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Abstract

Following a question by B. Külshammer, we show that an inequality, due to Brauer, involv-

ing the dimension of a block algebra, has an analogue for source algebras, and use this to show

that a certain case where this inequality is an equality can be characterised in terms of the

structure of the source algebra, generalising a similar result on blocks of minimal dimensions.

Let p be a prime and k an algebraically closed field of characteristic p. Let G be a finite group
and B a block algebra of kG; that is, B is an indecomposable direct factor of kG as k-algebra. By
a result of Brauer in [2], the dimension of B satisfies the inequality

dimk(B) ≥ p2a−d · ℓ(B) · u2
B

where pa is the order of a Sylow-p-subgroup of G, pd is the order of a defect group of B, ℓ(B)
is the number of isomorphism classes of simple B-modules and uB is the unique positive integer
such that pa−d · uB is the greatest common divisor of the dimensions of the simple B-modules. It
is well-known that uB is prime to p. Külshammer raised the question whether an equality could
be expressed in terms of the structure of a source algebra of B, generalising the result in [3] on
blocks of minimal dimension. We show that this is the case. The first observation is an analogue
for source algebras of Brauer’s inequality. We keep the notation above and refer to [5] for block
theoretic background material.

Theorem 1. Let A be a source algebra of B. Then dimk(A) ≥ pd · ℓ(B) · u2
A, where uA is the

greatest common divisor of the dimensions of the simple A-modules.

Proof. One can prove this by adapting Brauer’s proof of [2, Theorem 1]. Alternatively, one can use
the theorem of Wedderburn-Malcev, according to which A contains a unitary subalgebra isomorphic
to A/J(A), where J(A) denotes the Jacobson radical of A. Every indecomposable factor of A/J(A)
is a matrix algebra of dimension n2 for some integer n which is divisible by uA, hence of the form

T ⊗k S for some matrix algebra T of dimension u2
A and some matrix algebra S of dimension n2

u2

A

.

Thus A contains T as unitary subalgebra, hence A ∼= T ⊗k A′, where A′ is the centraliser of
T in A. Note that B, A, A′ are Morita equivalent; in particular ℓ(B) = ℓ(A) = ℓ(A′). Since
A is projective as module over a defect group, every projective indecomposable A-module has
dimension divisible by pd. By [5, Corollary (44.9)], the integer uA is prime to p. Thus every
projective A′-module has still dimension divisible by pd. Since A′ is a direct sum, as left A′-
module, of at least ℓ(A′) indecomposable direct summands, it follows that dimk(A′) ≥ pd · ℓ(B),
hence dimk(A) = dimk(A′) · u2

A ≥ pd · ℓ(B) · u2
A as claimed.
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An equality dimk(A) = pd · ℓ(B) ·u2
A does not seem to imply strong structural conditions on A;

for instance, if ℓ(B) = 1 then dimk(A) = pd · u2
A. Indeed, if ℓ(B) = 1 then uA is the dimension of

the unique (up to isomorphism) simple A-module, and hence the algebra A′ arising in the proof of
Theorem 1 is a basic algebra, hence local, and thus its dimension is the unique Cartan invariant
pd of B. If one requires uA = 1, one gets the following structural characterisation:

Theorem 2. Let A be a source algebra of B with defect group P . The following are equivalent.

(i) dimk(A) = pd · ℓ(B).

(ii) A ∼= k(P ⋊ E) for some abelian p′-subgroup E of Aut(P ).

Proof. Suppose that (i) holds. Let J be a primitive decomposition of 1A in A; that is, J is a set of
primitive pairwise orthogonal idempotents in A such that 1A =

∑
j∈J j. Then A = ⊕j∈J Aj as left

A-module, and Aj is projective as kP -module for each j ∈ J . Thus dimk(A) = pd
∑

j∈J
dimk(Aj)

pd .

The equality in (i) is therefore equivalent to |J | = ℓ(B) and dimk(Aj) = pd for all j ∈ J . Thus
each point (cf. [5, §4]) of A has multiplicity 1, or equivalently, A is a basic k-algebra, hence
each simple A-module has dimension 1, and each Aj restricted to kP is isomorphic to the regular
module kP . Thus the radical of Aj as A-module is equal to the radical of Aj as kP -module, hence
J(kP )A = J(A). The same argument yields J(A) = AJ(kP ). By a result of Puig (cf. [4, 14.6]
or [5, Theorem (44.3)] or also [1] for another proof), as kP -kP -bimodule, A is isomorphic to a
direct sum of k(P ⋊ E) for some p′-subgroup E of Aut(P ) and indecomposable direct summands
of the form kP ⊗kQ ϕkP , where Q is a proper subgroup of P and ϕ : Q → P is an injective
group homomorphism. The equality J(kP )A = AJ(kP ) forces that there is no summand of that
form. To see this, note first that J(kP )A is a kP -kP -submodule of A, thus so is the quotient
A/J(kP )A. The elements of P act as identity on the left of A/J(kP )A, hence also on the right,
but the elements in P outside of ϕ(Q) do not act as identity on the right side of the kP -kP -
bimodule (kP ⊗kQ ϕkP )/J(kP )(kP ⊗kQ ϕkP )) ∼= k ⊗kQ ϕkP . This implies that A = k(P ⋊ E)
as kP -kP -bimodule. But then, by [4, 14.6] again (or the alternative references [1, Theorem 1], [5,
Theorem (45.11)]), A is isomorphic, as interior P -algebra (cf. [5, §10]), to a twisted group algebra
kα(P ⋊ E), for some α ∈ H2(E; k×), inflated trivially to P ⋊ E. The fact that A has a simple
module of dimension 1 implies that there is an algebra homomorphism ǫ : kαE → k. If x, y ∈ E
their product in kαE is x ·y = α(x, y)xy, where xy is the product of x, y in E. Thus x ·y is mapped
under ǫ to ǫ(x)ǫ(y) = α(x, y)ǫ(xy), proving that α is a 2-coboundary, or equivalently, that its class
is zero. But then, since every simple A-module has dimension 1 this also forces E to be abelian.
Thus (i) implies (ii). The converse is easy.

A block B satisfying the equivalent conditions of Theorem 2 is splendidly Morita equivalent to
its Brauer correspondent, hence satisfies in particular all relevant conjectures by Alperin, Broué
(for P abelian), Dade and Robinson. For S a subgroup of G we denote as usual by (kG)S the
subalgebra of kG consisting of all elements in kG which are invariant under conjugation by elements
in S.

Theorem 3. Let A be a source algebra of B. We have dimk(B) ≥ p2a−2ddimk(A), with equality
if and only if the block idempotent 1B remains primitive in (kG)S for any Sylow-p-subgroup S of
G.
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Proof. Choose a Sylow-p-subgroup S of G and a defect group P of B such that P ≤ S. Denote
by BrP : (kG)P → kCG(P ) the Brauer homomorphism (cf. [5, §11]). Since BrP (1B) 6= 0 there
is a primitive idempotent e ∈ BS such that BrP (e) 6= 0. Thus there is a primitive idempotent
i ∈ (eBe)P such that BrP (i) 6= 0. Then e belongs to a point σ of S on B and i belongs to
a local point γ of P on B such that Pγ ≤ Sσ (cf. [5, §13, 14] for background material on
pointed groups, inclusion between pointed groups, and local pointed groups). Since P is maximal
with the property BrP (1B) 6= 0 it follows that Pγ is a defect pointed group of Sσ, hence σ ⊆

TrS
P (AP γAP ) (cf. [5, Proposition (18.5)]). Thus, by Higman’s criterion (cf. [5, Corollary (17.3)]),

as k(G × S)-module, kGe is relatively G × P -projective, and Green’s indecomposablity theorem
[5, Corollary (23.5)] implies therefore that kGe ∼= kGi ⊗kP kS as k(G × S)-modules. The k-dual
of kGi ⊗kP kS is isomorphic to the k(S × G)-module kS ⊗kP ikG. Tensoring these two modules
over kG yields an isomorphism of kS-kS-bimodules eBe ∼= kS⊗kP ikGi⊗kP kS. Since BrP (i) 6= 0,
the algebra ikGi = iBi is a source algebra of B; in particular, dimk(ikGi) = dimk(A). Clearly
dimk(kS⊗kP ikGi⊗kP kS) = p2a−2ddimk(A) and dimk(B) ≥ dimk(eBe). This shows the inequality,
and also shows that the equality holds if and only if 1B = e is primitive in (kG)S . Since 1B is a
central idempotent, 1B is then primitive in (kG)S′

for any Sylow-p-subgroup S′ of G, whence the
second statement.

The result in [3] on blocks of minimal dimension follows easily from the above:

Corollary 4 ([3, Theorem]). If dimk(B) = p2a−d then B is a nilpotent block with source algebra
kP , where P is a defect group of B.

Proof. Combining the above Theorem 3 and Theorem 1 yields in particular

dimk(B) ≥ p2a−2ddimk(A) ≥ p2a−dℓ(B)

Thus the equality dimk(B) = p2a−d forces ℓ(B) = 1 and dimk(A) = pd. Since by Theorem 2 also
A ∼= k(P ⋊ E) for some abelian p′-group E, this implies E = 1, hence kP is a source algebra of B,
and in particular, B is nilpotent (cf. [5, Remark (50.10)]).

As pointed out by the referee, combining Theorem 1 and Theorem 3 yields the inequality
dimk(B) ≥ p2a−d · ℓ(B) · u2

A; that is, Brauer’s inequality with uB replaced by uA. Since uA can
be smaller than uB this does not imply Brauer’s original result. This is due to the fact that the
inequality in Theorem 3 does not take into account the multiplicity of a local point of P on B.
For this reason there is no obvious connection between uA and uB . Examples where uA = 1 and
uB is an arbitrary p′-integer arise from blocks of H × P , where H is a finite p′-group having an
ordinary irreducible character of degree uB ; in such a situation, uB is precisely the multiplicity of
the unique point of P on the block algebra under consideration.
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