
http://wrap.warwick.ac.uk/   

 
 

 
 
 
 
 
 
 
Original citation: 
Leeke, Matthew and Jhumka, Arshad (2009) Beyond the golden run : evaluating the use 
of reference run models in fault injection analysis. In: UK Performance Engineering 
Workshop (UKPEW 2009), Leeds, UK, 6-7th July 2009. Published in: 25th UK 
Performance Engineering Workshop 6-7 July 2009 pp. 61-74. 
 
Permanent WRAP url: 
http://wrap.warwick.ac.uk/47538        
 
Copyright and reuse: 
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the 
University of Warwick available open access under the following conditions.  Copyright © 
and all moral rights to the version of the paper presented here belong to the individual 
author(s) and/or other copyright owners.  To the extent reasonable and practicable the 
material made available in WRAP has been checked for eligibility before being made 
available. 
Copies of full items can be used for personal research or study, educational, or not-for-
profit purposes without prior permission or charge.  Provided that the authors, title and 
full bibliographic details are credited, a hyperlink and/or URL is given for the original 
metadata page and the content is not changed in any way. 
 
A note on versions: 
The version presented in WRAP is the published version or, version of record, and may 
be cited as it appears here.For more information, please contact the WRAP Team at: 
publications@warwick.ac.uk 
 
 
 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/9560622?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/47538
mailto:publications@warwick.ac.uk


Beyond The Golden Run: Evaluating

the Use of Reference Run Models in

Fault Injection Analysis

Matthew Leeke Arshad Jhumka ∗

Abstract

Fault injection (FI) has been shown to be an effective approach to assess-
ing the dependability of software systems. To determine the impact of
faults injected during FI, a given oracle is needed. This oracle can take
a variety of forms, however prominent oracles include (i) specifications,
(ii) error detection mechanisms and (iii) golden runs. Focusing on golden
runs, in this paper we show that there are classes of software which a
golden run based approach can not be used to analyse. Specifically we
demonstrate that a golden run based approach can not be used when
analysing systems which employ a main control loop with an irregular
period. Further, we show how a simple model, which has been refined
using FI, can be employed as an oracle in the analysis of such a system.

1 Introduction

1.1 Motivation

As computer systems become pervasive the functionality of systems will increas-
ingly be defined by software, thus making software dependability a critical issue
for systems developers. Fault injection (FI) is one approach that can be used
to assess the dependability of a given software system. In general, FI involves
analysing the response of a given system to the artificial insertion of faults or er-
rors, usually with a view to assessing the coverage and latency of error detection
and correction mechanisms [13]. FI techniques can be grouped into three, not
necessarily distinct, categories; simulation based fault injection, physical fault
injection and software implemented fault injection (SWIFI)[1] [6] [16] [18] [19].
To assess the impact of an injected fault upon a software system being analysed,
an oracle is needed. There are various types of oracle that can be employed, but
perhaps the most prominent are (i) specification-based [9], (ii) error detection
mechanisms [20], and (iii) golden runs [8].

However, it is often the case that either software systems are not equipped
with error detection mechanisms or the mechanisms themselves may not be
correct [14]. Further, it is also the case that the availability of a complete formal
specification cannot be guaranteed. In such cases a golden run based approach

∗High Performance Systems Group, Department of Computer Science, The University of
Warwick, Coventry, {matt, arshad}@dcs.warwick.ac.uk



can be used to capture the correct functioning of a software system. In this
approach the system is run under normal conditions for a set of test cases. For
each test case, the system is executed and the run is termed as the golden run
for that test case. This golden run then acts as a reproducible reference run of
the system for that particular test case, capturing information about the state
of the system during execution. Then, for the same set of test cases, the system
is executed under various fault injections to assess it’s dependability. For each
test case the corresponding golden run and fault-injected run are compared,
where the golden run is used as an oracle. The impact of faults can then be
determined based upon any deviation from the golden run.

Despite the conceptual appeal of the described approach, there are many
situations in which it is very difficult, if not impossible, to perform an analy-
sis based on a golden run. For example, it is stated that in order to analyse
software using a golden run, the software itself should (i) be deterministic in all
single executions, (ii) compile independently of the fault injection suite used and
(iii) not incorporate loops which make it impossible to determine when a single
execution has completed [23]. In general (ii) and (iii) will be fulfilled by the
majority of software that a developer would realistically want to analyse using
the golden run based approach. However, there are classes of software, includ-
ing concurrent systems, that will exhibit non-deterministic behaviour. Thus,
requirement (i) could impact upon the applicability of fault injection to such
systems. To address the described limitation this work proposes a variant of the
golden based approach that allows a specific class of non-deterministic software
to be analysed. Specifically, we show that a class of sequential, non-deterministic
software, such as those with an irregular main control loop or an unstable ini-
tialisation due to environmental fluctuations, can be analysed using a variant of
golden run based FI.

1.2 Contributions

In this paper we show that a sequential software system which exhibits non-
deterministic behaviour, and for which no clear specification is available and for
which the error detection based approach is not applicable, can be amenable
to FI analysis. To achieve this we first construct a simple reference run model
derived from data collected over a significant number of normal executions. We
then refine this reference run model by performing fault injection experiments
using the Propagation Analysis Environment (PROPANE) tool [10]. In evaluat-
ing our approach we focus upon any observed improvements in the proportion of
failed executions which the reference run model correctly classifies as erroneous.

In this paper we make the following specific contributions:

• We demonstrate the limitations of employing a golden run based approach
when performing fault injection analysis upon sequential software systems
which exhibit non-deterministic behaviour.

• We develop approaches whereby analysis based upon SWIFI techniques
can be applied to sequential software systems which exhibit some degree
of non-deterministic behaviour.

• We evaluate our approaches to constructing reference run models that can
be used to detect and classify errors resulting in failure.



The remainder of this paper is organised as follows: Section 2 reviews related
work, discussing the use of oracles and their association with fault injection.
Section 3 outlines the models assumed in this paper, including both the fault
and system model. Section 4 details the nature of the selected target system.
Section 5 describes the experimental setup used in our analysis. Section 6
presents our reference run model construction and results. Section 7 addresses
the limitations of the described approach. Finally, Section 8 concludes the paper
with a summary and discussion of future work.

2 Related Work

To perform FI analysis it is essential that some oracle be used to determine
whether a particular execution is erroneous. Without such an oracle, the im-
pact of any fault injected into an execution could not be assessed and thus
little meaningful information could be derived from the associated experiments.
Many current approaches to fault injection analysis rely upon the use of a sin-
gle reproducible golden run to capture information regarding internal state and
system outputs during the execution of a test case. This captured information
may then be used as a basis for comparison with subsequent executions of the
test case, effectively serving as a template for what should happen during each
subsequent execution [3] [6]. However, as rigid use of a golden run assumes
that the state of the system is precisely the same during all valid executions
of the test case, this approach can be inadequate when validating the depend-
ability of non-deterministic software systems. Arguably a proportion of these
systems could be analysed by decomposing or isolating the component of the
system under test, however these suggestions would overlook the significance of
the component in the wider systems context.

To overcome the naivety of using a single set of previously observed values,
many current fault injection techniques and tools allow a tolerance value to be
associated with specified variables or execution points, thus permitting some
degree of deviation from the value previously encountered [4] [7]. However, as
this type of approach still involves the use of a single golden run, it is difficult
to suggest that an observed value combined with an associated tolerance will
both account for the full extent of the permissible deviation and discriminate
between erroneous and valid executions, primarily because the observed value
itself is subject to deviations.

Specification-based testing is an approach to testing which uses a system
specification to derive a testing oracle. This testing oracle can then be used
to classify failures or assure correctness in particular test cases [11] [15] [17].
Despite the appeal of this formal approach to classification, it relies upon a
complete specification being available for the system under test. As it is some-
what unrealistic to expect such as specification to be available for all software
systems, the applicability of specification-based testing can be limited.

In addition to golden run and specification based approaches there are a va-
riety of dynamic mechanisms which have been employed to determine whether a
particular execution is erroneous. For example, code duplication has been shown
to be an effective method for discriminating between successful and erroneous
executions [2] [22]. A similar effect can also be achieved through the repeated
execution of code segments [12]. However, as with code duplication, it can be



difficult to determine precisely what to replicate and how to keep overheads
down to an acceptable level. Further to these approaches, it is also possible to
determine whether a particular test case execution is erroneous by employing
runtime checks in the form of executable assertions [20]. However, as the checks
to be performed may be difficult to derive, inexpressible or unknown, this ap-
proach can only be applied to target systems which are thoroughly understood
or have a clearly defined operational specification.

In contrast to existing approaches, a reference run model based upon mul-
tiple executions can offer the wide applicability of dynamic mechanisms, whilst
facilitating retrospective analysis similar to that afforded by golden run based
approaches. Moreover, whilst the reference run models evaluated in this paper
are inappropriate for dynamic analysis, the information contained within the
models could be used to inform the design of such mechanisms [21].

3 Models

3.1 System Model

To conduct the required FI experiments, access to application source code is
required for both system instrumentation and data collection. With this in mind
we adopt a grey-box view of the target system. Moreover, we view the target
systems as being composed of a series of interconnected but conceptually distinct
subsystems, each of which is composed of a collection of grey-box modules.
These modules are in turn considered to be composed of a collection of functions.
In the case of subsystems the adoption of this grey-box system view means
that, whilst the inputs and outputs of subsystems can be observed for analysis
purposes, no assumptions about the interconnections between subsystems are
made. For the modules which comprise subsystems the grey-box view mean
that, whilst the required access to application source code is afforded, the precise
functionality of each module need not be known. A visualisation of the described
system model is provided in Figure 1.

AI 

Subsystem

Flight 

Dynamics

I/O 

Control

Scenery 

Update

Audio 

Scheduling

ATC 

Subsystem
Rendering

AI 

Subsystem

Flight 

Dynamics

I/O 

Control

Scenery 

Update

Audio 

Scheduling

ATC 

Subsystem
Rendering

Input 

Module

Output 

Logger

PROPANE

Sn-1 Sn
Mn

MnM0 FnF0

S0

Figure 1: System model visualisation

3.2 Fault Model

The fault model adopted in this paper is a transient fault model, i.e. a fault oc-
curs and may never appear again. Such a fault model implies that single bit-flips
faults are used to target variables within the selected system modules, allow-
ing transient failures to be mimicked. We do not discriminate among variables
and assume that all variables stored in local memory are equally susceptible to
corruption.



4 Target System

The FlightGear Flight Simulator project is a collaborative open-source project
which seeks to build a extensible yet highly sophisticated flight simulator to
serve the needs of the academic and hobbyists communities [5]. The flight
simulator itself is written in C/C++ and is configured using collections of XML
files. The software is deliberately designed such that it can be built and run on
multiple platforms, including variants of Linux, Windows, and Macintosh OS
X. All source code and resources related to the project are made available under
the GNU General Public License.

AI 

Subsystem

Flight 

Dynamics

I/O 

Control

Scenery 

Update

Audio 

Scheduling

ATC 

Subsystem
Rendering

Figure 2: Structure of the FlightGear Flight Simulator main control loop

As is common in many software simulations, the FlightGear architecture de-
pends upon a single main control loop, which is responsible for periodically
sending update requests to subsystems within the simulation. The details of
the subsystems which are updated during each iteration of the main control
loop are given in Figure 2. As FlightGear is fundamentally a single-threaded
sequential application, program control is passed to each of the individual sub-
systems in turn, with the main control loop being held up whilst each update
request is processed. As a consequence of this architecture the performance
of each individual subsystem impacts heavily upon the overall performance of
the simulator. Further, as a request for an update of the graphical display is
sent to the renderer subsystem at every iteration of the main control loop, the
frequency at which the loop iterates is directly linked to the framerate. It is
this direct link, combined with the fact that framerate is a function of scene
complexity, which results in the main control loop having an irregular period
and thus exhibiting non-deterministic behaviour.

5 Experimental Setup

To ensure that the target system could be evaluated in a consistent manner,
steps were taken to ensure that separate executions of the system could be
justifiably compared. Firstly, to ensure that a distinct start and end point
could be observed for each separate execution, it was determined that the main
control loop would be allowed to execute for a fixed number of iterations before
the simulation was gracefully terminated. Moreover, as the single test case
used in the FI experiments involved the simulator performing a simple aircraft
takeoff, the number of iterations was fixed at 1400. This execution duration was
a conservative, empirically determined value which allowed sufficient time for
a complete takeoff. To ensure that the process of termination did not impact
upon the system executions, the same termination sequence that is employed
by the target system to initiate a standard simulation shut down was used.

As some means of providing the target system with valid input vectors at
each iteration of the main control loop was required, a simple input module was



Module ID Subsystem Module Name Function Variables
A Flight Dynamics FGEngine FGEngine 3
B Flight Dynamics FGEngine ConsumeFuel 4
C Flight Dynamics FGPiston Calculate 5
D Flight Dynamics FGPropeller Calculate 4

Table 1: Instrumentation details for FI experiments used in model refinement

developed. This module was implemented using the environment simulation
feature afforded by the PROPANE tool, thus providing a degree of separation
from the target system. Further, to ensure that the irregular period of the main
control loop did not severely impact upon or nullify the relevance of the input
vector provided at each iteration, the XML configuration files associated with
the single test case were modified such that, whilst the simulator was able to
perform the takeoff procedure, precisely the same input vector could be provided
at every iteration of the main control loop.

In line with the described system model, the overall system outputs were
recorded at each iteration of the main control loop. Specifically, the logging
capabilities of the PROPANE tool were used to record the current altitude and
speed of the aircraft immediately following each iteration of the main control
loop. For the remainder of this paper the current altitude and speed outputs
are referred to as observed system outputs.

AI 

Subsystem

Flight 

Dynamics

I/O 

Control

Scenery 

Update

Audio 

Scheduling

ATC 

Subsystem
Rendering

AI 

Subsystem

Flight 

Dynamics

I/O 

Control

Scenery 

Update

Audio 

Scheduling

ATC 

Subsystem
Rendering

Input 

Module

Output 

Logger

PROPANE

Figure 3: Structure of the experimental setup

The instrumentation details for the FI experiments used in the refinement of
the reference run models are shown in Table 1. All experiments were focused
upon modules within the Flight Dynamics subsystem, primarily because this
subsystem is the largest and has the most significant impact upon the overall
output of the system, thus it would be desirable for errors resulting in failure to
be more readily detected in this subsystem. The variables instrumented were
randomly selected with no prior knowledge of their function or meaning. To as-
sess the capacity of each reference run model to classify executions consistently,
regardless of variations in observed system outputs, 7 executions of each distinct
experiment (i.e. each randomly chosen bit flip fault) were performed.

By introducing significant deviations in internal state it is possible that the
task of discriminating between erroneous and valid executions could be made
easier, as it is possible that the observed outputs may vary significantly. With
this in mind the extent of the bit-flip faults injected was limited to the first
ten least significant bits of instrumented variables, each of which had a internal
representation greater than this threshold. Henceforth each subsystem-module-
function triple shown in Table 1 will be referred to by the assigned Module ID.



6 Model Construction & Results

6.1 Golden Run

Prior to the development of the reference run model, an attempt was made to
perform FI analysis upon the target system using a golden run based approach.
A single execution of the target system was performed, with the observed system
outputs being recorded at each iteration of the main control loop. However,
during initial fault injection experiments it became evident that all executions
were being classified as erroneous. To verify that this was indeed a problem
with the oracle employed and not a result of the faults injected, an attempt was
made to recreate the golden run and the information collected from it. This
recreation proved unsuccessful, with each iteration yielding inconsistent values
for all observed system outputs. To verify what had been observed, a further
150 executions were performed and compared. As no two of these executions
yielded consistent values, it was determined that employing a golden run based
FI approach in the analysis of the target system was inappropriate. Further, as
no formal specification or sufficiently detailed functional documentation existed
for the target system, an alternative approach to deriving an oracle for the
classification of executions was motivated.

6.2 Range Model

In this section we propose a range model which classifies executions as being
either erroneous or valid based upon the values of observed system outputs.
Following the construction of an initial model based upon values observed during
multiple executions of the target system, the model is validated and refined
using FI experiments. Ideally these experiments would have demonstrated that
the range model can correctly classify all failed executions as erroneous, whilst
avoiding the misclassification of valid executions. As this was the case for only
one of the modules under test, modifications which address the limitations of
the range model are necessitated.

The motivation for the use of tolerances in golden run comparisons is the
need to acknowledge deviations in the expected runtime values of particular
variables or system outputs. The range model admits the potential for deviation
by assuming that each observed output has an associated range of valid values
for each iteration of the main control loop and that any occurrence outside this
range is indicative of an erroneous execution. As it is not possible to guarantee
that a true maximum or minimum has been encountered for particular iteration
of the main control loop, the model must be somewhat permissive of deviations
which cause observed outputs to go outside the bounds established through
observation. We acknowledged that our sample executions could not be assumed
to contain information that precisely represented the distribution of acceptable
values by extending the bounds of the range by a percentage of the bound itself.

Table 2 shows the result of fault injections experiments classified using the
range model. The range deviation percentage was set to 10% above and below
the previously observed minimum and maximum respectively. The results pre-
sented were obtained under the fault model and experimental setup described
previously. The Erroneous column of the table indicates how many of the ex-
ecutions were classified as erroneous. To reiterate, an execution if classified as



Module Runs Erroneous Error Failures Failure Detection
ID Rate Rate Rate
A 210 182 0.867 7 0.033 1.000
B 280 182 0.650 56 0.200 0.875
C 350 252 0.720 70 0.200 0.700
D 280 238 0.850 63 0.225 0.667

1120 854 0.763 196 0.175 0.750

Table 2: Classifications for Range Model (±10% Range Deviation)

erroneous if any observed output value strays outside the valid range for at least
one iteration of the main control loop. The Error Rate expresses the number
of erroneous executions as a proportion of the total number of executions. The
Failures column gives the number of executions which could not be completed
due a failure, with the Failure Rate expressing that number as a proportion of
the total number of executions performed. Finally, Detection Rate refers to the
proportion of failed executions that were classified as erroneous before failing.

The most noticeable result presented is the average failure detection rate of
0.750. This is a relatively low detection rate that could prevent this parameter-
isation of the model from being used as an oracle in any form of dependability
analysis. Given that each distinct experiment was performed on 7 separate oc-
casions, it is unsurprising that the number of runs classified as erroneous for
each module is a multiple of 7. However, it is important to recognise that a
repeated execution may not necessarily be given the same classification as the
executions that it attempts to recreate. This is due to the variations in observed
system outputs, which can determine whether a particular fault manifests as a
error or whether the overall range is violated by a particular execution. It is
also interesting to note that, whilst the error rate for module A is the highest
of the four modules under test, the associated fatality rate is remarkably low, a
fact that is made noteworthy because it is the only class constructor under test.

To ensure that range model is able to correctly discriminate between valid
and erroneous executions, 150 executions with no fault injections were classified.
The model correctly classified each of these executions as being non-erroneous.

Having stressed the importance of detecting errors which lead to failures and
discussed how the range deviation percentage determines the range of values
which are considered acceptable, we now show how adjusting the bounds of the
range impacts upon the capacity of the model to correctly detect errors resulting
in failure. Specifically, we show how narrowing the valid range can increase the
failure detection rate without unduly impacting upon the error rate.
The results in Table 3 demonstrate an improvement in the detection of errors
which result in failures. Of the 14 executions newly classified as erroneous,
each one ultimately resulted in a failure. Further to this, these 14 executions
are associated with only 2 experiments, with each of the 7 separate executions
of each experiment being correctly classified as erroneous. When interpreting
these results it is important to note that the selected range percentage deviation
was not chosen blindly. The figure was reached by systematically narrowing the
extent of the valid range and carefully observing the response of the model.
During this process it became apparent that executions resulting in failures



Module Runs Erroneous Error Failures Failure Detection
ID Rate Rate Rate
A 210 182 0.867 7 0.033 1.000
B 280 182 0.650 56 0.200 0.875
C 350 259 0.740 70 0.200 0.800
D 280 245 0.875 63 0.225 0.778

1120 868 0.775 196 0.175 0.821

Table 3: Classifications for Range Model (±7.8% Range Deviation)

were first to be excluded as the range narrowed, indicating that repetitions
of the same fault injected execution produce similar values in at least one of
the observed system outputs. Using this approach it was found that a range
deviation of 7.8% was the last point at which a failure was encountered before
the range narrowing process began to reclassify executions which did not result
in failure. The highly focused improvement presented not only gives credence
to the assumption that there is a valid range of values associated with each of
the observed variables, it may also suggest that certain observed system output
values are associated with failures.

To this point the results derived from FI experiments have been used to
improve the failure detection rate of the range model. To demonstrate that
this improvement has not also impacted upon the capacity of the model to
discriminate failures, 150 executions with no fault injections were classified using
the refined range model. The model was able to correctly classify each of these
executions as being valid, thus suggesting that the improved results were not
due to the eagerness of the model to classify executions as erroneous.

A comparison of the results presented so far would indicate that the range
deviation percentage does impact upon the capacity of the model to detect
errors which result in failures. Interestingly, as the range deviation percentage
can be controlled, there is potential for it to be tailored to fit the requirements
of any target system that is amenable to the approach described. For example,
when evaluating safety-critical applications using the range model as a oracle,
a lesser range deviation percentage could be adopted to ensure that the values
are both confined and well understood. In contrast, performance applications
which seek to reduce the amount of time spent undertaking recover actions may
be more permissive of false negatives.

6.3 Clustered Model

The clustered reference run model is a further refinement of the range model.
The clustered model seeks to ensure that errors associated with failures within
the valid range of observed output values are correctly detected. The greatest
weakness of the range model is the underlying assumption that an error-free
execution could potentially produce values across the entire range, thus ignoring
groupings or arbitrary values that may occur within the range. The clustered
model addresses this limitation by identifying values within the range that are
grouped sufficiently closely to suggest that they may combine to form a valid
sub-range. The range deviation percentage used in the range model is retained.



Module Runs Erroneous Error Failures Failure Detection
ID Rate Rate Rate
A 210 182 0.867 7 0.033 1.000
B 280 187 0.668 56 0.200 0.964
C 350 259 0.740 70 0.200 0.800
D 280 238 0.850 63 0.225 0.667

1120 866 0.773 196 0.175 0.811

Table 4: Classifications for Clustered Model (±10% Range, ±10% Sub-Range)

Module Runs Erroneous Error Failures Failure Detection
ID Rate Rate Rate
A 210 182 0.867 7 0.033 1.000
B 280 188 0.671 56 0.200 0.982
C 350 271 0.774 70 0.200 0.971
D 280 245 0.875 63 0.225 0.778

1120 886 0.791 196 0.175 0.913

Table 5: Classifications for Clustered Model (±7.8% Range, ±7.8% Sub-Range)

In addition, a new sub-range deviation percentage is used to specify how closely
observed output values must be to be considered part of the same sub-range.

Tables 4 and 5 show the results of fault injections experiments classified
using the clustered model with both deviation parameters and set to 10% and
7.8% respectively. All experiments were conducted under the fault model and
experimental setup described previously.
The results shown in Table 4 and 5 demonstrate the superiority of the clustered
model, with both parameterisation yielding better failure detection rates than
their range model counterparts. Further, this improved detection rate does not
lead to an unnecessary increase in the overall error detection rate, as only those
executions which are newly classified as resulting in failures contributed to the
increase. This efficiency in failure detection can also be seen across different
parameterisations of the clustered model, as once again only newly recognised
failures contribute to the increased error rate.

The matched range and sub-range deviation percentages shown were selected
to allow a broad, yet imperfect, comparison with the results presented for the
range model. In order to further refine the clustered model it is possible to use
unmatched values for the range and sub-range deviation parameters. As the
analysis performed in the refinement of range model yielded a justifiable extent
for the overall range, the range deviation percentage was not modified. The
sub-range deviation was systematically decreased and set to the value associated
with last point at which a failure was encountered before executions which did
not end in failure were excluded.
The results presented in Table 6 represent both the final refinement of the
clustered reference run model and a significant improvement over the refined
range model. Not only is the failure detection rate superior to that achieved
by any parameterisation of the range model, the clustered model also correctly



Module Runs Erroneous Error Failures Failure Detection
ID Rate Rate Rate
A 210 182 0.867 7 0.033 1.000
B 280 189 0.675 56 0.200 1.000
C 350 273 0.780 70 0.200 1.000
D 280 245 0.875 63 0.225 0.778

1120 889 0.794 196 0.175 0.929

Table 6: Classifications for Clustered Model (±7.8% Range, ±4.5% Sub-Range)

Module Runs Erroneous Error Failures Failure Detection
ID Rate Rate Rate
A 150 130 0.867 5 0.033 1.000
B 200 130 0.650 45 0.225 1.000
C 250 195 0.780 50 0.200 1.000
D 200 170 0.850 45 0.225 0.778

800 625 0.781 145 0.181 0.931

Table 7: Validation of Clustered Model (±7.8% Range, ±4.5% Sub-Range)

classified all failures as erroneous in three of the four modules under test. A
subsequent inspection of the data collected during experimentation revealed
that those failures which the refined model incorrectly classified were associated
with errors that caused the target system to terminate before completing the
current iteration of main control loop.

To demonstrate that the clustered model could discriminate between valid
and erroneous executions, 150 non-fault injected execution were classified using
the clustered model with range and sub-range deviation set to 7.8% and 4.5%
respectively. The model correctly classified each of these executions as valid.

As the target system exhibits a degree of non-deterministic behaviour, it
is possible that the improvements presented may only be relevant to the set of
experiments conducted in the refinement of the model. To validate the clustered
model, a further set of fault injection experiments were conducted under the
fault model described previously. A single change to the experimental setup
was made, which saw the number of executions performed reduced from 7 to 5
for each distinct experiment.

The results in Table 7 suggest that the refined clustered model can effectively
detect those errors which result in failures under the adopted fault model. The
error rates obtained are consistent with those presented previously, thus indicat-
ing that the clustered model is consistent in its classification of errors. The fact
that the model can be seen to have maintained a near-identical failure detection
rate suggests that the model is indeed capable of consistently detecting errors
which lead to failures. Indeed, the small discrepancy between the two failure
rates can be explained by the difference in the number of repeated experiments,
as both models were in agreement with respect to each distinct experiment.
A subsequent inspection of the information recorded during the FI experiments
revealed that failure misclassifications were associated with errors which did not



allow the current iteration of the main control loop to end.
Having constructed, refined and validated a reference run model which is

capable of detecting a significant proportion of errors leading to failures in the
target system, it is reasonable to conclude that reference run models demon-
strate potential for use as oracles in FI analysis. Further, the information im-
plicitly stored within the reference run model can be used in the design of error
detection mechanisms. For example, the identified valid ranged associated with
the refined model could be used to inform the implementation of dynamic mech-
anisms such as runtime checks.

7 Limitations

The framerate associated with the selected target system governs the period
of the main control loop and thus the rate at which observed system outputs
are recorded. This means that the extent of the valid range and hence the
correctness of the model can be impacted upon if a relatively stable framerate is
not maintained in each execution of the target system. Whilst this limitation is
not well represented in the results presented, this potential source of variation
must be considered when recreating the experimental setup described. More
significantly, it should be remembered that the outlined approach can not be
employed in the analysis of all software systems. The assumptions that underlie
the model and the exploitation of signals which model continuous real-world
phenomena are relatively specific to the type of software under test. However,
despite this acknowledgement it should be noted that the intention of this paper
was not propose such a general purpose approach, rather it was to demonstrate
that it is possible to use reference run models to perform FI analysis upon
sequential software which exhibits non-deterministic behaviour.

8 Summary & Future Work

The desire for determinism in all single executions of a target system can be
considered to be a limiting characteristic of golden run based FI analysis. In
this paper we have demonstrated that it is possible to analyse a sequential
system which exhibits a degree of non-deterministic behaviour. Specifically,
we have shown that reference run models, including the range and clustered
models presented, could be employed as an oracle for the classification of ex-
ecutions associated with such a system. Further, we have gone on to propose
that the information derived during the construction and refinement of reference
run models could be use to inform the design and placement of runtime error
detection mechanisms.

The majority of the work presented has focused upon the detection of errors
which result in failures. If reference run models are to be applied more generally
then it is also important that error-oriented analyses can be performed. Thus,
one way to advance the work presented would be to verify that the error rates
derived from reference run models can be consistent with those derived from
a single golden run based approach, thereby demonstrating that model based
approaches could be applied when estimating coverage values and other error-
oriented metrics.



References

[1] J H Barton, E W Czeck, Z Z Segall, and D P Siewiorek. Fault injection
experiments using fiat. IEEE Transactions on Computers, 39(4):575–582,
April 1990.

[2] A Benso, S Chiusano, P Prinetto, and L Tagliaferri. A c/c++ source-to-
source compiler for dependable applications. In Proceedings of the 2000
International Conference on Dependable Systems and Networks, pages 71–
78. IEEE Computer Society, June 2000.

[3] R Chandra, R M Lefever, M Cukier, and W H Sanders. Loki: A state-
driven fault injector for distributed systems. In Proceedings of the 2000
International Conference on Dependable Systems and Networks, pages 237–
242. IEEE Computer Society, June 2000.

[4] J-C Fabre, M Rodriguez, J Arlat, and J-M Sizun. Building dependable
cots microkernel-based systems using mafalda. In Proceedings of the 2000
Pacific Rim International Symposium on Dependalbe Computing, pages 85–
92. IEEE Computer Society, August 2000.

[5] FlightGearFlightSimulator. http://www.flightgear.org/.

[6] K K Goswami, R K Iyer, and L Young. Depend: A simulation-based
environment for system level dependability analysis. IEEE Transactions
on Computers, 46(1):60–74, January 1997.

[7] M Hiller. A Software Profiling Methodology for Design and Assessment of
Dependable Software. Doctoral thesis, Department of Computer Engineer-
ing, School of Computer Science and Engineering, Chalmers University of
Technology, Goteborg, Sweden, June 2002.

[8] M Hiller, A Jhumka, and N Suri. An approach for analysing the propagation
of data errors in software. In Proceedings of the 2001 International Con-
ference on Dependable Systems and Networks, pages 161–172, July 2001.

[9] M Hiller, A Jhumka, and N Suri. On the placement of software mechanisms
for detection of data errors. In Proceedings of the 2002 International Con-
ference on Dependable Systems and Networks, pages 135–144, June 2002.

[10] M Hiller, A Jhumka, and N Suri. Propane: An environment for examining
the propagation of errors in software. In Proceedings of the 2002 ACM SIG-
SOFT International Symposium on Software Testing and Analysis, pages
81–85. ACM, July 2002.

[11] L J Jagadeesan, A Porter, C Puchol, J C Ramming, and L G Votta.
Specification-based testing of reactive software: Tools and experiments ex-
perience report. In Proceedings of the 1997 International Conference on
Software Engineering, pages 525–535. IEEE Computer Society, May 1997.

[12] B W Johnson. Design and Analysis of Fault-Tolerant Digital Systems.
Addison-Wesley Series in Electrical and Computer Engineering. Addison-
Wesley, 1989.



[13] G A Kanawati, N A Kanawati, and J A Abraham. Ferrari: A flexible
software-based fault and error injection system. IEEE Transactions on
Computers, 44(2):248–260, February 1995.

[14] N G Leveson, S S Cha, J C Knight, and T J Shimeall. The use of self
checks and voting in software error detection: An empirical study. IEEE
Transactions on Software Engineering, 16(4):432–443, April 1990.

[15] D J Richardson, S L Aha, and T O O’Malley. Specification-based test
oracles for reactive systems. In Proceedings of the 14th International Con-
ference on Software Engineering, pages 105–118, July 1992.

[16] V Sieh, O Tschäche, and F Ballbach. Verify: Evaluation of reliability using
vhdl-models with embedded fault descriptions. In Proceedings of the 27th
International Symposium on Fault Tolerant Computing, pages 32–36. IEEE
Computer Society, June 1997.

[17] P Stocks and D Carrington. A framework for specification based testing.
IEEE Transactions on Software Engineering, 22(11):777–793, November
1996.

[18] D T Stott, B Floering, Z Kalbarczyk, and R K Iyer. Nftape: A framework
for assessing dependability in distributed systems with lightweight fault
injectors. In Proceedings of the 4th International Symposium on Computer
Performance and Dependability, pages 91–100. IEEE Computer Society,
June 2000.

[19] T K Tsai and R K Iyer. Measuring fault tolerance with the ftape fault
injectiontool. Lecture Notes in Computer Science, 977/1995:26–40, April
1995.

[20] J Vinter, J Aidemark, P Folkesson, and J Karlsson. Reducing critical
failures for control algorithms using executable assertions and best effort
recovery. In Proceedings of the 2001 International Conference on Depend-
able Systems and Networks, pages 347–356. IEEE Computer Society, July
2001.

[21] J Vinter, O Hannius, T Norlander, P Folkesson, and J Karlsson. Exper-
imental dependability evaluation of a fail-bounded jet engine control sys-
tem for unmanned aerial vehicles. In Proceedings of the 2005 International
Conference on Dependable Systems and Networks, pages 666–671. IEEE
Computer Society, June 2005.

[22] J Vinter, A Johansson, P Folkesson, and J Karlsson. On the design of
robust integrators for fail-bounded control systems. In Proceedings of the
2003 International Conference on Dependable Systems and Networks, pages
415–424. IEEE Computer Society, June 2003.

[23] J M Voas and G McGraw. Software Fault Injection. John Wiley and Sons,
1998.


