knockout. 
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Transcriptional regulation can also act redundantly, which partly explains dispari- 

ties between expression and binding experiments (reviewed in Gitter et al., 2009). 

If a TF acts redundantly it will be necessary to use other mutants, such as over- 

expressors or combinatorial knockouts, in reverse genetics screens to observe altered 

phenotypes. These mutants are frequently not available and can be time consuming 
to produce. If a researcher is interested in a set of n genes, and they wish to screen 
double knockouts of all possible combinations, then they must screen 2 (n - 1) lines 

which grows rapidly in n. The situation is worse if a researcher wishes to use com- 
binatorial knockouts of larger numbers of genes. Therefore, combinatorial mutants 

are more appropriate if a researcher already has a suspicion that the relevant genes 

may be acting redundantly together. Alternatively, constitutive over-expressors can 
be used to bypass functional redundancy, altering phenotypes. Unfortunately, over- 

expressors are also rare and time consuming to produce, and ectopic constitutive 

over-expression can cause large-scale downstream effects which can confound the 

phenotype. Ideally, phenotype screens of inducible over-expressors of genes of inter- 

est could be used to bypass both redundancy and some of the confounding effects 

of ectopic expression. Unfortunately, inducible over-expressors are even rarer than 

constitutive over-expressors. 

2.3.3 Conclusions 

While it is hard to make genome-wide specific inferences about transcriptional reg- 

ulation from gene expression time series, it can be achieved either by incorporating 

additional biological information, such as promoter sequences, or by searching for 

transcriptional regulation that causes a time-delayed correlation between the ex- 

pression of a TF and its target. While it is encouraging that both approaches have 

recovered some known regulators of the defence response, most specific inferred reg- 

ulation remain to be validated. Two exceptions are the prediction by TCAP that 

LHY regulates GI and that ORA59 regulates a number of downstream genes. In- 

ferred novel regulators of the defence response were investigated in a reverse genetics 

screen, and novel altered susceptibility phenotypes were observed. However, none of 

the phenotypes had a susceptibility phenotype as far from wildtype as the positive 

control, bosl, possibly suggesting that forward genetics screens are better suited to 

identifying genes with a strong non-redundant influence on susceptibility. 
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Chapter 3 

Development and validation of a 
qualitative model of gene 
regulation during the defence 

response 

In the previous chapter predicted transcriptional regulation was compared to tran- 
scriptional regulation demonstrated in literature studies. It was clear that although 
targets of some TFs have been studied in some contexts, few had been tested during 
B. cinerea infection. This made it hard to assess the accuracy of the predictions, 
which relate to transcriptional regulation during B. cinerea infection. The context- 
specificity of transcriptional regulation is not known in general, and so it is hard 

to know the degree to which regulation observed in one context can be extrapo- 
lated to another. This is an important question because although knowledge of 
transcriptional regulation during infection by B. cinerea is sparse, knowledge of 
transcriptional regulation in other contexts is more substantial. If transcriptional 

regulation does not depend too heavily on biological context, then knowledge of 
transcriptional regulation in other contexts can be extrapolated to predict regula- 
tion during infection by B. cinerea. This could then be used as a qualitative model 

of the dynamics of pathogen responsive transcriptional regulation, which could be 

experimentally validated and/or used to guide quantitative modelling approaches. 

The aim of this chapter is to develop and validate a qualitative model of gene 
regulation during the defence response of Arabidopsis to infection by B. cinerea. To 

achieve this, literature knowledge of transcriptional regulation between genes known 
to be involved in the defence response, derived from experiments performed in any 
biological context, will be compiled. A qualitative model of the defence response 
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GRN will then be generated by extrapolating this regulation to the context of B. 

cinerea infection. This qualitative model will then be experimentally validated in 

relatively `context free' conditions. Finally, context dependence will be investigated 
by comparative transcriptomics, to link this regulation to the context of B. cinerea 
infection. 

3.1 Introduction 

3.1.1 Biological contexts 

If a TF can regulate the expression of its target and can bind close to its TSS, it 

is likely that it affects its target's expression directly by transcriptional regulation. 
However, this regulation may only occur in certain biological contexts, such as the 

contexts under which binding and regulation of expression has been observed. In 

this chapter, the aim is to build a qualitative model of transcriptional regulation in 

one context, B. cinerea infection, from transcriptional regulation observed in other 

contexts. 

Experimental evidence of in planta transcriptional regulation, such as those intro- 

duced in the previous section, is always derived from a specific biological context. 
Such contexts are usually physiological - such as different developmental stages, cell 
types or during specific stresses - or non-physiological - such as during treatment 

with chemicals at physiologically extreme levels or in mutants with altered expres- 

sion of certain genes. Transcriptional regulation observed in one biological context 

can be hypothesised, but not assumed, to occur in a different context. This will be 

referred to in this thesis as `out of context' evidence of transcriptional regulation. 
For example, a knockout of ARF2 has been shown to be less susceptible to infec- 

tion by B. cinerea (Youn-Sung Kim et at., in preparation), and targets have been 

identified in the context of seedlings (Vert et al., 2008). The biological context in 

seedlings, or during B. cinerea infection, may affect the genes ARF2 is able to tran- 

scriptionally regulate. Therefore, with respect to transcriptional regulation during 

B. cinerea infection, this evidence is `out of context'. By comparison, experimental 

evidence of Arabidopsis transcriptional regulation that has been obtained in vitro, in 

yeast or in bacteria, is `context free', i. e. it is not known if, and in what conditions, 

this transcriptional regulation occurs in planta. 

3.1.2 Yeast one-hybrid 

One source of `context free' evidence of transcriptional regulation is Y1H. Y1H is 

an experimental approach to identify TFs that can bind to a. gene's promoter in 

yeast. In Y1H the coding sequence of a TF is fused to that for the GAL4 activation 
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domain (GAL4 AD), which can activate transcription in yeast. The transcription of 
any gene whose promoter can bind to that TF will then be increased. A promoter- 
reporter fusion,. of the promoter of a given gene, can then be used to observe the 
binding of the TF-GAL4 AD protein fusion (Li and Herskowitz, 1993). This is a 
similar technique to yeast two-hybrid (Fields and Song, 1989), but used to study 
protein-DNA rather than protein-protein interactions. 

Y1H can be performed against a library of TFs to reveal which of the TFs can 
interact with the promoter fragment in yeast. Traditionally such libraries have 
been constructed by generating cDNA from total RNA in a sample (Li and Her- 
skowitz, 1993), however this library will be biased towards highly expressed genes. 
More recently Y1H has been made Gateway compatible (Deplancke et al., 2004) 
and normalised clone libraries have been developed for Caenorhabditis elegans and 
Arabidopsis TFs (Deplancke et al., 2004; Ou et al., 2011), reducing the bias towards 
highly expressed TFs. The cloned library Y1H method is illustrated in Figure 3.1. 
Cloned libraries can be combinatorially pooled to make screening high throughput. 

Limitations of the Y1H approach 

While Y1H can identify potential regulators of a promoter fragment, there are some 
experimental limitations that can lead to false positives or false negatives. In the 
case of false positives it is not obvious how a given interacting TF-promoter pair 
identified by YIH could be conclusively shown not to occur, in any context relevant 
to the organism from which the TF and promoter originate. This makes it hard to 

estimate a false positive rate for YIH. However most Y1H screens will be performed 
to identify potential regulators that will then be tested in a specific condition. In 

this case a false positive is a TF-promoter pair seen to bind in yeast that fails to 

either bind to the promoter or regulate the expression of the corresponding target 

gene in that context. In Deplancke et al. (2004) 2 of 6 Y1H interactors tested had a 
significant effect on the expression of the target gene, giving a false positive rate of 

-67% in this setting. This suggests that some YIH interactors are prevented from 

affecting transcriptional regulation in certain, or possibly all, experimental condi- 
tions. This reinforces the idea that biological contexts need to be considered when 
considering evidence of transcriptional regulation. 

The pDEST22 plasmid expresses the chimeric TF in relatively high levels that may 
not correspond to the levels of that TF in physiological conditions in plants. This is 
important because a TF must be present in sufficient levels to regulate its targets. 
One way a false positive may occur is if the TF is not expressed at a sufficient 
level in the experimental condition tested. Y1H is performed with activation do- 
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Figure 3.1: Diagram of cloned library Y1H. redrawn and substantially adapted frone 
On et al. (2011). 

100 



mains fused to TFs, and so an interaction could fail to regulate expression if the 
native activation/repression domain of the TF was not effective in that context. 
Another possibility is that the activity of the TF is deactivated in some manner 
in that experimental context. Because of this, a positive interaction observed in 
Y1H is `context-free', in the sense that a researcher does not know which `natural' 

conditions the interaction is relevant to, if any. Validation approaches have their 

own associated false negative rates, and so a true positive identified by Y1H can 
be spuriously found to be negative in a validation experiment. A final possibility is 
that a positive interaction is observed in Y1H spuriously due to the variability of 
auto-activation of the reporter in the promoter-reporter construct. 

False negatives are easier to analyse, because positives have been identified by other 
experimental methods in a range of conditions. For example Y1H was able to identify 
3 out of 7 (-40%) known promoter interactors in a study of C. elegans promoters 
(Deplancke et al., 2004). One of the ways a false negative can occur is that the 

promoter-reporter plasmid is not usually incorporated into the yeast genome, and 
so it will not be in a proper chromatin context. Additionally false negatives may 
arise with TFs that require activation or interacting proteins to bind to DNA. False 

negatives can also arise due to technical issues such as pooling and colony picking, 
or PCR/sequencing failures. 

Estimates of the false positive and false negative rate of Y1H are currently based 

on one small scale study in C. elegans (Deplancke et al., 2004). More accurate esti- 

mates will require larger scale studies, ideally with TFs and promoters from a range 

of organisms. 

Arabidopsis transcriptional regulators correctly identified by cloned TF 

library yeast one-hybrid 

Because of the limitations of Y1H it is important to validate positive interactions 

in the native organism. Here novel interactors of Arabidopsis promoters revealed 
in cloned TF library Y1H screens that have been subsequently validated in planta, 
from the literature and from personal communication with Richard Hickman, are 
introduced. 

Pruneda-Paz et al. (2009) observed that the TCP TF, CHE, could interact with 

a fragment of the CCA1 promoter in a cloned TF library Y1H screen. This binding 

was validated in vitro by EMSA and then in planta by ChIP-PCR (Pruneda-Paz 

et al., 2009). The function of the binding site was demonstrated by mutating these 

sites in a promoter-reporter fusion. This demonstrated that Y1H interactions, iden- 
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tified using cloned TF libraries, can occur in planta and can impact a given biological 

process, in this case the circadian clock GRN. 

In a cloned TF library Y1H screen for interactors of the ANAC019 and ANAC055 

promoters, Richard Hickman et al., (in preparation) identified a novel interactor of 
their promoter fragments in yeast. They subsequently showed that this interactor 

could regulate their expression in planta by performing knockout versus wildtype 

microarray experiments. In addition, BES1 was found to interact with ANAC072 

promoter fragments in a cloned TF library Y1H screen (Richard Hickman et al., 
in preparation), and this interaction had already been found by Yu et al. (2011) to 

occur in planta as revealed by ChIP-chip (ChIP with microarray identification of 
immunoprecipitated DNA). 

Validation of Y1H interactions with transient transactivation assays 

Another way that transcriptional regulation can be validated is with transient trans- 

activation assays, where cells (of the organism from which the TF and promoter 
originate) are transiently transformed with both a TF over-expressing plasmid and 
a promoter-reporter plasmid. The effect of this TF on the promoter is demon- 

strated by monitoring the effect of over-expression of the TF on the level of the 

reporter. Transient transactivation assays have not yet been applied in the litera- 

ture to validate interactions between Arabidopsis TFs and promoters that had been 

first identified in cloned TF library Y1H screens. However, they have been success- 
fully applied to validate interacting C. elegans TF and promoters identified in this 

way (Deplancke et al., 2004). The advantage of transient transactivation assays, as 

a way to validate novel Y1H interactors, is that they can be performed rapidly in 

comparison to other experimental approaches, e. g. EMSA, mutant versus wildtype 

microarray and ChIP. One disadvantage, in comparison to mutant versus wildtype 

microarray or ChIP, is that transient transformation has not been adapted to appli- 

cations during stresses such as B. cinema infection. This means that evidence from 

transient transactivation assays is `out of context' with respect to B. cinema infec- 

tion. Another disadvantage is that transient transactivation assays are not always 

amenable to high-throughput applications. 

In summary, positive Y1H interactors have been validated in planta either by ChIP 

or mutant versus wildtype gene expression measurements. This shows the ability of 

cloned TF library Y1H to reveal novel regulators of a given Arabidopsis promoter, 

despite false positives and negatives. Additionally, transient transactivation assays 

offer a rapid validation of Y1H interactors, but have not yet been applied to validate 

Arabidopsis cloned library Y1H interactors in the literature. 
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The aim of this chapter is to develop a qualitative model of the defence response 
GRN and to experimentally validate it. A qualitative model will be developed from 
`in context', `out of context' and `context free' evidence from the literature. This 
will be experimentally validated by relatively `context free' approaches. Finally, 

context-specificity of transcriptional regulation will be investigated. 

3.2 Materials and Methods 

3.2.1 Yeast one-Hybrid 

Cloning of promoter fragments with restriction enzymes 

Oligonucleotides were designed to produce promoter fragments of approximately 
400 base pairs (bp), such that all the fragments for a promoter covered at least 
the first 1,000 bp upstream of the transcriptional start site (TSS). Oligonucleotides 

were designed in this way to generate 3 fragments each for the PGIPI and LACS2 

promoters. Additionally, oligonucleotides for four fragments of the WRKY33 pro- 
moter were designed in the same way by Laura Butler, see Appendix table D. 1(a). 
Oligonucleotides were extended to add SacI and Spel restriction sites to the frag- 

ments, these additions are shown by lower case letters in the oligonucleotides which 
are detailed in Tables D. 1 and D. 2 in Appendix D. 

Promoter regions for LACS2, PGIP1 and WRKY33 were amplified from genomic 
DNA (Co14) using these oligonucleotides and KOD polymerase (Roche, Welwyn) 

according to manufacturer's instructions. PCR products were loaded onto agarose 
gels, cut out of the gels and cleaned with the QlAquick gel extraction kit (Qiagen, 

West Sussex) according to the manufacturer's instructions. 

Cleaned fragments and the pHis2Leu2 vector (kindly provided by Claire Hill) were 
digested with restriction enzymes SacI and Spel (New England Biolabs, Hertford- 

shire) according to the manufacturer's instructions. Digested fragments were cleaned 

using a Qiaquick PCR Cleanup kit (Qiagen, West Sussex) according to the manufac- 
turer's instructions. Digested pHis2Leu2 was run on an agarose gel and extracted 
using QlAquick gel extraction kit (Qiagen, West Sussex) according to the man- 
ufacturer's instructions. Digested pHis2LeO and promoter fragments were ligated 

together using T4 DNA Ligase (Invitrogen, Paisley) according to the manufacturer's 
instructions. 

Alpha select Gold efficiency competent cells (Bioline, London) were defrosted for 
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ten mins on ice. Ligated fragments in pHis2Leu. 2 vectors were added to 10 yl of 
competent cells, mixed gently and incubated on ice for 30 mins. Cells were heat 

shocked at 42 °C for 30 seconds and then incubated on ice for 2 mins. 500 µl of 
SOC media (Table 3.1) was added and the cells incubated on a vigorous shaker 
at 37°C for 1-1.5 hours. Cells were centrifuged at 1,700 g for 3 mins and 300 

pl of supernatant was removed. Cells were resuspended in the remaining media 
and were transferred to LB agar (both from Sigma-Aldritch, Gillingham) plates 
containing Kanamycin (50 ug/mL). Cells were grown overnight at 37 °C. Colony 
PCR was performed with Taq polymerase according to manufacturer's instructions 
(with oligonucleotides: forward - 5'-CTATCAGGGCGATGGCCCACTA-3', and re- 
verse - 5'-AATGCACTCAACGATTAGCG-3', and Taq polymerase from Invitro- 

gen, Paisley), to check for the presence of the insert. PCR positive colonies were 
grown overnight in LB containing Kanamycin (50 µg/mL) at 37°C on a vigorous 
shaker. Then plasmids were extracted with a QlAprep spin miniprep kit (Qia- 

gen, West Sussex) and sequenced using the primers above (one at a time) and a 
BigDye®Terminator v3.1 cycle sequencing kit (Applied Biosystems, Warrington) 

according to the manufacturer's instructions. 

Table 3.1: SOC media 

Reagents (Sigma-Aldritch, Gillingham) 

2% (w/v) bacto-tryptone (20 g) 
0.5% (w/v) bacto-yeast extract (5 g) 
8.56 mM NaCl (0.5 g) 
2.5 mM KCl (0.186 g) 
10 mM MgC12 (0.952 g) 
20 mM glucose (3.603 g) 
ddH2O to 1000 mL 

In addition to the 10 promoter fragments cloned (4 for WRKY33 and 3 each for 

LA CS2 and PGIP1), an additional 4 were obtained from colleagues. A fragment of 
the ARF2 promoter cloned into pHis2Leu2 was kindly provided by Laura Butler. 

Three fragments of the ORA 59 promoter cloned into pHis2Leu2 were kindly provided 
by Peijun Zhang. The primers that had been used to generate these clones are shown 
in Appendix tables D. 2(b) and D. 3. 

Transformation of yeast strain Y187 with pHis2Leu2 plasmids 

An a strain of Saccharomyces cerevisiae, Y187, was grown overnight in 10 ml of 
YPDA (Clontech, Saint-Germain-en-Laye) at 30°C on a vigorous shaker. 1 ml of 
the culture was centrifuged at 400 g for 5 mins for each ten transformations. Cells 
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were resuspended in 1 ml of 0.1 M LiAc, centrifuged again and then resuspended in 
1 ml of 0.1 M LiAc. Cells were incubated at 30 °C in a water bath for 1 hour. 

0.5-1 pg of the promoter fragment in pHis2Leu2 was combined with 40 pg of de- 

natured salmon sperm carrier DNA (Clontech, Saint-Germain-en-Laye) and mixed 

with 290 pl 50% (v/v) polyethylene glycol (PEG) 3350. The DNA/PEG mix was 
heated to 30 °C. 

100 jcl of cell suspension was added to the DNA/PEG mix and mixed gently. Cell/ 

DNA/ PEG mix was incubated for 50 mins at 30 °C in the water bath. Cells were 
heat shocked by incubating at 42 °C for 15 mins and then centrifuged at 1,000 g for 

5 mins. Supernatant was removed, resuspended in sterile water and then spread on 
SD minus Leucine (SD-L; minimal SD and amino acid dropout supplements from 

Clontech, Saint-Germain-en-Laye) agar plates. Plates were incubated at 30'C for 

1-2 days, restreaked onto SD-L (minimal SD and amino acid dropout supplements 
from Clontech, Saint-Germain-en-Laye) agar plates and incubated again at 30 °C 

for 1-2 days. 

Cloned transcription factor library 

The TF library was constructed by Claire Hill and Alexandra Tabrett, as previ- 

ously described in Windram (2010). The TF library contains TF clones with the 

N-terminal fused to the GAL4 activation domain in the yeast expression vector 

pDEST22 (Invitrogen, Paisley). The library contains 1037 TF clones, pooled 12 

clones to a well in two 96-well plates, in two alternative arrangements giving a total 

of four 96-well plates. 

Transformation of yeast with cloned TF library pDEST22S 

Claire Hill kindly provided the TF library pre-transformed into an a strain of S. 

cerevisiae, AH109 (Clontech, Saint-Germain-en-Laye). 

Additionally, for individual (i. e. non-pooled/pair-wise) Y1H screens, pDEST22 plas- 

mids, kindly provided by Alison Jackson, for ABI$, ORA59, ERF1, ERF15, MYC2, 

ARF2, WRKY25, WRKY33 and At2g2S2S0 were individually transformed into an 

a strain of yeast, AH109, as described for Y187 except using AH109, pDEST22-TF 

clones and SD-T (minimal SD and amino acid dropout supplements from Clontech, 

Saint-Germain-en-Laye) agar plates for selection. Additionally, a pDONR:: GFP en- 

try clone kindly provided by Volkan Cevik was used to generate a pDEST22:: GFP 

plasmid by the Gateway LR reaction (Invitrogen, Paisley) following the manufac- 

turer's instructions. This pDEST22:: GFP was also used to transform AH109, as 
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described above. 

Transcription factor library subculture 

For each 96-well glycerol stock library plate 500 p1 SD-T (minimal SD and amino 

acid dropout supplements from Clontech, Saint-Germain-en-Laye) was added to each 

well in a 2.2 ml deep 96-well plate. Transcription factor library glycerol stocks were 
taken from -80 °C storage and placed on ice. Library plates were subcultured using 

a 96-deep well replicator (V and P Scientific Inc, San Diego) into the 96-well plates 

containing SD-T (minimal SD and amino acid dropout supplements from Clontech, 

Saint-Germain-en-Laye) media. Plates were then closed using a gas-permeable seal 

and incubated at 30 °C on a vigorous shaker for 4 days. 

Pooled library yeast one-hybrid by mating and auxotrophic selection 

S. cerevisiae cultures, of Y187 that had been transformed with the promoter frag- 

ment containing pHis2Leu2 plasmid, were made in 10 ml of SD-L (minimal SD and 

amino acid dropout supplements from Clontech, Saint-Germain-en-Laye) and incu- 

bated overnight on a vigorous shaker at 30°C. 3 µl of the overnight culture was 

spotted onto each gridspot of a 96-well arrangement on a YPDA (Clontech, Saint- 

Germain-en-Laye) agar plate. 3 µl of each well of the transcription factor library 

subculture was spotted on top of the Y187 spots, at the corresponding library grid 

position. Yeast were allowed to mate overnight by incubation at 30 °C. 

YPDA (Clontech, Saint-Germain-en-Laye) agar plates were replicated using velvets 

onto agar plates containing the following growth media (minimal SD and amino acid 

dropout supplements from Clontech, Saint-Germain-en-Laye): 

" SD minus Leucine and Tryptophan (SD-LT). 

" SD minus Leucine, Tryptophan and Histidine (SD-LTH). 

9 SD-LTH with various concentrations of 3-Amino-1,2,4-triazole (3AT). 

Plates were incubated at 30 °C overnight. Then the plates were cleaned with 3 vel- 

vets before being incubated at 30 °C for 3-4 days. Finally, the plates were imaged 

with upper white light in a G: BOX (SynGene, Cambridge). Growing colonies on 

SD-LTH and SD-LTH 3AT agar plates were picked into 10 µl of 20 mM NaOH. Then 

the plate was shaken, sealed and then incubated at 99 °C for 10 mins. Then colony 

PCR was performed on 1.2 ul of the boiled yeast extract using Taq polymerase 

(oligonucleotides: forward - 5'-CTAACGTTCATGATAACTTCATG-3', reverse - 
5'-GAAGTGTCAACAACGTATCTACC-3'; and Taq polymerase from Invitrogen, 
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Paisley), according to the manufacturer's instructions. PCR products were cleaned 

using a MultiScreen HTS PCR 96-well plate (Millipore, Watford) according to the 

manufacturer's instructions. Cleaned PCR products were sequenced to identify in- 

teracting TFs, using the forward oligonucleotide above and a BigDye®Terminator 

v3.1 cycle sequencing kit (Applied Biosystems, Warrington) according to the man- 

ufacturer's instructions. 

Individual yeast one-hybrid by mating and auxotrophic selection 

To test individual TF-promoter pairs, Y1H by mating and auxotrophic selection can 
be performed without pooling. S. cerevisiae cultures of Y187 which have already 
been transformed with the promoter fragment containing pHis2Leu2 plasmid were 

made in 10 ml of SD-L (minimal SD and amino acid dropout supplements from Clon- 

tech, Saint-Germain-en-Laye). The cultures were incubated overnight on a vigorous 

shaker at 30 °C. 3 µl of the overnight culture was spotted onto as many grid-spots as 

required of a 96-well arrangement on a YPDA (Clontech, Saint-Germain-en-Laye) 

agar plate. Then 3 pl individual transcription factor pDEST22 transformed AH109 

yeast, that had been incubated overnight in 10 ml of SD-T (minimal SD and amino 

acid dropout supplements from Clontech, Saint-Germain-en-Laye) at 30 °C on a vig- 

orous shaker, were spotted on top of the pHis2Leu2 transformed Y187 spots. Yeast 

were allowed to mate overnight by incubation at 30 °C. 

YPDA agar plates replicated using velvets onto agar plates with the following 

growth media (minimal SD and amino acid dropout supplements from Clontech, 

Saint-Germain-en-Laye) : 

9 SD-LT. 

" SD-LTH. 

" SD-LTH with various concentrations of 3AT. 

Plates were incubated at 30 °C overnight. Then the plates were cleaned with 3 

velvets before being incubated at 30 °C for 3-4 days. Finally, the plates were imaged 

with upper white light in a G: BOX (SynGene, Cambridge). 

Individual yeast one-hybrid by co- transformation and auxotrophic selec- 

tion 

Individual Y1H can also be performed by co-transformation. First, individual TFs 

in pDEST22 plasmids were co-transformed into yeast strain Y187, that had already 

been transformed with a pHis2Leu2 plasmid containing a promoter fragment. This 
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was performed by the yeast transformation protocol presented earlier, but with SD-L 
(minimal SD and amino acid dropout supplements from Clontech, Saint-Germain- 

en-Laye) media used to grow the initial overnight culture and SD-LT (minimal SD 

and amino acid dropout supplements from Clontech, Saint-Germain-en-Laye) agar 
plates used to select the transformed yeast. 

S. cerevisiae cultures of strain Y187 containing a promoter fragment in a pfis2Leu2 

plasmid, as well as the coding sequence of a TF in a pDEST22 plasmid, were made 
in 10 ml of SD-LT (minimal SD and amino acid dropout supplements from Clon- 

tech, Saint-Germain-en-Laye) and were incubated overnight on a vigorous shaker at 
30 °C. All cultures were concentrated by centrifugation at 300 g for 10 mins, and 

removal of supernatant to give a concentration of 108 cells per ml as determined by 

optical density and an OD600 table. A serial dilution of each co-transformed culture 

was performed in 96-well plates. 200 µl of the overnight culture was pipetted into 

the first well. Then 20 µl of this was pipetted into the second well, followed by 180 

µl of H2O and mixed by pipetting. The previous step/sentence was repeated for 

the third, fourth and fifth wells. For the screen of interactors of ARF2 promoter 
fragment 1, an additional 180 pl of H2O was added to the first well. Then 3µl of 

each serial dilution, of each co-transformed culture, was spotted onto agar plates 

with the following growth media (minimal SD and amino acid dropout supplements 
from Clontech, Saint-Germain-en-Laye): 

" SD-L. 

" SD-T. 

" SD-LT. 

" SD-LTH. 

" SD-LTH with various concentrations of 3AT. 

Plates were incubated at 30 °C for 2-3 days. Plates were imaged with upper white 

light in a G: BOX (SynGene, Cambridge) and photographed. 

3.2.2 Biolistic transactivation experiments 

Plant Growth 

Arabidopsis Co14 (wildtype) seeds were stratified in 0.1% (w/v) agar at 4 °C for 

3 days and then transferred to Arabidopsis soil mix (Scotts Levingtons F2s com- 

post: sand: fine grade vermiculite in a ratio of 6: 1: 1). Plants were grown in a controlled 

environment with a 10: 14 hour light: dark cycle at 19.5 °C, with 60% humidity and 

108 



a light intensity of 100 tmol photons. m-2. s-1. These plants were allowed to grow 
for 6-8 weeks before mature leaves were transformed by biolistic infiltration. 

Plasmids 

Promoter-reporter fusion plasmids for WRKYS3 (PI:: GUS, P4:: GUS and P4m1- 

4:: GUS) were kindly donated by Imre Sommisch, their construction is detailed in 

Lippok et al. (2007). The coding sequences of ARF2, WRKY25 and WRKY3S, 

in a Gateway pDONR entry vector (Invitrogen, Paisley) were kindly provided by 

Youn-Sung Kim (ARF2) and Alison Jackson (WRKY25 and WRKYS3). The cod- 
ing sequences were then transferred by an LR reaction (Invitrogen, Paisley), per- 
formed according manufacturer's instructions, to a destination vector containing a 

constitutive promoter (p35S:: gateway) kindly donated by Volkan Cevik. P1:: GUS, 

P4:: GUS, P4m1-4:: GUS, pSSS:: WRKY25, p8SS:: WRKY33, p35S:: ARF2, as well as 

p15S:: MYC2, p3SS:: GAL4DB and pS5S:: L UC (over-expressor of luciferase) kindly 

donated by Volkan Cevik, were transformed into Alpha select Gold efficiency com- 

petent cells (Bioline, London) as detailed in section 3.2.1. Cells were spread onto 
LB Agar plates containing Carbenicillin (100 pg/mL) and incubated overnight 

at 37 °C. Plasmids were then extracted using a QlAprep Midiprep kit (Qiagen, 

West Sussex) according to manufacturer's instructions. Extracted plasmids were 
then sequence verified (oligonucleotides used in separate reactions: forward - 5'- 

CTAACGTTCATGATAACTTCATG-3', reverse - 5'-GAAGTGTCAACAACGTA 

TCTACC-3', from Invitrogen, Paisley) using a BigDye®Terminator v3.1 cycle se- 

quencing kit (Applied Biosystems, Warrington) according to manufacturer's instruc- 

tions. 

Biolistic transformation 

DNA mixes for Biolistic transformation were prepared as follows, with volumes 

equalised with ddH2O: 

" For the first assay : 2.5 µg of pS5S:: LUC, 2 ag of p35S:: [TF of interest] and 4 

µg of P1:: G US. 

" For the second and third assays : 2.5 µg of p35S:: LUC, 3 µg of pS5S:: [TF of 

interest) and 4 µg of [promoter fragment of interest):: GUS. 

pS5S:: GAL! DB, an over-expressor plasmid for the GAL4 DNA-binding domain, 

was used as a control plasmid. Macrocarriers (Bio-Rad, Hemel Hempstead) were 

attached to Macrocarrier holders (Bio-Rad, Hemel Hempstead). The rest of this 

paragraph was performed by Volkan Cevik. DNA mixes were mixed with 50 µl 

of 2.5 M CaCI and 20 µl of 0.1 M Spermidine trihydrochloride (Sigma-Aldritch, 
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Gillingham). This was mixed with 50 µ1 of Tungsten M-17 Microcarriers (Bio-Rad, 
Hemel Hempstead) that had been suspended in 100% EtOH at 60 mg/ml, vortexed 
vigourously for 5 mins and then spread onto the Microcarriers. 

Co14 leaves were detached by scalpel and placed in the centre of a petri dish con- 
taining 1/4 strength Murashige and Skoog medium (Duchefa Biochemie, Haarlem, 
The Netherlands) in 1.8% (w/v) agar. Transformation was performed with a PDS- 

1,000/He Biolistic® particle delivery system (Bio-Rad, Hemel Hempstead), using 
1,100 psi Rupture discs (Bio-Rad, Hemel Hempstead) and stopping screens (Bio- 

Rad, Hemel Hempstead). Transformed leaves were then placed in 30 ml tubes 
(Griener Bio-One, Stonehouse) which had 5 ml of 1/4 strength MS in 1.8% (w/v) 

agar set along one side of the tube, and approximately 0.5 ml of 1/4 strength MS 

(Duchefa Biochemie, Haarlem, The Netherlands) at the bottom of the tube. 

Three separate biolistic transformations were performed for each DNA mix, with 
between 2 and 3 leaves transformed in each transformation. Tubes of transformed 
leaves were transferred to a controlled environment with a 16: 8 hour light: dark cycle 

at 23.5 °C, with 60% humidity and a light intensity of 100 tmol photons. m-2. s-1. 
They were left in the controlled environment for 24 hours. 

Protein extraction 

All leaves transformed with the same DNA mix were pooled, frozen in liquid N2 and 

ground to a fine powder with a pestle and mortar. The powder was transferred to 

three separate 2 ml tubes and refrozen in liquid N2. Approximately 300 eil of Passive 

Lysis Buffer (Promega, Mannheim, Germany), depending on sample volume, was 

added to each tube. Tubes were transferred to ice, and then tubes where vortexed 

briefly, twice and then returned to ice, as often as possible until all samples were 

thoroughly thawed. All tubes were then centrifuged at 12,000 g for 20 mins at 4 °C, 

after which the supernatant was removed and placed in a deep 96-well plate. 

Reporter measurements 

For the first two screens samples were loaded sequentially into a 96-well plate. For 

the larger third assay, samples were loaded in wells assigned by the MATLAB® 

function randsample. m. This randomisation was used to control for technical vari- 

ability due to the plate reader. For the Luciferase assays 20 pl of each protein 

extract (in Passive Lysis Buffer) was mixed with 100 µl of Luciferase Assay Reagent 

(Promega, Mannheim, Germany). For the GUS assays 80 pl of protein extracts 

(in Passive Lysis Buffer) was added to 200 pl GUS assay buffer which contained 

20 mg of methylumbelliferyl ß-D-galactopyranoside (MUG; dissolved in 1% (v/v) 
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dimethylformamide, both from Sigma-Aldritch, Gillingham) per 25 ml of GUS ex- 
traction buffer, which is detailed in Table 3.2. 

Table 3.2: GUS extraction buffer. 

Reagents (Sigma-Aldritch, Gillingham) Stock Volume 

50 mM Sodium phosphate pH 7.0 1M 500 µ1 
1 mM Ethylenediaminetetraacetic acid (EDTA) 0.5 M 20 id 
10 mM Dithiothreitol (DTT) 0.1 M 1,000 yl 
0.1% Triton X-100 10% (v/v) 100 Al 
0.1% Sarkosyl 30% (v/v) 334 µ1 
H2O up to 10 ml 8,046 µl 

20 pl of GUS assay was taken immediately and mixed with 180 µl of GUS stopping 
buffer (200 mM sodium carbonate), this was used for the zero hour GUS reading. 
The remaining GUS assay solution was incubated at 37 °C for 12 hours, after which 
the GUS assay was stopped as in the previous step, this was used for the 12 hour 
GUS reading. 

All reporter measurements were made with a GENios Microplate Reader (Tecan, 

Männedorf, Switzerland). GUS fluorescence measurements were taken with an ex- 

citation wavelength of 360 nm, an emission wavelength of 465 nm, a gain of 60, 

3 flashes, 40 ps integration time and a shake and settle time of 3 seconds each. 
Luciferase luminescence measurements were taken with a 595 nm filter, 5,000 ms 
integration time, a gain of 150, and a shake and settle time of 3 seconds each. 

GUS readings were taken to be the difference between the readings from the 0 

and 12 hour GUS reaction, minus the difference between untransformed leaves at 0 

and 12 hours. This normalised the readings against the background of fluorescence. 

These values were divided by Luciferase readings, i. e. the Luciferase readings were 

used as a transformation control. 

T-tests to compare transient transactivation results 

All t-test p-values were calculated in MATLAB®, using a two-sample two tail t-test 

without assuming equal variances (using script ttest2. m). 

3.3 Results 

Knowledge of the structure of the GRN underlying the defence response of Ara- 

bidopsis to infection by B. cinerea is currently very sparse. In this section literature 
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evidence, experimental analysis and bioinformatic approaches will be used to develop 

hypotheses about the structure of this GRN. 

3.3.1 A qualitative model of the defence response GRN 

To develop an initial hypothesis about the structure of the GRN, `in context', `out 

of context' and `context free' evidence of transcriptional regulation was used. As 

well as regulation of TFs by other TFs, regulation of genes in response to elictors 

of the defence response and regulation of physiological outputs affecting resistance 

will be considered. This will be used to generate a model that spans from pathogen 

perception to activation of resistance mechanisms. 

Genes that have been shown to affect the susceptibility of Arabidopsis to infection 

by B. cinerea were selected, with an initial focus on genes encoding TFs or poten- 
tial physiological outputs, i. e. TFs - ARF2, EINS, OCPS, MYC2, ERF1,0RA59, 

ANAC019, ANAC055, ATAF1, WRKYS3, CAMTA3, TGA2, TGA3, TGA5, TGA6 

and WRKY70 (introduced in Section 1.4) - and physiological outputs - BAP1, 

CHIB, LACS2, PADS and PGIP1 (introduced in Section 1.4.2). 

Evidence from the literature suggesting transcriptional regulation between these 

genes was compiled. SDG8, COD, EIN2, MPK3, MPK6, NPR1 and JAZs were 

added to the list of genes because they affect B. cinerea susceptibility, and evidence 
in the literature suggested they could alter the expression of at least one of the genes 
in the original list (Berr et al., 2010; Thomma et al., 1998,1999; Galletti et al., 2011; 

Chini et al., 2007). Additionally ATG18a, a gene encoding a protein required for 

the autophagy pathway involved in nutrient recycling during programmed cell death 

(Lai et al., 2011b), was added because it was found to be regulated by ANAC055 

during senescence (Hickman et al., in preparation) and WRKY33 during B. cinerea 

infection (Lai et al., 2011b). A knockout mutant of ATG18a also showed an in- 

creased susceptibility to infection by B. cinerea (Lai et al., 2011b). Because of this 

it is possible that ATG18a acts as a physiological output of the defence response 

GRN. Finally, evidence of transcriptional regulation of these genes in response to 

chitin or OGs, elictors of the defence response, was compiled and is summarised in 

Table 3.3. Evidence of transcriptional regulation between the list of genes is sum- 

marised in Tables 3.4-3.5 and visualised in Figure 3.2. 

All genes in Figure 3.2 except PADS, PDF1.2, COIL, MYC2, NPR1, SDG8, TGA6 

and some of the JAZs were found to be differentially expressed during B. cinerea 

infection (as determined in. Section 2.2.1). By visual inspection of the expression 

profiles of genes in Botrytis-infected versus mock-infected leaves (in the dataset in- 
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Table 3.3: A table summarising genes known to be responsive to elictors of the 
defence response. 

Elicitor Target Evidence Source 

Chitin ERF4 qRT-PCR Libault et al. (2007) 
Chitin WRKY33 qRT-PCR Libault et al. (2007) 
Chitin WRKY70 qRT-PCR Libault et al. (2007) 
OGs EIN2 Microarray Ferrari et al. (2007) 
OGs ERF1 Microarray Ferrari et al. (2007) 
OGs ERF. 4 Microarray Ferrari et al. (2007) 
OGs WRKY33 Microarray Ferrari et al. (2007) 
OGs CAMTA3 Microarray Ferrari et al. (2007) 
OGs BAP1 Microarray Ferrari et al. (2007) 
OGs PGIP1 Microarray Ferrari et al. (2007) 
OGs TGA3 Microarray Ferrari et al. (2007) 

troduced in Section 2.2.1) it was determined that JAZJ, JAZ6, JAZ7, JAZ8, JAZ9 
and JAZ10 are up-regulated, and JAZ12 down-regulated during infection by B. 
cinerea. In all of these cases the up- or down-regulation was consistent after dif- 
ferential expression, i. e. genes upregulated at a timepoint in the Botrytis-infected 
time series, relative to the mock-infected, stayed up-regulated at later time points 
and visa versa. PAD3 and PDF1.2 were not represented by microarray probes on 
the CATMA cDNA arrays used in Section 2.2.1, but they have been shown previ- 
ously to be up-regulated during B. cinerea infection (Manners et al., 1998; Lai et al., 
2011a). While more than half of the genes featured in Figure 3.2 are up-regulated, 
ARF2, CAMTAS, EIN2, EINS, LACS2, MPKS, OCPs, TGA2, TGAS, TGAS and 
WRKY70 are down-regulated during infection. This suggests that downregulation 

of TFs is part of the defence response, suggesting that focusing on up-regulated 
TFs as in AbuQamar et al. (2006) may miss important regulators of the defence 

response. (Differential expression of genes during B. cinerea infection determined 

according to Section 2.2.1). 

The vast majority of relevant literature evidence is out of context' with respect 
to B. cinerea infection and relates to regulation of expression, with relatively few 

cases of TF-promoter binding known. However, if `out of context' regulation can 
be extrapolated to the context of B. cinerea infection then this evidence provides a 

good basis for an initial model of the structure of the defence response GRN. Ad- 

ditionally, nothing is known about the transcriptional regulation of LACS2, which 

may be a physiological output controlled by the defence response (Section 1.4.2). 
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Table 3.5: Literature and unpublished evidence of transcriptional regulation relating 
to the defence response continued. 

Regulator Targets Context Evidence Source 

MYC2 ERF4, MYC2 Microarray Dombrecht et al. (2007) 
WRKY33, knockout, 
ORA59, treated or 
BAP1 and untreated 
CHIB with JA 

ARF2 WRKY88, ARF2 Microarray Vert et al. (2008) 
BAP1, knockout 
PGIP1 and seedlings 
WRKY70 

CAMTAB WRKY88 CAMTAS Microarray Galon et al. (2008) 
and knockout 
WRKY70 

SDG8 ERF1 and methyl-JA Microarray Berr et al. (2010) 
MYC2 treated 

SDG8 
knockout 

TGA3 PGIP1 and B. cinerea Microarray Windram (2010) 

WRKY70 infected 
TGA3 
knockout 
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3.3.2 Context free validation and extension of the qualitative model 
by yeast one-hybrid 

The relative lack of literature on direct regulators of the defence response moti- 
vates the application of cloned library Y1H to identify TFs capable of binding to 
the promoters of genes highlighted in Figure 3.2. In the YIH screens that will be 

presented. three levels of 3AT were used to reduce auto-activation by inhibiting His- 
tidine biosythesis; in the cloned library YIH screen of WRKY3Spromoter fragments 
25,50 and 100 mM 3AT were used, in all other Y1H screens these levels were lower 
(5.25 and 50 mM) as 5 mM was found sufficient to prevent auto-activation in many 
cases. 

WRKY33 

Only one TF. WRKY33 itself, is known to be able to bind to the WRKY33 promoter 
(Mao et al.. 2011). 

Pooled library Y1H To see if any of the TFs which are known to be able to 

transcriptionally regulate WRKY33 can also bind to the WRKY33 promoter, as well 

as identifing other TFs that are able to interact with fragments of the WRKY33 

promoter. cloned library Y1H was performed. Four promoter fragments were used, 

each approximately 400 bp long, covering the 1,000 bp upstream of the TSS of 
WRKY33. Y1H was performed on all four fragments. against all four library plates. 
The TFs found to interact with the promoter fragments are summarised in Table 3.6. 

These are TFs that caused growth beyond auto-activation on at least one selective 

plate. 

Table 3.6: Pooled TF library Y1H screen by mating and auxotrophic selection. 
Interactors of WRKYSS promoter fragments 1-4 are shown. TFs highlighted in rcd 

were found in screens with both arrangements of the library. 

Fragment number Interactors 

I ERF10. AT3G12910 (NAC) 

2 None 

3 
\VRKY: I: I. WRKY25. T(T3, TCP8, T('PI4, 
TCP15, TC'P1()'. TC'P20, ATIC35560 (TCP) 

4 TCP1. TCP3. TCP15. TCP16 

The known WRKY33-WRKY33 promoter interaction was recovered by Y1H, as 
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well as a WRKY25- WRKY3S promoter interaction that is novel. WRKY25 and 
WRKY33 have high sequence similarity (Eulgem et al., 2000), and both have been 

found to interact with the MAPK substrate MKS1 (Andreasson et al., 2005), sug- 

gesting a degree of redundancy. Many TCP TFs were found to interact with the 

WRKY3S promoter in two fragments. Little is known of the role of TCP TFs in the 

defence response. It should be noted that fragments with no identified interactors 

might have been found to interact with more TFs if different levels of 3AT were used. 

A degree of technical variability is observed between the alternative pooling repli- 

cates; this is consistent with the known limitations of cloned library Y1H screens 

and Y1H in general (introduced in Section 3.1.2). 

Retested Y1H by individual mating Given the technical variability observed, 

some of these interactions were retested in an individual (i. e. pair-wise/non-pooled) 
Y1H screen to see if the results were repeatable. Additionally, a negative control 

was used to allow better characterisation of auto-activation. This negative con- 
trol was transformed with pDEST22:: GFP, which expresses the green fluorescent 

protein (GFP) which has no reported DNA-binding interactions. For experimen- 
tal tractability only a small number of interactors were re-tested. WRKY33 was 

re-screened because the WRKY33- WRKY33 promoter interaction has already been 

shown to occur in planta (Mao et al., 2011) and therefore this interaction can act as a 

positive control. WRKY25 was rescreened because it has a high sequence similarity 
to WRKY33 (Eulgem et al., 2000), this means that it is plausible that this inter- 

action also occurs in planta. Additionally, it was noted that WRKY33 expression 

was increased in knockouts of either ARF2 (Vert et al., 2008) or MYC2 (Dombrecht 

et al., 2007) and that binding motifs for each, TGTCTC (Wang et al., 2011) and 
CACATG (Abe et al., 1997; Badis et al., 2009) respectively, were found to be present 

in the 1 kb upstream of the TSS of WRKYS3. This suggests the potential for direct 

transcriptional regulation of WRKY33 by these TFs, and so they were re-screened 

even though they were not seen to interact in the cloned library Y1H screen. 

Individual Y1H screens were performed by mating to retest the interaction of WRKY25, 

WRKY33, ARF2 and MYC2 with WRKY33 promoter fragments 1-4. The results of 

the individual YIH by mating for WRKY33 fragments 1-4 are shown in Figure 3.3. 

WRKY33 was again shown to be able to bind to a fragment of its own promoter, 

confirming the result of the pooled library Y1H screen (Table 3.6). Only screens 

using SD-LTH and SD-LTH 5 mM 3AT are shown, WRKY33 (prey) + WRKYS9 

promoter fragment 3 (bait) was able to grow at 25 and 50 mM 3AT, but no other 

growth beyond control was seen on these selections. Auto-activation, as demon- 

118 



WRKY3 3 
promoter 

Co 

Prey 
M 11'1 

O ^n NN 
LN 
4-J LL 
r- C)c 

O oC oC 
r 

a U 

Prey 
M vl 

O r"ý N cy N 
LL U 

Oý oC oC 
ý 

SD-LTH 5mM 3AT 
Figure 3.3: AV'RKY33 call interact wit It the promoter of WJ? J YJJ in yeast. Photos 

are of individual Y111 screens. of WRKY3,1 promoter fragments. by mating and 
auxotrophic selection. Baits, preys and selections were as shown. Two replicates. 
A and B. were used to control for experimental variability. WRKY33 was shown to 
interact with WRKY33 promoter fragment 3. 

I19 



strated by growth of the control, was observed with all other promoter fragments. 

WRKY25 was not observed to interact with WRKY33 promoter fragment 3 in ei- 
ther of the replicates, raising the possibility that WRKY25 was a false positive in 

the cloned library Y1H screen. 

Retested Y1H by co-transformation Because of the variability observed be- 

tween the two Y1H screens by mating, that is the lack of a WRKY25- WRKY33 

promoter fragment interaction in the second screen, it was desirable to retest these 

interactions with a less variable Y1H screen. This was achieved by performing 

co-transformation instead of mating and by controlling the concentration of cells 
in each spot. Additionally, because of the high levels of auto-activation observed 
in the previous two screens, serial dilutions were used to give a higher resolution 

of the differences in growth rate. Individual Y1H screens were performed by co- 
transformation, to retest the potential interactions of WRKY25, WRKY33, ARF2 

and MYC2 with WRKY33 promoter fragments 1-4. 

The results of the individual Y1H screens, by co-transformation, for WRKY33 pro- 

moter fragments 1 and 3 are shown in Figure 3.4. The other two fragments had 

no growth beyond the control and so are not shown. In Figure 3.4(a) MYC2 was 

shown to interact with WRKY33 promoter fragment 1 in yeast. In Figure 3.4(b) 

WRKY25 and WRKY33 were shown to interact with WRKY33 promoter fragment 

3 in yeast, in a fragment containing the 38 bp stretch that has been shown to be 

required for pathogen response in Lippok et al. (2007) and overlapping with the 

sequence that WRKY33 was found to bind in planta (Mao et al., 2011). (All other 

fragments and selections had no growth beyond the control, except for WRKY25 

on WRKY33 fragment 3 with 25 mM and 50 mM selection and so are not shown. ) 

Validation of Y1H results by motif analysis The Y1H screens presented 

above have been performed against promoter fragments approximately 400 bp long, 

whereas TFs have been shown to bind to specific short DNA sequences about 5-8 

base pairs (bp) long (reviewed in Wray et al., 2003). It is not possible to tell which 

short sequences were bound by interacting TFs in the screens presented here, but 

known binding motifs of these TFs can be used to identify potential binding sites, 

this is shown in Figure 3.5. Additionally, two promoter fragments (P1 and P4) used 

in a study by Lippok et al. (2007) are shown which will be used to validate some of 

these interactors in planta in Section 3.3.3. For every Y1H interactor, a match of 

at least four bp with a known binding motif associated with that TF was found at 

positions within the relevant promoter fragments. 

While WRKY33 has already been shown to bind to its own promoter in planta 
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WRKY33 in yeast. Photos are of individual Y1H screens, of WRKY33 promoter 
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TGGG - TCP partial match 

GCCC - TCP partial match 

GCCGCC - ERE motif I 

CACG - NAC core motif I 

CACATG - MYC2/NAC motif 
II 

TGTCTC - ARF2 motif 
I 

TTGAC - W-boxes -1200 -1000 -800 -600 -400 -200 Promoter . -a º 

Figure 3.5: The WRKY33 promoter, with TF binding motifs and promoter frag- 

ments displayed. Promoter fragments are those screened by Y1H in this chapter. 
Lippok et al. fragments correspond to the fragments constructed by Lippok et al. 
(2007). WRKY-box (de Pater et al.. 1996; Ciolkowski et al., 2008). ARF2 (Wang 

et al.. 2011), MYC2/NAC (Abe et al.. 1997; Badis et al.. 2009; Tran et al., 2004), 
NAC core (Tran et al.. 2004) and ERE (Ohme-Takagi and Shinshi, 1995; Badis et al.. 
2009) motif matches are shown. Additionally, partial matches of the TCP binding 

motif TGGGC[C/T] (Giraud et al., 2010). are shown. 
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(Mao et al., 2011), the other interactors, including MYC2 and WRKY25, repre- 

sent possible novel interactors in planta. This adds to the `context free' evidence 

of transcriptional regulators of WRKY3S, which can be used to extend the qual- 
itative model presented in Figure 3.2. MYC2 was only shown to interact with a 
fragment of the WRKY33 promoter in the Y1H by co-transformation. This is likely 

to be because the serial dilutions provided a better resolution of the difference in 

growth of this colony in comparison to the control. The interaction of WRKY25 

with the promoter of WRKY33 was seen in the original library Y1H screen and 
in the co-transformation Y1H screen, and so the negative result in the individual 

mating Y1H screen is likely to be a false negative. Motifs corresponding to these in- 

teractors present in the WRKY33 promoter adds plausibility and provides potential 
binding sites for the interactors identified by cloned library Y1H. 

ORA59 

ORA59 is an AP2-ERE BP TF that is up-regulated in response to B. cinerea in- 

fection, and has been shown to be up-regulated synergistically in response to JA 

and ET treatment (Pre et al., 2008). However, nothing is known about the direct 

transcriptional regulators responsible for the upregulation of ORA59 expression in 

these conditions. 

Pooled library Y1H To identify potential transcriptional regulators of ORA59 

three promoter fragments, each approximately 400 bp long, covering the 1,000 bp 

upstream of the TSS of ORA59 were screened with a pooled library Y1H screen. 

Y1H was performed on all three fragments, against all four library plates. The TFs 

that were found to interact with fragments of the ORA 59 promoter are summarised 

in Table 3.7. 

TCPs and AP2-ERE BPs, as well as the NAC TF At3g12910 that has also been 

found to bind to the WRKY33 promoter (Table 3.6), were found to interact with 

fragments of the ORA 59 promoter. Similarly to the WRKY33-WRKY33 promoter 

interaction, ORA59 was found to interact with fragments from its own promoter 

(fragments 1 and 2 shown in Table 3.7). Other than the TCP and NAC TFs, no 

TF was found to interact with both the WRKY33 and ORA 59 promoter fragments, 

suggesting that cloned library Y1H is able to identify novel interactors specific to 

each promoter. Additionally, the fact that WRKY TFs were found to interact with 

the promoter of the WRKY TF WRKY33 and AP2-ERE BPs were found to interact 

with the promoter of the AP2-ERE BP ORA59 suggests intra-family transcriptional 

regulation. 
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Table 3.7: Pooled TF library Y1H screen by mating and auxotrophic selection. 
Interactors of ORA59 promoter fragments 1-3 are shown. TFs highlighted in mil 
were found in screens of both arrangements of the library. 

Fragment number Interactors 

1 ERF1. ERF14. ERFI5. At3g23220 (ERF). ORA59. 
At2g42920. P! F7. TCP1. TCP3. TCP4. TCP14. 
T('Pfl. 1'(: 'PU;, TCP20. At1g35560 (TCP) 

2 
E: IIF1. I: liF2. ERF5. ERF6,1: ßI 10. ERF13, I: liI 1 t. 
ERF15, ERF7I. At: i 2: 1220 (ERF). ;A i': i(; 2i2: (l 
(ERF), At5g43410 (ERV). ORA59. ART4. TCPI. 
TCP3, TCP16 

3 At3g12910 (NAC). TCP14 
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Figure 3.6: ORA59. ERF1. ERF4. AT2G23230 and ERF15 can interact with the 
promoter of ORA59 in yeast. Photos are of individual YIH screens, of ORA59 pro- 
moter fragments. by mating and auxotrophic selection. Baits, preys and selections 
were as shown. Two replicates. A and B. were used to control for experiuneiital vari- 
ability. ORA59. ERF1 and ERF15 were shown to interact, with ORA 59 promoter 
fragments I and 2. ERF4 and A'1'2G23230 were showii to interact with ORA59 

promoter fragment 2. (a) The results frone selections on SD-LTH and SD-L]'H 5 

mM 3AT media. (b) The results from selections on SD-L'1'H 25 "Al 3AT media and 
SD-LTH 50 mM 3AT media. 
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Retested Y1H by individual mating Lots of AP2-ERE BPs interacted with 
the ORA59, but not the WRKY33, promoter fragments in Y1H and so it was as- 
sumed that they were more promoter-specific than the TCP TFs. For experimental 
tractability a small subset of the AP2-ERE BPs were rescreened individually to val- 
idate the results of the cloned library YIH screen. Although MYC2 was not seen to 
bind to the ORA59 promoter fragments in the pooled library Y1H screen, ORA59 
has been shown to be up-regulated in a knockout of MYC2 (Dombrecht et al., 2007) 

showing that it is able to regulate ORA 59 expression and so it was rescreened to see 
if this regulation was likely to occur directly. Individual Y1H screens were performed 
by mating to retest the interaction of ORA59, ERF1, ERF4, MYC2, AT2G23230 

and ERF15 with ORA59 promoter fragments 1-2. The results of the individual 
YIH by mating for ORA59 fragments 1-2 are shown in Figure 3.6. ORA59, ERF1, 
ERF4, AT2G23230 and ERF15 were again shown to be able to bind to fragments 

of the ORA59 promoter, confirming the results of the pooled library Y1H screen 
(Table 3.7). 

Retested Y1H by co-transformation Individual Y1H screens were performed 
by co-transformation to retest the interaction of ORA59, ERF1, ERF4, ABI4, 
AT2G23230 and ERF15, as well as MYC2, with ORA59 promoter fragments 1- 
2. Unfortunately, the plasmid containing ABI4 did not successfully co-transform 

with the plasmid containing ORA59 fragment 2 and so this interaction could not 
be tested in this screen. The results of the individual Y1H by co-transformation for 
ORA59 promoter fragments 1-2 are shown in Figures 3.7(a)-(b). ORA59, ERF1, 
ABI4, AT2G23230 and ERF15 were shown to interact with ORA59 promoter frag- 

ment 2. In addition ORA59, ERF1, ABI4, ERF15 and possibly AT2G23230, were 

shown to interact with ORA 59 promoter fragment 1. For ORA 59 fragment 1 most 

selections other than those which are shown were not very informative; most inter- 

actors except ABI4 are not seen at higher levels of 3AT. For ORA59 fragment 2 

most other selections were also not very informative; most interactors have similar 

growth on intermediate levels of 3AT, except for AT2G23230 which shows interme- 

diate growth between the selections shown. 

Validation of Y1H results by motif analysis Motif analysis was used to iden- 

tify potential binding sites of the interacting TFs. An ERE, the binding motif 

associated with the AP2-ERE BP TFs, is present in the ORA59 promoter. Its po- 

sition, at the overlap of promoter fragments 1 and 2, fits well with the finding that 

AP2-ERE BPs can interact with these fragments. It is worth noting that the ERE 

is approximately 300 bp closer to the start of fragment 2 then it is to the start of 
fragment 1, which may account for the increased growth of the colonies correspond- 
ing to AP2 ERE-BPs in the co-transformation Y1H screen and the greater amount 
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Figure 3.7: ORA59, ER. F1. ABI4. AT2G23230 and ERF15 can interact with the 
promoter of ORA59 in yeast. Photos are of individual Y1H screens. of ORA59 

promoter fragments. by co-transforination and auxotrophic selection. (a) YIH of 
ORA59 promoter fragment 1 showed that ORA59. ERFI. ABI4 and ERF15 can 
interact. (b) YIH of ORA59 promoter fragment 2 showed that ORA59. ERF1. 
AT2G23230 and ERF15 can interact. 
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of AP2-ERE BP interactors with fragment 2 in the pooled library Y1H screen. The 

only full TCP motif match is in fragment 1. which was only found to have one in- 
teracting TCP TF (Table 3.7). however TCP TFs were also found to interact with 
fragments 1 and 2. To identify potential binding sites, partial matches with the 
TCP motif were identified and are shown in Figure 3.8. It is not known whether 
TCP TFs are able to bind to these partial matches. but given that many different 
TCPs were identified as interacting with fragments of the ORA59 promoter, it is 

unlikely that these interactions occurred spuriously. 

TGGG - TCP partial match 
TGGGC-TCP partial match 

TGGGCT - TCP motif 
CACG - NAC core motif 
GCCGCC - ERE motif 

-1200 -1000 -800 -600 -400 -200 Promoter 

Promoter 
fragments 

Figure 3.8: The ORA59 promoter. with TF binding motifs and promoter fragments 
displayed. Promoter fragments are those screened by Y1H in this chapter. TCP 
(Giraud et al., 2010). NAC core (Tran et al.. 2004) and ERE (Ohne-Takagi and 
Shinshi. 1995; Badis et al., 2009) motif matches are shown. Additionally, partial 
matches of the TCP binding motif TGGGC[C/T] (Giraud et al., 2010). are shown. 

In these YIH screens many AP2-ERE BPs, including ORA59 itself, have been seen 
interacting with fragments of the ORA 59 promoter in yeast. The TFs A1314. MAW 

ERF1, ERF4 
. 

ERF15 and AT2G23230 were seen to interact with fragments of the 

ORA59 promoter in at least two independent screens. many in all three. This, 

and the fact that many of the YIH interactors belong to the same TF families 

suggest that these interactors did not arise spuriously. The presence of only one 
ERE suggests the likely location of the binding site for these AP2-ER. E BPs. TCP 

motifs were not found in all relevant promoter fragments. but the degree of specificity 

of TCP TFs is not known. 

ARF2 

ARF2 has been shown to be down-regulated in response to B. cinema infection 

(Section 2.2.1. However. no direct transcriptional regulators of ARF2expression are 
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known in the literature. Previously. Laura Butler had cloned a promoter fragment 

of ARF2. and Phillip Law had shown that ORA59. ERF15 and ERF1 could interact 
with this fragment in yeast, by performing a pooled library Y1H screen. 

ARF2 

promoter 
fragment 

Prey 

LL- 

öcw 

UOW 
A 

B 
SD-LTH 

50mM 3AT 
Figure 3.9: ORA59. ERF15 and ERF1 can interact with the promoter of ARF2 
in yeast. The screen photo shows an individual Y1H screen. of ARF2 promoter 
fragment 1. by mating and auxotrophic selection. Preys and selections were as 
shown. Two replicates. A and B, were used to control for experimental variability. 
ORA59. ERFI5 and ERF1 were shown to interact with ARF2 promoter fragment 
1. 

Retested Y1H by individual mating Individual Y1H screens were performed 
by mating to retest the interaction of ORA59. ERF15 and ERF1 with ARF2 pro- 

moter fragment 1. The results of the individual Y1H by mating for ARF2 fragment, 

1 are shown in Figure 3.9. OR. A59. ERF15 and ERF1 were again shown to be able 

to bind to ARF2 promoter fragment 1. This was denioiistra. ted with a selection of 
SD-LTH with 50 mM 3AT. Autoactivation of the control transformed yeast meant 

that no additional growth was seen beyond the control with SD-LTH and SD-L'1'H 

5 mMM 3AT selections. Intermediate growth of the control transformed yeast was 

seen with a selection of 25 mM 3AT. This is indicative of strong autoactivation of 

this promoter-reporter, but the difference between the control and other colonies at 
50 mM 3AT are clear. 
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Figure 3.10: ORA59. ERF15 and ERF1 can interact with the promoter of ARF2 iii 
yeast. Photos are of individual Y1H screens. of ARF2 promoter fragment 1. by co- 
transformation and auxotrophic selection. ORA59. ERF15 and ERF1 were shown 
to interact with ARF2 promoter fragment 1. even with a selection that included 
50mNI 3AT. 

SD-LTH 

Retested Y1H by co-transformation Individual Y111 screens were performed 
by co-transformation to retest the interaction of ORA59. ERF15 and ERF1 with 
ARF2 promoter fragment 1. The results of the individual Y1 H screens by co- 
transformation for ARF2 promoter fragment 1 are shown in Figure 3.10. ORA59. 

ERF15 and ERF1 were shown to interact with ARF2 promoter fragment 1. Co- 

transformed yeast on intermediate selections, SD-LTH 5 niNI 3AT and SD-LTII 25 

mM 3AT. showed intermediate growth. 

The Y1H results presented in this section confirms the ability of ORA59, ERF15 

and ERFI to bind to a promoter fragment of ARF2 in yeast. These interactions 

have been observed in the original pooled library Y1H screen by Phillip Law. as 

well as both the individual mating and co-transformation screens presented here. 

Because these results have been shown in three independent Y1H screens. they are 

unlikely to be spurious. However, no ERE motif was found in the ARF2 promoter 
3.11. This is odd considering that the ERE has been fairly well characterised by 

a recent protein binding microarray study of the ERFI DNA-binding specificity 
(Godny et a].. 2011). 

PGIP1 

As well as the transcriptional regulation of TFs it would be desirable to he able 
to model the regulators of physiological outputs controlling susceptibility of Ara- 

bidopsis to infection by B. cinerea. This would allow gene regulation to be linked 
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TSS 

-1200 -1000 -800 -600 -400 -200 

Figure 3.11: The ARF2 promoter, with promoter fragment 1 displayed. Promoter 
fragment 1 was used in the Y1H screens. 

to resistance mechanisms. For example, over-expression of PGIP1 leads to reduced 

susceptibility of Arabidopsis to infection by B. cinerea (Ferrari et al.. 2003b). This 

is believed to be due to the ability of the protein it encodes to inhibit fungal poly- 

galacturonases which would otherwise harm plant cells. PGIP1 is up-regulated in 

response to B. cinerea infection and treatment with the OGs, which act as DAMPs 

(Ferrari et al.. 2003b). Additionally, PGIP1 is down-regulated by ARF2 (Vert et al., 
2008) and TGA3 (Windram. 2010). which suggests they have some role in the reg- 

ulation of PGIP1 expression. 

Pooled library Y1H To see if these roles are direct and to identify other potential 

transcriptional regulators of PGIP1, cloned library Y1H was performed against all 

four library plates. Three promoter fragments were used, each approximately 400 

bp long. covering the 1,000 bp upstream of the TSS of PGIPJ. The TFs that were 

found to interact with fragments of the PGIP1 promoter are summarised in Table 

3.8. 

Table 3.8: Pooled TF library Y1H screen by mating and auxotrophic selection. 
Interactors of PGIP1 promoter fragments 1-4 are shown. TFs highlighted in red 

were found in screens of both arrangements of the library. 

Fragment number Literactors 

None 

2 
TCP:. TCP14, ]'Cl 15, TCPI(i, 
At1g35560 (TCP) 

3 BHLH100, TCP3, TCP14, TCP15, 
T('P l E;, TCP20. At1g35560 (TCP) 

Again, many TCPs were found to interact with the promoter fragments in yeast. 
Also again. an interactor was identified that had not been seen to interact with any 

other promoters in the Y1H screens presented in this chapter. This interactor, the 
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only non-TCP interactor of promoter fragments of PGIP1 identified, was BHLH100. 

which has no known role in the defence response. 

TGGGC - TCP partial 
I(I 

TGGGCC - TCP motif 
TGGGCT - TCP motif 
CAN NTG - E-box (BHLH) 

Promoter -1200 -1000 

IIII TSS 

-800 -600 -400 -200 

Promorer 
fragments 

Figure 3.12: The PGIP1 promoter. with TF binding motifs and promoter fragments 
displayed. Promoter fragments are those screened by Y1H in this chapter. Matches 
to the BHLH motif CANNTG. where N's can be any nucleotide. are shown (Toledo- 
Ortiz et al.. 2003). Additionally. full and partial matches of the TCP binding motif 
TGGGC[C/T] (Giraud et al.. 2010). are shown. 

Validation of Y1H results by motif analysis In Figure 3.12 TCP motifs are 

found in promoter fragment 2 which was found to interact with TCP TFs in the 

Y1H screen (Table 3.8). Fragment 3 was also found to interact with TCP TFs in 

the Y1H screen. but only partial TCP motif matches are found in it. BHLH TFs are 

known to bind to the E-box. CANNTG (Toledo-Ortiz et al., 2003), and this motif 

is found to occur in all fragments. including fragment 3 which is the fragment that 

was found to interact with BHLH100 in the pooled library Y1H screen. 

In summary. TCP TFs and BHLH100 were found to interact with the promoter 

of PGIPI in a Y1H screen. Matches to the full TCP binding motif were found 

in 2/3 of the fragments found to interact with TCP TFs in Y1H. Two E-box mo- 

tif matches were found in the fragment that interacted with BHLH100 in the Y1H 

screen. This adds plausibility and provides potential binding sites for the interactors 

identified by cloned library Y1H. 

LACS2 

Another potential physiological output is LAC$'2. whose expression affects cuticle 

permeability and susceptibility to B. cinerea (Bessire et al.. 2007). It was down- 

regulated during infection by B. cinerea (Section 2.2.1). but nothing seems to be 

known about its indirect or direct transcriptional regulation in any context. 
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Pooled library Y1H Y1H was used to identify potential regulators of LACS2 

expression. Y1H was performed on all three fragments against all four library plates. 
The TFs that were found to interact with fragments of the LACS2 promoter are 

summarised in Table 3.9. Some TCPs, two AP2-ERE BPs and MYB49 were found 

to bind to the promoter of LACS2. MYB49 is known to be up-regulated by ABA 

(Yanhui et al., 2006), which is involved in resistance to B. cinerea (Audenaert et al., 
2002) and regulation of cuticle permeability (Curvers et al., 2010). 

Table 3.9: Pooled library Y1H by mating and auxotrophic selection. Interactors of 
LACS2 promoter fragments 1-3 are shown. No interactors were found with both 

arrangements of the library. 

Fragment number Interactors 

1 MYB49 

2 ABI4, At5g21960 (ERF), TCP1, TCP3, TCP14 
TCP15, TCP16, At1g35560 (TCP) 

3 TCP16 

Validation of Y1H results by motif analysis In Figure 3.13 it can be seen 

that three MYB binding motifs were found in fragment 1, the fragment found to 

interact with MYB49 in a Y1H screen. Additionally a TCP binding motif is found 

in fragment 3, which has been found to interact with TCP16 in a Y1H screen. Al- 

though no TCP binding motifs are found in fragment 2, which also interacted with 

TCP TFs in a Y1H screen, partial motif matches are found. No EREs, the known 

binding motifs of AP2-ERE BPs are found, and therefore a possible location for the 

binding site corresponding to the two AP2-ERE BPs interacting with fragment 2 

(ABI4 and At5g21960) has not been identified. 

In summary, TCP TFs, two AP2-ERE BPs and MYB49 were found to interact 

with the promoter of LACS2 in Y1H screens. Again, plausible binding sites are 

found for most of the TFs found to interact with the promoter fragments in Y1H. 

TCP TFs were found to interact with fragments of the promoters of all 4 genes 

tested by cloned library Y1H in this chapter, suggesting that their binding is fairly 

ubiquitous. 
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TGGG- TCP partial match 
TGGGCT - TCP motif 
TGGTTA - MYB motif 
TGGTTT- MYB motif 
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Figure 3.13: The LACS2 promoter, with TF binding motifs and promoter fragments 
displayed. Promoter fragments are those screened by Y1 H in this chapter. Matches 
of the MYB binding motif [A/T]AACCA (Abe et al., 2003). are shown. Additionally, 
full and partial matches of the TCP binding motif TGGGC[C/T] (Giraud et al.. 
2010), are shown. 

Comparison of expression profiles of TF-target pairs 

Y1H has generated lists of potential regulators of ARF2, LACS2, ORA59, PGIP1 

and WRKY3S, but for the reasons discussed in Section 3.1.2 these interactions are 
'context free' with respect to Arabidopsis. Given the expression profiles of potential 
TF-target pairs during B. cinerea infection, it may be possible to identify which 
targets are most likely to be regulated in that context. Here, the expression profiles 
of TF-target pairs are plotted and compared. 

The expression profiles during B. cinerea infection of WRKY33 and TFs that have 

been found to interact with its promoter in the Y1H screen are shown in Figures 

3.14-3.15. Because WRKY33 is differentially expressed earlier than its potential 

transcriptional regulators. it is hard to infer anything from their expression. It is 

possible, given the interaction of WR. KY33 with it's own promoter, that the early 
differential expression of WRKY93 is caused by WRKY33 itself, after activation 
by a signalling pathway. A candidate would be a MAPK pathway as WRKY33 is 

known to bind the MAPK substrate MKSI and can be phosphorylated by MPK3,4. 

or 6 (Andreasson et al.. 2005; Qiu et al.. 2008; Mao et al., 2011). Additionally. be- 

cause MYC2 is not differentially expressed, if it regulates WRKY33 in this context 
then it must itself be regulated post-transcriptionally. which is plausible given its 

known interaction with the JAZ co-factors (Chini et al.. 2007), many of which are 
differentially expressed during B. cinerea infection (Section 2.2.1). WRKY25 is not 
found to be differentially expressed in this dataset; however it has been shown to be 

differentially expressed during B. cinerea infection in other experiments (AbuQama. r 
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Figure 3.14: Expression of Y1H interactors of WRKY33in Arabidopsis leaves during 
infection by B. cinerea. (Expression data from the experiment introduced in Section 
2.2.1. Experiment will be published in Denby et al., manuscript in preparation, and 
is also presented in Windram. 2010). Lines show the mean expression profile, while 
bars represent standard deviations. Of these genes. only WRKY33 and A13g12910 

were found to be differentially expressed in this time series (Section 2.2.1). 
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Figure 3.15: Profiles of differentially expressed common Y1H interactors in Ara- 
bidopsis leaves during infection by B. cinerca. (Expression data from the exper- 
iment introduced in Section 2.2.1. Experiment will be published in Denby et al.. 
manuscript in preparation. and is also presented in Windram. 2010). Lines show 
the mean expression profile. while bars represent standard deviations. 
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et al., 2006). In those experiments it is possible that WRKY25 may be responsible 
for regulating the expression of WRKYS3. 

The expression profiles during B. cinerea infection of ORA 59 and TFs that have 
been found to interact with its promoter in the Y1H screen are shown in Figures 
3.15-3.17. Many of the AP2-ERE BPs are differentially expressed at the same time 

as ORA59, around 18-20 hpi, but none before it. This makes it hard to use the ex- 
pression profiles to suggest which of the promoter interactors are the most plausible 
regulators of ORA59 expression during B. cinerea infection. 

The expression of ARF2 and the three TFs that have been shown here to bind to a 
fragment of the ARF2 promoter in yeast, during infection by B. cinerea are shown 
in Figures 3.16(a)-(d). All the potential interactors are up-regulated at around 18- 
20 hpi, whereas ARF2 is down-regulated at around 30 hpi. This means that all 

potential interactors are equally plausible regulators of ARF2 expression. 

The expression profiles during B. cinerea infection of PGIPI and TFs that have 

been found to interact with its promoter in the Y1H screen are shown in Figures 

3.18 and 3.15. The differentially expressed interacting TCPs appear to be differen- 

tially expressed slightly earlier than PGIP1. This makes the differentially expressed 
TCP TFs plausible transcriptional regulators of PGIP1. While BHLH100 is not 
differentially expressed, post-transcriptional activation can't be ruled out. 

The expression profiles during B. cinerea infection of LACS2 and TFs that have 

been found to interact with its promoter in the Y1H screen are shown in Figures 

3.19 and 3.15. At5g21960 is not differentially expressed, but as with BHLH100, 

post-transcriptional activation can't be ruled out. MYB49 is up-regulated slightly 

earlier than LACS2 is down-regulated, which means that it is possible that MYB49 

represses the transcription of LACS2. 

Overall it seems hard to assign context to these potential regulators based on their 

gene expression profiles during infection by B. cinerea, although they can be used to 

suggest whether transcriptional regulation may be regulated post-transcriptionally 
if it is known to regulate the target in that specific context. 

3.3.3 In planta validation of the qualitative model by transient 
transactivation assays 

While Y1H can identify TFs that are able to bind to a given promoter, it cannot 

reveal the effect these TFs have on the expression of the gene linked to that promoter 
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Figure 3.16: Expression of genes in mock and B. cinerea infected leaves. Expression 

profiles of: (a) ARF2. (b) ORA59; (b)-(d) Y1H interactors of ARh'2; (b)-(g) Y1H 
interactors of ORA59 in Arabidopsis leaves during infection by B. cinerea. (Ex- 

pression data from the experiment introduced in Section 2.2.1. Experiment will be 

published in Denby et al., manuscript in preparation. and is also presented in Win- 
dram. 2010). Lines show the mean expression profile, while bars represent standard 
deviations. 
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Figure 3.17: Expression of Y1H interactors of 0RA59 in Arabidopsis leaves during 

infection by B. cinerea. (Expression data from the experiment introduced in Section 

2.2.1. Experiment will be published in Denby et al., manuscript in preparation, and 
is also presented in Windrarn. 2010). Lines show the mean expression profile, while 
bars represent standard deviations. 
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Figure 3.18: Expression of PGIP1 and Y1H interactors of PGIP7 in Arabidopsis 
leaves during infection by B. cinerea. (Expression data fron the experiment intro- 
duced in Section 2.2.1. Experiment will be published in Denby et al., manuscript 
in preparation. and is also presented in Windrain. 2010). Lines show the mean 
expression profile. while bars represent standard deviations. 

140 



c 0 r U, aý 
a x 

N 
0 

0 10 20 30 40 
Hours post infection 

(a) LACS2 expression 

1oý 
a 9. 

ýJ 

.ý8 

0 10 20 30 40 
Hours post infection 

(c) At5g21960 (ERF) expression 

I1ý 

1 0 

I 

on 
ý 9' 

0 10 20 30 40 
Hours post infection 

(b) MYB49 expression 

if Mock 

Infected 

(d) Legend 

Figure 3.19: Expression of LACS2 and Y1H interactors of LACS2 in Arabidopsis 
leaves during infection by B. cinerea. (Expression data from the experiment intro- 
duced in Section 2.2.1. Experiment will be published in Denby et al., manuscript 
in preparation. and is also presented in Windram, 2010). Lines show the mean 
expression profile, while bars represent standard deviations. 
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or whether the TF-promoter pair can interact in planta. For example, TFs that can 
regulate WRKY33 expression have been identified from the literature (ARF2 and 
MYC2), additionally Y1H showed that WRKY25 and WRKY33 can bind to the 

promoter WRKY33 in yeast. To test the ability of these TFs to both bind to the 

promoter and regulate the expression of WRKY33 in planta, a transactivation assay 
was performed with promoter-reporter constructs that either contained or did not 
contain the predicted binding sites of these TFs. The location of the promoter 
fragments, P1 and P4, used in this screen are shown in Figure 3.5. An additional 
fragment, P4m1-4, was used, which was identical to P4 except that all WRKY boxes 
had been mutated. The reporter GUS was used in the promoter-reporter constructs. 
The construction of the P1:: G US, P4 :: G US and P4m1-4:: G US constructs is detailed 
in Lippok et al. (2007). Leaves were transiently transformed by biolistic delivery of 
plasmids, to over-express a TF of interest and to introduce one of these promoter- 
reporter fusions. 

WRKY33 was found to be capable of activating its own expression approximately 
two-fold in plants, e. g. Figures 3.20(a)-(b). This fits with the recent finding that 
WRKY33 is a transcriptional activator (Lai et al., 2011a). In the experiment shown 
in Figure 3.20(a) the difference, between the measurements made on samples trans- 
formed with the control plasmid versus p35S:: WRKY33 (WRKYSS over-expressor) 
plasmid, was found to be significant at the 5% level in a t-test (p=0.0495). In the 

experiment shown in Figure 3.20(b) the difference, between the measurements made 
on samples transformed with the control plasmid versus pS5S:: WRKY33 ( WRKY33 

over-expressor) plasmid, was found to be significant at the 5% level in a t-test 
(p=0.0156). Strangely, a similar result was seen when a promoter-reporter plasmid 

was used which only differed at the sites of the first four WRKY-boxes, which are 

shown in Figure 3.5. WRKY TFs are believed to bind to sites whose sequence 

matches the WRKY-binding motif (de Pater et al., 1996) and the four WRKY- 

boxes in the first 250 bp have been shown to be important for WRKY33 expression 
(Lippok et al., 2007). With mutated WRKY-boxes (P4m1-4:: GUS) the difference, 

between the measurements made on samples transformed with the control plasmid 

versus p35S:: WRKY33 (WRKY33 over-expressor), was found to be significant at 
the 5% level in a t-test (p=0.0175). This is counterintuitive, as WRKY TFs are 
believed to act through WRKY-boxes, so it would be expected that the ability of 
WRKY TFs to regulate expression would depend on the presence of WRKY-boxes. 

To validate this counterintuitive result, as well as observing the effect of other poten- 

tial regulators, a further transactivation assay was performed. The results for this 

assay are shown in Figure 3.21, comparing the ability of ARF2, MYC2, WRKY25 
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Figure 3.20: WRKY33 was shown to increase expression of a reporter, GUS. fused to 
fragments of the WRKY83 promoter. Leaves were transformed with three plasinids; 
95S:: LUC. all over-expressor of a given TF (or GAL4 DB which acts as a negative 
control) and a promoter-reporter (promoter:: GUS) plasmid. The construction of 
the promoter-reporter plasmids. Pl. -: GUS, P4:: GUS and P4m1-4:: GU, 5, is detailed 
in Lippok et al. (2007). Luciferase readings were used as a transformation control. 
Results were compared to controls with the same promoter-reporter, by a two-tailed 
unequal variance two-sample t-test. results that were significant at the 5% level are 
indicated by a star (*). (a) WR. KY33 was shown to increase expression of GUS 
from P1:: GUS. (b) WR. KY33 was shown to increase expression of GUS from both 
P4:: G US and P4 7n 1-4:: G US. 
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Figure 3.21: WRKY25 and MYC2 were shown to increase. and ARF2 was shown 
to decrease. expression of a reporter, GUS. fused to WRKY33 promoter. Leaves 

were transformed with three plasmids; 35S:: LUC, an over-expressor of a given 
TF (or GAL4 DB which acts as a negative control) and a promoter-reporter 
(promoter:: GUS) plasmid. The construction of the promoter-reporter plasmids, 
P1:: GUS. P4:: GUS and P4m1- :: GUS. is detailed in Lippok et al. (2007). Lu- 
ciferase readings were used as a transformation control. Results were compared to 
controls with the same promoter-reporter. by a two-tailed unequal variance two- 
sample t-test, results that were significant at the 5% or 1% level are indicated by a 
star (*) or two stars (**) respectively. 

144 

All had: p3SS:: LUC 
3.5 



X 104 2.5 

L 1.5 
0) 
N 

J p. 5 

EReplicate 1 
QReplicate 2 
EReplicate 3 

/ý I  1   I      I   I    I   I I   I    iu ý     ýU -- 

p35S:: LUC ++++++++++++ 
p35S:: GAL4DB 

(control) +--+----+--- 
p35S:: MYC2 -+----+------ 
p3SS:: ARF2 --+----+---+- 
p35S:: WRKY2S ----+----+--- 

35S:: WRKY33 -----+----+-- 
PI:: GUS +++---------- 
P4:: GUS ---+++++----- 
P4m l -4 --GUS --------++++- 

Figure 3.22: Technical variability in the transactivation experiment shown in Figure 
3.21. Leaves were transformed with three plastids; 35S:: L UC. an over-expressor of 
a given TF (or GAL4 DB which acts as a negative control) and a promoter-reporter 
(promoter:: GUS) plasmid. The construction of the promoter-reporter plastids. 
PI:: GUS. P4:: GUS and P47ni-4:: GUS. is detailed in Lippok et al. (2007). Here the 
transformation control, Luciferase, measurement is shown to demonstrate technical 

variability. 
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and WRKY33 to alter expression of a reporter fused to segments of the WRKY33 
promoter. In this assay WRKY33 was not shown to activate expression of the re- 
porter. Technical variability of the assay shown in Figure 3.21 is plotted in Figure 
3.22. This demonstrates that over-expression of TFs is not causing systematic re- 
ductions in production of reporters. 

MYC2 was shown to increase the expression of GUS approximately two-fold, from 

a P1:: GUS promoter-reporter fusion. This fits with the known role of MYC2 as a 
transcriptional activator, as MYC2 is able to activate the expression of a reporter 
fused to the promoter of RD22 in protoplasts (Abe et al., 2003). The difference 
between the measurements made on samples transformed with the control plasmid 
versus pS5S:: MYC2 (MYC2 over-expressor) plasmid was found to be significant at 
the 5% level in a t-test (p=0.0296). While a significant difference was not seen 
between control and pS5S:: MYC2 transformed samples, co-transformed with the 
P4:: G US promoter-reporter plasmid, the median expression is raised approximately 
two-fold in the p35S:: MYC2 transformed samples. 

WRKY25 was shown to increase the expression of GUS from P4:: GUS and P4m1- 
4:: GUS promoter-reporter fusions. This counterintuitive result is similar to that 
seen for WRKY33 in Figure 3.20(b), i. e. mutation of the suspected binding site of 
WRKY25 or WRKY33 does not appear to abolish their ability to activate the ex- 
pression of GUS. The difference between the measurements made on samples trans- 
formed with the control plasmid versus the p35S:: WRKY25 plasmid (WRKY25 

over-expressor), each co-transformed with the promoter-reporter plasmid P4:: GUS, 

was found to be significant at the 5% level in a t-test (p=0.0142). The difference 
between the measurements made on samples transformed with the control plasmid 

versus the p35S:: WRKY25 plasmid (WRKY25 over-expressor), each co-transformed 
with the promoter-reporter plasmid P4m1-4:: GUS, was found to be significant at 
the 1% level in a t-test (p=0.0083). 

ARF2 over-expression (using pS5S:: ARF2) was shown to decrease expression of GUS 

from the P4m1-4:: GUS plasmid, this difference was found to be significant at the 
1% level in a t-test (p=0.0066). A negative GUS/Luciferase reading resulted from 

GUS readings of less than background, presumably because of technical variability, 
i. e. less fluorescence corresponding to GUS was detected in wells loaded with pro- 
tein extracts from samples transformed with p35S:: ARF2 and P4m1-4:: GUS then 

was detected in a well loaded with protein extracts from untransformed leaves, this 

indicates that next to zero GUS was produced in the sample transformed with 

p35S:: ARF2. This suggests that ARF2 is repressing the expression of the GUS re- 
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porter. 

In summary WRKY25, WRKY33 and MYC2 have been found to positively, whereas 
ARF2 has been found to negatively, regulate the expression of a reporter fused to 
the promoter of WRKYSS. WRKY33 was found to up-regulate the reporter in two 

of the three assays, which suggests it can regulate its own expression. This is con- 
sistent with the finding that it can activate expression (Lai et al., 2011 a) and binds 

to the WRKYS3 promoter in planta (Mao et al., 2011). The repression of the re- 
porter by ARF2 was affected by the presence of the four WRKY-boxes mutated in 
P4m1-4:: GUS, suggesting some link between regulation by ARF2 and WRKY TFs. 

Transient transactivation assays have proved useful in testing the ability of TFs 
to regulate expression in planta. This is complementary to Y1H, which provides 
candidate regulators but does not by itself reveal the regulatory effect of the TFs 
interacting with promoter fragments. 

3.3.4 Analysis of context-dependence by comparative transcrip- 
tomics 

Y1H has revealed that some regulation known in the literature is likely to be direct, 
for example MYC2 regulating WRKYS8. Transient transactivation assays have been 

used to show the effect of TFs on the expression of a reporter fused to the promoter 

of WRKYSS. This suggests that the general approach of this chapter is allowing 
direct transcriptional regulators to be revealed. However, none of this regulation has 

been shown to occur during B. cinerea infection. In this section context-dependence 

of transcriptional regulation is studied by comparative transcriptomics. The aim is 

to reveal the elictors, signalling pathways and regulators responsible for regulation 

of the defence response of Arabidopsis to infection-by B. cinerea. 

Overlaps between genes differentially expressed during B. cinerea infection and genes 
differentially expressed in conditions relating to elictors, hormones and regulators, 

were analysed using the cumulative hypergeometric distribution against the null hy- 

pothesis that the overlaps had occurred by chance (in MATLAB®). The results 

are summarised in Table 3.10. (Hypergeometric parameters: 23,802 the number of 

unique genes which have a CATMA probe and 9,838 the number of genes differen- 

tially expressed during B. cinerea infection). 

Reassuringly, the overlap with the lowest p-value was from a list of genes found 

to be differentially expressed at 48 hpi by B. cinerea (Ferrari et al., 2007) In fact, 

overlaps with p-values less than 10-10 were found with all lists of genes differentially 
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expressed during B. cinerea infection experiments (AbuQamar et al., 2006; Ferrari 
et al., 2007; Mulema and Denby, 2012). This demonstrates that some genes respond 
similarly to B. cinerea infection under varying experimental conditions, which sug- 
gests that the results may be able to be extrapolated. An overlap with a low p-value, 
2.09x 10-38, was found between a list of genes differentially expressed 1 hour after 
treatment with OGs (Ferrari et al., 2007) and the list of genes differentially ex- 
pressed during B. cinerea infection. This suggests the importance of this elictor for 

activating B. cinerea responsive changes in gene expression. 

The list of genes differentially expressed in a TF mutant, whose overlap with the list 

of genes differentially expressed during B. cinerea infection gave the lowest p-value, 
was from an experiment with a TGA3 knockout. The TGAS knockout was per- 
formed during B. cinema infection, see Windram (2010), which may at least partially 
account for its low p-value. The high significance of the overlap of genes differen- 
tially expressed in an ARF2 knockout and during B. cinerea infection, is consistent 
with ARF2 being a regulator of B. cinerea responsive gene expression. Similarly, the 
high significance overlap of the genes differentially expressed in an over-expressor of 
ERF1 and during B. cinerea infection, is consistent with ERF1 being a regulator of 
B. cinerea responsive gene expression. Although much less significant, the overlap 
of genes differentially expressed in an over-expressor of ANAC072 and during B. 

cinerea infection, suggests that ANAC072 is also a regulator of B. cinerea respon- 
sive gene expression, fitting with the novel altered susceptibility phenotype observed 
in a knockout of ANA C072 in Chapter 2. The list of genes differentially expressed 
in mutants of ARF2, ERF1 and ANAC072 were not derived from experiments in 

which the samples were infected with B. cinerea. This is consistent with some of the 

regulation observed in these experiments also occurring during B. cinerea infection. 

This fits with the altered susceptibility of mutants of ARF2, ERF1 and ANA C072 

to infection by B. cinerea. 

Genes differentially expressed in response to treatment with MeJA (Methyl Jas= 

monate), JA, and both JA and ET have significant overlaps with the list of genes 
differentially expressed during B. cinerea infection. This fits with the known im- 

portance of JA and ET signalling in regulation gene expression in response to 

necrotrophic pathogens (Glazebrook, 2005; Pieterse et al., 2009). 

In this section elicitors (OGs), hormones (JA and ET) and TFs (TGA3, ARF2, 

ERF1 and ANAC072) regulating gene expression during infection by B. cinerea 
have been predicted. The significant overlaps demonstrate that some transcrip- 

tional regulation can be extrapolated from one context to another, and suggests an 
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important but currently unknown role for ARF2 in regulating the defence response. 
This fits with the recent finding that a knockout of ARF2 has a substantial reduced 
susceptibility to infection by B. cinerea (Youn-Sung Kim et al., in preparation). 

In this chapter a qualitative model of the defence response GRN has been developed, 

and some of the transcriptional regulation has subsequently been validated experi- 
mentally. For example, MYC2 was shown to bind to the promoter of, and to regulate 
the expression of a reporter fused to the promoter of WRKY3S. Cloned TF library 
Y1H also revealed many other TFs that are capable of binding to the promoters 
of ARF2, LACS2, ORA59, PGIPI and WRKYS3, many of which are known to be 

able to bind to sequence motifs that are present in the relevant promoter fragments. 
These novel interactors extend the qualitative model, providing more hypotheses 

about the structure of the defence response GRN. The effect of some of these regu- 
lators on the expression of a reporter fused to the promoter WRKY3S were shown by 

transient transactivation assays. Finally, comparative transcriptomics showed that 

genes known to be downstream of the TFs TGA3, ARF2, ERF1 and ANAC072 

are over-represented in the list of genes differentially expressed during B. cinerea 
infection, implicating them in the GRN controlling defence response gene expression 
during B. cinerea infection. 

3.4 Discussion 

3.4.1 Y1H predicts novel direct transcriptional regulators 

In Section 3.3.2 Y1H was applied to test the ability of TFs to bind to the promoters 

of ARF2, LACS2, ORA59, PGIP1 and WRKY3S. This revealed many different 
TFs are able to interact with these promoters and many of these interactors have 

known binding motifs which were present in the promoter fragments they were able 
to bind to. In addition many related TFs were found to bind to similar fragments, 

suggesting that the results are not spurious. While some TFs, mostly belonging to 
the TCP TF family, were found to interact with many different promoter fragments, 

the majority were highly specific as can be seen in Figure 3.23. This provides rich 
`context free' information about the local structure of the defence response GRN, 

confirming that known regulation can be direct and providing novel candidates for 
direct transcriptional regulators of ARF2, LACS2, ORA59, PGIP1 and WRKY3S. 

For example, a knockout of MYC2 has been shown to have higher expression of 
WRKY33 (Dombrecht et al., 2007). Y1H revealed that MYC2 can bind to the 

promoter of WRKY93, suggesting that this regulation is direct. This novel finding 

could be validated in planta by ChIP, and could be linked to B. cinerea infection by 
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Figure 3.23: The specificity of the TF-promoter fragment interactions found by 

cloned TF library Y1H is shown in a histogram. The interactions can be seen in 
Tables 3.6-3.9. 

ChIP on infected leaves. 

Novel TF-promoter interactors revealed by YI H provide candidate direct regulators, 

some of which make sense given the literature. For example. ABI4 and MYB49 were 
found to interact with the promoter of LACS2 in a Y1H screen. These novel inter- 

actors are known to be linked with ABA signalling (Finkelstein et al., 1998; Yanhui 

et al., 2006). and ABA has been shown to affect the susceptibility of tomato to 

infection by B. cinerea (Audenaert et al.. 2002). Additionally. both ABA treatment 

and mutations in LACS2 have been shown to affect cuticle permeability. suggesting 

a role for ABA in the downregulation of LACS2 during infection (Curvers et al.. 
2010; Bessire et al.. 2007). 

Because Y1H screens have been performed with approximately 400 bp promoter 

fragments, it is not possible to directly relate results to specific short DNA se- 

quences. To relate Y1H interactors to specific short sequences in the promoter 

fragment, site directed rnutagenesis can be used to remove that sequence from the 

pHis2Leu2 plasmid. 

In Section 3.3.2, the gene expression profiles of ARF2, LACS2, PGJP1, ORA55 

and WRKY3S, and TFs capable of binding to their promoters, were visually com- 

pared. A different approach would be to model the expression of both the potential 

regulators and the potential target, in both mock and Botrytis-infected conditions. 

using modelling approaches such as the non-linear multiple time series approach re- 
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cently introduced by Penfold et al. (2012). This approach takes into account the fact 
that the underlying regulation in each time series may be independent or related, 
and also allows prior knowledge, such as Y1H interactors, to be taken incorporated 
into the model. This would have the added benefit that it would allow a more ob- 
jective and non-trivial prediction of which potential regulators may be important 
for the regulation of B. cinema responsive changes in the Arabidopsis transcriptome. 

While the cloned TF library is not comprehensive, it does contain all the TFs in the 

qualitative model presented here except EIN3. In the future the usefulness of this 
library can improved by expanding the number of TFs contained within it. 

3.4.2 Transient transactivation assays validate transcriptional reg- 
ulation in planta 

Cloned TF library Y1H provides many candidate transcriptional regulators for a 

gene, but the ability of these candidates to regulate its expression need to tested 

separately. Transient transactivation assays provide a relatively rapid method by 

which to test this, which has confirmed the role of some known regulators and char- 
acterised the effect of novel candidates on the expression of a reporter fused to the 

target genes promoter. For example a transient transactivation assay showed the 

ability of ARF2 to repress the expression of a reporter fused to the WRKY33 pro- 

moter, confirming the ability of ARF2 to repress expression of WRKY33 which had 

been shown previously shown by Vert et al. (2008) using a knockout versus wildtype 

microarray experiment. 

In a knockout mutant of MYC2, WRKY33 expression was found to be higher than 

in wildtype (Dombrecht et al., 2007). This seems to suggest that MYC2 represses 
WRKY33 expression, and that the higher expression resulted from de-repression of 
WRKY33 expression. However MYC2 appeared to activate expression of WRKY33 

in the transactivation assay presented in this chapter. Similarly, in another transient 

transactivation assay Abe et al. (2003) showed that MYC2 could activate expression 

of a reporter fused to the RD22 promoter. These seemingly contradictory results, 

repression /activation of genes by one TF, make sense when it is considered that the 

literature suggests that repression by MYC2 is mediated by JAZ proteins that inter- 

act directly with it (Chini et al., 2007; Memelink, 2009; Pauwels et al., 2010). This 

leaves room for MYC2 to function as a transcriptional activator when mRNA levels 

of MYC2 are suitably high relative to that of the JAZ proteins, as would be expected 

in transient transformation assays where MYC2 is expressed from a plasmid result- 
ing in high levels. MYC2 could then act to repress gene expression when sufficient 
levels of JAZ proteins exist, by helping to anchor the direct and indirect interactors 
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of JAZ proteins, such as the co-repressor TOPLESS, close to the TSS. Because of 
this both ARF2 and MYC2 are candidates for the strong repressor of WRKYYS 

expression suggested by Lippok et al. (2007), who showed that WRKY33 expression 
increased rapidly after cycloheximide treatment. As MYC2 has been found to bind 
to the WRKY33 promoter it is currently the stronger candidate. This could be 
tested by repeating the cycloheximide experiment in a knockout of MYC2. 

As well as confirming known transcriptional regulation, transient transactivation 

assays characterised the currently unknown effect of WRKY25 and WRKY33 on 
the expression of a reporter fused to the WRKY33 promoter. Both WRKY25 and 
WRKY33 were found to activate expression of the reporter, suggesting that the bind- 
ing of WRKY33 to the WRKY33 promoter, observed in Mao et al. (2011) and the 
Y1H screen, mediates transcriptional activation. This is consistent with the require- 
ment of WRKY-boxes in the promoter of WRKY33 for strong pathogen induced 

expression of a fused reporter (Lippok et al., 2007). It is also consistent with the 

recent finding that WRKY33 is a transcriptional activator (Lai et al., 2011a). The 

promoter-reporter constructs (e. g. P1:: GUS, P4:: GUSand P4m1-4:: GUS) could be 

stably transformed into the genome of knockouts of MYC2, ARF2, WRKY25 and 
WRKY33 to test their role in regulation of WRKY33 expression during B. cinerea 
infection. 

It was not possible to demonstrate binding was direct with the transient trans- 

activation assays in this chapter. This could result from indirect regulation, either 

with or without the direct transcriptional regulation. Also it is possible that over- 

expression of the TFs is resulting in ectopic binding (binding at irrelevant genomic 
locations due to physiologically high protein levels) that is confounding the results. 
This suggests that ChIP may be required to demonstrate that these TFs are binding 

to the given promoters in plants. 

While the biolistic transactivation assay used in this study proved effective, the 

methodology could be improved by: higher technical/biological replication, non- 

parametric hypothesis testing (possibly using the Kruskal-Wallis X2 test), constitu- 
tive promoters that are less likely to be affected by TF overexpression and a dual 

reporter system that had more similar protein stability/kinetics. 

In summary, transient transactivation assays appear to be a complementary ap- 

proach to cloned library Y1H, allowing the effect of binding to be studied rapidly. 
ChIP is likely to be needed to demonstrate direct TF-promoter interactions in 

planta. 
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3.4.3 A role for ARF2 in the defence response 

The only literature on the 'role of ARF2 in the defence response is by Stotz et al. 
(2011) who have shown that ARF2 affects the susceptibility of Arabidopsis to the 

necrotrophic pathogen Sclerotinia sclerotiorum. Additionally ARF2 has recently 
been found to affect the susceptibility of Arabidopsis to infection by B. cinerea 
(Youn-Sung Kim et al., in preparation). `Out of context' evidence gave a list of 
895 genes differentially expressed in a knockout of ARF2 versus wildtype experi- 
ment (Vert et al., 2008). The over-representation of these genes in the list of genes 
differentially expressed during B. cinerea infection suggests that the role of ARF2 

during the defence response is to regulate the expression of the genes in this overlap. 
One of these targets, WRKYSS, was confirmed by a transient transactivation assay. 
Two other targets are the likely physiological outputs BAP1 and PGIP1 (Vert et al., 
2008), suggesting that ARF2 inhibits the defence response against B. cinerea which 

could explain the decreased susceptibility of the A RF2 knockout to infection by B. 

cinerea (Youn-Sung Kim et al., in preparation). This could be tested by screening 
double and single knockouts for epistatic B. cinerea susceptibility phenotypes. 

3.4.4 TOPLESS may play a role in the defence response of Ara- 

bidopsis to infection by B. cinerea 

TFs commonly act by recruiting co-factors that encourage or discourage transcrip- 

tion. In the case of MYC2, a seemingly contradictory result can be explained by 

the interaction of MYC2 with repressive co-factors such as JAZ proteins, NINJA 

and TOPLESS. This has been discussed in more detail in section 3.4.2. The latter 

co-factor, TOPLESS, has also been shown to mediate repression by ARF5, by bind- 

ing its co-factor BDL (Szemenyei et al., 2008). ARF TFs share conserved domains 

such as the C-terminal dimerization domain, which facilitates interactions with the 

IAAs co-factors such as BDL (Ulmasov et al., 1999; Reed, 2001). This raises the 

possibility that the role of both MYC2 and ARF2 is to recruit the repressive co- 
factor TOPLESS to a genes promoter, allowing a rapid activation by de-repression 

following detection of pathogen attack and the subsequent activation of signalling 

pathways. This could be studied by testing whether ARF2 can interact with BDL 

and TOPLESS. 

3.4.5 A role for ANAC072 in the defence response 

In the previous chapter ANAC072 was inferred to regulate the expression of 38 

genes during B. cinerea infection. Consequently, it was screened in a reverse genetics 

screen which showed that knockout mutants of ANA C072 had a weak but repeatable 

reduction in susceptibility to B. cinerea. In this chapter known downstream targets, 
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found in an `out of context' experiment, were found to be over-represented in the 
list of genes differentially expressed during B. cinerea infection. The altered pheno- 
type and potential regulatory targets during B. cinerea infection suggest a role for 

ANAC072 in regulation of the defence response. This could be tested in a mutant 

versus wildtype microarray experiment performed during B. cinerea infection. 

3.4.6 TCPs 

TCP TFs were found binding to 9/13 of the promoter fragments screened using 

cloned library Y1H in this chapter. Some fragments still had auto-activation with 
the highest level of 3AT used, allowing for the possibility that TCPs would have 

been found binding to more of the fragments if a higher 3AT level was used. Overall 

this suggests that the ability of TCPs to interact with the promoter-reporter plas- 

mids in yeast is fairly ubiquitous. This could be due to a technical problem, such as 

a TCP binding motif in the promoter-reporter plasmid. This is considered unlikely 
due to other results within the group, but could be tested by performing a cloned 
library Y1H with a pHis2Leu2 vector that contains no promoter fragment. 

Assuming that a technical problem is not behind the binding of TCP TFs to the 

promoter-reporter plasmids, then the YIH results presented in this chapter sug- 

gests that TCP TF-promoter binding is fairly ubiquitous, at least in the promoters 

of genes associated with the defence response. To see if TCP binding is unique to 

the defence response, cloned library Y1H could be performed on promoter fragments 

of genes that are not believed to be linked to the defence response. It is worth not- 

ing that the TF, CHE, revealed by Pruneda-Paz et al. (2009) to interact with the 

promoter of CCA1 in Y1H and in planta was itself a TCP TF, showing that TCP 

binding occurs in the promoter of at least one gene that has not yet been linked 

to the defence response. The ability of interacting TCPs to regulate the expression 

of the promoters they can bind to could be tested with transient transactivation 

assays or mutant versus wildtype microarrays, a good candidate for a TCP target 

is PGIP1 which is differentially expressed after some of its interacting TCP TFs 

during B. cinerea infection. 

3.4.7 Extended qualitative model of the defence response gene reg- 

ulatory network 

The experimental results presented in Sections 3.3.2-3.3.3 can be used to extend 

the qualitative model introduced in Section 3.3.1. Before this screen the qualitative 

model included four edges where evidence existed that the regulator could both bind 

to the promoter and regulate the expression of the target (EIN3 -*ERFJ, ERF1 -a 
CHIB, ORA59 -+ PDF1.2 and WRKY33 -+ PADS). The Y1H screens presented 
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in this chapter showed that both MYC2 and WRKY25 could bind to the promoter 
of WRKY3Y. Together with literature evidence showing that they could regulate 
the expression of WRKY33 (Dombrecht et al., 2007; Li et al., 2011), this adds 
two more binding/regulation confirmed edges to the qualitative model (i. e. MYC2 

-I WRKY33 and WRKY25 -º WRKYSS). These two edges were supported by the 

transient transactivation assay, which demonstrated that both WRKY25 and MYC2 

can affect the expression of a reporter fused to the WRKY33 promoter. Addition- 

ally, transient transactivation assays also revealed that WRKY33 could regulate 
the expression of a reporter fused to its own promoter, which together with the 
WRKY33- WRKY33 promoter binding evidence from Mao et al. (2011) adds an- 

other binding/regulation confirmed edge to the qualitative model (i. e. WRKY33-4 

WRKY33). Taken together these three additional binding and regulation confirmed 

edges almost doubles the number of direct transcriptional edges in the qualitative 

model, this is shown in Figure 3.24 together with the additional `context free' reg- 

ulation evidence provided by the Y1H screens. 

This demonstrates the utility of both the cloned TF library Y1H screens and tran- 

sient transactivation assays in elucidating the local structure of a GRN. Further 

Y1H and transient transaction assays could be used to validate and extend the net- 

work structure around other network components, leading to a GRN structure that 

could then be modelled and/or tested during B. cinerea infection. The relevance of 
the regulatory edges in the qualitative model to the defence response of Arabidopsis 

to B. cinerea infection could be tested by mutant versus wildtype microarray and 
ChIP experiments on B. cinerea infected leaves. 

Comparative transcriptomics has shown that targets of TGA3, ARF2, ERF1 and 
ARF2 are over-represented in the overlap with the list of genes differentially ex- 

pressed during B. cinerea infection. This is consistent with the regulation of B. 

cinerea responsive gene expression by these TFs, this could be tested by Y1H or 
ChIP to extend the qualitative model presented here. 

3.4.8 Comparative transcriptomics could be handled within a GO 

analysis package to identify regulators of different contexts 

The comparative transcriptomic analysis presented in Table 3.10 was performed in 

the same way that GO terms are typically analysed; by ranking them by cumulative 

hypergeometric p-values. Currently genes differentially expressed in mutant versus 

wildtype experiments are not annotated as such using GO terms, meaning that 

comparative transcriptomics can only be performed on manually selected lists. The 

downside of manual selection of these lists is that it will be biased by the expectations 
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of the researcher, i. e. there may be mutant versus wildtype experiments whose 
differentially expressed gene list overlaps are more significant than those observed 
in Table 3.10, which have not been observed as these lists have not been selected 
for analysis. An extension of this manual approach would be to annotate genes 

as being differentially expressed in response to mutations of specific TFs, either 

within the GO framework or within a custom database. An example of a custom 
database is Genevestigator which can be used for meta-analysis of transcriptomics, 
but which currently only stores data from Affymetrix microarrays (Hruz et al., 
2008). If this information could be incorporated within the GO framework then 
the research community would be more likely to re-use published mutant versus 

wildtype data. Re-use of data is good, both for groups using and producing mutant 

versus wildtype datasets, and may lead to novel findings that would otherwise have 

been missed. 

3.4.9 Conclusion 

Cloned library Y1H and transient transactivation assays are complementary ap- 

proaches allowing the identification and characterisation of direct transcriptional 

regulators. This approach has validated and extended an initial qualitative model 
based upon `out of context' and `context free' evidence of transcriptional regula- 
tion. For example, Y1H demonstrated that MYC2 could bind to the promoter 

of WRKY33, showing that transcriptional regulation known in the literature was 

probably direct. Additionally Y1H identified novel promoter interactors, such as 
WRKY25, which interacted with the WRKY33 promoter in Y1H. The ability of 
WRKY25 to activate the expression of a reporter fused to the promoter of WRKY33 

in planta was then shown by a transient transactivation assay. Transactivation 

assays also showed that the binding of WRKY33 to its own promoter mediates 
transcriptional activation. The relevance of some of the regulators in the qualitative 

model to the defence response to B. cinerea infection was demonstrated by compara- 
tive transcriptomics. For example, this highlighted two TFs, ARF2 and ANAC072, 

that have recently been found to have mutants with altered susceptibility to B. 

cinerea infection. This suggests roles for these TFs in regulating part of the defence 

response to infection by B. cinerea. 
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Chapter 4 

Dynamic modelling of the gene 
regulatory network mediating 
plant defence 

In the previous chapter a qualitative model of the GRN mediating plant defence 

was built from existing qualitative and quantitative data, before being validated 
and extended experimentally. This qualitative model is an important first step 
towards a predictive quantitative model of the GRN mediating plant defence. In 

this chapter the aim is to develop a quantitative model of the defence response. To 

achieve this network inference will be applied to the expression of these genes over 
time to infer the structure of the GRN underpinning the plant defence response. 
Additionally, the qualitative model generated in the previous chapter will be used 

as informative priors to guide inference. 

4.1 Introduction 

4.1.1 Using Bayesian priors to take current knowledge into account 
during network inference 

The Bayesian approach allows prior information to be used during statistical infer- 

ence; prior information is used to define prior distributions, often referred to simply 
as priors, over parameters. Priors can be either vague or specific, known as unin- 
formative or informative priors respectively. Priors are taken into account by the 

application of Bayes theorem which is defined in Equation 1.1. In this equation 
it can be seen that the posterior probability distribution of a Bayesian variable is 

affected by the choice of a prior distribution for it. For example, our a priori belief 

of the probability of a coin landing on the queen side ('heads') is 0.5, because we 
assume that the two possible outcomes ('heads' or `tails', ignoring the chance of the 
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coin landing on its edge) are equally likely. This is an uninformative prior because 

it does not suggest that any one discrete outcome is more likely to happen than the 

other. If we were to consider the outcome that a coin lands on its edge, then we 

would probably presume a priori that it was unlikely relative to `heads' or `tails'. 

This is an informative prior, whose value/weight would be based, at least initially, 

on a subjective judgement. More formally, an uninformative prior distribution over 

a set of discrete outcomes is one that assigns the same probability to each. 

In the case of GRN structure inference, priors can be defined for specific edges 
(directed regulatory pairs, i. e. TF -+ its target). A prior relating to the probabil- 
ity of a specific edge is called a `prior edge', and is an informative prior because 

it suggests certain edges are more likely than others. The use of informative pri- 

ors in biological network structure inference has been explored in Mukherjee and 
Speed (2008), and will be applied in this chapter in an effort to increase the accu- 

racy of inferences of the structure of the defence response GRN. Informative priors 

can help to constrain network inference, which is especially useful for the relatively 

small and noisy datasets encountered in molecular biology applications (Mukherjee 

and Speed, 2008). The Bayesian approach allows the flexible integration of current 
knowledge into network inference. This flexibility allows inference to disagree with 

the prior given strong enough evidence; for example in a paper by Mukherjee and 
Speed (2008) even an incorrect informative prior was found to improve predictive 

accuracy. 

4.1.2 Prior edges in VBSSM 

The matrix D in the SSM shown in Equation (1.7) summarises the effect of each 

gene on the expression of the other genes at the next time point. For the default 

(uninformative) prior, every entry of D is assumed to be normally distributed with 

a mean of zero and with a unit variance (Beal et al., 2005). Within the VBSSM 

GUI (developed by Paul Brown and David Wild) there is an option to specify prior 

edges, i. e. cases of transcriptional regulation that are known a priori. These prior 

edges shift the mean of the prior distribution of the relevant entry of D; a positive 

mean represents positive regulation, while a negative mean represents repression. 
These prior edges will affect the transcriptional regulation that will be inferred by 

affecting the posterior probability over parameters given observed data by Bayes 

theorem (Equation 1.1). The value of the offset of the mean of the distribution of a 

given parameter, in standard deviations, is termed its z-score. The z-score can be 

used to specify a shift in the prior or can be calculated from the posterior distribu- 

tion of the parameter, given the data and prior, to infer that parameter from the 

data. 
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The aim of this chapter is to develop a quantitative model of gene regulation during 
B. cinerea infection, which would allow predictions to be made about the effect of 

genetic perturbations to the network. It may also allow central regulators of the de- 

fence response to be identified. Time series of gene expression during infection and 

prior literature knowledge about trancsriptional regulation can be used to develop 

a quantitative model of gene regulation. 

4.2 Results 

In the previous chapter a qualitative model of the defence response GRN was built, 

based on experimental evidence from the literature and the unpublished work of 

colleagues, this was shown in Figure 3.2. Here a quantitative modelling approach, 
VBSSM, is used to infer the structure of the GRN underpinning the defence response 
based on time series of gene expression during infection by B. cinerea. 

4.2.1 Application of VBSSM to the gene regulatory network un- 
derpinning the defence response 

VBSSM was used because it has been shown to perform relatively well at predicting 
the network structure of a synthetic yeast GRN (Penfold and Wild, 2011). Genes 

were selected for modelling based on current knowledge of the genetics, gene regu- 
lation and physiological outputs of this defence response, as summarised in Figure 

3.2. This was discussed in greater detail in Section 3.3.1. The expression profiles 

of these genes in the mock and Botrytis-infected time series from Section 2.2.1 are 

shown in Appendix E. 

Without prior knowledge 

VBSSM was applied to the time series expression data of these genes, with the 

default uninformative prior used (data described in Section 2.2.1). The resulting 
GRN structure inferred by VBSSM is shown in Figure 4.1. The structure contains 

two edges that agree with the literature on downstream targets of ANAC055 and 

TGA3, namely that ANAC055 positively regulates the expression of ATGI8a and 

that TGA3 positively regulates the expression of WRKY70. ATG18a has been 

found to be differentially expressed in a knockout of ANAC055 during senescence 
(Hickman et al., in preparation). WRKY70 has been shown to be differentially ex- 

pressed in a knockout of TGAS during infection by B. cinerea (Windram, 2010). If 

self-regulation is excluded then the p-value of obtaining at least two edges that are 

known in the literature, by chance, is 0.106 (as calculated in MATLAB ®using the 

hypergeometric distribution to test the null hypothesis that this overlap occurred 
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by chance), which is not significant at the 5% level. (32 x 31 = 992 possible extra 

edges, 16 `true' positives, see Table 4.1, and 35 inferred edges). 

Another inference which is plausible given current knowledge is the regulation of 
WRKY33 expression by MPK3, which is known to occur by post-translational mod- 
ifications (Mao et al., 2011). However, this regulation is not known to be affected by 

the level of MPK3 expression and so it is not obvious that this inference makes sense. 
If true this inference suggests that this post-transcriptional regulation is affected by 

the expression level of MPK3, which is plausible in activating conditions. If this is 

interpreted as a correct inference then the cumulative hypergeometric p-value de- 

creases to 0.016, which is significant at the 5% level. (Overlap of three, all other 

parameters as in previous paragraph). To assess the sensitivity of this inference to 

changes in the data, inference was repeated on the same dataset leaving off the first 

timepoint, resulting in a broadly comparable inferred network structure with a few 

minor differences (Figure B. 5). 

With priors based on literature knowledge of direct regulation 

In this section a prior based on literature knowledge of direct regulation was used to 

inform network structure inference. The prior related to two regulatory connections: 
EIN3 binding to the promoter of ERF1 and positively regulating its expression; and 
ERF1 binding to the promoter of CHIB and positively regulating its expression 
(Solano et al., 1998). A prior weight of 0.5 standard deviations was used for each 

prior edge. 

The resulting GRN structure inferred by VBSSM is shown in Figure 4.2. It contains 

the two edges specified by the prior. In addition, it also infers the two known edges, 

TGA3 -a WRKY70 and ANAC055 -+ ATG18a, which were also inferred in Figure 

4.1. Again, to test sensitivity inference was repeated on the same dataset leaving off 

the first timepoint, with the informative prior described in the previous paragraph 

used, resulting in a broadly comparable inferred network structure with a few minor 

differences to that produced with both the informative prior and the full dataset. 

The most noticeable difference was that MPK3 was no longer inferred to regulate 

any of the other genes (Figure B. 6). 

With priors based on literature knowledge of regulation that is possibly 
indirect 

In this section the prior used in the last section is extended to take literature on 

indirect regulation into account. This prior is summarised in Table 4.1. A prior 

weight of 0.5 standard deviations was used for each prior edge. The resulting 
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Figure 4.1: Inferred structure of the defence response GR_N, using an uninformative 
prior. Network structure inferred by VBSSM from the expression of the genes 
shown in Figure 3.2 and the differentially expressed JAZs, using 20 initialisations 

and 4 hidden states. Green arrows indicate positive regulation and red arrows 
indicate negative regulation. The thickness of the arrows correspond to the number 
of initialisations that led to that inferred edge. 
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GRN structure inferred by VBSSM is shown in Figure 4.3. Half of the prior edges 
were recovered in the inferred network structure (ANAC055 -+ ATG18a, WRKY33 

-* ATG18a, CAMTA3 -1 WRKY5S, CAMTA3 -1 WRKY70, TGA3 -r WRKY70, 
TGA3 -1 PGIPI and ORA59 -4 CHIB), and some novel regulation was also inferred. 
One prior edge was inferred with the opposite sign to that used in the prior, i. e. 
ARF2 is inferred to positively regulate the expression of WRKY33. The inference 

was repeated with the same prior on the same dataset, leaving off the first timepoint, 

resulting in a broadly comparable inferred structure with a few minor differences. 
The most obvious differences were JAZ12 -* WRKY3S and WRKY33 -* MPK3 

which were additionally inferred (Figure B. 7). 

Table 4.1: A table summarising the prior edges used in VBSSM, to generate Figure 
4.3, based on the literature summarised in Figure 3.2. 

Regulator Target Nature of regulation Source 

EINS ERF1 Positive Solano et al. (1998) 
ERFI CHIB Positive Solano et al. (1998) 
TGA3 PGIP1 Negative Windram (2010) 
TGA3 JAZ9 Negative Windram (2010) 
TGA3 WRKY70 Positive Windram (2010) 

ORA59 CHIB Positive Pre et al. (2008) 
ANAC055 ATG18a Positive Hickman et al., (in preparation) 
WRKY33 ATG18a Positive Lai et al. (2011b) 
CAMTA3 WRKY33 Negative Galon et al. (2008) 
CAMTA3 WRKY70 Negative Galon et al. (2008) 

ARF2 WRKY33 Negative Vert et al. (2008) 
ARF2 BAP1 Negative Vert et al. (2008) 
ARF2 PGIP1 Negative Vert et al. (2008) 
ARF2 WRKY70 Negative Vert et al. (2008) 
ARF2 JAZZ Negative Vert et al. (2008) 
ARF2 JAZ6 Negative Vert et al. (2008) 

With priors derived from the previous chapter and the literature 

In this section the prior that was used in the last section is extended to take the 
Y1H results of the previous chapter into account. The additional prior edges are 

summarised in Table 4.2. A prior weight of 0.5 standard deviations was used for each 

prior edge. Because these priors are just based on Y1H results there is no knowledge 

of whether the regulator activates or represses the expression of its targets. In lieu 

of this PCC was used to infer whether the regulation is positive or negative in 

nature, i. e. regulation was assumed to be positive if the expression profiles of the 

TF and its target were positively correlated over the time series. The resulting GRN 
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CEIN2 

Figure 4.3: Inferred structure of the defence response GRN, made using a prior 
representing literature on both direct and indirect regulation. Network structure 
inferred by VBSSM from the expression of the genes shown in Figure 3.2 and the 
differentially expressed JAZs. using 20 initialisations and 4 hidden states. Green 
arrows indicate positive regulation and red arrows indicate negative regulation. The 
thickness of the arrows correspond to the number of initialisations that led to that 
inferred edge. 

structure inferred by VBSSM is shown in Figure 4.4. None of the additional prior 
edges have been inferred. In fact the inferred structure is very similar to Figure 4.3, 
identical except for the loss of the inference that CAMTA3 negatively regulates the 

expression of WRKY70. Inference with the same prior was repeated on the same 
dataset. leaving off the first timepoint. resulting in a broadly comparable inferred 

network structure with a few minor differences. The most obvious of which were 
JAZ12 -4 WRKYSS and WRKY33 -> MPK3 which were again additionally inferred 
(Figure B. 8). 

Table 4.2: A table summarising the additional prior edges, used in V13SSAM to 
generate Figure 4.4, based on the previous chapter. 

Regulator Target PCC Inferred nature of regulation 

ORA59 ARF2 -0.373 Negative 
ERF1 ARF2 -0.465 Negative 
ERFI ORA59 0.956 Positive 
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Figure 4.4: Inferred structure of the defence response GRN, made using a prior 
representing the Y1H results of the previous chapter. as well as literature on both 
direct and indirect regulation. Network structure inferred by VBSSM from the 
expression of the genes shown in Figure 3.2 and the differentially expressed JAZs. 
using 20 initialisations and 4 hidden states. Green arrows indicate positive regulation 
and red arrows indicate negative regulation. The thickness of the arrows correspond 
to the number of initialisations that led to that inferred edge. 

Comparison of expression profiles of inferred TF-target pairs 

VBSSM has been used to infer the structure of the GRN underlying the defence 

response of Arabidopsis to infection by B. cinerea. Inferences were made based on 
the expression of genes over time during infection and also based on prior knowledge 

of transcriptional regulation. In this section these inferences are analysed visually to 

highlight biologically plausible inferences. For example. data showing the expression 

of these genes in the mock infection time series from Section 2.2.1 can be used to see 
if changes in the expression of regulators precede changes in the expression of their 

inferred targets. Because the mock data has not been used in network inference it 

provides independent information on the inferred GRN structure'. This was applied 

to three demonstrative examples: consistently inferred targets of ANAC055; inferred 

regulators and targets of WRKY33; and regulators of CHIB. 

ANAC055 was inferred to regulate many downstream genes in Figure 4.1. While 

fewer targets were inferred when informative priors were used in inference. in all 
inferred network structures ANAC055 was inferred to be a central regulator (Figures 

'Mock data was used to determine differential expression, as explained in Section 2.2.1, and only 
differentially expressed genes were modelled together in VBSSM. Other than this mild dependence, 

the mock data can be considered to represent independent data that was not used in network 
inference. 
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4.1-4.4). The expression of consistently inferred targets of ANAC055 in Figures 4.1- 
4.3 were compared to that of ANAC055, this is shown in Figure 4.5. Both JAZ8 

and TGA5 appear visually to be first differentially expressed at a later timepoint 
than ANAC055, which appears visually to be first differentially expressed at around 
22 hpi. Additionally, the expression of JAZ8 and TGA5 visually appear to be up or 
down regulated versus the mock respectively, both of which are consistent with the 
inferred positive or negative regulation by ANAC055, which is itself up-regulated. 
This means that JAZ8 and TGA5 are plausible downstream targets of ANAC055. 
The expression of EIN2 and ERF1 visually appears to be first differentially expressed 

at around 20 hpi, slightly earlier than ANAC055, suggesting that their regulation is 

also regulated by other factors or by post-transcriptional regulation of ANAC055. 
ATG18a visually appears to be first differentially expressed at roughly the same 
time as ANAC055 and so it is possible that it is regulated by ANAC055, which fits 

with the differential expression of ATG18a in a knockout of ANAC055 (Hickman et 

al., in preparation). 

In the GRN structure inferred without an informative prior in Figure 4.1, ANAC055 

and MPK3 were inferred to regulate the expression of WRKY33. The same inference 

was made in Figure 4.2 when a few prior edges were used. When more prior edges 

were added and inference was applied again some prior edges were recovered in the 
inferred structure, for example the subnetwork shown in Figure 4.6(a) was inferred 

in Figures 4.3-4.4. All of the inferred regulators (MPK3, ARF2 and CAMTA3) of 
WRKY88 expression in Figure 4.6(a) visually appear to be differentially expressed 

after WRKY33, this suggests that either an additional regulator controls WRKY33 

expression or that at least one of its inferred regulators is post-transcriptionally ac- 
tivated. CAMTA3 expression visually appears to be down-regulated at roughly the 

same time as WRKY33, making the inference that CAMTA3 negatively regulates 
WRKY38 expression less plausible. ATG18a visually appears to be first differen- 

tially expressed at a similar time to WRKYBS, making the positive regulation of 
ATG18a expression by WRKY33 plausible. 

In Figures 4.3-4.4 CHIB expression is inferred to be regulated by ORA59, whereas 
in Figure 4.2 CHIB expression is inferred to be regulated by TGA3, ANAC055 and 
ERF1. In Figures 4.7-4.8 these possibilities are compared to the expression data. 

In Figure 4.7 it visually appears that first differential expression of ORA59 and 
CHIB occurs at similar times, making the regulation of CHIB expression by ORA59 

plausible. However, in Figure 4.8 two inferred regulators, ANAC055 and ERFI, 

visually appear to be differentially expressed prior to CHIB. This makes them both 

good candidates to regulate the expression of CHIB. CHIB has already been shown 
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Figure 4.6: Inferred regulators of WRKY33 from Figures 4.3-4.4. (a) Diagram 

showing genes inferred to transcriptionally regulate WRKY3S in Figures 4.3-4.4. 
(b)-(f) Expression profiles of the genes shown in (a). (g) Legend for expression plots. 
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ration. and is also presented in Windrani. 2010). Expression profiles show average 
gene expression. bars represent standard deviation. 
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to be up-regulated in over-expressors of either ERF1 or ORA 59 (Solano et al., 1998; 

Pre et al., 2008), and ERF1 has already been shown to capable of binding to the 

promoter of CHIB in vitro (Solano et al., 1998). 

In summary, time series of gene expression and literature knowledge has allowed 
known and novel regulation to be inferred. Mock expression profiles allowed inferred 

transcriptional regulation to be compared to the temporal precedence of differential 

expression, allowing good candidates for future validation work to be selected. 

4.3 Discussion 

4.3.1 Quantitative models of the GRN underpinning the defence 

response 

The use of prior edges 

In this chapter informative Bayesian priors have been used to try to improve the ac- 

curacy of inference of the structure of the GRN underpinning the defence response. 
The flexibility of Bayesian priors has been demonstrated in Figures 4.3-4.4 where 

some prior edges have not been inferred. This shows that informative priors can 
be overruled by data. Bayesian priors also allow data to overrule the nature of the 

prior, for example in Figures 4.3-4.4 where ARF2 has been inferred to positively 

regulate WRKY3S, in opposition to the literature (Vert et al., 2008) and the results 

of the previous chapter. 

One challenge with the use of Bayesian priors is how to set the prior weight, i. e. 

how much to bias the inference towards certain prior expectations. In this chapter 

the prior weight was set arbitrarily, this could be improved upon either by: sensi- 

tivity analysis like that used in Mukherjee and Speed (2008), where the stability of 

inference relative to prior weight is verified; an empirical Bayesian approach (Rob- 

bins, 1956; Werhli and Husmeier, 2007), where the prior is informed by the data; 

or by analysis of the effect of various prior weights on accuracy of the inference, 

in a benchmark study similar to that performed in Mukherjee and Speed (2008) or 

Marbach et al. (2010). 

Without these, the accuracy of the inferences made in this chapter must be analysed 

by comparison to current knowledge or by validation work. This will be discussed 

further in the next two sections. However, the priors used for Figure 4.2, which re- 

late to the most well validated knowledge of direct transcriptional regulation in the 

defence response, were both recovered in the inferred GRN structure. This suggests 
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that they are plausible with respect to the data and the modelling approach used. 
In the future the novel transcriptional regulation inferred in this chapter should be 

able to be rigorously tested; with current knowledge it is hard to assess the accuracy 

of the inferred regulation. 

Where priors edges are not inferred, it is hard to know whether this is because 

of the model assumptions, the data, the prior weight, or the validity/relevance of 
the literature knowledge that the prior was based on. 

As well as these experimentally derived priors, priors inferred from large scale 

gene expression databases such as the Nottingham Arabidopsis Stock Centre arrays 
database could be used. Network structures have been inferred from this database 

and can be found in Needham et al. (2009) and Carrera et al. (2009). These struc- 
tures could be used in conjunction with the time series data used here to infer the 

network structure of the GRN underpinning the plant defence response to infection 

by B. cinerea. 

Interpretation of inferred transcriptional regulation 

One of the strongest inferences made in this chapter is the central role of ANAC055 

in the regulation of the defence response. This is inferred in Figures 4.1 and 4.2, and 
to a lesser extent in Figures 4.3 and 4.4. Additionally, the comparatively early dif- 

ferential expression of ANA C055 makes it a plausible early regulator of the defence 

response. The altered susceptibility of an overexpressor of ANA C055 to infection by 

B. cinerea suggests that ANA C055 plays an important role in the defence response 
(Bu et al., 2008). As the expression of ANA C055 is itself controlled by MYC2 these 

inferences suggest a possible second wave of MYC2 mediated transcriptional regu- 
lation (Bu et al., 2008), i. e. MYC2 -a ANAC055 -4 inferred targets. Given that 

MYC2 is not differentially expressed during B. cinerea infection it is possible that 

this regulation depends on post-transcriptional regulation. 

It is encouraging that in Figure 4.1 VBSSM inferred the plausible regulation of 

the expression of ATG18a by ANAC055. Regulation of ATG18a by ANAC055 has 

been demonstrated during leaf senescence (Hickman et al., in preparation), rather 

than during B. cinerea infection. This suggests that this regulation may also occur 

during B. cinerea infection, which is both plausible and testable. It is plausible 

because although ATG18a expression is reduced during B. cinerea in a knockout 

of WRKY88, it is still induced upon infection (Lai et al., 2011a). This suggests a 

TF other than WRKY33 can up-regulate ATG18a during B. cinerea infection. The 

regulation of ATG18a expression, by WRKYS3, is taken into account by the use of 
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a prior in Figures 4.3-4.4. 

Although MPK3 is known to regulate WRKY, 33 expression, this regulation has 
not yet been related to the expression of MPK3, as it is known to be mediated by a 
kinase signalling pathway (Mao et al., 2011). The inference that MPKS expression 
increases the expression of WRKY33 during B. cinerea infection could be tested 

with an overexpressor of MPKS. 

In summary, some regulation was inferred that was known, and some that was 
plausible. Without further validation it is not known whether the number of cor- 
rect inferences in Figures 4.1-4.4 is better than what could be achieved by random 
guesswork. Good candidates for validation were highlighted by visual examination 
of the timing and nature of differential expression of inferred regulatory pairs. 

Network validation 

The systems biology ideal is to experimentally validate model predictions and for 
this to guide future modelling in a virtuous cycle. In reality this is hard to achieve 
because of the difficulty of modelling and experimenting on complex biological phe- 
nomena. For example, both modelling and experimental validation of the structure 
of a GRN is extremely challenging. It is not clear which model assumptions about 
the dynamics of transcriptional regulation are realistic enough, especially with re- 
gard to hard to measure variables like the combinatorial logic of promoters as well 
as the level and activity of all relevant proteins. 

On the experimental side, the strongest validation requires both in planta bind- 

ing assays and mutant versus wildtype expression comparisons. The latter being 

comparatively easy to perform, with RT-PCR or microarrays for example. Unfortu- 

nately, in planta binding assays, such as ChIP, are considerably harder to perform, 

usually requiring either the generation of a tagged TF or the production of a specific 

antibody. Both of these approaches are time consuming. This means that exper- 
iments to strongly validate inferences that may have a high false positive rate are 

unattractive to a molecular biologist with other options. 

This can be dealt with by starting with weaker validations, which can convince 
the researcher of the utility of further validation work. Following this, stronger vali- 
dations can be made. For example, a prediction can be initially tested with a mutant 

versus wildtype expression experiment, with either a transient or stably transformed 

background. An alternative approach is to test TF-promoter binding outside of its 

natural context, for example in Yeast. These two approaches have been applied in 
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the previous chapter, to find regulators of TFs or physiological outputs. 

Even weaker validations can be time consuming, and so there is a clear need for 

inferred transcriptional regulation to be as accurate as possible, and for the valida- 
tion approaches to be streamlined and made higher-throughput. It is hoped that 

this will lead to a more effective application of the `systems biology cycle' of mod- 

elling and experimental analysis. 

An additional problem is that while it is theoretically possible to validate regu- 
lation using currently available methods, it is not practically possible to invalidate 

a prediction, so long as it is not overly specific. For example, a TF can regulate 

a target without binding near to its TSS, for example by indirect regulation. This 

means that an indirect regulatory prediction cannot be invalidated with assays mea- 

suring the binding of the inferred regulator to the targets promoter, such as ChIP, 

for example if the inferred regulator regulates an inferred target through transcrip- 

tional regulation of an intermediate TF it would not be detected binding to the 

targets promoter. Similarly the prediction that a TF regulates a target cannot be 

invalidated by a single knockout versus wildtype experiment because functional re- 
dundancy cannot be ruled out. 

Because of these challenges, and more, high-throughput elucidation of gene reg- 

ulatory networks remains an open problem. 

4.3.2 Future directions 

Relating genotype to phenotype via transcriptional regulation 

In the longer term, if a predictive model of gene regulation in the defence response 

can be made it may be possible to use this to predict the effect of genetic pertur- 

bations on susceptibility to infection by B. cinerea. For example, some genes are 

known to encode enzymes which are mechanistically involved in resistance, such as 

the physiological outputs described in Section 1.4.2. The expression of these phys- 

iological outputs may act as markers of resistance. If the effect of the expression 

of physiological outputs on resistance to infection by B. cinerea can be modelled, 

then this could be combined with a model of the regulation of their expression by 

TFs. This model should then predict the impact of genetic perturbations on suscep- 

tibility, by first predicting the change in expression of physiological outputs. From 

a systems biology perspective this would be desirable, as susceptibility is consider- 

ably easier to test than network structure. This would allow model validation to be 

performed relatively quickly, facilitating a Systems Biology cycle of modelling and 

experimental validation. 
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This would require substantial research on physiological outputs, and also on the 

possible network structure regulating them. In this chapter and the previous, the 

second of these steps was pursued, but much additional work is required. It is unfor- 
tunate that the expression of two possible physiological outputs, PADS and PDF1.2, 

were not measured in the gene expression time series experiment introduced in Sec- 

tion 2.2.1, as these could have been modelled in this chapter. Especially as relatively 
good literature knowledge exists on their regulation (for example in the papers of: 
Mao et al., 2011; Lai et al., 2011a; Lorenzo et al., 2004; McGrath et al., 2005; Coego 

et al., 2005; Pre et al., 2008; Wang et al., 2009). 

ODE model of the defence response GRN 

In this chapter VBSSM was used to generate quantitative models of transcriptional 

regulation during the defence response. It would be desirable to develop an ODE 

model when the network structure is better known, as this would allow the model to 

explicitly incorporate biochemical kinetics such as non-linear effects. An example of 

a simple ODE model of transcriptional regulation was given in Equation 1.12, this 
includes a transcriptional activation and a mRNA degradation term, a and b respec- 
tively, which could be experimentally derived. Methods to determine genome-wide 
degradation rates already exits, and could be applied during B. cinerea infection 

to see if degradation is differentially regulated (for example Narsai et al. (2007)). 

Transcriptional activation could be studied independently of gene specific degrada- 

tion rates through promoter-reporter assays. Additionally, it may be possible to get 

estimates of the sensitivity of transcriptional activation to the level of regulating 
TFs by adapting the transient transactivation assay used in the previous chapter. 
For example, the effect of different levels of overexpression of a TF on the levels of 

a reporter fused to the promoter of interest could be determined. Mock infection 

expression profiles could be used to determine a background model of diurnal ex- 

pression, something that isn't taken into account in the current model. This could 

be important to determine the difference between diurnal and pathogen response 

transcriptional regulation. 

4.3.3 Conclusions 

In this chapter the expression profiles of genes with a known role in the defence 

response were used to predict the structure of the GRN underpinning the defence 

response. Several predictions were found to fit with the literature, i. e. the inferred 

target has been found to be differentially expressed in a knockout of the inferred reg- 

ulator. These are the regulation of WRKY70expression by TGA3 (Windram, 2010); 

the regulation of ATG18a expression by ANAC055, which has been observed during 
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leaf senescence (Hickman et al., in preparation); and the regulation of WRKY33 

expression by MPK3 (Mao et al., 2011), which is inferred to depend on the expres- 

sion of MPKY. In addition, literature knowledge was incorporated into the models 
through the use of Bayesian priors. For example: the regulation of ERFJ expression 
by EIN3; and the regulation of CHIB expression by ERF1 (Solano et al., 1998). 

Overall the models predict the central role of ANAC055 in the regulation of the 

defence response. 
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Chapter 5 

General conclusions 

5.1 Inferring gene regulation from gene expression time 
series 

An overall aim of this thesis was to develop a predictive model of the GRN under- 
pinning the defence response. To do this unsupervised learning and graphical model 
inference were used. In each case improvements on existing analyses were made: 
TCAP was developed and it was shown cluster together some TFs with their known 
targets; VBSSM was applied to sets of genes that were likely to be involved together 
in the GRN; and literature knowledge was used to generate informative priors that 
could guide network inference. Because knowledge of transcriptional regulation in 

plants is sparse, it is hard to assess the predictive accuracy of these approaches. 
However, known regulation was recovered by each approach. 

5.1.1 TCAP 

TCAP was developed to infer transcriptional regulation between large numbers of 

genes. To achieve this a simple model of the effect of transcriptional regulation on 
the expression of TF-target pairs, time-delayed correlation, was used (Qian et al., 
2001). This model was shown to have some predictive accuracy in a benchmark- 

ing exercise performed on experimentally derived datasets from the literature. In 

addition, groups of genes with a strong time-delayed correlation were discovered by 

clustering the genes. This was achieved with a recently introduced clustering ap- 
proach, AP (Frey and Dueck, 2007), that was shown to be effective in this setting. 

TCAP was applied to cluster the time series expression profiles of genes differ- 

entially expressed during B. cinerea infection. Although the sensitivity of TCAP 

to time-delayed correlation could be improved, many cases of strong time-delayed 

correlation between groups of genes were found. The most convincing recovery of 
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known transcriptional regulation was the grouping of LHY and GI in a cluster of 7 

genes. GI was found to have a time-delayed anti-correlation with LHY, consistent 
with the known role of LHY as a transcriptional repressor of GI. Other clusters 
also grouped genes with a known regulatory connection, such as: ORA59, ERF1 

and six known targets of ORA59 (At1g59950, At2g43580, At3g28550, At3g56710, 
At4g11280 and At4g2/j850, from Pre et al. (2008)); and ANAC072 with one of its 
known targets (At4g37990, from Fujita et al. (2004)). In the case of the cluster 

containing ORA 59, no time-delay was observed in the correlation of ORA 59 and its 

targets. This could because of the temporal resolution of the dataset, or because 

of the context difference between the two studies. In Chapter 3 ERF1 was found 

to be capable of binding to the promoter of ORA59 in Yeast, this suggests that it 

may regulate the expression, of ORA59. If this can be shown to occur during B. 

cinerea infection, then it further validates the predictions of the ORA59 cluster. 
In the case of the cluster containing ANAC072, the overlap with known targets is 

not statistically significant. Further experiments such as ANAC072 mutant versus 

wildtype gene expression experiments or ChIP performed on leaf samples infected 

with B. cinerea are needed to test the validity of this inference. 

TCAP can be extended in many ways: the sensitivity to time-delayed correlation 
can be improved, possibly by calculating an approximate p-value for each score in 

a manner similar to that introduced in Qian et al. (2001); time-delayed correlation 
can be analysed with a probabilistic model such as cubic splines with a delay param- 
eter inferred for each gene expression profile; time series with uneven spacing could 
be handled with an interpolation system such as cubic splines, or by conventional 
dynamic time-warping if the number of time points is suitably high, as in Oates 

et al. (1999); the sensitivity to transient correlation could be increased, possibly 

using a biclustering approach that allowed time delayed comparisons and could use 

only contiguous subsets of timepoints (for a review of biclustering approaches see 
Madeira and Oliveira (2004)); the application of TCAP to multiple time series could 

be implemented, for example by adding the Qian score for each time series together; 

non-linear time-delayed correlation, such as aligned Spearman's rank correlation 
(Balasubramaniyan et al., 2004), could be benchmarked similarly to Figures 2.5, 

and then used instead of the Qian score in TCAP; the clustering of large datasets 

by AP could be performed in parallel to reduce runtime, as discussed in Blasberg 

and Gobbert (2008); and TCAP could be made available as a web tool to increase 

usage by biologists. All extensions would have to be optimised with respect to run- 

time, as a good feature of the current implementation of TCAP is that its runtime 

is not considerably higher than standard clustering approaches. This is important 

for methods that aim to allow exploratory analysis of data. 
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At the time of writing, few existing methods other than TCAP allow specific tran- 
scriptional regulation to be inferred from the expression of thousands of genes. 
Because of this TCAP is a valuable contribution to the GRN modelling field, as 
recognised by its recent publication (Kiddie et al., 2010). 

5.1.2 VBSSM 

In this thesis VBSSM was used to infer the structure of the GRN underpinning the 
defence response. Application of VBSSM, and all comparable methods that could be 
found in the literature, are limited to a small number of genes (or groups of genes), 
given the gene expression dataset available. Therefore in this thesis the focus was 
on ways to select genes to model together, the accuracy of these models and the 

effect of literature based informative priors. 

In Chapter 2 analysis of co-regulation and literature knowledge of TF binding prefer- 
ences were used to select genes to model in VBSSM. This approach, while dependent 

upon literature knowledge of TF binding preferences, is unbiased with respect to 
the literature in terms of the targets it can infer. In this way targets of the AP2- 
EREBPs, NAC and WRKY TFs during B. cinerea infection were inferred. The 
NAC TFs ANAC019, ANAC055 and ANAC092, which were inferred to regulate 
co-expressed genes, were already known to affect the susceptibility of Arabidopsis 

to infection by B. cinerea (Bu et al., 2008; Windram, 2010). The overlap of inferred 

targets, with known targets from literature experiments, was not statistically signifi- 

cant. However, none of the literature experiments were performed during B. cinerea 
infection, and regulation can be context-specific as shown in Chapter 3. To properly 
test these predictions in planta and during B. cinerea, mutant versus wildtype gene 

expression or ChIP experiments, performed on leaf samples infected with B. cinerea 

are required. 

In Chapter 4 genes whose mutants have altered susceptibility to B. cinerea, genes 
that can regulate the expression of genes that do, and genes that are a poten- 
tial physiological outputs were modelled together. The rationale was twofold: TFs 

whose mutants have altered susceptibility to infection by B. cinema are likely to 

regulate the pathogen-responsive expression of genes; and some evidence already 

exists, in the literature and in Chapter 3, that these genes are regulated by each 

other. Application of VBSSM to their expression correctly inferred that TGA3 can 

positively regulate the expression of WRKY70, i. e. WRKY70 is differentially ex- 

pressed in infected leaves in a knockout of TGAS during B. cinerea infection versus 
infected wildtype samples (Windram, 2010). VBSSM also inferred that ANAC055 
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positively regulates the expression of ATG18a, this is known to occur during senes- 
cence, i. e. ATG18a is differentially expressed during senescence in a knockout of 
ANAC055 versus wildtype (Hickman et al., in preparation). Although the regula- 
tion of ATG18a expression by ANAC055 has not yet been shown during B. cinerea 
infection, the comparative transcriptomics analysis in Chapter 3 shows that not all 
transcriptional regulation is highly context specific. Additionally, ATG18a has been 

shown to be regulated by, but still induced in a knockout of, WRKY33 (Lai et al., 
2011b). This suggests that another TF is also important for the B. cinerea related 
up-regulation of ATG18a expression, and this inference suggests that ANAC055 

is a possible candidate. This could be tested by mutant versus wildtype gene ex- 
pression or ChIP experiments, performed on leaf samples infected with B. cinerea. 
A final prediction that is biologically plausible is that MPK3 expression regulates 
the expression of WRKY33. MPK3 is known to be involved in the up-regulation 
of WRKY33 expression during B. cinerea infection (Mao et al., 2011), but this is 
believed to be mediated by kinase signalling. The effect of MPK3 expression on 
WRKY33 expression could be tested by comparing the expression of WRKY83 in 

an inducible over-expressor of MPKS to that in a wildtype, during B. cinerea infec- 

tion. 

In addition, informative Bayesian priors were used to integrate literature knowl- 

edge into the SSMs. First, known direct regulation was included as a set of prior 

edges; which were then inferred by VBSSM. Secondly, a set of prior edges rep- 

resenting literature knowledge of indirect regulation were used in GRN structure 
inference by VBSSM. Half of these prior edges were inferred by VBSSM, although 

one negative prior edge was inferred to be positive (ARF2 -* WRKYSS). It is a 

well known feature of inference using BNs that there are cases where given certain 
datasets it is impossible to determine between similar network structures. These 

similar structures have been called `equivalence classes', meaning sets of structures 

with identical probability given a dataset and prior (Pearl, 2000). It may therefore 

that certain local features of a network, such as direction of regulation and sign 

of regulation cannot always be inferred from a given dataset using BN approaches. 
Priors that were recovered represent those best aligned with the data and the SSM 

used. Finally, the results of Chapter 3 were used to inform additional prior edges, 

none of which were subsequently inferred by VBSSM. ANAC055 was inferred to 

regulate genes in all of the network models in Chapter 4, even those inferred with 

uninformative prior information. 

While correct predictions and recovery of prior edges is encouraging, significant 

validation work remains. Mutant versus wildtype expression experiments during B. 
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cinerea can be used to validate/test these predictions. Additionally, ChIP can be 

used to confirm whether these predictions relate to direct transcriptional regulation. 

5.2 Regulators of the defence response 

5.2.1 Novel regulators of the defence response 

In Chapter 2 novel regulators of the defence response were identified by reverse 

genetics. These TFs were selected for screening because they were differentially 

expressed, and were inferred to regulate other genes that were also differentially 

expressed, during B. cinerea infection. This is an extension of the approach of 
AbuQamar et al. (2006) who screened mutants of TFs up-regulated during infec- 

tion, and similar to the approach of Windram (2010) who screened regulatory hubs 

inferred by VBSSM. Regulation was inferred by the application of TCAP to all genes 
differentially expressed during B. cinerea infection. A number of weak altered sus- 

ceptibility phenotypes were discovered. Three independent knockouts of ANA C072 

were found to have decreased susceptibility to infection by B. cinerea. Two inde- 

pendent knockouts of NUB were found to have decreased susceptibility to infection 

by B. cinerea. A decreased susceptibility to infection by B. cinerea was seen in 

a knockout of LBD41, but no independent knockout was available to screen. An 

increased susceptibility to infection by B. cinerea was seen in a knockout of RGL, 

but was not seen in an independent knockout. The ability of this independently 

generated knockout to generate a functional transcript has not yet been experimen- 
tally tested. All novel altered phenotypes were weak in comparison to that of the 

MYB108 knockout, bos1, which was used as a positive control. 

In conclusion, weak novel phenotypes were found with this approach. Weak pheno- 

types could have occurred either spuriously, because the TF contributes only slightly 

to defence, or because the TF contributes to the defence response in a partially re- 

dundant manner. A forward genetic approach might have allowed strong altered 

phenotypes to be focused on. 

5.2.2 Qualitative model 

A qualitative model of the structure of the GRN underlying the plant defence re- 

sponse was made by compilation of results from the literature. These results pertain 

to transcriptional regulation during various different contexts, mostly not during B. 

cinerea infection. This was used to provide hypotheses of regulation that could 

be occurring during B. cinerea infection. Some of these TF-target pairs were fur- 

ther validated in different contexts, by showing TF-promoter binding in Yeast or 

by showing activation/repression in planta. Validated predictions of the qualitative 
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model, as well as novel candidate regulators of the some of the genes in the model, 
are discussed below. 

5.2.3 MYC2 

MYC2 was not differentially expressed during B. cinerea infection and so its role in 

the defence response could not be modelled in Chapter 4. However, its role in the 
defence response of Arabidopsis to infection by B. cinerea, was studied experimen- 
tally in Chapter 3. 

One of the known downstream targets of MYC2 is WRKY33 (Dombrecht et al., 
2007). This was previously not known to be regulated directly. In Chapter 3 MYC2 

was shown to able to bind directly to a fragment of the promoter of WRKY33 in 
Yeast. A MYC2 binding motif is found to be present near the start of this frag- 

ment. In addition, MYC2 was shown to activate the expression of a reporter fused 

to the promoter of WRKY33 in a transiently transformed Arabidopsis leaves. This 

suggests a direct role for MYC2 in positively regulating the expression of WRKY33, 
in contrast with the negative role suggested by the data of Dombrecht et al. (2007). 
This can be reconciled by the experimental differences between the two studies, 
specifically negative regulation by MYC2 which is believed to be mediated by JAZ 
factors whose levels were probably low relative to MYC2 in the transient transactiva- 
tion assay. The regulation of WRKY3S expression by MYC2 could be tested further 

with mutant versus wildtype gene expression or ChIP experiments, performed on 
leaf samples infected with B. cinerea. 

5.2.4 ARF2 

ARF2 is a TF whose knockout mutant has decreased susceptibility to infection by 

B. cinerea (Youn-Sung Kim, in preparation). Its role in the defence response of 
Arabidopsis to infection by B. cinema has not yet been studied in the literature. In 

this thesis, this role was studied bioinformatically and experimentally in Chapter 3, 

and with modelling in Chapter 4. 

In Chapter 3a high overlap was found between genes differentially expressed in 

an ARF2 knockout (Vert et al., 2008) and during B. cinerea infection. This sug- 

gests that ARF2 regulates the pathogen-responsive expression of these genes, and 

also suggests that this regulation occurs in both uninfected seedlings and infected 

leaves. This suggests an important role for ARF2 in the regulation of pathogen- 

responsive gene expression, which could account for the enhanced resistance of its 

knockout to infection by B. cinerea (Youn-Sung Kim et al., in preparation). This 

role could be tested using mutant versus wildtype gene expression or ChIP experi- 
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ments, performed on leaf samples infected with B. cinerea. 

One of the targets of ARF2 is WRKY53, i. e. WRKY33 is differentially expressed 
in seedlings of a knockout of ARF2 versus wildtype (Vert et al., 2008). In Chapter 
3 ARF2 was shown to repress the expression of a reporter fused to the promoter, 
with mutated WRKY motifs, of WRKY 9 in a transiently transformed Arabidop- 

sis leaves. This fits with the up-regulation of WRKY33 expression a knockout of 
ARF2 (Vert et al., 2008). The repression of WRKY33 expression by ARF2 could be 
tested further with mutant versus wildtype gene expression or ChIP experiments, 
performed on leaf samples infected with B. cinerea. 

In Chapter 4 ARF2 was inferred to be regulated by ANAC055, by VBSSM with an 
uninformative prior. This is not known to occur, but could be tested with mutant 
versus wildtype gene expression or ChIP experiments, performed on leaf samples 
infected with B. cinerea. When an informative prior was used in VBSSM, to take 
into account the regulation of WRKY33 expression by ARF2, it was inferred that 
ARF2 positively regulates WRKY33 expression. This does not fit with the known 

role of ARF2 as a repressor of WRKY33 expression (Vert et al., 2008) or with the 
finding that ARF2 could repress expression of a reporter fused to the promoter of 
WRKY33 in Chapter 3. This could be the result of the models with ARF2 positively 
or negatively regulating the expression of WRKY33 being in the same probabilistic 
`equivalence classes', as discussed in Section 5.1.2. 

5.3 Experimental analysis of transcriptional regulation 
5.3.1 Yeast one-hybrid 

In Chapter 3 Y1H has was used to identify novel interacting proteins of the promot- 
ers of TFs and physiological outputs with roles in the defence response of Arabidopsis 

to infection with B. cinerea. Y1H identified the direct interaction of WRKY33 with 
its own promoter, the fragment in which this interaction occurred overlaps with 
the fragment amplified by anti-WRKY33 ChIP-PCR by Mao et al. (2011). It also 
identified novel interactors of the promoters of ARF2, LA CS2, ORA 59, PGIPI and 
WRKY33. The impact of interactors of the WRKY33 promoter, as well as ARF2, 

on the expression of a reporter fused to the WRKY33 promoter was subsequently 
shown in a transactivation assay. This adds weight to the possibility that these 
interactors are involved in direct transcriptional regulation of WRKY33. These in- 

teractors could be tested further by mutating their inferred binding sites and testing 
for the abolition of interaction in a YIH screen. Additionally, this binding could be 

tested in planta with ChIP, during B. cinerea infection, or in transactivation assays 
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with mutated binding sites in the promoter reporter plasmid. 

5.3.2 Transactivation assays 

In Chapter 3a transactivation assay was used to characterise the effect of the in- 

teractors of the WRKY3S promoter, and ARF2, on the expression of a reporter 
fused to WRKYS3 promoter fragments. This showed that WRKY25, WRKY33 and 
MYC2 positively, and ARF2 negatively, regulates the expression of WRKY33. The 

decrease in the reporter caused by over-expression of ARF2 fits with the known role 

of ARF2 as a repressor of WRKY33 expression (Vert et al., 2008). The activation 

of the reporter by MYC2 over-expression suggests a positive role for MYC2 in regu- 
lating WRKY33 expression, as discussed in Section 5.2.3 this makes sense in terms 

of the existing literature. Binding of these TFs to the WRKY33 promoter during 

infection by B. cinerea could be tested with by ChIP. 

The experimentally tractability of the transient transactivation assay used in Chap- 

ter 3 suggest that it could be a useful first step in the validation of the regulatory 
effect of novel Y1H interactors of other promoters. Another method, such as ChIP, 

will probably be necessary to conclusively demonstrate direct binding of TFs to 

promoters in plants. 

5.4 Overall conclusion 

In this thesis various bioinformatic, experimental and modelling approaches have 

been used to study the gene regulation underpinning the defence response of Ara- 

bidopsis to infection with B. cinerea. Over-representation analysis proved to be a 

useful way to interpret post-genomic datasets, such as the genes differentially ex- 

pressed in various biological contexts, and the promoter sequences of co-expressed 

genes. In addition, a clustering method, TCAP, was developed to analyse time- 

delayed correlation in gene expression time series, this was shown to recover known 

and infer novel cases of transcriptional regulation. The inability of TCAP to re- 

cover combinatorial regulation was a motivation for applying VBSSM, but this was 

only tractable for smaller sets of genes. These sets were chosen based on literature 

knowledge and/or the results of binding motif over-presentation analysis, which al- 

lowed specific and therefore testable inferences to be made. However, most of the 

transcriptional regulation inferred by TCAP and VBSSM have not yet been exper- 

imentally tested. 

Existing data on transcriptional regulation from the literature is sparse and may 

not be relevant to the context of B. cinema infection, which means that its suit- 
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ability to assess the validity of these predictions is not currently known. Therefore, 

experiments performed during B. cinerea infection will be necessary to validate these 

predictions. These validation approaches typically test local features of GRN struc- 
ture, and can be confounded by redundancy in some cases, meaning that validation 

of even a few local features of a GRN can be challenging. Because of this, inferred 
transcriptional regulation with an unknown false positive rate, and with no observed 

over-representation of known regulation, was considered too speculative to devote 

substantial time to test experimentally. 

In order to tackle this, prior knowledge from the literature can be used to pro- 

vide an initial qualitative model, which can be refined by experiment and analysis. 
This currently requires a trade-off between applying an unbiased approach, with 

respect to the literaure, and predictive accuracy. For example the literature bias 

of the qualitative approach led to validation of the ability of MYC2 and ARF2 to 

regulate the expression of WRKY33. This suggests that literature knowledge can 
be a good framework upon which to build future hypotheses. In the future, the 

increased availability and access to data will hopefully reduce the bias of this ap- 

proach towards well studied TFs. 

A similar trade-off can be made between the experimental throughput and context- 

specificity of validation work; in this thesis this was achieved by application of cloned 
TF library Y1H and transient transactivation assays. The throughput achieved pro- 

vided many good candidates which can later be tested during B. cinerea infection. 

Cloned TF library Y1H screens also reduced literature bias by linking novel TFs 

to the defence response. For example WRKY25 was found to be able to bind to 

the promoter of WRKYSS. WRKY25 was also shown to activate expression of a 

reporter fused to the WRKY33 promoter in a transient transactivation assay. This 

suggests a possible role for WRKY25 in the regulation of WRKY33 expression dur- 

ing B. cinerea infection. The combination of Y1H and transactivation assays proved 

useful in the identification of transcriptional regulators of WRKY33, and so could 

be applied to the promoters of other genes in the qualitative model to develop bet- 

ter knowledge of the local GRN structure. This could be useful both in testing 

modelling predictions, and in providing a potential structure of the GRN de novo 

which could then be modelled. TF-promoter interactions observed in Yeast and 

in transient transactivation assays could be followed up by ChIP, to study binding 

during infection and in the proper chromatin context, or by mutant versus wildtype 

microarray experiments to study regulation of gene expression. Both ChIP and mi- 

croarray experiments performed on samples infected by B. cinerea, applied to the 

best candidates from Y1H and transient transactivation assays, could then provide 
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strong contextual validation of the qualitative model. 

After development, partial validation and extension of the qualitative model, the 
key challenge was to combine it with a predictive quantitative model. This could 
then reveal hypotheses for the next round of experimental validation. Quantitative 

modelling of the GRN during B. cinerea infection was achieved by applying VBSSM, 

to the time series of the expression of these genes during infection and to informa- 

tive priors based on the experimental evidence summarised in the qualitative model. 
For example, VBSSM inferred the central role of ANAC055 in regulating the de- 

fence response. This remains to be tested experimentally during B. cinerea infection. 

This work shows that the scale of computational and experimental challenges in- 

volved in a Systems Biology approach to study context-specific GRNs in Arabidop- 

sis is significant, which meant that cycles of inference and validation were hard to 

achieve within the timeframe of this project. In the future it is hoped that improve- 

ments in data availability, modelling approaches and the throughput of validation 

approaches will allow a tighter coupling of modelling and experimental validation 
in this area. 
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Table A. 1: AP2-EREBP TFs differentially expressed during B. cinerea infection 
(see section 2.2.1) 

(a) AP2-EREBP TFs differentially 
expressed during B. cinerea infection 

(b) AP2-EREBP TFs differentially 
expressed during B. cinema infection 

continued 

CATMA id AGI CATMA id AGI 

CATMAla00250 ATlGO1250 CATMA3a23220 AT3G23220 
CATMAla03200 ATlG04370 CATMA3a23230 AT3G23230 
CATMAla05200 ATlG06160 CATMA3a23235 AT3G23240 
CATMA1a21320 AT1G22190 CATMA3a43300 AT3G50260 
CATMA1a22040 AT1G22985 CATMA4a17720 AT4G16750 
CATMA1a26550 AT1G28370 CATMA4a18523 AT4G17490 
CATMA1a41675 AT1G50640 CATMA4a18526 AT4G17500 
CATMA1a44200 AT1G53170 CATMA4a19540 AT4G18450 
CATMAla60830 ATIG71520 CATMA4c42492 AT4G25490 
CATMA1a61600 AT1G72360 CATMA4a34530 AT4G32800 
CATMA1a67190 AT1G78080 CATMA4c42662 AT4G36900 
CATMA2a20740 AT2G22200 CATMA4a39265 AT4G37750 
CATMA2a24220 AT2G25820 CATMA4a41170 AT4G39780 
CATMA2a29435 AT2G31230 CATMA5aO4585 AT5G05410 
CATMA2a31870 AT2G33710 CATMA5aO6800 AT5G07580 
CATMA2a33870 AT2G35700 CATMA5aO9240 AT5G10510 
CATMA2a36640 AT2G38340 CATMA5a10360 AT5G11590 
CATMA2a37480 AT2G39250 CATMA5a11530 AT5G13330 
CATMA2a40100 AT2G41710 CATMA5a15690 AT5G 17430 
CATMA2a43300 AT2G44840 CATMA5a16740 AT5G18450 
CATMA2a44690 AT2G46310 CATMA5a16870 AT5G18560 
CATMA3a13510 AT3G14230 CATMA5a43215 AT5G47230 
CATMA3a14565 AT3G15210 CATMA5a47930 AT5G51990 
CATMA3a15680 AT3G16280 CATMA5a57190 AT5G61590 

CATMA3a20000 AT3G20310 CATMA5a60200 AT5G64750 
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Table A. 2: Predicted targets of AP2-EREBP TFs during B. cinerea infection (see 
section 2.2.1) 

(b) Predicted targets of AP2-EREBP 
(a) Predicted targets of AP2-EREBP TFs during B. cinerea infection 

TFs during B. cinerea infection continued 
CATMA id AGI CATMA id AGI 

CATMA3A11240 AT3G12280 CATMA1A64360 AT1G75010 
CATMA5A55730 AT5G59980 CATMA5aO9450 AT5G10710 
CATMA2A16330 AT2G17670 CATMA4A23385 AT4G21710 
CATMA1A25110 AT1G26900 CATMA5A24265 AT5G26830 
CATMA4A10090 AT4G10030 CATMA3A38910 AT3G45890 
CATMA5A25530 AT5G27990 CATMA1A14240 ATlG15240 
CATMA3A11640 AT3G12670 CATMA2A30686 AT2G32400 
CATMAlaO1140 ATlG02140 CATMAla06430 ATlG07360 
CATMA3A46820 AT3G53870 CATMA1A38020 AT1G45160 
CATMA5aO9790 AT5G11030 CATMA1A16620 AT1G17590 
CATMA4A18960 AT4G17910 CATMA5a09660 AT5G10910 
CATMA5c65156 AT5G66880 CATMA3A24130 AT3G24200 
CATMAla07630 ATlG08720 CATMA2A16190 AT2G17510 
CATMA2b35970 AT2G37680 CATMA3A52990 AT3G59990 
CATMA3A10270 AT3G11250 CATMA5A22380 AT5G24740 
CATMA2A30690 AT2G32410 CATMA4A27240 AT4G25550 
CATMA4A34560 AT4G32820 CATMA3A43870 AT3G50860 
CATMA3A55510 AT3G62370 CATMA3b42920 AT3G49870 
CATMA1a08590 ATlGO9730 CATMA3A53810 AT3G60830 
CATMA4A26890 AT4G25210 CATMAIA10990 ATIG11960 
CATMA3c57251 AT3G17300 CATMA3a00330 AT3GO1340 
CATMA2A34560 AT2G36340 CATMA1 a19730 AT1G20693 
CATMA2a00870 AT2GO1820 CATMA3A22315 AT3G22320 
CATMA5aO1050 AT5G01970 CATMA1A11110 AT1G12060 
CATMA1A53810 AT1G64520 CATMA4aO6600 AT4G07410 
CATMA3A45000 AT3G52100 CATMA1A18610 AT1G19580 
CATMA2a35470 AT2G37195 CATMA1a00950 ATlGO1960 
CATMA5a62980 AT5G67530 CATMA5c64227 AT5G13850 
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Table A. 3: WRKY TFs differentially expressed during B. cinerea infection (see 

section 2.2.1) and predicted targets 

(a) WRKY TFs differentially (b) Predicted targets of WRKY TFs 
expressed during B. cinerea infection during B. cinerea infection 

CATMA id AGI CATMA id AGI 

CATMA1c72251 ATIC80840 CATMA2b16180 AT2G17500 
CATMA5a11290 AT5G13080 CATMA1c72346 AT1G36622 
CATMA4aO1430 AT4G01250 CATMA1A65800 AT1G76600 
CATMA4a25630 AT4G23810 CATMA1A28750 AT1G30700 
CATMA5a6O235 AT5G64810 CATMA1A59240 AT1G69930 
CATMA2aO2260 AT2G03340 CATMA2a30220 AT2G31945 
CATMA3aO3670 AT3G04670 CATMA3A25100 AT3G25250 
CATMA5a21650 AT5G24110 CATMA4A23490 AT4G21830 
CATMA2a36760 AT2G38470 CATMA3A17790 AT3G18250 
CATMA2a21820 AT2G23320 CATMA101052 ATlG05575 
CATMA3aOO955 AT3G01970 CATMA2A45630 AT2G47190 
CATMA3a51720 AT3G58710 CATMA101401 AT1G26380 
CATMA3a00120 AT3GO1080 
CATMA4a32590 AT4G30930 
CATMA2b22910 AT2G24570 
CATMAla59120 AT1G69810 
CATMA2a39050 AT2G40740 
CATMA4a23750 AT4G22070 
CATMA2a23310 AT2G25000 
CATMA1a51390 AT1G62300 
CATMA4a19190 AT4G18170 
CATMA5a42350 AT5G46350 
CATMA2a39060 AT2G40750 
CATMA2a45730 AT2G47260 
CATMA4a28220 AT4G26640 
CATMA5a45500 AT5G49520 
CATMA4a27990 AT4G26440 
CATMA3c57822 AT3G56400 
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Table A. 4: NAC TFs differentially expressed during B. cinema infection (see section 
2.2.1) and predicted targets in SplineCluster cluster 27 

(b) Predicted targets of NAC TFs 
(a) NAC TFs differentially expressed during B. cinema infection from 

during B. cinema infection SplineCluster cluster 27 

CATMA id AGI CATMA id AGI 

CATMA1a00725 AT1GO1720 CATMA1A22110 AT1G23040 
CATMA1a01200 ATlG02220 CATMA5aO6655 AT5G07440 
CATMA1a31100 AT1G32770 CATMA2A41240 AT2G42810 

CATMA1a31380 AT1G33060 CATMA3b41885 AT3G48890 
CATMA1a43920 AT1G52890 CATMA3A53140 AT3G60130 
CATMA1a50150 AT1G61110 CATMA1A26690 AT1G28480 
CATMA1a58800 AT1G69490 CATMA5A45250 AT5G49280 
CATMA1c72195 AT1G77450 CATMA1A11620 AT1G12640 
CATMA2aO1350 AT2G02450 CATMA4A13970 AT4G 13790 
CATMA2a15760 AT2G17040 CATMA3A46350 AT3G53400 
CATMA2a22760 AT2G24430 CATMA3aO9320 AT3G10320 
CATMA2a25690 AT2G27300 CATMA1A30460 AT1G32120 
CATMA2c47571 AT2G33480 CATMA2A31305 AT2G33150 
CATMA2a41400 AT2G43000 CATMA4A20060 AT4G 18950 
CATMA3a03030 AT3G04060 CATMA3aO8380 AT3G09520 
CATMA3a03040 AT3G04070 CATMA4A24680 AT4G22920 
CATMA3aO9500 AT3G 10500 CATMA4a08153 AT4G08390 
CATMA3a14530 AT3G15170 CATMA4A21020 AT4G19810 
CATMA3a14910 AT3G15500 CATMA1A60390 AT1G71100 
CATMA3a42560 AT3G49530 CATMA5A24910 AT5G27520 
CATMA3a49500 AT3G56530 CATMA1c71319 AT1G21310 
CATMA3a50145 AT3G57150 CATMA4a15083 AT4G14680 
CATMA4a10370 AT4G10350 CATMA2A16440 AT2G 17760 
CATMA4a28990 AT4G27410 CATMA4c42085 AT4G03370 

CATMA4a30160 AT4G28500 CATMA5A21620 AT5G24090 
CATMA4a37230 AT4G35580 CATMA5A11730 AT5G13500 
CATMA4a38710 AT4G37130 CATMA3A45470 AT3G52540 
CATMA5c64139 AT5G08790 CATMA5A41900 AT5G45900 
CATMA5aO8150 AT5G09330 CATMA1a08380 ATlGO9510 
CATMA5a11390 AT5G13180 CATMA4a05150 AT4G04620 

CATMA5a16550 AT5G18270 CATMA3A13276 AT3G 14050 
CATMA5a35200 AT5G39610 CATMA4A23670 AT4G21980 
CATMA5a59330 AT5G63790 CATMA2c47379 AT2G23170 
CATMA5a61670 AT5G66300 CATMA1a07793 AT1G08920 
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Table A. 5: Predicted targets of NAC TFs in SplineCluster cluster 38 

(b) Predicted targets of NAC TFs 
(a) Predicted targets of NAC TFs from SplineCluster cluster 38 

from SplineCluster cluster 38 continued 

CATMA id AGI CATMA id AGI 

CATMA3A56445 AT3G63260 CATMA5A18550 AT5G20120 
CATMA367703 AT3G51430 CATMA1A43580 AT1G52550 
CATMA5A56290 AT5G60580 CATMA564040 AT5G03290 
CATMA3b55995 AT3G62830 CATMA2aOO9O5 AT2001850 
CATMA2a41960 AT2G43540 CATMA3A54820 AT3G61680 
CATMA4c42131 AT4GO5590 CATMA1b11820 AT1G12820 
CATMA3A50820 AT3G57785 CATMA1a08010 AT1G09180. 
CATMA1a08835 ATlG09960 CATMA5a09850 AT5G11090 
CATMA3A18110 AT3G18520 CATMA4c42470 AT4G23530 
CATMA2A38710 AT2G40420 CATMA5A22760 AT5G25050 
CATMA5A43190 AT5G47200 CATMA1a25200 AT1027000 
CATMA1A64610 AT1G75270 CATMA1a25410 AT1G27170 
CATMA3A10350 AT3G11330 CATMA5A25120 AT5G27710 
CATMA2A28075 AT2G29700 CATMA2A38006 AT2G39780 
CATMA5A42370 AT5G46380 CATMA3A44890 AT3G51990 
CATMA3A41140 AT3G48140 CATMA5A59710 AT5G64250 
CATMA5c64332 AT5G20650 CATMA1A60470 AT1G71180 
CATMA4A31200 AT4G29580 CATMA1A25330 AT1G27100 
CATMA3a53030 AT3G60020 CATMA401610 AT4G01410 
CATMA4A32985 AT4G31300 CATMA4A14220 AT4G14010 
CATMA3A48370 AT3G55390 CATMA3c57155 AT3G 11200 
CATMA3A11040 AT3G12100 CATMA1c71362 AT1G23100 
CATMA2c47433 AT2G26230 CATMA1c71165 AT1G12200 
CATMA5c64177 AT5G11960 
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Figure B. 1: Network inference sensitivity to dataset tested for genes in Tables A. 1- 
A. 2. Figure shows gene regulation inferred by VBSSM. with 9 hidden states and 

a threshold z-score of 3. when applied to all time-points except the first in the 

time series of gene expression during B. cinerea. Blue nodes are co-expressed (co- 

clustered) genes and contain the known binding sequence of the AP2-ER. E BP TF 
family. The yellow nodes indicate members of the AP2-ERE BP TF family. Green 

arrows indicate inferred positive regulation. Red arrows indicate predicated negative 

regulation. This can be compared to the inferred network structure obtained using 
the full dataset. as shown in Figure 2.1(c). 

220 



Figure B. 2: Network inference sensitivity to dataset tested for genes in Table A. 3. 
Figure shows gene regulation inferred by VBSSM. with 6 hidden states and a thresh- 
old z-score of 3. when applied to all time-points except the first in the time series of 
gene expression during B. cinerea. Blue nodes are co-expressed (co-clustered) genes 
and contain the known binding sequence of the WRKY TF family. The yellow 
nodes indicate members of the WR. KY TF family. Green arrows indicate inferred 

positive regulation. Red arrows indicate predicated negative regulation. This can 
be compared to the inferred network structure obtained using the full dataset. as 
shown in Figure 2.2(c). 
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Figure B. 3: Network inference sensitivity to dataset tested for genes in Table A. A. 
Figure shows gene regulation inferred by VBSSM, with 7 hidden states and it thresh- 

old z-score of 3. when applied to all time-points except the first in the time series of 
gene expression during R. cinerea. Blue nodes are co-expressed (co-clustered) genes 
and contain the known binding sequence of the NAC TF family. The yellow nodes 
indicate members of the NAC TF family. Green arrows indicate inferred positive 
regulation. Red arrows indicate predicated negative regulation. This can be coin- 
pared to the inferred network structure obtained using the full dataset. as shown in 
Figure 2.3(c). 
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Figure B. 4: Network inference sensitivity to dataset tested for genes in Table A. 5. 
Figure shows gene regulation inferred by VBSSM, with 9 hidden states and a thresh- 

old z-score of 3. when applied to all time-points except the first in the time series of 
gene expression during B. cinema. Blue nodes are co-expressed (co-clustered) genes 
and contain the known binding sequence of the NAC TF family. The yellow nodes 
indicate members of the NAC TF family. Green arrows indicate inferred positive 
regulation. Red arrows indicate predicated negative regulation. This can be coin- 
pared to the inferred network structure obtained using the full dataset, as shown in 
Figure 2.4(c). 
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Figure B. 5: Sensitivity to dataset tested for application with uninformative prior. 
Network structure inferred by VBSSM from the expression of the genes shown iºº 
Figure : 3.2 and the differentially expressed JAZs. using 20 initialisations and 3 hidden 

states. Green arrows indicate positive regulation and red arrows indicate negative 
regulation. The thickness of the arrows correspond to the number of initialisations 
that led to that inferred edge. This can be compared to the inferred network struc- 
ture obtained utiiºrg the full datitiet. as show" in Figure 4.1. 

224 



Fm bA 

Vý sue., "ý, ý 
ti 

,^ýab +ý Q) "s a) 

o0C 

.0myG 
aVpV 

zboý0) 
bjD 

C) y 
Uj w U1 

Fo. 

o rý -ýe 
ÖÜy 

= (1) 
^d ßw bOý. 

Vw 

- hD 
sN3O 

ýy ti 
b 

60 ÖÜ 
.OV 

mbQÖ 

N 
s0ý bbC-a 

b 
y MbU 

."" 
CJ b 

.b c'. - 

.30ö 

C" 
ýd 

Cd m, "C 

äý; 
a, ti 

(L) cd 
b-O 

oa 
vö °' ö ,n 0 

rö ö cri 

bjD pö be 

b a) ow 

00 ö 

0 

cn 

(ö p, 0 
o ti 

VD En ct = 

0) bib tic 

225 



ö °ý öö 

G ý`. "G 
= to 
vG CD 

CD 'i 

P CA 

c- °päö 

pC Cd 
CD 

Ga 

b 

ti 

U. 

°T 

"TI C) 

C°0, 
C" 

C (D 

O 
pq OÜ 

Pý pý rr 

_O 
G pq 

09 
CD 

cD ß "' 

p. 0. 
C) 

ti 

04 1ý CD 
CD 

CO 

Da 

Ct 

C 

co 
C) ti %° 

"öaG 

Ö- ýN 
7-J 

226 



ä a y, ` 

oU 

k- }V 
ym 

vD 

- C) -O h0 

0 
C) 

O 
ÖC 

Co0- 
ho 

ö C) $_ o 

-C 

fQ C) 
OO +' 

b0 "ý 
Ö 

C) VÖZÖ 
s- 

"- m 

F- C) C) + 
awU 

0O 

aO 
hO 

s. VV 

L0 

b 
.: 

O cam. 

r> Q 
VU 

V o) N 
-c-, '0 

h ý+ 
00 Q) z I. Q., 

CO 
C) L0 

227 



228 



Appendix C 

B. cinerea susceptibility screens 
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Figure Cl: 
. 

B. cinerea susceptibility screen of TDNA knockout lines of predicted 
regulators of the defence response. Box plots are coloured according to the outcomes 
of two hypotheses tests, a t-test and a Mann-Whitney-Wilcoxon (MWW) test. both 
testing the hypothesis that the distribution of the lesion areas of the knockout line is 
different from that of a wildtype line (Col4). If the alternative hypothesis is rejected 
in both tests at the 5% significance level then the boxplot is coloured blue. If the 

alternative hypothesis is accepted in both tests at the 5% significance level then the 
boxplot is coloured red. 
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Table C. 1: Reverse genetics screen of susceptibility to B. cinerea. Here the results of 
a single screen are shown. with lesion area measured at the timepoints indicated and 
compared to wildtype lesions by hypothesis testing. T-tests and Mann-Whitney- 
Wilcoxon tests are used to compare B. cinerea infection lesions on wildtype and 
mutants lines. P-values below 5% are coloured red to signify significance. The 
Lillefor test is used to test the hypothesis that the data is distributed normally. 

(a) 48 hpi 

Line Name Number of MWW p-value Lillefor p-value T-test p-value 
replicates 

Co14 20 NA 0.016162 NA 
bosl 10 3.867( - 05 > 0.5 4.0787( 05 
rgl_1 5 0.29168 0.099748 0.25323 
rgL2 5 0.13457 >_ 0.5 0.24102 
at3g53600_1 5 0.91877 >_ 0.5 0.86018 

at3g58600_2 4 0.27765 >_ 0.5 0.32598 
at5g14280.1 5 0.011N67 >_ 0.5 0.037907 
at5g14280_2 5 0.0012402 

_> 
0.5 0.0024184 

nub-1 5 0.97288 > 0.5 0.9619 
1bd41_1 5 0.082968 0.23512 0.19197 
wrky48_1 5 0.61011 >_ 0.5 0.45007 
at3g23220_1 5 0.81191 > 0.5 0.60074 

(b) 75 hpi 

Line Name Number of MWW p-value Lillefor p-value T-test p-value 
replicates 

Co14 20 NA >_ 0.5 NA 
bosl 10 0.00(11 1 h1 G 0.27467 0L000352 

rgLl 5 0.32458 0.406 0.56626 

rgL2 5 (L01084(i 0.38915 7.7325 - 05 
03958600_1 5 0.26231 

_> 
0.5 0.3064 

at3g536002 4 0.01ý, 151 
_> 

0.5 1). OO010311 

at5g1.14280_1 5 0.29224 0.066001 0.080818 

at5g14280_2 5 0.39577 0.10428 0.2298 

nub_1 5 O. OO15 2 > 0.5 0.0048771 
lbd41_1 5 (u)32351 > 0.5 0.02306 

wrky48_1 5 (). U 1505h >_ 0.5 (ý. ((Ia! )a, ý 

at3g28220.1 5 0.9729 0.48124 0.89998 
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Figure C. 2: B. cinerea susceptibility screen of TDNA knockout lines of predicted 
regulators of the defence response. Box plots are coloured according to the outcomes 
of two hypotheses tests, a t-test and a Mann-Whitney-Wilcoxon (MWW) test. both 

testing the hypothesis that the distribution of the lesion areas of the knockout line is 
different from that of a wildtype line (Co14). If the alternative hypothesis is rejected 
in both tests at the 5% significance level then the boxplot is coloured blue. If the 

alternative hypothesis is accepted in the MWW test at the 5% significance level. 

and the alternative hypothesis is rejected in the t-test at the 5% significance level. 

then the boxplot is coloured purple. If the alternative hypothesis is accepted in both 

tests at the 5% significance level then the boxplot, is coloured red. 

232 



Table C. 2: Reverse genetics screen of susceptibility to B. cinerea. Here the results of 
a single screen are shown. with lesion area measured at the timepoints indicated and 
compared to wildtype lesions by hypothesis testing. T-tests and Mann-Whitney- 
Wilcoxon tests are used to compare B. cinerea infection lesions on wildtype and 

mutants lines. P-values below 5% are coloured red to signify significance. The 
Lillefor test is used to test the hypothesis that the data is distributed normally. 

(a) 44 hpi 

Line Name Number of NZWW p-value Lillefor p-value T-test p-value 

replicates 

Co14 39 NA 0.075474 NA 

myb12_1 40 0.99217 0.45916 0.99514 
85S:: MYBL2 38 0.020)54 (1.018891 0.011299 
bosl 2 (l. (11 9( i 92 o. A, No A, 0.1)177 

(b) 60 hpi 

Line Name Number of MWW p-value Lillefor p-value T-test p-value 
replicates 

Colo 40 NA < 0.001 NA 
myb12_1 40 0.056715 0.062306 0.056129 
85S:: MYBL2 37 0.0001342 0.32425 0. (10O33116 
bosl 2 0.01961 .A n_V 0.083961 

(c) 70 hpi 

Line Name Number of MWW p-value Lillefor p-value T-test p-value 

replicates 

Co14 39 NA < 0.001 NA 

mybl2_1 40 0.58289 ((. 00611)13 0.14051 

35S:: MYBL2 35 ((. 0271 r(3 0.10329 0.002]-(1 
bosl 2 ((. 019751 N u. A 0.057854 
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Figure C. 3: B. cinerea susceptibility screen of TDNA knockout, lines of predicted 
regulators of the defence response. Box plots are coloured according to the outcomes 
of two hypotheses tests. a t-test and a Mann-Whitney-Wilcoxon (MWW) test, both 

testing the hypothesis that the distribution of the lesion areas of the knockout line is 

different from that of a wildtype line (Col4). If the alternative hypothesis is rejected 
in both tests at the 5% significance level then the boxplot is coloured blue. If the 

alternative hypothesis is accepted in both tests at the 5% significance level then the 
boxplot is coloured red. 
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Table C. 3: Reverse genetics screen of susceptibility to B. cinerea. Here the results of 
a single screen are shown, with lesion area measured at the timepoints indicated and 
compared to wildtype lesions by hypothesis testing. T-tests and Mann-Whitney- 
Wilcoxon tests are used to compare B. cinerea infection lesions on wildtype and 
mutants lines. P-values below 5% are coloured red to signify significance. The 
Lillefor test is used to test the hypothesis that the data is distributed normally. 

(a) 48 hpi 

Line Name Number of MWW p-value Lillefor p-value T-test p-value 
replicates 

Co14 20 NA > 0.5 NA 
bosl 8 0.0012277 >_ 0.5 0.000 3679 
nub-1 20 0.010142 0.043-166 0.02286 
nub-2 20 0.0012684 0.026725 0.00043596 

wrky48_1 20 O. 00.55449 0.1487 0.0040037 

wrky48_2 20 0.0010601 0.24064 (1.00047413 
1bd41.1 20 7.: 31: 32( - 05 0.10431 

(b) 66 hpi 

Line Nanie Number of MWW p-value Lillefor p-value T-test p-value 
replicates 

Co14 20 NA 0.28287 NA 
bosi 8 ! '). 25: 1: 3(- O5 0.075546 1. -1-191r - 0: 5 

nub_1 20 0.91381 >_ 0.5 0.82977 

nub-2 20 0.083372 0.34052 0.22011 
vwrkyl$ 81 20 0.1(0(; ))35(; >_ 0.5 0.00: 312)3 

wrky48_2 20 0.37926 > 0.5 0.28898 
lbd41_1 20 (;. 6( 

- 
ULI > 0.5 210: 7) 

(c) 82 hpi 

Line Name Number of 
replicates 

A1WW p-value Lillefor p-value T-test p-value 

Co14 20 NA > 0.5 NA 
bosl 8 n. 10(i( 0.5 0.3785 ILUOUlS1tý: iS1 

nub-1 20 0.088337 0.37783 0.063507 

nnb_2 20 0.15165 0.020T) 39 0.53354 

wrky48_1 20 0.59786 0.22643 0.96121 

wrky48.2 20 0.17193 0.5 0.11897 
lbd4l_1 20 0.0060403 (i)1 (i 0.01 arIN 
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Figure C. 4: B. cinerea susceptibility screen of TDNA knockout lines of predicted 
regulators of the defence response. Box plots are coloured according to the outcomes 
of two hypotheses tests, a t-test and a Mann-Whitney-Wilcoxon (MWW) test, both 

testing the hypothesis that the distribution of the lesion areas of the knockout line is 
different from that of a wildtype line (Co14). If the alternative hypothesis is rejected 
in both tests at the 5% significance level then the Boxplot is coloured blue. If the 

alternative hypothesis is accepted in the t-test at the 5% significance level. and the 

alternative hypothesis is rejected in the MWW test at the 5% significance level. 

then the boxplot is coloured green. If the alternative hypothesis is accepted in the 
MWW test at the 5% significance level, and the alternative hypothesis is rejected 
in the t-test at the 5% significance level. then the boxplot is coloured purple. If the 

alternative hypothesis is accepted in both tests at the 5% significance level then the 
boxplot is coloured red. 
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Table C. 4: Reverse genetics screen of susceptibility to B. cinerea. Here the results of 
a single screen are shown. with lesion area measured at the timepoints indicated and 
compared to wildtype lesions by hypothesis testing. T-tests and Mann-Whitney- 
Wilcoxon tests are used to compare B. cinerea infection lesions on wildtype and 
mutants lines. P-values below 5% are coloured red to signify significance. The 
Lillefor test is used to test the hypothesis that the data is distributed normally. 

(a) 40 bpi 

Line Name Number of MWW p-value Lillefor p-value T-test p-value 
replicates 

co10 20 NA 0.13824 NA 
bosi 20 0.00087: 02 0.078784 0.000160015 
anacO72_1 20 0.0070812 > 0.5 0.0049985 
anacO72_2 20 0.12966 >_ 0.5 0.03794 
anacO72_8 20 0.3571 0.1095 0.18873 
at5g14280_1 20 0.0067315 0.004495 0.010037 
at5g14280_2 20 0.0048728 0.20109 0.00: 32848 
lbd4l 

_1 
20 0.011383 0.0 10328 0.07118-1 

(b) 56 hpi 

Line Name Number of MWW p-value Lillefor p-value T-test p-value 
replicates 

col0 20 NA 0.20768 NA 
bosi 20 (1.7705( - 08 0.45169 1.1781 - 12 

anacO72.1 20 0.15161 0.24165 0.15342 

anac072_2 20 0.42484 0.13864 0.48001 
anacO72-3 20 0.0143. i 0.0097500 0.11157 

at5g14280_1 20 (1.022257 >_ 0.5 (). () 1: 11 i 

a15g1.80_2 20 0.049812 > 0.5 0.058021 
1bd41_1 20 0.0O128 15 0.49034 0.00093675 
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Figure C. 5: B. cinerea susceptibility screen of TINA knockout lines of predicted 
regulators of the defence response. Box plots are coloured according to the outcomes 
of two hypotheses tests. a t-test and a Mann-Whitney-Wilcoxon (MWW) test. both 
testing the hypothesis that the distribution of the lesion areas of the knockout line is 
different frone that of a wildtype line (Co14). If the alternative hypothesis is rejected 
in both tests at the 5% significance level then the boxplot is coloured blue. If the 
alternative hypothesis is accepted in the MWW test at the 5% significance level. 

and the alternative hypothesis is rejected in the t-test at the 5% significance level, 
then the boxplot is coloured purple. If the alternative hypothesis is accepted in both 
tests at the 5% significance level then the boxplot is coloured red. 
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Table C. 5: Reverse genetics screen of susceptibility to B. cinerea. Here the results of 
a single screen are shown, with lesion area measured at the timepoints indicated and 
compared to wildtype lesions by hypothesis testing. T-tests and Mann-Whitney- 
Wilcoxon tests are used to compare B. cinerea infection lesions on wildtype and 
mutants lines. P-values below 5% are coloured red to signify significance. The 
Lillefor test is used to test the hypothesis that the data is distributed normally. 

(a) 48 hpi 

Line Name Number of MWW p-value Lillefor p-value T-test p-value 
replicates 

Co14 20 NA > 0.5 NA 
bosi 10 1.2009c - 05 0.36983 2.1444c - 11 
nub-1 20 O. 017933 0.30127 0.017908 

nub-2 20 8.2 797( - (15 0.32749 1.2258( - 05 
wrky48_1 16 0.27904 >_ 0.5 0.32402 
wrky48_2 20 0.034 11 0.11385 0.0302-12 
anac072_3 20 ( (. 0O1(1119 I I. I (I 0.000505? x I 

rgL2 20 0.63588 0.096132 0.67873 

(b) 66 hpi 

Line Name Number of MWW p-value Lillefor p-value T-test p-value 
replicates 

Co14 20 NA > 0.5 NA 
bosl 20 (i. 7? «h - (1H > 0.5 1. (5O1; ( - I2 

nub_ 1 20 0.11664 0.37348 0.15595 

nub-2 20 0.0482. > 0.5 0.055339 

wrky48_1 16 0.71409 0.037102 0.35231 

wrky. 48_2 20 0.5338 
_> 

0.5 0.55027 

anacO72_3 20 (). () (1(11 1:,, "12 
_> 

0.5 L:, Ili, ýr - 05 

rg1_2 20 0.13321 > 0.5 0.14674 

(c) 72 hpi 

Line Name Number of MWW p-value Lillefor p-value T-test p-value 

replicates 
Co14 20 NA >_ (L NA 
bos1 20 6.7956( -0 > 0.5 1.33(12( - 111 

uub_1 20 0.23932 0.0: i1 Kr; 9 0.31353 

nub-2 20 0.037255 0.046554 0.04391 
wrky48_1 16 0.113( 153 O. O11893 0. (11 NIA 

wrky48_2 20 0.88171 >_ 0.5 0.74357 

anacO72_3 20 ?. 2? (ir - 0: 5 0.16403 1.28'95( - 0'1 

ryl_2 20 0.02811 > 0.5 O. ()2U2: )', 
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Figure C. 6: B. cinerea susceptibility screen of TDNA knockout lines of predicted 

regulators of the defence response. Box plots are coloured according to the outcomes 

of two hypotheses tests, a t-test and a Mann-Whitney-Wilcoxon (MWW) test, both 

testing the hypothesis that the distribution of the lesion areas of the knockout line is 

different from that of a wildtype line (Col4). If the alternative hypothesis is rejected 
in both tests at the 5% significance level then the boxplot is coloured blue. If the 

alternative hypothesis is accepted in both tests at the 5% significance level then the 

boxplot is coloured red. 
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Table C. 6: Reverse genetics screen of susceptibility to B. cinerea. Here the results of 
a single screen are shown. with lesion area measured at the timepoints indicated and 
compared to wildtype lesions by hypothesis testing. T-tests and Mann-Whitney- 
Wilcoxon tests are used to compare B. cinerea infection lesions on wildtype and 
mutants lines. P-values below 5% are coloured red to signify significance. The 
Lillefor test is used to test the hypothesis that the data is distributed normally. 

(a) 36 hpi 

Line Name Number of MWW p-value Lillefor p-value T-test p-value 
replicates 

Co14 40 NA 0.03723 NA 
bosl 40 2.78: 17( - 13 > 0.5 L. 54-5( - 21 

anacO72_1 40 0.067425 < 0. (1) 1 0.10052 
anac072_3 40 n. 002: 1446 (1. OO1 ll. llOr::, ". ') 

(b) 48 hpi 

Line Name Number of MWW p-value Lillefor p-value T-test p-value 

replicates 
Co14 40 NA 0.11328 NA 
bosi 40 : 3.01(19(- II O. ()-17131 : 1. (1O1 - 19 

anacO72_1 40 0.019612 0.01: 3162 0.03012) 
anacO72_3 40 (), 0067466 (1.0014583 0 (111Pk; 

(c) 60 hpi 

Line Name Number of MWW p-value Lillefor p-value T-test p-value 
replicates 

Co14 40 NA 0.0522 NA 
bosl 40 1.5 423( -11 > 0.5 1.0 772( - 21 

anacO72_1 40 0.095923 >_ 0.5 0.084768 

anac0723 40 (I. 01T 11 U_II11. -1 I1.1111i: {! IG'1 

(d) 72 hpi 

Line Name Number of MWW p-value Lillefor p-value T-test p-value 

replicates 
Colo 40 NA 0.25998 NA 
bosl 40 1.4: 321 b-11 0.28848 2.2097( - 35 

anacO72_1 40 0.089424 > 0.5 0.089538 

anac072 3 40 0.060575 (L(ýa 1: )). ") 0.070435 
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Figure C. 7: B. cincrea susceptibility screen of TDNA knockout lines of predicted 
regulators of the defence response. Box plots are coloured according to the outcomes 
of two hypotheses tests. a t-test and a Mann-Whitney-Wilcoxon (MWW) test, both 

testing the hypothesis that the distribution of the lesion areas of the knockout line is 
different from that, of a wildtype line (Co14). If the alternative hypothesis is rejected 
in both tests at the 5% significance level then the boxplot is coloured blue. If the 
alternative hypothesis is accepted in the t-test at, the 5% significance level, and the 

alternative hypothesis is rejected in the MWW test at the 5% significance level, 

then the boxplot is coloured green. If the alternative hypothesis is accepted in the 
MWW test at the 5% significance level, and the alternative hypothesis is rejected 
in the t-test at the 5% significance level, then the boxplot is coloured purple. If the 

alternative hypothesis is accepted in both tests at the 5% significance level then the 
boxplot is coloured red. 
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Table C. 7: Reverse genetics screen of susceptibility to B. cinerea. Here the results of 
a single screen are shown, with lesion area measured at the timepoints indicated and 
compared to wildtype lesions by hypothesis testing. T-tests and Mann-Whitney- 
Wilcoxon tests are used to compare B. cinerea infection lesions on wildtype and 
mutants lines. P-values below 5% are coloured red to signify significance. The 
Lillefor test is used to test the hypothesis that the data is distributed normally. 

(a) 48 hpi 

Line Name Number of MWW p-value Lillefor p-value T-test p-value 
replicates 

Co14 20 NA > 0.5 NA 
bosl 20 0.013816 0.084788 0.0021926 
anacO72_3 20 0.00087: 392 < 0.001 0.0015009 
nub_1 19 O. 011978 0.041-41 0.01391-1 
wrky48_1 20 0.21313 0.063113 0.21868 

at5g14280_1 20 0.11657 > 0.5 0.055965 

(b) 72 hpi 

Line Name Number of MWW p-value Lillefor p-value T-tcst p-value 
replicates 

Co14 20 NA 0.15982 NA 
bos1 20 (i. 7! )5(ir - 08 

_> 
0.5 2.3951 - la 

anacO72 3 20 0.73524 0.10603 0.29836 

nub-1 19 0.54574 >_ 0.5 0.55091 

wrky. 48_1 20 0.41703 >_ 0.5 0.47527 

at5g14280 1 20 0.86043 > 0.5 0.70193 
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Figure C. 8: B. cinerea susceptibility screen of TDNA knockout lines of predicted 
regulators of the defence response. Box plots are coloured according to the outcomes 
of two hypotheses tests. a t-test and a Mann-Whitney-Wilcoxon (MWW) test. both 

testing the hypothesis that the distribution of the lesion areas of the knockout line is 
different from that of a wildtype line (Col4). If the alternative hypothesis is rejected 
in both tests at the 5% significance level then the boxplot is coloured blue. If the 

alternative hypothesis is accepted in the t-test at the 5%% significance level, and the 

alternative hypothesis is rejected in the MWW test at the 5% significance level, then 

the boxplot is coloured green. If the alternative hypothesis is accepted in both tests 

at the 5% significance level then the boxplot is coloured red. 
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Table C. 8: Reverse genetics screen of susceptibility to B. cinerea. Here the results of 
a single screen are shown. with lesion area measured at the timepoints indicated and 
compared to wildtype lesions by hypothesis testing. T-tests and Mann-Whitney- 
Wilcoxon tests are used to compare B. cinerea infection lesions on wildtype and 
mutants lines. P-values below 5% are coloured red to signify significance. The 
Lillefor test is used to test the hypothesis that the data is distributed normally. 

(a) 50 hpi 

Line Name Number of MWW p-value Lillefor p-value T-test p-value 
replicates 

Co14 40 NA > 0.5 NA 
boss 40 2.2165( - () 0.38111 H. 4731( - 11 
anacO72_1 40 0.015903 0.073957 0.013194 
anacO72_2 38 0.0055244 0.25652 0.0015343 
anacO72_3 39 8.7869r - 08 > 0.5 1.1425e - 08 
nub-1 38 0.0059661 0.051921 0.0028877 
1bd41_1 40 1.1206(- uO 0.31427 3.7208( - 07 
wrky48-1 40 0.64409 0.23104 0.49823 
at3958600_2 12 0.11526 0.14691 0.036-1-115 
at5g11280_1 40 O. WHY) 1.531 O. ()O11()7 (). ()()0 12062 

(b) 65 hpi 

Line Name Number of MWW p-value Lillefor p-value T-test p-value 
replicates 

Co14 40 NA 0.42151 NA 
bos1 40 7.887(; ( 14 > 0.5 1.91 1: )I - 2. ý 

anacO72_1 40 0.095939 > 0.5 0.091045 
anacO72-2 38 0.027 V) 1 O. O1(; 2x4 U. 02, S 72-j 

anacO72_3 40 0.0.12785 > 0.5 0.03815N-1 

nub-1 38 0.085507 0.16094 0.028794 
lbd4i_1 40 1.4()42( - 05 

_> 
0.5 2.4222( -- 05 

wrky48_1 40 0.50055 0.48574 0.44993 
03958600_2 12 0.010704 0.42669 0.006-1084 
at5g14280_1 40 0.0037722 0.1156 1. O1)310 ) 
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Appendix D 

Primers for cloning of promoter 
fragments 
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Table D. 1: Oligonucleotides for Y1H promoter fragments with restrictions sites. 

(a) 

WRKY33 promoter 
Fragment 1 

Forward oligos 5'-gggggagctcCCTGACATCTCAATAAGAACATTTATGG 
CTAC-3' 

Reverse oligos 5'-ccccactagtGATTAGTATTTAGAAGTGAGTTTGTGAG- 
3' 

Fragment 2 

Forward oligos 5'-gggggagctcCCGATACGGATACAAAATAGTTTGATAA 
TC-3' 

Reverse oligos 5'-ccccactagtCATCATCTTCATATGTCTCGTTCTGACA 
CG-3' 

Fragment 3 

Forward oligos 5'-gggggagctcCTCACAAACTCACTTCTAAATACTAATC- 
3' 

Reverse oligos 5'-ccccactagtGTCACATATGAAGAAGAGTAGTTTCTGA 
GAAG-3' 

Fragment 4 

Forward oligos 5'-gggggagctcCGTGTCAGAACGAGACATATGAAGATGA 
TG-3' 

Reverse oligos 5'-ccccactagtACGAAAAATGGAAGTTTGTTTTATAAAA 
GACC-3' 

(b) 

LA CS2 promoter 
Fragment 1 

Forward oligos 5'-gggggagctcTCCTGATTATGACAGTGACTGTGAGCTG 
GT-3' 

Reverse oligos 5'-ccccactagtCGGTGGTGAAGTTTGGAGATTGTGGTTA 
TG-3' 

Fragment 2 

Forward oligos 5'-gggggagctcGACGATCTAGTGTTAACCCAGAGAATTC 
TA-3' 

Reverse oligos 5'-ccccactagtGAGTAAAGAGTAATTGGACCAAACGTAG 
AC-3' 

Fragment 3 

Forward oligos 5'-gggggagctcGGGCTGACCTTGTAATAATATAGGGAGC 
AG-3' 

Reverse oligos 5'-ccccactagtAACTTCAACTTTCGGATGAGAGAAAGAG 
GC-3' 
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Table D. 2: Oligonucleotides for Y1H promoter fragments with restrictions sites 
continued. 

(a) 

PGIP1 promoter 
Fragment 1 

Forward oligos 5'-gggggagctcAATCACTTATCTCAATAGAGCCGTTTGT 
GA-3' 

Reverse oligos 5'-ccccactagtGTGTTAGTGATACATATACATACTATATA 
GTGAGTG-3' 

Fragment 2 

Forward oligos 5'-gggggagctcAACGAAACCAAAGCATTTAGACTTGGC 
GTG-3' 

Reverse oligos 5'-ccccactagtAATGTATACTGAGGCAATGTCTTCACCA 
TC-3' 

Fragment 3 

Forward oligos 5'-gggggagctcCCTCCCAAAAGAAAGAATAAAAAGGTG 
TGG-3' 

Reverse oligos 5'-ccccactagtGTTTATAATGGGCACTATGAAAGCCACT 
AGAC-3' 

(b) 

A RF2 promoter 

Fragment 1 

Forward oligos 5'-gggggaattcGATTCACGAGACGAAAATTCCTAGAGG 
CGC-3' 

Reverse oligos 5'-ccccaagcttacgcgtGTAGAGGGGATTAGCAAGTAAGA 
AAGGCTGC-3' 
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Table D. 3: Oligonucleotides for Y1H Gateway promoter fragments. 

ORA 59 promoter 
Fragment 1 

Forward oligos 5'-aaaaaagcaggcttcGTGCAATTGATCACTATATTAGTTG 
AACTG-3' 

Reverse oligos 5'-caagaaagctgggtcGTGTCTAAGTGGCACTAAGTTTGG 
G-3' 

Fragment 2 

Forward oligos 5'-aaaaaagcaggcttcCCGCCTTAGTTTCTGACAGAGTTT 
CGACTC-3' 

Reverse oligos 5'-caagaaagctgggtcGAGTGTATGACGTACGGCGGCGTA 
TTCCCG-3' 

Fragment 3 

Forward oligos 5'-aaaaaagcaggcttcCTGTTCTGTCGAGTTGTTGCTTGT 
TGAGCC-3' 

Reverse oligos 5'-caagaaagctgggtcTGTGGGCAAAATAGGTCAAACATG 
CGGC-3' 

Generic oligos 

Forward oligos 5'-GGGGACAAGTTTGTACAAAAAAGCAGGCT-3' 
Reverse oligos 5'-GGGGACCACTTTGTACAAGAAAGCTGGGT-3' 

250 



Appendix E 

Additional expression profiles 
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Figure E. 1: Expression of genes in mock and B. cinerea infected leaves. (Expression 
data from the experiment introduced in Section 2.2.1. Experiment will be published 
in Denby et al.. manuscript in preparation. and is also presented in Windram, 2010). 
Lines show the mean expression profile, while bars represent standard deviations. 
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Figure E. 2: Expression of genes in mock and B. cinerea infected leaves. (Expression 

data from the experiment introduced in Section 2.2.1. Experiment will be published 
in Denby et al.. manuscript in preparation, and is also presented in Windram, 2010). 
Lines show the mean expression profile, while bars represent standard deviations. 
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Figure E. 3: Expression of genes in mock and B. cinerea infected leaves. (Expression 
data from the experiment introduced in Section 2.2.1. Experiment will be published 
in Denby et al., manuscript in preparation. and is also presented in Windrain, 2010). 

Lines show the mean expression profile. while bars represent standard deviations. 
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Figure E. 4: Expression of genes in mock and B. cinerea infected leaves. (Expression 
data from the experiment introduced in Section 2.2.1. Experiment will be published 
in Denby et al., manuscript in preparation. and is also presented in Windram. 2010). 
Lines show the mean expression profile. while bars represent, standard deviations. 
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Figure E. 5: Expression of genes in mock and B. cinerea infected leaves. (Expression 
data from the experiment introduced in Section 2.2.1. Experiment will be published 
in Denby et al., manuscript in preparation. and is also presented in Windram, 2010). 
Lines show the mean expression profile. while bars represent standard deviations. 
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