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Abstract

A framework for classification of chronic lung disease from high-resolution CT scans
is presented. We use a set of features which measure the local morphology and topology
of the 3D voxels within the lung parenchyma and apply functional data classification to
the extracted features. We introduce the measures, Minkowski functionals, which derive
from integral geometry and show results of classification on lungs containing various
stages of chronic lung disease: emphysema, fibrosis and honey-combing. Once trained,
the presented method is shown to be efficient and specific at characterising the distribu-
tion of disease in HRCT slices.

1 Introduction
Chronic obstructive lung diseases, such as emphysema and pulmonary fibrosis, are progres-
sive respiratory diseases leading to a decline in lung function and, eventually, respiratory
failure. High resolution computed tomography (HRCT) is currently the most accurate, non-
invasive method of detecting and evaluating changes in lung parenchyma and so is used in
clinical practice to diagnose and assess the severity of these diseases. The progress of disease
manifests itself as textural changes of the imaged lung tissue and, in the case of emphysema,
as a reduction of the mean lung density. In clinical practise, quantitative assessment of
emphysema is usually based on summary statistics of the histogram of lung voxel values.
Common statistics are percentile points and the voxel index, which is the proportion of lung
voxels below a pre-defined threshold. However, such simple criteria can be unreliable, for
example, when the pathological process is mixed such as in the presence of inflammation
and fibrosis along with emphysema.
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As chronic obstructive lung diseases express themselves as textural changes in HRCT
scans, image texture analysis methods have been investigated as tools for a more robust
quantification. The early work of Uppaluri et al. [10] used first and second order texture fea-
tures together with fractal dimension to characterise emphysema. Chabat et al. [4] proposed
the use of texture measures based on grey-level co-occurrence matrices (GLCM). They also
included a number of shape features. The use of GLCM and the related shape and connec-
tivity measures suggested by Chabet et al. are also used in more recent work by Xu et al.
[11]. In Hoffman et al. [7] and Zavaletta et al. [12] spatial maps of lungs have been produced
that graphically show the result of texture classification. The classifiers used in recent work
vary from kNN classification [12], to Bayesian [11] and neural-network based methods [6].
In the following we explore the use of a systematic framework of morphological descriptors
from integral geometry that integrates and extends current approaches based on histogram
analysis.

2 Characterising Texture using Integral geometry
Integral geometry provides a family of measures, intrinsic volumes or Minkowski functionals,
that characterise the morphology and topology of polyconvex sets. A set is polyconvex if it
is a finite union of compact, convex sets. The foreground in a binary image is a finite union
of voxels and therefore a polyconvex set.

In R3 there are four Minkowski functionals which are proportional to more commonly
known quantities: volume V , surface area S, the mean breadth B (which is proportional
to the integral of mean curvature) and the Euler-Poincaré characteristic χ . More formally,
Steiner’s formula can be used to define the Minkowski functionals for convex sets. In R3

Steiner formula shows that

V (K⊕Br) = V (K)+S(K) r +2πB(K) r2 +
4
3

χ(K) r3, (1)

where K⊕Br = {x + y,x ∈ K and y ∈ Br} is the dilation of the convex set K by a sphere of
radius r. Hence we have

W0(K) = V (K), W1(k) =
1
3

S(K), W2(K) =
2π

3
B(K), W3(K) =

4
3

χ(K). (2)

In the following we will use the measures V , S, B and χ but refer to them collectively as
Minkowski functionals.

Minkowski functionals have convenient mathematical properties. They are invariant to
rigid motion, they are continuous in a certain sense and they are additive which allows for
efficient computation of the functionals, see Section 3. Another important property is that
Minkowski functionals are complete in the sense of Hadwiger’s theorem: any image func-
tional that is motion-invariant, continuous and additive is a linear combination of Minkowski
functionals.

Having been shown to be effective in materials science for classification of two-phase
media (see for example [1]), more recently, the functionals have also been applied to HRCT
lung scans. In [2, 3] the measures are used to classify regions of interest of size 40x40x40
voxels into healthy, fibrotic and emphysematous tissue. The authors use an integrative filter-
ing procedure to summarize the four integral geometry measures into a single quantity used
for classification and provide evidence that these measures can outperform standard densito-
metric methods. In [9] the same measures are computed on sub-windows covering the whole
lung and calibrated maps are produced illustrating the spatial distribution of emphysema and
pulmonary fibrosis.
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To apply the Minkowski functionals to HRCT scans, the images have to be binarized via
thresholding. While [9] keep the threshold fixed, in this paper we extend the approach by
letting the threshold vary and computing the Minkowski functionals for each threshold. This
is a natural extension to the clinical densitometry approach as the zeroth order Minkowski
functional (volume) as a function of attenuation is equivalent to the empirical cumulative dis-
tribution function of voxel values. In contrast to [2, 3] who examine large regions of interest
(40x40x40 voxels) we consider small sub-windows (5x5x1 voxels). While this sacrifices
some of the separation between Minkowski functionals for the different disease classes it
allows us to localize the spatial distribution of disease. Also, rather than summarizing the
measures into a single numerical quantity, we take account of the fact that we have functions
of Minkowski functionals by using a classification technique from functional data analysis.
This overcomes the statistical issues posed by having a large number of predictors relative
to the sample size.

3 Computation of Measures and Functional Classification

Legland et al. [8] present an algorithm that computes Minkowski measures for 3D binary
images. These Minkowski measures mi, i = 0, . . . ,3, are local versions of Minkowski func-
tionals Wi, i = 0, . . . ,3, and are computed on voxel level. The Minkowski functional of a set
X restricted to a window Ω can then be computed by summing over the Minkowski values of
the voxels in the window, that is Wi(X ∩Ω) = ∑x∈Ω mi(x). The algorithm is implemented as
a marching cubes type algorithm with hhe Minkowski measure for any 3x3x3 binary voxel
configuration being pre-computed and kept in a look-up table. Linear filtering is then used
to identify the voxel configuration for a given marching cube.

To apply the algorithm to HRCT lung scans we binarised the lung images for a range of
different thresholds. We subdivided each binary image into a grid of windows of size 5x5x1
voxels and then computed the Minkowski functionals for each window. Thus we obtained
Minkowski functionals as functions of attenuation value, see Figure 1 for examples. When
increasing the window size the separation between the Minkowski functionals of different
disease classification becomes more pronounced, however, spatial localisation of the classi-
fication into disease states becomes reduced. In our experiments we used the non-parametric
supervised classification method by Ferraty and Vieu [5] to classify various diseased lung
tissue. Our data represents functions which can pose problems for standard multivariate
techniques such as classical linear discriminant analysis because we have a large number of
predictors relative to the sample size. Functional data analysis, like the method by Ferraty
and Vieu, can overcome these limitations. We give a short overview of the method, further
details can be found in [5].

Let w = {w0,w1,w2,w3} be the observed Minkowski functionals which are functions
of attenuation value and let C denote the categorical variable denoting the class. The clas-
sification method uses a Bayes rule as classification rule, that is it estimates the posterior
probabilities

pc(w) = P
(

C = c
∣∣∣W = w

)
= E

(
1[C=c]

∣∣∣W = w
)

(3)

and then assigns the class c with the highest estimated posterior probability to w. The pos-
terior probabilities are estimated using a kernel estimator which is based on a functional
concept of proximity. In our experiments we used the L2 metric applied to data smoothed
via multivariate partial least squares regression.

Citation
Citation
{M. Charemza and E. Thönnes and A. Bhalerao and D. Parr} 2008

Citation
Citation
{Boehm, Fink, Attenberger, Becker, Behr, and Reiser} 2008

Citation
Citation
{Boem, Fink, Becker, and Reiser} 2007

Citation
Citation
{Legland, Ki{ê}u, and Devaux} 2007

Citation
Citation
{Ferraty and Vieu} 2006

Citation
Citation
{Ferraty and Vieu} 2006



4 THÖNNES : CLASSIFICATION OF LUNG DISEASE IN HRCT

Figure 1: Example Minkowski functionals from the training set.

4 Results and Discussion

We manually selected 28 regions of size 30x30x5 voxels as a training set. 10 of these regions
were examples of healthy lung, 10 fibrotic lung and 8 suffering from emphysema. (The
number of emphysematous training regions is smaller as there were fewer such regions in
the available HRCT scans). Both the training set and the lung tissue to be classified were
subdivided into 5x5x1 voxel windows. While we choose the vertical size of classified regions
to be just one voxel note that the Minkowski functional values each voxel take account of the
configuration in the 3D neighbourhood. On the training set we achieved a misclassification
rate of 7%.

Figure 2 illustrates some of our classification results. We should point out that the train-
ing set was classified by a non-expert and is likely to underestimate the variability of the
disease patterns. Also, as the results are not based on a designed survey sample. Thus, at
this stage, the results are indicative only but illustrate the promise of the presented method.
The resolution of classification was chosen as a compromise between spatial localisation
and appropriate separation in the training sample. However, the additivity of the Minkowski
measures presents the opportunity to develop a hierarchical classification approach in which
the resolution in a spatial region can be varied and is determined as part of the algorithm.

In summary, the classification method from functional data analysis has been shown to
appropriately account of the fact that the integral geometry descriptors are functions of atten-
uation. Furthermore, while enhancing the assessment of emphysema the presented frame-
work could readily be applied to any other lung disease that leads to structural changes and
deformations of lung tissue, including pulmonary fibrosis and LAM. As well as further vali-
dation of the framework, we are investigating its wider application.
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Figure 2: Classified lung slices: green regions denote healthy lung, red regions fi-
brotic, honeycombed tissue and blue regions are classified as suffering from em-
physema.
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