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2 MARKUS LINCKELMANN

1 Introduction and Notation

1.1 The cohomology of a finite group G with coefficients in a complete dis-
crete valuation ring O having a residue field k of prime characteristic p is the ring
H∗(G,O) = Ext∗OG(O,O), where O is considered as trivial OG−module; that is, with
x ∈ G acting as identity on O. It is apparent from this definition, that H∗(G,O) is
an invariant of the principal block b0 of OG (this is the unique primitive idempotent
of the center Z(OG) of the group algebra OG of G over O acting as the identity on
the trivial OG−module).

Since in general a p−block of G need not have an augmentation, this definition does
not generalize to arbitrary blocks. There is, however, a “p−local” characterization
of H∗(G,O) as the subring of the cohomology ring H∗(P,O), where P is a Sylow-
p−subgroup of G, consisting of all elements in H∗(P,O) whose restriction to Q is
stable under the action of NG(Q) on H∗(Q,O) for every subgroup Q of P (cf. [9,
Ch. XII, 10.1]). This characterization now does generalize to an arbitrary p−block b
of G (this is a primitive idempotent of Z(OG)) by taking for P a defect group of b
and replacing NG(Q) by NG(Q, eQ), where (Q, eQ) is a b−Brauer pair contained in
(P, eP ) for some fixed choice of a suitable block eP of kCG(P ) (cf. [1]). We are going
to call the ring thus obtained the cohomology ring of the block b (see section 5 for a
precise definition).

It is well-known that the usual cohomology ring H∗(G,O) embeds into the
Hochschild cohomology ring HH∗(OG) through “diagonal induction” (see 4.5 be-
low). We develop here the machinery to show that the cohomology ring of the block
b embeds into the cohomology ring HH∗(OGb) of the block algebra OGb of b.

In section 2 we define for any two symmetric algebras A, B over a commutative
ring R and any bounded complex X of finitely generated left and right projective
A − B−bimodules a transfer map tX : HH∗(B) −→ HH∗(A) and study its basic
properties. We show in particular, analogously to B. Keller’s results in [12] on transfer
in cyclic homology, that tX depends only on the image of X in the appropriate
Grothendieck group.

In order to study the multiplicative structure of HH∗(A) we define in section 3
the notion of X−stable elements in HH∗(A), which are then shown to form a graded
subalgebra HH∗

X(A) of HH∗(A); moreover, we show that under some non degeneracy
hypothesis on X there is a normalized transfer TX inducing a surjective R−algebra
homomorphism HH∗

X∗(B) −→ HH∗
X(A), where X∗ is the R−dual of X.

Section 4 is devoted to showing that the transfer maps between HH∗(RG) and
HH∗(RH), where H is a subgroup of the finite group G, obtained from induction
and restriction, are compatible with the usual transfer and restriction maps between
the cohomology rings H∗(G,R) and H∗(H,R) through the “diagonal” embeddings of
the cohomology rings into the Hochschild cohomology rings of G and H, respectively.

In section 5 we give the definition of the cohomology ring of a p−block b of a
finite group G over the ring O and apply the results of the previous sections in
order to show that indeed this cohomology ring embeds into HH∗(OGb) and that the
normalized transfer of a suitable p−permutation complex always induces the identity
on the image of this embedding; this should be thought of as a generalization of the
well-known fact, that if H controls p−fusion in G then the restriction from G to H
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induces an isomorphism H∗(G,O) ∼= H∗(H,O) by the “p−local” characterization of
the cohomology rings. By Mislin’s theorem [15], the converse of this last statement is
true, too, and in fact, a major guideline for developing this material is that we expect
there to be some generalization of Mislin’s theorem to arbitrary p−blocks of finite
groups; see remark 5.8 below.

1.2 Notation. All algebras and rings are associative with unit element, all mod-
ules are supposed to be finitely generated unitary, and, if not stated otherwise, left
modules.

1.2.1 If A, B, C are algebras over a commutative ring R, by an A−B−bimodule
M we mean a bimodule whose left and right R−module structure coincide; that is,
we may consider M as A ⊗

R
B0−module with a ⊗ b acting on m ∈ M as amb, where

a ∈ A, b ∈ B, and B0 is the algebra obtained from endowing B with the opposite
product b.b′ = b′b, b, b′ ∈ B. The R−dual M∗ = HomR(M,R) becomes then a
B − A−bimodule via (b.m∗.a)(m) = m∗(amb) for any m ∈ M , m∗ ∈ M∗, a ∈ A,
b ∈ B. If furthermore N is an A − C−bimodule, HomA⊗1(M,N) is considered as
B − C−bimodule through (b.ϕ.c)(m) = ϕ(mb)c, where b ∈ B, ϕ ∈ HomA⊗1(M,N),
c ∈ C and m ∈M .

For a finite group G we consider any RG−RG−bimoduleM as R(G×G)−module
with (x, y) ∈ G×G acting on m ∈M as xmy−1 (and vice versa).

1.2.2 By a complex we always mean a chain complex (that is, its differential has
degree −1), and we implicitely consider any cochain complex X over any ring as chain
complex through Xn = X−n, where n is an integer; note that then Hn(X) = H−n(X)
for any integer n.

1.2.3 Let A, B, C be R−algebras, X a complex of A − B−bimodules with dif-
ferential δ, Y a complex of B − C−bimodules with differential ǫ, and Z a complex
of A − C−bimodules with differential γ. We define X ⊗

B
Y to be the complex of

A− C−bimodules whose component in degree n is equal to

⊕
i∈Z

Xi ⊗
B
Yn−i

and differential induced by the maps

(

(−1)iIdXi
⊗ ǫn−i

δi ⊗ IdYn−i

)

: Xi ⊗
B
Yn−i −→ Xi ⊗

B
Yn−1−i ⊕Xi−1 ⊗

B
Yn−i.

Similarly, we define HomA⊗1(X,Z) to be the complex of B−C−bimodules whose
component in degree n is equal to

Π
i∈Z

HomA⊗1(X−i, Zn−i)

with differential induced by the maps

((−1)nHomA⊗1(δ−i+1, Zn−i), HomA⊗1(X−i, γn−i)).

1.2.4 For any integer i and any complex X with differential δ we denote by X[i]
the complex whose component in degree n is equal to Xn−i, with differential given by
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the maps (−1)iδn−i : Xn−i −→ Xn−i−1. This sign convention has the property, that
if X is a complex of left A−modules and i an integer, then the natural isomorphisms
A⊗

A
Xn

∼= Xn for any integer n induce an isomorphism of complexes A[i]⊗
A
X ∼= X[i],

where A[i] is the complex whose component in degree i is A and zero in all other
degrees, while if X is a complex of right B−modules we have to multiply the canonical
isomorphisms Xn ⊗

B
B ∼= Xn by the sign (−1)ni in order to obtain an isomorphism

of complexes X ⊗
B
B[i] ∼= X[i]. The above isomorphisms define natural isomorphisms

between the functors A[i] ⊗
A
−, the degree i shift functor [i] and − ⊗

B
B[i] on the

category of complexes of A−B−bimodules.

1.2.5 The cone of a map of complexes f : X −→ Y is the complex C(f) whose
component in degree n is equal to Xn−1 ⊕ Yn, with differential induced by the maps

Xn ⊕ Yn+1 −→ Xn−1 ⊕ Yn

whose restriction to Xn is the map (−δn, fn) and whose restriction to Yn+1 is the
map (0, ǫn+1), where δ and ǫ are the differentials of X and Y , respectively.

The cone comes along with obvious natural maps Y −→ C(f) and C(f) −→ X[1].

1.2.6 For an R−algebra A we denote by Mod(A) the category of finitely gener-
ated A−modules, by C(A) the category of complexes of finitely generated A−modules
and by K(A) its homotopy category. We denote by Cb(A) and Kb(A) the full
subcategories of C(A) and K(A), respectively, consisting of bounded complexes of
A−modules. Recall that an A−module U is relatively R−projective if it is isomor-
phic to a direct summand of an A−module of the form A ⊗

R
V for some R−module

V ; we denote by Mod(A) the R−stable category of Mod(A); that is, the objects of
Mod(A) are the same as the objects of Mod(A), and the morphisms are equivalence
classes of A−homomorphisms for the relation declaring two A−homomorphisms be-
tween two A−modules to be equivalent if their difference factors through a relatively
R−projective A−module (thus, if R is a field, this is just the usual stable category of
Mod(A)).

1.2.7 We say that a finite-dimensional algebra A over a field k is split if EndA(S) ∼=
k for every simple A−module, or, equivalently, if A/J(A) is a direct sum of matrix
algebras over k.

2 Transfer in Hochschild cohomology of symmetric algebras

A transfer associated to a suitable complex of bimodules has been considered by B.
Keller [12] for cyclic homology and S. Bouc [4] for Hochschild homology. In the case
of induction from a subalgebra, M. Feshbach has developed in [10] a transfer for the
cohomology of Hopf algebras. We define here a transfer for Hochschild cohomology
of symmetric algebras, using adjunction maps in a way which is similar to M. Broué’s
definition in [5] of relative traces for symmetric algebras. The properties given in
2.11, 2.12 are analogous to results in [12] and [4] on cyclic and Hochschild homology,
respectively.

Let R be a commutative ring. Recall that an R−algebra A is symmetric if it
is projective as R−module and isomorphic to its R−dual A∗ = HomR(A,R) as
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A − A−bimodule. For any projective A−module M any choice of such a bimodule
isomorphism A ∼= A∗, or equivalently, of a symmetrizing form s ∈ A∗ on A (cf. 6.3),
gives rise to a natural isomorphism of functors (cf. 6.5)

2.1. HomA(M,−) ∼=M∗ ⊗
A
−

from Mod(A) to Mod(R). Note that then M∗ is projective as right A−module,
since A∗ ∼= A is so. By naturality, this extends to complexes of bimodules as follows:
if B is another R−algebra and X a bounded complex of A−B−bimodules which are
projective as left A−modules, there is a natural isomorphism of functors

2.2. HomA⊗1(X,−) ∼= X∗ ⊗
A
−

from the category C(A) of complexes of A−modules to the category C(B) of
complexes of B−modules mapping the subcategory Cb(A) of bounded complexes of
A−modules to the corresponding subcategory Cb(B).

In particular, the functor X∗ ⊗
A
− is a right adjoint to X ⊗

B
− (see [5, 1.12, 2.3] or

section 6 below), and we denote by

2.3.

ǫX : B −→ X∗ ⊗
A
X,

ηX : X ⊗
B
X∗ −→ A

the chain maps of complexes of B −B−bimodules and A−A−bimodules, respec-
tively, representing the unit and counit of this adjunction.

The adjunction maps in 2.3 depend on the choice of the symmetrizing form s on
A in the following way:

2.4. if s′ ∈ A∗ is another symmetrizing form on A, there is a unique invertible
element u ∈ Z(A)× such that s′ = u.s; that is, s′(a) = s(ua) for any a ∈ A, and then
the corresponding adjunction maps ǫ′X , η′X satisfy

ǫ′X = (IdX∗ ⊗ u.IdX) ◦ ǫX ,

η′X = u−1.ηX .

If in addition B is symmetric and if all components of X are projective as right
B−modules, too, the above discussion applies to X∗, and thus the functors X ⊗

B
−

and X∗ ⊗
A
− are both left and right adjoint to each other. In particular, choosing a

symmetrizing form on B we obtain chain maps of complexes of bimodules

2.5.

ǫX∗ : A −→ X ⊗
B
X∗,

ηX∗ : X∗ ⊗
A
X −→ B
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representing the unit and counit of X ⊗
B
− being a right adjoint to X∗ ⊗

A
−. It is

possible to give explicit descriptions of ǫM , ηM (see [5] or 6.6).
Note that the above discussion includes the case where X is an A−B−bimodule,

considered then as complex concentrated in degree zero.

Example 2.6 Let G be a finite group. The map sending λ ∈ (RG)∗ to
∑

x∈G

λ(x−1)x ∈ RG is an isomorphism of RG − RG−bimodules; in particular, RG

is symmetric and the symmetrizing form s ∈ (RG)∗ corresponding to this bimodule
isomorphism is the R−linear map sending 1G to 1R and any non trivial element of G
to 0R.

Let H be a subgroup of G and M = (RG)H the RG − RH−bimodule obtained
from restricting the regular RG − RG−bimodule RG to RH on the right. That is,
the functor M ⊗

RH
− is the usual induction functor IndGH . The R−dual M∗ of M

is, via the above bimodule isomorphism (RG)∗ ∼= RG, naturally isomorphic to the
RH−RG−bimodule H(RG) obtained from restricting the regular RG−RG−bimodule
RG to RH on the left, and the functor M∗ ⊗

RG
− is then naturally isomorphic to the

restriction functor ResGH . In particular, M∗ ⊗
RG

M ∼= RG as RH − RH−bimodules,

and, with this identification, the bimodule homomorphisms given by adjunction are
as follows:

ǫM : RH −→ RG is the inclusion,
ηM : RG ⊗

RH
RG −→ RG is given by multiplication in RG,

ǫM∗ : RG −→ RG ⊗
RH

RG maps a ∈ RG to
∑

x∈[G/H]

ax⊗ x−1, and

ηM∗ : RG −→ RH is the natural projection mapping x ∈ H to x and x ∈ G −H
to 0.

Recall that if X is a bounded complex of A − B−bimodules, the degree zero
component of X ⊗

B
X∗ is equal to ⊕

n
Xn ⊗

B
X∗

n, where n runs over the set of integers.

With some abusive identifications (see 6.9), the adjunction maps have the following
properties (the formal proof is left to the reader):

Proposition 2.7. Let A, B, C be symmetric R−algebras, X, X ′ bounded complexes
of A−B−bimodules, Y a bounded complex of B−C−bimodules, and suppose that all
components of X, X ′, Y are projective as left and right modules.

(i) We have ǫX⊕X′ = ǫX + ǫX′ and ηX⊕X′ = ηX + ηX′ .

(ii) We have ǫX⊗
B
Y = (IdY ∗ ⊗ ǫX ⊗ IdY )◦ ǫY and ηX⊗

B
Y = ηX ◦ (IdX ⊗ηY ⊗ IdX∗).

(iii) We have ǫX =
∑

n
(−1)nǫXn

and ηX =
∑

n
(−1)nηXn

, where n runs over the set

of integers.

The Hochschild cohomology of an R−algebra A whixh is projective as R−module
this is the ring

HH∗(A) = Ext∗A⊗A0(A).
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More explicitely, we denote by PA a projective resolution of A; that is, PA is a right
bounded complex of projective A−A−bimodules endowed with a quasi-isomorphism
µA : PA −→ A, where A is viewed as complex concentrated in degree zero. For explicit
calculations it may sometimes be helpful to use the standard projective resolution of
A as A− A−bimodule, which in degree n ≥ 0 is equal to A⊗(n+2) (the (n+ 2)−fold
tensorproduct of A by itself over R) with differential

δAn : A⊗(n+2) −→ A⊗(n+1)

mapping a0 ⊗ a1 ⊗ ... ⊗ an+1 to
∑

0≤k≤n

(−1)ka0 ⊗ .. ⊗ akak+1 ⊗ .. ⊗ an+1 (where

n > 0 and aj ∈ A for 0 ≤ j ≤ n + 1), together with the map from the degree zero
component A⊗

R
A to A given by multiplication in A.

By definition, HHn(A) is the cohomology in degree n of the cochain complex
HomA⊗A0(PA, A). By standard results of homological algebra, we have natural iso-
morphisms

2.8.

HHn(A) = Hn(HomA⊗A0(PA, A)) ∼= Hn(HomA⊗A0(PA,PA))

∼= HomK(A⊗A0)(PA,PA[n]).

It is this latter form of the Hochschild cohomology that we are going to use most
of the time, since it is convenient for dealing with the multiplicative structure in
HH∗(A), which is simply induced by composing chain maps.

Observe that HH0(A) ∼= Z(A) lies in the center of HH∗(A) and that HHn(A)
is a module over Z(A) which is annihilated by the projective ideal Zpr(A) of Z(A)

for n > 0 (cf. [5] ). We define the stable Hochschild cohomology HH
∗
(A) to be the

quotient of HH∗(A) by the ideal generated by Zpr(A); thus HH
n
(A) = HHn(A) for

n > 0 and HH
0
(A) = HH0(A)/Zpr(A)HH0(A) ∼= Z(A).

Recall another standard fact on homological algebra: if A, B are symmetric
R−algebras and X is a bounded complex of A − B−bimodules which are projec-
tive as left and right modules, the (total) complex X∗ ⊗

A
PA ⊗

A
X is a projective

resolution of the complex X∗⊗
A
X; that is, it is right bounded (as PA is so) consisting

of projective B − B−bimodules and quasi-isomorphic to X∗ ⊗
A
X through the chain

map IdX∗ ⊗µA⊗IdX , where µA : PA −→ A is the given quasi-isomorphism as above.
Therefore the adjunction map ǫX : B −→ X∗ ⊗

A
X lifts to a chain map

PB −→ X∗ ⊗
A
PA ⊗

A
X

that we are going to denote by ǫX again; this chain map is in general not unique,
but unique up to homotopy. Similarly, ηX lifts to a chain map

X ⊗
B
PB ⊗

B
X∗ −→ PA

still denoted by ηX , which is again unique up to homotopy. With this notation we
define now a transfer as follows:
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Definition 2.9 LetA, B be symmetricR−algebras, fix symmetrizing forms s ∈ A∗,
t ∈ B∗, and let X be a bounded complex of A − B−bimodules which are projective
as left and right modules. The transfer associated with X is the unique linear graded
map

tX : HH∗(B) −→ HH∗(A)

sending, for any n ≥ 0, the homotopy class [ζ] of a chain map ζ : PB −→ PB [n] to
the homotopy class [ηX [n] ◦ (IdX ⊗ ζ ⊗ IdX∗) ◦ ǫX∗ ] of the composition of chain maps

2.9.1

PA
ǫX∗

−→ X ⊗
B
PB ⊗

B
X∗ IdX⊗ζ⊗IdX∗

−→ X ⊗
B
PB [n]⊗

B
X∗ ηX [n]

−→ PA[n].

The degree zero component t0X : HH0(B) −→ HH0(A) of tX induces a linear map
Z(B) −→ Z(A) through the natural isomorphisms HH0(A) ∼= Z(A) and HH0(B) ∼=
Z(B) that we are going to denote abusively again by t0X , if no confusion arises.

IfM is an A−B−bimodule which is projective as left and right module, we denote
by tM the transfer associated with the complex equal to M in degree zero and zero
in all other degrees.

Remark 2.10 The above definition depends on the choice of the symmetrizing
forms s on A and t on B in the following way: if s′ ∈ A∗ and t′ ∈ B∗ are some other
symmetrizing forms on A and B, there are unique invertible elements u ∈ Z(A)× and
v ∈ Z(B)× such that s′ = u.s and t′ = v.t. It follows from 2.4 that the corresponding
transfer map t′X associated with the choice of the symmetrizing forms s′ and t′ instead
of s and t satisfies

t′X([τ ]) = u−1tX(v[τ ])

for any [τ ] ∈ HH∗(B).
In the case of group algebras we assume always that the bimodule isomorphisms

are the standard ones as in 2.6.

The following proposition is an immediate consequence of 2.7:

Proposition 2.11. Let A, B, C be symmetric R−algebras, X, X ′ bounded complexes
of A−B−bimodules and Y a bounded complex of B−C−bimodules. Assume that all
components of X, X ′, Y are projective as left and right modules. For any choice of
symmetrizing forms on A, B, C we have:

(i) tX⊕X′ = tX + tX′ ,

(ii) tX⊗
B
Y = tX ◦ tY ,

(iii) tX =
∑

n∈Z

(−1)ntXn
.

(iv) tX[i] = (−1)itX for any integer i.

We list some further easy properties of the transfer, including in particular the
statement analogous to [12, 2.4] saying that the transfer map tX depends only on the
image of X in the Grothendieck group of the triangulated subcategory of Kb(A⊗B0)
of bounded complexes whose components are projective as left and right modules:
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Proposition 2.12. Let A, B be symmetric R−algebras with symmetrizing forms
s ∈ A∗ , t ∈ B∗, X, Y bounded complexes of A − B−bimodules which are projective
as left and right modules, and let f : X −→ Y be a chain map. Denote by C(f) the
mapping cone of f .

(i) The components of C(f) are projective as left and right modules, and we have
tC(f) = tY − tX .

(ii) If X is acyclic we have tX = 0.

(iii) If f is a quasi-isomorphism we have tX = tY .

(iv) If 0 −→ M ′ −→ M −→ M ′′ −→ 0 is an exact sequence of A − B−bimodules
which are projective as left and right modules, we have tM = tM ′ + tM ′′ .

(v) If M is a projective A−B−bimodule then tM (HHn(B)) = 0 for all n > 0 and
tM (HH0(B)) ⊂ Zpr(A)HH0(A).

Proof. (i) The component in degree i of C(f) is equal to Xi−1 ⊕ Yi and hence (i)
follows from 2.11 (iii).

(ii) If X is acyclic, the complex X ⊗
B
PB ⊗

B
X∗ is acyclic, right bounded and its

components are projective (as bimodules), hence this complex splits and is therefore
homotopic to zero, which implies the statement.

(iii) If f is a quasi-isomorphism the cone C(f) is acyclic, and thus (iii) follows from
(i) and (ii).

(iv) is a particular case of (ii).
Statement (v) follows from the fact that M ⊗

B
PB ⊗

A
M∗ is a projective resolution of

the projective bimoduleM⊗
B
M∗, hence a split complex which is homotopy equivalent

to M ⊗
B
M∗ viewed as complex concentrated in degree zero.

Remark 2.13 By [20, 2.5] the Hochschild cohomology ring is invariant under
derived equivalences. For symmetric algebras this can be seen as follows: with the
notation of 2.12, if A and B are derived equivalent, then J. Rickard proved in [20] that
there is a bounded complex X of A−B−bimodules whose components are projective
as left and right modules such that we have homotopy equivalences X ⊗

B
X∗ ≃ A and

X∗ ⊗
A
X ≃ B as complexes of bimodules. Then tX and tX∗ are mutually inverse ring

isomorphisms between HH∗(A) and HH∗(B), since all occurring adjunction maps
are homotopy equivalences.

Similarly, if M is an A − B−bimodule inducing a stable equivalence of Morita
type between A and B (a concept due to Broué [5]; see [13] for some properties of

this notion), then tM and tM∗ induce mutually inverse ring isomorphisms HH
∗
(A) ∼=

HH
∗
(B) by 2.12 (v).

3 Stable elements

We provide here an abstract setting for the notion of “stable elements” in
Hochschild cohomology of symmetric algebras and study its connections with trans-
fer maps; this is intended to be a tool for dealing with the multiplicative structure
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of Hochschild cohomology rings. In section 5 we establish a link to the “classical”
definition of stable elements in group cohomology as given in [9, Ch. XII, section 10].

Let R be a commutative ring. We keep the notation of the previous section for
adjunction maps.

Definition 3.1 Let A, B be symmetric R−algebras with symmetrizing forms s ∈
A∗, t ∈ B∗, and X a bounded complex of A− B−bimodules which are projective as
left and right modules.

(i) We denote by πX the image ηX ◦ ǫX∗(1A) in Z(A) of 1A under the composi-
tion of bimodule homomorphisms A −→

ǫX∗

X ⊗
B
X∗ −→

ηX

A and call πX the relatively

X−projective element of Z(A) (with respect to the choice of the symmetrizing forms
s and t).

(ii) If πX is invertible in Z(A) we denote by

TX : HH∗(B) −→ HH∗(A)

the graded linear map defined by TX([τ ]) = π−1
X tX([τ ]) for any [τ ] ∈ HH∗(B), and

call TX the normalized transfer associated with X.

(iii) An element [ζ] ∈ HH∗(A) is called X−stable if there is [τ ] ∈ HH∗(B) such
that for any non negative integer n the following diagram is homotopy commutative

3.1.1
PA ⊗

A
X

≃
−−−−→ X ⊗

B
PB

ζn⊗IdX





y





y

IdX⊗τn

PA[n]⊗
A
X

≃
−−−−→ X ⊗

B
PB [n]

where ζn and τn are the components in degree n of ζ and τ , respectively, and where
the horizontal arrows are given by the natural homotopy equivalences PA ⊗

A
X ≃

X ⊗
B
PB lifting the natural isomorphism A ⊗

A
X ∼= X ⊗

B
B. We denote by HH∗

X(A)

the set of X−stable elements in HH∗(A).

(iv) We say that an element z ∈ Z(A) is X−stable, if the image of z in HH0(A)
under the natural isomorphism Z(A) ∼= HH0(A) lies in HH0

X(A), and denote by
ZX(A) the set of X−stable elements in Z(A).

Remark 3.2 The element πX defined in 3.1(i) depends on the choice of the
symmetrizing forms s ∈ A∗ and t ∈ B∗. In fact, denoting again abusively by
t0X : Z(B) −→ Z(A) the linear map induced by the degree zero component of tX
via the natural isomorphisms Z(A) ∼= HH0(A) and Z(B) ∼= HH0(B), we have

3.2.1

πX = t0X(1B).

Thus if π′
X is the relatively X−projective element with respect to another choice

of symmetrizing forms s′ ∈ A∗ and t′ ∈ B∗, there are unique invertible elements
u ∈ Z(A)×, v ∈ Z(B)× such that s′ = u.s, t′ = v.t (cf. 2.4), and then by 2.10, we
have
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3.2.2

π′
X = u−1t0X(v).

Using 2.6 it is possible to construct examples where πX = 1A and π′
X = 0A (see 3.9

below), so not even the property of πX being invertible is independent of the choice
of the symmetrizing forms. The previous formula shows in particular

3.2.3 if πX is invertible, then setting s′ = (πX)−1.s and t′ = t we have π′
X = 1A.

Observe that at the levels of complexes, the composition of chain maps

3.2.4

PA −→
ǫX∗

X ⊗
B
PB ⊗

B
X∗ −→

ηX

PA

is homotopic to either endomorphism of PA induced by left or right multiplication
with the element πX on PA, since ηX ◦ ǫX∗ “lifts” the endomorphism of A given by
left or right multiplication with the central element πX (cf. 3.1.1).

The property of an element [ζ] ∈ HH∗(A) to be X−stable does not depend on
the choice of the symmetrizing forms on A and B. Note finally that an element
z ∈ Z(A) is X−stable if and only if there is an element y ∈ Z(B) such that the
two chain endomorphisms of X induced by left multiplication with z and by right
multiplication with y on X are homotopic.

Lemma 3.3. Let A, B be symmetric R−algebras with symmetrizing forms s ∈ A∗,
t ∈ B∗, X a bounded complex of A − B−bimodules which are projective as left and
right modules, and let [ζ] ∈ HHn(A) and [τ ] ∈ HHn(B), where n is a nonnegative
integer.

The diagram

3.3.1

PA ⊗
A
X

≃
−−−−→ X ⊗

B
PB

ζ⊗IdX





y





y

IdX⊗τ

PA[n]⊗
A
X −−−−→

≃
X ⊗

B
PB [n]

is homotopy commutative if and only if any of the following diagrams is homotopy
commutative:

3.3.2

PA
ǫX∗

−−−−→ X ⊗
B
PB ⊗

B
X∗

ζ





y





y

IdX⊗τ⊗IdX∗

PA[n] −−−−→
ǫX∗ [n]

X ⊗
B
PB [n]⊗

B
X∗

3.3.3

X∗ ⊗
A
PA ⊗

A
X

ηX
−−−−→ PB

IdX∗⊗ζ⊗IdX





y





y

τ

X∗ ⊗
A
PA[n]⊗

A
X −−−−→

ηX [n]
PB [n]
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3.3.4

PB ⊗
B
X∗ ≃

−−−−→ X∗ ⊗
A
PA

τ⊗IdX∗





y





y

IdX∗⊗ζ

PB [n]⊗
B
X∗ −−−−→

≃
X∗ ⊗

A
PA[n]

3.3.5
PB

ǫX−−−−→ X∗ ⊗
A
PA ⊗

A
X

τ





y





y

IdX∗⊗ζ⊗IdX

PB [n] −−−−→
ǫX [n]

X∗ ⊗
A
PA[n]⊗

A
X

3.3.6

X ⊗
B
PB ⊗

B
X∗ ηX

−−−−→ PA

IdX⊗τ⊗IdX∗





y





y

ζ

X ⊗
B
PB [n]⊗

B
X∗ −−−−→

ηX [n]
PA[n]

Proof. If 3.3.1 is homotopy commutative, tensoring this diagram by − ⊗
B
X∗ and

composing it with the commutative diagram

PA ⊗
A
A

IdPA
⊗ǫX∗

−−−−−−−→ PA ⊗
A
X ⊗

B
X∗

ζ⊗IdPA





y





y

ζ⊗IdX⊗IdX∗

PA[n]⊗
A
A −−−−−−−−−→

IdPA
[n]⊗ǫX∗

PA[n]⊗
A
X ⊗

B
X∗

shows that 3.3.2 is homotopy commutative. By applying this argument in the
appropriate way it follows that the homotopy commutativity of the diagrams 3.3.1,
3.3.2 and 3.3.3 is equivalent. Since the horizontal arrows in 3.3.1 are homotopy
equivalences we may reverse them, and then, again applying appropriate variations
of the above argument shows that 3.3.1 is homotopy commutative if and only if any
of the diagrams 3.3.4, 3.3.5, 3.3.6 is so.

Lemma 3.4. Let A, B be symmetric R−algebras with symmetrizing forms s ∈ A∗,
t ∈ B∗ and X a bounded complex of A−B−bimodules which are projective as left and
right modules. Let [ζ] ∈ HH∗

X(A) and [τ ] ∈ HH∗(B) such that the diagram 3.1.1 is
homotopy commutative for all nonnegative integers n.

(i) We have [τ ] ∈ HH∗
X∗(B).

(ii) We have tX([τ ]) = πX [ζ].

(iii) For any [σ] ∈ HH∗(B) we have tX([τ ][σ]) = [ζ]tX([σ]) and tX([σ][τ ]) =
tX([σ])[ζ].

(iv) We have tX∗⊗
A
X([τ ]) = πX∗⊗

A
X [τ ].
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Proof. Statement (i) follows from the fact that 3.3.1 is homotopy commutative if and
only if 3.3.4 is so. Using 3.3.2 we get tX([τ ]) = [ηX ◦ ǫX∗ ◦ ζ], and since ηX ◦ ǫX∗

is homotopic to multiplication by πX on PA we obtain (ii). Similarly, composing
the diagrams 3.3.2 and 3.3.6 with the diagram defining tX([τ ]) in each component
yields the two equalities in (iii). For (iv) apply tX∗ to the equality (ii) and use then
the analogue of (iii) with X∗ instead of X, together with the fact that πX∗⊗

A
X =

t0X∗⊗
A
X(1B) = t0X∗(πX) by 3.2.1 and 2.11(ii).

Proposition 3.5. Let A, B be symmetric R−algebras with symmetrizing forms s ∈
A∗, t ∈ B∗, and X a bounded complex of A − B−bimodules whose components are
projective as left and right modules.

(i) The set HH∗
X(A) of X−stable elements in HH∗(A) is a graded subalgebra of

HH∗(A); in particular, ZX(A) is a subalgebra of Z(A).

(ii) The space Im(tX) is a graded HH∗
X(A)−HH∗

X(A)−subbimodule of HH∗(A).

(iii) We have tX(HH∗
X∗(B)) = πXHH

∗
X(A).

(iv) For every direct summand X ′ of the complex X we have HH∗
X(A) ⊂ HH∗

X′(A).

Proof. Clearly HH∗
X(A) is a graded R−submodule of HH∗(A), and the composition

of diagrams of the form 3.1.1 shows that indeed HH∗
X(A) is a ring, which shows

(i). Statement (ii) follows from 3.4(iii), and (iii) is a consequence of 3.4(i) and 3.4(ii).
Moreover, if 3.3.1 is homotopy commutative, decomposing the complexX into a direct
sum of complexes yields a decomposition of the diagram 3.3.1 into a direct sum of
homotopy commutative diagrams, which implies (iv).

Theorem 3.6. Let A, B be symmetric R−algebras with symmetrizing forms s ∈ A∗,
t ∈ B∗, and X be a bounded complex of A−B−bimodules which are projective as left
and right modules.

(i) If πX is invertible, the normalized transfer TX induces a graded surjective
R−algebra homomorphism

RX : HH∗
X∗(B) −→ HH∗

X(A).

(ii) If πX is invertible and s′ ∈ A∗, t′ ∈ B∗ are symmetrizing forms such that the
corresponding relatively X−projective element π′

X is again invertible, then, denoting
by R′

X the algebra homomorphism induced by the normalized transfer T ′
X associated

with the choice of s′, t′ instead of s, t, we have R′
X = RX .

(iii) If both πX and πX∗ are invertible then RX and RX∗ are mutually inverse
R−algebra isomorphisms

HH∗
X∗(B) ∼= HH∗

X(A).

Proof. (i) By 3.4 (ii) and 3.4 (iii), the map RX is indeed an R−algebra homomor-
phism, and by 3.5 (iii) it is surjective.

(ii) Let u ∈ Z(A)× and v ∈ Z(B)× be the unique elements such that s′ = u.s
and t′ = v.t. Applying 3.4 to [τ ] ∈ HH∗

X∗(B) yields t0X(v)tX([τ ]) = πXtX(v[τ ]).
Multiplying this equation by u−1 shows then that π′

XtX([τ ]) = πXt
′
X([τ ]) by 2.10.

Since both πX and π′
X are invertible it follows that RX([τ ]) = R′

X([τ ]).
Statement (iii) is an easy verification, using again 3.4(i) and 3.4(ii).
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Proposition 3.7. Let A, B, C be symmetric R−algebras, X a bounded complex of
A − B−bimodules, and Y a bounded complex of B − C−bimodules. Suppose that all
components of both X and Y are projective as left and right modules. Let n be a
nonnegative integer, [ζ] ∈ HHn(A) and [γ] ∈ HHn(C) making the following diagram
homotopy commutative:

3.7.1

PA

ǫY ∗⊗
B

X∗

−−−−−→ X ⊗
B
Y ⊗

C
PC ⊗

C
Y ∗ ⊗

B
X∗

ζ





y





y

IdX⊗
B

Y ⊗γ⊗IdY ∗⊗
B

X∗

PA[n] −−−−−−−→
ǫY ∗⊗

B
X∗ [n]

X ⊗
B
Y ⊗

C
PC [n]⊗

C
Y ∗ ⊗

B
X∗

Suppose there is z ∈ Z(A) such that left multiplication by z and right multiplication
by πY on X induce homotopic endomorphisms of X.

Then the following diagram is homotopy commutative:

3.7.2
PA

ǫX∗

−−−−→ X ⊗
B
PB ⊗

B
X∗

z.ζ





y





y

IdX⊗tY (γ)⊗IdX∗

PA[n] −−−−→
ǫX∗ [n]

X ⊗
B
PB [n]⊗

B
X∗

In particular, z[ζ] is X−stable and tY ([γ]) is X
∗−stable.

Proof.
By 2.7(ii) we have a homotopy commutative diagram

3.7.3
PA

ǫX∗

−−−−→ X ⊗
B
PB ⊗

B
X∗

IdPA





y





y

IdX⊗ǫY ∗⊗IdX∗

PA −−−−−→
ǫY ∗⊗

B
X∗

X ⊗
B
Y ⊗

C
PC ⊗

C
Y ∗ ⊗

B
X∗

(with the usual identification (X ⊗
B
Y )∗ ∼= Y ∗ ⊗

B
X∗, see 6.7). Moreover, by 2.7(ii)

we have (IdX⊗ηY ⊗IdX∗)◦ǫY ∗⊗
B
X∗ = (IdX⊗ηY ◦ǫY ∗⊗IdX∗)◦ǫX∗ , and as ηY ◦ǫY ∗ is

homotopic to right (or left) multiplication by πY on PB , it follows from the hypothesis
on z, that we have a homotopy commutative diagram

3.7.4

PA

ǫY ∗⊗
B

X∗

−−−−−→ X ⊗
B
Y ⊗

C
PC ⊗

C
Y ∗ ⊗

B
X∗

z.IdPA





y





y

IdX⊗ηY ⊗IdX∗

PA −−−−→
ǫX∗

X ⊗
B
PB ⊗

B
X∗

Now shift the diagram 3.7.4 by the degree n and match it (vertically) together with
the diagrams 3.7.1 and 3.7.3; this yields the diagram 3.7.2 as required.
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Corollary 3.8. Let A, B, C , X and Y be as in 3.7. If πY is invertible in Z(B) we
have HH∗

X⊗
B
Y (A) ⊂ HH∗

X(A) and TY (HH
∗
Y ∗⊗

B
X∗(C)) ⊂ HH∗

X∗(B).

Proof. Recall that the property of being stable with respect to some complex is inde-
pendent of the choice of symmetrizing forms; thus, as πY is invertible we may in fact
assume that πY = 1B by 3.2.3 and 3.6(ii). Then z = 1A fulfills the hypothesis in 3.7,
and thus 3.8 follows from 3.7.

Example 3.9 Let G be a finite group, H a subgroup of G and M = (RG)H . With
respect to the canonical symmetrizing forms on RG and RH we have πM = [G :
H].1RG and πM∗ = 1RH as follows from the explicit description of the adjunction
maps in 2.6. If there is z ∈ Z(G) such that z lies not in H, then s′ = z.s is again a
symmetrizing form on RG, and now the relatively projective elements with respect
to s′ and the canonical form on RH are π′

M = [G : H].z and π′
M∗ = 0RH by 3.2.2.

4 Transfer and group cohomology

Let R be a commutative ring. The cohomology of a finite group G with coefficients
in R is the ring (cf. [2])

4.1.

H∗(G,R) = Ext∗RG(R,R),

where R is considered as RG−module with the trivial action of the elements of G
on R. Again, it is well-known that there is a natural isomorphism

4.2.

Hn(G,R) ∼= HomK(RG)(PR,PR[n])

for any nonnegative integer n, where PR is a projective resolution of the trivial
RG−module R.

If we denote by ∆G the diagonal subgroup ∆G = {(x, x)}x∈G of G×G, there is a
unique isomorphism of RG−RG−bimodules

4.3.

IndG×G
∆G (R) ∼= RG

mapping (x, y)⊗ 1R to xy−1, where x, y ∈ G (with our convention 1.2.1 of consid-

ering the R(G×G)−module IndG×G
∆G (R) as RG−RG−bimodule).

Thus the complex IndG×G
∆G (PR) is a projective resolution of RG; in particu-

lar, the isomorphism in 4.3 lifts to a homotopy equivalence of complexes of RG −
RG−bimodules

4.4.

IndG×G
∆G (PR) ≃ PRG,

which is unique up to homotopy, where here PRG is a projective resolution of RG
as RG−RG−bimodule as above. The following is well-known (and we leave the proof
to the reader):
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Proposition 4.5. Let G be a finite group and PR a projective resolution of the trivial
RG−module R. The map sending ζ ∈ HomC(RG)(PR,PR[n]) to IndG×G

∆G (ζ), where n
is a nonnegative integer, induces an injective R−algebra homomorphism

δG : H∗(G,R) −→ HH∗(RG).

Recall that for any subgroup H of G the usual transfer map (see e.g. [2]) tGH :
H∗(H,R) −→ H∗(G,R) can be defined as follows: since the restriction to H of
a projective resolution PR of the trivial RG−module is a projective resolution of
the trivial RH−module, any element of Hn(H,R) can be represented by a chain
map τ : ResGH(PR) −→ ResGH(PR[n]), from which we obtain a chain map TrGH(τ) :
PR −→ PR[n] defined by TrGH(τ)(a) =

∑

x∈[G/H]

xτ(x−1a) , where a ∈ PR, and then

tGH([τ ]) = [TrGH(τ)]. Moreover, if ϕ : H −→ G is any injective group homomorphism,
we denote by resϕ : H∗(G,R) −→ H∗(H,R) the graded linear map induced by
restriction through ϕ.

The usual transfer and restriction for group cohomology are without any surprise
compatible with the corresponding transfers in Hochschild cohomology through the
algebra homomorphisms in 4.5 (recall that we consider RG with the canonical sym-
metrizing form mapping 1G to 1R and any non trivial element of G to 0R):

Proposition 4.6. Let G be a finite group and H a subgroup of G. The following
diagram is commutative:

H∗(H,R)
tGH−−−−→ H∗(G,R)

δH





y





y

δG

HH∗(RH) −−−−→
t(RG)H

HH∗(RG)

Proof. Let PR be a projective resolution of the trivial RG−module R. Let n be a
nonnegative integer and τ ∈ HomC(RH)(PR,PR[n]). Then TrGH followed by IndG×G

∆G

maps τ to the chain map

4.6.1

IndG×G
∆G (PR) −→

IndG×G
∆G

(TrG
H
(τ))

IndG×G
∆G (PR[n])

and, the other way round, IndH×H
∆H followed by the diagram defining the transfer

t(RG)H maps τ to the chain map

4.6.2

IndG×G
∆G (PR) −→ IndG×G

∆H (PR) −→
IndG×G

∆H
(τ)

IndG×G
∆H (PR[n]) −→ IndG×G

∆G (PR[n]),

where the first and last map are induced by the appropriate adjunction maps.
Using the explicit description in 2.6 of these adjunction maps shows that the two
chain maps defined in 4.6.1 and 4.6.2 coincide, which completes the proof.
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Proposition 4.7. Let G, H be finite groups and ϕ : H −→ G an injective group
homomorphism. The following diagram is commutative:

H∗(G,R)
resϕ

−−−−→ H∗(H,R)

δG





y





y

δH

HH∗(RG) −−−−→
t
ϕ(RG)

HH∗(RH)

Proof. We may assume that H is a subgroup of G and that ϕ is the inclusion. Then
4.7 follows from the explicit description of the adjunction maps corresponding to the
transfer associated with the bimodule H(RG) in 2.6.

Proposition 4.8. Let G be a finite group and H a subgroup of G.

(i) We have a natural isomorphism of functors ResG×G
G×HIndG×G

∆G
∼= IndG×H

∆H Res∆G
∆H

from Mod(R∆G) to Mod(R(G×H)).

(ii) For any nonnegative integer n and any chain map ζ ∈ HomC(RG)(PR,PR[n])
we have a commutative diagram of complexes of RG−RH−bimodules

IndG×G
∆G (PR) ⊗

RG
(RG)H

∼=
−−−−→ RG ⊗

RH
IndH×H

∆H (PR)

δG(ζ)⊗IdRG





y





y

IdRG⊗δH(ζ)

IndG×G
∆G (PR[n]) ⊗

RG
(RG)H −−−−→

∼=
RG ⊗

RH
IndH×H

∆H (PR[n])

(iii) We have Im(δG) ⊂ HH∗
(RG)H

(RG).

Proof. Statement (i) is a particular case of the Mackey formula. Through our con-
vention 1.2.1 of considering RG − RH−bimodules as R(G × H)−modules the left

column in the diagram of (ii) is obtained from applying the functor ResG×G
G×HInd

G×G
∆G

to the chain map ζ, and the right column is obtained from applying the functor
IndG×H

∆H Res∆G
∆H to ζ, thus (ii) follows from (i).

The horizontal isomorphisms in the commutative diagram in (ii) yield precisely the
homotopy equivalences of the diagram 3.1.1 applied to (RG)H instead of X, which
shows (iii).

5 The cohomology ring of a p−block of a finite group

In this section we fix a prime p and a complete discrete valuation ring O hav-
ing a residue field k = O/J(O) of characteristic p. We assume that either O has
characteristic zero or O = k. We adopt the following abuse of notation: if n, m
∈ Z such that n 6= 0 and vp(m) ≥ vp(n), where vp is the p−adic valuation, we set
m
n 1O = (m′1O)(n

′1O)
−1, where m′, n′ ∈ Z such that (n′, p) = 1 and m

n = m′

n′ .
Recall that a block of a finite group G is a primitive idempotent b in Z(OG), the

algebra OGb is called block algebra of b, and a defect group of b is a minimal subgroup
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P of G such that the map OGb ⊗
OP

OGb −→ OGb given by multiplication in OGb

splits as homomorphism of OGb − OGb−bimodules. We refer to [1], [17] , [18] for
recalls on pointed groups, fusion in block algebras and Brauer pairs. See [14, section
6] for a short review (and further references) on fusion which is pretty much adapted
to our needs in this section. A detailed account of the material on block theory we
use here can be found in Thévenaz’ book [23].

As mentioned in the introduction, the cohomology ring H∗(G,O) of G has three
algebraic characterizations: a “global” characterization as the ring Ext∗OG(O,O), a
“local” characterization as subring of stable elements in the cohomology ringH∗(P,O)
of a Sylow-p−subgroup P of G, and a characterization as a subring of “relatively
∆G−projective elements” of the Hochschild cohomology ring HH∗(OG) by 4.5. The
two latter characterizations have obvious generalizations to any p−block b of a finite
group G, replacing P by a defect group of b and the Hochschild cohomology of OG by
that of OGb. These two notions still coincide as we are going to show in this section,
while it is not clear at this stage, whether there is an analogous “global” description
of the cohomology ring of the block b, as there need not be an augmentation (not
even the source algebras of b need have an augmentation).

Definition 5.1 Let G be a finite group, b a block of G, Pγ a defect pointed group
of G{b}. Let i ∈ γ and denote for any subgroup Q of P by eQ the unique block of
kCG(Q) satisfying BrQ(i)eQ 6= 0. The cohomology ring of the block b of G associated
with Pγ is the subring

H∗(G, b, Pγ)

of H∗(P,O) which consists of all [ζ] ∈ H∗(P,O) satisfying resϕ([ζ]) = resPQ([ζ])
for any subgroup Q of P and any automorphism ϕ of Q induced by conjugation with
an element of NG(Q, eQ).

Since all defect pointed groups of G{b} are conjugate, the above ring is, up to
isomorphism, independent of the choice of Pγ , and we will write H∗(G, b) instead of
H∗(G, b, Pγ) if the choice of Pγ is obvious from the context.

Remarks 5.2

5.2.1 It follows from Alperin’s fusion lemma for Brauer pairs (cf. [23, (48.3)]) that
if an element [ζ] ∈ H∗(P,O) belongs to H∗(G, b, Pγ) then in fact resϕ([ζ]) = resPQ([ζ])
for any injective group homomorphism ϕ : Q −→ P induced by conjugation with an
element x ∈ G satisfying x(Q, eQ) ⊂ (P, eP ), or equivalently, ϕ̃ ∈ EG((Q, eQ), (P, eP ))
(cf. [18]). Alperin’s fusion lemma implies also that in order to check whether an
element [ζ] of H∗(P,O) belongs to H∗(G, b, Pγ) it suffices to check that resϕ([ζ]) =
resPQ([ζ]) for any Q ⊂ P such that (Q, eQ) is self-centralizing (that is, eQ has Z(Q)

as defect group) and for any automorphism ϕ of Q induced by conjugation with an
element of NG(Q, eQ).

5.2.2 If b0 is the principal block of G then for any subgroup Q of P the block eQ
is the principal block of kCG(Q), hence NG(Q, eQ) = NG(Q), and therefore, by [9,
Ch. XII, 10.1], we have

H∗(G, b, Pγ) ∼= H∗(G,O),
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the usual cohomology ring of G with coefficients in O.

5.2.3 If the defect group P of b is abelian, then the inertial quotient E =
NG(Pγ)/CG(P ) controls fusion (cf. [1] or [23, (49.6)]) and hence we have

H∗(G, b, Pγ) = H∗(P,O)E ∼= H∗(P ⋊ E,O).

5.2.4 The cohomology ring H∗(G, b, Pγ) is in fact an invariant of the source algebra
iOGi of b, where i ∈ γ. This is because if (Q, eQ) is self-centralizing, there is a
unique local point δ of Q on iOGi (cf. [23, (41.1)]) and by a theorem of Puig [18,
3.1], the group EG(Q, eQ) = NG(Q, eQ)/QCG(Q) viewed as subgroup of the outer
automorphism group of Q coincides with the group of iOGi−fusion FiOGi(Qδ) (see
[18] or the appendix of [14] for a brief account on these ideas). One might therefore as
well write H∗(iOGi) = H∗(G, b, Pγ) and call this the cohomology ring of iOGi. More
generally, we can define the cohomology ring of an interior P−algebra A over O to
be the subring of elements [ζ] in H∗(P,O) satisfying resPQ([ζ]) = resϕ([ζ]) whenever
Q is a subgroup of P and ϕ : Q −→ P an injective group homomorphism such that
the class of ϕ modulo inner automorphisms of P belongs to the set of A−fusion
FA(Q,P ) = ∪

γ,δ
FA(Qδ, Pγ), where γ and δ run over the sets of local points of P and

Q on A, respectively.

The next lemma provides the technicalities in order to establish a connection be-
tween stable elements in group cohomology in the sense of [9, Ch. XII, section 10]
and the stability notion developed in section 3.

Lemma 5.3. Let P be a finite group, Q a subgroup of P and ϕ : Q −→ P an
injective group homomorphism. Let n be a nonnegative integer and [ζ] ∈ Hn(P,O).
The following statements are equivalent.

(i) We have resϕ([ζ]) = resPQ([ζ]).

(ii) The diagram

POQ
ǫϕ

−−−−→ ϕ(POP )ϕ

δQ(ζ)





y





y

δP (ζ)

POQ[n] −−−−→
ǫϕ[n]

ϕ(POP [n])ϕ

is homotopy commutative, where ǫϕ is a chain map lifting the homomorphism of
OQ−OQ−bimodules OQ −→ ϕ(OP )ϕ sending u ∈ Q to ϕ(u).

(iii) The diagram

POP

ǫOP ⊗
OQ

ϕ(OP )

−−−−−−−−→ (OP )ϕ ⊗
OQ

POP ⊗
OQ

ϕ(OP )

δP (ζ)





y





y

Id(OP )ϕ⊗δP (ζ)⊗Id
ϕ(OP )

POP [n] −−−−−−−−−−→
ǫOP ⊗

OQ
ϕ(OP )[n]

(OP )ϕ ⊗
OQ

POP [n] ⊗
OQ

ϕ(OP )

is homotopy commutative.
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Moreover, if the above statements hold then tOP ⊗
OQ

ϕ(OP )(δP ([ζ])) = [P : Q]δP ([ζ]);

in particular, πOP ⊗
OQ

ϕ(OP ) = [P : Q]1OP .

Proof. Denote by PO a projective resolution of the trivial OP−module O. The equal-
ity resϕ([ζ]) = resPQ([ζ]) holds if and only if the diagram of complexes ofOQ−modules

5.3.1
resPQ(PO)

≃
−−−−→ resϕ(PO)

resPQ(ζ)





y





y

resϕ(ζ)

resPQ(PO[n]) −−−−→
≃

resϕ(PO[n])

is homotopy commutative, where the horizontal maps lift the identity on O viewed
as homomorphism of OQ−modules (this makes sense, since the complexes resPQ(PO)

and resϕ(PO) are both projective resolutions of the trivial OQ−module).

Apply now the induction functor IndQ×Q
∆Q to this diagram (where we consider an

OQ−module asO∆Q−module through the obvious isomorphism ∆Q ∼= Q); as for any

OP−module U there is a natural isomorphism IndQ×Q
∆Q (ϕU) ∼= ϕ(Ind

ϕ(Q)×ϕ(Q)
∆ϕ(Q) (U))ϕ

of OQ−OQ−bimodules mapping (y, y′)⊗u to (ϕ(y), ϕ(y′))⊗u, where x, x′ ∈ Q and
u ∈ U , we obtain a diagram

5.3.2

IndQ×Q
∆Q (PO) −−−−→ ϕ(Ind

ϕ(Q)×ϕ(Q)
∆ϕ(Q) (PO))ϕ

δQ(ζ)





y





y

δϕ(Q)(ζ)

IndQ×Q
∆Q (PO[n]) −−−−→ ϕ(Ind

ϕ(Q)×ϕ(Q)
∆ϕ(Q) (PO[n]))ϕ

(where we write PO instead of resPQ(PO) and resPϕ(Q)(PO)). Since the identity

functor on the category of O∆Q−modules is isomorphic to a direct summand of the

functor ResQ×Q
∆Q IndQ×Q

∆Q it follows that the diagram 5.3.2 is homotopy commutative
if and only 5.3.1 is so.

Now the functor taking an OP−module U to the OQ − OQ−bimodule

ϕ(Ind
ϕ(Q)×ϕ(Q)
∆ϕ(Q) (U))ϕ is isomorphic to a direct summand of the functor sending

U to ϕ(Ind
P×P
∆P (U))ϕ via the natural transformation sending (ϕ(y), ϕ(y′)) ⊗ u to

(ϕ(y), ϕ(y′)) ⊗ u , where y, y′ ∈ Q and u ∈ U (this is in fact a particular case of
Mackey’s formula). Composing 5.3.2 with this natural transformation yields there-
fore a diagram

5.3.3
IndQ×Q

∆Q (PO) −−−−→ ϕ(Ind
P×P
∆P (PO))ϕ

δQ(ζ)





y





y

δP (ζ)

IndQ×Q
∆Q (PO[n]) −−−−→ ϕ(Ind

P×P
∆P (PO[n]))ϕ

which is homotopy commutative if and only if 5.3.2 is so, since the horizontal
arrows identify the left column to a direct summand of the right column, up to
homotopy. Moreover, through the identification ϕ(OP ) ⊗

OP
IndP×P

∆P (PO) ⊗
OP

(OP )ϕ

∼= ϕ(Ind
P×P
∆P (PO))ϕ the horizontal maps are precisely the adjunction map ǫ(OP )ϕ
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and its shift by the degree n, since they lift the bimodule homomorphism OQ ∼=
IndQ×Q

∆Q (O) −→ ϕ(Ind
P×P
∆P (O))ϕ ∼= ϕ(OP )ϕ sending u ∈ Q to ϕ(u). This shows the

equivalence of (i) and (ii).

Observe in particular that this shows also that the diagram in (ii) is homotopy
commutative if we take for ϕ the inclusion homomorphism Q ⊂ P .

By 3.3.2 and 3.3.5, the diagram in statement (ii) is homotopy commutative if and
only if the diagram

5.3.4
POP −−−−→ (OP )ϕ ⊗

OQ
POQ ⊗

OQ
ϕ(OP )

δP (ζ)





y





y

Id⊗δQ(ζ)⊗Id

POP [n] −−−−→ (OP )ϕ ⊗
OQ

POQ[n] ⊗
OQ

ϕ(OP )

is homotopy commutative.
Consider now the diagram in (ii) with the inclusion Q ⊂ P instead of the homo-

morphism ϕ, tensor this diagram with (OP )ϕ ⊗
OQ

− ⊗
OQ

ϕ(OP ) and compose it with

the diagram 5.3.4 above; this yields the diagram of statement (iii) and hence the
equivalence of (ii) and (iii).

The last statement is a consequence of 2.11(ii), 4.6 and 4.7 together with the well-
known fact, that on ordinary group cohomology, restriction to a subgroup followed
by the transfer is just multiplication by the index of the subgroup.

Proposition 5.4. Let G be a finite group, b a block of G, Pγ a defect pointed group of
G{b} and let i ∈ γ. Consider iOGi as OP −OP−bimodule and let [ζ] ∈ H∗(G, b, Pγ).

(i) We have tiOGi(δP ([ζ])) = rkO(iOGi)
|P | δP ([ζ]); in particular, πiOGi =

rkO(iOGi)
|P | 1OP .

(ii) For any nonnegative integer n, the following diagram is homotopy commutative:

POP
ǫiOGi−−−−→ iOGi ⊗

OP
POP ⊗

OP
iOGi

δP (ζn)





y





y

Id⊗δP (ζn)⊗Id

POP [n] −−−−−→
ǫiOGi[n]

iOGi ⊗
OP

POP [n] ⊗
OP

iOGi

where ζn is the degree n component of ζ; in particular, δP ([ζ]) is iOGi−stable.

Proof. By [14, 6.6], any indecomposable direct summand of iOGi is isomorphic to
OP ⊗

OQ
ϕ(OP ) for some subgroup Q of P and some injective group homomorphism

ϕ : Q −→ P such that ϕ̃ ∈ EG((Q, eQ), (P, eP )) where the notation is as in 5.1. Thus
we have resϕ([ζ]) = resPQ([ζ]). Since rkO(OP ⊗

OQ
ϕ(OP )) = [P : Q]|P |, statement (i)

follows from the last statement in 5.3 and 2.11(ii), and statement (ii) is a consequence
of the equivalence of 5.3(i) and 5.3(ii) together with the additivity 2.7(i) of adjunction
maps.
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It is possible to make the adjunction maps associated with OGi and its dual iOG
explicit (we need this for the calculus of the relative projective elements):

Lemma 5.5. Let G be a finite group, b a block of G, Pγ a defect pointed group of G{b}

and let i ∈ γ. The isomorphism (OG)∗ ∼= OG mapping the canonical symmetrizing
form s to 1OG induces an isomorphism of OP − OGb−bimodules (OGi)∗ ∼= iOG
and multiplication in OGb induces an isomorphism iOG ⊗

OGb
OGi ∼= iOGi. With the

identifications through these isomorphisms, the adjunction maps associated with OGi
and iOG are given as follows:

ǫOGi : OP −→ iOGi maps u ∈ P to ui;
ηOGi : OGi ⊗

OP
iOG −→ OGb is induced by multiplication in OGb;

ǫiOG : OGb −→ OGi ⊗
OP

iOG maps a ∈ OGb to
∑

x∈[G/P ]

axi⊗ ix−1;

ηiOG : iOGi −→ OP maps c ∈ iOGi to
∑

u∈P

s(cu−1)u.

Moreover, we have πOGi = TrGP (i) and πiOG = s(i)1OP = rkO(iOG)
|G| 1OP .

Proof. The fact that the first two maps are as stated follows, for instance, from the
explicit description of adjunction maps in 6.6, and then the remaining two maps are
obtained by the duality 6.8 (or again from the explicit descriptions in 6.6).

It follows that πOGi = TrGP (i) and πiOG =
∑

u∈P

s(iu−1)u. In order to compute the

latter expression we may assume that O has characteristic zero; indeed this expression
is invariant under extensions, so we may assume that k is perfect, and then it suffices
to observe that k occurs as residue field of some complete discrete valuation ring (cf.
[21]). Then |G|s is equal to the regular character of OG; thus |G|s(iu−1) is the value
of the character of the projective OP−module iOG at the element u−1, thus equal
to rkO(iOG) if u = 1 and zero otherwise. The lemma follows.

The next theorem is now the announced embedding of H∗(G, b, Pγ) into
HH∗(OGb):

Theorem 5.6. Let G be a finite group, b a block of G, Pγ a defect pointed group of
G{b} and let i ∈ γ. Assume that (iOGi)(P ) is a split k−algebra. Consider OGi and
iOG as OGb−OP−bimodule and OP −OGb−bimodule, respectively.

(i) We have πOGi = TrGP (i) ∈ Z(OGb)× and πiOG = rkO(iOG)
|G| 1OP ∈ O×1OP .

(ii) If [ζ] ∈ H∗(G, b, Pγ) then δP ([ζ]) is iOG−stable in HH∗(OP ).

(iii) The map TOGi ◦ δP induces an injective O−algebra homomorphism

H∗(G, b, Pγ) −→ HH∗
OGi(OGb).

Proof. (i) It follows from the previous lemma that the relative projective elements
are as stated in (i). Since (iOGi)(P ) is split we may apply [16, Prop. 1] (see also [22,
9.3]), which shows that πOGi is invertible. In order to show that πiOG is invertible,
we may assume that O = k. Then ker(BrP ) ⊂ ker(s), where s is the canonical
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symmetrizing form on kG, and therefore s(i) = s(BrP (i)). Now BrP (i) is a primitive
idempotent in kCG(P ), and applying the last statement of 5.5 to BrP (i) instead of i

shows that s(BrP (i)) =
dimk(BrP (i)kCG(P ))

|CG(P )| . This last expression is non zero in k, since

BrP (i)kCG(P ) is, up to isomorphism, the unique projective indecomposable module
of the nilpotent block eP of kCG(P ) (cf. [7]), which is split by the assumptions.

(ii) Since iOGi ∼= iOG ⊗
OGb

OGi and πOGi is invertible, we can apply 3.8 to A = C =

OP , B = OGb, X = iOG and Y = OGi. Then 5.4(ii) implies that δP (H
∗(G, b, Pγ))

⊂ HH∗
iOGi(OP ) ⊂ HH∗

iOG(OP ).
(iii) follows from (ii) together with 3.6.

The last theorem of this section is a generalization of the well-known fact that if
a subgroup of a finite group controls p−fusion, then the restriction to this subgroup
induces an isomorphism on mod− p cohomology.

Theorem 5.7. Let G, H be finite groups, b, c blocks of G, H, respectively, having a
common defect group P , let γ and δ be local points of P on OGb and OHc, respectively,
and let i ∈ γ and j ∈ δ. For any subgroup Q of P , denote by eQ and fQ the
unique blocks of kCG(Q) and kCH(Q), respectively, satisfying BrGQ(i)eQ 6= 0 and

BrHQ (j)fQ 6= 0.
Let X be a bounded complex of OGb−OHc−bimodules whose components are direct

sums of direct summands of the bimodules OGi ⊗
OQ

jOH, with Q running over the set

of subgroups of P and set Y = iXj, considered as complex of OP −OP−bimodules.

(i) We have πY = πY ∗ =
∑

n∈Z

(−1)n rkO(Yn)
|P | 1OP .

(ii) We have tY (δP (H
∗(P,O))) ⊂ δP (H

∗(P,O)).

If moreover EG((Q, eQ), (P, eP )) ⊂ EH((Q, fQ), (P, fP )) for any subgroup Q of P ,
then the following hold:

(iii) We have H∗(H, c, Pδ) ⊂ H∗(G, b, Pγ) and δP (H
∗(H, c, Pδ)) ⊂ HH∗

Y (OP ) ∩
HH∗

Y ∗(OP ).

(iv) We have tY (δP ([ζ])) = πY δP ([ζ]) for any [ζ] ∈ H∗(H, c, Pδ); in particular, if
πY is invertible then TY restricts to the identity on H∗(H, c, Pδ) through δP .

Proof. By the hypotheses on the components of X, for any integer n, any inde-
composable direct summand W of Yn or Y ∗

n is of the form OP ⊗
OQ

ϕ(OP ) for some

subgroup Q of P and some injective group homomorphism ϕ : Q −→ P , thus (i)
follows from the last statement in 5.3 and 2.11(iii). Moreover, by 4.6 and 4.7 we have
tW (δP ([ζ])) = δP (t

P
Qresϕ[ζ]) for any [ζ] ∈ H∗(P,O) which implies (ii).

If EG((Q, eQ), (P, eP )) ⊂ EH((Q, fQ), (P, fP )) for any subgroup Q of P , then
H∗(H, c, Pδ) ⊂ H∗(G, b, Pγ) by the definition 5.1. Also, with W and ϕ as before,
we have now ϕ̃ ∈ EH((Q, fQ), (P, fP )). This shows (iv), using again the last state-
ment of 5.3. By matching together the diagrams that we get from 5.3(iii) we obtain
(iii).

Remark 5.8 With the notation and hypotheses of 5.7, if EG((Q, eQ), (P, eP )) =
EH((Q, fQ), (P, fP )) for any subgroup Q in P then H∗(G, b, Pγ) = H∗(H, c, Pδ). One
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might wonder if the converse of this statement holds. If the blocks b and c are the
principal blocks of G and H, respectively, this is true by Mislin’s theorem [15]. It is
also true if the defect group P of b and c is abelian, since this case reduces to Mislin’s
theorem [15] by 5.2.3. We expect the general case to hold via the following outline of
an idea of proof: the OP −OP−bimodule iOGi is a permutation O(P ×P )−module,
hence defines up to isomorphism a unique P −P−biset on which P acts regularly on
each side. Such a biset can be interpreted as an endomorphism of the classifying space
BP viewed as object of the appropriate category of spectra, and the image of this
endomorphism is then defined to be the “classifying space” B(iOGi) of the source
algebra iOGi. Using results and methods from Benson and Feshbach [3], if b is the
principal block of G, we obtain the usual classifying space of G. Next, we expect the
cohomology of B(iOGi) to be the cohomology ring of b (possibly after some suitable
p−completion), and then we have all ingredients to try to imitate Mislin’s proof in
this more general situation.

6 Appendix: Symmetric algebras and adjunction maps

We collect here, without proofs, some general abstract nonsense on symmetric
algebras and adjunction maps that we use in this paper. Much of this material can
be found in [5].

We fix a commutative ring R. Let A, B, C be R−algebras, let M , M ′ be A −
B−bimodules and N a B − C−bimodule.

6.1. There is a natural isomorphism of bifunctors

HomA⊗1(M ⊗
B
−,−) ∼= HomB⊗1(−, HomA⊗1(M,−))

given by the isomorphisms

{

HomA⊗1(M ⊗
B
V, U) → HomB⊗1(V,HomA⊗1(M,U))

ϕ 7→ (v 7→ (m 7→ ϕ(m⊗ v)))

for any A−module U and B−module V .

In other words, the functor HomA⊗1(M,−) has M ⊗
B
− as left adjoint. The unit

and counit of this adjunction are represented by the bimodule homomorphisms

{

B → HomA⊗1(M,M)

b 7→ (m 7→ mb)

and

{

M ⊗
B
HomA⊗1(M,A) → A

m⊗ β 7→ β(m)
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6.2. If M is projective as left A−module, there is a natural isomorphism of functors

HomA⊗1(M,A)⊗
A
− ∼= HomA⊗1(M,−)

given by the isomorphisms

{

HomA⊗1(M,A)⊗
A
U → HomA⊗1(M,U)

ϕ⊗ u 7→ (m 7→ ϕ(m)u)

for any A−module U .

Applying this statement to U = M shows that we have in particular an isomor-
phism of B −B−bimodules

HomA⊗1(M,A)⊗
A
M ∼= HomA⊗1(M,M).

6.3 We assume from now on that A is symmetric; that is, A is projective as
R−module and there is an isomorphism of A − A−bimodules Φ : A −→ A∗ =
HomR(A,R).

Then s = Φ(1A) is a symmetrizing form on A; that is, s(aa′) = s(a′a) for all
a, a′ ∈ A, and the map sending a ∈ A to a.s ∈ A∗ defined by a.s(a′) = s(aa′) for all
a′ ∈ A is an isomorphism of A−A−bimodules (and this is then in fact equal to Φ, so
fixing a bimodule isomorphism A ∼= A∗ is equivalent to choosing a symmetrizing form
on A). If s′ is another symmetrizing form on A there is a unique invertible element
z ∈ Z(A)× such that s′ = z.s, since every automorphism of A as A−A−bimodule is
given by multiplication with an invertible element of Z(A). Since A is projective as
R−module we have a natural isomorphism A∗ ⊗ A∗ ∼= (A ⊗ A)∗. Consider then the
composition of A−A−bimodule homomorphisms

6.3.1

A ∼= A∗ −→
µ∗

(A⊗A)∗ ∼= A⊗A

where µ∗ is the R−dual of the bimodule homomorphism µ : A⊗A −→ A given by
multiplication in A; write then the image of 1A in A⊗A under the map 6.3.1 as sum

6.3.2
∑

x∈X

x⊗ x′

where X is a finite subset of A and x′ ∈ A for any x ∈ X. Then we have

6.3.3
∑

x∈X

s(x′a)x = a

for all a ∈ A. The inverse map of Φ maps ϕ ∈ A∗ to
∑

x∈X

ϕ(x′)x.

If A is R−free, then X can be chosen to be an R−basis of A and the set X′ =
{x′}x∈X is the dual basis with respect to s (i.e, we have s(xx′) = 1 and s(yx′) = 0 for
all x, y ∈ X such that x 6= y.
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6.4. There is a natural equivalence of functors

HomA⊗1(−, A) ∼= HomR(−, R)

from Mod(A) to Mod(A0) given for any A−module U by the isomorphism

{

HomA⊗1(U,A) → HomR(U,R) = U∗

ϕ 7→ s ◦ ϕ

whose inverse sends τ ∈ U∗ to the map sending u ∈ U to
∑

x∈X

τ(x′u)x.

In particular, we have an isomorphism of B −A−modules

{

HomA⊗1(M,A) ∼=M∗

ϕ 7→ s ◦ ϕ

6.5 If moreover M is projective as left A−module we can combine 6.2 and 6.4 to
obtain a natural equivalence of functors

HomA⊗1(M,−) ∼=M∗ ⊗
A
−

from Mod(A) to Mod(B). Note that in particular HomA⊗1(M,M) ∼=M∗ ⊗
A
M as

B−B−bimodules, and that the image of IdM inM∗⊗
A
M under this isomorphism is of

the form
∑

m∈M
s◦ϕm⊗m, where M is a finite subset of M and ϕm ∈ HomA⊗1(M,A)

for any m ∈M satisfying
∑

m∈M
ϕm(m′)m = m′ for all m′ ∈M .

Furthermore, the above equivalence of functors means that M∗ ⊗
A

− is a right

adjoint to M ⊗
B
−. Since M∗∗ ∼= M it follows that if B is symmetric, too, and M

projective as right B−module, M ⊗
B
− is also a right adjoint to M∗ ⊗

A
−. Using the

above isomorphisms we can make the corresponding adjunction maps explicit:

6.6 We assume from now on that both A and B are symmetric with symmetrizing
forms s ∈ A∗ and t ∈ B∗, and that M is projective as left A−module and as right
B−module. Denote by X, X′ finite subsets of A as in 6.3 and by Y, Y′ corresponding
finite subsets of B with respect to the symmetrizing form t on B.

6.6.1. There is a natural isomorphism of bifunctors

HomA⊗1(M ⊗
B
−,−) ∼= HomB⊗1(−,M

∗ ⊗
A
−)

whose unit and counit are represented by the bimodule homomorphisms

ǫM : B −→M∗ ⊗
A
M

mapping b ∈ B to
∑

m∈M
(s ◦ ϕm)⊗mb, where M is a finite subset of M and ϕm ∈

HomA⊗1(M,A) for each m ∈ M satisfying
∑

m∈M
ϕm(m′)m = m′ for all m′ ∈M , and

ηM :M ⊗
B
M∗ −→ A

mapping m⊗m∗ to
∑

x∈X

m∗(x′m)x.
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6.6.2. There is a natural isomorphism of bifunctors

HomB⊗1(M
∗ ⊗

A
−,−) ∼= HomA⊗1(−,M ⊗

B
−)

whose unit and counit are represented by the bimodule homomorphisms

ǫM∗ : A −→M ⊗
B
M∗

mapping a ∈ A to
∑

n∈N
an ⊗ (t ◦ ψn), where N is a finite subset of M and ψn ∈

Hom1⊗B(M,B) for any n ∈ N satisfying
∑

n∈N
nψn(m

′) = m′ for all m′ ∈M , and

ηM∗ :M∗ ⊗
A
M −→ B

mapping m∗ ⊗m to
∑

y∈Y

m∗(my′)y.

6.7 If N is projective as left B−module there is an isomorphism of C −
A−bimodules

(M ⊗
B
N)∗ ∼= N∗ ⊗

B
M∗

given by the sequence of isomorphisms (M ⊗
B
N)∗ = HomR(M ⊗

B
N,R) ∼=

HomB⊗1(N,HomR(M,R)) = HomB⊗1(N,M
∗) ∼= N∗ ⊗

B
M∗, where we use the ad-

junction 6.1 with R instead of A and 6.5 in the last isomorphism. Note that we did
use that B is symmetric, while we did not use that A is so.

6.8 The adjunction maps in 6.6 are dual to each other in the sense that the following
diagrams are commutative:

A
ǫM∗

−−−−→ M ⊗
B
M∗





y





y

A∗ −−−−→
(ηM )∗

(M ⊗
B
M∗)∗

M∗ ⊗
A
M

ηM∗

−−−−→ B




y





y

(M∗ ⊗
A
M)∗ −−−−→

(ǫM )∗
B∗

where the vertical isomorphisms are given by the symmetrizing forms on A, B and
appropriate versions of 6.7.

6.9 Suppose now that all A, B, C are symmetric and that M , N are projective as
left and right modules. We have commutative diagrams
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C

ǫM⊗
B

N

//

IdC

��

(M ⊗
B
N)∗ ⊗

A
(M ⊗

B
N)

∼=

��

C ǫN
// N∗ ⊗

B
N ∼= N∗ ⊗

B
B ⊗

B
N

IdN∗⊗ǫM⊗IdN

// N∗ ⊗
B
(M∗ ⊗

A
M)⊗

B
N ,

where the vertical isomorphism on the right is obtained from 6.7, and

(M ⊗
B
N)⊗

C
(M ⊗

B
N)∗

ηM⊗
B

N

//

∼=

��

A

IdA

��
M ⊗

B
(N ⊗

C
N∗)⊗

B
M

IdM⊗ηN⊗IdM∗

// M ⊗
B
B ⊗

B
M∗ ∼=M ⊗

B
M∗

ηM

// A ,

where the vertical isomorphism on the left is again obtained from 6.7.

6.10 The above discussion extends to complexes: if X is a bounded complex of
A − B−bimodules whose components are projective as left and right modules, the
adjunction in 6.1 extends to an adjunction

HomC(A)(X ⊗
B
−,−) ∼= HomC(B)(−, HomA⊗1(X,−))

as follows: if U is a complex of A−modules and V a complex of B−modules, for
any integers i, n ∈ Z, we match together the adjunction maps

HomA⊗1(Xi ⊗
B
Vn−i, Un) ∼= HomB⊗1(Vn−i, HomA⊗1(Xi, Un))

multiplied by the sign (−1)i(n−i) (this sign reflects the fact, that in the isomor-
phism just above, the left side belongs to the degree n component of the considered
complexes, while the right side to degree n− i).

We obtain again a natural isomorphism of functors

HomA⊗1(X,−) ∼= X∗ ⊗
A
−

and hence X ⊗
B
− and X∗ ⊗

A
− are adjoint functors between C(A) and C(B). The

signs in the above adjunction show that 2.7(iii) holds. Also, for any further bounded
complexes Y of A−C−bimodules and Z of B−C−bimodules whose components are
projective as left and right modules, we have again isomorphisms
HomA⊗1(X,Y ) ∼= X∗ ⊗

A
Y as complexes of B − C−bimodules and

(X ⊗
B
Z)∗ ∼= Z∗ ⊗

B
X∗ as complexes of C −A−bimodules.
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