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VERTEX AND SOURCE DETERMINE THE BLOCK

VARIETY OF AN INDECOMPOSABLE MODULE

David J. Benson and Markus Linckelmann

Abstract. The block variety VG,b(M) of a finitely generated indecomposable mod-

ule M over the block algebra of a p-block b of a finite group G, introduced in [15],
can be computed in terms of a vertex and a source of M . We use this to show that

VG,b(M) is connected, and that every closed homogeneous subvariety of the affine
variety VG,b defined by block cohomology H∗(G, b) (cf. [14]) is the variety of a mod-

ule over the block algebra. This is analogous to the corresponding statements on

Carlson’s cohomology varieties in [8].

1. Introduction

The theory of the cohomology variety VG(M) for a finitely generated module M

over the modular group algebra of a finite group G was developed by Carlson [6], [7],
[8] and others back in the nineteen eighties. It has played a major role in recent years
in the modular representation theory of finite groups. One of the problems with the
theory has been that it has been much more fruitful as a way of proving theorems
about the principal block than about more general blocks.

To address this problem, the second author [15] recently introduced the concept
of the block variety VG,b(M) of a finitely generated module M for a block b of a
finite group G. The definition of the ambient variety VG,b involves a variation of the
Cartan–Eilenberg stable element method in ordinary cohomology for the Brauer pairs
in the block. But the definition of VG,b(M) involves going through the Hochschild co-
homology of the block as an intermediate step. In [17], the dependence on Hochschild
cohomology for the calculation of block varieties is removed. It is shown in that paper
that the block variety of M is the image in VG,b of the variety at the level of the defect
group. But first, the module must be cut down using the idempotent for the source
algebra of the block, in the sense of Puig. An example is given there, to show that
this step is really necessary.

In this paper, we describe how to calculate the block variety of a module in terms
of the vertex and source of the module. We show that it is given as the image in
VG,b of the variety of the source of M as a module for the vertex. Actually, there is
a subtlety here: the vertex and source are only well defined up to G-conjugacy, and
we must be careful how we choose a P -conjugacy class.

Taken together with the stratification theorem for VG,b [17] and Carlson’s theory of
rank varieties, our theorem implies that VG,b(M) can be calculated without knowing
anything about cohomology, just as was the case for VG(M).

Our theorem enables us to prove some basic properties for VG,b(M), including
the analog of Carlson’s theorem [8] that the variety of an indecomposable module is
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connected. We also show that every closed homogeneous subvariety of VG,b can be
realised as VG,b(N) for a suitably chosen module N . Finally, we show that the block
variety of a module survives the Green correspondence with respect to a subgroup
which controls fusion of Brauer pairs in the block.

Throughout this paper, k is an algebraically closed field of prime characteristic p.
Let G be a finite group. A block of G is a primitive idempotent b in Z(kG). Following
Alperin–Broué [1], a b-Brauer pair is a pair (Q, e) consisting of a p-subgroup Q of
G and a block e of CG(Q) such that BrQ(b)e = e, where BrQ : (kG)Q → CG(Q) is
the Brauer homomorphism [4]. It is shown in [1], that the set of b-Brauer pairs is a
partially ordered G-set such that G acts transitively on the set of maximal b-Brauer
pairs. If (P, e) is a maximal b-Brauer pair, then P is called a defect group of b (this
notion is due to Brauer, although he did not state it in these terms). If P is a defect
group of b, then P is maximal with respect to BrP (b) 6= 0; in particular, there is a
primitive idempotent i ∈ (kGb)P such that BrP (i) 6= 0. Such an idempotent is called
a source idempotent of b (with respect to P ). By Broué–Puig [5, Theorem 1.8], for
any subgroup Q of P , there is a unique block eQ of CG(Q) such that BrQ(i)eQ 6= 0.
Then (Q, eQ) is a b-Brauer pair, and eQ is also the unique block of CG(Q) such that
(Q, eQ) ⊆ (P, eP ).

We denote by FG,b the category whose objects are the subgroups of P , and whose
morphisms are the sets of group homomorphisms ϕ : Q → R for which there exists
an element x ∈ G satisfying x(Q, eQ) ⊆ (R, eR) and ϕ(u) = xux−1 for all u ∈ Q. The
block cohomology, introduced in [14], is defined by

H∗(G, b) = lim
←−

Q∈FG,b

H∗(Q, k) .

We identify H∗(G, b) with the graded subalgebra of all “stable elements” ζ ∈ H∗(P, k)
satisfying resP

R(ζ) = resϕ(ζ) for any morphism ϕ : R → P belonging to the category
FG,b.

The algebra H∗(G, b) is finitely generated graded commutative, and we denote by
VG,b the associated affine variety, called the block variety of b (cf. [15]). Following
[15], for any finitely generated kGb-module M , there is a canonical graded algebra
homomorphism H∗(G, b) → Ext∗kGb(M, M), defined using Hochschild cohomology of
the block, whose kernel detemines the subvariety VG,b(M) of VG,b. If b is the principal
block, then H∗(G, b) ∼= H∗(G, k), and we write then VG and VG(M) instead of VG,b

and VG,b(M), respectively (that is, in the principal block case, the block varieties
coincide with Carlson’s cohomology varieties, introduced in [6], [7]).

For any subgroup Q of P , the inclusion H∗(G, b) ⊆ H∗(P, k) followed by the
restriction resP

Q : H∗(P, k) → H∗(Q, k) is a graded algebra homomorphism, denoted

by rQ : H∗(G, b) → H∗(Q, k). We denote by r∗Q : VQ → VG,b the induced map

on varieties. We refer to Benson [3] and Evens [10] for background material on
cohomology varieties of modules and Thévenaz [20] for block theory.
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Theorem 1.1. Let G be a finite group, let b be a block of G, let P be a defect group

of b, and let i ∈ (kGb)P be a source idempotent. Let M be an indecomposable kGb-

module. There is a vertex Q of M contained in P and a source U of M such that U is

a direct summand of ResP
Q(iM) and such that M is isomorphic to a direct summand

of kGi ⊗
kQ

U . For any such choice of a vertex and source of M we have

VG,b(M) = r∗Q(VQ(U)).

The proof of Theorem 1.1 will be given in Section 3.

Corollary 1.2. For a finitely generated indecomposable kGb-module M , the variety

VG,b(M) is connected.

Proof. The variety VQ(U) is connected by Carlson’s theorem [8], and hence so is its
image under the map r∗Q, which is VG,b(M) by Theorem 1.1. �

Corollary 1.3. Every closed homogeneous subvariety V of VG,b is of the form

VG,b(N) for some finitely generated kGb-module N .

Proof. The inverse image in VP of V under the map r∗P : VP → VG,b is a closed
homogeneous subvariety of VP ; thus, by Carlson [8], there is a finitely generated kP -
module U such that r∗P (VP (U)) = V . Using Green’s indecomposability theorem, we

may write U =
⊕

j∈J IndP
Qj

(Uj), where J is a finite indexing set, and where for any
j ∈ J , Qj is a subgroup of P and Uj is an indecomposable kQj-module having Qj as
vertex. When viewed as kQj-kQj-bimodule, ikGi has a direct summand isomorphic
to kQj , where j ∈ J (see e.g. [16, 6.1(iii)]). Thus for any j ∈ J the left kGb-module
kGi ⊗

kQj

Uj has an indecomposable direct summand Mj such that the restriction of

iMj to kQj has Uj as direct summand. Note that the kGb-module kGi ⊗
kQj

Uj is a

direct summand of kG ⊗
kQj

Uj = IndG
Qj

(Uj). Thus Mj has Qj as vertex and Uj as

source, and VG,b(Mj) = r∗Qj
(VQj

(Uj)) = r∗P (VP (IndP
Qj

(Uj))) by Lemma 2.2 below.

Thus N =
⊕

j∈J Mj satisfies VG,b(N) = V . �

The next corollary states that the block variety of a module survives the Green
correspondence with respect to a subgroup which controls fusion of Brauer pairs.

Corollary 1.4. Suppose the vertex Q of M is normal P . Set H = NG(Q) and denote

by c the unique block of H such that eQc = eQ. If FG,b = FH,c then VG,b(M) =
VH,c(f(M)), where f(M) is the Green correspondent of M .

Proof. Since Q is normal in P , the pair (P, eP ) is also a maximal c-Brauer pair.
The condition FG,b = FH,c implies the equality H∗(G, b) = H∗(H, c) as graded
subalgebras of H∗(P, k). It is well known that the Green correspondent f(M) of M

belongs to the block c of H. Since every vertex and source of f(M) is also a vertex
and source of M , the statement follows from Theorem 1.1. �
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Note that if Q = P is abelian, we have FG,b = FH,c, because in blocks with
abelian defect groups, the normaliser of a defect group controls fusion (cf. Alperin–
Broué [1]). Hence Corollary 1.4 applies in that situation. This particular case of 1.4
has independently been proved by H. Kawai [12], who also observed [17, 2.1] (cf. 2.3
below).

2. Auxiliary results

Lemma 2.1. Let G be a finite group, let H be a subgroup of G and let M be a finitely

generated kG-module. We have (resG
H)∗(VH(resG

H(M))) ⊆ VG(M).

Proof. Let ζ ∈ H∗(G, k) such that ζ ⊗ IdM is zero in Ext∗kG(M, M). Then resG
H(ζ)⊗

IdM is zero in Ext∗kH(ResG
H(M), ResG

H(M)). Thus the annihilator of Ext∗kG(M, M) in
H∗(G, k) is contained in the inverse image in H∗(G, k) of the annihilator in H∗(H, k)

of Ext∗kH(ResG
H(M), ResG

H(M)). Passing to varieties yields the statement. �

Lemma 2.2. Let G be a finite group, let H be a subgroup of G, and let N be a finitely

generated kH-module. We have

(resG
H)∗(VH(N)) = VG(IndG

H(N)).

Proof. This is a standard property of varieties for modules, and can be found for
example in Evens [10], Proposition 8.2.4 or Benson [2], Theorem 2.26.9. �

Theorem 2.3. Let G be a finite group, b a block of kG, P a defect group of b and i a

source idempotent of b in (kGb)P . The inclusion rP : H∗(G, b) → H∗(P, k) induces a

finite surjective morphism r∗P : VP → VG,b, and for any finitely generated kGb-module

M we have VG,b(M) = r∗P (VP (iM)) , where iM is considered as kP -module.

Proof. See Linckelmann [17], Theorem 2.1 or Kawai [12]. �

It has been shown by Puig [19] that one can recover the category FG,b from the kP -
kP -bimodule structure of the source algebra ikGi of a block b (see also Linckelmann
[16, 7.7] for a proof). For any two subgroups Q, R of P and any group homomorphism
ϕ : R → Q we denote by ϕkQ the kR-kQ-bimodule kQ endowed with the regular
action of kQ on the right and the action of kR on the left obtained from restricting
the regular action of kQ to kR via ϕ.

Proposition 2.4. Let G be a finite group, let b be a block of G, let P be a defect

group of b and let i ∈ (kGb)P be a source idempotent. Let Q be a subgroup of P .

Every indecomposable direct summand of the source algebra ikGi as kP -kQ-bimodule

is isomorphic to kP ⊗
kR

ϕkQ for some subgroup R of P and some morphism ϕ : R → Q

in FG,b.

Finally, we need the following statement from Linckelmann [13], which is about
a certain choice of vertices and sources of indecomposable modules (implying that
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vertices and sources of indecomposable modules can be detected at the source algebra
level).

Proposition 2.5. Let G be a finite group, let b be a block of G, let P be a defect

group of b and let i ∈ (kGb)P be a source idempotent of b. Any indecomposable kGb-

module M has a vertex Q contained in P and a kQ-source U such that U is a direct

summand of ResP
Q(iM) and M is a direct summand of kGi ⊗

kQ
U .

Proof. See 6.3 of Linckelmann [13]. �

3. Proof of Theorem 1.1

By Proposition 2.5 above there is a vertex Q of M and a kQ-source U of M such
that U is a direct summand of ResP

Q(iM) and such that M is a direct summand of
kGi ⊗

kQ
U . By Proposition 2.4, we can write

ikGi ∼=
⊕

(R,ϕ)

kP ⊗
kR

ϕkQ ,

where (R, ϕ) runs over a family of pairs consisting of a subgroup R of P and a
morphism ϕ : R → Q belonging to the category FG,b.

Then iM is, as kP -module, a direct summand of

ikGi ⊗
kQ

U =
⊕

(R,ϕ)

IndP
R(ϕU) ,

where (R, ϕ) is as before. Thus

VP (iM) ⊆ VP (ikGi ⊗
kQ

U) =
⋃

(R,ϕ)

VP (IndP
R(ϕU)) .

By Lemma 2.2, we have VP (IndP
R(ϕU)) = (resP

R)∗(VR(ϕU)), for any (R, ϕ) as above.
Using Theorem 2.3 we get

VG,b(M) = r∗P (VP (iM)) ⊆
⊕

(R,ϕ)

r∗R(VR(ϕU)) .

For any (R, ϕ) occurring in this union, we have r∗R(VR(ϕU)) = r∗ϕ(R)(ResQ

ϕ(R)(U)) ⊆

r∗Q(VQ(U)), where the first equality uses the stability of the elements in H∗(G, b) with
respect to morphisms in FG,b, and where the second inclusion follows from Lemma
2.1. Together, we get VG,b(M) ⊆ r∗Q(VQ(U)). The other inclusion follows trivially
from the fact that U is a direct summand of iM as kQ-module. �
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4. A question

A theorem of Hida [11] gives a converse to Carlson’s connectedness theorem. It
states that given a connected closed homogeneous subvariety V of VG, there exists
an indecomposable finitely generated kG-module N such that VG(N) = V . An ob-
vious question is whether the corresponding statement holds for a connected closed
homogeneous subvariety V of the block variety VG,b. One might try to prove this
statement by the method used to prove Corollary 1.3. The problem is that it is not
at all clear whether there is a connected closed homogeneous subvariety of VP whose
image in VG,b is equal to V . An easy modification of the proof of Corollary 1.3 shows
that if V is the image of such a subvariety of VP then there exists a finitely generated
indecomposable kGb-module N such that VG,b(N) = V .
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