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Abstract—Use of diverse software components is a viable 
defence against common-mode failures in redundant software-
based systems. Various forms of "Diversity-Seeking Decisions" 
(“DSDs”) can be applied to the process of developing, or 
procuring, redundant components, to improve the chances of 
the resulting components not failing on the same demands. An 
open question is how effective these decisions, and their 
combinations, are for achieving large enough reliability gains. 
Using a large population of software programs, we studied 
experimentally the effectiveness of specific "DSDs" (and their 
combinations) mandating differences between redundant 
components. Some of these combinations produced much 
better improvements in system probability of failure per 
demand (PFD) than "uncontrolled" diversity did. Yet, our 
findings suggest that the gains from such "DSDs" vary 
significantly between them and between the application 
problems studied. The relationship between DSDs and system 
PFD is complex and does not allow for simple universal rules 
(e.g. "the more diversity the better") to apply. 

Keywords-design diversity; multiple version software; 
software fault tolerance; diversity-seeking decisions; reliability 
improvement; experimental study 

I.  INTRODUCTION 
Software diversity has been and is widely used in safety 

critical industries that require high software dependability 
and/or high assurance that a software dependability target 
has been met. While there is still controversy about the cost-
effectiveness of diversity compared to other ways of 
improving dependability, in various industrial applications, 
diversity, rather than simple, non-diverse redundancy, is in 
practice a requirement for computer-implemented safety-
critical functions. 

Software diversity has been studied extensively, both 
theoretically and empirically; practical recommendations are 
available about how to apply it in industrial contexts [1, 2]. 
These include means for making the developments of diverse 
programs as ‘independent’ as possible; and ways of ‘forcing’ 
diversity between them by mandating differences between 
their designs (including “functional” diversity, in which the 
redundant and diverse subsystems satisfy a common system-
level goal by implementing different specifications, e.g. in a 
nuclear protection system two functionally diverse 

subsystems typically use readings of different physical 
variables, say temperature and pressure, as inputs, and 
different algorithms, possibly based on different physical 
laws; see [3] for a definition) and their development 
processes. References to the relevant literature with many 
detailed recommendations are given in [4, 5]. We call 
“diversity seeking decisions” (DSDs) all these decisions that 
can be applied in the development or procurement of systems 
that are meant to be diverse. These recommendations are 
typically based on common sense or ‘engineering judgment’; 
a critique based on extrapolations from theoretical work and 
from the scarce empirical data is given in [4]. Rarely, 
however, have these recommendations been backed by 
empirical evidence. It must be noted that DSDs generally try 
to achieve diversity between the products used in redundant 
configurations, e.g. their code structure or algorithms used, 
an indirect means towards the real goal of diversity between 
their failure processes when in operation in a specific 
environment [4]. 

We agree that proposed DSDs are usually supported by 
reasonable arguments, and indeed one of us co-authored the 
report [4] which attempted to clarify the likely effects of 
individual DSDs and the types of errors against which they 
could be effective. On the other hand, claims about the levels 
of improvement achieved are not now supported by 
experimental evidence. This is especially unsatisfactory 
since it is common in safety critical software that the fact of 
having applied measures to achieve high reliability or safety 
is taken as prima facie evidence of having achieved them.  

For diversity, attempts have been made to associate 
various DSDs with numerical scores that the proponent of a 
diverse system could claim towards reaching a target level of 
diversity (reduction of the risk of common failures) [6]. 
There is unfortunately little or no supporting evidence to 
justify such scoring systems for either individual DSDs or 
their combinations. These rules, even if based on thorough 
surveys of industrial practice, can only codify opinion. Some 
empirical evidence of dependability improvements actually 
achieved by specific ways of forcing diversity would help. In 
particular, we suspect that even DSDs that are recommended 
on very reasonable grounds might produce very different 
degrees of improvement in different instances of their 
application. Measuring empirically the actual improvements 



achieved in some application, and in particular when two 
DSDs are applied together to ‘force’ diversity, is the focus of 
this paper. 

Several experiments have assessed the efficacy of 
software diversity in specific contexts. Most (including those 
that studied reasonable large samples - tens of diverse 
program versions) only studied "unforced" diversity: the 
only "diversity seeking decisions" applied were means for 
keeping the developments of the diverse program versions 
separate and as far as possible independent. Some 
experiments have studied DSDs for "forcing diversity", 
(especially diversity of programming language and of 
specification language - cf. [4] for references) but usually on 
small samples, and none - to our knowledge - have reported 
on the effectiveness of combining "diversity forcing" DSDs, 
as commonly recommended. 

An important practical issue is whether combining 
different DSDs, e.g. using both different programming 
languages and different algorithms to implement the system 
function, tends to make a system more reliable than if only 
one of the DSDs (in the example cited, either different 
languages but the same algorithm or the same language but 
different algorithms) is applied, and how substantial the 
improvement, if any, is. Intuition suggests the principle “The 
more diversity the better”, which has formed the basis for 
various practical recommendations [1, 7, 8]. Intuition, 
however, has repeatedly been wrong about design diversity. 
For instance, expecting independence between failures of 
software programs developed by independent teams was 
widely seen as plausible, but was convincingly demonstrated 
to be wrong – both theoretically [9, 10] and empirically [11]. 

The present work deals with the intuitive principle “The 
more diversity the better”, and attempts to provide initial 
empirical evidence in favor or against it. It is known from 
theory [10, 12] that the principle is true in a limited sense: 
‘forcing’ diversity, under specific probabilistic models with 
formally specified conditions of “everything else being 
equal”, has been proved to be ‘a good thing’ - adding a 
further way in which the development processes of two 
programs are required to differ will make the expected PFD 
of the resulting 1-out-of-21 system better, or at worst leave it 
unchanged. But these “everything else being equal” 
conditions will only at times be realized, and only 
approximately, in real life, and there is a lack of concrete 
examples of actual degrees of improvement achieved. 

To collect the initial evidence that we present, we took 
advantage of a large population of programs developed 
mostly by students. We do not propose our results as 
predictions of what will happen when applying a specific 
DSD in an industrial development for, say, safety critical 
applications. Rather, they are a starting point. First, this kind 
of empirical research shows patterns of behavior that may 
inspire new analyses and insight; secondly, they 
demonstrate, more strongly than theoretical considerations, 
that common-sense claims for DSDs may be misplaced. By 
showing that the variability of results that we think should be 

                                                           
1 A system made up of two components, which only fails if both 
components fail. 

expected does occur in practice, they show that any claim for 
predictable effects of specific DSDs needs to be supported 
with appropriately strong and specific arguments.  

Experiments in software engineering notoriously pose the 
dilemma whether to reproduce realistic industrial problems 
and development methods, with staff at industrial levels of 
competence, and incur high costs; or contain costs by using 
student manpower on small or even toy problems. The 
former choice leads to realistic case studies on small 
samples, so that there is little confidence that any effects 
observed are due to the factors studied rather than to some 
peculiarity in the sample; the latter allows satisfactorily large 
samples at the cost of possibly documenting patterns (e.g. 
mistakes and effectiveness of means for tolerating them) that 
are very different from those in an industrial project. In our 
study, we take advantage of the high number of programs in 
the sample, submitted by self-selected participants, and 
accept that the findings may not be directly applicable to an 
industrial context. 

Yet, the effort seems worthwhile. Firstly, given widely 
held beliefs (usefulness of forcing diversity and of 
combining multiple DSDs) supported by little empirical 
evidence, a cheap experimental challenge to them is useful: 
if it rejects a commonly held belief (albeit only in a specific 
context), the resulting compelling indication that that belief 
needs more serious scrutiny is valuable and cheaply 
acquired. For instance, showing that sometimes forced 
diversity brings no advantage, or that it is not generally true 
that "the more diversity the better" (not just for some specific 
implementation of a system but statistically for a sizeable 
sample) would be such a valuable result. Likewise, as 
pointed out above, large observed variations in the observed 
effectiveness of some DSDs would forcefully refute the 
belief in constant levels of benefits, and demonstrate the 
need for specific evidence in each case. Results that confirm 
common beliefs would be admittedly weak confirmation, 
given the unrealistic settings, but obtained cheaply. Another 
useful output from cheap experiments is in the actual values 
of the measures of the benefits produced and how much they 
will vary: a few initial data points in an area where concrete 
measurements are lacking. 

The rest of the paper is structured as follows: in section 2 
we recall the theoretical and empirical work that underpins 
the research described in this paper. In section 3 we 
summarize the method used in our study. This is followed by 
the results about effectiveness of two single DSDs and their 
combination in Section 4. In the last section, we discuss the 
main findings of the research and the limits of our study, and 
outline possibilities for future work. 

II. RELATED WORK 
Design diversity has been studied very extensively - both 

theoretically and empirically. 
Extensive experiments about diversity were funded, e.g. 

by NASA in the 1980s, [11, 13] and by the nuclear industry 
([14, 15]) but few addressed alternative DSDs (ways of 
achieving diversity) and only on small samples. The 
experiments described in [11] demonstrated that failure 
independence between diverse programs cannot be assumed 



in general, i.e. produced a counter-example for this theory, 
which had been proposed by some. This was, however, only 
a “single data point”, and the validity of these experiments 
towards assessing DSDs in current development methods is 
limited. Cai et al. [16] have observed that present-day 
students given the specs from NASA experiments as 
exercises performed better than the programmers in the 
1980s experiments, providing supportive evidence for design 
diversity, and suggesting that much has changed in 
programming culture (or that confounding factors abound in 
software engineering experiments). 

Eckhardt and Lee developed an influential model (EL 
model) [9], which clarified why failure independence 
between diverse software cannot be assumed a priori. The 
model was generalized by Littlewood and Miller (LM 
model) [10] to take account of forced diversity, where a 
design authority requires different development teams to use 
different ‘methodologies’: for example different languages, 
testing or analysis techniques, etc. These models provided an 
important insight about use of diversity for fault tolerance: 
they explained that failure independence between diverse 
programs is just a possibility (probably unlikely), and that 
different levels of correlation (positive or negative) between 
failure behavior of diverse software can be observed in 
practice, including the possibility that forced diversity (LM 
model) leads to a system that performs better than if the 
constituent programs failed independently. More recent 
research, in part by the current authors and colleagues, has 
extended these insights (www.csr.city.ac.uk/diversity). This 
theory provides the basis for the work presented in this 
paper. 

Experimental evidence of the effectiveness of DSDs 
meant to force diversity among different programs, and in 
particular combinations of such DSDs, is rather sparse. 
Meine van der Meulen initiated a range of empirical studies 
([17, 18] and references therein) and also reported some 
initial results about the effect of a single DSD, the 
diversification of programming language [19]. We have re-
used and extended his test harness and data analysis tools, 
and initially repeated his basic methodology, with some 
extensions. 

III. METHOD 
We studied a large pool of programs developed to 

various application specifications. To simulate how a system 
developer would try to "force" diversity among programs to 
be combined in a diverse-redundant system, we subdivided 
programs written to the same specification into sub-pools 
that differed according to two criteria, representing two 
possible DSDs that the system developer could apply. We 
then measured how often programs from different sub-pools 
failed together during extensive testing. 

A. The UVa Online Judge Programming Platform 
For the analyses described in this paper we used 

computer programs submitted to the UVa Online Judge 
platform (http://uva.onlinejudge.org/), maintained by Prof 
Miguel Revilla from the University of Valladolid in Spain 
and his team of collaborators worldwide. Any member of the 

public can use UVa Online Judge to submit programs that 
solve various types of computing “problems” in areas such 
as: sorting, number theory, graph traversal, etc. [20]. This 
repository includes programs submitted in 4 different 
programming languages: C, C++, Java and Pascal. As of 
May 2012 about 9.5 million programs have been submitted: 
C++ (64%), C (25%), Java (7%) and Pascal (4%). 

B. Specifications (“Problems”) Used in the Study 
We have conducted the analysis for the following 

“problems”2: 
• Factors and Factorials: A program written to this 

specification takes as input an integer N, 
2<=N<=100, and must output the list of the number 
of times each prime number occurs in the factors of 
N's factorial. In total 13,526 programs were 
submitted, which we tested exhaustively on all 99 
inputs; 

• 3n+1: A program written to this specification takes 
as input two integers {i, j} and must calculate the 
maximum cycle length for each number between i 
and j (inclusively), where the cycle length is 
computed using the following algorithm: 
 
... if n = 1 then STOP 

  if n is odd then n = 3n+1  
  else n = n/2 ... 
 

This is among the most popular “problems” from the 
UVa Online Judge platform. We tested more than 
169,000 submitted programs on a test suite of 5000 
tests with i chosen contiguously from the range [1, 
100] and j from the range [1, 50]. 

All the "problems" studied specify programs that have no 
retained state between invocations. 

We also analyzed a third “problem” - Factovisors (given 
in [21]). We do not include the results here for reasons of 
space and because they do not suggest different conclusions 
from the ones obtained for the Factors and Factorials and 
3n+1 “problems”.  

For each of the “problems”, our analysis included the 
following steps: i) compiling the source code of each 
program; ii) running the program executables on the test 
harness, on a suite of test cases (or “demands”), the same for 
all programs; iii) establishing and recording the score 
(success or failure) of each program on each demand; iv) 
performing statistical analysis of the raw scores. 

We excluded from the analysis the programs that i) 
compiled to an executable binary that crashed upon starting, 
or ii) timed-out on 30 or more consecutive inputs. Among 
the programs submitted for the same “problem” by one 
author we selected the first program that is not completely 
incorrect (i.e. the program for which the output for at least 
one of demands is correct). All these aspects of the method 
are the same as in the earlier study [17]. As a consequence of 
the program selection method the pools of programs 

                                                           
2 Details about each “problem” can be found at 
http://www.uvatoolkit.com/problemssolve.php  



decreased to 4,290 for Factors and Factorials, and 15,463 
for the 3n+1 “problem”. 

In the analysis of the results, the programs have been 
grouped according to different criteria:  

• Score classes. Two programs belong to the same 
score class if they have identical scores (either 
correct output or failure) on every demand of the 
chosen test suite. We thus disregarded the 
differences between wrong outputs. 

• Sub-pool (SP). A subset of all programs submitted as 
solutions to a specific “problem” (or the 1-out-of-2 
pairs built out of them), after applying a specific 
grouping criterion, e.g. a particular DSD or a 
combination of DSDs. For example, if we consider 
programming languages, separate sub-pools will be 
formed with programs written in Pascal, C++, etc. 

C. DSDs Used in the Study 
We have studied the following two categories of DSDs: 
• DSD1 - forcing diversity by using different 

programming languages. This led to forming 4 sub-
pools of programs: programs written in C, C++, Java 
and Pascal. 

• DSD2 - forcing diversity of program structure. The 
purpose is to study the potential consequences of 
realistic DSDs such as mandating the use of different 
algorithms, which would plausibly lead to different 
program structures. We used a proxy measure of 
program structure based on two well known software 
‘complexity metrics’: Halstead Volume (HV) [22] 
and Cyclomatic Complexity (CC) [23]. 
Since these two measures are known to be highly 
positively correlated (and correlated with the simpler 
measure of size of code), we conjectured that the 
four sets of programs for which both are high, or 
both low, or that “violate” this positive correlation 
(low values of the one metric and high values of the 
other), may differ substantially in internal structure 
and thus possibly in algorithms used. This allows a 
quick automatic classification of the programs, 
though of course any conclusions based on this 
classification are only suggestive and to be 
confirmed by analysis of the actual algorithms in the 
programs. 
Thus, after computing the values of HV and CC for 
each program, we divided the population of 
programs (or the sub-pools resulting from DSD1) 
into four new sub-pools characterized by whether 
their values of the HV and CC metrics are above or 
below the medians of the two observed distributions 
of these two metrics. So, four mutually exclusive 
sub-pools were created: i) SPHighHV,HighCC - programs 
with high HV, high CC values; ii) SPHighHV,LowCC - 
programs with high HV, low CC values; iii) SP 
LowHV,HighCC - programs with low HV, high CC 
values and iv) SPLowHV,LowCC - programs with low 
HV, low CC values. 

D. Pools of Programs 
For every “problem” investigated, we initially analysed 

the effectiveness of design diversity by creating 1-out-of-2 
pairs without forcing diversity (i.e., the only DSD applied 
was that the programs were developed by different authors), 
by selecting the pairs randomly from the population of all 
programs, as modelled by the EL model [9]. 

In contrast, to assess “forced” diversity, the programs 
used to form a 1-out-of-2 system are drawn from two 
different sub-pools of programs, which model the impact of 
one diversity-forcing DSD, or of a combination of two. For 
instance, in case DSD1 is used, say with programming 
languages C++ and Pascal, we would first form the sub-
pools of C++ and of Pascal programs, and then form the 
pairs by selecting at random one of the programs from the 
C++ sub-pool and the other from the Pascal sub-pool. This 
situation is modelled by the LM model [10]. 

Further, if only DSD2 is used, the sub-pools would be 
derived from the pool of all available programs. The pairs of 
programs are then formed by selecting programs from 
different sub-pools, e.g. from SPHighHV,HighCC and 
SPHighHV,LowCC, respectively. 

Finally, to combine the two DSDs, we formed the sub-
pools by applying the two DSDs in order, i.e. first applying 
DSD1 as described above, producing sub-pools for the four 
programming languages; then applying DSD2 to each of 
these, dividing the programs written in a given programming 
language into 4 sub-pools according to the values of HV and 
CC. With 4 programming language pools, this created the 
following 16 sub-pools: SP1 - programs written in C, with 
high HV, high CC values; SP2 - programs written in C, 
with high HV, low CC values; SP3 - programs written in C, 
with low HV, high CC values; etc. 

E. Measure of Software Reliability Improvement through 
Diversity 
Irrespective of whether we were considering sub-pools or 

the whole set of programs, we simulated the effects of 
reliability improvement during development of a system, or 
of development processes (that produce the program 
versions) of varying - increasing - quality. This improvement 
is simulated by considering progressively fewer programs 
from the least reliable score class in that pool or sub-pool. In 
other words, considering the statistics measured on the 
programs that were actually submitted simulates the results 
of a development process in which the probabilities of 
producing programs belonging to each score class are the 
same as their observed frequencies; we simulate 
improvement by reducing the probability of the programs in 
the least reliable score class; when that class becomes empty, 
we move on to the next least reliable score class. Further 
details of the procedure can be found in [21]. When drawing 
programs from diverse sub-pools (to examine the 
effectiveness of forced diversity), we ensured that the two 
sub-pools had been reduced to the same average single-
program PFD. 

There are alternative ways of simulating reliability 
improvement, or variations in the quality of the development 
process. In the most general approach, one could: 



(i) consider the pool of submitted programs as providing just 
a representative pool of possible versions with their faults, 
but (ii) assign them probabilities that match not their 
frequencies in the submitted pool but various conjectures 
about how likely the various kinds of programs (or of faults) 
would be in various plausible development processes. For 
instance, one could assume that even a process with very 
high average achieved reliability may still produce (with low 
probability) programs from the least reliable score class; or 
that a process improvement would consist of adding a 
verification procedure that practically eliminates a certain 
class of faults. For instance, considering the importance of 
static analysis in industrial practice, we could apply a static 
analysis procedure to the source code of the programs and 
discard those identified as problematic, even if they happen 
to belong to highly reliable score classes.  

These various options are being considered for 
continuing the present study.  

In this phase of the study we assess the reliability 
improvement ratio R: 

 R = PFDA / PFDAB , (1) 

between the average PFD value of the individual 
programs used to form 1-out-of-2 pairs (the whole 
population or specific sub-pools) and the average PFD of the 
pairs so obtained [17, 18]. While the real target measure for a 
system is its probability of failure per demand, and a 
development method could be assessed by the mean, PFDAB, 
that it delivers, R seems a plausible indicative measure for 
ranking alternative means for reliability improvement. 

IV. RESULTS 
The sub-sections below summarize our observations. The 

plots apply the following visualization conventions: all plots 
have the same range of values for the scale of the Y axis, but 
we add two further levels to show i) very large values of R 
(i.e., values that exceed the largest number shown on the 
scale); ii) “infinite gain” (i.e., all program pairs exhibit no 
failures: the denominator of the reliability improvement ratio 
(PFDA/PFDAB) is zero). Each plot also shows a line for the 
hypothetical reliability improvement if the programs failed 
independently, i.e., if PFDAB = PFDA * PFDB, as in many 
discussions we have found others to use this product as a 
reference value. However, we wish to emphasize that the 
measure of interest is how reliable a system is, not how it 
compares with a hypothetical model of how reliable it could 
be. 

A. The Factors and Factorials “Problem” 
Fig. 1 summarises the findings for the Factors and 

Factorials “problem”. Fig. 1a – no forced diversity – shows 
how the ratio, R, changes with the change of the average 
PFDA. Interestingly, when the pool of programs is less 
reliable (right-hand side of the plot), the reliability 
improvement is close to “failure independence”; when the 
pool becomes more reliable, the gain remains substantial and 
tends to increase, although with ups and downs. 

Fig. 1b illustrates the effect of forcing diversity using 
DSD1 only. One program in the pair is a Pascal program, the 
second program is chosen at random from the sub-pools of 
C, C++, Java and Pascal programs. The curves representing 
different combinations of diverse languages are very close, 
i.e., the 3 instances of DSD1 do not substantially improve 
system reliability. All curves shown are very close to the 
Pascal, Pascal curve and to the curve shown in Fig. 1a 
where neither DSD1 nor DSD2 was applied3. 

Fig. 1c shows effects of forcing diversity by DSD2 only. 
The plot shows 4 curves in which the first program is chosen 
from the sub-pool with low HV values and low CC values, 
while the second program is chosen from one of the 4 sub-
pools, respectively. As with Fig. 1b, forcing diversity does 
not lead to significant differences between the sub-pools of 
pairs. Intriguingly, the curves indicate that the pairs with no 
apparent structural diversity (both programs come from the 
pool low HV, low CC) turn out to be the most reliable, for 
average PFD values of about 0.0004 or less. 

Finally, Fig. 1d shows the effect of combining DSD1 and 
DSD2. The most reliable pairs on average (represented by 
the curve with diamond symbols) are formed from C 
programs with high HV and high CC (the reference sub-
pool in this plot) and Java programs with high HV and high 
CC. As reliability of single programs improves, system PFD 
gets even better than if the component programs failed 
independently. Interestingly, the ‘structure’ (complexity) 
metric values for the single programs (one implemented in 
C, the other in Java) forming these pairs come from the high 
HV, high CC sub-pools, that is, there is no evidence of 
diversity in structure between the two programs. Somehow, 
reducing the sub-pools of C and Java by filtering out the 
programs with low values of either HV or CC resulted in 
much more reliable pairs than if the non-filtered sub-pools of 
C and Java were used. That is, when we combine programs 
written in C and in Java, we find that in this set those with 
higher values of HV and CC are ‘more diverse’ than those 
with low values of either of the two software metrics. A 
conjecture would be just that writing longer programs gives 
programmers room for a greater variety of mistakes. 

Another set of diverse program pairs (represented by the 
curve with asterisk symbols) is formed by choosing the first 
program from the reference sub-pool, and the second one 
from Java programs that have low HV and low CC. In this 
case, combining two DSDs brings significant benefits – 
when the average PFD of the single programs is better than 
10-3, average system reliability is 2-3 orders of magnitude 
better, still a very significant improvement despite it not 
being the highest observed gain. 

Readers may notice that many curves converge to the 
value 100 at the left end of the X axis, where the average 
PFD of single programs is 10-4, and wonder whether this is 
an artefact of the data collection method. It is actually a 
consequence of the set of faults present in these programs, 
and the way the experiment simulates how average 

                                                           
3Although they are based on different populations: Fig. 1a shows the 
effects of selecting from programs written in all four languages; Fig. 
1b from two of them at a time. 



a. c.

b. d.
 

Fi
gu

re
 1

.  
Ex

am
pl

es
 o

f e
ffe

ct
s o

f d
iv

er
si

ty
 fo

r t
he

 F
ac

to
rs

 a
nd

 F
ac

to
ri

al
s “

pr
ob

le
m

”,
 in

 th
e 

ca
se

s o
f: 

un
fo

rc
ed

 d
iv

er
si

ty
 (a

); 
on

e 
of

 th
e 

tw
o 

D
SD

 c
at

eg
or

ie
s, 

ei
th

er
 d

iv
er

se
 p

ro
gr

am
m

in
g 

la
ng

ua
ge

 (b
), 

or
 

di
ve

rs
e 

pr
og

ra
m

 st
ru

ct
ur

e 
(c

) i
s u

se
d 

in
di

vi
du

al
ly

; o
r w

he
n 

th
e 

in
st

an
ce

s o
f t

w
o 

D
SD

 c
at

eg
or

ie
s a

re
 c

om
bi

ne
d 

(d
). 

Th
e 

ho
riz

on
ta

l a
xi

s s
ho

w
s e

ith
er

 th
e 

av
er

ag
e 

PF
D

 o
f t

he
 w

ho
le

 p
oo

l o
f p

ro
gr

am
s (

a)
, o

r 
th

e 
av

er
ag

e 
PF

D
 o

f t
he

 tw
o 

su
b-

po
ol

s f
ro

m
 w

hi
ch

 th
e 

pr
og

ra
m

s (
A

 a
nd

 B
) a

re
 se

le
ct

ed
 (b

, c
 a

nd
 d

). 
Th

e 
ve

rti
ca

l a
xi

s s
ho

w
s t

he
 re

lia
bi

lit
y 

im
pr

ov
em

en
t a

s t
he

 ra
tio

 P
FD

A
/P

FD
A

B.



program quality improves. If we rank the faults in these 
programs by their “size” (associated PFD value), we find that 
there is only one fault with the smallest measured non-zero 
PFD, say PFDmin. As we reduce the program pool to achieve 
lower average PFD, the pool is eventually reduced to 
containing just two score classes: programs with PFD=0, and 
programs with this single “smallest” fault. It can be shown 
that in these conditions the reliability gain would indeed 
converge to PFDmin/(average PFD of the pool).4 In this set, 
PFDmin=10-2 and thus the R value, for x=10-4, is 10-2/10-

4=100.  

B. The 3n+1 “Problem” 
As in the previous section, Fig. 2a shows how the 

average population reliability affects the gain from software 
fault tolerance: here, too, the gain generally increases with 
improving reliability of single programs, although the 
increase is not monotonic throughout the range. For low 
reliability (the right-hand side of the plot for values of the 
average PFD in the range 0.01 to 0.1), the gain suggests 
“failure independence” between programs, but this changes 
with the improvement of reliability and the distance of the 
gain from “independence” is increasing. The gain peaks at 
about 236 for average PFD of 0.0002 – the highest gain 
observed for any of the “problems” when not forcing 
diversity. 

Fig. 2b illustrates the effect of applying only DSD1 as the 
sub-pools’ reliabilities change. The reference sub-pool this 
time contains programs written in C. For most of the 
reliability range shown, the best performing combination is 
given by pairs from the reference sub-pool and the sub-pool 
of Pascal programs (down to values of PFD of the sub-pools 
of about 0.0003). For lower values of the average sub-pool 
PFD the Java sub-pool “replaces” the sub-pool of Pascal 
programs. The differences between average systems PFDs 
are at times large – they reach one order of magnitude when 
the average PFD of the pools is in the range [0.01, 0.0016]. 

Fig. 2c shows the effectiveness of using solely DSD2. It 
is interesting that when the average PFD is 0.001 or lower, 
the highest reliability gain is observed when we pair 
programs from the reference sub-pool (high HV, high CC) 
with the diverse sub-pool in which the programs have “low” 
values for both software metrics.  

Fig. 2d shows the effect of combining instances of two 
DSDs. The reference sub-pool is C, high HV, high CC. The 
best combination is obtained when the second program 
comes from the sub-pool Pascal, low HV, low CC. Thus, in 
this case, “the more diversity the better”. Interestingly, for a 
range of PFD values, the gain is better than under 
“independence on average”. The second-best combination 
(almost consistently for all values of average PFD on the X 
axis) is formed with a second program coming from the sub-
pool Pascal, high HV, high CC. This is interesting because 
it shows that the difference in structure does not necessarily 

                                                           
4 For two pools of different programs, and if the programs with the 
smallest non-zero PFD in each pool are such that their failure sets 
overlap, PFDmin should be read as the PFD of a pair made from one 
instance of such programs from each one of the two pools. 

contribute to further gain. Pascal programs with high HV, 
high CC turn out to be a “better fit” for C, high HV, high CC 
than Pascal, high HV, low CC, or Pascal, low HV, high CC. 
The fact that two of the Pascal sub-pools give good failure 
diversity with the reference sub-pool is not surprising – Fig. 
2b already suggested that the Pascal programs are a good fit 
to the C programs from this viewpoint. Finally, the role of 
structure is emphasised by the fact that the system formed 
when the second program comes from the sub-pool C, low 
HV, low CC achieves high values of the gain: despite the 
use of the same language, the structure of the C programs 
may be strongly related to which faults they are likely to 
contain and thus significantly affect reliability of 1-out-of-2 
systems. 

V. CONCLUSIONS AND FUTURE WORK 
This paper presents initial empirical findings about the 

efficacy of some “diversity seeking decisions”, obtained 
using a large number of software solutions to mathematical 
“problems” from the UVa Online Judge platform. We 
performed exploratory analysis “on average”, in which we 
studied empirically how two different individual DSDs and 
combinations thereof affected the reliability of 1-out-of-2 
system. We report on: 

• analysis of the effectiveness of an additional DSD, 
not studied before – diverse software program 
structure. We used a combination of software 
complexity metrics as a proxy for diverse program 
structure.  

• analysis of the effectiveness of a combination of two 
“diversity-forcing” DSDs: diverse programming 
language and diverse program structure. 

This study, the first to systematically analyse the effects of 
combining different ways of 'forcing' diversity, has produced 
some useful results by showing high variability of benefits 
from each of the two DSDs studied and from their 
combination. It gives a proof of existence of cases in which 
“more diversity” is beneficial, i.e. these findings provide 
empirical evidence that using particular instances of the two 
categories of DSDs may be more effective than using an 
instance of a single DSD, or of not forcing diversity at all. To 
the best of our knowledge, this is the first reported empirical 
evidence of this kind. There are, however, counter-examples: 
the results showed many cases where applying instances of 
both DSDs together led to worse systems than with just one 
DSD. Together, all this is evidence of significant variation in 
the effectiveness of combined DSDs: something that does 
not contradict any previous knowledge but had not been 
shown previously. 

How effective a set of DSDs should be expected to be for 
a particular system depends in the end on the types of faults 
that the specific development processes are most likely to 
leave in the diverse software components. Therefore, one 
should not just assume a priori that applying a specific 
combination of DSDs will result in a specific level of system 
reliability gains or achieved system reliability; at the system 
assessment stage (e.g. for certification) one should be 
prepared to provide direct evidence of the dependability 
achieved in the specific system.   
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The limits of this study belong to two categories: limits 
of the dataset and limits of the method. Regarding the data 
set: we deal with solutions developed by self-selected 
programmers, unlikely to have followed a rigorous process. 
Many of the submitted program versions are of very low 
reliability. There is no a priori reason to expect that specific 
measurements obtained with these (simple) programs would 
extend to others, and in particular to ones with high 
reliability requirements, so that they could inform decisions 
about production software, which is frequently more 
complex, and/or developed much more rigorously, and/or 
with more advance thought given to how to seek diversity. In 
industrial practice, diversity is sometimes achieved by using 
radically different programming styles or specifications, e.g. 
ELEKTRA [24] uses two channels with conventional and 
rule-based programming. On the other hand, the degree of 
language diversity represented here is akin to that used in 
certain industrial developments. Extending direct empirical 
investigation to other aspects of programming language 
diversity (e.g., imperative vs PLC-oriented graphical 
languages) would certainly be beneficial if appropriate data 
sets can be obtained. Our results indicate heavy variability of 
the reliability gain obtained via diversity-forcing DSDs. A 
combination of DSDs we explored in some cases gives much 
greater gains than that achieved by not forcing diversity (the 
latter is shown in Fig. 1a and Fig. 2a); the results of 
combining DSDs provide suggestive evidence of significant 
variation in their effectiveness (there exist examples of 
combined DSDs being less effective than the instances of a 
single DSD). Although this is only an initial data point, it 
indicates that any expectation of consistent reliability gains 
from a method for forcing diversity would need to be 
supported by further investigation. 

Some limits of the method of our study, such as the 
proxy used for diverse structure, are addressed below. 

The main ways in which we consider extending this 
study are: 

• Analysing more “problems” within the UVa Online 
Judge platform, to explore further the range of 
effects (such results are useful for practice to avoid 
unwarranted assumptions) and to shed light on 
whether common “empirical laws” apply to ranges 
of applications, program complexity and/or program 
quality, i.e. whether there is a range of effects of 
DSDs that apply across multiple “problems”, or 
instead the gains are significantly dependent on the 
specific “problem”. Extensive data from such 
analyses will allow us to quantify more extensively 
the range of variation of the effectiveness of 
combining multiple DSDs. 

• Extending the testing by more extensive coverage of 
the demand space. Programs for 3n+1 and 
Factovisors “problems” were tested exhaustively 
over a subset of their demand spaces, so that faults 
affecting this subset are explored in complete detail. 
A complementary picture would be obtained by: 

o Exhaustive testing of the whole demand 
space (this was done for the Factors and 

Factorials “problem”), in cases where this 
is feasible. 

o Sampling from the whole demand space 
according to some distribution. For 
production software systems, this 
distribution is meant to be representative 
of the operational profile, i.e. a 
quantitative characterization of how a 
system will be used. When this is not 
known, uniform sampling, or alternative, 
hypothetical but plausible profiles of use, 
would give evidence of effects (or lack 
thereof) of the profile on the findings. 

• Pre-selecting programs that have passed more 
extensive acceptance tests, so that the data collected 
concern only the programs of higher reliability 
within the pool, akin to the reliability levels that are 
likely in industrial practice. 

• Simulating alternative ways of varying the quality of 
the software development process (as explained in 
Section III.E) by changing the frequencies of each 
individual score class (to be different from the 
frequencies obtained from the experimental data).  

• Using more refined techniques to divide the 
programs into sub-pools in meaningful ways. A clear 
candidate is how to detect likely differences in 
algorithms or in organisation of programs. We could 
stick to a ‘blind’ software metric based approach, but 
applying more refined techniques for clustering 
multi-dimensional data sets. Alternatively, we could 
automatically identify actual differences in program 
structure, using, for example, reverse engineering 
tools, or plagiarism detection tools used in teaching 
programming. 
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