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Abstract. We study the sensitivity of equilibria in the well-known game
theoretic traffic model due to Wardrop. We mostly consider single-com-
modity networks. Suppose, given a unit demand flow at Wardrop equi-
librium, one increases the demand by ε or removes an edge carrying only
an ε-fraction of flow. We study how the equilibrium responds to such an
ε-change.

Our first surprising finding is that, even for linear latency functions,
for every ε > 0, there are networks in which an ε-change causes every
agent to change its path in order to recover equilibrium. Nevertheless,
we can prove that, for general latency functions, the flow increase or
decrease on every edge is at most ε.

Examining the latency at equilibrium, we concentrate on polynomial
latency functions of degree at most p with nonnegative coefficients. We
show that, even though the relative increase in the latency of an edge
due to an ε-change in the demand can be unbounded, the path latency
at equilibrium increases at most by a factor of (1 + ε)p. The increase of
the price of anarchy is shown to be upper bounded by the same factor.
Both bounds are shown to be tight.

Let us remark that all our bounds are tight. For the multi-commodity
case, we present examples showing that neither the change in edge flows
nor the change in the path latency can be bounded.

1 Introduction

We analyze equilibria in the Wardrop model [15]. In this model we are given a
network with load-dependent latency functions on the edges and a set of com-
modities, which is defined by source-sink pairs. For each commodity some de-
mand (traffic flow) needs to be routed from the commodity’s source to its sink.
A common interpretation of the Wardrop model is that flow is controlled by an
infinite number of selfish agents each of which carries an infinitesimal amount of
flow. Each agent aims at minimizing its path latency. An allocation, in which no
agent can improve its situation by unilaterally deviating from its current path
is called Wardrop equilibrium.

Whereas the notion of equilibrium captures stability in closed systems, traffic
is typically subject to external influences. Thus, from both the practical and the
theoretical perspective it is a natural question, how equilibria respond to slight
modifications of either the network topology or the traffic flow.
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To analyze this issue, we suppose, we are given an equilibrium flow for unit
demand and increase the demand by ε or remove an edge carrying only an ε-
fraction of flow. How does the equilibrium responds to such an ε-change in terms
of change in flow and latency?

Consider the classical network exhibiting Braess’s Paradox [2]. Suppose a
unit demand needs to be routed from node s to node t. At equilibrium all
traffic follows the zig-zag-path. Increasing the demand by 0 < ε ≤ 1, the paths
containing the dashed edges gain an ε-fraction of flow, whereas the zig-zag-path
loses an ε-fraction.
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Latency functions ... ... and flow.

Thus, in general, neither path flows nor edge flows at equilibrium are
monotone functions of the demand. This observation is one of the reasons why
studying the effects of changes might be intriguing.

Our findings for single-commodity networks are as follows. Allowing non-
decreasing, continuous latency functions, we show that for every ε > 0,

– there are networks, in which after an ε-change every agent is forced to change
its path in order to recover equilibrium and

– the flow increase or decrease on every edge, however, is at most ε for every
network.

Thus, in contrast to our surprising finding of global instability of equilibrium
flow, we can prove that edge flows are locally stable.

Examining the latency at equilibrium, we concentrate on polynomial latency
functions of degree at most p with nonnegative coefficients. We show that, due
to an ε-change in the demand,

– the path latency at equilibrium increases at most by a factor of (1+ε)p (even
though the relative increase in the latency of an edge can be unbounded).

This result yields the same bound on the increase in the Price of Anarchy, as
well.

All presented bounds are best possible.
For the multi-commodity case, we present examples for every ε > 0, showing

that neither the change in edge flows nor the increase in the path latency can be
bounded. This holds already for networks equipped with linear latency functions.
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1.1 Related Work

The game theoretic traffic model considered in this paper was introduced by
Wardrop [15]. Beckmann, McGuire, and Winston [1] observe that such an equi-
librium flow is an optimal solution to a related convex program. They give exis-
tence and uniqueness results for traffic equilibria (see also [4] and [11]). Dafermos
and Sparrow [4] show that the equilibrium state can be computed efficiently un-
der some assumptions on the latency functions and many subsequent papers
gave increasingly efficient methods for computing equilibria.

Another line of research examines the degradation of performance due to
selfish behavior, called the Price of Anarchy [8, 11] and the inverse, the increase
of the maximum latency incurred to an agent due to optimal routing [12].

Motivated by the discovery of Braess’s Paradox [2] many similarly counter-
intuitive and counterproductive traffic behavior have been discovered. Fisk [5]
shows that considering multi-commodities the increase of one flow demand might
decrease others path latencies at equilibrium. Hall [6] shows that the vector of
path flows and the vector of the path latencies are continuous functions of the
input demand. Furthermore, he proves that for single-commodity networks the
path latency at equilibrium is a monotone function of the input demand. Dafer-
mos and Nagurney [3] show that equilibrium flow pattern depend continuously
upon the demands and (even non-separable) latency functions. More recently,
Patriksson [9] gave a characterization for the existence of a directional deriva-
tive of the equilibrium solution. In [7] Joseffson and Patriksson show that while
equilibrium edge costs are directionally differentiable, this does not hold for edge
flows itself.

1.2 Outline

In Section 2, we introduce Wardrop’s traffic model. In Section 3, we establish
global instability of equilibrium flows and local stability of edge flows at equi-
librium for general latency functions. For polynomial latency functions with
nonnegative coefficients, we give a tight upper bound on the increase of the path
latency at equilibrium due to an ε-change of the demand (Section 4). Subse-
quently, the same bound on the increase of the Price of Anarchy is derived. In
Section 5, we briefly present some negative results for the multi-commodity case.

2 Wardrop’s Traffic Model

We consider Wardrop’s traffic model originally introduced in [15]. We are given
a directed graph G = (V, E) with non-decreasing, continuous latency functions
� = (�e)e with �e : R≥0 → R≥0. Furthermore, we are given a set of commodities
[k] = {1, . . . , k} specified by source-sink pairs (si, ti) ∈ V × V and flow demands
di. The total demand is d =

∑
i∈[k] di. Let Pi denote the admissible paths of

commodity i, i. e., all paths connecting si and ti, and let P =
⋃

i∈[k] Pi. Let
(G, (di), �) denote an instance of the routing problem.
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A non-negative path flow vector (fP )P∈P is feasible if it satisfies the flow de-
mands

∑
P∈Pi

fP = di for all i ∈ [k]. We denote the set of all feasible flow vectors
by F . A path flow vector (fP )P∈P induces an edge flow vector f = (fe,i)e∈E,i∈[k]
with fe,i =

∑
P∈Pi:e∈P fP . The total flow on edge e is fe =

∑
i∈[k] fe,i. The la-

tency of an edge e ∈ E is given by �e(fe) and the latency of a path p is given
by the sum of the edge latencies �P (f) =

∑
e∈P �e(fe). The weighted average

latency of commodity i ∈ [k] is given by Li(f) =
∑

e∈E �e(fe) · fe,i. Finally, the
total cost of a flow is defined as C(f) =

∑
P∈P �P (fP )fP and can be expressed

as C(f) =
∑

e∈E �e(fe)fe. We drop the argument f whenever it is clear from the
context. Whenever we consider a single-commodity network, we further drop the
index i.

A flow vector is considered stable when no fraction of the flow can improve its
sustained latency by moving unilaterally to another path. Such a stable state is
generally known as Nash equilibrium. In our model a flow is stable if and only if
all used paths have the same minimal latency, whereas unused paths may have
larger latency. We call such a flow Wardrop equilibrium.

Definition 1. A feasible flow vector f is at Wardrop equilibrium if for every
commodity i ∈ [k] and paths P1, P2 ∈ Pi with fP1 > 0 it holds that �P1(f) ≤
�P2(f).

It is well-known that Wardrop equilibria are exactly those allocations that min-
imize the following potential function introduced in [1]:

Φ(f) =
∑

e∈E

∫ fe

0
�e(u)du .

The allocations in equilibrium do not only all have the same (optimal) potential
but they also impose the same latencies on all edges. Thus, the path latencies
Li = Li(f) at equilibrium is uniquely determined. In this sense, the Wardrop
equilibrium is essentially unique ([1], [4], [11]).

3 Sensitivity of Equilibrium Flows

For most of the paper we concentrate on the single-commodity case. First, for
any given ε > 0, we present a network with linear latency functions, in which
every agent needs to change its current path to recover equilibrium. Then we
prove, that due to ε-changes the flow on every edge does not change by more
than ε.

3.1 Instability of Equilibria: Every Agent Needs to Move

In [14] Roughgarden uses the generalized Braess graphs to show, that the path
latency at equilibrium can arbitrarily decrease by removing several edges from
a network. Our definition of Bk differs from the definition in [14] in the non-
constant latency functions.
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Fig. 1. Having unit demand, the solid paths in Bk=3 carry 1/3 of flow each and the
dashed edges carry zero flow. After increasing the demand by (1 + ε) = (1 + 1/3), the
solid paths lose all their flow and the paths containing the dashed edges gain flow of
(1 + ε)/(k + 1) = 1/3 each.

Definition 2. For every k ∈ N, let Bk = (Vk, Ek) be the graph with Vk =
{s, v1, . . . , vk, w1, . . . , wk, t} and Ek = {(s, vi), (vi, wi), (wi, t) : 1 ≤ i ≤ k} ∪
{(vi, wi−1) : 2 ≤ i ≤ k} ∪ {(s, wk)} ∪ {(v1, t)}. Let Bk be equipped with the
following latency functions.

– �k
vi,wi

(x) = 0 and �k
s,vk−i+1

(x) = �k
wi,t(x) = i · k · x for 1 ≤ i ≤ k,

– �k
vi,wi−1

(x) = 1 for 2 ≤ i ≤ k and
– �k

s,wk
(x) = �k

v1,t(x) = 1.

Let Bk be called the kth Braess graph.

Let ε > 0 and consider the instance (B�1/ε�, 1, �).
Let (P1, . . . , P2k+1)T=(Ps,wk,t, Ps,vk,wk,t, Ps,vk,wk−1,t, Ps,vk−1,wk−1,t, . . . , Ps,v1,t)T

denote the corresponding path vector. The equilibrium flow is described by the
vector (fPj ) of path flows

fPj =
{

0 for j = 1, 3, . . . , 2k + 1
1/k for j = 2, 4, . . . , 2k

summing up to
∑

P fP =
∑2k+1

j=1 fPj = 1.
All paths have path length �P (f) = k + 1 and since any unilateral deviation

strictly increases the sustained latency, the edge flows in equilibrium are unique
(Figure 1).

Increasing the demand by (1 + ε), the equilibrium flow vector becomes (f ′
Pj

)
with

f ′
Pj

=
{

(1 + ε)/(k + 1) for j = 1, 3, . . . , 2k + 1
0 for j = 2, 4, . . . , 2k

summing up to
∑

P f ′
P =

∑2k+1
j=1 f ′

Pj
= 1 + ε. The path latency can easily be

computed to be 1 + k2(1+ε)
k+1 .
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Note that the path flow decomposition in equilibrium does not need to be
unique. Nevertheless, we have uniqueness in Bk.

Definition 3. An edge e ∈ E carrying flow of at most ε is called ε-edge.

Theorem 1. Let ε > 0 and consider (B� 1
ε �, 1, �). Then, increasing the flow by

ε causes the entire demand to be redistributed to recover a Wardrop equilib-
rium, i.e., every agent is forced to change its path. Adding another edge to the
network, one can achieve the same result for the removal of an ε-edge.

Proof. For the path flow vector (fPj ) and (f ′
Pj

) it holds, that, fPj = 0 ⇔ f ′
Pj

> 0
and fPj > 0 ⇔ f ′

Pj
= 0. For the second assertion, simply simulate a demand

increase by directly connecting source s with sink t and choose the latency
function, such that (s, t) carries an ε-fraction of flow. Then remove this edge.

��
Let us remark that under mild conditions on the latency functions Theorem 1
can easily be transferred to optimal flows, i.e., flows minimizing the total cost.
This is since optimal flows are Wardrop equilibria with respect to the so-called
marginal cost functions he(x) = (x · �e(x))′ = �e(x) + x · �′e(x), if x · �e(x) are
differentiable, convex functions for e ∈ E (see [1]). Thus, it is sufficient to change
the linear latency functions in B� 1

ε �.

3.2 Edge Flows Are Locally Stable

Let f, f ′ ∈ F be feasible flows for demands d ≤ d′ and let Δ(f, f ′) denote the
difference of f ′ and f ,

(Δ(f, f ′))e = f ′
e − fe , ∀e ∈ E .

An edge e is positive (with respect to f ′ and f), if f ′
e − fe > 0, and negative

if f ′
e − fe < 0. A path is positive (or negative), if all its edges are positive (or

negative). Observe that the flow conservation property holds for the difference
of two network flows.

Definition 4. A closed path consisting of flow carrying edges is called an alter-
nating flow cycle.

Lemma 1. Let f denote an equilibrium flow for an instance (G, 1, �) with non-
decreasing, continuous latency functions. Then there is an equilibrium flow f ′

for (G, 1 + ε, �), such that Δ(f, f ′) does not contain an alternating flow cycle.

Proof. Let f ′ denote an equilibrium flow for (G, 1 + ε, �). Assume there is an
alternating flow cycle C in Δ(f, f ′). Since we can assume both equilibrium flows
to be cycle free, we can assume that the alternating flow cycle C contains posi-
tive and negative edges. C can thus be divided into positive and negative path
segments, C = p1n1p2 . . . nk, where pi denotes a sequence of positive edges and
ni denotes a sequence of negative edges. Let ui be the first node of pi and denote
the last node of ni by vi. Thus, there are two paths from u1 to vk in C (Figure 2).
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Fig. 2. An alternating flow cycle in Δ(f, f ′). Solid paths are positive, the dashed paths
are negative. Thus, f certainly uses the dashed paths and possibly the solid paths and
fe > f ′

e. For f ′ the converse holds.

For u, v ∈ V , let �(u, v) denote the minimum path latency from u to v under f .
For u = s, simply write �(v). For f ′, write �′(u, v) and �′(v).

There are two facts we will make consistently use of. Since in equilibrium the
flow routes only on shortest paths, we have

�(v) ≤ �(u) + �(u, v) for any u, v ∈ V , (1)

and
�(v) = �(u) + �(u, v) (2)

if there is a flow carrying path between s and v containing u. We show, that
assuming f and f ′ being at equilibrium yields �′(u1, vk) = �(u1, vk). On one
hand, since nk connects u1 with vk and there is more flow on every edge of nk

under f than under f ′ we have

�′(u1, vk) ≤
∑

e∈nk

�e(f ′
e) ≤

∑

e∈nk

�e(fe) = �(u1, vk) .

For the reverse direction, we show �′(vk) ≥ �′(u1)+ �(u1, vk), since then �(u1, vk)
≤ �′(vk) − �′(u1) ≤ �′(u1, vk).

In the following, we repeatedly make use of equations (1) and (2).

�′(vk) = �′(uk) + �′(uk, vk) ≥ �′(vk−1) − �′(uk, vk−1) + �′(uk, vk)
= �′(uk−1) + �′(uk−1, vk−1) − �′(uk, vk−1) + �′(uk, vk)

≥ �′(u1) +
k∑

i=1

�′(ui, vi) −
k∑

i=2

�′(ui, vi−1)

≥ �′(u1) +
k∑

i=1

�(ui, vi) −
k∑

i=2

�(ui, vi−1)

≥ �′(u1) +
k∑

i=1

(�(vi) − �(ui)) −
k∑

i=2

(�(vi−1) − �(ui))

= �′(u1) − �(u1) + �(vk) = �′(u1) + �(u1, vk) .
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The third inequality is valid since f and f ′ route only on shortest paths. Ex-
plicitly, �′(ui, vi) =

∑
e∈pi

�e(f ′
e) ≥

∑
e∈pi

�e(fe) ≥ �(ui, vi) for each i ∈ [k] and
�′(ui, vi−1) ≤

∑
e∈ni

�e(f ′
e) ≤

∑
e∈ni

�e(fe) = �(ui, vi−1) for each i ∈ {2, . . . , k}.
Thus, �′(u1, vk) = �(u1, vk). We deduce that the latency on every edge e ∈ nk

does not change due to the flow change. Since the same analysis can be conducted
for any path segment pi and ni, the latency of both paths on C connecting two
arbitrary nodes remains unchanged. Therefore, by removing the bottleneck edge
flow in C no edge latency is affected and the alternating flow cycle is eliminated.
We may remove the set of alternating flow cycles in any order. Adding f to the
altered difference, one gets the desired equilibrium flow for demand 1 + ε. ��

Thus, (Δ(f, f ′)) can be assumed a network flow of volume ε, when edges are
allowed to be traversed in both directions. We can now state the following
theorem.

Theorem 2. Let f denote an equilibrium flow for an instance (G, 1, �) with
non-decreasing, continuous latency functions.

– Then there is an equilibrium flow f ′ for (G, 1+ε, �), such that |(Δ(f, f ′))e| ≤
ε for all e ∈ E.

– Consider an ε-edge (u, v) in G. There is an equilibrium flow f ′ for (G′ =
(V, E − {(u, v)}), 1, �), such that |(Δ(f, f ′))e| ≤ ε for all e ∈ E.

Proof. Since the difference of f and f ′ can be assumed alternating flow cycle
free, it constitutes a network flow of volume ε. To show the second assertion, let
a single ε-edge (u, v) be removed. With the same argumentation as in Lemma
1, we can exclude alternating flow cycles in (Δ(f, f ′)) that do not include (u, v).
Due to the flow conservation property for every node u �= w �= v, (Δ(f, f ′)) is a
network flow from u to v of volume ε. ��

Note, that since every edge gains or loses at most ε flow (Theorem 2), with
respect to the number of paths B� 1

ε � is a minimal example exhibiting global
instability.

4 Stability of the Path Latency

The latency increase at equilibrium due to a demand increase clearly depends on
the latency functions. Considering polynomials with nonnegative coefficients, the
maximal degree is the critical parameter. Note, that the results in this section
do not trivially result from Theorem 2, since the relative flow increase on an
edge might be unbounded.

Theorem 3. Let f and f ′ be equilibrium flows for instances (G, 1, �) and (G, 1+
ε, �) with polynomial latency functions of degree at most p with nonnegative co-
efficients. Let L and L′ denote the corresponding path latencies. Then L′ ≤
(1 + ε)p · L.
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Proof. Due to a scaling argument it is sufficient to consider monic monomials as
latency functions. For equilibrium flows f and f ′ we have

L =
∑

P∈P
fP �P (f) =

∑

e

fe�e(fe) and (1 + ε) · L′ =
∑

e

f ′
e�e(f ′

e) ,

and we want to show that
∑

e f ′pe+1
e ≤ (1 + ε)p+1 ∑

e fpe+1
e , where �e(x) = xpe .

Since equilibrium flows f and f ′ minimize the potential function

Φ(x) =
∑

e

∫ xe

0
�e(u)du

over feasible flows x of volume 1 and (1 + ε), respectively, it holds that

(1 + ε)p+1 · Φ(f) = (1 + ε)p+1 ·
∑

e

1
pe + 1

fpe+1
e ≤

∑

e

(1 + ε)p−pe

pe + 1
f ′pe+1

e , (A)

and similarly,

Φ(f ′) =
∑

e

1
pe + 1

f ′pe+1
e ≤

∑

e

(1 + ε)pe+1

pe + 1
fpe+1

e . (B)

For contradiction, assume

(1 + ε)p+1
∑

e

fpe+1
e <

∑

e

f ′pe+1
e . (C)

Calculating p · (A) + (p + (p + 1)((1 + ε)p − 1)) · (B) + ((1 + ε)p − 1) · (C) yields

p∑

k=0

ck

∑

pe=k

fpe+1
e <

p∑

k=0

c′k
∑

pe=k

f ′pe+1
e , (3)

with

ck = p · (1 + ε)p+1

k + 1
− ((p+1)(1+ ε)p − 1) · (1 + ε)k+1

k + 1
+((1+ ε)p − 1) · (1+ ε)p+1

and

c′k = p · (1 + ε)p−k

k + 1
− ((p + 1)(1 + ε)p − 1) · 1

k + 1
+ ((1 + ε)p − 1) .

In the following we show that c′k ≤ 0 for 0 ≤ k ≤ p. Analogous arguments can
be used to show ck ≥ 0. Hence, we have a contradiction to equation (3).

For any 0 ≤ k ≤ p and ε = 0, we have c′k = 0. We show that c′k is monotonically
decreasing in ε (for ε ≥ 0). The derivative of c′k with respect to (1 + ε) is

∂c′k
∂(1 + ε)

= p · (p − k) · (1 + ε)p−k−1

k + 1
− p · (p + 1)

(1 + ε)p−1

k + 1
+ p · (1 + ε)p−1 .



Sensitivity of Wardrop Equilibria 167

Thus, it is sufficient to show that

1
(1 + ε)p−k−1 · ∂c′k

∂(1 + ε)
= p · (p−k) · 1

k + 1
−p · (p+1)

(1 + ε)k

k + 1
+p · (1+ε)k ≤ 0 .

For ε = 0, the left hand side equals 0. It remains to show that 1
(1+ε)p−k−1 · ∂c′

k

∂(1+ε)
is monotonically decreasing in ε (for ε ≥ 0). This is the case since

∂( 1
(1+ε)p−k−1 · ∂c′

k

∂(1+ε) )

∂(1 + ε)
=

(k − p) · p · k

k + 1
· (1 + ε)k−1 ≤ 0

and the proof is complete. ��

The bound is tight, as shown by the network consisting of two nodes connected
by an edge, equipped with the latency function �(x) = xp. Allowing negative
coefficients, the relative increase obviously can be unbounded.

4.1 Increase of the Price of Anarchy

The Price of Anarchy quantifies the degradation of performance due to selfish
behavior.

Definition 5. For an instance (G, d, �) with equilibrium flow f and optimal flow
f∗ the Price of Anarchy is defined as C(f)

C(f∗) .

In [13] the Price of Anarchy is shown to be asymptotically Θ( p
ln p ) for polynomial

latency functions of degree at most p with nonnegative coefficients.

Corollary 4. Let ρ and ρ′ denote the Price of Anarchy for instances (G, 1, �)
and (G, 1 + ε, �) with polynomial latency functions of degree at most p with non-
negative coefficients. Then ρ′ ≤ (1 + ε)p · ρ.

Proof. Let L̄d denote the average path latency for an optimal flow in (G, d, �).
Let Copt, C

′
opt, C

∗ and C′∗ denote the costs of an optimal flow and an equilibrium
flow, respectively. Then ρ = C∗/Copt and ρ′ = C′∗/C′

opt. Since Copt = 1 · L̄1 and
C′

opt = (1 + ε) · L̄1+ε, we have

(1 + ε) · Copt = (1 + ε) · L̄1 ≤ (1 + ε) · L̄1+ε = C′
opt ,

since the average latency is clearly monotone in the demand. Thus, the increase
of the Price of Anarchy can be bounded by

ρ′

ρ
=

C′∗/C′
opt

C∗/Copt
=

L′ · (1 + ε) · Copt

L · C′
opt

≤ L · (1 + ε)p · (1 + ε) · Copt

L · Copt · (1 + ε)
= (1 + ε)p ,

where the inequality is due to Theorem 3. ��
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This upper bound is tight in the following sense: There is a network family
(G, d, �(p)), such that limp

ρ′/ρ
(1+ε)p = 1 for every ε > 0. This holds for mildly

modified instances of Pigou’s example [10]. Assume two nodes to be connected
via two edges equipped with latency functions �1(x) = xp and �2(x) = (1 + ε)p.
We calculate C∗ = 1, C′∗ = (1+ε)p+1, Copt = (1+ε)p+1

(p+1)(p+1)/p +(1− 1+ε
(p+1)1/p )(1+ε)p,

and C′
opt = (1+ε)p+1

(p+1)(p+1)/p + (1 + ε − 1+ε
(p+1)1/p )(1 + ε)p. Thus, we have

ρ′

ρ
= (1 + ε)p · (1 − (p + 1)1/pε p

(p + 1)(p+2)/p − p(p + 1)1/p
) ,

and it holds that limp
ρ′/ρ

(1+ε)p = 1 for every fixed ε > 0.

5 Instability in Multi-commodity Networks

There are no analogous results to Theorem 2 and 3 for the multi-commodity case.
Figure 3 shows a network with two commodities, with both demands being 1, in
which after increasing the demand of the second commodity or both demands
by ε, the entire demand of the first commodity needs to be shifted to a single
edge to recover an equilibrium state. If a single ε-edge is being removed, other
edges might also lose an arbitrary fraction of the commodity’s demand.

s1

s2

t1

t2

1

x

1+ε

1 x

1+ε

1 1 x

1+ε

1 x

1+ε

s

t1

t2

x

k · x

k
2
− 1

Fig. 3. (left) Unlabeled edges cause no latency. Assume there are 2 · � 1
ε
� − 1 many

edges on the unique path connecting s2 with t2. For d1 = d2 = 1, the flow demand
of commodity 1 is uniformly spread over all �1/ε� paths using one edge on the path
connecting s2 and t2. After increasing d2 by ε, we have f(s1,t1) = 1. (right) For d1 = 1
and d2 = k, the path latency of the first commodity multiplicatively increases by 1+k·ε
if both demands are increased by a factor of (1 + ε).

Figure 3 also shows a network with 2 commodities. (Insisting on unit demands,
one can split commodity 2 into k small commodities.) Increasing the demands
by ε the path latency of commodity 1 increases by a factor of 1 + k · ε. Simple
examples exhibit an even higher increase.

6 Open Problems

Suppose, given a unit demand flow at Wardrop equilibrium, one removes an
edge carrying only an ε-fraction of flow. How does the path latency change after
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recovering equilibrium? Considering a network with two parallel edges, one gets
a lower bound of 1

(1−ε)p . Is this bound tight?
Furthermore, we believe that our bound on the increase of the path latency

holds for a broader class of latency functions, namely for latency functions with
bounded elasticity.

What can be said about the sensitivity of equilibria in related models? For
instance, are analogous results possible in atomic games, where every agents
control some non-negligible amount of flow each?
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[11] Roughgarden, T., Tardos, É.: How Bad is Selfish Routing. Journal of the

ACM 49(2), 236–259 (2002)
[12] Roughgarden, T.: How Unfair is Selfish Routing. In: Roughgarden, T. (ed.) Proc.

of th 13th Annual Symposium on Discrete Algorithms (SODA), pp. 203–204
(2002)

[13] Roughgarden, T.: The Price of Anarchy is Independent of the Network Topol-
ogy. In: Proc. of th 34th Annual Symposium on Theory of Computing Discrete
Algorithms (STOC), pp. 428–437 (2002)

[14] Roughgarden, T.: On the Severity of Braess’s Paradox: Designing Networks for
Selfish Users is Hard. Journal of Computer and System Sciences 72(5), 922–953
(2004)

[15] Wardrop, J.G.: Some Theoretical Aspects of Road Traffic Research. In: Proc. of
the Institute of Civil Engineers Pt. II, pp. 325–378 (1952)


	Sensitivity of Wardrop Equilibria
	Introduction
	Related Work
	Outline

	Wardrop's Traffic Model
	Sensitivity of Equilibrium Flows
	Instability of Equilibria: Every Agent Needs to Move
	Edge Flows Are Locally Stable

	Stability of the Path Latency
	Increase of the Price of Anarchy

	Instability in Multi-commodity Networks
	Open Problems



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




