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Abstract

The growing use of online services requires substantial supporting infrastruc-

ture. The efficient deployment of applications relies on the cost effectiveness of

commercial hosting providers who deliver an agreed quality of service as gov-

erned by a service level agreement for a fee. The priorities of the commercial

hosting provider are to maximise revenue, by delivering agreed service levels,

and minimise costs, through high resource utilisation.

In order to deliver high service levels and resource utilisation, it may be

necessary to reorganise resources during periods of high demand. This reorgan-

isation process may be manual or alternatively controlled by an autonomous

process governed by a dynamic resource allocation algorithm. Dynamic re-

source allocation has been shown to improve service levels and utilisation and

hence, profitability.

In this thesis several facets of dynamic resource allocation are examined

to asses its suitability for the modern data centre. Firstly, three theoretically

derived policies are implemented as a middleware for a modern multi-tier Web

application and their performance is examined under a range of workloads in a

real world test bed.

The scalability of state-of-the art resource allocation policies are explored in

two dimensions, namely the number of applications and the quantity of servers

under control of the resources allocation policy. The results demonstrate that
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current policies presented in the literature demonstrate poor scalability in one

or both of these dimensions. A new policy is proposed which has significantly

improved scalability characteristics and the new policy is demonstrated at scale

through simulation.

The placement of applications in across a datacenter makes them suscep-

tible to failures in shared infrastructure. To address this issue an application

placement mechanism is developed to augment any dynamic resource allocation

policy. The results of this placement mechanism demonstrate a significant im-

provement in the worst case when compared to a random allocation mechanism.

A model for the reallocation of resources in a dynamic resource allocation

system is also devised. The model demonstrates that the assumption of a con-

stant resource reallocation cost is invalid under both physical reallocation and

migration of virtualised resources.
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CHAPTER 1

Introduction

The complexity and scale of enterprise systems has grown significantly with

the increase in network availability. This has increased the workload to which

enterprise-hosted applications are subjected, and has led to an expansion in the

infrastructure required to support them.

Modern enterprise systems must deliver high performance and reliability

in addition to meeting functional requirements. Capacity planning for online

services can be a difficult task due to the potential for sudden, and often unex-

pected, spikes in network traffic. These spikes may be several orders of magni-

tude greater than the regular load. In such cases the performance of the service

may degrade to the point of being unusable. Outages such as these can have

very real consequences for the reputation of the hosted service and its potential

revenue. Where the planned capacity far exceeds that which is required, there

is a clear cost inefficiency as more resource is provisioned than required.

To mitigate against the capital expenditure involved building a data cen-

tre, companies often outsource the hosting of services to a commercial hosting
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1. Introduction

provider. The hosting provider agrees to deliver a certain quality of service

(QoS), as defined by a service level agreement (SLA), in exchange for a given

fee. The hosting provider pays a penalty when the service level agreement is

violated. The goal of the hosting provider is to maximise profit, by avoiding

SLA violations, and minimise costs by ensuring high utilisation.

1.1 Motivation and Problem Statement

Where a hosting provider dedicates resources to a customer the scale of the

resources available is fixed, and may be subject to under or over provisioning.

This may lead to costly SLA violations. Dynamic resource allocation has been

shown to improve service levels and balance resource utilisation across available

resources for hosted applications [14], making it attractive to hosting providers.

Despite the potential benefits of dynamic resource allocation it has had lim-

ited uptake by modern hosting platforms. There are many issues affecting the

implementation of these policies. Much of the current work on dynamic resource

allocation focusses exclusively on the performance of applications or the opti-

mising the profitability of the overall platform. Research into these platforms

has to date been conducted in small-scale environments without consideration

towards resource failures and migration cost.

This thesis aims to address issues affecting the adoption of dynamic resource

allocation in commercial hosting environments.

1.2 Thesis Contributions

The overarching contribution of this thesis is a suite of algorithms and models

that support the practical deployment of dynamic resource allocation in enter-

prise systems. We do this through the following contributions:

• We develop a real-world testbed for the evaluation of theoretically derived

switching policies. The policies are tested using synthetic workloads and

2



1. Introduction

the behaviour of the policies is evaluated.

• A proof of the exponential complexity of state-of-the-art policies, and an

assessment of their scalability characteristics when scaled across both re-

sources and applications. A new heuristic policy is developed which offers

improved scalability and an instance of the framework is developed as a

policy to demonstrate the improvement against state-of-the-art policies.

• A robustness metric, CapacityLoss, is developed to measure the potential

impact of infrastructure failures to applications. We consider infrastruc-

ture failures at the rack level. A failure-aware allocator is developed as

a modular component to provision resources that minimise the potential

CapacityLoss from a server allocation. The allocator can be used to aug-

ment any resource allocation policy as it operates independently of the

policy.

• We develop a cost model for the reallocation of resources to inform better

decision making in resource allocation policies. The cost model is evalu-

ated in dedicated and virtualised hosting environments and shown to be

accurate to within 11% in both cases.

1.3 Thesis Structure

The contents of this chapter detail the motivation and problem which this thesis

aims to address. The remainder of this thesis is structured as follows:

Chapter 2 introduces the concepts of enterprise applications and dynamic re-

source allocation, and also discusses their evolution and the current state of the

art. It also introduces a number of key issues with introducing dynamic resource

allocation into large-scale environments.

Chapter 3 presents the tools used throughout this thesis for the measurement

3



1. Introduction

and assessment of dynamic resource allocation policies. This chapter describes

the software stack that is written for small-scale evaluation and the simula-

tor which has been developed to test ideas at scale. Validations are provided

through a real-world performance study with a commercial partner.

Chapter 4 is primarily concerned with the scalability of resource allocation poli-

cies. Many of the proposed policies and heuristics consider scalability in a

single dimension, which is usually the amount of resource to be allocated. In

this chapter we analyse the impact of scaling an additional dimension, namely

the number of applications requiring resource.

Chapter 5 addresses the issue of resource failures on dynamic resource allo-

cation. Active and passive failure detection mechanisms are examined, and a

failure aware approach is developed to mitigate the risk of rack failures through

the balanced allocation of resources.

Chapter 6 assess the cost the system of resource migration for the purposes

of providing accurate duration for the reallocation of multiple resources. The

chapter explores the impact of large-scale resource reallocation on reallocation

duration.

Finally, Chapter 7 provides a conclusion of the research presented in the thesis

and presents future directions for the current work.
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CHAPTER 2

Review of Enterprise Application Architecture

Enterprise application architectures have seen a number of changes from their

initial conception. Early applications were designed as monolithic batch pro-

cessing systems designed for a specific deployment architecture, consisting of a

combined hardware and software platform. This is a stark contrast to today,

where an apparently unlimited resource may be provisioned on demand.

In this chapter we provide a description of (1) an enterprise application

architecture as used in this thesis, (2) some of the common metrics used in the

performance evaluation of these systems, (3) dynamic resource allocation and

recent advances in cloud computing and finally (4) issues in dynamic resource

provisioning.

2.1 Multi-tier Architecture

The multi-tier architecture (sometimes referred to as the n-tier architecture)

provides a pattern for the design of enterprise applications [37]. The arrange-
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2. Review of Enterprise Application Architecture

Figure 2.1: 3-tier enterprise application architecture.

ment allows for an applications functionality to be designed in a modular way,

which is good practice as it allows for individual modules to be replaced during

the application’s lifetime rather than requiring full redevelopment.

Some applications may require a single tier for application logic. Other

services may be provided by two tiers with a tier for application logic and a tier

solely responsible for data storage. Web applications are commonly mapped

onto three tiers [35] where each tier has a specific responsibility. The tiers

involved are a presentation tier, an application tier and a data persistence tier.

In this thesis we consider three tier web applications which are shown in Figure

2.1.

The presentation tier acts as the entry point for an application, forwarding

requests to the application tier where required. This tier may also serve static

application assets such as images and non-dynamic application content. The

application tier implements the business logic for an application. This tier ex-

ecutes the core processing for the application, and may provide services such

as connection pooling for database access. The introduction of managed stor-

age, in the form of general purpose Relational Database Management Systems
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Application

Libraries and Runtimes

Operating System

HardwareNetwork

Figure 2.2: Full software and hardware stack.

(RDBMS), has enabled the separation of application logic from its data persis-

tence. Additionally storing data in an RDBMS and accessing it via a standard

interface allows multiple applications to access the data simultaneously. These

RDBMS have become complex software themselves, requiring expert knowledge

to maintain and operate. This tier requires fast I/O subsystems to access data

not stored in memory. Each tier may be served by a single server or a cluster

of servers to improve performance through horizontal scaling [67].

The nodes at each tier are comprised of multiple hardware and software

components, which can be seen in figure 2.2. The application may be supported

by other software processes, libraries or runtimes which are in turn executed by

an operating system. The operating system interacts directly with the physical

hardware and external networking interfaces.

In such an environment the underlying network model is typically an Eth-

ernet network for communication between nodes, however specialised intercon-

nects may be used for certain applications, e.g. distributed file storage in the

form of a SAN. The networking within a data centre commonly consists of a fat

tree topology [8], with the number of tiers in the tree dependant on the number

of hosts to be supported.

A request to an application may require services at a single tier or multiple
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tiers, depending on its type. In the case of a request for static assets (images or

css files) the Web server may return these files without the need to invoke the

services of the underlying tiers. In the case of a dynamic request (a request which

requires some result to be computed), the web server forwards the request on to

an application server. The application server is responsible for the processing of

the request and its subsequent rendering into a suitable format. The application

server may issue read or write data to the database server as required to perform

the request. Once processing has been completed the application server renders

its response to the Web server which then forwards it to the client.

2.2 Performance Evaluation of Enterprise Sys-

tems

Understanding the performance characteristics of an application is essential in

order to effectively plan the required capacity for the system.

Performance studies of enterprise applications may be conducted in two main

ways- via an empirical study of the system or through performance modelling.

Measuring the performance of the system in deployment gives accurate results

for a given system, executing on a given platform. In the case of performance

tuning, this works well as an iterative process as the system can be tested before

and after tuning for comparison. The downside to this approach is the lack of

portability between applications and deployment platforms [58].

Performance modelling of an application may take two main forms; an ana-

lytical model or a simulation model. Analytical modelling of a system develops

a mathematical model of a system expressed as a set of equations. Modifying

the parameters of the model yields performance results for a given situation. In

enterprise systems, analytical models are often based on queueing theory [71, 49]

and queuing networks [18]. Where models may be expressed in a simple form,

execution and re-evaluation of the model may be near instantaneous. However

in large multi-class queuing networks, iterative techniques (such as mean-value
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analysis [57]) become cumbersome.

Simulation modelling of enterprise systems [48] can be useful as it can be

used to model platforms in which proper system equations are too difficult to

derive. Additionally, simulation can capture characteristics of the system which

cannot be easily modelled through a queueing model, e.g., network contention,

the main downside to the use of simulation is a potentially long execution time

and high memory consumption.

A performance model is valid if the results given by the model are within an

acceptable range of the system. Work in [52] suggests that performance models

with an accuracy of between 10 and 30% are acceptable for capacity planning.

2.2.1 Performance Metrics and Optimisation

There are many possible metrics which can be used to measure the performance

of a system. Work in [51] suggest the following as the most common measure-

ments for Web applications:

• End-to-end response time. This is the time taken from a client issuing a

request to a system, and the complete response returning. It considers all

required processing and network propagation time.

• Site response time. Time taken for a site to respond to a received request.

This ignores network communication between the client and the server.

• Request throughput. This is the number of requests served in a unit of

time, usually seconds.

• Network throughput. The amount of data transferred per unit time, usu-

ally expressed as Mbps.

• Errors per second. This considers the number of requests not served suc-

cessfully by the service.

• Visitors per day. The number of pages requested per day.

9



2. Review of Enterprise Application Architecture

• Unique visitors per day. The number of unique visitors per day who visit

one or more pages.

The work in this thesis primarily uses end-to-end response time and the number

of failed requests as the main performance metric for applications being tested.

Performance optimisation for single application environments has been ex-

tensively studied [21, 27, 32, 34, 50]. [21, 34, 62] focus on request scheduling

strategies for performance optimisation.

2.3 Outsourced Hosting

Organisations may outsource their service hosting infrastructure to dedicated

hosting providers. Dedicated hosts are able to provide redundancy in power

and network capacity and allow organisations to avoid capital expenditure on

physical infrastructure.

For enterprise applications hosted externally, service level agreements (SLAs)

attempt to capture the desired quality of service (QoS). Typically a SLA will

normally include expected response times for an application and the availability

required. The cost of the provided hosting will depend on the agreed service

level, with higher service levels commanding a higher premium.

The work in this thesis is designed to support infrastructure providers in

improving resource utilisation, reducing the possibility of SLA violation and, in

so doing, increase profitability.

2.4 Dynamic Resource Allocation

As the usage patterns of many applications have migrated from batch processing

to online processing, the demands placed on applications have changed signif-

icantly. Usage patterns of online applications have been shown to be periodic

at a number of scales [30, 81] however, online applications are susceptible to

rapid changes in popularity where peak demand for a service may be orders of
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Figure 2.3: Workload variation in 1998 World Cup Web traffic.

magnitude greater than the average. A study of the 1998 World Cup workload

[15] demonstrates this rapid change in workload (see Figure 2.3). This workload

is commonly referred to in the literature as it is widely available.

The traffic sample covers the full 24 hour period of the 30th June 1998. On

this day two matches are played the first at 16:30 and the second at 21:00. The

peaks in traffic correspond directly the matches. Note that traffic to the site is

low, relative to the peak, prior to 16:00.

An early form of dynamic resource allocation was the use of priority queues

to offer differentiated services to different classes of request to optimise company

revenue [53]. In this work different priorities are assigned to requests based on

their importance.

The main premise of dynamic resource allocation is that resources can be

made available to applications experiencing high demand, to maintain a QoS and

avoid a site becoming unresponsive. In the presence of variable workload, dy-

namic provisioning of server resources has been shown to demonstrate improve-

ments to QoS and resource utilisation in an online environment [13, 29, 71].

Many different resource allocation policies have been proposed [65, 80], each

with different approaches and results. Work in [25] demonstrates the suitability

of dynamic resource allocation for handling flash crowds.
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2.5 The Advent of Cloud Computing

In recent years cloud computing has become a viable alternative to capital

expenditure on computational infrastructure[16]. Cloud computing platforms

have been enabled by developments in virtualisation software and hardware

support added to commodity hardware by vendors.

Through virtualisation many applications may be consolidated onto fewer

physical servers, reducing capital expenditure to businesses or increasing client

density in the case of hosting providers. Modern hypervisors allow a fine grained

approach to resource management, allowing a guaranteed minimum level of

service but also the ability to burst above a quota where spare capacity exists.

Though in its infancy, cloud computing has differentiated itself into three

main categories [73], each offering a differing degree of flexibility.

• Infrastructure as a Service (IaaS) provides physical support for virtualised

servers in the form of combined storage, networking and an execution

platform. A provider may offer a bare operating system as a starting

point or allow a customer to provide their own virtual machine images.

• Platform as a Service (PaaS) offers a platform for the hosting of an ap-

plication or service. This level of cloud abstraction allows application

deployment without the need to manage and administrate the underlying

hardware.

• Software as a Service (SaaS) delivers software to the user via the internet,

without requiring installation. All data is stored on servers hosted by

the application. This approach makes the application available to a user

around the world.

This new operational paradigm has increased the potential for companies to

outsource their infrastructure and, in so doing, led to a number of commercial

clouds [1, 7]. While these cloud platforms have been shown to be relatively

stable, they have suffered from a number of high profile outages [59]. These
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outages can affect a wide range of applications which rely on the leased services.

To mitigate against the risks of a single provider organisations may choose to

use multiple providers together in a federated cloud. There are a number of

technical challenges to enable this however, work in [24] suggests a mechanism

for handling this process.

The IaaS category of cloud computing is most similar to the environment we

present in Section 2.1 as it allows virtualised hardware and network resources

to be leased and used for any purpose. The issue for the cloud provider is to

manage the clients’ requirements across the available physical capacity of the

system.

2.6 Issues around Dynamic Resource Allocation

There are a number of factors which may be viewed as barriers to the adoption

of dynamic resource allocation systems. Some of these issues are prevalent in

existing statically allocated systems, while others are specific to the dynamic

context.

2.6.1 Security

Where servers are wholly provisioned the security implications are identical

to those of a non-dynamically provisioned server. The servers are exposed to

identical threats, and should be considered as such. Where applications are co-

hosted on a physical machine there are a number of security considerations to be

made. It is important that each application is isolated from each other so that a

security issue cannot affect multiple applications. In a virtualised environment,

virtual servers are isolated by a hypervisor, which prohibits communication

between the physical host and other virtual servers on the host. The security of

hypervisors has been extensively studied [38, 60]. Additionally there has been

some work on ensuring application security in the cloud [20].
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2.6.2 Scalability

Resources can now be allocated on an unprecedented scale which means that

the scalability of resource allocation mechanisms is important, as it is a limiting

factor in their adoption. The dynamic resource allocation problem is known to

be NP-hard (see Chapter 4 for a reduction to the binary integer programming

problem), which means that it is often approximated using heuristics. To the

best of our knowledge, the work in [28] is the only work which explores this.

2.6.3 Qualify of Service

The performance of a dynamic resource allocation system itself may not be

a meaningful metric. The performance of the system should be considered

as the improvement it makes the QoS of the applications which it supports.

However with this in mind, both the resource allocation algorithm, which decides

the resource allocation, and provisioning mechanism, which effects the changes

required by the resource allocation algorithm, should be able to devise and effect

new resource allocations in a reasonable period of time. There is a large body

of work focussing on the performance delivered by specific resource allocation

policies [41, 65, 71, 80]. Where comparisons exist it is common for the policies

to be compared against trivial policies such as proportional resource allocation

or static allocation.

2.6.4 Fault Tolerance

At large scale there is a significant failure rate of components. A dynamic

resource allocation system should consider the potential for resource failure

to impact on the allocations which it makes. Work in [68] offers a resource

provisioning policy which accounts for the failure rates of components in the

underlying platform. [39] offers an insight into the reliability of network links

in a modern data centre and suggests that overall data centre networks show

high reliability, with load balancers being the most fault prone components due
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to software errors and that the use of network redundancy is shown to be only

40% effective in reducing the median impact in failure.

2.6.5 Heterogeneity

Large data centres are often comprised of a wide range of hardware in a number

of configurations. Operational requirements of applications may dictate which

platforms can support each application. Evaluating current commercial IaaS

offerings suggests that providers offer virtual machines in a number of specifi-

cations which are multiples of the smallest offering. The offerings made are the

minimum guaranteed resources, and these may be exceeded if space capacity is

available on the physical server. There has been some research [47] into resource

allocation in heterogeneous environments.

2.6.6 Resource reallocation

The mechanism to support the actual reallocation of resources is an important

consideration. In non-cloud environments deployments may occur via custom

scripts or machine re-imaging. Cloud environments rely on virtual machines

containing a full software stack for their deployment. As a result, network

bandwidth and storage subsystems play a significant role in the performance of

the resource reallocation. Work in [46] analyses the impact of a virtual machine

migration on data centre efficiency, while work in [77] measures the performance

impact to an application of migrating a virtual machine.

2.6.7 Software Licensing

In enterprise systems commercial software is still pervasive, as it provided with

a good level of support when compared to open-source offerings. Traditional

software licensing models are rigid and may be tied to a specific server or num-

ber of servers or licensed annually. Each of these scenarios does not sit well on

top of a dynamic platform as the number of servers varies over time. Flexible
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licensing models which may be charged in relation to the scale and duration for

which the product is used are required to help this issue.

Additional related work specific to each chapter can be found in Sections 3.1,

4.1, 5.1 and 6.1.

2.7 Summary

This chapter has presented the evolution of enterprise application hosting and

identified a number of issues which affect the viability of dynamic resource

allocation. Much of the work done to date has focussed on the improvements

in performance and quality of service. There has been little consideration of

issues around the operation of dynamic platforms such as those found in cloud

computing and dedicated environments.

This thesis will focus on the effectiveness of dynamic resource allocation at

scale, the issue of resource failures and the cost of migration.
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CHAPTER 3

An Enterprise Testing Platform

Many different policies for dynamic resource allocation in enterprise systems

have been proposed [42, 55, 64]. Much of the work has proven to be theoretical,

with policies being evaluated through analytical modelling. The use of analytical

modelling may mask various nuances of systems in the real-world, e.g, caching

and network latencies, which may in turn have an impact on the potential

benefits offered by a policy.

In this chapter a real-world testbed is developed for the purpose of evaluating

theoretically derived policies. Three proposed theoretically derived switching

policies are implemented and subjected to synthetic workloads and the results

of the policies are compared against each other using a static allocation as a

reference. The observed behaviour of each policy is evaluated and discussed.
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3.1 Specific Related Work

Work by the authors of [50] studies the methods for maximising profits of the

best-effort requests and the QoS-demanding requests in a Web farm, however,

they assume a static workload arrival rate in the paper. The model they develop

is a queueing network model for a two-tiered applications. The experiments

presented are executed as simulations with three applications distributed across

ten servers.

Work in [32, 72] uses provisioning techniques to achieve Service Level Agree-

ments (SLA). This research uses analytical models to explore system capacity

and allocates resources in response to workload changes to obtain guaranteed

performance. In [72] resources are not balanced between applications, rather

they are added from an idle pool of servers. This ignores the potential compe-

tition between resources when the system is near maximum capacity.

Other work in [27, 78] uses admission control schemes to deal with overload-

ing and achieve acceptable application performance. The authors of [27] use

session-based admission control to avoid loss of long sessions in Web applications

and guarantee QoS of all requests, independent of a session length, while [78]

presents a set of techniques for managing overloading in complex, dynamic In-

ternet services and is evaluated using a complex Web-based email service. The

work in this chapter focuses on the scenario where multiple applications are

running simultaneously in an Internet hosting centre.

The authors of [13] describe the building of a dynamic infrastructure plat-

form prototype. The policies implemented by the platform are based around

client SLAs, which are delivered through resource migration. The platform has a

notion of free or idle servers which are provisioned wholly for a given application.

In the reallocation process described, a full system installation is required when

allocating a server which takes between 710 and 750 seconds. This platform

differs from the work presented here as the platform is not entirely dynamic;

there is a fixed pool of allocated servers and a pool of servers which can be
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added or removed from the servicing of an application dynamically.

Work in [45] presents a system for the management of power and perfor-

mance in cloud infrastructures. The test platform developed uses a three tiered

application architecture implemented through virtual servers. In this infrastruc-

ture four applications are spread across up to 20 virtual servers, hosted on eight

physical machines.

Recent work [42, 55] also studies performance optimisation for multiple ap-

plications in Internet service hosting centres, where servers are partitioned into

several logical pools and each logical pool serves a specific application. They

address the server switching issue by allowing servers to be switched between

pools dynamically. These results are provided through simulation and not via

a representative test platform.

The work in [55, 64] considers different holding costs for different classes of

requests, and tries to minimise the total cost by solving a dynamic programming

equation. The authors in [42] define a revenue function and use M/M/n queues

to derive performance metrics in both pools and try to maximise the total

revenue. The results for these papers are demonstrated analytically.

The work in this chapter is different from [42, 55, 64] in the following re-

spects: an actual testbed is used in our evaluations, and thus (i) the application

is not synthetic, (ii) the supporting infrastructure demonstrates the subtleties

of a real-world platform, and (iii) the switching policies are implemented, feed

actual system parameters, and are subsequently evaluated on synthetic work-

loads.

3.2 System Overview

In this chapter we consider an environment consisting of two applications which

are deployed across a set of servers with each application following the “best

possible” architecture as described in [69].

In the case of a single application it is common for the presentation tier to
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schedule tasks across a dedicated cluster of application server machines. Strate-

gies for request scheduling in both commercial and open-source products are

generally variations on the Weighted Round Robin (WRR) strategy. The WRR

approach allows for different proportions of requests to be dispatched to different

application servers and, in so doing, allows some degree of support for hetero-

geneous server environments by allocating a higher proportion of the workload

to application servers with more capacity.

Applications that require a state to be maintained throughout a user session

present a significant problem for WRR strategies, as multiple requests may

not be redirected to the same server. To this end several strategies have been

developed to handle this scenario. Session affinity ensures that subsequent

requests are all processed by the same application server, thus ensuring that

state is maintained throughout a user session. Drawbacks to this approach

are discussed in [34] and include severe load imbalances across the application

cluster due to the unknown duration of a request at the time of dispatching it to

the application server, and a lack of session failover due to the single application

server providing a single point of failure to the session. It is also possible for

the client to store the state of the session, resubmitting it with each request.

Using this approach any available application server is able to process the user’s

request. Similarly the data persistence tier may be used to store session data

which also enables all application servers to service all requests, however this

comes at the expense of increased database server/cluster utilisation. These

approaches are evaluated in [19]. In this chapter user session data is stored on

the application server that processes the initial request. Further requests are

then forwarded to the same server for processing.

The multiple application environment we consider is captured by Figure 2.1.

The diagram represents the architecture for n separate applications. The main

difference from the single application architecture is the conceptual view of the

set of application servers. In our multiple application environment any of the

servers available may be allocated to any of the applications either statically
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or dynamically. In this chapter we are concerned with the allocation of servers

at the application tier. Each application requires a dedicated presentation and

data persistence tier.

To avoid the overhead of the switching system compromising the perfor-

mance of any single component in the system, the switching system is hosted

on an additional server.

3.2.1 Server Performance

In [31] it is demonstrated that the throughput of an application server is linked

to the number of concurrent users. While a system is under a light load with

few concurrent users, the throughput of the server can increase in a near linear

fashion as there is little contention for resources. As the number of concurrent

users increases, the contention for system resources increases, which in turn

causes the rise in throughput to decrease. The point at which the addition of

further clients does not result in an increase in throughput is the saturation

point, Tmax.

From this it would follow that for a cluster of n application servers, the

maximum theoretical throughput of the cluster would be ΣTmax for a hetero-

geneous cluster. This may be simplified to nTmax for a cluster of homogenous

servers. These theoretical throughputs are rarely achieved in practice due to the

additional overheads of scheduling and redirecting requests across the cluster.

3.3 Server Switching

If we consider that each application hosted across the set of servers provides a

service to a business, some of the hosted applications are more important than

others in terms of revenue contribution to the service provider.

Most Internet applications are subject to enormous variations in workload

demand. During a special event, the visits to some on-line news applications

will increase dramatically, the ratio of peak load over light load can therefore be
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considerable. System overloading can cause exceptionally long response times

for requests or even errors, caused by the timing out of client requests and

connections dropped by the overloaded application. At the same time, the

throughput of the system would decrease significantly [31].

Therefore, it is desirable to switch servers from a lightly loaded application

to a higher loaded application in response to workload change. In such cases, it

is important to balance the benefits of moving a server to an application against

the negative effects on the reduced pool and the switching cost.

3.3.1 The Switching Process

Several different scenarios for server switching are presented in the literature

[42, 64]. In [42] it is proposed that the set of servers are shared amongst a single

application, which is partitioned according to different levels of QoS. In this

case, the simplest approach to reallocating a server would be to remove it from

an entry point serving one request stream, and add it to the entry point for the

assigned pool. This negates the need to change the application code servicing

the requests, which provides a considerable reduction in switching cost. The

switching process for this scenario is given in Algorithm 1.

In Algorithm 1, line 1 iterates over each of the applications. On line 2 Si

is defined to be the change in the number of servers required to service the

application, it may be positive or negative. Lines 5-25 loop until the server

requirements are satisfied. Lines 6-14 handle the case where additional servers

are required by searching other applications where the server requirements are

negative. Once an application has been identified its upstream web server is

prevented from forwarding any further work to the server (line 9) and the in-

flight requests run to completion (line 10). Line 11 then migrates the server

to the new application, before it is then added to the available servers for the

upstream system on line 12. Lines 16-23 describe the inverse process, finding

an application which requires a server and making the appropriate migration.

There is a cost associated with migrating a server from one application to
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Algorithm 1 Switching algorithm for single application QoS requirements.
1: for Application Ai, in applications A1..n do
2: Let Si be the number of servers required for Ai
3: Let ASi be an application server belonging to Ai
4: Let Wi be a Web Server belonging to Ai
5: while Si 6= 0 do
6: if Si > 0 then
7: for Am in Ai+1...n do
8: if Sm < 0 then
9: Stop Wm dispatching requests to ASi

10: Wait for pending requests to complete
11: Switch server from Am to Ai
12: Allow Wi to dispatch requests to ASi
13: end if
14: end for
15: else
16: for Am in Ai+1...n do
17: if Sm > 0 then
18: Stop Wi dispatching requests to ASi
19: Wait for pending requests to complete
20: Switch server from Ai to Am
21: Allow Wm to dispatch requests to ASi
22: end if
23: end for
24: end if
25: end while
26: end for

another. The cost of a migration is derived from the duration of the migration,

and can be considered as the degradation of the throughput in the environment

whilst a server is unable to service requests for any application as it migrates.

3.3.2 Switching Policies

A switching policy is defined as an algorithm that when provided information

on the current state of the system makes a decision on moving to another state.

When doing this the policy must balance the potential improvement in QoS

against the cost of performing the server switch. There are several examples of

switching policies in the literature [42, 64]. Some of these policies are executed

as a result of each arrival or departure of a request; while others are executed

after a fixed time period and use statistics gathered over a time window to
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inform the switching decision. A policy may also consider request arrivals as

being on or off, which is dictated by any arrivals in a given time period. The

work presented in [64] describes four possible switching policies, three of which

are implemented in this chapter:

• The Average Flow Heuristic uses information on the arrival and comple-

tion rates of requests for each application in order to make a switching

decision. This heuristic averages arrivals over the duration of the experi-

ment and does not consider the distinct on/off periods for each application.

This action requires that a weighted average arrival rate is calculated; this

is shown in Equation 3.1, where λ′ is the averaged arrival rate of the ar-

rival rate (λ) in the busy periods (m) and the idle periods (n). Algorithm

2 is then used with the calculated average arrival rates. Line 1 of the

algorithm initialises the total costs for each jobs queue to 0. The best de-

cision cost is set to positive infinity on line 3. Both job types are checked

to ensure that the completion rates are grater than zero (line 4) and an

error is returned if they are not (line 5). The loop on line 7 starts from

zero and iterates to the current number of servers allocated to job type

1. Lines 8 and 9 calculate the total costs for each job queue and if the

overall cost for the new allocation is lower than the current best decision

cost then the new allocation is stored (lines 11-12). Lines 15-22 execute

the same steps for the second application. Finally the allocation with the

best decision cost is returned on line 23.

The Total Cost algorithm first evaluates if any jobs exist in the queue (line

1), if no jobs exist on the queue then a total cost of 0 is returned (line 28).

Where tasks exist in the queue, it is checked for stability (a completion

rate greater than the arrival rate) on line 2. If the queue is unstable then

a value of infinity is returned (line 25). An array of capacity to include all

servers currently being migrated +1 is created and asigned to st on line

3. The number of migrating servers is iterated over and the rate at which
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migrating servers complete migration is stored at the relevant position in

the array st on line 5. The total cost is initialised to 0 on line 8. The rate

of queue drainage is calculated at each possible migration rates between

lines 12-22, and stops when the length of the queue would drain to zero.

Finally the calculated total cost is returned on line 30.

λ′ =
λ×m
m+ n

(3.1)

• The On/Off Heuristic attempts to consider the “bursty” nature of requests

to each application. To do this it classifies each application’s requests as

being on or off, and switches servers accordingly. To account for the on and

off periods in the job streams, the arrival rate is calculated as in Equation

3.2; Algorithms 2 and 3 (explained above) are then used to calculate a

new server allocation.

λ =

 λ If the job stream is active.

0 Otherwise.
(3.2)

• The Window Heuristic uses statistics gathered over a sliding window of

time to calculate arrival and completion rates for each application within

a time window. In so doing, the policy ignores the presence of any off

periods in the time window. This algorithm is shown in Algorithm 4. The

algorithm attempts to find teh lowest best decision cost by first initialis-

ing the best decision cost to be positive infinity on line 2. A number of

servers are initially assigned to n1 proportionally based on the job costs

for job 1 (line 3), with the remainder of the servers being allocated to

job type 2 (line 4). The algorithm then iterates from 0 to the number

of total servers calculating the utilisation of servers in each pool for each

allocation on lines 6-7. If the utilisation of each pool is less than 1 the

cost of the switch is calculated (line 10) and compared against the current

best decision cost on line 11. If a better configuration is found the cost
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and allocations are stored on lines 12-14.New server allocations are then

defined by comparing the current allocation with the calculated values on

lines 18-19. The new allocation is returned on line 20. It should be noted

that where the utilisation in either pool is grater than or equal to 1, no

migrations occur under this policy.
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Algorithm 2 Server allocation algorithm.
Input: Current server allocation S1, S2

Arrival Rates, λ1, λ2

Completion Rates, µ1, µ2

Queue Lengths q1, q2
Switches in progress w1,2, w2,1

Switch Rate r1,2, r2,1
Job costs c1, c2
Switch costs sc1,2, sc2,1
Total costs for job queues tc1, tc2

Output: New server allocation, S′1, S
′
2

1: tc1, tc2 ← 0
2: Let bdc be best decision cost
3: bdc←∞
4: if µ1 = 0 and µ2 = 0 then
5: return error
6: end if
7: for s in S1 do
8: tc1 ← Call Algorithm 3 with parameters s, S, λ1, µ1, w2,1, r2,1, q1
9: tc2 ← Call Algorithm 3 with parameters s, S, λ2, µ2, w1,2, r1,2, q2

10: if (c1 × tc1 + c2 × tc2 + sc1,2 × s) < bdc then
11: S′1 ← −s
12: S′2 ← s
13: end if
14: end for
15: for s in S2 do
16: tc1 ← Call Algorithm 3 with parameters s, S, λ1, µ1, w2,1, r2,1, q1
17: tc2 ← Call Algorithm 3 with parameters s, S, λ2, µ2, w1,2, r1,2, q2
18: if (c1 × tc1 + c2 × tc2 + sc2,1 × s) < bdc then
19: S′1 ← s
20: S′2 ← −s
21: end if
22: end for
23: return S′1, S

′
2
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3.4 Experimental Platform

Our experimental platform is based on the architecture shown in Figure 2.1.

In the presentation tier we use a custom Web server to dispatch requests onto

the application servers via round robin scheduling. The Glassfish J2EE applica-

tion server running on a Java 1.6 JVM was selected for the application runtime

environment. The application server was tuned in accordance with the manufac-

turer’s published guidelines to improve performance [66]. The tuning primarily

consisted of setting an upper limit for the number of threads for the HTTP

connection acceptance and the database connection pools. Glassfish then man-

ages the thread pools itself, adding and removing threads between the minimum

and maximum values as required. Additionally the memory limit of the Java

runtime was set near to the free memory available on the system. For the data

persistence tier the Oracle 10g relational database system was chosen, which is

representative of production systems that one might find in the field.

The hardware for the presentation tier consists of two dual Intel Xeon 2.0GHz

servers with 2GB of RAM. For the application tier, a server pool of eight homo-

geneous servers is used. The servers all use dual Intel Xeon 2.0 GHz processors

with 2GB RAM installed. They are connected via a 100 Mbps ethernet network.

The Web servers for each application were comprised of the same hardware. The

database servers were all configured as dual Intel Xeon 3.0Ghz CPU servers with

2GB RAM and were connected to the network via a gigabit ethernet connection.

The application used for the testing of the system was Daytrader [12], an

open-source version of IBM’s performance benchmark Trade. This application

was chosen as it is representative of a high throughput Web application. The

work presented in [11] suggests adopting an exponential distribution with a

mean of seven seconds as a reasonable “think time” for the trade application.

This application is used for both application pools, to reduce the number of

variables in the experiment.

To generate dynamic workloads a custom load generation system was devel-
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Algorithm 3 Total cost algorithm.
Input: Switched servers s

Server Allocation S
Arrival rate λ
Completion rate µ
Switches in Progress wm,n
Switch rate rm,n
Queue Length q

Output: Total Cost, tc
1: if q > 0 then
2: if λ < S − s+ wm,n × µ1 then
3: Let st be an array of size wm,n + 1
4: for i in wm,n do
5: sti ← 1

(wm,n−i)×rm,n

6: end for
7: stwm,n

←∞
8: tc1 = 0
9: Let vq be the virtual queue length

10: vq ← q
11: for j in wm,n + 1 do
12: if vq > 0 then
13: Let x be the rate at which the queue drains
14: x← vq + (λ− (S − s+ j)× µ)× stj
15: if x ≥ 0 then
16: tc← tc+ 0.5× (vq + x)× stj
17: vq ← x
18: else
19: tc← tc+ 0.5× −vq

λ−(S−s+j)×µ×vq
20: vq ← 0
21: end if
22: end if
23: end for
24: else
25: tc←∞
26: end if
27: else
28: tc← 0
29: end if
30: return tc
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Algorithm 4 Window Policy algorithm.
Input: Current server allocation S1, S2;

Arrival Rates, λ1, λ2

Completion Rates, µ1, µ2

Holding costs, c1, c2
Output: New server allocation, S′1, S

′
2

1: Let bdc be best decision cost
2: bdc←∞
3: n1 = (s1+s2)×c1

c1,c2

4: n2 = (s1 + s2)− n1

5: for i in S1 + S2 do
6: ρ1 = λ1

i×µ1

7: ρ2 = λ2
(S1+S2−i)×µ2

8: if ρ1 < 1 and ρ2 < 1 then
9: Let c be cost of the switch

10: c = c1×ρ1
1−ρ1 + c2×ρ2

1−ρ2
11: if c < bdc then
12: bdc← c
13: n1 = i
14: n2 = (S1 + S2)− i
15: end if
16: end if
17: end for
18: S′1 = n1 − S1

19: S′2 = n2 − S2

20: return S′1, S
′
2
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oped. This allows specified load to be generated for predetermined durations,

which allowed us to monitor the reaction of the switching system under repeat-

able changes in workload. We used two workloads for our experiments. The

first workload (shown in Table 3.1) remained static throughout the entire dura-

tion of the experiment, and is designed to examine the reactions of the policies.

The workload consisted of 1075 concurrent sessions which was derived from the

maximum throughout of the whole system. This workload consisted of 1075

simultaneous client sessions, 875 for application 1 and 200 for application 2.

Each workload was executed three times.

The second workload was the most dynamic, changing every 20 seconds,

which caused the workload to switch within the switching interval. This work-

load is shown in Table 3.2. Further performance tuning of the application servers

increased the total throughput of the platform to 1250 client sessions, which is

used as the total number for the workload. Under this workload the 1250 client

sessions are distributed across the applications. Further Workload generation

was distributed across five slave machines, to avoid the workload generation

becoming a bottleneck for the experiment.

To host the switching system, an additional node was added to the archi-

tecture in Figure 2.1. This was done to ensure that the additional overheads of

the system were not added to any of the existing system components. Although

the time taken to switch a server varies, and is in part dependent on the queue

of pending requests allocated to the server, we have found that the average

time taken to switch a server between pools is approximately 4 seconds1. All

server migrations occur concurrently. The switching interval is the time between

executions of the switching policy. In these experiments the switching interval

selected was thirty seconds, to allow the possibility for several migration periods

within the duration of the experiment.

In the experiments we configure the two applications with different costs to

represent the differences in QoS requirements. The job costs for our experiments
1The range of switching times obtained ranged from 2 to 6.4 seconds.
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are considered to be the costs for holding a job. Such a definition allows a value

to be attached to a queue of waiting jobs. For our experiments application 1 has

a holding cost 25% higher than that of application 2, making jobs for application

1 a higher priority than application 2 as they are more expensive to hold.

Table 3.1: Workload one.

Timestep
T1 T2 T3 T4 T5 T6 T7 T8

Duration (mins) 1 1 1 1 1 1 1 1

Clients Application 1 875 875 875 875 875 875 875 875
Application 2 200 200 200 200 200 200 200 200

Table 3.2: Workload two.

Timestep
T1 T2 T3 T4 T5 T6

Duration (mins) 0:20 0:20 0:20 0:20 0:20 0:20

Clients Application 1 625 750 375 500 375 550
Application 2 625 500 875 750 875 700

T7 T8 T9 T10 T11 T12

Duration (mins) 0:20 0:20 0:20 0:20 0:20 0:20

Clients Application 1 625 750 375 500 375 550
Application 2 625 500 875 750 875 700

T13 T14 T15 T16 T17 T18

Duration (mins) 0:20 0:20 0:20 0:20 0:20 0:20

Clients Application 1 625 750 375 500 375 550
Application 2 625 500 875 750 875 700

T19 T20 T21 T22 T23 T24

Duration (mins) 0:20 0:20 0:20 0:20 0:20 0:20

Clients Application 1 625 750 375 500 375 550
Application 2 625 500 875 750 875 700

3.5 Results

The overhead of the system is measured by calculating the maximum through-

put of a single server directly, and then measuring the maximum throughput

of the server requests that are forwarded from the Web server. We measure
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the throughput for each case at a variety of loads as shown in Figure 3.1 using

the JMeter HTTP benchmarking tool. It can be observed that the throughput

for the system is significantly higher than that of the direct connections. The

throughput curves for both connection types fit closely with the typical perfor-

mance curves seen in [31]. The response time for the direct requests increases

dramatically after 100 clients, while the response time for the redirected requests

remains constant. The authors believe that this is due to connections between

two fixed points (the Web server and the application server) being kept open in

a connection pool by the Web server, reducing startup and teardown costs for

each connection.
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Figure 3.1: Direct server throughput versus redirected throughput.

3.5.1 Static Workload

In this experiment the workload is fixed for each application for the duration of

the experiment. The load on each application is shown in Table 3.1.

The baseline for this experiment is provided by using a static allocation of

four servers to each application, and measuring the response times under the

prescribed workload. The response times for the static allocation are shown in
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Figure 3.2. The additional load upon application 1 results in higher response

times as the servers are more heavily loaded than the servers for application 2.
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Figure 3.2: Experiment one application response times for a static server allo-
cation.

The initial response times are significantly higher than the latter ones. This

is due to the optimisation of the application within the application server, as

the Java virtual machine optimises frequently used components. The application

server also acts dynamically to improve performance by increasing the number

of database connections as required in order to service more requests. In this

chapter the application is the same for both pools, so the servers are optimised

when they are switched between the pools. As a result we use the first minute as

a warm-up period for the servers, and do not use the values in our calculations.

After finding a baseline from the static allocation, each of the three policies

were tested against each workload. The results for the three policies for this
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workload are given in Figures 3.3 for the Average Flow policy, 3.4 for the On/Off

policy and 3.5 for the Window policy . The Figures are set out as follows: the

top graph represents the workload for each application. The middle graph shows

the server allocation throughout the experiment, and the bottom graph shows

the response time for each of the applications. The graphs are aligned such that

the x-axis is the same on all three graphs.

The results for the Average Flow policy (Table 3.3) show a 27.38% improve-

ment in response time for application 1 and a decrease of 5.05% for a2. Figure

3.3 shows that the policy switched two servers from application 2 to application

1 after two minutes. The difference in throughput (see Table 3.4) is less than

0.4%, and is considered to be a side effect of the stochastic think time used for

the clients in the workload.

The On/Off policy results are shown in Figure 3.4. The policy reacted

faster than the Average flow policy, switching two servers from application 2

to application 1 after the first switching interval. Although the On/Off policy

reacted faster than the Average Flow policy, the response times for application

1 were improved by less. The On/Off policy improved the response time for

application 1 by 23.38%. The response time for application 2 was increased by

a larger percentage than the Average Flow policy, which is due to the earlier

switching of servers.

The Window policy performs the best on the given workload. The results

for this policy are shown in Figure 3.5. The policy reduces the average response

times for application 1 by 30.20% and increases the response time for application

2 by 7.69%. The window policy performs four switches in the early stages of the

experiment before remaining at a steady allocation of six servers for application

1 and two servers for application 2.

The effects on throughput of switching servers between the pools are min-

imal, and may be considered as side-effects of the distribution of client think

times used during the experiment. The throughput of the applications does not

increase as the workload does not increase in volume.
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Figure 3.3: Average Flow policy results under workload one.
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Figure 3.4: On/Off policy results under workload one.
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Figure 3.5: Window policy results under workload one.
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Table 3.3: Comparison of policy response time against static allocation under
workload one.

Mean response time (ms)
Static Average Flow On/Off Window

Application 1 60.60 44.01 46.43 42.30
(-27.38%) (-23.38%) (-30.20%)

Application 2 38.99 40.96 42.40 41.99
(5.05%) (8.75%) (7.69%)

Table 3.4: Comparison of policy throughput against static allocation under
workload one.

Mean throughput (requests/second)
Static Average Flow On/Off Window

Application 1 133.48 133.90 132.11 134.02
(0.31%) (-1.03%) (0.40%)

Application 2 28.95 29.02 28.99 29.14s
(0.24%) (0.14%) (0.66%)

3.5.2 Rapidly Changing Workload

The workload used in experiment two is shown in Table 3.2. The workload

changes at twenty second intervals, which is shorter than the switching interval.

The baseline for the workload in experiment two was found by observing the

performance of a static allocation of servers. The results for the static allocation

are shown in Figure 3.6.

The Average Flow policy showed the best performance for this workload,

improving the total response time for the applications by 22.84%. The policy

performs four server switches over the course of the experiment.

The On/Off policy improved the performance of application 1 by 7.36% and

a2 by 12.65%. The policy switches the most servers at one interval, switching

four servers at four minutes and thirty seconds in the experiment and performs

fourteen switches throughout the experiment. The Window policy switches

servers in a cyclic pattern, which is synchronised with the workload, with a 2

minute period. The policy does not significantly improve the response time for

application 1 (see Table 3.5) but it improves the response time of application 2
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Figure 3.6: Application response times for a static allocation under workload
two.

40



3. An Enterprise Testing Platform

    0

  200

  400

  600

  800

 1000

 0  1  2  3  4  5  6  7  8

R
e
q
u

e
s
ts

 p
e

r 
s
e
c
o

n
d

Time (minutes)

    0

    1

    2

    3

    4

    5

    6

    7

    8

 0  1  2  3  4  5  6  7  8

S
e
rv

e
rs

Time (minutes)

    0

   50

  100

  150

  200

  250

  300

 0  1  2  3  4  5  6  7  8

R
e
s
p
o
n
s
e
 T

im
e
 (

m
s
)

Time (minutes)

Application 1
Application 2

Figure 3.7: Average Flow policy results under workload two.
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Figure 3.8: On/Off policy results under workload two.
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Figure 3.9: Window policy results under workload two.
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Table 3.5: Comparison of policy response time against static allocation under
workload two.

Mean response time (ms)
Static Average Flow On/Off Window

Application 1 49.21 45.71 45.59 49.19
(-7.11%) (-7.36%) (-0.04%)

Application 2 55.48 46.75 48.46 48.18
(-15.74%) (-12.65%) (-13.16%)

Table 3.6: Comparison of policy throughput against static allocation under
workload two.

Mean throughput (requests/second)
Static Average Flow On/Off Window

Application 1 79.75 79.56 79.64 81.10
(-0.24%) (-0.14%) (1.69%)

Application 2 110.73 111.94 110.77 111.40
(1.09%) (0.04%) (0.61%)

by 13.16%.

3.6 Analysis

The results for the experiments in this chapter have demonstrated that dynamic

resource allocation policies can deliver improves application performance over

statically allocated resources. The three policies presented here are taken from

the literature, and have been applied to a representative enterprise application

testbed.

The Average Flow policy would be well suited to workloads which have

relatively stable averages with peaks and troughs of equal magnitudes. Such

workloads are common in Web applications, where they experience similar in-

creases in traffic at certain times each day. In this case, the average flow policy

would find a relatively static allocation for each application, tending towards an

average allocation. This average seeking position makes the policy less suitable

for workloads in which the peak is much larger that the average as it would be
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slow to respond to these changes.

The On/Off policy has significant potential for bursty workloads which con-

tain idle periods. An example of this type may be order processing in a ware-

house, where workloads may be high overnight in preparation for the next day,

but then quieter while other work is being done. This may be considered as an

online batch processing application.

The Window policy offers the potential for more rapid changes in resource

allocations, as it only considers the previous window when deciding on a new

allocation. This means that it can handle sudden spikes in workload, however in

doing so may incur significant resource migration costs. Where applications are

relatively stable for long periods, the policy may make more adjustments than

the average flow, as it is sensitive to workload changes in the window period.

Each of the three policies presented here are reactive, basing server allo-

cations on the observed state of the system. While workload forecasting is a

hard problem, particularly for Web applications ,it has been used to enhance

resource allocation policies in [10]. These policies may benefit from some pre-

dictive workload analysis.

3.7 Summary

In this chapter we test three switching policies (Average Flow, On/Off and

Window) under two different workload conditions (static and rapidly changing)

on a representative test bed. The results show that:

• if the workload remains static for long durations, all policies deliver sig-

nificant performance improvements for the heavily loaded application (23-

30%). In our experiment the Window policy shows the best improvement

in response time (30%);

• rapidly changing (with respect to the switching interval) workloads show

improvements for both applications under all policies. The Average Flow
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policy shows the largest combined decrease in application response times

(22%);

• the use of switching policies in these experiments has no significant neg-

ative impact upon the throughput of the system. In the worst case the

system overhead (reduced throughput) is less than 2% (for the Window

policy under workload two).

The results obtained from this platform indicate that the use of switching poli-

cies offer the potential for significant improvements in application response

times.
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CHAPTER 4

Scalability of Dynamic Resource Allocation Policies

Advances in server hardware and software have led to an increase in application

density within a modern data centre. It is therefore important that tools and

techniques developed to manage these resources can also scale alongside the

resources under their control. If the tools and techniques are unable to man-

age resources at large scale, their utility to large infrastructures is significantly

reduced. This area is often overlooked in the presentation of new policies in

favour of performance related results.

The greatest limitation of existing dynamic resource allocation algorithms

is the limited number of servers and applications that have been used in their

evaluation. In this chapter, we directly address this limitation, demonstrating

that a class of dynamic resource allocation algorithm, which accounts for many

established policies, is not suited to the effective management of resources at

data centre scale.

The previous chapter demonstrated the effectiveness of dynamic resource al-

location (DRA) policies in a real world testbed at a small scale. In this chapter
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4. Scalability of Dynamic Resource Allocation Policies

we evaluate the scalability of a well-known class of resource allocation algorithm,

and propose a new heuristic framework with significantly better scalability char-

acteristics.

4.1 Specific Related Work

Work in [80] utilises a mean value analysis approach to maximising the profit

obtained from an enterprise system, with resource allocation across all tiers of

a 3-tier architecture. The work is extended in [80] to incorporate an admission

control policy which further improves results. The results are provided through

simulation, with 25 servers service two applications at the application tier.

In [41] the authors develop an algorithm for profit maximisation of multi-

class requests through dynamic resource allocation. The algorithm is developed

for two service classes; a best-effort service class and a service class with a

guaranteed quality of service (QoS). This work demonstrates a policy which

delivers significant improvements in profits, however the algorithm demonstrates

poor scalability characteristics as the number of service classes increases.

In contrast, work in [65] develops four heuristic policies for dynamic server

reallocation which aims to minimise the holding cost of queued jobs within the

system. In [65] the policies are developed for allocating resources across two

applications. In the paper the policies were examined through simulation with

three servers. Three of the four policies were demonstrated in a small-scale

practical context in the previous chapter.

Work in [26] proposed a approach known as cluster-on-demand (COD). This

approach is based on dynamic allocation from a common pool to many virtual

clusters, each with independently configured environments, access controls and

network storage volumes. The experiments associated with this work were per-

formed using a physical cluster composed of 80 servers. This paper serves as

a good example of a working dynamic resource allocation scheme, though the

number of applications examined is limited.
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4. Scalability of Dynamic Resource Allocation Policies

In contrast to on-demand techniques, [72] explored periodic server provision-

ing. Here a single application, to which idle servers are added as load increased,

was analysed, with short-term and long-term workload prediction being used

to guide resource allocation. This work allocates a proportion of the 40 servers

available to a single application. The work presented here differs from [72],

as the total scale of the environment is fixed, with applications competing for

available resources.

This work is differentiated from similar work on dynamic resource allocation

algorithm analysis [65] by (i) its focus on scalability, an issue that has not

received adequate treatment in existing literature, and (ii) the development and

validation of a framework for dynamic resource allocation algorithm design and

implementation.

4.2 System Model

The dynamic resource allocation problem is as follows: Given a system with a

set A = {A1, . . . , AN} of applications, and a set S = {S1, . . . , SM} of servers,

allocate applications to servers such that overall utility of the system is max-

imised. Formally, given a set of possible mappings F = {F1, . . . , Fk} of servers

to applications (Fi : (S → A)), and a corresponding utility function U , find a

mapping Fi ∈ F such that U(Fi) = max{U(F1), . . . , U(Fk)}. In other words,

find the allocation of resources that maximises resource utilisation.

The DRA problem can be formalised as follows: Let xji be an allocation of

server j to application i. We wish to maximise U(x1
1, . . . , x

M
N ) subject to the

following constraints:

xji =

 0, Server j not allocated to application i.

1 Otherwise.

∑M
j=1

∑N
i=1 x

j
i ≤M

(Applications can not use more than M servers)
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4. Scalability of Dynamic Resource Allocation Policies

xji 6= xjk, i 6= k

(Two applications can not reside on the same server)

Algorithm 5 General class algorithm.
1: Let a, ..., z represent the number of servers allocated to each application
2: Let S represent servers available
3: Let B represent best allocation
4: Let V represent the value of the best allocation
5: Init V,B
6: for a = 0; a ≤ S; a+ + do
7: for b=0;

∑b
a ≤ S; b+ + do

8:
...

9: for z=0;
∑z
a ≤ S; z + + do

10: value = metric(a, b, c...z)
11: if value > V then
12: (a, . . . , z)→ B
13: value→ V
14: end if
15: end for
16: end for
17: end for
18: return B

This problem is an instance of binary integer programming problem, which is

known to be NP-hard. Thus, exponential complexity is unavoidable. Greedy

algorithms are typically used to solve approximations to NP-hard problems.

The design of algorithms that approximate the DRA problem is normally of

the form shown in Algorithm 5 ([65, 42]). The nested for loops on lines 6-9

iterate through all possible server allocations. The value of the configuration is

calculated by some metric on line 10 and then compared with the value of the

current best configuration (line 11). If the value of the current configuration

is greater that the current best configuration then the configuration is stored

(line 12) and the best value updated (line 13). Finally the best configuration is

returned on line 18. The complexity of the algorithm being O(MN ).
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Figure 4.1: Possible server allocations.

4.3 Scalability

To be suitable for data centre scale resource allocation, an algorithm must ac-

count for scaling in two dimensions: (i) the number of servers and (ii) the num-

ber of applications to be distributed across the servers. Much existing literature

has focused on small number of servers, typically with two applications, mean-

ing that little consideration has been given to scalability. However when the

number of applications increases, the space of possible combinations increases

dramatically. The number of combinations for a given number of servers, s,

and applications, a, that wholly allocate all servers can be calculated using(
s+a−1
s

)
. The graph in Figure 4.1 shows the number of combinations for up to

20 applications and 2048 servers.

To understand the rate at which the states could be examined we developed

a benchmark using the C programming language to iterate over the number

of states. Testing this on a 2GHz AMD Opteron demonstrates that 1.2 × 108

51



4. Scalability of Dynamic Resource Allocation Policies

Algorithm 6 Highly Scalable Algorithm.
1: Let N be the number of applications
2: Let a1, ..., an be ranked applications
3: Let m1, ...,mn be minimum resource of ai
4: Let ta be the throughout of a server of a
5: Let na be number of servers allocated to a
6: Let I be idle servers
7: for i = 1; i < N ; i+ + do
8: p = predictedDemand(ai)
9: S′i = p

ta
10: if S′i < Si then
11: Append Si − S′i servers to I ′

12: S′i → Si
13: end if
14: end for
15: for i = 1; i < N ; i+ + do
16: if Si 6= S′i then
17: if I ′ > 0 then
18: if I ′ > S′i − Si then
19: Move S′i − Si from I ′ to Si
20: break
21: else
22: Move all servers in I ′ to Si
23: end if
24: end if
25: for j = N ; j > i+ 1; j −− do
26: if S′i − Si ≤ Sj −mj then
27: Move (S′i − Si) from Sj to Si
28: Break
29: else
30: Move (Sj −mj) from Sj to Si
31: end if
32: end for
33: end if
34: end for
35: Let I = I ′
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Figure 4.2: Heuristic framework scaling.

states can be iterated over per second, excluding the computation of any metric

for each state. The time taken for a DRA algorithm to iterate over all possible

allocations and select a configuration forms the lowest bound on the interval

between allocations since the calculation for a new state may depend on cost to

migrate to the new state from the current state.

The algorithm expressed by the general class may be easily parallelised. To

examine the potential speedup an MPI benchmark was developed and executed

on a dual processor 16 core AMD Opteron running at 2GHz. The parallelisation

was implemented via a partitioning of the outermost loop across all available

processors. This offers a good balance of work across all processors with a

maximum difference of a single iteration of the outer loop between the largest

and smallest amounts of work. The parallelised benchmark was executed three

times and the averaged results of this parallelisation are shown in Figure 4.3.
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Figure 4.3: State exploration parallelisation speedup.

4.4 A Demand Based Approach

To address the exponential complexity illustrated in Section 4.2, we now propose

a template for the development of DRA algorithms suitable for the management

of applications and resources at large-scale. The template utilises three distinct

phases: (i) the first phase is a preprocessing step done at system setup, (ii) the

second phase requires knowledge of throughput of each application, and (iii) the

third part runs periodically to reallocate servers to applications.

In the first stage, the applications are ranked in accordance with a pre-

defined metric. We do not provide a specific metric here, as the framework aims

to be adaptable, but suitable examples include business criticality, in the context

of a single organisation, or SLAs in the context of a shared hosting provider.

For the second stage, throughput may be measured through performance testing

on hardware that is equivalent to that of the deployment target, performance

modelling, or measured online at runtime. The accuracy of the performance

analysis undertaken will have an impact on the allocation of resources.

Workload prediction for Web applications is a well studied area [40, 81, 9].

Work in [40] characterises demand patterns and uses these to predict future

demand for resources, while the authors of [9] apply a number of workload

prediction schemes to the allocation policies presented in [80] and demonstrate

that considerable increases in profit achieved by the system are possible when

workload prediction is enabled.

The periodic stage of the proposed framework is shown in Algorithm 6.
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Lines 6-13 reclaim resources from applications which are over provisioned for

the next stage. Lines 14-32 allocate resources across applications which are

under provisioned for the next period. Lines 16-21 allocate resources from the

reclaimed servers if any are available. Lines 23-30 allocate resource from the

lower ranked applications to higher ranks, subject to their minimum server

allocation. Line 33 returns remaining idle servers. There are several options for

servers which remain unallocated after all allocations have been made, and we

do not specify any actions here. They may be allocated amongst applications

either equally or by some weighted metric. Alternatively they may be switched

into a low power mode, if the policy is aiming to minimise power consumption.

Where requests are not serviced within the agreed service level agreement,

the hosting provider must pay some penalty. In this chapter we consider the

penalty of poor requests to be the inverse of the ranking of the application, i.e.

applications of higher order have a higher value to the system and therefore a

higher penalty for requests served outside of the SLA.

This framework provides a heuristic to solve the NP-hard allocation problem

discussed in Section 4.2. This approach is heuristic-based as (i) it relies on

predicted demand to calculate the required resource to be provisioned, and (ii)

a ranking of applications to guide resource allocation. We specify a ranking

of applications to satisfy the requirements of the most important applications

first, thus improving the best-case performance of the algorithm. The worst-case

complexity of the framework is O(N2) when scaling the number of applications.

This algorithm is independent of the number of servers. Figure 4.2 shows the

scalability of the framework across 20 applications and 2048 servers.

4.5 Experimental Setup

In our experiments we use applications with identical characteristics to limit

external parameters. Each application is defined as serving four request types,

with service durations of 15, 20, 45 and 110ms ,which represent proportions
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0.40, 0.30, 0.25 and 0.05 of the requests respectively. The requests received

for each application are distributed by a round robin scheduler to all servers

dedicated to the application.

The server reallocation process is comprised of the following steps. Firstly,

the round robin scheduler server stops dispatching requests to the server being

migrated. Next, the server completes all requests currently queued and the

application is stopped on the server. The new application is then deployed to the

server. Finally, the server is added to the scheduler and begins to service requests

for its new application. The time for the un-deployment and deployment of an

application is set at 30 seconds, which is derived from the automated removal

and redeployment of Daytrader into a Glassfish application server.

In addition to application performance, the number of failed requests in a

system can be an important indicator of overall system performance. This is to

say that serving requests quickly at the expense of failures is not desirable. In

this chapter we will also use failed requests as a metric to assess the behaviour

of each policy. A request is considered to fail if the response time exceeds 60

seconds or it is rejected due full server queues. The queued request limit is set

at 10000 requests per server.

To define a policy using the proposed framework we consider the priority of

our applications. Applications are ranked by their identifier such that Applica-

tion 1 is ranked higher than Application 2. We also require resource performance

knowledge. For our experiments the throughput of a single server is calculated

as 73 requests per/sec in our simulation environment. In order to select a work-

load prediction algorithm, we have evaluated several in the context of the 1998

World Cup Web traffic data [15]. To select a prediction algorithm we use the 24

hour period from the World Cup Web traffic data which had the highest num-

ber of requests. This occurred on 30th June 1998. We examine the following

algorithms:

• A last observation approach uses the workload from the previous period

as the predicted value for the next period. This works well in situations
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Table 4.1: Predictive algorithm results.

Algorithm Min Pred. Err. Max Pred. Err. RMSE
Last observation 333 601104 142574
Sample average 376 2416625 814575

Simple moving average 805 944556 289467
Exp. moving average 553 815174 258210

where the workload does not fluctuate significantly between periods.

• A sample average considers the workload for the next period to be the

average of all periods observed. This works well where the workload is

constant.

• A simple moving average calculates an average of the previous five periods

to make a prediction. Older windows have no bearing on the prediction.

• An exponential moving average is similar to the simple moving average,

but it weights the previous periods placing the most weight on the most

recent period. In this test we have used five windows.

The predictive performance of these algorithms is shown in Table 4.1. The last

observation algorithm yields the lowest absolute error and the lowest root mean

squared error (RMSE) in prediction of the tested workload. However, this algo-

rithm is affected by large shifts in application workload. In practice this would

mean that the underlying platform may reallocate servers more often. The

exponential moving average provides a smoothed prediction of the workload,

which allows for clear incremental changes in resource allocation which should

remove the potential for significant resource migrations, thus the exponential

moving average was chosen as the workload prediction algorithm.

4.5.1 Performance Experiments

To verify the effectiveness of our framework we now compare the performance of

the example policy against a policy from the general class and a static resource
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Figure 4.4: Predictive algorithm performance.
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allocation. The algorithm we have selected for comparison is the Average Flow

Policy, which is presented as algorithms 2 and 3 in Chapter 3. To avoid modifi-

cation of the original algorithm, two applications are used for the performance

comparison.

The workload used for the simulations is derived from the log files of the

1998 Football World Cup. The workload selected for each application is an

8 hour section from the 24 hour period. Application 1 is subject to a higher

workload than Application 2; 56582546 requests versus 29208765. The time

period selected for Application 1 is 16:00 until 24:00 while Application 2 uses

requests issued between 12:00 and 20:00. The workload for Application 1 varies

between 105 and 3816 requests per second while the workload for Application

2 varies between 202 and 3118 requests per second.

The number of servers used in this experiment is 64, which are initially dis-

tributed equally between the two applications. The period between executions

of the DRA policies is 15 minutes.

Since the Average Flow Policy allocates all available servers to applications,

we do the same for the framework derived policy. Servers which are idle after

allocations have been made will be distributed across applications proportionally

by rank.
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4.5.2 Scalability Experiments

For scalability experiments eight applications were distributed across 64 servers,

each of which was subject to a different workload. Applications were initially

distributed evenly across servers. Workloads were synthetic, based on sine waves

of varying frequency and amplitude, and are shown alongside the respective

results in Figures 4.6 and 4.9. The workload durations in these experiments

were 8 hours, and the periodic reallocation time is 15 minutes.

4.6 Results

In this section, we compare the performance of the policy derived from the

proposed framework against that of the Average Flow Policy and a static allo-

cation. We compare the results based on two criteria; (i) application response

times and (ii) the number of requests serviced.

The top graphs in Figures 4.7 and 4.8 show the workload for each application,

the middle graph shows the server allocations made for the duration of the

experiment and the bottom graph gives the 95th percentile response time for

each applications. Figure 4.5 omits the server allocation graph.

From Figure 4.5, the static server allocation performs best, in terms of re-

sponse time, as its response times never exceed four seconds. The Average Flow

Policy demonstrates the best results for the results for Application 1, but this

improvement comes at the expense of the response time for Application 2. The

response time at 325 minutes exceeds the 60 second timeout for the requests.

From Figure 4.8,the framework derived policy delivers the worst response time

for Application 1. However, this remains below the timeout threshold for the

duration of the experiment. This policy also delivered intermediate results for

Application 2, but, again, the response time remained below the threshold. Ta-

ble 4.2 gives details of the request failures observed by each application under

each policy.

The performance of the framework policy is guided by the mechanism used
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Figure 4.5: Static allocation results.
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to predict workload. The exponential moving average uses the values observed

from the 5 previous windows. Where the workload trend changes, for example

Application 1 at 300 minutes, the predication does not capture the increase and

the policy migrates servers away from Application 1, which is not the desired

behaviour.

The static allocation policy had a failed request rate of 7.03% for Application

1 and 1.24% for Application 2. The Average Flow Policy demonstrates a 0%

failure rate for Application 1, but a large 62.73% failure rate for Application

2. The framework policy delivers a failure rate of 2.93% for Application 1

and 5.28% for Application 2. The framework derived policy delivers the lowest

overall failure rates from all three of the policies.

In Section 4.5 it was stated that the priority of Application 1 was double

60



4. Scalability of Dynamic Resource Allocation Policies

Figure 4.6: Static allocation at scale results.
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that of Application 2. We use this to infer a cost for each allocation policy

by considering request failures for Applications 1 and 2 to have an associated

cost of 2 and 1 units respectively. We may then use this metric as a basis for

comparison. The static allocation incurs a cost of 8,321,175, the cost of the

Average Flow Policy is 18,321,675 and the cost of the framework derived policy

is 4,861,395. Hence, the framework policy shows significant cost advantages.

4.6.1 Scalability Results

We now present a larger scale deployment of applications than the performance

study. Tables 4.4 and 4.3 show the time taken for the Average Flow Policy and

the Framework Policy to make a switching decision. The times for the Average

Flow Policy are derived from combining the number of states to be examined
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Figure 4.7: Average Flow policy results.
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with a timed value for Algorithm 3. A single execution of the algorithm was

measured on a 2.0 GHz Intel Core 2 Duo processor and took 1000 nanoseconds

in the best case over 20 runs. The times for the Framework policy were obtained

from actual executions of the policy.

The Average Flow Policy is currently designed for allocation of servers be-
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Figure 4.8: Framework policy results.
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tween two applications. To avoid modification of the original algorithm we shall

not consider it under the scaling experiment parameters of 8 applications across

64 servers. Table 4.3 shows that under these circumstances the policy would

take 22 minutes to develop a new allocation. This exceeds the periodic allocation

interval of 15 minutes. Thus the lowest possible bound for server reallocations
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Table 4.2: Request failure percentages under performance experiments.
Requests Static Alloc. Average Flow Framework

App.1 56582546 7.03 0 2.93
App.2 29208765 1.24 62.73 5.28
Total 85791311 5.06 21.36 3.73

Table 4.3: Approximate execution time for Average Flow Policy.
Servers 16 32 64 128 256 512
2 Apps. 1.7e-5s 3.3e-5s 6.5e-5s 1.3e-4s 2.6e-4s 5.1e-4s
4 Apps. 9.7e-3s 6.6e-3s 4.8e-2s 0.4s 3s 22s
6 Apps. 2.0e-2s 0.4s 11s 5 mins 3 hours 4 days
8 Apps. 2.5e-1s 15s 22 mins 38 hours 184 days 61 years
10 Apps. 2.0s 6 mins 1 Day 1 Year 490 years 2.3e5 years

is the decision time of the algorithm. We will exclude the Average Flow Policy

from the evaluation of the Framework policy.

The results for the scaling experiment are shown in Figures 4.6 and 4.9.

Figure 4.6 shows the performance obtained from a static allocation. The static

allocation exhibits more variation in response time than the dynamic policy.

The performance of the framework policy is shown in Figure 4.9. It is clear

that the dynamic resource allocation is beneficial to the response time of the

applications, as the highest 95th percentile result is 20 seconds.

The failures delivered by the system with a large number of applications is

reduced by 21% over the static allocation by the derived policy. However, the

distribution of failures is also significant. The failure results for both allocation

schemes can be seen in Table 4.5. The static server allocation delivers a zero

failure rate for Applications 4-8. The failure rate for Application 8 under the

Framework Policy is 1.99% which is due to migration of servers from this ap-

plication to applications with higher priorities. In this case the static allocation

outperforms the policy as the application is over provisioned for the duration

of the experiment. A statically allocated Application 1 is under provisioned at

points in the experiment which causes request failures that do not occur when

the policy is used.

The framework policy relies on the applications being ranked by some metric
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Table 4.4: Recorded execution time for Framework Policy.
Servers 16 32 64 128 256 512
2 Apps. 5.0e-5 s 6.2e-5 s 5.8e-5 s 5.1e-5 s 5.3e-5 s 5.4e-5 s
4 Apps. 7.7e-5 s 8.9e-5 s 9.1e-5 s 8.9e-5 s 8.9e-5 s 9.8e-5 s
6 Apps. 9.7e-5 s 1.2e-4 s 1.1e-4 s 1.2e-4 s 1.1e-4 s 1.2e-4 s
8 Apps. 1.1e-4 s 1.3e-4 s 1.5e-4 s 1.5e-4 s 1.5e-4 s 1.5e-4 s
10 Apps. 1.4e-4 s 1.7e-4 s 1.9e-4 s 1.8e-5 s 2.1e-4 s 1.9e-4 s

Figure 4.9: Results for framework derived policy at large-scale.

    0

  100

  200

  300

  400

  500

  600

  700

 0  60  120  180  240  300  360  420  480

R
e

q
u

e
s
ts

 p
e

r 
s
e

c
o

n
d

Time (minutes)

    0

    8

   16

   24

 0  60  120  180  240  300  360  420  480

S
e

rv
e

rs

Time (minutes)

    0

10000

20000

30000

40000

50000

60000

 0  60  120  180  240  300  360  420  480

9
5

 P
e

rc
e

n
ti
le

 R
e

s
p

o
n

s
e

 T
im

e
 (

m
s
)

Time (minutes)

Application 1
Application 2

Application 3
Application 4

Application 5
Application 6

Application 7
Application 8

in order to allocate servers to higher ranked applications in favour of those which

are of a lower rank. If we now consider that the applications are ranked such that

application 1 has the highest priority, with a cost of 8 units for failed requests

and application 8 has the lowest priority, with a cost of 1 unit for failed requests

we can see that the static allocation costs 440,128 while the policy results cost

only 59,181. The policy yields a 7-fold reduction in the cost of failed requests.
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Table 4.5: Request failures under scalability experiments.
Static Policy Framework Policy

Requests Failed Failure Rate (%) Failed Failure Rate (%)
App.1 14168988 41051 0.29 0 0
App.2 8672845 3192 0.04 0 0
App.3 10490296 14896 0.14 1766 0.02
App.4 6082631 0 0 855 0.01
App.5 5629034 0 0 0 0
App.6 2159599 0 0 259 0.01
App.7 4744868 0 0 0 0
App.8 2186604 0 0 43533 1.99
Total 54134865 59139 0.11 46413 0.09

4.7 Implications and Discussion

The choice of resource provisioning algorithm will vary the benefit obtained for a

given workload. Both in terms of its decisions and the frequency at which it can

generate new allocations. An algorithm which takes a long period of time time

to compute cannot react as quickly as an algorithm that executes faster. This

forms the lowest possible bound on the periodic resource reallocation. Thus the

scalability of the algorithms in both applications and servers must be considered

when evaluating resource allocation policies.

4.8 Summary

In this chapter, we have demonstrated that the DRA problem is NP-hard, and

shown that the scalability of a general class of resource allocation algorithms

is unsuitable for use in a modern data centre. In response to this we have

proposed a framework for the development of DRAs with improved scalability.

Further, we have also developed an instance of the framework and compared

its performance against that of the general class for a real-world workload to

demonstrate the scalability of the proposed resource allocation framework.
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CHAPTER 5

Addressing Resource Failure in the Cloud

In order to realise effective and economic models for cloud computing, service

providers are turning to large scale, efficient data centres and high speed net-

works, as well as dynamic resource allocation. To maximise resource utilisation

and operational efficiency, and hence profitability, a cloud provider must also

make many practical considerations in the design of a data centre, including

those relating to physical space, connectivity, power and cooling. These consid-

erations typically make it practical for computational resources to be arranged

in collections, hence the necessity of rack based application servicing. However,

this arrangement typically leaves collections of resources dependent on common

utilities, such as power and network connections, as well as exposing them to

a host of co-location issues, such as physical impact and disconnection. This

environment is particularly consistent with the notion of a cloud provider offer-

ing Infrastructure as a Service [73], where an elastic computational resource is

leased to a organisation, who must then configure the resource for use. Under

this model an organisation would typically be billed for the resource utilised,
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5. Addressing Resource Failure in the Cloud

thus providing flexibility in situations where workloads are volatile.

Given the scale at which physical resources exist in these environments,

failures will be the norm rather than the exception [44]. A single resource

failure in a large infrastructure may have limited impact on the system as a

whole. In a homogeneous environment the reduction of total system capacity

is 1
N , where N is the number of servers in the infrastructure. The impact to

a single application may be significant if there are only a few replicas of the

service available, and the excess capacity across all replicas is less than 1
A where

A is the number of application instances.

In Google’s data centres, servers are organised into clusters of 1800 servers,

housed in racks of 40-80 servers. In [33] it is suggested that in the first year of

operation the following reliability issues will occur:

• One thousand individual machine failures will occur,

• Thousands of hard disks will fail,

• A power distribution unit will fail causing the failure of 500-1000 machines

for six hours

• Twenty racks will fail, each removing 40-80 machines from the network

• Five racks will “go wonky” leading to half of the network packets going

missing

• There is a 50% chance that the cluster will overheat, taking down most

of the servers is less than 5 minutes. This can take 1 to 2 days to recover

from.

However, when problems such as power outage or network switch failures

occur, a whole rack can fail, leading to multiple servers being unavailable. Fail-

ures at such a massive scale are very likely to significantly reduce the efficiency

and hence profitability, of the system. Thus, two possible ways of addressing

this problem of multiple servers being unresponsive are:
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1. Design polices which are failure aware, such that they might make consid-

erations for resources failures in allocating resources;

2. Augment existing policies to make them more resistant to resource failures.

The benefit of this approach is that current policies may continue to be

used.

3. Execute the DRA policy when a failure is encountered. This has the

lowest overhead where there are no failures, however where failures occur

re-executing the policy may incur significant costs.

For the design of failure-aware DRA policies, it is unrealistic to expect or-

ganisations to modify their policies to capture failure awareness. Rather, it

would be better if a failure-aware module can be designed that can work with

any DRA currently being used. In this chapter, we propose a modular archi-

tecture for failure-aware DRA, whereby a failure-aware allocator module works

in tandem with a DRA module. The failure-aware allocator module ensures

that resource allocation are made in such a way so as to minimise the impact

of rack failures on running applications. The novel property of our approach is

that the system has very little overhead as failure-aware allocator only performs

some “robustness” balancing of applications, without any additional migrations

required to rebalance at any point.

5.1 Specific Related Work

In previous chapters we have presented the performance improvements available

through the use of dynamic resource allocation. However the environments in

which DRA policies are tested are free of resource failures. Work in [22] offers an

approach for virtual machine placement in a cloud for the purpose of minimising

the round trip time of a request by placing the server closer to clients in a

geographic sense and in doing so potentially improves the robustness of the

application through wider geographic distribution of resources.
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Resource failures in a data center are a well covered topic in the litera-

ture [56, 76, 79]. The coverage of resource failures has mostly concerned failures

affecting a single hardware resource, excluding the possibility of large scale fail-

ures. The authors of [76] give an insight into the failure rates of servers in a

large datacenter, and attempt to classify them using a range of criteria. Work

in [44] develops a cloud ready platform for testing a range of failure scenarios,

including rack based failures. This demonstrates the need for systems which

are able to mitigate against large-scale failures. The issue of resource failures

in cloud computing is addressed in [68], where the authors develop a policy to

partition a resource between high-performance computing application and Web

service applications in the context of single resource failures. The work in this

paper increases the scale of the resource failure and in doing so increases the

number of applications affected by the failure.

The issue of rack-awareness has been considered to some extent by [63], part

of which is a file system, known as HDFS, that can account for rack distribu-

tion when storing data. Our work differs from [63] as our algorithm works in

conjunction with a DRA system at the level of Infrastructure as a Service while

Hadoop operates at the level of Platform as a Service. Additionally Hadoop

offers no support for dynamic reorganisation of data stored under HDFS as

new resources are added, whereas our platform distributes across all racks at all

times.

5.2 Models

In this section, we present the system and fault models adopted in this paper

as well as enunciating our assumptions.

5.2.1 System Model

We consider an environment where a set of applications A = {a1, a2, ..., an} are

deployed across a set of racks R = {r1, r2, ..., rm}. A rack ri consists of a set of
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servers Si = {si,1, si,2, ..., si,k}. A server si,j may service requests from only one

application at any time. We assume that (i) all servers si,j are homogeneous in

that they provide identical resources, and (ii) each server has all the resources

required by an application, i.e., no communication between servers is required

for application servicing. Such a system model is typical in cloud computing

environment or large scale datacenters.

5.2.2 Fault Model

Given the described system model, failures are expected to be the norm rather

than the exception [44] due to the very large number of computing hardware

present. We consider crash failures to occur at a rack level, where this type

of failure may be caused by, for example, power outages or network switch

failures. When such a rack ri fails, all the servers si,j ∈ Si become unavailable.

We assume a failure mode where at most a single rack can fail at any one time.

5.3 Metric for Failure-Awareness

Well designed enterprise systems can allow for increased throughput via hori-

zontal scaling of resources with minimal overhead [43]. The system may scale

linearly with the addition of resources which do not overload any of the other

tiers. In a homogeneous server environment of n servers, each server contributes

1
n of the total system capacity.

A rack failure will impact on multiple applications depending on the compo-

sition of the rack which is affected. To meet performance requirements, resource

allocation will have to take place. However, the resource allocation needs to be

cognisant of the failures. For example, in HDFS [63], an application will be

located on at least two different racks, so that failure of one rack does not cause

the application to become unavailable. To assess the impact of the failure of

rack ri ∈ R on a given application aj ∈ A, we use the proportion of servers

hosting application aj that will be lost due to the failure of the rack ri to mea-
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sure the loss of application capacity for aj , and base reallocation decisions on

that proportion.

The metric we propose, called capacity loss, is shown as equation 5.1, where

ri is the rack, aj is an application and sji is the number of servers in rack ri

hosting application aj , and Saj is the number of servers hosting application

across all racks, is used to capture the impact the failure of rack ri will have on

the application aj in terms of capacity.

CapacityLossri,aj
=

sji
Saj

(5.1)

It is clear that a capacity loss of 1 is undesirable, as it means that all the servers

hosting application aj are located in rack ri. In an ideal, situation, the capacity

loss would be 0. Thus, an objective is the balanced minimisation of the capacity

loss metric for all applications across all racks.

5.4 A Modular Architecture for Failure-Aware

Resource Allocation

In this section, we present a modular architecture, in Figure 5.1, for failure-

aware resource allocation in the presence of rack failures.

In Figure 5.1, the DRA component represents the dynamic resource alloca-

tion algorithm that is used by the cloud computing environment. The DRA

component takes the forecasted application workload as input, and outputs a

set of resource allocation transformation for performance reasons. For example,

such an output will be of the following type:

• Take 4 servers from application 4 to host application 2.

• Take 2 servers from application 1 to host application 3.

However, such DRAs are not rack-aware. Specifically, DRA outputs do

not specify the racks where the resource transformation is to take place. In
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DRA Policy

Failure-Aware
Allocator

Robustness
Metric

Racks

Resource Allocation
Transformation

WorkloadResource

Augmented Resource 
Allocation Transformations

Figure 5.1: A modular architecture for failure-aware resource allocation.

this chapter, one of our contributions is to develop a component, namely the

Allocator (see Figure 5.1), that performs the rack-aware resource transformation

in that it augments the resource transformation needed with rack information,

i.e., it specified the racks where the transformations are to occur. For example,

with an allocator module, our previous example becomes:

• Take 4 servers from application 4 to host application 2 (2 servers from

rack 1 and 2 servers from rack 3).

• Take 2 servers from application 1 to host application 3 (1 server from rack

2 and 1 server from rack 2).

However, with the non-zero probability of rack failures, the allocator needs

to be failure-aware in that it needs to perform these resource transformation in

such a way to minimise the capacity loss (see Equation 5.1) for each application.

The algorithm for the failure-aware allocator is shown in Algorithm 7. In a

nutshell, Algorithm 7 searches for all racks where application af is being hosted.

Then, the failure-aware allocator chooses the set of racks, denoted Rtf , where

the capacity loss for application af on a rack ri (where ri ∈ Rtf is maximum)
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and capacity loss for application at on ri is minimum. Practically, this implies

that it is better to remove servers for application af from a rack riwhere the

capacity loss for af is already high. Further, it also means that it is better to

allocate servers to host application at on rack ri where application at already

has minimum capacity loss. Once these racks Rtf are identified, one of them is

picked at random.

Algorithm 7 Balanced migration algorithm.
Input: at The application to be migrated to
Input: af The application to be migrated from
Input: R the set of all racks
Output: The optimal rack for migration
1: Let c1 = ∅
2: Let c2 = ∅
3: Let c3 = ∅
4: Let o be an optimal rack
5: Let mt represent the best value for at
6: Let mf represent the best value for af
7: Initialise mt = +∞
8: Initialise mf = −∞
9: for all r ∈ R do

10: if r contains af then
11: c1 ← r
12: end if
13: end for
14: for all r ∈ c1 do
15: vt = CapacityLossr,at

16: if vt ≤ mt then
17: if vt < mt then
18: c2 = ∅
19: end if
20: c2 ← r
21: mt = vt
22: end if
23: end for
24: for all r ∈ c2 do
25: vf = CapacityLossr,af

26: if vf ≥ mf then
27: if vf > mf then
28: c3 = ∅
29: end if
30: c3 ← r
31: mf = vf
32: end if
33: end for
34: return Random member of c3
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Figure 5.2: Timeline of events.

In the next section, we conduct experiments to evaluate the efficiency of our

proposed architecture and failure-aware allocator algorithm.

5.5 Experimental Setup

5.5.1 Failure Scenario

In our experimentation, we considered a DRA policy that executes periodically.

Figure 5.2 describes a typical series of events in our experimental environment.

At ti, the DRA policy makes a decision based on the application workloads and

returns a set of resource transformations (see example in Section 5.3) to meet

the performance requirements. This set of transformations is taken as the input

to the failure-aware allocator component, which then decides on which racks to

enable these transformations. Specifically, the failure-aware resource allocator

module augments the resource transformations with rack location information.

A rack failure tf occurs such that ti < tf < ti+1, where ti+1 is the period for

the next DRA decision. We do not consider the possibility of a server failure

during a migration in this work.

Thus, with the proposed modular failure-aware DRA framework, we expect

the system to better handle rack failures. To do this, we measure the number of

failed requests between ti and ti+1. It is the aim of the research presented in this

paper to minimise the system performance loss incurred in the period between

tf and ti+1 through rack-awareness in the resource allocation mechanism.
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5.5.2 Resource Allocation

Much current research in DRA policies does not explicitly consider resource

failure. In such works, each application is viewed as a logical collection of servers

which are equal. In this case, servers may be migrated between applications

arbitrarily. We use this näıve approach as our benchmark, selecting servers

to be migrated as required with no regard for their location. We refer to this

allocation mechanism as the random allocator.

Under the balanced resource allocator, which uses the CapacityLoss metric

shown in Equation 5.1 to assign applications, we attempted to minimise the

potential capacity loss in the event of a rack failure. In Section 5.3, we decoupled

the failure-aware allocation mechanism, in the allocator, from an abstract DRA

policy. For our experiments we employed this approach and used the resource

allocation algorithm shown in Algorithm 6 (Chapter 4). The algorithm uses

workload prediction and applications which are ranked by criticality (this may

be governed by SLA or a business metric) to partition resources.

To reduce experimental uncertainty we used 10 identical applications. Each

application processes a single type of request with a fixed service duration of

100ms.

The simulated datacenter was comprised of 400 homogeneous servers that

are housed in racks. Each rack contains 40 servers, giving a total of 10 racks.

Initially the servers were allocated evenly between applications, i.e., 40 servers

per application, with 4 servers per application per rack. The initial allocation

of servers to racks was done such that the minimum capacity loss for each ap-

plication, i.e., maximum robustness for each application, was achieved. When

a server was reallocated, it first had to complete the servicing of current and

queued requests, before migrating to the newly assigned application. The pro-

cess of server migration was fixed at 30 seconds.

As the number of applications is high, we use synthetic sine-based workloads

of various frequencies and amplitudes. In all cases the total workload of the sys-

tem is greater than 75% of the total system capacity. The individual workloads
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are shown in Figure 5.3, and the total system utilisation is shown in Figure 5.4.
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In this paper, we use a predictive resource allocation algorithm (Algorithm

6, Chapter 4) that uses an exponential moving average to forecast the workload

for the next interval and allocates resources accordingly. The algorithm ranks

applications in accordance with their importance (this may be governed by SLAs

or a business metric) and greedily allocates resources to applications in order of

priority.

We selected five timings for rack failures. Each rack was then failed at each

of the timings in a separate simulation. The times selected for the failures are

645, 1245,1845, 2445 and 3045 seconds. Each simulation run contains a single

failure at one of the stated times in a single rack. The total simulation time was

3600 seconds.

5.5.3 Expected Results

Based on our proposed framework, we expect the following result from our

experiments, which we will verify in the results section (Section 5.6):

- We generally expect the balanced resource allocator (Algorithm 7) to have

less failed requests due to the fact that it creates allocation which min-

imises the capacity loss for each application across each rack.

- We anticipate that the random allocator may yield better performance

in rare situations, where a rack is lightly leaded with respect to a single

application, though this is expected to be offset by a higher application

exposure, i.e, a high value of CapacityLoss, for an application on the same

rack.

5.6 Results

In this section, we present the results of our experimentation. The results pre-

sented give (i) details of the overall system impact, (ii) analysis for each failure

timing and (iii) discussion of the effect of failures on each application. Any
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difference is between the balanced and the random allocator, where a positive

difference represents better performance for the balanced allocator.

5.6.1 Overall Results

Allocator Failure1 Failure2 Failure3 Failure4 Failure5
Random 3.20 2.83 2.42 1.87 1.60
Balanced 3.16 2.75 2.27 1.85 1.60
% Imp. 1.12 2.87 5.95 1.09 0.02

Table 5.1: Maximum total request failure percentage for each failure.

We now present the overall impact of a rack failure on the total failure rate over

the duration of the experiment. Firstly, we consider the impact of the allocation

technique on the maximum percentage of failed requests for each failure. Each

value shown in Table 5.1 reflects the percentage of failed requests over the

duration of a simulation. The results demonstrate that the balanced allocator

reduced the maximum impact of a rack failure on the overall failure rate, as

compared with the random allocator, as it consistently yields an improvements

in the percentage of failed requests. The maximum observed improvement is

nearly 6%. This is a considerable improvement, given that it was measured over

the full duration of a simulation, which dilutes the number of failed requests

across the total number of request during the simulated duration.

The standard deviation of the overall failure percentage for each rack and

failure is shown in Table 5.2. The nature of the balanced allocator caused a

consistent reduction in the standard deviation of the failure rates. This can

be explained by the fact that the balanced resource allocator (Algorithm 7)

attempts to reduce each application’s capacity loss, thereby reducing the devi-

ation in terms of failed requests. The most significant improvement can be seen

in Failure 3, though it should be noted that the lowest percentage improvement

is nearly 8%.
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Allocator Failure1 Failure2 Failure3 Failure4 Failure5
Random 0.0588 0.0373 0.0710 0.0433 0.0105
Balanced 0.0475 0.0309 0.0358 0.0237 0.0096
% Imp. 19.1851 17.1305 49.4922 45.2765 7.9847

Table 5.2: Standard deviation of failures across all racks.

5.6.2 Failure Results

Failure 1 in our experimentation occurs at 645 seconds, after two migration

intervals. Table 5.3 contains the failures observed for each application, under

both the random and balanced allocators. As mentioned before, we crashed

each of the 10 racks in separate experimental runs at the 645 seconds mark.

The minimum/maximum columns represent the minimum/maximum number of

failed requests across all 10 failures. The rightmost column of Table 5.3 presents

the percentage improvement in standard deviation of the balanced allocator over

the random allocator.

We make the following two observations. For all applications, the minimum

number of failed requests under the random allocator is equal to or better than

the balanced allocator, and in terms of maximum values, the balanced allocator

performs better than the random allocator. The first observation is due to the

fact that the random allocator can place fewer instances of an application on a

rack than the balanced allocator, i.e., an application can have a capacity of 0 on

a rack, which never happens in the balanced algorithm (unless an application

has no servers allocated), than the balanced allocator. On the other hand, for

the maximum values, the random allocator may allocate servers in a rack to

applications in such a way that the capacity loss is very high, resulting in very

high number of failed requests.

Table 5.3 shows the difference in standard deviation between the two alloca-

tors. The result for Application 5 is due to a minor difference in the round robin

scheduling of requests across servers. Application 1 has an identical failure rate

under both allocators. The best and worst rack configurations for each appli-

cation under both allocators are shown in Figure 5.5. The maximum variation
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Figure 5.5: Range of allocations giving best and worst results for failure 1.

in allocations for the random policy is 6, while the balanced policy achieves a

maximum variation of 1, which shows that Algorithm 7 of the balanced allocator

achieves better “robustness” balancing than the random allocator.

This pattern of results is corroborated by the results from failures 2-5, which

are given in Tables 5.4-5.7. This supports the first of our expected results, as

proposed at the end of Section 5.5

5.6.3 Application Results

Table 5.8 gives the range of improvement provided by the balanced allocator

across all failures and across all racks. The benefit of the balanced allocator

varies between -0.42% and 96.80% across each application.
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5. Addressing Resource Failure in the Cloud

Table 5.8: Application results across all failures and racks (percentage change
in standard deviation).

App. Min (%) Max(%) Average(%)
1 0% 63.89% 29.27
2 55.24 69.80 62.49
3 55.65 72.63 64.76
4 26.14 57.02 43.49
5 -0.42 46.55 22.70
6 51.95 56.02 54.87
7 75.41 96.17 87.27
8 46.48 96.80 70.28
9 56.03 71.27 63.27
10 16.74 80.78 44.92

In two cases Application 1 gains no benefit form the allocator, due to identi-

cal allocations from both policies. The balanced allocator improves the deviation

of Application 1 by an average of 29.27%.

When using the balanced allocator Application 5 has a marginally worse

variance (-0.42% and -0.25%) than the random allocator. This is due to the

round-robin scheduling of requests to servers causing a slightly higher load at

the point of failure.

5.7 Discussion

The results presented have demonstrated the need for failure awareness to be

incorporated into systems which operate under DRA policies. The most de-

sirable approach for achieving this would be one that requires no modification

to the DRA policies already in use, i.e., the most desirable approach would be

composing the DRA policy itself with a failure-aware allocator component. The

modular architecture proposed in this paper has shown that, by decoupling the

allocation mechanism from the DRA policy, the performance-oriented goals of

the DRA can be separated from the conflicting aim of improving application

robustness.

Once the decoupling of the DRA policy and allocation mechanism has been

achieved, the focus turns to the function of the allocation mechanism itself. The
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metric proposed in this chapter, capacityLoss, serves to quantify the exposure

of an application, e.g., where capacityLoss = 1 for a given application, that

application is completely exposed to a failure of the rack on which it is hosted.

This focus on application exposure is motivated by the fact that, while it is

reasonable to balance applications across racks in the context of static allocation,

this is not possible under existing DRA policies, which assume the existence of

a common, un-partitioned resource pool.

The proposed modular architecture and balanced allocation mechanism have

been shown to reduce the impact of failures on applications being serviced across

racks. Interestingly, the random allocation mechanism was shown to provide the

lowest absolute impact for any single application when the failed rack was lightly

loaded with respect to the application, i.e., when the capacity loss of that appli-

cation on a rack was minimal. However, this is not necessarily positive, as for

this light loading to occur, another rack may be heavily loaded. Results aver-

aged across all racks demonstrate significant improvements in the mean number

of failed requests for the balanced allocator. In addition to the average case, the

balanced allocator exhibited lower deviations than the random allocator. Since

rack failures are inherently unpredictable, minimising the average case is clearly

of great benefit when operating at large-scale. In turn, this represents lesser

exposure to loss of income due to unforeseen unavailability of applications.

As the magnitude of the systems operating under DRA policies increases,

the scale and frequency of the problems addressed in this paper will similarly

increase. Hence, as failures become the expectation rather than the exception

for large-scale systems, effective resource allocation and modular architectures

that facilitate a separation of concerns will become increasingly important for

cloud providers offering Infrastructure as a Service.
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5.8 Summary

In this chapter, we have made the following novel contributions: (i) we have

presented a modular architecture for failure-aware resource allocation, where

a performance-oriented DRA policy is composed with a failure-aware resource

allocator; (ii) we have proposed a metric, called CapacityLoss, to capture the

exposure of an application to a rack failure; (iii) developed an algorithm for

reducing the proposed metric across all applications in a system, and (iv) evalu-

ated the effectiveness of the proposed architecture on a large-scale DRA policy

in context of rack failures in order to show the efficiency of our approach.

The results presented demonstrate the effectiveness of our architecture and

mechanisms, with consistent improvements being observed in almost all situ-

ations. Indeed, when the average case is considered, the proposed approach

exhibits a minimum improvement of more than 22% and a maximum of more

than 87% across all failure situations.

The novelty of our modular, failure-aware architecture for resource allocation

is that it is applicable to, and will work in tandem with, any DRA policy.

Practically, this implies that organisations need not modify their DRA policy,

rather they can just integrate the failure-aware resource allocator to reduce the

exposure of applications to rack failures.
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CHAPTER 6

A Model for Resource Allocation Cost

The reallocation of resources between tasks is not instantaneous and as a result

the resource being reallocated is unavailable to do useful work for the period of

reallocation. This loss of capacity of the overall system may be deemed a cost

to the provider of the platform.

Chapter 4 presented a heuristic which offered improved scaling characteris-

tics over other resource allocation algorithms. However the heuristic presented

was näıve, as it did not take into account the potential reallocation cost for its

migration. The cost of the migration is not fixed, and grows depending on the

total number of migrations across the whole system. This chapter will develop

a generic model for resource reallocation that is suitable for use with many dy-

namic provisioning policies. In this chapter the cost of a migration is considered

to be the time taken for the new allocation to occur, as this metric may be easily

translated into other metrics as desired (i.e. unserviced requests).
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6. A Model for Resource Allocation Cost

6.1 Specific Related Work

The automated installation and configuration of resources is a valuable tool for

system administrators. It provides a consistent and dependable mechanism for

the deployment of new hardware. Network installation mechanisms for operat-

ing systems, e.g. Jumpstart for Solaris [5] and the fully automated installer [3]

for Linux, have existed for a long period of time. These mechanisms can install

an operating system over the network with little human interaction. These tools

work well in situations where machines require an identical image but become

cumbersome where many different configurations or variations exist.

An example of an early infrastructure wide management tool would be

Cfengine [23] initially developed in 1993 which offers a generic platform for

the central management of dedicated infrastructure, including network interface

configuration, mounting network filesystems and modification to local system

files.

In cloud platforms such as Nimbus [70], Open Nebula [54] and Eucalyp-

tus [36] virtual machine images containing a full software stack of operating

system, libraries and applications is deployed. Work in [61] offers a comparison

of the three cloud platforms and describes the process for VM deployment in

each.

There has been much research into the performance of allocation of re-

sources [17, 75]. In [17] the authors develop a benchmarking process for the

deployment of VM images in both Xen [6] and KVM [4] paravirtualised I/O en-

vironments. In this chapter a generic model of the process is developed, for use

by DRA policies. In [75] the authors examine the impacts of system utilisation

on the source and target machines of a live VM migration. It is demonstrated

that a source machine with high CPU utilisation has a significant effect on the

migration duration. The model presented here is based on a cold deployment

of a VM rather than a migration of a server, in order to present the addition of

a new VM.
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6. A Model for Resource Allocation Cost

Additionally, the effects of hardware caches underlying virtual machines is

discussed as a note in [74]. In this work hardware cache flushes have a negative

impact on the throughput of an application during a live migration.

[77] explores the impact of a live migration of a VM between two physical

hosts. The approach taken here differs, as it considers the reallocation of an

existing slot on a physical host, which is to say that this work considers the

undeployment time in addition to the deployment.

6.2 System Model

In this chapter two different migration mechanisms are adopted which have both

been observed in the literature. In the first a dedicated deployment is considered

in which a server is fully assigned to an application, and a reinstallation of

the entire software stack may be required. The second mechanism which is

explored is the deployment of a virtual machine which is assigned to a physical

host running a hypervisor. This environment is common in IaaS infrastructures.

These mechanisms are explained in more detail in Sections 6.2.1 and 6.2.2.

6.2.1 Dedicated Deployment

Under a dedicated deployment model, a resource migration may require a server

to be completely re-imaged. In our test cluster, the Debian based Fully Auto-

mated installer is used to manage system images. The process for re-imaging a

server under this scheme is:

1. Write FAI configuration file containing details of software packages and

post-install scripts required to build a system correctly.

2. Enable the configuration file for the host to be imaged.

3. Reboot the host.

4. The host requests an IP address via DHCP.
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5. After receiving an IP address, the host queries the TFTP server for a

kernel image which is then booted.

6. The minimal kernel queried the FAI install server for the correct configu-

ration and details of the package server to use.

7. Local hard disks are partitioned.

8. Software is installed via the standard apt-get mechanisms.

9. Post install scripts and OS configuration.

10. Log files are saved to install server and the system is rebooted.

In such environments it is common to have a local package mirror to reduce

external bandwidth requirements and also increase the installation speed.

6.2.2 Virtual Machine Deployment

A virtual machine image typically contains a complete software stack, from OS

and libraries to applications. Thus a cloud deployment can be modelled by the

generic model by considering a single stage for deployment and undeployment.

To explore the costs for a virtual machine deployment, Nimbus was selected as

the cloud platform.

The nimbus architecture can be seen in Figure 6.1. Clients request new

virtual machines from the service node which maintains a repository of virtual

machine images. These images are pushed to the physical hosts which comprise

of a host OS with a virtualisation enabled kernel, a small nimbus service, libvirt

to enable the programatic control of any host VMs and Xen as a virtualisation

platform. Once the image is received by the physical host it is booted by the

nimbus service through libvirt. Once booted the virtual machine requests an IP

address which makes it available to users over the network. Access control and

resource limitations for users are configurable on the service node.
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Nimbus VM Host

Nimbus Listener

libvirt

Xen 

VM VM

Client

Nimbus Service Node

Nimbus Service

Image Repository

Nimbus VM Host

Nimbus Listener

libvirt

Xen 

VM VM

Figure 6.1: An overview of the Nimbus architecture.

Under this deployment mechanism, it is clear that a significant duration may

be spent in the network transfer of the full virtual machine image, before the

virtual machine may be used.

6.3 The Cost Model

The cost model is designed to be generic, such that components may be omitted

where they are not required. The stages of the model are derived from the

switching process as described in Chapter 3 and the process outlined in [13].

An overview of the cost model is shown in Figure 6.2.

The cost model is composed of a multistage process. The key stages are:

• Completion of queued requests. This allows requests currently being pro-

cessed and those currently queued on the server to be processed. This

avoids the need to drop requests.

• Undeployment of an application. This stage of the model accounts for the

process of removing an application or a virtual machine from a server.

• Deployment of a new application. This stage of the model captures all

facets of installing a complete application inclusive of supporting programs

and libraries.
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Complete Queued 
Requests

Undeploy Application

Undeploy Application 
Server

Wipe Machine HD

Install OS

Install Supporting 
Libraries and Software

Install Application Server

Deploy Application

Optimise Application

ToptimiseTdeployTundeployTqueued

Figure 6.2: Cost Model Process Overview

Parameter Description Units
X Throughput of service Requests per second
R All requests in a system
r A single request type
n Number of requests in system
pr Proportion of requests of type r Percentage
S All components in a software stack
s An individual software component
hs The time taken to terminate component s Seconds
w The time taken to erase a hard disk Seconds
tinit Time taken to initialise reconfiguration Seconds
tinstall The time to restart a server for network install Seconds
tboot The time to restart a server after installation Seconds
ts The time to install software s Seconds
c The number of concurrent deployments
ds The total data transfer of a software component. Megabytes
b The minimum available network bandwidth MB per second

Table 6.1: Model parameters.

• Optimisation of an application. After deployment an application may

require a period of “warm up” time to deliver similar performance to its

peers.

6.4 Calculating a Stage Cost

In this section the method for calculating the cost of each stage is given. The

notation used in this chapter is shown in Table 6.1.
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6.4.1 Calculating Tqueued

An approximation of the duration for the completion of queued requests may be

calculated using equation 6.1. This works well when the service durations for

all requests types are similar (e.g. a Web application), or only limited system

information is present. Where more detailed information about the distribution

of requests is available equation 6.2 would provide a more accurate prediction.

Tqueued =
n

X
(6.1)

Tqueued =
∑
r∈R

npr
Xr

(6.2)

6.4.2 Calculating Tundeploy

This component captures the time taken to stop and remove an application from

a server. Applications may simply need to be stopped and undeployed from

within an application server (as in chapter 3) or may require all components

of the software stack to be stopped gracefully and removed. In the model we

assume that applications do not save state, which is a reasonable assumption

in the case of software designed for horizontal scaling. Equation 6.3 details the

calculation involved in the undeployment of an application.

Tundeploy =
∑
s∈S

(hs) + w (6.3)

6.4.3 Calculating Tdeploy

Where servers are installed from bare metal, the duration of the install process

is dominated by the time taken to configure the system and write the new

software stack to the disk. In this chapter we consider the process of re-imaging

a machine to require a reboot to initiate the process, and a subsequent reboot

once the imaging of the machine is completed.
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(Dedicated) Tdeploy = tinit + tinstall +
c
∑
s∈S ds

b
+
∑
s∈S

ts + tboot (6.4)

Where the deployment consists of preconfigured VM images, the significant

component of the deployment time is the time taken to transfer the image from

a repository to the target, and then start the VM. In this case there is a single

software component, s and tboot is taken as the VM startup duration. Equation

6.4 may then be simplified to equation 6.5.

(Virtual) Tdeploy = tinit +
cds
b

+ tboot (6.5)

6.4.4 Calculating Toptimise

After deployment an application may take a period of time to deliver perfor-

mance equivalent to its peers. This stage is clearly application dependant, so

no equation is given here.

6.5 Experimental Setup

In this chapter both forms of the model are examined. In this section the

experimental setup for the work is described.

6.5.1 Dedicated Deployment Setup

In the case of a dedicated machine deployment, two different software stacks are

used. The details of the hardware platforms can be seen in Table 6.2. Each of

the software stacks are installed using FAI[3] with additional post-install scripts

where required.

• HPC Software Stack This stack is comprised of a stripped down Debian[2]

linux installation and software libraries (e.g. MPI) to support parallel sci-

entific computation.
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Physical Deployment Cloud Deployment
Processor Intel Xeon 2.6 GHz Intel Core2 quad core 2.4 GHz

Processor Count 2 1
RAM 2GB 4GB

Storage Subsystem IDE SATA
Storage (GB) 80GB 80GB

Network 100Mbps Ethernet 1Gbps Ethernet

Table 6.2: Benchmark hardware platforms.

• Web Application Stack This stack uses the same linux installation as

the HPC stack, but adds a java runtime, Glassfish application server and

JDBC libraries to support a multitude of database platforms.

6.5.2 VM Deployment Setup

To examine VM deployments in a cloud scenario Nimbus is deployed as the cloud

management tool. The management server is a 16 core 2Ghz AMD Opteron with

32GB of RAM and 1TB of storage (configured as a RAID device, mirrored across

two disks). It has a single 1Gbps network port dedicated to image distribution.

The specification of the eight host nodes is given in table 6.2. The nodes are

connected to the management server by a 1Gbps switch dedicated to the test

platform.

6.6 Model Parameters

To measure all parameters in a controlled way, a script was developed to perform

migrations and collect statistics. This allowed for repeatable experiments. The

process of enabling a reconfiguration through the FAI mechanism (tinit) was

found to be 0.076 seconds and was measured through timing components in the

script. The boot times (tboot) for the machines were measured by performing a

reboot remotely, and measuring the time taken until the machine was available

remotely via SSH.

For the physical deployment the size of the data transferred during a migra-
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Parameter HPC Software Web Application
X - 165 requests/s
tinit 0.076 seconds
tinstall 26.5 seconds
tboot 57.1 seconds 88 seconds∑
s∈S sd 408.34 MB 210.7 MB
b 11.1 MB/s∑
s∈S ts - 115.97 seconds

Table 6.3: Physical deployment parameters.

Parameter Value
tinit 8 seconds
tboot 5.7 seconds
sd 500MB
b 108 MB/s

Table 6.4: Cloud deployment parameters

tion was measured using the statistics on the network switch. This was done

to capture traffic across all network protocols used in the FAI process. The

bandwidth measurement was obtained by measuring the time taken to send 50

MB across the network from the install server to the client machine.

The additional startup time for the Web application is primarily due to the

time taken to start the Java application server and deploy the application.

The initialisation time for the cloud deployment was found by measuring

the time between requesting a new virtual machine deployment and the server

beginning the transmission of the image across the network. The boot duration

for a virtual machine was measured by starting an virtual machine image on

a host directly. Bandwidth in the cloud network was measured by timing the

transfer of the 500MB image from the image repository to the host server via

SCP, which is the mechanism used by Nimbus.

All parameters were measured several times and averaged to ensure irregular

values did not skew the model. The physical and cloud deployment parameters

are shown in Table 6.3 and 6.4 respectively.
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Figure 6.3: Tqueues for Web application.

6.7 Results

In the case of a HPC server resource being migrated, the worst case time for

completion on current tasks would be the wall time limit of the task as it is set

by the user or scheduler. In the case where multiple jobs are running on a single

machine this would be the maximum wall time of all jobs. The Web application

may have a number of requests in flight or queued. The graph in Figure 6.3

gives an insight into the accuracy of the model for this phase of the migration

process.

In each of these environments, the undeployment duration is ignored as there

is no requirement for a graceful termination of the processes.

The results for the deployment phase of the model are given in Figure 6.4.

The model performs well for the physical deployment, with errors less than

10.5% in all cases (see Table 6.5). The model delivers better accuracy for the

HPC deployment than the Web Application deployment.

The optimisation of an executing application will vary depending upon the

application in use. In our test environment the time taken to optimise the
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Concurrent Web Applications HPC Software
Deployments Actual Model Error (%) Actual Model Error (%)

1 450.27 476.24 5.77 566.29 567.07 0.19
2 459.69 495.22 7.73 588.77 603.85 2.56
3 474.90 514.20 8.28 617.45 640.64 3.76
4 488.44 533.18 9.16 667.83 677.43 1.44
5 499.86 552.16 10.46 688.24 714.22 3.77
6 522.06 571.15 9.40 740.34 751.00 1.44
7 604.85 590.13 -2.43 757.21 787.79 4.04

Table 6.5: Error in physical deployment model.
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system in the case of the Web stack running the sample Daytrader application

is a single request. Testing shows an initial request to the system takes between

3077 and 4418ms, while the subsequent requests are served in less than 50ms.

This initial startup time is due to the application server acquiring database

connections in the first instance, which it holds once connected. Additionally

after the first request static assets (e.g. images and stylesheets) are cached in

memory, and as a result are not required to be fetched from disk.

The model for the physical deployment consistently over estimates the ac-

tual time taken for a deployment. Currently we believe that this is due to the

way in which software packages are installed on the machine. Under this instal-

lation mechanism, a package is requested and then installed which leads to an

interleaving of requests and installations across concurrent deployments. This

reduces the network contention, which makes real deployments faster than the

model predicts.

The graph in Figure 6.5 demonstrates the accuracy of the model for the

deployment phase in a cloud environment. The linear nature of the results is

due to the limitation of the network bandwidth. Table 6.6 presents the error in

the model. In all cases the model is accurate to more than 9%.

The model consistently underestimates the duration for a migration. It is

believed that the underestimation is due to network contention between the

concurrent deployments.

6.7.1 Virtual Machine Model

The cloud deployment delivers a total duration for all migrations. However there

may be significant variation in the time to to deploy individual VMs. Figure 6.6

demonstrates the average time taken to transfer images via SCP alongside the

upper and lower bounds for the transfer. It is clear that there is a large variation

in the time taken to transfer individual images, some VM transfers completing

an order of magnitude faster than the average, and maximum, transfer time.

There are a number of deployments where the minimum observed transfer
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Figure 6.5: Cloud deployment model results.

Concurrent Deployments Actual (seconds) Model (seconds) Error (%)
1 24.16 23.96 -0.84
2 24.92 23.96 -3.86
4 33.63 33.22 -1.21
6 43.37 42.48 -2.06
8 53.63 51.74 -3.53
10 66.75 61.00 -8.62
12 76.00 70.26 -7.56
14 85.95 79.51 -7.48
16 94.01 88.77 -5.57
18 103.22 98.03 -5.02
20 116.65 107.29 -8.02
22 126.37 116.55 -7.77
24 130.53 125.81 -3.62
26 141.75 135.07 -4.71
28 151.00 144.33 -4.42
30 162.88 153.59 -5.70
32 178.00 162.85 -8.51

Table 6.6: Error in cloud deployment model.
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Figure 6.6: Virtual machine transfer variation.

time is around 18 seconds. This occurs at concurrent deployments of 10-20

and 24 virtual machines. In other cases the minimum transfer duration is sig-

nificantly lower than the average and maximum duration. It is believed that

this is an effect of the broker application processing deployment requests in an

imbalanced way between all deployments.

6.8 Impact of the Cost Model

With such a large variation in migration duration, it is clear that migration

cost can no longer be considered fixed. To asses the impact of a realistic cost

on the behaviour of a real policy. The Average Flow policy considers the cost of

switching servers between pools as a reduction on the number of requests which

can be served by the system in total. However, as the number of simultaneous

deployments increases, so does the length of time taken to do the migration.

This increase in migration time affects the capacity of the system for a longer

period, thus increasing the cost of each migration. In the first instance we

analyse the Average Flow policy (see Algorithm 2) under the parameters listed
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Application 1 Application 2
Completion Rate (per server) 100

Job Cost 50 50
Queue Length 20 20

Server Allocation 50 50
Switches in Progress 0 0

Table 6.7: Experimental Parameters.

in Table 6.7. Parameters for both applications are kept the same and only

workload and is varied.

A total workload of 7500 requests per second across 100 servers is used which

gives an overall utilisation of 75%. We then divide the workload between the

applications in intervals of 10% and asses the number of migrations made by

the policy using both a fixed cost and the cost model which we have defined

above.

The fixed cost model uses a cost fixed at the cost of a single migration,

while the dynamic cost model works using the VM migration scheme above

with a VM size of 500MB. The hardware platform used for the prediction is

that benchmarked for the VM cost model.

The results of this experiment are shown in Figure 6.7. The number of

migrations are symmetric as the parameters for each application are the same.

At the more extreme workload distributions it is clear that the increased cost

of each migration outweighs the perceived benefit of the migration. This results

in fewer migrations being made by the policy when using the cost model.

The difference between the cost model varies depending on the total system

utilisation. At higher system utilisations, migrating servers becomes more nec-

essary. Figure 6.8 demonstrates the largest difference between the cost models

are utilisations between 60% and 95%. Below 60% utilisation no migrations are

made by the policy.

The graph demonstrates that at utilisations up to 85% the cost model re-

duces the number of migrations within the system due to their increased total

cost to the system. However beyond 85% utilisation the Average Flow effects
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similar migrations under both cost models, as workload demands are so high

when compared to the cost of the migrations.

6.9 Implications and Discussion

The model displays good accuracy for all phases of the model in both environ-

ments. The linear nature of the model in the deployment scenarios here is a

feature of the scenarios themselves. Where high contention of VMs on a physical

machine exists, the bandwidth to disk may become a limitation rather than the

network capacity to a machine

While individual images can be compressed to reduce their size, mass migra-

tions of virtual machines can incur a significant cost. The significant variation

in individual deployment times was unexpected. This result may undermine the

assigned prioritisation of applications in the algorithm presented in Chapter 4.

The limiting factor for both deployment scenarios is the network capacity,

as it is the major point of contention for the resources being reallocated. This is

an issue for centralised resource management systems. Nimbus includes support

for a distributed hosting of images, however this is not the default configuration

and it is not considered here.

The behaviour of the Average Flow policy is clearly affected by the cost of

a migration. This indicates that an accurate cost is important when making

migration decisions, so that resources are not over or under provisioned due to

incorrect parameterisation of the resource allocation algorithm.

6.10 Summary

In this chapter we have explored typical deployment mechanisms for both ded-

icated and cloud infrastructure as defined in the literature and in practice. A

model of resource reallocation cost has been developed, and shown to be effec-

tive to within 11% on dedicated platforms and 9% on virtualised platforms. The

107



6. A Model for Resource Allocation Cost

model will aid in providing accurate details for resource provisioning algorithms.

Additionally we have used the cost model in conjunction with the Average

Flow policy and demonstrated that the additional overheads of multiple con-

current deployments have an impact on the behaviour of the policy, which is

not considered by the authors of the policy.
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CHAPTER 7

Discussion and Conclusion

As the scale and scope of online services has grown so too has the infrastruc-

ture needed to support them. Outsourcing this infrastructure to commercial

hosting providers has enabled developers of online services to benefit from spe-

cialised knowledge, experience and above all cost-effective deployments. The

hosting provider must deliver an acceptable level of service in return for their

fee. Dynamic provisioning has been shown to be effective in the management

of resources. However much of the analysis to date has focussed on the perfor-

mance delivered to the applications themselves exclusive of resource failures, an

issue which cannot be ignored in large infrastructures, and migration costs.

In this chapter we offer some perspective on the research and present an

architecture in which all of the contributions are included. Further we discuss

avenues for future work.
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7.1 Perspectives on the Research

There are a number of issues which the research in this thesis addresses. In this

section we examine the contributions in light of recent developments and offer

an insight into the implications of these developments.

7.1.1 Virtualisation

Much of the early work in this thesis is developed around a hosting provider that

provides dedicated resources to clients. In recent years, the increased support

for virtualisation in hardware and software has enabled the cost-effective provi-

sioning of infrastructure as a service. If we now review our results in the context

of virtualised servers, Chapter 4 offers a framework for scalable resource alloca-

tion, and as a result demonstrates readiness for the increased application density

offered by a virtualised environment. The work in Chapter 5 discusses a failure

aware allocator. In the case of a virtualised environment, the CapacityLoss

metric defined still applies in its current form as the virtual servers will be dis-

tributed evenly across all racks in the environment. The cost model has been

evaluated in a virtualised environment and demonstrated suitable accuracy for

use.

7.1.2 Scaling Beyond A Single Data Centre

The results in this thesis are primarily concerned with resource management by

a hosting provider and have assumed all resources are contained within a single

data centre. It is feasible that a large hosting provider may have multiple data

centres in order to provide business continuity or disaster recovery services. The

network bandwidth available between sites will be shared between resources at

each site, which potentially creates a bottleneck. The network latency is also

an issue which will increase as the distance between the sites increases.

Given that the failure-aware allocator takes a rack-level view of the infras-

tructure it is possible that servers may be allocated across all data centres, in
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accordance with the CapacityLoss metric. This would provide improved robust-

ness for the application at the expense of performance. The effect of cross data

centre provisioning may be undesirable in applications which cannot tolerate

imbalances in performance between replicas. Conversely work in [22] suggests

that distributing machines near to their clients may have a positive effect on

performance.

The cost model (Chapter 6) uses network bandwidth as a parameter in order

to predict the duration of a server reallocation. Although untested in such an

environment, it is expected to perform to a reasonable level of accuracy, as

the model could be parameterised in accordance with the environment. We

would expect the proportion of intra and inter data centre migrations to increase

the variation in the individual imaging time of the virtual servers, and affect

the maximum reallocation time accordingly. If each site maintains its own

repository of virtual machine images then there would be no effect on the cost

of migration as it would be done within a single data centre however, ensuring

that all repositories are up to date would become an additional issue.

7.1.3 Middleware Platform

It may be desirable for a customer to use resources from multiple hosting

providers in order to mitigate risk or prevent platform lock in. While this thesis

has focussed on the role of the hosting provider, there is considerable provision

for the services to be thought about from a customer’s viewpoint. The ideas

presented here could be used as a middleware platform for a customer to support

multiple providers. The extent to which the ideas could be supported would are

dependant on the support offered by vendors, e.g., an ability to identify the rack

id for placement of a server.

Where multiple providers are used it may be possible to balance the char-

acteristics of various providers, e.g., reliability and deployment time, to deliver

an optimal solution for a given situation. As an example, servers which are less

reliable but quicker to provision may be used in the event of a sudden workload
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increase, with more reliable servers replacing these instances over time.

7.1.4 A Scalable Failure-Aware Architecture for the Cloud

Each of the contributions within this thesis has addressed an issue from Chapter

2. These may be assembled together to form an overall architecture which is

more effective than those currently available. The overall proposed architecture

can be shown in Figure 7.1. When compared to the platform assembled in

Chapter 2 the combined architecture is much more mature. The key features

of the combined architecture are improved robustness through the use of the

failure aware allocator, improved scalability through the use of highly scalable

resource allocation algorithms and aware of the total reallocation time via the

cost model.

Workload

Workload Prediction

Resource Allocation Algorithm

Failure-Aware Allocator

Rack 
1

Rack 
2

Rack 
3

Rack 
4

Rack 
n

Network

Cost Model

Figure 7.1: Overall Architecture
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7.2 Research Contributions

Throughout this thesis dynamic resource allocation has been applied to enter-

prise applications. The algorithms have been demonstrated to work int this

environment at small scale, however their inherent scalability issues limit their

use in a modern data centre. This thesis has focussed on addressing issues with

dynamic resource allocation at large scale.

To support this, the following specific contributions were made when devel-

oping a large-scale resource allocation architecture;

• A demonstration of a theoretically derived policy on a representative three

tier application. The benefits of the policy were observed on two work-

loads, with a minimal overhead introduced by the switching platform.

• The exponential complexity of the state-of-the-art policies is explored and

a formalisation of the NP-hard allocation is provided. A heuristic frame-

work is developed with much improved scalability and an instance of the

framework is tested against an established policy. The framework demon-

strates significant improvements in the successful completion rate for man-

aged applications.

• A robustness metric is devised to reduce the exposure of applications to

rack-level failures. The metric is developed into a resource allocation com-

ponent which can be used to augment any resource allocation algorithm,

with minimal overhead over a random allocator.

• A modular model for resource reallocation cost is developed. This model

can be used to predict the increased cost of concurrent resource migra-

tions, which is an important consideration for many resource allocation

algorithms. The cost of resource migration is shown to have a significant

impact on the behaviour of resource allocation algoirhtms.

The contributions above represent novel work in the field of dynamic re-

source allocation for enterprise systems, and can be drawn together to develop
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a scalable failure-aware resource allocation architecture.

7.3 Thesis Limitations

Dynamic resource allocation may be considered from a variety of perspectives.

Primarily this thesis is concerned with issues that affect the use of dynamic

provisioning at scale. The analysis of these issues is conducted mainly in the

performance and request failure implications of both the resource provisioning

mechanism and the applications supported by the dynamic infrastructure.

The resources which are managed by the dynamic resource allocation system

are considered to be homogeneous. This is a reasonable assumption where new

platforms are purchased at the same time, however over time systems may need

to be replaced which are not of equal performance. Considering newer resources

to be of equal performance as older resources may lead to their under utilisation

as newer systems are invariably more performant than those which they replace,

due to the rate at which technology progresses.

Applications in this work have been considered to be stateless. The deploy-

ment and migration of applications has not required state to be maintained.

While this is certainly the case for lightweight web applications, database servers

with large quantities of data may incur significant migration overheads.

Additionally applications executing on the dynamic platform are all consid-

ered to be independent. This consideration is reasonable where the platform is

managed by a hosting provider, however the deployment of dependant applica-

tions or services to a cloud poses additional questions about platform manage-

ment and service continuity in the event of resource failures. This would form

another angle to extend the work presented here.
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7.4 Further Work

The application of dynamic resource allocation to enterprise systems is not new.

However, a novel aspect of this work is the consideration of resource failures

within a large infrastructure. In the current work we have developed a failure-

aware allocator for mitigating the effects of rack-level resource failure. As a

next step we are assessing the suitability of spare capacity in the system as a

mechanism for handling faults. The hope is that where space capacity exists,

global reallocation can be avoided. In conjunction with this the potential for

partial reallocation within an infrastructure, e.g., a network subtree is also being

explored.

An issue not considered here are resource failures during a period of re-

allocation. The issues of a large resource failure during migration are many,

but the primary issue is that of inconsistent states between the expected state

after reallocation and the state of the system due to the failure experienced.

Our future work will look to address this inconsistency by re-evaluating the re-

source allocation and adapting it to suit the current environment with minimal

overhead.

The power consumption of large data centres is a current hot topic. Dynamic

resource allocation has the potential to reduce overall power consumption by

consolidating applications of virtual servers onto fewer physical machines when

the load allows. The reduction in power consumption has a clear benefit to the

hosting provider. Power consumption will be explored in future work.
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