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ABSTRACT 
Runtime monitoring is performed during system execution to 
detect whether the system’s behaviour deviates from that 
described by requirements. To support this activity we have 
developed a monitoring framework that expresses the 
requirements to be monitored in event calculus – a formal 
temporal first order language. Following an investigation of how 
this framework could be used to monitor security requirements, in 
this paper we propose patterns for expressing three basic types of 
such requirements, namely confidentiality, integrity and 
availability. These patterns aim to ease the task of specifying 
confidentiality, integrity and availability requirements in 
monitorable forms by non-expert users. The paper illustrates the 
use of these patterns using examples of an industrial case study.  

Categories and Subject Descriptors 
D.2.4 [Software/Program Verification]: assertion checkers. 

Keywords 
Runtime monitoring, security patterns, event calculus 

1. INTRODUCTION 
Researchers and organizations are constantly developing new 
security mechanisms for deterring attackers, such as firewalls, 
virus detection systems and cryptographic protocols for secure 
communication. When developing a system with security 
mechanisms, they usually apply static analysis techniques in order 
to verify that the system behaviour respects certain security 
properties and detect flaws. Static analysis techniques range from 
static verification (e.g. model checking) to techniques measuring 
the efficiency of algorithms (e.g. encryption). 

However, attackers are also constantly working on attack methods 
and hence a system can never be considered to be completely 
secure. Furthermore, static analysis techniques typically verify 
properties based on assumptions about the behaviour of a system 
that may turn out to be incorrect at runtime or models which may 
be incomplete. Thus, no matter how rigorous static analysis might 
have been, there is no guarantee that the final implementation will 
not be vulnerable to attack. To alleviate this problem, monitoring 
of security requirements can be applied to a system to detect at 

runtime whether its behaviour deviates from that described by its 
security requirements and the assumptions under which it was 
shown to be secure. Runtime monitoring can be used as a 
replacement of static verification or in addition to it. Runtime 
monitoring takes as input security requirements and checks 
whether they are consistent with traces of events that are produced 
during system execution.  

In this paper, we introduce patterns for expressing basic security 
monitoring properties that can be checked at runtime using a 
general runtime requirements monitoring framework that is 
discussed in [26]. In this framework, requirements are expressed 
in event calculus (i.e., a first-order temporal formal language [24] 
shortly referred to as "EC" henceforth) in terms of events which 
signify the emission/reception of messages by different 
components of a system, and fluents that represent changes in the 
state of a system which are triggered by events. As correct EC 
formulas, however, can be difficult to write, non expert users 
could benefit from having abstract EC formulas (patterns) 
expressing generic security properties that could be instantiated to 
specify the exact security requirements that need to be monitored 
in specific systems. To enable this, we introduce patterns which 
cover the three main security properties as defined in [3], namely: 
(i) Confidentiality − the absence of unauthorised disclosure of 
information; (ii) Integrity − the absence of unauthorised 
transformations of the state of a system; and (iii) Availability − the 
readiness of a system to provide a correct service. Our work was 
initially motivated by the work on specification patterns [10][1] 
defined to assist users in expressing requirements in formal 
languages, such as LTL [20] and CTL [6]. However, these 
specification patterns have not been defined for event calculus nor 
do they focus on security requirements. 

Using the patterns that we introduce in this paper, someone can 
implement basic security requirements of a system separately 
from the system functionality by creating security-related rules 
and verifying and controlling these requirements using the EC 
monitoring framework discussed in [26]. In this way it is possible 
to separate the treatment of the security requirements from the 
application logic. If the system already has built-in security 
mechanisms, then the external monitoring of security 
requirements adds yet another layer of security checking which is 
independent from the system and therefore makes it more fault 
tolerant [5], especially if it is possible to control the system when 
violations are detected. However, even in cases where control 
cannot be applied, our approach can help by providing the basis 
for detecting more violations than the system itself, logging 
violations, and using the sophisticated reasoning capabilities of 
the monitor to analyse specific dynamic event patterns, e.g., for 
cases like denial of service attacks.  
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The rest of this paper is structured as follows. In Section 2, we 
describe the general framework that we use for monitoring and in 
Section 3 we overview event calculus. In Section 4, we define the 
monitoring patterns and present examples of using them to 
express security requirements drawn from an industrial scenario. 
In Section 5, we discuss related work and in Section 6 we give 
conclusions and present plans for future work.    

2. MONITORING FRAMEWORK 
The general architecture of the monitoring framework that we use 
to monitor the patterns introduced in this paper is shown in Figure 
1. This framework consists of a monitoring manager that accepts a 
set of (security) requirements to be monitored and based on them 
it identifies the event types that need to be observed and sends 
them to an event catcher. It also forwards the requirements to be 
monitored to the monitoring engine of the framework. 

The event catcher observes events from one or more of the agents 
that constitute the system being monitored, captures those that 
correspond to the event types given by the monitoring manager 
and sends them to the monitoring engine of the framework. The 
monitoring engine checks whether the event trace that is reported 
to it is consistent with the requirements and if it is not it reports a 
violation to the manager. It can also deduce information about the 
state of the system being monitored from the recorded events, 
using formulas that specify how events affect the state of the 
monitored system called assumptions (see Section 4.1), and the 
standard axioms of EC [24]. 
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Figure 1. Monitoring Framework 

Monitored systems may include one or more different interacting 
agents and different types of monitoring may be distinguished 
based on the capability to capture securely reliable runtime events 
from the different agents that constitute them. According to this 
criterion, monitoring can be distinguished into: 

 Single-party monitoring: In this type of monitoring only one of 
the agents which are involved in an interaction is capable or 
willing to provide secure and reliable information about runtime 
events. This type of monitoring may be further distinguished, 
based on a directed communication from a source agent to a 
destination agent into source-party or destination-party 
monitoring. 

 Multi-party monitoring: In this type of monitoring multiple 
agents in an interaction can provide secure and reliable 
information about runtime events.  

Secure event reporting in this framework is based on a 
publish/subscribe architecture based on PKI [27]. 

3. SPECIFICATION OF PROPERTIES I 
Event calculus (EC) is a first-order temporal formal language that 
can be used to specify properties of dynamic systems which 
change over time. Such properties are specified in terms of events 
and fluents. 

An event in EC is something that occurs at a specific instance of 
time (e.g., invocation of an operation) and may change the state of 
a system. Fluents are conditions regarding the state of a system 
which are initiated and terminated by events. A fluent may, for 
example, signify that a specific system variable has a particular 
value at a specific instance of time or that a specific relation 
between two objects holds. 

The occurrence of an event in EC is represented by the predicate 
Happens(e,t,ℜ(t1,t2)). This predicate signifies that an 
instantaneous event e occurs at some time t within the time range 
ℜ(t1,t2). The boundaries of ℜ(t1,t2) can be specified by using 
either time constants or arithmetic expressions over the time 
variables of other predicates in an EC formula. The initiation of a 
fluent is signified by the EC predicate Initiates(e,f,t) whose 
meaning is that a fluent f starts to hold after the event e at time t. 
The termination of a fluent is signified by the EC predicate 
Terminates(e,f,t) whose meaning is that a fluent f ceases to hold 
after the event e occurs at time t. An EC formula may also use the 
predicates Initially(f) and HoldsAt(f,t) to signify that a fluent f 
holds at the start of the operation of a system and that f holds at 
time t, respectively.  

Our EC based language uses special types of events and fluents to 
specify monitorable properties of systems. More specifically, 
fluents can be defined by the user as relations between objects of 
the following general form:  

relation(Object1, …, Objectn) (I) 

In (I), relation is the name of the relation that takes as arguments n 
objects (Object1, …, Objectn) that can be fluents or terms. A pre-
defined relation for fluents that is commonly used is: 

valueOf(variable,  value_exp) (II) 

whose meaning is that variable has the value value_exp. In (II), 
 variable denotes a typed variable which can be: 

(i) a system variable − A system variable is a variable of the 
system that is being monitored whose value can be 
captured at any time during the monitoring process, or 

(ii) a monitoring variable −  A monitoring variable is 
introduced by the users of the monitoring framework to 
represent the deduced states of the system at runtime (i.e. 
states which the system itself might not be aware of but its 
monitor can use in order to reason about it). 

 value_exp is a term that either represents an EC variable/value 
or signifies a call to an operation that returns an object of the 
same type as the variable. This operation may be a built-in 
operation of the monitoring engine (e.g. an operation that 
computes the average of a set of values) or an operation that is 
invoked in an external party. When value_exp is an operation 
call, then effectively the return value of the operation becomes 
the value of variable. 

Events in our framework represent exchanges of messages 
between the agents that constitute a system. A message can invoke 
an operation in an agent or return results following the execution 



of an operation. In our EC-based language, events are described 
by terms that have the following generic form: 

event(_id, _sender, _receiver, _status, _oper, _source) (III) 

In (III): 
 _ID is a unique identifier of the event 
 _sender is the identifier of the agent that sends the message. 
 _receiver is the identifier of the agent that receives the message. 
 _status represents the processing status of an event. The status 

of the event can be: (i) REQ-B, that is a request for the 
invocation of an operation that has been received but whose 
processing has not started yet; (ii) REQ-A, that is a request for 
the invocation of an operation that has been received and whose 
processing has started; (iii) RES-B, that is a response generated 
upon the completion of an operation that has not been 
dispatched yet; or (iv) RES-A, that is a response generated upon 
the completion of an operation that has been dispatched.   

 _oper is the signature of operation that the event invokes or 
reports the results of. 

 _source is the name of the agent that provided information 
about the event.  

 
As an example of a monitoring property expressed in our EC-
based language consider the formula below: 
∀  _id1,_id2,_s,_r:String;_v:ObjType t:Time 
Happens(e(_id1,_s,_r,REQ-B, o(_v),_r), t1, 
ℜ(t1,t1)) ⇒ Happens(e(_id2,_r,_s,RES-A, 
o(_v),_r), t2, ℜ(t1,t1+tu)) 

 
According to this formula, an agent _r which receives an event 
invoking the operation o(_v) in it (i.e. e(_id1,_s,_r,REQ-B, 
o(_v),_r)) should complete the execution of o(_v) and respond to 
the caller (_s) within tu time units following the request (i.e., an 
availability requirement as we discsuss in Section 4.4). 
 
4. SECURITY MONITORING PATTERNS   
The monitoring patterns that we have defined to enable the 
specification of monitoring rules focus on common security 
properties, namely confidentiality, integrity and availability. 
These patterns are introduced in the following after an overview 
of the monitoring pattern language that we use to express them. 

4.1 Monitoring Pattern Language 
A monitoring pattern is composed of: (i) a monitoring rule which 
defines in a parameterised form the event calculus formulas that 
will need to be monitored at runtime, and (ii) a set of assumptions 
which define in parameterised forms the event calculus formulas 
that can be used at runtime to deduce information about the state 
of the monitored systems that affects the satisfiability of the 
monitoring rules based on captured runtime events. Patterns may 
define different monitoring rules and assumptions for different 
types of monitoring (e.g. single and multi-party monitoring) if 
these types can be applied for the property of the pattern. 

The first order language that is used to define the pattern formulas 
is based on EC. The variables of this language are typed and 
might or might not be replaced depending on their specification in 
the pattern. More specifically a variable _x which appears in “<>” 
(i.e. <_x>) must be replaced by another compatible variable, that 
is a variable whose type is compatible with the type of _x when 
the pattern is instantiated. Variables which do not appear in “<>” 
should not be replaced. 

The type of a pattern variable may be one of the following 
predefined set of meta-types: Term, Event, Fluent, Agent, and 
InformationTerm. Term is the most general of these meta-types 
and represents any type of term that can appear in an EC formula. 
The meta-types Event and Fluent represent events and fluents 
respectively as defined in Section 3. The meta-type Agent 
represents an entity with a computational capacity that can send, 
receive and process messages. Finally, the meta-type 
InfomationTerm represents some primitive data type (String, 
Integer, Real, Boolean) or object type.  

In addition to the generic fluents introduced in Section 3, our 
pattern language uses the following predefined fluents, 
(i) authorised(authorisingAgent,authorisedAgent,e) − This 

fluent denotes that the agent authorisedAgent has been 
authorised to receive and process the event e or to send an 
event e by the agent authorisingAgent. 

(ii) exposes(o, owner, i) − This fluent denotes that the response 
generated from the execution of an operation o will disclose  
an information term  i which belongs to the agent owner. 

(iii) transforms(o, agent)  − This fluent denotes that the execution 
of the operation o may transform the state of the agent agent.    

 

4.2 Pattern for Confidentiality  
Confidentiality is defined in [3] as “absence of unauthorised 
disclosure of information”. This property means that an agent who 
possesses some information should not allow unauthorised 
disclosure of it. Disclosure may occur either through direct access 
of the stored information at the side of the agent which possesses 
it or through the dispatch of the information. Information dispatch 
can happen through directed communications of the form source 
→ dest in which the agent source who possesses the information 
sends it over to dest. In communication chains of the form source 
→ dest1 → … → destn there is the possibility of unauthorised 
disclosure of information not only at the source or during the 
transmission of information over a channel but also at some 
destination agent desti which despite being authorised to receive 
the information itself fails after receiving it to prevent 
unauthorised access to it by a third party. The term “unauthorised” 
in the above definition assumes an authentication and an 
authorisation process.  Consequently, the knowledge of the 
authentication and authorisation status of agents is a necessary, 
albeit not sufficient condition, for monitoring confidentiality. 

4.2.1 Pattern for source-party monitoring 

The pattern for source-party confidentiality monitoring is shown 
in Figure 2.  

The rule CSR1 in this pattern is monitored at the source of an 
information disclosure message (i.e. the agent _sender in the 
pattern) and states that if an information disclosure event E1 
happens in this agent that allows another agent (_receiver) to 
obtain information _i which is confidential to an agent _owner, 
the _receiver should be authorised by the _owner to obtain _i at 
the time of the disclosure. 
In the pattern, the authorisation of the _receiver is performed by 
an operation _authorO which tests whether the _receiver is 
authorised to receive the event E1 and thus obtain the information 
_i of _owner at time t. During monitoring, authorisation can be 
obtained by deduction from the assumption CSA2 of the pattern 



and the axioms of EC. According to CSA2, the fluent authorised 
(<_owner>, <_receiver>, E1) which indicates the authorisation 
of _receiver to receive the event E1 that exposes _i is initiated 
only if an event E2 that indicates the receipt of a response from 
the execution of the operation _authorO has occurred and the 
result of this operation (_result_authorO) signifies the 
authorisation (i.e., it is equal to _authorisedValue). Following the 
initialisation of the authorisation fluent 
authorised(<_owner>,<_receiver>, E1) at some time t0 the 
predicate HoldsAt(authorised(<_owner>, <_receiver>, E1), t1) 
can be shown to hold at any time t1 after t0 by the following 
axiom of EC [24] (assuming that no other event that could have 
clipped  authorised(<_owner>,<_receiver>, E1) occurred 
between t0 and t1): 

HoldsAt(f,tB) ⇐ (∃e,t) Happens(e,t,ℜ(tA,tB)) ∧ 
Initiates(e,f,t) ∧ ¬Clipped(t,f,tB) 

Monitoring rules: 
∀ _o:Operation; _i:InformationTerm;  t1 :Time 
    _sender, _receiver, _owner, _agent1:Agent;     
 Happens(E1, t1, ℜ(t1, t1))  ∧ 
 HoldsAt(exposes(<_o>, <_owner>, <_i>), t1) ⇒ 
 HoldsAt(authorised(<_owner>, <_receiver>, E1),t1) 
where: E1 = e(_eID11,<_sender>,<_receiver>, 
  [REQ-*|RES-*], <_o>, <_sender>) 

CSR1 

Assumptions:  

Initially(exposes(<_o>, <_owner>, <_i>)) CSA1 

∀ _authorO: Operation;  
 _sender, _receiver,_agent1, _owner:Agent; 

_authorisedValue, _result_authorO: Term; t:Time; 
 Happens(E2, t,ℜ(t,t)) ∧ 

HoldsAt(equalTo(<_result_authorO>, 
 <_authorisedValue>),t) ⇒ 
 Initiates( E2, authorised(<_owner>,<_receiver>,E1),t) 
where: E2 = e(_eID2,<_agent1>,<_sender>, RES-A, 
  <_authorO>, <_sender>) 

CSA2 

Figure 2. Pattern for confidentiality monitoring 

As indicated by the event E2, the operation _authorO in the 
pattern is executed in some agent _agent1 following a request by 
the _sender. Thus, CSR1 is satisfied only if prior to its checking, 
an event E2 has occurred and by virtue of CSA2 the authorisation 
fluent authorised(<_owner>, <_receiver>, E1) has been initiated. 

The effect of events on the disclosure of information in the pattern 
is specified by the assumptions CSA1 that specify which 
operations can expose confidential information. 

Note that the event E1 in the pattern can be either a request for the 
execution of an information disclosure operation <_o> (i.e., REQ-
* events) or a response generated by executing <_o> in the sender 
following an invocation sent earlier by the receiver (i.e., RES-* 
events). Also, CSR1 can refer to requests and responses that are to 
be dispatched (i.e., when the event status is REQ-B and RES-B, 
respectively) or that have been already dispatched (i.e., when the 
event status is REQ-A and RES-A, respectively). 

                                                                 
1 The variables indicating the identifiers of events in all the formulas in 

the paper are assumed to be of type String and universally quantified. 

In cases where the status of E1 is REQ-B or RES-B, CSR1 
provides scope for pre-emptive control as the relevant requests or 
responses can be blocked if the rule is not satisfied. In cases where 
the status of E1 is REQ-A or RES-A, the rule provides scope only 
for reactive control as the relevant dispatches would have 
occurred when the rule is checked. 

The pattern in Figure 2 covers also destination-party monitoring 
since CSR1 can monitor invocations of an operation in an agent by 
observing the responses (RES-*) to these invocations which are 
generated by the agent. 
 
4.2.2 Pattern for multi-party monitoring 

To ensure that a piece of confidential information _i which an 
agent (agent2) has received from another agent (agent1) will not 
be disclosed to an unauthorised third party (agent3), it is 
necessary to apply CSR1 to agent2. This is possible, however, 
only if agent2 agrees to provide information about the exchange 
of all the events between it and third parties that would disclose 
_i. In this case, to enable the monitoring of agent2, the variable 
<_owner> in CSR1 should be agent1, <_sender> should be 
agent2, and <_receiver> should be agent3. With these variable 
settings, CSR1 would check if agent3 is authorized by agent1 to 
receive an event from agent2 that discloses _i. Furthermore, 
separate instances of CSR1 and CSA1 should be created for all the 
operations which agent2 can invoke in a third party or execute 
after an invocation from a third party and would disclose _i. 

4.2.3 Example  

To illustrate the use of the confidentiality pattern, we use a case 
study based on an e-healthcare system supporting monitoring, 
assistance and provision of medication to patients with critical 
medical conditions that is described in [4]. In this case study, 
patients who have been discharged from hospitals with potentially 
threatening medical conditions can use an e-health terminal 
(EHT) − that is an e-health application installed on their PDAs − 
to contact an emergency response centre (ERC) for assistance and 
fast ordering of medication. 

In one scenario of this case study, a patient who had suffered from 
a cardiac arrest, feels unwell and sends through his EHT a request 
for assistance to ERC. To establish the cause of the problem, ERC 
retrieves the patient’s medical record through the EHT. From this 
record, ERC establishes that the patient’s doctor is on vacation 
and broadcasts a message to a group of doctors known to be able 
to substitute the patient’s doctor. A doctor D receives this message 
on his own EHT and replies immediately. ERC verifies D’s ability 
to substitute for the patient’s doctor for the specific assistance 
request. Following this, D’s EHT interrogates ERC to receive the 
patient’s medical data. D analyses all these data, identifies the 
most appropriate treatment, and writes the electronic prescription 
on his/her EHT which subsequently sends the prescription to ERC 
which forwards it to the patient’s EHT after registering it. In this 
scenario, Campadello et al. [4] have identified the following 
confidentiality requirement: 

“A patient’s substitute doctor can access the patient’s medical 
data if and only if he is the selected doctor” (i.e., Req. 2.2.1.7 
in [4]) 

Assuming the following operations of ERC, 

(a) fetchPatientData(docID:String,request:String,patInfo:Medic
alRecord) − This operation retrieves the medical record of a 



patient (patInfo) given (as input) a medical assistance request 
associated with the patient (request) and the identifier of a 
requesting doctor (docID) 

(b) verifyDoctor(docID:String, request:String, verified:Boolean) 
− This operation verifies if a doctor (docID) can deal with a 
given request (request) 

the above requirement can be monitored by an instantiation of the 
confidentiality pattern in Figure 2 covering the interaction 
between ERC and the EHT of doctor D.  

Table 1. Mapping of variables of confidentiality pattern 
Pattern Term/Variable System Operation or Parameter 
<_sender> ercID 
<_receiver> docEhtID 
<_agent1> ercID 
<_owner> ercID 
<_o> fetchPatientData  
<_i> patInfo 
<_authorO> verifyDoctor 
<_result_authorO> verifyDoctor:verified 
<_authorisedValue> True 

To instantiate the pattern and specify the specific confidentiality 
properties of the system, system providers need first to identify 
the different agents and interactions in the system, and 
subsequently establish the sender and receiver for each interaction 
as well as the agents that can accept an event catcher. In the above 
example, we focus on the interaction from the doctor’s EHT to the 
ERC and assume that an event catcher can be inserted at ERC’s 
side. Note that here we consider ERC to be the sender since we 
are interested in ERC’s reply to the doctor’s EHT request for a 
patient’s record. 

Having identified the specific pattern rule that will be used, 
system providers need to identify the system variables/operations 
which will substitute for the pattern terms. To do so, they must 
define a mapping from pattern variables onto system operations 
and variables. An example of this mapping for the variables of the 
pattern of Figure 2 is shown in Table 1. Once this mapping is 
identified, system providers need to indicate the variables of the 
formula that will substitute for the parameters of the system 
operations. If such variables are not identified, formula variables 
with the same names and types as operation parameters will be 
automatically generated to substitute for these parameters. In our 
example, as Table 1 does not define a mapping of operation 
parameters, such default variables will be generated automatically 
for these parameters. Thus, given the mapping of Table 1, the 
following rule and assumptions can be generated automatically 
from the pattern of Figure 2: 

Rule CR1:  
∀ _eID1,_ercID,_docEhtID,_request:String;   
 _patInf
 Happens( e(_eID1,_ercID,_docEhtID, RES-B, 
fetchPatientData(_docID,_request,_patInfo), 
_ercID),t1,ℜ(t1,t1)) ∧ 
HoldsAt(exposes(fetchPatientData(_docID,_request

nfo), _patInfo), t1) ⇒ 

o: MedicalRecord; t1:Time 

, _patI
 HoldsAt(authorised(_ercID,_docEhtID, 
 e(_eID1, _ercID,_docEhtID, RES-B, 
fetchPatientData(_docID,_request,_patInfo), 

 _ercID)), t1) 
 
Assumption CA1:  

Initially(exposes(fetchPatientData(_docEhtID,_re
quest,_patInfo),_patInfo)) 

 
Assumption CA2:  
∀ _eID1, _eID2,_ercID,_docEhtID:String; 
 _verifi
 Happens(e(_eID2,_ercID,_ercID, RES-A,               

ed: Boolean; t:Time 

 verifyDoctor(_docID,_request,_verified), 
_ercID), t,ℜ(t,t)) ∧ 

 HoldsAt(equalTo(_verified, True),t) ⇒ 
Initiates(e(_eID2,_ercID,_ercID, RES-A, 

 verifyDoctor(_docID,_request,_verified), 
_ercID), authorised(_ercID,_docEhtID, 

 e(_eID1, _ercID,_docEhtID, RES-B, 
fetchPatientData(_docID,_request,_patInfo), 

 _ercID)), t) 
 
According to rule CR1, following a request for the execution of 
the operation fetchPatientData by a doctor’s EHT to the ERC it 
should be checked if the requesting doctor’s EHT has been 
authorised to receive the information that is to be disclosed to 
him/her. Also, according to CA2 this authorisation can be obtained 
through the execution of the operation verifyDoctor. Finally, CA1 
specifies that the operation fetchPatientData discloses patInfo.  

Note also that since the mapping of Table 1 does not define a 
mapping for the parameters docID of the operations 
fetchPatientData and verifyDoctor, a default rule variable called 
_docID has been generated for both these operations in the 
formulas and, as a result, the doctor’s ID (_docID) to be used in 
the verifyDoctor operation will be the same as the one used in the 
fetchPatientData operation. 

4.3 Pattern for Integrity  
Integrity has been defined in [3] as “absence of unauthorised 
system state transformations”. This definition implies that: (a) no 
unauthenticated and unauthorised agent should be allowed to 
request the execution of an operation that would change the state 
of another agent. Such unauthorised changes can be checked by 
destination-party monitoring as we assume that changes of system 
states may occur only at specific local agents and an external 
agent can only change the state of a system by calling operations 
at a destination agent.  
 
4.3.1 Pattern for destination-party integrity monitoring 
 
The pattern for destination-party integrity monitoring is specified 
in Figure 3. The monitoring rule of this pattern (IDR1) specifies 
that upon the receipt of a request from a _sender for the execution 
of an operation _o which may transform the system state of a 
_receiver, the _sender must be authorised by the _receiver to 
execute _o. The possibility of the execution of _o causing a 
transformation in the state of the _receiver is indicated by the 
fluent transforms(E1, <_receiver>) which the rule requires to 
hold when the _receiver gets the request. 

Note that the pattern for integrity monitoring is similar to the one 
for confidentiality monitoring but differ in two points. The first 
difference is that the confidentiality pattern is monitored at the 
sender side, since it is the sender which may expose some 
information. The integrity pattern, on the other hand, needs to be 
monitored at the receiver side, since it is the receiver which may 
eventually transform the system state (at the request of the 
sender). This is shown by the different source terms of the events 



of the two patterns. The second difference between these two 
patterns is that the confidentiality pattern uses the exposes fluent 
to specify information disclosure while the integrity pattern uses 
the transforms fluent to specify system state transformations. 

Monitoring rules: 

∀ _o:Operation; _sender, _receiver: Agent; t:Time 
 Happens(E1, t, ℜ(t, t))  ∧ 
 HoldsAt(transforms(<_o>, <_receiver>), t) ⇒ 
 HoldsAt(authorised(<_receiver>, <_sender>, E1), t) 
where: E1 = e(_eID1,<_sender>,<_receiver>,REQ-*, 

 <_o>, <_receiver>) 

IDR1 

Assumptions:  

Initially(transforms(<_o>, <_receiver>)) IDA1 

∀ _authorO: Operation; agent1: Agent; t:Time 
 _sender,_receiver, _result_authorO: Term;  
 Happens(E2, t,ℜ(t,t)) ∧ 

HoldsAt(equalTo(<_result_authorO>, 
 <_authorisedValue>),t) ⇒ 
 Initiates( E2, authorised(<_receiver>, <_sender>,    
  E1), t) 
where: E2 = e(_eID2,<_agent1>,<_receiver>, RES-A, 

 <_authorO>, <_receiver>) 

IDA2 

Figure 3. Pattern for destination-party integrity monitoring 

4.3.2 Example 

In the scenario outlined in Section 4.2.3, the following integrity 
requirement has been identified: 

“Electronic prescriptions shall be issued only by doctors by 
means of an e-health terminal.” (i.e., Req. 2.2.1.15 in [4]) 

 
This requirement can be monitored by a rule stating that if an ERC 
receives an electronic prescription by a doctor then this doctor 
must be authorised to issue the prescription. The rule can be 
created by instantiating the destination party integrity monitoring 
pattern assuming that: 

(i) ERC provides the operation 
createPrescription(docID:String, request:String, presc: 
Prescription )to create new electronic prescriptions (presc) 
for a medical assistance request (request), and 

(ii) doctors are authorised through the execution of the operation 
verifyDoctor of ERC as discussed in Section 4.2.3. 

Table 2. Mapping of variables of integrity pattern 
Pattern Term/Variable System Operation or Parameter 
<_sender> docEhtID 
<_receiver> ercID 
<_o> createPrescription 
<_authorO> verifyDoctor 
<_result_authorO> verifyDoctor:verified 
<_authorisedValue> True 
<_agent1> ercID 

Following the procedure for instantiating a pattern that we 
described in Section 4.2.3, we can define the mapping between the 
variables of the pattern of Figure 3, and the operations of the e-
healthcare system and their parameters. This mapping is shown in 
Table 2. From this mapping we can generate the following rule as 
an instance of the rule IDR1 in order to check the requirement 
Req. 2.2.1.15 at runtime: 

Rule IR1: 

∀  _eID1,_ercID,_docEhtID:String; t:Time 
 Happens( e(_eID1,_docEhtID,_ercID,REQ-B, 
createPrescription(_docID,_request,_presc), 
_ercID), t, ℜ(t,t))  ∧ HoldsAt(transforms( 

 createPrescription(_docID,_ request,_presc), 
_ercID), t) ⇒ HoldsAt(authorised(_ercID, 
_docID, e(_eID1,_docEhtID, _ercID,REQ-B, 
createPrescription(_docID,_ request,_presc), 
_ercID)), t) 

We can also generate the assumptions IA1 and IA2 below as 
instances of the formulas IDA1 and IDA2, respectively: 

Assumption IA1: 
Initially(transforms(createPrescription(_docID, 
_ request,_presc), _ercID)) 

Assumption IA2: 
∀ _eID2,_ercID,_docEhtID:String; t:Time; 
 _request: String, _verified: Boolean  
 Happens(e(_eID2,_ercID,_ercID, RES-A, 
verifyDoctor(_docID, _request,_verified), 

 _ercID), t,ℜ(t,t)) ∧ 
 HoldsAt(equalTo(_verified, True),t) ⇒ 
 Initiates( e(_eID2,_ercID,_ercID, RES-A, 
verifyDoctor(_docID,_request,_verified), 
_ercID), authorised(_ercID, _docEhtID,    

 e(_eID1,_docEhtID, _ercID,REQ-B, 
createPrescription(_docID,_ request,_presc), 
_ercID)), t) 

 
The rule IR1 above checks whether the doctor (_docID) who 
invokes the operation createPrescription in ERC (_ercID) is 
authorised to do so. Note that, due to the mapping of the pattern 
variables of Table 2, IR1 effectively describes a delegation of the 
doctor’s right to create prescriptions to his/her EHT, since it is the 
EHT which is the sender in this interaction (_docEhtID), while it 
is the doctor who is being authorised (_docID) for the action in 
reality. The assumption IA2 above states that a doctor is 
authorised to call the operation createPrescription in ERC only if 
this is verified by the operation verifyDoctor. In this case, an 
appropriate authorisation fluent will be generated by IA2 and by 
virtue of the EC axiom discussed in Section 4.3.2 we can derive 
that the HoldsAt predicate in the head of the rule IR1 is satisfied. 

 

4.4 Pattern for Availability 
According to [3], availability is defined as “readiness for correct 
system service”. In [3], a service is deemed to be correct if it 
implements the specified system function. Readiness of a system 
in this definition means that if some agent invokes an operation to 
access some information or use a resource, it will eventually 
receive a correct response to the request. In some cases, the 
property may be strengthened to require that a response will be 
received within a fixed time period following the invocation. 
These cases can be effectively monitored by our framework as 
indicated below. 

4.4.1 Pattern for source-party availability monitoring 

The pattern for source party availability monitoring specifies a 
monitoring rule that checks whether, following the dispatch of an 
event by a source agent (_sender) requesting the execution of an 
operation _o in a destination agent (_receiver), the source agent 
receives a response from the destination agent for the request 
within tu time units after the dispatch (see rule ASR1 in Figure 4).  



Note that, as it is based on events captured at the source of a 
request, ASR1 checks the availability of both the receiver of the 
request and the communication channel between it and the sender. 
Also the use of a bounded range for the time variable t2 in ASR1 
(i.e., R(t1,t1+tu)) is necessary since if the variable was unbounded, 
the rule would not be decidable (only cases where the rule is 
satisfied would be detectable).  

Monitoring rules: 
∀ _o:Operation; _sender, _receiver:Agent; t1, t2:Time; 
 Happens(e ( _eID, <_sender>,<_receiver>, REQ-*, 

<_o>,<_sender>), t1, R(t1,t1)) ⇒ 
 Happens(e (_eID, <_receiver>, <_sender>, RES-B, 

<_o>,<_sender>), t2, R(t1, t1+ tu))   

ASR1 

Figure 4. Pattern for source-party availability monitoring 

4.4.2 Patterns for destination-party availability 
monitoring 

For destination-party availability monitoring, we introduce two 
patterns that specify different monitoring rules. These patterns are 
shown in Figure 5. The rule of the first pattern (ADR1) states that 
an agent (_receiver) which receives a request for the execution of 
an operation from another agent (_sender) should respond to the 
sender within tu time units after the receipt of the request. The rule 
of the second pattern (ADR2) is used to check the availability of 
an agent (_sender) which is known to operate correctly only if it 
requests the execution of an operation _o (or a set of such 
operations) in another agent (_receiver) at regular time intervals.  
 
Pattern 1 
Monitoring rules: 
∀ _o:Operation, _sender, _receiver: Agent; t1, t2:Time 
  Happens(e( _eID, <_sender>,<_receiver>,REQ-B, 
                        <_o>,<_receiver>), t1, R(t1,t1)) ⇒  

Happens(e(_eID, <_receiver>, <_sender>,RES-A, 
                     <_o>,<_receiver>), t2, R(t1,t1+tu))   

ADR1 

Pattern 2 

Monitoring rules: 
∀ _o:Operation, _sender, _receiver: Agent; t1, t2:Time 
 Happens(e( _eID1, <_sender>,<_receiver>,REQ-*, 
                     <_o>,<_receiver>),  t1, R(t1,t1)) ⇒

 Happens(e( _eID2, <_sender>,<_receiver>,REQ-*, 
                      <_o>,<_receiver>), t2, R(t1,t1+tu))   

ADR2 

Figure 5. Patterns for destination-party availability 
monitoring 

Note that, in the case of availability there is no need for an 
additional multi-party monitoring pattern since if both source and 
destination party monitoring can be applied, the monitoring of 
ADR1 checks the availability of the service at the destination side 
and the monitoring of rule ASR1 checks the availability of both 
the destination side and the communication channel between the 
two agents.  It should also be noted that the patterns for 
availability do not address the correctness of system functions. 
This is because system correctness must be assessed against some 
additional model of the intended behaviour of a system which can 
not be specified in a generic form as part of the pattern. 

4.4.3 Example 

In the e-healthcare system scenario introduced in Section 4.2.3, 
the following availability requirement has been identified: 

“The patient’s e-health terminal shall continuously… emit an 
OK status to the ERC.” (i.e., Req. 2.2.1.11 in [4]) 

Assuming that the status of an EHT to ERC is notified by calling 
the operation reportStatus(ehtID: String) and that the abstract 
_sender and _receiver terms in the pattern are mapped onto the id 
of an EHT (_ehtID) and the id of the ERC (_ercID) respectively, 
the above requirement can be monitored using the following rule  

AR3: ∀ _eID1, _eID2, _ehtID, _ercID:String; t1, 
t2:Time Happens(e(_eID1,_ehtID,_ercID,REQ-A, 
reportStatus(_ehtID)),_ercID),t1, ℜ(t1,t1)) 
⇒  Happens( e(_eID2,_ehtID,_ercID,REQ-A, 
reportStatus(_ehtID),_ercID),t2, ℜ(t1,t1+tu) 

AR3 is created by instantiating the rule ADR2 of the availability 
pattern and checks if an EHT invokes the operation reportStatus 
in intervals of no more than tu time units. 

5. RELATED WORK  
 
Konrad and Cheng [17] define specification patterns expressed in 
the real-time temporal logics MTL [18], TCTL [2], and RTGIL 
[21]. Their work extends the Dwyer et al. pattern system [10] with 
a taxonomy of (i) duration properties that describe a bounded 
duration of an occurrence, (ii) periodic properties that describe 
periodic occurrences, and (iii) real-time order properties that 
place time bounds on the order of occurrences. Our patterns differ 
in that we specifically consider monitorable security properties 
and not general liveness/safety properties as [17].   

Propel [25] is also an extension of [10] that helps specifiers 
identify the subtleties and alternative options associated with the 
intended behaviour of systems (see the Response pattern of [10] 
for example). Propel allows specifiers examine all the options 
explicitly and decide on the final instantiation of the property 
(where all the options have been resolved). Unlike our approach, 
Propel does not support the expression of real-time information. 

Bandera [7] is another extension of [10] that deals with events in a 
state-based formalism but with no real-time information. Bandera 
supports user defined patterns and provides a structured-English 
front end for the patterns, which are then translated into the 
formalism of the chosen model checker.  

Security patterns have also been introduced to aid the 
development of secure software systems but not for verification or 
monitoring. Such patterns have been proposed as part of UMLsec 
[15] and SecureUML [19]. In UMLsec, Jürjens proposes some 
transformation patterns between UML models that are used to 
introduce patterns by refinement [14]. These patterns are for 
security solutions rather than for formulating security properties. 
SecureUML [19] is another extension of UML which provides 
syntax for expressing access control policies directly in UML. 
Other recent work has also focused on specifying security patterns 
[23] that describe solutions to particular recurring security 
problems. Security patterns that can be applied at different 
architectural levels of software systems are also described in [12]. 
These patterns however are not expressed in a formal language 
and thus are not always clear to developers.       

Finally, apart from [8] which describes authorisation policies for 
determining access rights of processes to objects (without being 



able to express time constraints), no other work in the area of 
intrusion detection and dynamic monitoring of security (e.g. 
[11][8][16][22][9]) has used property specification patterns to 
express monitoring rules, to the best of our knowledge.   

6. CONCLUSION AND FUTURE WORK 
In this paper, we have presented patterns for expressing three 
basic security properties, namely confidentiality, integrity and 
availability, in a way which permits their monitoring at runtime. 
These patterns are expressed in Event Calculus and can be used 
with a generic framework for monitoring functional and non 
functional requirements at runtime with sophisticated reasoning 
capabilities [26]. The creation of these patterns aims at making it 
easier for system providers to specify basic security requirements 
for their systems and monitor them using this framework. By 
doing so, system providers can outsource security requirements to 
the monitoring infrastructure and use monitoring as an additional 
layer of security checking which is independent from checks 
performed by the system that is being monitored, thus, making it 
more fault tolerant. Furthermore, monitoring enables the 
identification, diagnosis and future prevention of attacks, even for 
dynamic and difficult to describe attack scenarios. 

Our current work focuses on the development of a tool to support 
the instantiation of the patterns presented in this paper and the 
validation of the generated security requirements. This tool will 
generate pattern instances automatically based on mappings 
between the pattern variables and system operations/variables as 
discussed in this paper. Our aim is to use this tool to support the 
instantiation of patterns for real-world applications and investigate 
if our approach is expressive enough for these. Finally, we are 
also working on the development of template formulas as part of 
the confidentiality patterns to assist system providers express 
theories for confidential information leaks that can result from 
disclosing non confidential pieces of information independently.  
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