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SIMPLE FUSION SYSTEMS AND

THE SOLOMON 2-LOCAL GROUPS

Markus Linckelmann

Abstract. We introduce a notion of simple fusion systems which imitates the cor-
responding notion for finite groups and show that the fusion system on the Sylow-2-

subgroup of a 7-dimensional spinor group over a field of characteristic 3 considered by
Ron Solomon [18] and by Ran Levi and Bob Oliver [11] is simple in this sense.

Introduction

The bigger picture which motivates the content of the present paper is the intuition,
formulated by D. J. Benson in [3], that associated with each fusion system on a finite
p-group in the sense of Puig [15] there should be a p-complete topological space which
generalises the concept of a classifying space of a finite group. Broto, Levi and Oliver
developed in [4] a theory describing how such a space should look, leading to the notion
of a p-local finite group, and they gave in particular a cohomological criterion for the
existence and uniqueness of p-local finite groups. Using this criterion, Levi and Oliver
showed in [11] that there is up to homotopy equivalence a unique 2-local group associ-
ated with Solomon’s fusion system and they showed further that this coincides indeed
with the space constructed earlier by Benson in [3]. Put in these terms, Solomon’s
fusion system provides an example of a simple 2-local finite group which is not the 2-
complete classifying space of any finite group by [18]. In fact, Solomon’s fusion system
cannot even be the fusion system of any 2-block of a finite group by [9]. Besides the
obvious question - can one classify simple fusion systems? - one might wonder, whether
the problem of the existence and uniqueness of a p-local finite group associated with
any fusion system can be reduced to simple fusion systems.

Section 1 contains a brief account of Puig’s abstract notion of a fusion system and we
recall in Section 2 how fusion systems occur in block theory. The following two sections
introduce our notions of normal and simple fusion systems. Sections 5, 6, 7 contain
simplicity results for fusion systems on dihedral 2-groups, fusion systems related to
orthogonal groups and the Solomon’s fusion system, respectively. Throughout this
paper, p denotes a prime.
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2 MARKUS LINCKELMANN

1 Background material on fusion systems

We recall basic material on Puig’s axiomatisation of the local structure of blocks [15].
If P , Q, R are subgroups of a finite group G, we denote by HomP (Q,R) the set of group
homomorphisms ϕ : Q → R for which there is y ∈ P satisfying ϕ(u) = yuy−1 for all
u ∈ Q; we write AutP (Q) = HomP (Q,Q). Thus AutP (Q) is canonically isomorphic to
NP (Q)/CP (Q); in particular AutQ(Q) ∼= Q/Z(Q) is the group of inner automorphisms
of Q.

Definition 1.1. A category on a finite p-group P is a category F whose objects are the
subgroups of P and whose morphism sets HomF (Q,R) consist, for any two subgroups
Q, R of P , of injective group homomorphisms with the following properties:

(i) if Q is contained in R then the inclusion Q ⊆ R is a morphism in F ;

(ii) for any ϕ ∈ HomF (Q,R), the induced isomorphism Q ∼= ϕ(Q) and its inverse are
morphisms in F ;

(iii) composition of morphisms in F is the usual composition of group homomorphisms.

Definition 1.2. Let F be a category on a finite p-group P . A subgroup Q of P
is called fully F-centralised if |CP (R)| ≤ |CP (Q)| for any subgroup R of P such that
R ∼= Q in F , and Q is called fully F-normalised if |NP (R)| ≤ |NP (Q)| for any subgroup
R of P such that R ∼= Q in F .

The following definition is due to Broto, Levi and Oliver [4].

Definition 1.3. Let F be a category on a finite p-group P , and let Q be a subgroup
of P . For any morphism ϕ : Q → P in F , we set Nϕ = {y ∈ NP (Q)| there is z ∈
NP (ϕ(Q)) such that ϕ(yu) = zϕ(u)for all u ∈ Q}.

In other words, Nϕ is the inverse image in NP (Q) of the group AutP (Q) ∩ (ϕ−1 ◦
AutP (ϕ(Q)) ◦ ϕ). Note that in particular QCP (Q) ⊆ Nϕ ⊆ NP (Q). Broto, Levi
and Oliver use the groups Nϕ in [4] to give a definition of fusion systems (called
saturated fusion systems in [4]) which is equivalent to Puig’s original definition (called
full Frobenius systems there), which in turn has been simplified by Stancu [20]; we
present here Stancu’s version:

Definition 1.4. A fusion system on a finite p-group P is a category F on P such
that HomP (Q,R) ⊆ HomF (Q,R) for any two subgroups Q, R of P , and such that the
following two properties hold:

(I-S) AutP (P ) is a Sylow-p-subgroup of AutF (P ).

(II-S) every morphism ϕ : Q → P in F such that ϕ(Q) is fully F -normalised extends
to a morphism ψ : Nϕ → P (that is, ψ|Q = ϕ).

The “extension axiom” (II-S) relates the role of Nϕ as object of F to its image
Nϕ/Q in AutF (Q). We show in the following three Propositions that definition 1.4 is
equivalent to the definition given in [4, 1.2] which uses the a priori stronger axioms
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(I-BLO) if Q is a fully F -normalised subgroup of P then Q is fully F -centralised and
AutP (Q) is a Sylow-p-subgroup of AutF (Q);

(II-BLO) given any subgroup Q of P , every morphism ϕ : Q → P such that ϕ(Q) is
fully F -centralised extends to a morphism ψ : Nϕ → P in F (that is, ψ|Q = ϕ).

The Propositions 1.5 and 1.6 show that the axioms in 1.4 imply the “Sylow axiom”
(I-BLO).

Proposition 1.5. ([20]) Let F be a fusion system on a finite p-group P and let Q be
a subgroup of P . If Q is fully F-normalised then Q is fully F-centralised.

Proof. Let ϕ : R → Q be an isomorphism in F . Assume that Q is fully F -normalised
and that R is fully F -centralised. By (II-S) in 1.4 there is a morphism ψ : RCP (R) →
P in F such that ψ|R = ϕ. Hence ψ maps CP (R) to CP (Q), which implies that
|CP (R)| ≤ |CP (Q)|, hence equality since R is fully F -centralised. Thus Q is fully
F -centralised. �

Proposition 1.6. Let F be a fusion system on a finite p-group P and let Q be a
subgroup of P . Then Q is fully F-normalised if and only if Q is fully F-centralised
and AutP (Q) is a Sylow-p-subgroup of AutF (Q).

Proof. Assume that Q is fully F -normalised. Then Q is fully CF -centralised by 1.5.
Choose Q to be of maximal order such that AutP (Q) is not a Sylow-p-subgroup of
AutF (Q). Then Q is a proper subgroup of P by 1.4.(I-S). Choose a p-subgroup S of
AutF (Q) such that AutP (Q) is a proper normal subgroup of S. Let ϕ ∈ S−AutP (Q).
Since ϕ normalises AutP (Q), for every y ∈ NP (Q) there is z ∈ NP (Q) such that
ϕ(yu) = zϕ(u) for all u ∈ Q. In other words, Nϕ = NP (Q). Since Q is fully F -
normalised, it follows from 1.4.(II-S) that there is an automorphism ψ of NP (Q) in
F such that ψ|Q = ϕ. Since ϕ has p-power order, by decomposing ψ into its p-part
and its p′-part we may in fact assume that ψ has p-power order. Let τ : NP (Q) →
P be a morphism in F such that τ(NP (Q)) is fully F -normalised. Now τψτ−1 is
a p-element in AutF (τ(NP (Q))), thus conjugate to an element in AutP (τ(NP (Q))).
Therefore we may choose τ in such a way that there is y ∈ NP (τ(NP (Q))) satisfying
τψτ−1(v) = yv for any v ∈ τ(NP (Q)). Since ψ|Q = ϕ, the automorphism τψτ−1 of
τ(NP (Q)) stabilises τ(Q). Thus y ∈ NP (τ(Q)). Since Q is fully F -normalised we

have NP (τ(Q)) ⊆ τ(NP (Q)), hence ψ(u) = τ−1(y)u for all u ∈ NP (Q). But then in
particular ϕ ∈ AutP (Q), contradicting our initial choice of ϕ. The converse is easy
since |NP (Q)| = |AutP (Q)| · |CP (Q)|. �

The next Proposition shows that the axioms in 1.4 imply also the “extension axiom”
(II-BLO).
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Proposition 1.7. ([20]) Let F be a fusion system on a finite p-group P , let Q be
a subgroup of P and let ϕ : Q → P be a morphism in F such that ϕ(Q) is fully
F-centralised. Then there is a morphism ψ : Nϕ → P in F such that ψ|Q = ϕ.

Proof. Let ρ : ϕ(Q) → P be a morphism in F such that R = ρ(ϕ(Q)) is fully F -
normalised. Then ρ ◦AutP (ϕ(Q)) ◦ρ−1 is a p-subgroup of AutF (R). Moreover, by 1.6,
the group AutP (R) is a Sylow-p-subgroup of AutF (R). Thus there is α ∈ AutF (R)
such that α ◦ ρ ◦AutP (ϕ(Q)) ◦ ρ−1 ◦ α−1 ⊆ AutP (R). This means that after replacing
ρ by α ◦ ρ, we may assume that Nρ = NP (ϕ(Q)). In particular, ρ extends to a
morphism σ : NP (ϕ(Q)) → P . But then Nϕ ⊆ Nρ◦ϕ, hence ρ ◦ ϕ extends to a
morphism τ : Nϕ → P . Then τ(Nϕ) ⊆ σ(NP (ϕ(Q)), and hence we get a morphism
σ−1|τ(Nϕ) ◦ τ : Nϕ → P which extends ϕ as required. �

Definition 1.8. Let F be a fusion system on a finite p-group P and let Q be a
subgroup of P .

(i) Q is F-centric if CP (R) = Z(R) for any subgroup R of P such that R ∼= Q in F .

(ii) Q is F-radical if Op(AutF (Q)/AutQ(Q)) = 1.

(iii) Q is F-essential if Q is F -centric, Q 6= P , and AutF (Q)/AutQ(Q) has a
strongly p-embedded proper subgroup M (that is, M contains a Sylow-p-subgroup S
of AutF (Q)/AutQ(Q) such that ϕS ∩S = {1} for every ϕ ∈ AutF (Q)/AutQ(Q)−M).

(iv) Q is weakly F -closed if for every morphism ϕ : Q→ P in F we have ϕ(Q) = Q.

(v) Q is strongly F-closed, if for any subgroup R of P and any morphism ϕ : R → P
in F we have ϕ(R ∩Q) ⊆ Q.

If Q is F -centric, then Q is fully F -centralised, and if Q is F -essential, then Q is
F -radical. If Q is strongly F -closed then Q is weakly F -closed. One easily checks that
if Q is strongly F -closed then for any subgroup R of P and any morphism ϕ : R→ P
in F we have in fact ϕ(R ∩ Q) = ϕ(R) ∩ Q. Indeed, the left side is contained in the
right side by the above definition, and the other inclusion is obtained by applying this
inclusion to ϕ(R) and the morphism ϕ−1 viewed as morphism from ϕ(R) to P .

Definition 1.9 Let F be a category on a finite p-group P , and let Q be a sub-
group of P . We define the category NF (Q) on NP (Q) by HomNF (Q)(R,R

′) = {ϕ :
R → R′| ϕ extends to a morphism ψ : QR → QR′ in F such that ψ(Q) = Q}, for
any two subgroups R, R′ of NP (Q). Similarly, we define the category CF (Q) on
CP (Q) by HomCF (Q)(R,R

′) = {ϕ : R → R′| ϕ extends to a morphism ψ : QR →
QR′ in F such that ψ|Q = IdQ}.

We have clearly inclusions of categories CF (Q) ⊆ NF (Q) ⊆ F . If F = NF (Q)
for some subgroup Q of P , then clearly Q is strongly F -closed. The converse of this
statement is not true, in general. If F is a fusion system on P such that F = CF (Z)
for some (necessarily central) subgroup Z of P then the category on P/Z induced by
F is a fusion system on P/Z, denoted by F/Z. In that case, if F ′ is a fusion system
on P contained in F we have F ′ = F if and only if F ′/Z = F/Z; this follows from
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Alperin’s fusion theorem 1.11 below together with the fact that if Q is a subgroup of
P then the canonical map AutF (Q) → AutF/Z(Q/Z) has a p-group as kernel because
any p′-automorphism of Q/Z lifts to a p′-automorphism of Q.

Proposition 1.10. ([15]) Let F be a fusion system on a finite p-group P , and let Q be
a subgroup of P . If Q is fully F-centralised, then CF (Q) is a fusion system on CP (Q);
if Q is fully normalised, then NF (Q) is a fusion system on NP (Q).

A proof of this Proposition can be found in [4, A6] (applied to the cases where the
group K occurring in the statement of [4, A6] is either trivial or equal to Aut(Q)).
By the previous remarks, Proposition 1.10 implies that if Q is fully F -centralised then
CF (Q)/Z(Q) is a fusion system on CP (Q)/Z(Q). The following result is Alperin’s
fusion theorem [1], refined by Goldschmidt [8], and extended to arbitrary fusion systems
by Puig [15].

Theorem 1.11. Let F be a fusion system on a finite p-group P . Every isomorphism
in F can be written as a composite of finitely many isomorphisms ϕ : Q ∼= R in F such
that either ϕ = α|Q for some α ∈ AutF (P ) or there is an F-essential subgroup E of P
containing both Q, R, and an automorphism β ∈ AutF (E) such that ϕ = β|Q.

Lemma 1.12. ([15]) Let F be a fusion system on a finite p-group P . Let Q, R be
F-centric subgroups of P such that Q ⊆ R, and let ϕ ∈ AutF (R). We have ϕ|Q = IdQ
if and only if ϕ ∈ AutZ(Q)(R).

Proof. Assume that ϕ|Q = IdQ. We proceed by induction over [R : Q]. Consider
first the case where Q is normal in R. Let u ∈ Q and v ∈ R. Then vu ∈ Q, hence
vu = ϕ(vu) = ϕ(v)u, and thus v−1ϕ(v) ∈ CR(Q) = Z(Q), or equivalently, ϕ(v) = vz
for some z ∈ Z(Q). If ϕ has order prime to p in Aut(R) this forces ϕ = IdR. Therefore
we may assume that the order of ϕ is a power of p. Upon replacing R by a fully
F -normalised F -conjugate we may assume that ϕ ∈ AutP (R). Since ϕ restricts to
IdQ and since Q is F -centric this implies that ϕ ∈ AutZ(Q)(R). This proves 1.12
if Q is normal in R. In general, if ϕ|Q = IdQ then ϕ(NR(Q)) = NR(Q). Thus
ϕ|NR(Q) ∈ AutZ(Q)(NR(Q)) by the previous paragraph. Hence there is z ∈ Z(Q) such
that cz ◦ ϕ|NR(Q) = IdNR(Q), where cz is the automorphism of R given by conjugation
with z. By induction we get cz ◦ ϕ ∈ AutZ(NR(Q))(Q). As all involved groups are
F -centric we have Z(NR(Q)) ⊆ Z(Q), and thus ϕ ∈ AutZ(Q)(R) as claimed. The
converse is trivial. �

Lemma 1.13. Let F be a fusion system on a finite p-group P , let Q, R be F-centric
subgroups of P such that Q ⊆ R, and let ϕ, ϕ′ ∈ HomF (R,P ) such that ϕ|Q = ϕ′|Q.
Then ϕ(R) = ϕ′(R).

Proof. Let v ∈ NR(Q). For every u ∈ Q we have ϕ(vu) = ϕ′(vu), hence ϕ(v)−1ϕ′(v) ∈
CP (ϕ(Q)) = Z(ϕ(Q)). It follows that ϕ(NR(Q)) = ϕ′(NR(Q)). By 1.12, ϕ|NR(Q) and
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ϕ′

NR(Q) differ by conjugation with an element in Z(Q), and we may therefore assume

that their restrictions to NR(Q) actually coincide. The equality ϕ(R) = ϕ′(R) follows
by induction. �

Given a fusion system F on a finite p-group P , we denote by Fc the full sub-
category of F -centric subgroups of P ; we denote by F̄ the orbit category of F ,
which has the same objects as F but whose sets of morphisms are the quotient sets
HomF̄ (Q,R) = AutR(R)\HomF (Q,R) of morphisms in F modulo inner automor-
phisms of the corresponding subgroups of P . We denote by F̄c the image in F̄ of
Fc. The category F has the property that every morphism is a monomorphism, and
every endomorphism is an automorphism. The orbit category F̄ has still the property
that every endomorphism is an automorphism, but not every morphism is a monomor-
phism, in general. As observed in [14] in the context of fusion systems of finite groups,
the straightforward consequence of 1.12 is that in the opposite category (F̄c)0 every
morphism is a monomorphism, or equivalently:

Proposition 1.14. Let F be a fusion system on a finite p-group P . Every morphism
in the category F̄c is an epimorphism.

Proof. Let Q, R, S be F -centric subgroups of P , let ϕ ∈ HomF (Q,R) and let ψ, ψ′ ∈
HomF (R, S). Assume that the images of ψ ◦ ϕ and ψ′ ◦ ϕ in HomF̄c(Q, S) coincide.
Up to replacing ψ′ by some S-conjugate, we may assume that ψ ◦ ϕ = ψ′ ◦ ϕ. Thus
the restrictions to ϕ(Q) of ψ, ψ′ coincide. It follows from 1.13 that ψ(R) = ψ′(R).
Thus ψ−1 ◦ψ′ is an automorphism of R which restricts to the identity on ϕ(Q), hence
ψ−1 ◦ ψ′ ∈ AutZ(ϕ(Q))(R) by 1.12. Thus the images of ψ, ψ′ in the orbit category are
equal. �

2 Fusion systems of finite groups and p-blocks

For expository purpose, we describe in this section briefly the well-known examples
which motivate Puig’s definition of a fusion system.

Definition 2.1 Let G be a finite group, and let P be a Sylow-p-subgroup of G. We
denote by FP (G) the category on P whose morphisms are the group homomorphisms
ϕ : Q→ R for which there is an element x ∈ G such that ϕ(u) = xux−1 for all u ∈ Q.

Equivalently, HomFP (G)(Q,R) = HomG(Q,R); in particular, AutFP (G)(Q) =
AutG(Q) ∼= NG(Q)/CG(Q). We leave the elementary proof of the following well-known
statement to the reader.

Theorem 2.2. Let G be a finite group, and let P be a Sylow-p-subgroup of G.

(i) The category FP (G) is a fusion system on P .

(ii) A subgroup Q of P is fully FP (G)-centralised if and only if CP (Q) is a Sylow-p-
subgroup of CG(Q).
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(iii) A subgroup Q of P is fully FP (G)-normalised if and only if NP (Q) is a Sylow-p-
subgroup of NG(Q).

Following Alperin-Broué [2], there is a fusion system on a defect group of a p-block
of a finite group which generalises the definition of FP (G) above in the sense, that it
coincides with FP (G) if the considered block is the principal p-block of G. In order
to describe this briefly, let k be a field of characteristic p, let G be a finite group, and
let b be a block of kG; that is, b is a primitive idempotent in Z(kG). A b-Brauer
pair is a pair (Q, f) consisting of a p-subgroup Q of G and a block f of kCG(Q)
such that BrQ(b)f = f . Here BrQ : (kG)Q → kCG(Q) is the Brauer homomorphism
mapping any element of CG(Q) to itself and any non trivial Q-conjugacy class sum of
elements in G to zero. By [2], the set of b-Brauer pairs admits a partial order “ ⊆ ”
which is compatible with the action of G by conjugation on this set, such that the
maximal b-Brauer pairs form a single G-conjugacy class. Given a maximal b-Brauer
pair (P, e), for every subgroup Q of P there is a unique block eQ of kCG(Q) such that
(Q, eQ) ⊆ (P, e), and the group P is called a defect group of the block b. The choice of
a maximal b-Brauer pair gives rise to a category on P (we follow the notation of [10]):

Definition 2.3. Let G be a finite group, let b be a block of kG, and let (P, e) be
a maximal b-Brauer pair. For any subgroup Q of P , denote by eQ the unique block
of kCG(Q) such that (Q, eQ) ⊆ (P, e). We denote by F(P,e)(G, b) the category on P
whose morphisms are the group homomorphisms ϕ : Q → R for which there is an
element x ∈ G such that ϕ(u) = xux−1 for all u ∈ Q such that xeQx

−1 = exQx−1 , or
equivalently, such that x(Q, eQ) ⊆ (R, eR), where Q, R are subgroups of P .

If S is a Sylow-p-subgroup of G containing the defect group P of b, then clearly
F(P,e)(G, b) is a subcategory of FS(G), but it is not in general a full subcategory,
because the elements x in G used to define the morphisms in F(P,e)(G, b) have to fulfill
the additional compatibility property x(Q, eQ) ⊆ (R, eR). If b is the principal block
of kG (that is, b is the unique block of kG not contained in the augmentation ideal
of kG), then P is a Sylow-p-subgroup of G and eQ is the principal block of kCG(Q)
for any subgroup Q of P , and hence F(P,e)(G, b) = FP (G) in this case. The following
statement, which generalises 2.2, is essentially a reformulation of results in [2]; we
sketch a proof for the convenience of the reader:

Theorem 2.4. Let G be a finite group, let b be a block of kG, and let (P, e) be a
maximal b-Brauer pair. For every subgroup Q of P , denote by eQ the unique block of
kCG(Q) such that (Q, eQ) ⊆ (P, e).

(i) The category F(P,e)(G, b) is a fusion system on P .

(ii) A subgroup Q of P is fully F(P,e)(G, b)-centralised if and only if CP (Q) is a defect
group of kCG(Q)eQ.

(iii) A subgroup Q of P is fully F(P,e)(G, b)-normalised if and only if NP (Q) is a defect
group of kNG(Q, eQ)eQ.
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Note that the last statement makes sense, as eQ remains a block for the group
NG(Q, eQ) by [2, (2.9)]. The automorphism group in F(P,e)(G, b) of a subgroup Q
of P is isomorphic to NG(Q, eQ)/CG(Q). Thanks to the preceding Theorem, we can
apply Alperin’s fusion thereom to the fusion system F(P,e)(G, b), which implies in
particular, that F(P,e)(G, b) is completely determined by the automorphism groups
NG(Q, eQ)/CG(Q) for the F(P,e)(G, b)-essential subgroups Q of P . Specialising Theo-
rem 2.4 to the case where b is the principal block of kG yields Theorem 2.2.

Proof of Theorem 2.4. We prove first (ii) and (iii). By [12, 7.6], for every subgroup Q
of P the group CP (Q) is contained in a defect group of eQ as block of kCG(Q), and
there is x ∈ G such that x(Q, eQ) ⊆ (P, e) and such that CP (xQ) is a defect group
of xeQ as block of kCG(xQ). From this follows (ii). By [2, (2.9)], eQ remains a block
of kNG(Q, eQ). As before, NP (Q) is contained in a defect group of eQ as block of
kNG(Q, eQ), and there is x ∈ G such that x(Q, eQ) ⊆ (P, e) and such that NP (xQ) is
a defect group of xeQ as block of kNG(x(Q, eQ)). This proves (iii).

In order to see (i), observe first that F(P,e)(G, b) is clearly a category on P
in the sense of 1.1. By Brauer’s First Main Theorem [23, (40.14)], the group
NG(P, e)/PCG(P ) is a p′-group (called inertial quotient of b), and hence the group
AutF(P,e)(G,b)(P ) ∼= NG(P, e)/CG(P ) has AutP (P ) as Sylow-p-subgroup. In particu-

lar, the Sylow axiom (I-S) holds. It remains to verify that F(P,e)(G, b) has also the
property (II-S). Let Q, R be subgroups of P such that NP (R) is a defect group of
eR as block of kNG(R, eR), and let x ∈ G such that x(Q, eQ) = (R, eR). Denote
by ϕ : Q → P the morphism in F(P,e)(G, b) defined by ϕ(u) = xu for all u ∈ Q.
Then Nϕ = {y ∈ NP (Q) | there is z ∈ NP (R) such that xyu = zxu for all u ∈ Q}.
Thus xNϕ ⊆ NP (R)CG(R). Since R is fully F(P,e)(G, b)-normalised, NP (R) is a de-
fect group of eR viewed as block of kNG(R, eR) by (ii), and hence NP (R) is still a
defect group of eR viewed as block of NP (R)CG(R). Therefore (NP (R), eNP (R)) is
a maximal (NP (R)CG(R), eR)-Brauer pair (cf. [23, (40.15)]) and contains hence a
CG(R)-conjugate of every other (NP (R)CG(R), eR)-Brauer pair (cf. [2, 3.10]). Thus
there is c ∈ CG(R) such that cx(Nϕ, eNϕ

) ⊆ (NP (R), eNP (R)). Hence ψ : Nϕ → P
defined by ψ(n) = cxn for all n ∈ Nϕ is a morphism in F(P,e)(G, b) which extends ϕ.
�

For future reference we include another obvious reformulation of some results in [2].

Proposition 2.5. Let G be a finite group, let b be a block of kG, and let (P, e) be a
maximal b-Brauer pair. For every subgroup Q of P , denote by eQ the unique block of
kCG(Q) such that (Q, eQ) ⊆ (P, e). Set F = F(P,e)(G, b).

(i) If Q is a fully F-centralised subgroup of P then (CP (Q), eQCP (Q)) is a maximal
(CG(Q), eQ)-Brauer pair and we have F(CP (Q),eQCP (Q))(CG(Q), eQ) = CF (Q).

(ii) If Q is a fully F-normalised subgroup of P then (NP (Q), eNP (Q)) is a maximal
(NG(Q, eQ), eQ)-Brauer pair and we have F(NP (Q),eNP (Q))(NG(Q, eQ), eQ) = NF (Q).
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Proof. (i) Suppose that Q is fully F -centralised. By 2.4.(ii), CP (Q) is a defect
group of eQ as block of CG(Q). We have CCG(Q)(CP (Q)) = CG(QCP (Q)), hence
(CP (Q), eQCP (Q)) is a maximal (CG(Q), eQ)-Brauer pair. Similarly, for any sub-
group R of CP (Q), the pair (R, eQR) is a (CG(Q), eQ)-Brauer pair contained in
(CP (Q), eQCP (Q)). If R, S are subgroups of CP (Q) and x ∈ CG(Q) such that
x(R, eQR) ⊆ (S, eQS) then the group homomorphism from R to S induced by conjuga-
tion with x extends to a group homomorphism from QR to QS which is the identity
on Q. Statement (i) follows.

(ii) Suppose that Q is fully F -normalised. By 2.4.(iii), NP (Q) is a defect group
of eQ as block of NG(Q, eQ). We have CNG(Q)(CP (Q)) = CG(NP (Q)), hence
(NP (Q), eNP (Q)) is a maximal (NG(Q, eQ), eQ)-Brauer pair. Similarly, for any sub-
group R of NP (Q), the pair (R, eQR) is a (NG(Q, eQ), eQ)-Brauer pair contained in
(NP (Q), eNP (Q)). If R, S are subgroups of NP (Q) and x ∈ NG(Q, eQ) such that
x(R, eQR) ⊆ (S, eQS) then the group homomorphism from R to S induced by conjuga-
tion with x extends to a group homomorphism from QR to QS which restricts to an
automorphism of Q in AutF (Q). The result follows. �

3 Normal fusion systems

Definition 3.1 Let F be a category on a finite p-group P , and let F ′ be a category on
a subgroup P ′ of P . We say that F normalises F ′ if P ′ is strongly F -closed and if for
every isomorphism ϕ : Q→ Q′ in F and any two subgroups R, R′ of Q ∩ P ′ we have

ϕ ◦ HomF ′(R,R′) ◦ ϕ−1|ϕ(R) ⊆ HomF ′(ϕ(R), ϕ(R′)) .

We say that F ′ is normal in F and write F ′ E F if F ′ is contained in F and F
normalises F ′.

In other words, F normalises F ′ if for any isomorphism ϕ : Q → Q′ in F and any
morphism ψ : R → R′ in F ′ such that < R,R′ >⊆ Q, we have < ϕ(R), ϕ(R′) >⊆ P ′

and the induced morphism ϕ◦ψ ◦ϕ−1 : ϕ(R) → ϕ(R′) is a morphism in F ′. Note that
this implies that we have in fact an equality

ϕ ◦ HomF ′(R,R′) ◦ ϕ−1|ϕ(R) = HomF ′(ϕ(R), ϕ(R′)) .

Indeed, the left side is contained in the right side by the definition, and the other
inclusion follows from applying this inclusion to ϕ−1, ϕ(R), ϕ(R′) instead of ϕ, R,
R′, respectively. Applied to R = R′ and S = ϕ(R) and making use of Alperin’s fusion
theorem this implies in particular that if R, S are subgroups of P ′ which are isomorphic
in F then AutF ′(R) ∼= AutF ′(S).

The unique category on the trivial subgroup {1} of P is a fusion system which is
normal in any fusion system F on P . The obvious motivating example for the definition
of normal fusion systems is this:



10 MARKUS LINCKELMANN

Proposition 3.2. Let G be a finite group, let P be a Sylow-p-subgroup of G, and let
N be a normal subgroup of G. We have FP∩N (N) E FP (G).

Proof. Trivial. �

Proposition 3.3. Let F be a fusion system on a finite p-group P . Then FP (P ) is
normal in F if and only if F = NF (P ).

Proof. Suppose that FP (P ) E F . Then in particular for any morphism ϕ : R → P in
F and any u ∈ NP (R) there is v ∈ NP (ϕ(R)) such that ϕ(ur) = vϕ(r) for all r ∈ R.
Whenever ϕ(R) is fully F -centralised, ϕ extends to a morphism ψ : NP (R) → P
in F . In particular, this holds if R, and hence ϕ(R), are F -centric. But then also
NP (R) and ψ(NP (R)) are F -centric. Inductively, it follows that ϕ can be extended
to an automorphism of P belonging to F . Thus, by Alperin’s fusion theorem, we get
F = NF (P ). The converse is easy. �

In fact, Proposition 3.3 remains true with P replaced by any subgroup of P (cf. [21,
6.2] or [13, Corollary 2]).

Proposition 3.4. Let F be a fusion system on a finite p-group P . If Q is a strongly
F-closed abelian subgroup of P then FQ(Q) is normal in F .

Proof. Since Q is abelian, the only morphisms in FQ(Q) are inclusions R ⊆ R′ of
subgroups R, R′ of Q. Since Q is strongly F -closed, the result follows. �

Proposition 3.5. Let F , F ′ be fusion systems on a finite p-group P such that F ′

is normal in F . Then for every subgroup Q of P the index [AutF (Q) : AutF ′(Q)] is
prime to p.

Proof. Let Q be a subgroup of P , and let ϕ : Q → R be an isomorphism in F such
that the subgroup R of P is fully F -normalised. Then AutP (R) is a Sylow-p-subgroup
of AutF (R) by 1.5, and AutP (Q) ⊆ AutF ′(R). Since F ′ is normal in F , it follows that
the Sylow-p-subgroup ϕ−1 ◦ AutP (R) ◦ ϕ of AutF (Q) is contained in AutF ′(Q). Thus
the index of AutF ′(Q) in AutF (Q) is prime to p. �

Remark 3.6. Proposition 3.5 is not true, in general, without the assumption that
F ′ is normal in F . Consider the case of a fusion system F on P such that there is
a subgroup Q of P which is fully F -centralised but not fully F -normalised, and set
F ′ = FP (P ). Then AutP (Q) = AutF ′(Q) is not a Sylow-p-subgroup of AutF (Q). The
following is an example for this situation.

Example 3.7. Let G = S8 be the symmetric group on eight letters, set E1 = <
(15)(26)(37)(48) >, E2 = < (13)(24), (57)(68) >, E4 = < (12), (34), (56), (78) > .
Then P = (E4 ⋊E2) ⋊E1 is a Sylow-2-subgroup of G. Set F = FP (G). The subgroup
E4 of P is F -centric, hence Q = E4⋊ < (13)(24)(57)(68) > and R = E4 ⋊ E1 are F -
centric as well. Conjugating Q by (35)(46) yields R, hence Q ∼= R in F . Clearly Q is
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normal in P ; in particular, Q is fully F -normalised. Conjugating (15)(26)(37)(48) ∈ R
by (13)(24) ∈ E2 yields (17)(28)(35)(46). This is not an element in R since 7 does not
belong to the R-orbit of 1 (which is equal to {1, 2, 5, 6}). Thus R is not normal in P ,
and hence R is not fully F -normalised.

4 Simple fusion systems

Definition 4.1 A fusion system F on a non trivial finite p-group P is called simple if
F has no proper non trivial normal fusion subsystem.

In view of work of Broto, Levi, Oliver [4] - introducing p-local finite groups as a
generalisation of classifying spaces associated with fusion systems - we extend this
terminology in the obvious way: a p-local finite group is called simple if its underlying
fusion system is simple. In order to avoid confusion we point out that this definition
is different from previous similar definitions such as fusion-simple groups (in a group
theoretic context) or the notion of simple fusion systems introduced in [15].

Certainly the fusion system FP (G) of a finite simple groupG (with Sylow-p-subgroup
P ) does not have to be simple, but conversely, if a simple fusion system F on a finite
p-group P is equal to FP (G) for some finite group G containing P as Sylow-p-subgroup,
then G can be chosen to be simple:

Proposition 4.2. Let F be a simple fusion system on some finite p-group P . Suppose
that F = FP (G) for some finite group G having P as Sylow-p-subgroup. If Op′(G) = 1
and if FP (H) 6= FP (G) for any proper subgroup H of G containing P , then G is simple.
In particular, if G has minimal order such that P is a Sylow-p-subgroup of G and such
that F = FP (G), then G is simple.

Proof. Suppose that Op′(G) = 1 and that FP (H) 6= FP (G) for any proper subgroup
H of G containing P . Let N be a non-trivial normal subgroup of G. Then N ∩ P
is a Sylow-p-subgroup of N , and FN∩P (N) is a normal fusion system in FP (G). As
Op′(G) = 1, we have N ∩ P 6= 1. As FP (G) is simple, this forces P ⊆ N and
FP (N) = FP (G), hence N = G by the assumptions. Let now G be a finite group
of minimal order such that P is a Sylow-p-subgroup of G and such that F = FP (G).
Then Op′(G) = 1, because the canonical map G→ G/Op′(G) induces an isomorphism
of fusion systems. By the minimality of G, we have FP (H) 6= FP (G) for any proper
subgroup H of G containing P . Thus the second statement follows from the first. �

Proposition 4.3. Let P be a finite p-group. Then FP (P ) is simple if and only if P
is cyclic of order p.

Proof. By 3.4, for every subgroup Z of Z(P ) we have FZ(Z) E FP (P ), from which
the statement follows. �
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Proposition 4.4. Let P be a finite abelian p-group and let F be a fusion system on
P . Then F is simple if and only if P has order p and F = FP (P ).

Proof. If F is simple, then F = FP (P ) by 3.4, and hence |P | = p by 4.3. The converse
is clear. �

The following Proposition is due to the referee and has greatly simplified the original
version of this paper.

Proposition 4.5. Let F ,F ′ be fusion systems on a finite p-group P such that F ′ E F
and such that AutF (P ) = AutF ′(P ). Then F ′ = F .

Proof. Suppose that F ′ 6= F . Let Q be a subgroup of maximal order such that
AutF ′(Q) 6= AutF (Q). By the assumptions, Q is a proper subgroup of P . Since
F ′ is normal in F we may assume that Q is fully F -normalised. Then AutP (Q)
is a Sylow-p-subgroup of AutF (Q). Moreover, AutF ′(Q) is a normal subgroup
of AutF (Q) containing AutP (Q), and hence, by the Frattini argument, we have
AutF (Q) = NAutF (Q)(AutP (Q))AutF ′(Q). By the extension axiom (II-S) in 1.4 ev-
ery automorphism of Q in NAutF (Q)(AutP (Q)) extends to an automorphism of NP (Q)
in F , hence in F ′ by the maximality assumption on Q. This in turn implies that
NAutF (Q)(AutP (Q)) ⊆ AutF ′(Q), leading to the contradiction AutF (Q) = AutF ′(Q).
�

Corollary 4.6. Let F be a fusion system on a finite p-group P . Assume that
AutF (P ) = AutP (P ) and that P has no proper non trivial strongly F-closed subgroup.
Then F is simple.

Proof. Let F ′ be a fusion system on a non trivial subgroup P ′ of P such that F ′ E F .
Then P ′ is strongly F -closed, hence P ′ = P by the assumptions. Since AutP (P ) ⊆
AutF ′(P ) ⊆ AutF (P ), the assumptions imply further that AutF ′(P ) = AutF (P ).
Thus F ′ = F by 4.5. �

Corollary 4.7. Let F be a fusion system on a finite p-group P . Suppose that P is
generated by the set of its subgroups of order p, that all subgroups of order p in P are
F-conjugate and that AutF (P ) = AutP (P ). Then F is simple.

Proof. Let Q be a non-trivial strongly F -closed subgroup of P . Since all subgroups of
order p of P are F -conjugate it follows that Q contains all subgroups of order p of P .
But then Q = P by the assumptions on P , and hence F is simple by 4.6. �



SIMPLE FUSION SYSTEMS 13

5 Dihedral 2-local groups

In order to illustrate the terminology from previous sections, we determine for any
fusion system on a dihedral 2-group all normal subsystems. In this section we set
P =< x > ⋊ < t >, such that x2n

= 1 = t2 for some integer n ≥ 2 and txt = x−1;
that is, P is a dihedral 2-group of order 2n+1 ≥ 8.

Then P has three conjugacy classes of involutions, namely the classes of the elements

z = x2n−1

, t and xt. Besides the trivial fusion system FP = FP (P ), there are two other
systems, up to isomorphism. We denote by FI

P the fusion system on P generated by
FP and an automorphism of order 3 of the Klein four group < z > × < t >. Thus z
and t are FI

P -conjugate, while z and xt are not; hence there are now two FI
P -conjugacy

classes of involutions in P . We denote by FII
P the fusion system on P generated by

FP and an automorphism of order 3 on each of the Klein four groups < z > × < t >
and < z > × < xt >. Thus all involutions in P are FII

P -conjugate. Any fusion system
on P is isomorphic to one of FP , FI

P , FII
P and any of these systems appear as fusion

systems FP (G) of some finite group G having P as Sylow-2-subgroup (this follows
easily from Erdmann’s list of examples in [7]). Any 2-block of a finite group having P
as defect group has 1 or 2 or 3 isomorphism classes of simple modules, and then its
fusion system is isomorphic to FP or FI

P or FII
P , respectively. The fusion systems FP ,

FI
P , FII

P correspond to the cases (bb), (ab), (aa), respectively, in [6].

For notational convenience, if Q is a Klein four group, we denote by FI
Q and by FII

Q

the unique fusion system on Q generated by some automorphism of order 3 of Q.

Theorem 5.1. Let F be a fusion system on the dihedral 2-group P of order at least
8. Then F is simple if and only if F = FII

P .

One implication in 5.1 is a consequence of the following.

Lemma 5.2. Let Q be the subgroup of index 2 of P generated by x2 and t. Then
FII
Q E FI

P ; in particular, Q is strongly FI
P -closed and FI

P is not simple.

Proof. Observe first that FII
Q is contained in FI

P , because the three classes of involu-

tions in Q represented by z, t, x2t are all conjugate in FI
P . Indeed, this is clear for

z and t by the definition of FI
P , and moreover, x2t = xtx−1. As FII

Q is the unique

maximal fusion system on Q, it suffices to show that Q is strongly FI
P -closed, which is

easy. �

Proof of Theorem 5.1. All fusion systems F on P have the property AutF (P ) =
AutP (P ). Let Q be a strongly FII

P -closed subgroup of P . Then Q contains all in-
volutions of P , as all involutions of P are FII

P -conjugate. Hence Q = P , and 4.6
implies that FII

P is simple. Conversely, FP is not simple by 4.3 and FI
P is not simple

by 5.2. �
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Remark 5.3. Let q be an odd prime power. If q ≡ ±1(mod8), then the group
PSL(2, q) has a dihedral Sylow-2-subgroup P , and FP (PSL(2, q)) = FII

P . In partic-
ular, FP (PSL(2, q)) is simple in that case. If q ≡ ±3(mod8) then PSL(2, q) has a
Klein four group Q as Sylow-2-subgroup, and hence FP (PSL(2, q)) cannot be simple.
As pointed out by the referee, in this case the inclusion FII

Q E FI
P is realised by the

inclusion PSL2(q) E PGL2(q). This yields an alternative proof of 5.2.

6 The 2-fusion system of Ω7(q), q ≡ ±3(mod 8), is simple

The group theoretic background material needed in this and the next Section can
be found in [5], [16], [17], [18], [22], [24].

Theorem 6.1. Let q be an odd prime power such that q ≡ ±3(mod 8) and let P be a
Sylow-2-subgroup of Ω7(q). We have AutΩ7(q)(P ) = AutP (P ) and P has no non-trivial
proper strongly FΩ7(q)-closed subgroup. In particular, the fusion system FS(Ω7(q)) is
simple.

Proof. Since Q ≡ ±3(mod 8) the Sylow-2-subgroup P of Ω7(q) is isomorphic to a
Sylow-2-subgroup of the alternating group A12, whose structure is as follows (cf. [16,
§2]): the Thompson subgroup A = J(P ) is elementary abelian of order 26 and we
have P = A ⋊ D for D a dihedral group of order 8. In particular, P is generated
by its set of involutions. Moreover, Z(P ) is a Klein four group contained in A. The
statement AutΩ7(q)(P ) = AutP (P ) is a particular case of [16, 2.1]. Let Q be a non-
trivial strongly FP (Ω7(q))-closed subgroup of P . Then in particular Q is normal in
P , hence Q ∩ Z(P ) 6= 1, and so Q ∩ A 6= 1. By the remark preceding [16, 6.3], the
cases [16, 4.7.(iii)], [16, 4.8.(iii)] and [16, 6.2.(iii)] correspond to the fusion system of
Ω7(q). It follows from [16, 4.7.(iii)] that the group AutΩ7(q)(A) ∼= A7 acts irreducibly
on A, and hence A ⊆ Q. By [16, 6.2.(iii)] every involution of P is Ω7(q)-conjugate to
an involution in A. Thus Q contains all involutions in P , and hence Q = P as P is
generated by its set of involutions. The simplicity of the fusion system FΩ7(q) follows
from 4.6. �

7 The Solomon 2-local finite group Sol(3) is simple

Let q be an odd prime power such that q ≡ ±3(mod 8) and let P be a Sylow-
2-subgroup of the 7-dimensional spinor group Spin7(q) over Fq. Then Spin7(q) has
a central involution z such that Spin7(q)/ < z >∼= Ω7(q), and hence P/ < z >
is isomorphic to a Sylow-2-subgroup of Ω7(q). R. Solomon showed in [18] that if
q ≡ ±3(mod8), no finite group having P as Sylow-2-subgroup can have a fusion system
which properly contains FP (Spin7(q)), in which all involutions of P are conjugate and
which has the property that CF (z)/ < z >∼= FS(Ω(7, q)). Levi and Oliver proved in
[11, 2.1], that there is actually for any odd prime power q a fusion system FSol(q) on P
with the above properties, and that this fusion system is the underlying fusion system
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of a unique 2-local finite group; we are going to call this the Solomon 2-local finite
group Sol(q). Kessar showed in [9] that the fusion system Sol(3) cannot even occur as
fusion system of a 2-block of a finite group with P as defect group.

Theorem 7.1. The Solomon 2-local finite group Sol(3) is simple.

Proof. Let F be the underlying fusion system of Sol(3) on a Sylow-2-subgroup P
of Spin7(3) as constructed in [11, §2]. The normaliser of P in Spin7(3) is the in-
verse image of the normaliser of a Sylow-2-subgroup of Ω7(3), and hence AutF (P ) =
AutSpin7(3)

(P ) = AutP (P ), where the first equality uses [11, 2.1].
Let Q be a non trivial strongly F -closed subgroup of P . In particular, Q is strongly

FP (Spin7(3))-closed. Since all involutions in P are F -conjugate, they are all contained
in Q. Thus Q strictly contains < z >. Its image Q̄ = Q/ < z > in P̄ = P/ < z > is
strongly FP̄ (Ω7(3))-closed. By 6.1 this forces Q̄ = P̄ , hence Q = P . Thus F is simple
by 4.6. �

8 Characterisations of fusion systems

Proposition 4.5 would be false without the assumption on F ′ being normal in F .
For the sake of completeness, we include some statements regarding the situation of
not necessarily normal subsystems.

The first result shows that a fusion system F on a finite p-group P is determined
by its fusion on elements of order p in P and their centralisers in F . If Q is a subgroup
of P , we denote by CF (Q)/Z(Q) the category on CP (Q)/Z(Q) whose morphisms are
induced by morphisms in CF (Q) via the canonical map CP (Q) → CP (Q)/Z(Q). By
the remarks following 1.8, if Q is fully F -centralised, then CF (Q)/Z(Q) is a fusion
system on CP (Q)/Z(Q).

Proposition 8.1. Let P be a finite p-group, and let F , F ′ be fusion systems on P
such that F ′ ⊆ F . The following are equivalent.

(i) F = F ′.

(ii) For any fully F ′-centralised subgroup Z of order p of P we have HomF (Z, P ) =
HomF ′(Z, P ) and CF (Z) = CF ′(Z).

Proof. Suppose that (ii) holds. Let Q be a non trivial subgroup of P and let ϕ ∈
AutF (Q). Let Z be a subgroup of order p of Z(Q). Let ψ : Z → P be a morphism in
F ′ such that ψ(Z) is fully F ′-centralised. Since Q ⊆ CP (Z), the morphism ψ extends
to a morphism τ : Q → P in F ′. In order to show that ϕ is a morphism in F ′, it
suffices to show that τ ◦ϕ ◦ τ−1|τ(Q) ∈ AutF ′(τ(Q)). Thus, after replacing Q by τ(Q),
we may assume that Z is fully F ′-centralised. By the assumptions, the morphism
ϕ−1|ϕ(Z) : ϕ(Z) → Z belongs to F ′, and hence extends to a morphism κ : Q → P in
F ′ (since Q = ϕ(Q) ⊆ CP (ϕ(Z))). Then κ ◦ ϕ : Q → P restricts to the identity on
Z, hence κ ◦ ϕ is a morphism in CF (Z) = CF ′(Z). In particular, κ ◦ ϕ is a morphism
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in F ′. But then so is ϕ, because κ is in F ′. Alperin’s fusion theorem implies now (i).
The converse is trivial. �

Corollary 8.2. Let F , F ′ be fusion systems on a finite p-group P such that F ′ E F .
If HomF (Z, P ) = HomF ′(Z, P ) and CF (Z)/Z is a simple fusion system on CP (Z)/Z
for any fully F ′-centralised subgroup Z of order p of P , then F ′ = F .

Proof. We have CF ′(Z) E CF (Z) and hence CF ′(Z)/Z E CF (Z)/Z. Thus, if
CF (Z)/Z is simple for any fully F ′-centralised subgroup Z of order p of P , then
CF ′(Z)/Z = CF (Z)/Z. Since p′-automorphisms lift uniquely through central p-
extensions this implies CF ′(Z) = CF (Z), hence F ′ = F by 8.1. �

Lemma 8.3. Let F , F ′ be fusion systems on a finite p-group P such that F ′ ⊆ F .

Let Q
ϕ

−→ R
ψ

−→ S be a sequence of two composable morphisms in F such that Q, R,
S are F-centric. If any two of the three morphisms ϕ, ψ, ψ ◦ ϕ are in F ′, so is the
third.

Proof. If ϕ, ψ are in F ′, so is ψ◦ϕ. If ψ, ψ◦ϕ are in F ′, then so is ϕ = ψ−1|Im(ψ◦ϕ)◦ψ◦ϕ.
Assume now that ϕ and ψ ◦ ϕ are morphisms in F ′. Up to replacing Q by ϕ(Q), we
may assume that ϕ is the inclusion Q ⊆ R. Let v ∈ NR(Q). Then, for any u ∈ Q, we
have ψ(vu) = ψ(v)u. Thus the morphism ψ|Q extends to a morphism τ : NR(Q) → P in
F ′. By 1.11, we have τ(NR(Q)) = ψ(NR(Q)) and hence ψ−1 ◦ τ ∈ AutZ(Q)(NR(Q)) by
1.10. Thus ψ|NR(Q) is a morphism in F ′. It follows inductively, that ψ is a morphism
in F ′. �

Proposition 8.4. Let F , F ′ be fusion systems on a finite p-group P such that F ′ ⊆ F .
The following are equivalent.

(i) F = F ′.

(ii) HomF (Q,P ) = HomF ′(Q,P ) for every minimal F-centric subgroup Q of P .

Proof. Assume that (ii) holds. Let R be an F -centric subgroup of P , and let Q be
a minimal F -centric subgroup of P contained in R. Let ϕ ∈ HomF (R,P ). Then
ϕ|Q ∈ HomF (Q,P ) = HomF ′(Q,P ). But then ϕ ∈ HomF ′(R,P ) by 8.3. Alperin’s
fusion theorem implies (i). The converse is trivial. �
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