
http://wrap.warwick.ac.uk

Original citation:
Hendrix, Maurice and Cristea, Alexandra I. (2008) Reuse patterns in adaptation
languages : creating a meta-level for the LAG adaptation language. In: Nejdl, Wolfgang
and Kay, Judy and Pearl, Pu and Herder, Eelco, (eds.) Adaptive hypermedia and
adaptive web-based systems. Lecture Notes in Computer Science, Volume 5149 .
Springer-Verlag, pp. 304-307. ISBN 9783540709848

Permanent WRAP url:
http://wrap.warwick.ac.uk/47602

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

Publisher’s statement:
“The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-540-
70987-9_40 ”

A note on versions:
The version presented here may differ from the published version or, version of record, if
you wish to cite this item you are advised to consult the publisher’s version. Please see
the ‘permanent WRAP url’ above for details on accessing the published version and note
that access may require a subscription.

For more information, please contact the WRAP Team at: publications@warwick.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/9560634?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/47602
http://dx.doi.org/10.1007/978-3-540-70987-9_40
http://dx.doi.org/10.1007/978-3-540-70987-9_40
mailto:publications@warwick.ac.uk

Reuse Patterns in Adaptation Languages:

 Creating a meta-level for the LAG adaptation language

Maurice Hendrix and Alexandra Cristea

 The University of Warwick, Department of Computer Science

Gibbet Hill Road, CV4 7AL, Coventry United Kingdom

{maurice, acristea}@dcs.warwick.ac.uk

Abstract. A growing body of research targets authoring of content and

adaptation strategies for adaptive systems. The driving force behind it is

semantics-based reuse: the same strategy can be used for various domains, and

vice versa. Whilst using an adaptation language (LAG e.g.) to express reusable

adaptation strategies, we noticed, however, that: a) the created strategies have

common patterns that, themselves, could be reused; b) templates based on these

patterns could reduce the designers’ work; c) there is a strong preference

towards XML-based processing and interfacing. This has leaded us to define a

new meta-language for LAG, extracting common design patterns. This paper

provides more insight into some of the limitations of Adaptation Languages like

LAG, as well as describes our meta-language, and shows how introducing the

meta-level can overcome some redundancy issues.

Keywords: LAG; AHA!; Adaptive Hypermedia; Adaptation Engine.

1 Introduction

The use of adaptive systems [2] is increasingly popular, as it can provide a richer

personalised learning experience. Commercial systems on the web (e.g., Amazon) or

beyond (PDA device software) present at least a rudimentary type of adaptation.

However, adaptation specification cannot be fully expressed by standards1 yet, and

most commercial and non-commercial systems rely on proprietary, custom designed,

system specific, non-portable, and non-interoperable adaptation. An intermediary

solution, until standards emerge, is the creation of Adaptation Languages, which, with

their power of semantics-based reuse, appear as a reliable future vehicle [3, 4]. Once

written, the same adaptation strategy can be used for various domains and vice versa.

However, there are a number of limitations regarding adaptation engines, which

ultimately influence the efficient authoring of adaptation strategies.

In Section 2 we define what we see as the main limitations. Moreover, we propose

a meta-language, as a supplement to Adaptation Languages like LAG, showing how

introducing it can overcome such limitations. This solution is compatible with extant

adaptation engines, instead of requiring the creation of new engines.

1 SCORM Simple sequencing allows basic adaptation. IMS-LD promises more for the future.

2 Adaptation Engine Issues and Limitations

The following are issues and limitations identified as influencing the authoring

flexibility of adaptive hypermedia (AH) systems:

L1. Most adaptive hypermedia delivery systems determine the adaptation on a per-

concept base [1]. A broad knowledge of the whole content at every adaptation

step is (usually) unavailable, mainly due to run-time complexity limitations.

Thus, adaptation strategies cannot specify complex inter-concept rules; e.g., a

strategy with an arbitrary set of labels denoting topics of interest, displaying to

the user concepts related to his topic, without limiting the possible topics at

design-time.

L2. Adaptation engines don’t (usually) allow for non-instantiated program variables

[1]. Thus, authoring strategies which involve an unknown number of types,

categories, etc., are currently not permitted. All domain-related variables need to

be instantiated in the authoring stage.

L3. There are extreme difficulties arising when combining multiple strategies [1],

which would facilitate authors to create their own behaviour by composing

strategies. Adaptation engines update sets of variables based on some triggering

rules, without knowing which high-level adaptation strategies these variables

represent. An example of a combined strategy currently difficult to implement is

one where the system checks whether the user prefers text or images, and then

displays the preferred type of content, filtered via a beginner-intermediate-

advanced strategy, where concepts are shown based on the user’s knowledge.

3 Solutions to Adaptation Engines Issues and Limitations

A straightforward way of defeating limitations L1 and L2 would be to build new

adaptation engines. The first scenario could be achieved by establishing which labels

exist, in the initialization step. The second issue could be overcome by either allowing

arrays of labels, or otherwise allowing multiple data to be stored in the label.

However, in order to function with current systems, these issues should be solved in

the authoring stage. For the third limitation (L3), the difficulty in application of

multiple strategies, there are some efforts already to deal with this. The MOT to

AHA! [1] converter, e.g., has already implemented an elegant solution (unique to our

knowledge so far), in that it can apply multiple LAG files, with different adaptation

strategies, with the order of execution set by priorities of the respective strategies (1:

highest priority; any following number: lower priority).

Nevertheless, this method could override previous variables, thus, a unitary

strategy merge, based on multiple labels for domain-related concepts and attributes, is

preferable. Moreover, only simple types are currently allowed by most Adaptation

Languages, for example arrays, due to lack of adaptation engine support. For

example arrays or lists are not allowed.

However, we have noticed that a) strategies have common patterns that could be

reused; b) templates based on these patterns could reduce the designers’ work; c) a

strong preference exists for XML-based processing and interfacing.

For the creation of Adaptation Language strategies explicit knowledge about the

content is needed. In a template version, this can be described and a pre-processor can

then take both the content and the template strategy to create the concrete strategy for

adapting the content. In the next section our solution will be described, it is based

upon the LAG adaptation language and uses an XML-based template LAG language

as Adaptation Language.

4 Meta-level Addition to LAG

To solve the limitations mentioned in section 2, we add a pre-processing step to the

whole authoring process. This step takes a LAG template and the content, in the form

of a CAF (Common Adaptation Format) file, and generates a new LAG file which

extends the strategy sketched by the LAG template for the specific content described

in the CAF file. For reusability, maintainability and to accommodate for future

changes, we propose an XML-based notation for the template LAG files. Since CAF

is already written in an XML-based notation, both documents can be used as input for

an XSLT transformation which generates the resulting LAG file. Below we give the

DTD (document type definition) for the template LAG file.

<!ELEMENT TLAG ((LAGfragment*, LIKE*)*)>
<!ELEMENT LIKE attribute CDATA value CDATA
(LAGfragment, MATCH, LAGfragment, (LAGfragment*, LABEL,
LAGfragment*)*) >
<!ELEMENT LAGfragment (#PCDATA)>
<!ELEMENT MATCH EMPTY>
<!ELEMENT LABEL EMPTY>

A template LAG file consists of a number of blocks of the following kind: a

number of LAG fragments followed by a LIKE element. The fragments contain LAG

adaptation snippets. The LIKE elements consist of an attribute and a regular

expression against which it is matched, followed by a fragment of LAG program. The

word MATCH represents the place where the LABEL needs to match the regular

expression.

L1. Problem: adaptation on a per-concept base; a broad knowledge of the whole

content at every step of the adaptation is (usually) unavailable.

Solution: such knowledge is not necessary in the adaptation engine. It is

acceptable that this type of knowledge can be acquired as a one-off, at authoring

time, as it is not to be expected that content labels will change at execution time.

Therefore, the authoring strategy should contain this knowledge. As for an author

it is difficult to manually extract all the pedagogical label types existent in a

course, templates such as the DTD of the template LAG above can help in

dealing with groups of labels (such as all labels containing ‘beginner’, i.e.,

‘*beginner*’). An author can then generate the appropriate adaptation strategy (of

which a snippet is shown above) in an easy and quick manner, making use of

existing patterns in the authoring strategy itself.

L2. Problem: adaptation engines don’t usually allow non-instantiated variables.

Solution: Unknown domain-related variables can be instantiated in the authoring

stage, with the help of patterns specified via the LAG template language based on

the above DTD. It is not necessary for an author to perform these searches

manually; the two-step authoring system can extract unknown variables for him.

L3. Problem: extreme difficulties arise when combining strategies.

Solution: similar pattern extraction mechanisms have to be used in order to merge

adaptation strategies. In (nearly) every system there is a limited number of

weights and labels; this causes problems in combining a number of strategies

greater than the number of weights and labels available. A solution to this can be

to apply pattern matching on labels in order to be able to encode multiple

strategies, by using the same label field. This thus enhances simple prioritization

of strategies, as it allows the combination of multiple strategies which each

requires specific labels.

5 Conclusions and Further Work

In this paper we have analyzed adaptation problems inherent in current adaptation

engines, which reduce the power and generality of Adaptation Languages. We

described and exemplified these issues with the help of the LAG language, currently

one of the only exchange formats of adaptation language specification between

systems. Moreover, we have moved one step further, by proposing improvements that

can overcome run-time issues of adaptation engines, by solving them at the authoring

stage. More specifically, templates can be used to create adaptation strategies,

customized for the given domain models and pedagogical labels. For this purpose, we

have proposed the template LAG language. The process is technically implemented

by adding a pre-processor to the system setup, which has access to content at compile-

time, which is not available at run-time. In such a way, more powerful adaptation

strategies can be created for existing adaptation engines. The next step is to

implement the pre-processor for LAG, merging efforts with new versions of AHA!

Acknowledgments. This research has been performed with the help of the EU ALS

Minerva STREP, the EU FP7 GRAPPLE STREP, and was based on the PROLEARN

Network of Excellence.

References

1. AHA! Adaptive Hypermedia For All, http://aha.win.tue.nl
2. Brusilovsky, P.: Adaptive hypermedia, User Modelling and User Adapted Interaction, Ten

Year Anniversary Issue, (Alfred Kobsa, ed.) 11 (1/2), 87--110 (2001)

3. Cristea, A.I., Calvi, L.: The three Layers of Adaptation Granularity. UM’03, Pittsburg, US

(2003)

4. Stash, N., Cristea, A.I., De Bra, P., Adaptation languages as vehicles of explicit intelligence

in Adaptive Hypermedia, In International Journal on Continuing Engineering Education

and Life-Long Learning, vol. 17, nr 4/5, pp. 319-336, InderScience, 2007.

