
http://wrap.warwick.ac.uk/

Original citation:
Pennycook, Simon J., Hammond, Simon D., Mudalige, Gihan R. and Jarvis, Stephen A.,
1970- (2010) Experiences with porting and modelling wavefront algorithms on many-
core architectures. In: Daresbury GPU Workshop 2010, Daresbury, UK

Permanent WRAP url:
http://wrap.warwick.ac.uk/47466

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for-
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

A note on versions:
The version presented in WRAP is the published version or, version of record, and may
be cited as it appears here.

For more information, please contact the WRAP Team at: publications@warwick.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/9560577?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/47466
mailto:publications@warwick.ac.uk

Experiences with Porting and Modelling Wavefront Algorithms
on Many-Core Architectures
Experiences with Porting and Modelling Wavefront Algorithms
on Many-Core Architectures
Experiences with Porting and Modelling Wavefront Algorithms
on Many-Core Architectures

S.J. Pennycook, S.D. Hammond, G.R. Mudalige, and S.A.
Jarvis

1 Introduction

We are currently investigating the viability of many-core ar-
chitectures for the acceleration of wavefront applications and
this report focuses on graphics processing units (GPUs) in
particular. To this end, we have implemented NASA’s LU
benchmark [1] – a real world production-grade application –
on GPUs employing NVIDIA’s Compute Unified Device Archi-
tecture (CUDA) [2].

This GPU implementation of the benchmark has been used to
investigate the performance of a selection of GPUs, ranging
from workstation-grade commodity GPUs to the HPC “Tesla”
and “Fermi” GPUs. We have also compared the performance
of the GPU solution at scale to that of traditional high perfor-
mance computing (HPC) clusters based on a range of multi-
core CPUs from a number of major vendors, including Intel
(Nehalem), AMD (Opteron) and IBM (PowerPC).

In previous work we have developed a predictive “plug-and-
play” performance model of this class of application running
on such clusters, in which CPUs communicate via the Message
Passing Interface (MPI) [3, 4]. By extending this model to
also capture the performance behaviour of GPUs, we are able
to: (1) comment on the effects that architectural changes
will have on the performance of single-GPU solutions, and
(2) make projections regarding the performance of multi-GPU
solutions at larger scale.

2 Wavefront Applications

Typical three-dimensional implementations of the parallel wave-
front algorithm operate over a grid of Nx × Ny × Nz grid-
points. Computation starts at one of the grid’s corner vertices
and progresses to the opposite, which we refer to henceforth
as a sweep.

By way of example, we consider a single sweep through the
data-grid in which the computation required by each grid-
point (i, j, k) is dependent upon the values of three neigh-
bours: (i−1, j, k), (i, j−1, k) and (i, j, k−1). In [5], Lamport
showed that, for a given value of f , all grid-points that lie on
the hyperplane defined by i + j + k = f can be computed in
parallel. Furthermore, all of the grid-points upon which this
computation depends satisfy i + j + k = f − 1; by stepping
in f and computing all satisfied grid-points, the dependency
is preserved. We refer to each of these steps as a wavefront
step.

0 2
1

0

2

2

5

7

0

5

6

3
4

1

Figure 1: Two-dimensional mapping of threads onto a
three-dimensional data grid.

This algorithm occupies large execution times at supercom-
puting centres such as the Los Alamos National Laboratory
(LANL) in the United States and the Atomic Weapons Es-
tablishment (AWE) in the United Kingdom. Therefore, the
acceleration of wavefront applications is of both commercial
and academic interest.

2.1 GPU Implementation

Due to the strict data dependency present in wavefront ap-
plications, it is necessary to introduce a method of global
thread synchronisation. We achieve this through the use of
repeated kernel invocation, launching one kernel for the solu-
tion of each of the wavefront steps. In each kernel we launch
O(N2) threads, mapping them to grid-points as shown in Fig-
ure 1. Those threads assigned to grid-points that are not
currently on the active hyperplane exit immediately, without
carrying out any computation.

Global memory is rearranged in keeping with this mapping (to
ensure coalescence of memory accesses), but our kernels do
not make use of shared memory.

2.2 GPU Performance

The graph in Figure 2 shows the performance of the GPU so-
lution running on three HPC-capable GPUs: the Tesla T10,
Tesla C1060 and Tesla C2050. Also included is the perfor-
mance of the original Fortran benchmark executed on a quad-
core 2.66GHz Intel “Nehalem” X5550 with 12GB of RAM,
with and without simultaneous multithreading (SMT). The
execution times reported are for problem classes A, B and C
of the benchmark, which use data grids of size 643, 1023 and
1623 respectively.

The GPU solution outperforms the original Fortran benchmark
for all three problem classes, with the Tesla T10/C1060 and
C2050 being up to 2.3x and 6.9x faster respectively.

One of the most eagerly anticipated additions to NVIDIA’s
Fermi architecture was the inclusion of ECC memory. ECC

High Performance Systems Group, University of Warwick

September 2010

Research Note UW22-9-2010-2.0

For more information: go.warwick.ac.uk/hpsg

High Performance Systems Group, University of Warwick

September 2010

Research Note UW22-9-2010-2.0

For more information: go.warwick.ac.uk/hpsg

Experiences with Porting and Modelling Wavefront Algorithms on Many-Core ArchitecturesExperiences with Porting and Modelling Wavefront Algorithms on Many-Core ArchitecturesExperiences with Porting and Modelling Wavefront Algorithms on Many-Core Architectures

0

50

100

150

200

250

300

350

400

450

A B C

E
xe

cu
tio

n
Ti

m
e

(S
ec

on
ds

)

Problem Class

Intel X5550 (4 Cores)
Intel X5550 (8 SMT Threads)

Tesla T10
Tesla C1060

Tesla C2050 (ECC on)
Tesla C2050 (ECC off)

Figure 2: Execution times of LU across different
workstation configurations.

memory is not without cost, however; firstly, enabling ECC
on the Tesla C2050 decreases the amount of global memory
available to the user from 3GB to 2.65GB; secondly it leads
to a significant performance decrease. For a Class C problem
run in double precision, execution times are almost 1.3x lower
when ECC is disabled.

Though these results illustrate the performance benefits of
GPU utilisation at the level of a single workstation, they do not
answer the question of whether GPUs are ready to be adopted
in place of CPUs at the cluster level. The development of
performance models is likely to aid us in attempting to answer
this question. Furthermore, results from several HPC clusters
are to appear in an SC 10 paper later this year.

3 Performance Modelling

Previous work by the group developed a performance model
for wavefront applications running at scale on CPUs commu-
nicating via MPI [3, 4]. We attempt to adapt this model to
be used with GPU clusters, made possible by its reusable and
generic nature.

We can capture changes to compute behaviour by replacing
the original CPU “grind time” parameter with a GPU sub-
model, whilst the MPI-associated overheads can be incorpo-
rated into the message latency parameter.

It is worth noting that, in our experience, the new costs that
result from data transfer across the PCI Express (PCIe) bus
are unlikely to contribute significantly to the overall execution
time in a realistic GPU-enabled application. A well-written
application will not transfer the entire data grid back to the

0.0E+00

5.0E-05

1.0E-04

1.5E-04

2.0E-04

2.5E-04

3.0E-04

3.5E-04

4.0E-04

4.5E-04

5.0E-04

5.5E-04

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

E
xe

cu
tio

n
Ti

m
e

(S
ec

on
ds

)

Number of Grid-Points

Tesla
Tesla Model

Figure 3: Execution times for Tesla C1060 and model
predictions.

CPU for communication; this is wasteful, since only the border
data is actually required. Packing and unpacking the MPI
buffers on the GPU avoids the transfer of unnecessary data
and greatly decreases the effect of these overheads.

Several other studies have demonstrated that it is possible to
accurately model the performance of select application kernels
based on source code analysis, or through low-level hardware
simulation of GPUs [6, 7]. Our previous performance models
have been produced at a higher level of abstraction, usually
based on timing results from instrumented code and/or bench-
mark results. However, the concept of executing kernels on a
separate device (shared by both CUDA and OpenCL) does not
often lend itself well to such instrumentation. The best that
we can achieve with CPU timers is to model the time taken
for a given application kernel – in our case, this corresponds
directly to the time taken for a given hyperplane step.

The graph in Figure 3 shows the execution times for each of
the hyperplane steps in our GPU implementation of LU when
run on a Tesla C1060 card. The first hyperplane step com-
putes the value of a single grid-point, the second the values of
three grid-points, the third six grid-points and so on, up until
a maximum of approximately 20,000 grid points.

We model the execution time for a given number of grid-
points, g, thus:

B(g) = dg/(S × T)e (1)

t(g) = h + (C × (B(g)− 1)× h) (2)

High Performance Systems Group, University of Warwick

September 2010

Research Note UW22-9-2010-2.0

For more information: go.warwick.ac.uk/hpsg

High Performance Systems Group, University of Warwick

September 2010

Research Note UW22-9-2010-2.0

For more information: go.warwick.ac.uk/hpsg

Experiences with Porting and Modelling Wavefront Algorithms on Many-Core ArchitecturesExperiences with Porting and Modelling Wavefront Algorithms on Many-Core ArchitecturesExperiences with Porting and Modelling Wavefront Algorithms on Many-Core Architectures

where B is the number of blocks per stream multiprocessor
(SM), S is the number of SMs and T is the number of threads
per block. h represents the time taken to process the first
active grid-point (calculated through code instrumentation).
Finally, the presence of C attempts to compensate for the
GPUs’ ability to run several thread blocks concurrently. We
currently know little more about this “concurrency factor”
other than that it is a function of the number of thread blocks
that can be scheduled to each SM, itself a function of the
number of registers used by a particular kernel – we expect
that the exact nature of this term will become clearer as our
work progresses.

Essentially, the model states that the execution time of the
kernel will stay constant so long as the number of thread
blocks assigned to each SM remains the same. An increase in
the number of blocks scheduled to each SM will increase the
execution time by some factor (based on the ability to hide
memory latency via time-slicing); any further blocks scheduled
to an SM after they have been saturated will require additional
processing steps and we model these as occuring serially. S×T
threads are required to fill all SMs once, and the number of
threads required to fully saturate all SMs is dependent upon
register usage.

The wavefront kernel used in our experiments to date uses 107
registers, limiting the number of concurrent blocks per SM
to 2. The Tesla C1060 has 30 SMs, and each thread block
contains 64 threads. Our model predicts a small increase in
execution time every 30 × 64 = 1920 threads and a larger
increase every 30×64×2 = 3840 threads, assumptions which
both match up to the graph. However, our model is less
accurate for large numbers of grid-points, which we believe to
be the result of unforeseen memory contention issues not yet
covered by our parameterisation (e.g. partition camping). For
this kernel, we have found 0.5 to be an acceptable value of C.

Figure 4 shows the corresponding graph of execution times
for a Tesla C2050 card, built on the “Fermi” architecture. It
should be noted that the y-axis scale is not the same as the
previous graph – the Fermi card is consistently around 2 - 3x
faster than the Tesla. As before, the increases in execution
time correspond to increases in the number of blocks sched-
uled to each SM. The GPU has 14 SMs, each supporting a
maximum of 8 thread blocks, suggesting an increase in exe-
cution time every 14× 64× 8 = 7168 threads. However, the
remainder of the execution time graph appears to be linear in
nature.

The different performance behaviour of Fermi is likely to be
due to the architectural improvements made by NVIDIA, in-
cluding a dual-warp scheduler and a two-tier hardware cache.

0.0E+00

2.0E-05

4.0E-05

6.0E-05

8.0E-05

1.0E-04

1.2E-04

1.4E-04

1.6E-04

1.8E-04

2.0E-04

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

E
xe

cu
tio

n
Ti

m
e

(S
ec

on
ds

)

Number of Grid-Points

Fermi

Figure 4: Execution times for Tesla C2050.

In future work, we intend to extend our existing Tesla model
to GPUs based on the Fermi architecture.

References

[1] D. Bailey, T. Harris, W. Saphir, R. Wijngaart, A. Woo, and
M. Yarrow. The NAS Parallel Benchmarks 2.0. Technical Re-
port NAS-95-020, NASA, December 1995.

[2] The NVIDIA Compute Unified Device Architecture. http://

www.nvidia.com/cuda/, 2010.

[3] G. R. Mudalige, M. K. Vernon, and S. A. Jarvis. A Plug-and-
Play Model for Evaluating Wavefront Computations on Parallel
Architectures. In IEEE International Parallel and Distributed
Processing Symposium (IPDPS 2008). IEEE Computer Society,
April, 2008.

[4] G. R. Mudalige, S. A. Jarvis, D. P. Spooner, and G. R.
Nudd. Predictive Performance Analysis of a Parallel Pipelined
Synchronous Wavefront Application for Commodity Processor
Cluster Systems. In Proc. IEEE International Conference on
Cluster Computing - Cluster2006, Barcelona, September 2006.
IEEE Computer Society.

[5] L. Lamport. The Parallel Execution of DO Loops. Commun.
ACM, 17(2):83–93, 1974.

[6] S.S. Baghsorkhi, M. Delahaye, S.J. Patel, W.D. Gropp, and
W.W. Hwu. An Adaptive Performance Modeling Tool for GPU
Architectures. In Proceedings of the 15th ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Computing, pages
105–114. ACM, 2010.

[7] S. Hong and H. Kim. An Analytical Model for a GPU Ar-
chitecture with Memory-Level and Thread-Level Parallelism
Awareness. ACM SIGARCH Computer Architecture News,
37(3):152–163, 2009.

High Performance Systems Group, University of Warwick

September 2010

Research Note UW22-9-2010-2.0

For more information: go.warwick.ac.uk/hpsg

High Performance Systems Group, University of Warwick

September 2010

Research Note UW22-9-2010-2.0

For more information: go.warwick.ac.uk/hpsg

