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Highlights

• Maximum flow rate steady solutions for withdrawal through a point sink

in water of finite depth computed.

• Different fluid depths, sink depths and flow rates, and the effects of

surface tension included.

• Two completely different numerical methods (integral equation and spec-

tral) used and compared.

• Limit as surface tension approaches zero consistent with previous re-

search.
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Abstract

Solutions are presented to the problem of steady, axisymmetric flow of an in-

viscid fluid into a point sink. The fluid is of finite depth and has a free surface.

Two numerical schemes, a spectral method and an integral equation approach,

are implemented to confirm results for the maximum-flow-rate steady solution

for each configuration. The effects of surface tension and sink depth are in-

cluded and constitute the new component of the work. Surface tension has

the effect of increasing the maximum flow rate at which steady-state solutions

can exist.

Keywords: Free surface flow, surface tension, point sink.

1. Introduction

The problem of steady flow due to a single, motionless sink beneath a free

surface has proven deceptively difficult. More accurately, while it is relatively

easy to obtain numerical solutions to this problem, the limiting parameters for

which steady flows exist have proven difficult to find with confidence. While it

is generally accepted that as the flow rate increases there comes a point beyond
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which steady solutions no longer exist, this critical value has had multiple

proposed values in the literature using similar numerical methods. The current

work uses two completely different numerical approaches to resolve the critical

values at which steady solutions cease to exist for the flow into a point sink

above a horizontal base. The agreement of these two different approaches

is central to the conclusions drawn about the solutions. Surface tension is

included in the work, both to gauge its influence on the flows and for its

stabilizing effect on both the flow and the numerical schemes.

While the results are of mathematical interest as a fundamental study of

free surface hydrodynamics, the problem is also relevant to the withdrawal of

fluid from water storage reservoirs and other confined water bodies (Imberger

& Hamblin (1982); Imberger & Patterson (1990)). Fluid withdrawn from

reservoirs tends to flow in layers due to the density stratification inherent in

all reservoirs in temperate climatic zones. This vertical stratification often

consists of constant density regions and regions with approximately linear

density variation due to either temperature or salinity. An understanding of

the process of selective withdrawal is important in delivering suitable water

quality for urban and agricultural supply.

Peregrine (1972) proposed the analogous problem in two dimensions (with

a line sink) as a study that might assist in understanding wave-breaking, and

while this has proven not to be the case for steady flow, some wave breaking

behaviour has been observed in the unsteady version in which the sink is

turned on in a fluid at rest (Stokes et al. (2003)). Regardless, the steady

problem with a line sink has provided some very interesting behaviour and due

to the (relative) ease of computation and the availability of complex variable

methods (Sautreaux (1901); Craya (1940); Peregrine (1972); Tuck & Vanden

Broeck (1984); Vanden-Broeck & Keller (1987); Hocking & Forbes (1991);

Forbes & Hocking (1993)) there has been much work on this case. Surface
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tension was considered in Forbes & Hocking (1993), and withdrawal in the

presence of a background flow by Holmes & Hocking (2015). In both cases

non-uniqueness was found in the solution space. Two kinds of steady solution

were obtained for flow from a single layer fluid with a free surface, one involving

a stagnation point on the surface and another involving a cusp above the sink

(Sautreaux (1901); Tuck & Vanden Broeck (1984); Vanden-Broeck & Keller

(1987)). Hocking (1995) and Hocking & Forbes (2001) showed that the

cusp solutions correspond to the situation in which the free surface is pulled

down directly into the sink if the withdrawal rate is increased beyond this

value. Thus, if there is another fluid above this layer, this flow corresponds

to the transition to a two-layer flow in which fluid from both layers flow out

through the sink. This was found to be true in both an unconfined fluid and

a fluid of finite depth. Numerical calculations of the unsteady flow indicate

that this critical drawdown flow is related to the maximum steady flow, but

the actual drawdown of the interface between two layers occurs at a flow rate

that depends on the flow history (Stokes et al. (2003, 2008)).

This considerable progress in the two dimensional case has not really been

matched in the problem of flow due to a point sink. Such flows were considered

experimentally by Harleman et al. (1959); Jirka & Katavola (1979); Lubin &

Springer (1967) and others, and later in a full simulation by Zhou & Graebel

(1990) and Xue & Yue (1998). Miloh & Tyvand (1993) considered a small

time expansion to look for critical drawdown values. No solutions with the

equivalent of a cusp shape have been found, except over a small range of

parameters (Forbes & Hocking (2003)).

The first computations of steady solutions for a point sink with a stagnation

point were performed by Forbes & Hocking (1990) and Vanden-Broeck &

Keller (1997) on the case of a semi-infinite fluid. These authors solved the

same equations but using different numerical approaches. The problem can
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be defined in terms of a Froude number FS =
√
m2/(gH5

S), where m is the

sink strength, g is gravitational acceleration and HS is the depth of the sink.

While the former found a limiting value of FS ≈ 6.4, the latter obtained values

close to FS = 5.4 (with a train of decaying upstream waves) using essentially

the same integral equation approach. The limiting solutions in both cases

appeared to have the same physical characteristic of a stagnation ring on

the free surface some small distance from the central surface stagnation point.

Solutions were computed using integral equation techniques pushing the limits

of computer power of the time. Similar discrepancies in the critical values

appeared when a flow with the sink on a horizontal, impermeable base were

computed by Hocking et al. (2002) (using the numerical approach of Vanden-

Broeck & Keller (1997)) who found FS ≈ 3.24, while Forbes et al. (1996)

obtained a much lower value of FS ≈ 1.5 using a fundamental singularity,

Galerkin technique. The former contained the familiar stagnation ring limiting

solution, but the latter did not. Experiments and full numerical simulations

in various geometries produced values for limiting single layer flows ranging

from FS ≈ 1.6 (Harleman et al. (1959)) to FS ≈ 3 (Zhou & Graebel (1990))

although these may not be directly related to limiting steady-state solutions

with a central stagnation point.

A recent, more thorough analysis of the integral equation method was given

in Hocking et al. (2014), and it was shown that the limiting steady solutions

occur at much lower values of flow rate than initial calculations suggest. Sur-

face tension was included in Hocking et al. (2015) and was found to have a

regularizing effect on both the solutions and the existence space, so that much

higher flow rates could be obtained with significant surface tension included.

The “errors” appear to be due to inappropriate truncation Forbes & Hocking

(1990) and lack of convergence of the numerical scheme as grid spacing was

decreased Vanden-Broeck & Keller (1997), but in both cases this was not
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Figure 1: Cut-out sketch of a typical axi-symmetric surface shape, z = η(r). The fluid is of

finite depth and withdrawal is through a point sink situated at depth z = −hS .

obvious with the computational capacity available at the time.

Here we consider the problem with a point sink situated at an arbitrary

depth in a fluid of finite depth and include the effects of surface tension, see

Figure 1. Two different numerical schemes are used and found to give matching

solutions for all parameter values. Again, the effect of surface tension is to

regularize the flow. By taking the limit as the surface tension approaches zero

we are able to confirm the limiting values for zero surface tension.

2. Problem Formulation

Consider the steady, irrotational, axisymmetric flow of an inviscid, incom-

pressible fluid beneath a free surface. The flow is driven by a point sink of

strength m situated at a depth HS beneath the undisturbed level of the free

surface and above a flat impermeable boundary at depth D. Under these

assumptions the problem can be formulated in terms of a velocity potential

φ(r, z), where r is a radial coordinate centred on the location of the point sink

and z is the vertical coordinate with z = 0 corresponding to the level of the free
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surface if there is no flow. Thus the velocity can be obtained as ∇φ = (u,w),

where u is the radial component and w is the vertical component. The free

surface is subject to surface tension, T .

Nondimensionalising the potential and length with respect to (m/D) and

D respectively, where the quantity m is the strength of the point sink, the

problem is to solve

∇2φ = 0, −1 < z < η(r), (r, z) 6= (0,−hS), (1)

subject to the dynamic condition obtained from setting pressure to the atmo-

spheric value on the free surface in the Bernoulli equation, i.e.

η +
F 2
D

2
(u2 + w2)− β (rηrr + ηr(1 + η2r))

r[1 + η2r ]
3/2

= 0 on z = η(r) (2)

with a kinematic condition that no flow can occur through the surface in steady

flow given by

∇φ · n = φrηr − φz = 0 on z = η(r), (3)

where n is the normal to the free surface, and a condition that there can be

no flow through the impermeable base beneath the layer of fluid,

φz = 0 on z = −1. (4)

These equations include the main parameters that control this flow; the

Froude number, the sink depth and the surface tension

FD =

(
m2

gD5

)1/2

, hS = HS/D, β =
T

gD2
(5)

in which g is gravitational acceleration. In most cases the Froude number can

be thought of as an effective flow rate. We can define a second Froude number

that is based on the depth of the sink rather than the depth of the fluid as

FS =

(
m2

gH5
S

)1/2

. (6)
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The value of FS is related to FD via the relation FD = h
5/2
S FS, where hS is the

nondimensional sink depth, and is useful for comparison with values computed

in an unbounded fluid, for which FD → 0 as D →∞.

In the limit as we approach the point sink at (r, z) = (0,−hS) the velocity

potential should take the form

ΦS →
1

4π
√
r2 + (z + hS)2

(7)

which corresponds to a total flux into the sink of Q = 4π. A change of sign

reverses the flow direction from a sink flow to a source flow. However, in the

case of steady flow, the quadratic nature of the velocity term in the dynamic

condition (2) means that steady solutions are valid for both a source and a

sink.

3. Rigid-lid solution

It is of interest to compute a solution that is valid for small flow rates that

result in a small disturbance to the free surface. In essence we can compute

the flow due to a point sink confined in a horizontal duct. An expansion about

the flow along the top of the duct is used to approximate the shape of the

free surface. The linearized problem is thus to solve Laplace’s equation in the

region −1 < z < 0 subject to the linearized kinematic conditions of φz = 0 on

z = 0,−1. The dynamic condition (2) can then be used to estimate the shape

of the free surface by expanding about z = 0. Following the usual procedure

of allowing φ = φ0 + φ1 + . . . and η = 0 + Z1(r) + . . . we can choose,

φ0(r, z) =
1

4πR1

+
1

4πR2

+

∫ ∞

0

a(k) cosh k(z + 1)J0(kr)dk, z ≤ η(r) (8)

where a(k) is a real function to be determined. The terms involving R1 =

[r2 + (z + hS)2]1/2 and R2 = [r2 + (z + 2 − hS)2]1/2 represent a point sink

at z = −hS and an image (about the base) at z = −2 + hS. This choice
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satisfies the sink behaviour (7), the condition of an impermeable boundary on

the bottom (4) and also satisfies Laplace’s equation (1), and so it remains to

satisfy the free surface conditions (2),(3).

At leading order the kinematic condition on z = 0, gives

φ0z(r, 0) = −
[
z + hS
4πR3

1

+
z + 2− hS

4πR3
2

+

∫ ∞

0

a(k)k sinh k(z + 1)J0(kr)dk

]

z=0

= 0,

= − hS
4π(r2 + h2S)3/2

− 2− hS
4π(r2 + (2− hS)2)3/2

+

∫ ∞

0

a(k)k sinh kJ0(kr)dk = 0

(9)

This equation can be solved using Hankel transforms; noting that

∫ ∞

0

e−ckJ0(kr)kdk =
c

(c2 + r2)3/2
(10)

we find that

a(k) =
e−hSk + e−(2−hS)k

4π sinh k
(11)

and so the full form of the linear solution for φ0 in a duct is (8) with this form

(11) for a(k).

The remaining condition is the dynamic condition, (2), which linearizes to

βZ ′′1 (r) +
β

r
Z ′1(r)− Z1(r) = G(r) (12)

where Z1(r) is the first-order perturbation to z = η(r) and G(r) =
F 2
D

2
φ2
0r(r, 0)

is the velocity along the top surface computed from (8). The solution of this

differential equation provides the “rigid-lid” solution for flow due to a point

sink in water of finite depth. If there is no surface tension, then the solution

becomes simply

Z1(r) = −F
2
D

2
φ2
0r(r, 0). (13)

In the case of non-zero surface tension, the equation can be solved us-

ing Hankel transforms, or by noting that from Bessel’s differential equation,

9
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Figure 2: Rigid lid solution compared with full nonlinear solution for β = 0.005 with

F = 1, 1.5 and 2.0. The solid line is the approximate solution in each case. The effect of

nonlinearity is clear in each, pulling the surface down more sharply. The sink is located on

the base at z = −1.

J ′′0 (y) + 1
y
J ′0(y) = −J0(y), so that if

Z1(r) =

∫ ∞

0

A(k)J0(kr)kdk (14)

then ∫ ∞

0

(−1− βk2)A(k)kJ0(kr)dk = G(r) (15)

and inverting the Hankel Transform

A(k) =
−1

1 + βk2

∫ ∞

0

G(r)J0(kr)rdr. (16)

The solution for Z1(r) is therefore given by (14) with A(k) given by (16).

Unfortunately, these integrals cannot be completely evaluated in closed form,

but it is a straightforward matter to compute them using quadrature. An

example is given in Figure 2 which shows several comparisons of the rigid-lid

solution with the full nonlinear solution for the case of a sink on the bottom

at z = −1 and a surface tension value of β = 0.005 for FS = 1.0, 1.5 and 2.0.
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Solutions with smaller values of FS are graphically identical to the nonlinear

solutions. The limiting (nonlinear solution) value is FS = 2.33 for this case.

Higher flow rates (FS) result in a deeper dip and it is clear that the effect of

nonlinearity is to pull the surface even deeper. However, for reasonable values

of FS and β the comparison is good, giving us the confidence to proceed with

the full nonlinear solutions.

4. The numerical methods

To consider the full nonlinear steady flow problem we need to implement

a numerical scheme. Given the range of different critical values of Froude

number obtained using different methods (Forbes & Hocking (1990); Forbes

et al. (1996); Vanden-Broeck & Keller (1997); Hocking et al. (2002)), we

consider two completely different approaches. First, we implement a spectral

representation of the flow based on an extension of the rigid-lid solution, using

an iterative scheme to compute the series coefficients. In addition, we use an

approach similar to that of Forbes & Hocking (1990); Vanden-Broeck & Keller

(1997) and Hocking et al. (2002). The flow is assumed to be axisymmetric

and an integral equation is derived for the elevation and velocity potential on

the free surface.

4.1. Spectral Method

We extend the rigid-lid approach above by allowing the free surface to

“move”. To do this we define the same potential function that satisfies all but

the free surface conditions given in (8). The difference in this section is that

φ(r, z) will now be evaluated at points directly on the free surface.

As above, this choice satisfies the sink behaviour (7), the condition of an

impermeable boundary on the bottom (4) and Laplace’s equation (1) every-

where except at the sink, and so it remains to satisfy the free surface conditions

(2),(3).
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It is possible to continue the derivation using the continuous form of φ, but

ultimately it will be necessary to truncate the integral in order to complete

the numerical solution, and so we continue from here using the discrete form

of the truncated integral,

φ(r, z) =
1

4πR1

+
1

4πR2

+
∞∑

j=0

aj coshλj(z + 1)J0(λjr), z ≤ η(r), 0 < r < L

(17)

where aj are real coefficients to be computed, λj, j = 1, 2, . . . are appropriate

eigenvalues, and J0(λjr) is the first-kind Bessel function. This also satisfies

all of the conditions except those on the free surface (2),(3). The truncation

point, L, is chosen to be large enough to provide converged solutions. The

eigenvalues are chosen so that J0(λkL) = 0. This choice makes no difference

to the computed solutions (see below) because φ→ 0 as r →∞.

Using this φ we can now compute the velocity components at any point on

the free surface z = η(r) as

u = φr(r, η) = − r

4π[r2 + (η(r) + hS)2]3/2
− r

4π[r2 + (η(r) + 2− hS)2]3/2

−
∞∑

j=1

ajλj coshλj(η(r) + 1)J1(λjr) (18)

w = φz(r, η) = − η(r) + hS
4π[r2 + (η(r) + hS)2]3/2

− η(r) + 2− hS
4π[r2 + (η(r) + 2− hS)2]3/2

+
∞∑

j=1

ajλj sinhλj(η(r) + 1)J0(λjr) (19)

where J1(λjr) is the first-kind Bessel function, noting that J ′0(x) = −J1(x)

(Abramowitz & Stegun (1970)).

We also define

η(r) = Z1(r) +
∞∑

j=1

cjJ0(λjr) (20)

where the cj, j = 1, 2, . . . are to be determined and Z1(r) is the rigid-lid

solution computed above. Note that it is necessary that η(r) − 2βη′′(r) → 0
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as r → 0, to satisfy the condition (2).

At this point we might expect that we could substitute these series into

(3) and (2) and solve for the series coefficients using Newton’s method with

collocation at points on the free surface. However, this procedure proves to be

highly ill-conditioned. An approach that works is to exploit the orthogonality

of the eigenfunctions involved in each equation, producing an equation for each

of the series coefficients. These equations are nonlinear but can still be solved

by an iterative method and prove to give a much better conditioned system.

The equation (2) can be modified by invoking the orthogonality of the

eigenfunctions to give an equation for the coefficients. Substituting the series

form for η(r) into (2),

∞∑

k=0

ckJ0(λkr) = −Z1(r)−
F 2
D

2
(φ2

r + φ2
z) +

β (rη′′ + η′(1 + η′2))

r[1 + η′2]3/2
, (21)

and then using orthogonality of the Bessel functions, we find an expression for

the coefficients ck as

ck =
2

L2J2
1 (λk)

∫ L

0

[
−Z1(r)− F 2

D(φ2
r + φ2

z) +
β (rη′′ + η′(1 + η′2))

r[1 + η′2]3/2

]
rJ0(λkr)dr,

(22)

k = 1, 2, 3, . . . , N where L is the truncation point and λk, k = 1, 2, . . . are the

appropriate eigenvalues of J0 for this value of L. The other condition (3) can

be dealt with similarly, but one must be careful because the hyperbolic sine

and cosine terms (which make the orthogonality inviolate) cannot be ignored

and consequently we add and subtract terms so that the resulting equations

for ak, k = 1, 2, . . . are

akλk−
2

L2J2
1 (λkL)

∫ L

0

[akλk(1 + sinhλk(η + 1)) + (φz − η′(r)φr)] J0(λkr)rdr = 0,

(23)

for k = 1, 2, 3, . . . .

The series can be truncated afterN terms, giving 2N unknowns in ck, ak, k =

1, 2, 3, . . . , N . An initial guess for the coefficients was then given and the so-

13
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lution to the set of 2N nonlinear equations in 2N unknowns was determined

via Newtonian iteration using the fsolve routine in Octave (or Matlab). The

integrals can be calculated very accurately using Gaussian quadrature, and

so it is only choices of L and N that determine the accuracy of the solution.

Care must be taken in computing the series terms because for large N the

eigenvalues can become very large and finding the hyperbolic sine and cosine

terms can cause floating point errors.

Results were found to be converged with N = 320, being graphically iden-

tical to those with N = 200, and the maximum Froude number computed

was found to be accurate to two decimal places, except for very small sur-

face tension values. The choice of L was found to give consistent results once

L > 8 with the sink on the bottom of the channel, but smaller values were

found to be sufficient as the sink moved closer to the free surface as the radial

disturbance to the free surface was found to be proportional to the depth of

the sink, hS.

4.2. Integral Equation

The formulation of the second numerical scheme follows that given in

Forbes & Hocking (1990), Vanden-Broeck & Keller (1997) and Hocking et al.

(2002). We use Green’s second identity to derive an integral equation for the

unknown analytic function Φ(r, z) and surface elevation, z = η(r). Let Q be

a fixed point on the free surface with coordinates (r, θ, η(r)) and P (γ, β, µ) be

another point which is free to move over the same surface. An efficient way

to satisfy the bottom boundary condition (4) is to place an image free surface

at z ≈ −2 and an image point sink at z = −(2 − hS). Since Φ is an analytic

function over the full region except at the sink itself, we can define another

function Ψ = 1/RPQ which is also analytic except when P and Q are the same

point, i.e.,
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Ψ =
1

RPQ

=
1

[r2 + γ2 − 2rγ cos(β − θ) + (z − µ)2]1/2
(24)

so that we can invoke Green’s second identity to obtain

∫ ∫

∂V

[
Φ
∂Ψ

∂n
−Ψ

∂Φ

∂n

]
dS = 0 (25)

where n denotes the outward normal direction, and ∂V consists of the free

surface ST and it’s image SB, with the point Q carefully excluded by a small

hemispherical surface, SQ, and small spheres about the sink and its image,

Sε1 , Sε2 .

It is not difficult to show that the contributions from all of these surfaces

leads to an integral equation of the form

2πΦ(Q) =
1

(r2 + (z + hS)2)1/2
+

1

(r2 + (z + (2− hS))2)1/2

−
∫ ∫

ST

Φ(P )
∂

∂nP

(
1

RPQ

)
dSP −

∫ ∫

SB

Φ(P )
∂

∂nP

(
1

RPQ

)
dSP .

(26)

Note that (from Hocking et al. (2002))

∫ ∫

ST

∂

∂nP

(
1

RPQ

)
dSP = 0 (27)

and therefore we can write equation (26) in the form

2πΦ(Q) =
1

(r2 + (z + hS)2)1/2
+

1

(r2 + (z + 2− hS)2)1/2

−
∫ ∫

ST

[Φ(P )− Φ(Q)]
∂

∂nP

(
1

RPQ

)
dSP −

∫ ∫

SB

Φ(P )
∂

∂nP

(
1

RPQ

)
dSP .

(28)

This form turns out to be both accurate and stable numerically, enabling us

to compute solutions for the full nonlinear flow problem (when such solutions

exist).

Following Forbes & Hocking (1990) and Hocking et al. (2002), the surface
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Figure 3: Comparison of “limiting” solutions with zero surface tension. The left panel shows

the integral equation solution while the right panel shows the difference between this and

the spectral solution. The regular oscillations are from the form of the spectral solution,

while numerical instabilities are evident as the more violent oscillations. These instabilities

are most evident in the dip region 0.05 < r < 0.8. Here, FD = 0.2, FS = 3.1 and hS = 1/3.

The figure is scaled so that the sink is located at z = −1 and the base is at z = −3.

integral can be specified in terms of the variables of the problem as

2πΦ(Q) =
1

(r2 + (z + hS)2)1/2
+

1

(r2 + (z + 2− hS)2)1/2

−
∫ ∞

0

(Φ(P )− Φ(Q))K(a, b, c, d)dρ−
∫ ∞

0

φ(P )K(e, b, f, d)dρ

(29)

in which the kernel function is

K(a, b, c, d) = γ

∫ 2π

0

a− b cos(β − θ)
[c− d cos(β − θ)]3/2dβ (30)

and the intermediate quantities a− f are defined as

a = γηγ(P )− (η(P )− η(Q)), b = rηγ(P ) (31)

c = γ2 + r2 + (η(P )− η(Q))2, d = 2rγ (32)

e = γζγ(P )− (2 + η(P ) + η(Q)), f = γ2 + r2 + (2 + η(P ) + η(Q))2(33)

Forbes & Hocking (1990) reduced this to the form

K(a, b, c, d) =
2√
c+ d

[
ηγK

(
2d

c+ d

)
+

(
2ar − ηγc
c− d

)
E

(
2d

c+ d

)]
(34)
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where K and E are the complete elliptic integrals of the first and second kind

as defined in Abramowitz & Stegun (1970). At this point we note that E

is well-behaved over the interval of interest, but that K has a logarithmic

singularity as P → Q, in the integral over the free surface.

This problem was solved using a formulation based on arclength along the

surface, so that s is the distance from γ = 0 to Q, and σ is the distance along

the surface to P . The standard formula
(
dr

ds

)2

+

(
dη

ds

)2

= 1 (35)

defines the arclength s in terms of r and η. We define a surface potential φ(s),

and applying the chain rule, we find that along the surface,

∂φ

∂r
= Φr(r, η) + Φz(r, η)

dη

dr
. (36)

Eliminating Φz from the Bernoulli equation (2) and the kinematic condition

(3) and combining leads to a single relation,

1

2
F 2
D

(
dφ

ds

)2

+ η(s)− β
(
η′′(s)

r′(s)
+
η′(s)

r(s)

)
= 0, (37)

on the free surface z = η(r).

Rewriting the integral equation in terms of arclength, we obtain

2πφ(s) =
1

(r2(s) + (η(s) + 1)2)1/2
+

1

(r2(s) + (η(s) + 2− hS)2)1/2

−
∫ ∞

0

(φ(σ)− φ(s))K(A,B,C,D)dσ

−
∫ ∞

0

φ(σ)K(E,B, F,D)dσ,

(38)

where

A = r(σ)η′(σ)− r′(σ)(η(σ)− η(s)), B = r(s)η′(σ)

C = r2(σ) + r2(s) + (η(σ)− η(s))2, D = 2r(s)r(σ)

E = r(σ)η′(σ)− r′(σ)(2 + η(σ) + η(s)),

F = r2(σ) + r2(s) + (2 + η(σ) + η(s))2.

(39)
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This integral equation is coupled with the condition (35), subject to (37)

to give the complete formulation of the problem.

These equations were solved numerically using collocation. A grid of points

was chosen at arclength values s = s0, s1, s2, s3, . . . , sN . An initial guess for the

surface shape η = η0, η1, η2, . . . , ηN and potential function φ = φ0, φ1, ..., φN

was made and used to compute the error in the integral equation (38) and

the condition on the surface (37). All integration was conducted using cubic

splines, but the results were identical if a much simpler trapezoidal rule was

used. The initial guess was then updated using a damped Newton’s method

until the error in all equations dropped below 10−8.

An important aspect of the solution that cannot be neglected is the details

of the truncation of the integral. Keeping the arclength step, ∆s, the same and

increasing the truncation point sN results in quite different looking solutions

and very poor convergence. At small values of sN with no surface tension,

the results reproduce those seen in Forbes & Hocking (1990); Hocking et al.

(2002) with smooth solutions rising to a maximum value of FS at which a

stagnation ring formed on the surface. Increasing sN led to waves forming

on the free surface that had ever-shortening wavelength, as determined by

Vanden-Broeck & Keller (1997) in the infinite depth case. The problem

with the truncation point is caused by the logarithmic nature of the kernel

once the singular term is removed. Vanden-Broeck & Keller (1997) used

a different scheme in which they integrated directly through the logarithmic

singularity. While this avoids the problem with truncation, the numerical

scheme converges very slowly as the step size is decreased, resulting in similarly

inaccurate limiting solutions.

Thus, it is essential to include some approximation for that component

of the integral from sN to ∞. This was done by using an expanding grid of

points and an approximation for φ(s) for large s. A fitted form of φ(s) and
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Figure 4: Limiting solution at FS = FD = 1.8 for β = 0.001 and hS = 1.0. The ripples at

the bottom of the dip are repeatable using both methods.

η(s) allowed calculation of the truncated component out to extremely large

distances.

This behaviour was described in more detail in the unbounded case by

Hocking et al. (2015). Larger values of truncation resulted in increasing wave

activity on the surface and a decrease in the maximum Froude number. Once

convergence had been obtained, the limiting solutions were found to have no

secondary stagnation ring and no wavelets on the surface, as in the case of

infinite depth (Hocking et al. (2015)). This difficulty with the numerical

schemes was greatly diminished by the inclusion of even moderate amounts of

surface tension.

5. Calculations

Earlier attempts at solving this problem concentrated on the case of zero

surface tension and considered the so-called “bottom-flux” case in which the

point sink is located on the base of the fluid. Maximal flows were computed

as FD = 3.2 by Hocking et al. (2002) and FD = 1.25 by Forbes et al.
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Figure 5: Free surface shapes for β = 0.0025 and hS = 0.75 with FD = 0.5, 0.75, 0.875, 0.9121

(limiting). Corresponding FS values are 2.82, 4.24, 4.95 and 5.16. The depth of the dip is

rapidly increasing as FS increases, a factor which may lead to the collapse of the steady

solution.
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Figure 6: Free surface shapes for β = 0.005, 0.01, 0.02, 0.04 (Top to bottom at r = 0) with

FD = FS = 1.0 for the case of the sink on the base. Higher surface tension leads to a lower

stagnation point in the middle but a slightly shallower dip surrounding.
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(1996) using a fundamental singularity method and Galerkin scheme. Here,

simulations using the spectral method give a maximum FD ≈ 1.5, while the

modified integral equation method gives a maximum Froude number of FD ≈
1.45. When no surface tension is involved, however, both methods give high

frequency (although small amplitude) jagged oscillations near the maximum

value of FS that are clearly numerical in origin, making it slightly difficult to

determine the exact value.

Figure 3 shows a comparison between the results of the two methods for

the case hS = 1/3 and FD = 0.2 (FS = 3.1) with β = 0. The left panel is the

integral equation solution, while the right panel shows the difference between

the integral equation and the spectral solutions. Regular oscillations of the

spectral method are combined with the more violent wiggles on the central

pillar near r = 0.08 − 0.1 and on the upslope near r = 0.6. If the Froude

number is increased beyond these values the oscillations become worse and

the method fails to converge. In spite of this, it is clear that the two methods

are giving very close to the same results, with the difference in surface height,

even in this limiting case, of the order of 10−5.

Further computations were conducted and resulted in a series of numerical

solutions showing the influence of surface tension and sink depth on the critical,

maximum Froude number. The inclusion of even a tiny amount of surface

tension reduced the problems discussed above and it was much easier to obtain

“matching” results. In the case with the sink on the bottom and surface tension

as small as β = 0.001 the limiting spectral solution was at FD = 1.82 and for

the integral equation it was FD = 1.8. An interesting limiting solution exists

in this case in which there are ripples on the surface that seem not to be

numerical in origin, as shown in Figure 4. They are repeatable using either

method, but once β reaches 0.0025, they no longer appear.

Table 1 shows the maximal steady flow values of FS for a range of surface
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Figure 7: Maximum depth of the surface against FS = FD for the sink on the bottom hS = 1

for different values of surface tension β = 0, 0.0025, 0.01, 0.03. The depth is approximately

the same for each Froude number and surface tension until the solutions get closer to the

limiting steady flow. The sharp drop at the end as the maximum FS is reached appears to

suggest a rapid deepening of the free surface at higher values and may explain the breakdown

of the steady solutions.
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tension and sink depths. It appears that if there is zero surface tension (β = 0)

then if the sink is at less than half of the depth of the channel the limiting

value of FS ≈ 3 is about the same as the infinite depth case (Hocking et al.

(2015)). However, as β increases this is no longer the case.

Figure 6 shows comparable free surface shapes at the same value of FS =

FD = 1 for the bottom flux case (hS = 1) at different values of surface tension

β. It is clear that the only effects are near the central region, with the centre

stagnation point getting deeper as β increases and the surrounding dip getting

shallower.

The depth of the circular dip around the central rise is reasonably consistent

in size. This can be seen more clearly in Figure 7 which plots maximum dip

depth as FS increases for different β. The curves follow a very similar path until

they diverge as the maximum Froude number is approached. Interestingly the

dip remains shallower for the higher surface tension values, but then dips more

quickly as the critical value is approached, suggesting a rapid deepening of the

free surface would occur at this point if F were slightly higher. This sudden

increase in depth is clearly seen in Figure 5, which shows steady solutions for

several different values of FS. The last two values are only slightly different yet

the surface dip is much deeper. A further illustration of this nonlinear effect

can be seen in Figure 2 where the difference between the rigid-lid solution and

full numerical solution consists mainly of the maximum depth reached by the

free surface.

Surface tension has the effect of stabilizing the flow (and both numerical

schemes) and reduces the distortion of the free surface at equivalent values

of FD so that higher values of Froude number exist as the surface tension

increases. Figure 8 clearly demonstrates this effect, with the Froude number

for steady flow plotted against surface tension, β. The smoothness of this curve

as surface tension β → 0 provides a strong case that the methods described in
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hS β = 0 0.0025 0.005 0.01 0.02 0.03 0.04 0.05

1.00 1.45 2.06 2.30 2.55 2.80 2.96 3.05 3.14

0.75 2.55 3.28 3.99 4.44 4.56 4.85 5.01 5.21

0.50 3.15 5.16 5.66 6.11 6.68 6.96 7.13 7.30

0.33 3.12 6.00 6.63 7.09 7.64 8.03 8.42 8.73

0.20 3.10 7.04 7.27 7.94 9.11 9.78 10.40 10.90

0.10 3.16 7.30 7.60 9.64 12.06 13.64 14.82 15.50

Table 1: Maximum values of FS for each sink depth and surface tension value, β. Agreement

between the two methods is very good except for values of β very close to zero. The values

here are taken from the integral equation approach.

this work are giving a consistent limit for the case of zero surface tension.

Moving the sink off the bottom also reduces the restriction of the flow

and so at equivalent values of flow volume the speed is smaller, so it is to be

expected that the maximum Froude number (based on sink depth, FS) would

increase. In the absence of surface tension this should approach the value

obtained in the unconfined case (FS ≈ 3), and indeed this is so. In fact for

β = 0 if the sink is located at less than half of the channel depth the flow

matches the infinite depth case quite well. If one were to take the limit of

infinite surface tension, the surface would be horizontal and would replicate

the rigid lid solution, so it is to be expected that increasing surface tension

would allow much larger flow rates, and this can be clearly seen in Table 1.

With a large surface tension value of β = 0.05, the bottom-flux case gives a

maximum FS ≈ 3 and in the infinite depth case it is approaching FS ≈ 16.

6. Conclusions

Two completely different numerical methods were used to compute the

shape of a free surface affected by the flow into a point sink. These flows are
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interesting from a pure free-surface hydrodynamics standpoint, but are also of

use in understanding withdrawal flows from lakes and reservoirs. A range of

different flow rates, sink depths and values of surface tension were considered.

The numerical schemes were compared with a rigid-lid approximation for small

flow rate with good agreement.

The spectral method is very similar to the Galerkin method used by Forbes

et al. (1996), and produces results consistent with those. The results using

the integral equation, when compared with older work, e.g. Forbes & Hocking

(1990), emphasise the care that is needed in using this method on such axi-

symmetric flow problems. The weak logarithmic singularity in the kernel must

be treated with great care to get completely converged results. This is not an

issue in the equivalent two dimensional flows where a slightly stronger pole

singularity makes the numerical method more robust, e.g. Forbes & Hocking

(1993).

Using the algorithms described the two methods gave the same surface

shapes (to graphical accuracy) for all values of each parameter. The only

difference in the results came in the limiting maximal value for the flow rate at

which steady solutions could be obtained. However, in most cases these values

agreed quite closely. The differences in the two schemes are most prominent

as the surface tension decreases toward zero, as can be seen in Table 1 for the

case of the sink on the bottom of the channel. Once β > 0.0025 it is clear that

the two methods produce the same outcomes.

For values of β < 0.0025 the two methods give slightly different critical

values for the limit on flow, but the difference is only in the first decimal

place. At low surface tension values the limiting solutions are caused by small

instabilities on the surface that appear as grid-dependent oscillations in the

solution. However, at larger surface tension values the dip around the sink

deepens rapidly as flow rate increases and it would appear that it is the sudden
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Figure 8: Maximum Froude number FS with the sink on the base for increasing surface

tension values.

deepening of the dip, perhaps as a precursor to drawdown, that leads to the

limiting steady solution.
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