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THE GRADED CENTER OF THE STABLE

CATEGORY OF A BRAUER TREE ALGEBRA

Radha Kessar, Markus Linckelmann

Abstract. We calculate the graded center of the stable category of a Brauer tree algebra. The canonical
map from the Tate analogue of Hochschild cohomology to the graded center of the stable category is shown
to induce an isomorphism module taking quotients by suitable nilpotent ideals. More precisely, we show
that this map is surjective with nilpotent kernel in even degrees, while this map need not be surjective in
odd degrees in general.

1 Introduction

The graded center of a triangulated category (C,Σ) is the graded ring Z∗(C), which in degree
n ∈ Z, consists of all natural transformations ϕ : IdC → Σn satisfying Σϕ = (−1)nϕΣ. This condition
implies that Z∗(C) is graded commutative; see e.g. [14] for more details. Examples of triangulated
categories include derived module categories and stable module categories of self-injective algebras.
The background motivation, from block theory, for calculating graded centers is that comparing the
graded center of the stable module category of a block algebra to its block cohomology may shed
some light on the rather mysterious connections between the stable module category of the block and
its local structure. If A is a self-injective algebra over a field k there is a canonical map from the Tate

analogue ĤH
∗
(A) of Hochschild cohomology to the graded center Z∗(mod(A)) of the stable category

mod(A) of finitely generated A-modules. For Brauer tree algebras we get the following result:

Theorem 1.1. Let A be a Brauer tree algebra over a field k. The canonical homomorphism of

graded k-algebras ĤH
∗
(A) −→ Z∗(mod(A)) induces an isomorphism modulo nilpotent elements and

the graded algebra Z∗(mod(A)) is commutative.

If A is a block with cyclic defect groups then A is a Brauer tree algebra, and the above theorem
combined with [20, Theorem 1] or [17, 3.5] or [9, 1.4] shows that the nonnegative part of Z∗(mod(A))
and the block cohomology of A are isomorphic modulo nilpotent ideals. In even degree, the graded
center of the stable category of a Brauer tree algebra is in fact a quotient of the Tate analogue of
Hochschild cohomology by a nilpotent ideal:

Theorem 1.2. Let A be a Brauer tree algebra over a field k with exceptional multiplicity s and
e isomorphism classes of simple A-modules. The canonical homomorphism of graded k-algebras

ĤH
ev

(A) −→ Zev(mod(A)) is surjective and its kernel is a nilpotent ideal. Moreover, for any integer
d we have

dimk(Z
2d(mod(A))) =





s
2 if s is even
s+1
2 if s is odd and 0 ≤ r < e

2
s−1
2 if s is odd and e

2 ≤ r < e

where r is the unique integer such that 0 ≤ r < e and r ≡ d (mod e).

In odd degree, the dimensions are as follows:

Typeset by AMS-TEX

1



2 RADHA KESSAR, MARKUS LINCKELMANN

Theorem 1.3. Let A be a Brauer tree algebra over a field k with exceptional multiplicity s and e
isomorphism classes of simple A-modules. For any integer d we have

dimk(Z
2d−1(mod(A))) =





0 if e does not divide d
es
2 if es is even and e divides d

es−1
2 if es is odd, e divides d and char(k) 6= 2

es+1
2 if es is odd, e divides d and char(k) = 2

When specialised to degree zero, Theorem 1.2 implies the following statement:

Corollary 1.4. Let A be a Brauer tree algebra over a field k with e isomorphism classes of simple
modules and exceptional multiplicity s. The canonical map Z(A) −→ Z0(mod(A)) is surjective and
Z0(mod(A)) is a uniserial commutative k-algebra of dimension s

2 if s is even and dimension s+1
2 if

s is odd.

By a result of Rickard [18], a Brauer tree algebra is derived equivalent to a serial symmetric algebra,
and hence it suffices to prove the above results in that case. It is possible to describe Z∗(mod(A)) in
terms of generators and relations; we do this for group algebras of cyclic p-groups for future reference:

Corollary 1.5. Let k be a field of positive characteristic p and let P be a finite cyclic p-group.

(i) If |P | = 2 then Z∗(mod(kP )) ∼= k[ζ, ζ−1], where deg(ζ) = 1.

(ii) If |P | > 2 then Z∗(mod(kP )) ∼= k[π, ζ, ζ−1, τ1, τ2, .., τd]/J where deg(π) = 0, deg(ζ) = 2,

deg(τi) = −1 for 1 ≤ i ≤ d, where d is the largest integer less or equal to |P |
2 , and where J is

the ideal generated by the set of elements πd, τiτj, πτi, with 1 ≤ i, j ≤ d.

After recalling some background information on stable categories, graded centers, serial algebras
and their Hochschild cohomology in §2, §3, §4 and §5, respectively, we prove Theorem 1.2 and its
Corollary in §6, and we prove Theorem 1.3 in §7.

Remark. Here are two further reasons why graded centers might be worthwile considering in the
context of stable categories of p-blocks of finite groups. For one, a non-principal block does not have,
in general, a canonical module which would play the role of the trivial module in the principal block,

and in particular, whose Êxt-algebra would be a good analogue for Tate cohomology. Considering
the graded center is a way to avoid choosing a particular module. Second, even in the principal block
case, the thick subcategory of the stable category generated by the trivial module will not always
be the entire stable category, and so the graded center of the stable category of a principal block
contains Tate cohomology as graded subalgebra but need not be equal to it.

2 Background material on stable categories

Let k be a field and let A be a finite-dimensional self-injective k-algebra; that is, the classes of
finitely generated projective and injective A-modules coincide. This case occurs in particular if A
is symmetric; that is, if A is isomorphic to its k-dual A∗ = Homk(A, k) as A-A-bimodule. Denote
by mod(A) the stable category of the category mod(A) of finitely generated A-modules; that is, the
objects of mod(A) are the finitely generated A-modules, and for any two finitely generated A modules

U , V , the k-space of morphisms in mod(A) from U to V is the quotient

HomA(U, V ) = HomA(U, V )/Hompr
A (U, V )

where Hompr
A (U, V ) is the subspace of A-homomorphisms from U to V which factor through a

finitely generated projective A-module. The composition of morphisms in mod(A) is induced by
that in mod(A). For any finitely generated A-module U choose a projective cover (PU , πU ) and an
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injective envelope (IU , ιU ); that is, PU is a projective A-module and πU : PU → U a surjective A-
homomorphism inducing an isomorphism PU/rad(PU ) ∼= U/rad(U) and IU is an injective A-module
and ιU : U → IU is an injective A-homomorphism inducing an isomorphism soc(U) ∼= soc(IU ). The
operators defined by ΩA(U) = ker(πU ) and ΣA(U) = coker(ιU ) are unique up to unique isomorphisms
in the stable category; more precisely, any other pair (P, π) consisting of a finitely generated projec-
tive A-module P and a surjective A-homomorphism π : P → U , determines a unique isomorphism
ker(π) ∼= ΩA(U) in mod(A) which is induced by a homomorphism β : P → PU satisfying πU ◦ β = π.
In particular, ΩA and ΣA induce equivalences on mod(A) which are inverse to each other and up to
isomorphism of functors independent of the choices of projective covers and injective envelopes. In
what follows, whenever we use the notation ΩA and ΣA, we implicitly assume a choice of projective
covers and injective envelopes. The category mod(A) together with the equivalence ΣA becomes a
triangulated category, where exact triangles are induced by short exact sequences. See [7] for details.

It is well-known that for any integer n the functor ΣnA⊗
k
A0(A)⊗

A
− on mod(A) is canonically isomorphic

to the functor ΣnA; this follows from the fact that if P is a projective resolution of A as A⊗
k
A0-module

then, for any A-module X , the complex P ⊗
A
X is a projective resolution of X , in conjunction with

the uniqueness observations above. Whenever the underlying algebra is clear from the context we
write Ω and Σ instead of ΩA and ΣA. Given an A-homomorphism ϕ : U → V we denote by ϕ̄ its
image in HomA(U, V ). Conversely, if ϕ̄ ∈ HomA(U, V ) we implicitly assert that ϕ is a representative
of ϕ̄ in HomA(U, V ). The following is a well-known tool to lift commutative diagrams in mod(A) to
commutative diagrams in mod(A).

Lemma 2.1. Let A be a finite-dimensional self-injective algebra over a field k. Let

U
ϕ̄

−−−−→ X

ᾱ

y
yβ̄

V −−−−→
ψ̄

Y

be a commutative square in mod(A). Suppose that ᾱ has an injective representative α. Then for any
choice of representatives ϕ of ϕ̄ and β of β̄ there is a representative ψ of ψ̄ such that the square

U
ϕ

−−−−→ X

α

y
yβ

V −−−−→
ψ

Y

commutes in mod(A).

Proof. Let α, β, ϕ, ψ be representatives of ᾱ, β̄, ϕ̄, ψ̄, respectively. Suppose that α is injective. The
commutativity of the square in mod(A) means that βϕ−ψα : U → Y factors through a projective (and
hence also injective) A-module I; say βϕ− ψα = σρ for some ρ ∈ HomA(U, I) and σ ∈ HomA(I, Y ).
Since α is injective, there is a morphism γ ∈ HomA(V, I) such that ρ = γα. Set ψ′ = ψ + σγ. Then
ψ̄′ = ψ̄ and we have ψ′α = ψα + σγα = βϕ − σρ + σρ = βϕ. Hence replacing ψ by ψ′ proves the
result. �

§3 Background material on graded centers

3.1. Let k be a commutative ring, let C be a k-linear triangulated category with shift functor Σ : C →
C. For any integer n denote by Zn(C) the k-module of natural transformations ϕ : IdC → Σn satisfying
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Σϕ = (−1)nϕΣ; that is, Σ(ϕ(X)) = (−1)nϕ(Σ(X)) : Σ(X) → Σn+1(X) for any object X in C. The
graded k-module Z∗(C) becomes a graded commutative k-algebra with product induced by composing
natural transformations; that is, for ϕ ∈ Zm(C) and ψ ∈ Zn(C) the product ψϕ ∈ Zm+n(C) is defined
by (ψϕ)(X) = ψ(Σm(X)) ◦ ϕ(X) for all objects X in C. We call Z∗(C) the graded center of the
triangulated category C; see e.g. [14] for more details. Given a k-algebra A which is finitely generated
projective as k-module, it is well-known that there is a canonical graded k-algebra homomorphism
HH∗(A) −→ Z∗(Db(A)) which need not be surjective or injective; cf. [4], [11].

3.2. Let k be a field and let A be a self-injective k-algebra. One checks that there is a canonical

graded k-algebra homomorphism ĤH
∗
(A) −→ Z∗(mod(A)) where ĤH

∗
(A) is the Tate analogue

of Hochschild cohomology. More explicitly, ĤH
n
(A) = HomA⊗

k
A0(A,ΣnA⊗

k
A0(A)) for any integer n.

In particular, ĤH
0
(A) ∼= Z(A)/Zpr(A), where Zpr(A) is the ideal of all elements z ∈ Z(A) with

the property that the A ⊗
k
A0-endomorphism of A given by multiplication with z factors through a

projective A ⊗
k
A0-module. The map ĤH

∗
(A) → Z∗(mod(A)) sends ϕ ∈ ĤH

n
(A) to the family of

morphisms in the stable module category

X
∼=

−−−−→ A⊗
A
X

ϕ⊗IdX
−−−−→ ΣnA⊗

k
A0(A) ⊗

A
X

∼=
−−−−→ ΣnA(X)

for any finitely generated A-module X . Note that by the remarks in §2 the isomorphisms
Σn
A⊗

k
A0(A) ⊗

A
X ∼= ΣnA(X) are uniquely determined in mod(A). Evaluation at X induces a graded

algebra homomorphism Z∗(mod(A)) −→ Êxt
∗
(X,X) The composition of the two canonical homo-

morphisms ĤH
∗
(A) → Z∗(mod(A)) → Êxt

∗
(X,X) is the graded algebra homomorphism induced

by the functor −⊗
A
X modulo the canonical identification of the functors Σn

A⊗
k
A0(A) ⊗

A
− and ΣnA for

n ∈ Z.

3.3. Let A be a symmetric k-algebra. Then A is in particular self-injective, hence ĤH
0
(A) ∼= Z̄(A) =

Z(A)/Zpr(A), where the notation is as in 3.2. By [10, (4.E)] we have Zpr(A) ⊆ Z(A) ∩ soc(A). The
canonical map Z(A) → Z0(mod(A)) sending z ∈ Z(A) to the familiy of endomorphisms in mod(A)
given by multiplication with z on each A-module has certainly Zpr(A) in its kernel. In fact, its kernel
contains Z(A) ∩ soc(A) because soc(A) annihilates J(A) and hence annihilates any indecomposable
non projective A-module as A is symmetric.

3.4. Let A, B be symmetric k-algebras. Following [3] an A-B-bimodule M is said to induce a stable
equivalence of Morita type ifM is finitely generated projective as left A-module and as rightB module,
and if we have isomorphisms M ⊗

B
M∗ ∼= A in mod(A⊗

k
A0) and M∗ ⊗

A
M ∼= B in mod(B ⊗

k
B0). In

that case the map sending ϕ ∈ Zn(mod(A)) to IdM∗ ⊗ϕ induces an isomorphism of graded k-algebras

Z∗(mod(A)) ∼= Z∗(mod(B)); similarly, the map sending ζ ∈ ĤH
n
(A) to IdM∗ ⊗ ζ ⊗ IdM induces an

isomorphism of graded k-algebras ĤH
∗
(A) ∼= ĤH

∗
(B). There is an obvious commutative diagram

of graded algebra homomorphisms

ĤH
∗
(A) −−−−→ Z∗(mod(A)) −−−−→ Êxt

∗

A(X,X)

∼=

y
y∼=

y∼=

ĤH
∗
(B) −−−−→ Z∗(mod(B)) −−−−→ Êxt

∗

B(M∗ ⊗
A
X,M∗ ⊗

A
X)

where X is a finitely generated A-module.
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§4 On symmetric serial algebras

By a result of Gabriel and Riedtmann [6], a Brauer tree algebra is stably equivalent to a symmetric
serial algebra with the same number e of isomorphism classes of simple modules and the same ex-
ceptional multiplicity s. Rickard proved in [18] that one can lift some stable equivalence to a derived
equivalence, and showed in [19] that this implies the existence of a stable equivalence of Morita type.
As mentioned in 3.4 above, a stable equivalence of Morita type between two symmetric algebras in-
duces compatible isomorphisms between their Tate-Hochschild cohomology algebras and between the
graded centers of their stable categories. Therefore, in order to prove any of the results stated in §1
it suffices to give proofs in the case of symmetric serial algebras. The structure theory of symmetric
serial algebras is very well understood, going back to work of Nakayama [16] and Morita [15]; see e.g.
[2] or [12] for more details and references. We review the main aspects, without proofs, as needed for
the explicit calculations of the graded center of the stable category.

Throughout this section we denote by A a split basic indecomposable symmetric serial k-algebra.
In order to avoid trivialities we assume that A is not simple. Let I be a primitive idempotent decom-
position of 1A in A. Since A is basic, the set {Ai}i∈I is a set of representatives of the isomorphism
classes of projective indecomposable A-modules and we have A = ⊕

i∈I
Ai as left A-modules. Set

Si = Ai/J(A)i for i ∈ I. Then {Si}i∈I is a set of representatives of the isomorphism classes of simple
A-modules.

4.1. All projective indecomposable A-modules have the same composition length m.

4.2. There is a cyclic transitive permutation π of the set I such that J(A)i/J(A)2i ∼= Sπ(i) for all
i ∈ I.

4.3. For any i ∈ I the composition series (from top to bottom) of Ai is Si, Sπ(i), Sπ2(i), .., Sπm−1(i)
∼=

Si; in particular, the number |I| of isomorphism classes of simple A-modules divides m− 1.

4.4. There is an element c ∈ J(A) such that J(A) = cA = Ac and such that ci = π(i)c for all i ∈ I.

4.5. For any i ∈ I the set {i, ci, c2i, .., cm−1i} is a k-basis of Ai.

Set e = |I|. The integer s = m−1
e

is called the exceptional multiplicity of A. This is the unique
integer such that s + 1 is the largest Cartan invariant of A. This characterisation of s makes sense
for an arbitrary Brauer tree algebra and is invariant under stable equivalences.

4.6. Set t = ce. The set {1, t, t2, .., ts−1} ∪ {tsi | i ∈ I} is a k-basis of Z(A) and the set {tsi | i ∈ I}
is a k-basis of Z(A) ∩ soc(A).

Using the explicit description of Z(A) one easily verifies the next statement:

4.7. For any i ∈ I the set {i, ti, t2i, .., tsi} is a k-basis of iAi; in particular we have iAi = Z(A)i.

Every indecomposable A-module U is uniserial, hence isomorphic to a submodule of a projec-
tive indecomposable A-module Ai for some i ∈ I. Thus every endomorphism of U extends to an
endomorphism of Ai and therefore 4.7 implies the following statement:

4.8. For any indecomposable A-module and any ϕ ∈ EndA(U) there is z ∈ Z(A) such that ϕ(u) = zu
for all u ∈ U .

Right multiplication by c sends Ai to Aπ−1(i), where i ∈ I. Thus right multiplication by cr sends
Ai to Aj, where j = π−r(i). Combined with 4.7 and 4.8 this yields a description of homomorphisms
between all projective indecomposable A-modules:

4.9. Let i, j ∈ I. Let r be the smallest non-negative integer such that πr(j) = i. For any ϕ ∈
HomA(Ai,Aj) there is an element z ∈ Z(A) such that ϕ(ai) = aicrz for all a ∈ A.

The fact that every indecomposable A-module is uniserial yields the following classification of
indecomposable A-modules:
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4.10. For any i ∈ I and any integer A such that 1 ≤ a ≤ m there is, up to isomorphism, a unique
indecomposable A-module U(i,a) such that soc(U(i,a)) ∼= Si and ℓ(U(i,a)) = a. The set {U(i,a) | i ∈
I, 1 ≤ a ≤ m} is a complete set of representatives of the isomorphism classes of indecomposable
A-modules.

The effect of the equivalences Ω and Σ on mod(A) as described in §2 can be made explicit:

4.11. For any i ∈ I and any integer a such that 1 ≤ a ≤ m − 1 we have Ω(U(i,a)) ∼= U(π1−a(i),m−a)

and Ω2(U(i,a)) ∼= U(π(i),a).

4.12. For any i ∈ I and any integer a such that 1 ≤ a ≤ m − 1 we have Σ(U(i,a)) ∼= U(π−a(i),m−a)

and Σ2(U(i,a)) ∼= U(π−1(i),a).

Thus Σ and Ω have period 2e unless es = 1, in which case they have period 1. Combining the
above statements implies that for any i ∈ I we have chains of monomorphisms

Si ∼= Ui,1 →֒ Ui,2 →֒ · · · →֒ Ui,m−1 →֒ Ui,m ∼= Ai

and chains of epimorphisms

Ai ∼= U(i,m) ։ Uπ−1(i),m−1) ։ U(π−2(i),m−2) ։ · · · ։ U(π1−m(i),1) = U(i,1)
∼= Si .

In what follows we assume that we have made a fixed choice of such monomorphisms and epimor-
phisms in such a way that applying Ω to the morphism in mod(A) represented by the monomorphism

U(i,a) →֒ U(i,a+1) is the morphism in mod(A) represented by the epimorphism U(π1−a(i),m−a) ։

U(π−a(i),m−a−1).

4.13. (Alperin [1, 21.3]) Let U , V be indecomposable A-modules and let ϕ : U → V be a non
zero A-homomorphism. Then ϕ factors through a projective A-module if and only if ℓ(Im(ϕ)) ≤
ℓ(U) + ℓ(V ) −m.

The following two observations are special cases of 4.13:

4.14. Let U , V be indecomposable A-modules such that ℓ(U) + ℓ(V ) ≤ m. Then HomA(U, V ) ∼=
HomA(U, V ), or equivalently, no nonzero A-homomorphism from U to V factors through a projective
A-module.

4.15. Let Ube an indecomposable A-module and let n be an odd integer. Then HomA(U,Σn(U)) ∼=
HomA(U,Σn(U)), or equivalently, no nonzero A-homomorphism from U to Σn(U) factors through a
projective A-module.

4.16. Every homomorphism between two indecomposable A-modules is a composition of finitely many
irreducible homomorphisms, and a homomorphism is irreducible if it is either injective with simple
cokernel or surjective with simple kernel.

The relevance of 4.16 for graded centers is that in order to verify whether a given family of
morphisms {ϕ(U) : U → Σn(U)}U , with U running over a set of representatives of indecomposable

A-modules and for some integer n, is actually an element in Zn(mod(A)) it suffices to check the
compatibility with irreducible homomorphisms.

5 On the Hochschild cohomology of A

Let A be a split basic indecomposable non simple symmetric serial k-algebra. In order to relate

the graded center of mod(A) to ĤH
∗
(A) we adapt material from Holm [8] and Erdmann-Holm [5] to

the Tate analogue of Hochschild cohomology. It is shown in [8] that for any even integer n there is
an automorphism β of A such that Σn

A⊗A0(A) ∼= βA in the stable category of A-A-bimodules. Here
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we denote by βA the A-A-bimodule which is equal to A as right A-module and whose left A-module

structure is given by left multiplication with β(a) on A for any a ∈ A. Hence any element in ĤH
n
(A)

is represented by a bimodule homomorphism A → βA. It is further shown that any such bimodule
homomorphism is induced by left multiplication on A with an element in the k-vector space

Zβ(A) = {z ∈ A | za = β(a)z for all a ∈ A}

Using the material from the previous section one can describe the automorphism group of A explicitly.
We use the notation from the previous section.

5.1. There is a unique algebra automorphism α of A satisfying α(i) = π(i) for all i ∈ I and α(c) = c.
Moreover, we have ca = α(a)c for all a ∈ A.

Since π is a transitive cycle on I the automorphism α has order e = |I|. A straightforward
verification shows:

5.2. Let r be an integer such that 0 ≤ r ≤ e − 1 and set β = αr. Then Zβ(A) = crZ(A). If r is
positive, the set {cr, crt, .., crts−1} is a k-basis of Zβ(A).

For U an A-module and β an automorphism of A we denote by βU the A-module which is equal
to U as k-vector space, with a ∈ A acting as multiplication by β(a) on U . In this way, restriction
along β becomes an equivalence on mod(A) which is isomorphic to the functor βA⊗

A
−.

5.3. Let r be an integer such that 0 ≤ r ≤ e− 1 and set β = αr. For any i ∈ I and a ∈ A, the map
sending ai to β(a)πr(i) induces an isomorphism Ai ∼= βAπ

r(i). In particular, for any indecomposable
A-module U we have βU ∼= Σ2r(U).

The last statement in 5.3 follows from the first combined with 4.11. For even n we have ΣnA⊗A0(A) ∼=

βA in mod(A ⊗
k
A0) for some automorphism β of A, by [8]. By [5, 4.2] (or by 5.3 and some explicit

verifications) we can identify β in terms of n:

5.4. Let n be an even integer and let r be the unique integer such that 0 ≤ r ≤ e− 1 and such that
r ≡ n

2 (mod e). Set β = αr. We have βA ∼= ΣnA⊗
k
A0(A) in the stable category of A-A-bimodules; in

particular, Σ2e
A⊗

k
A0(A) ∼= A.

Thus, as A ⊗
k
A0-module, A has period dividing 2e. In fact, by [5, 4.2], A has period exactly 2e

unless es = 1 and char(k) = 2, in which case A has period 1. The following observation will be

needed in order to determine the image of an element ζ ∈ ĤH
n
(A) in Zn(mod(A)) for n even. It

says, roughly speaking, that an element ζ given by left multiplication with crz as in 5.2 induces an
element in the graded center induced by right multiplication with crz on projective indecomposable
modules.

5.5. Let i, j ∈ I and let r be the unique integer such that 0 ≤ r ≤ e− 1 and such that πr(j) = i. Set
β = αr. Let z ∈ Z(A). Define ϕ ∈ HomA(Ai,Aj) by ϕ(ai) = aicrz and define ζ ∈ HomA⊗A0(A, βA)
by ζ(a) = crza for all a ∈ A. We have a commutative diagram of A-modules

A⊗
A
Ai

ζ⊗IdAi
−−−−→ βA⊗

A
Ai

∼=

y
y∼=

Ai −−−−→
ϕ

Aj
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where the right vertical isomorphism is the composition of the isomorphisms βA ⊗
A
Ai ∼= βAi ∼= Aj

from 5.3.

Proof. Let a ∈ A. The map ζ ⊗ IdAi sends a⊗ i to crza⊗ i. The isomorphism βA⊗
A
Ai ∼= βAi sends

this to crzai, and the isomorphism βAi ∼= Aj sends this to β−1(crza)j = crzβ−1(a)j = acrzj =
aicrz = ϕ(ai) as claimed. �

§6 The even part of the graded center of mod(A)

Proof of Theorem 1.2. Let A be a split basic indecomposable serial symmetric k-algebra. We use
the notation of section 4. Let d be an integer and set n = 2d. Let i ∈ I. Since n is even we have
Σn(Si) ∼= Sj for a unique j ∈ I. Then Σn(U(i,a)) ∼= U(j,a) for 1 ≤ a ≤ m− 1. Let ϕ̄ ∈ Zn(mod(A))
and set ϕ̄(a,i) = ϕ̄(U(i,a)) for any i ∈ I and any integer a such that 1 ≤ a ≤ m− 1. By 2.1 we may
choose representatives ϕ(i,a) of ϕ̄(i,a) such that the diagram

6.1.

U(i,1)

ϕ(i,1)
−−−−→ U(j,1)y

y

U(i,2)

ϕ(i,2)
−−−−→ U(j,2)y

y

U(i,3)

ϕ(i,3)
−−−−→ U(j,3)y

y

: :
y

y

U(i,m−1)

ϕ(i,m−1)
−−−−−→ U(j,m−1)

commutes in mod(A), where the vertical arrows column are the chosen inclusions. The above
diagram determines ϕ̄ uniquely because every indecomposable non projective A-module is a Heller
translate of one of the U(i,a) with 1 ≤ a ≤ m

2 , by 4.11 and 4.12. Note also that then as a consequence
of 4.14,

6.2. we have ϕ̄ = 0 if and only if ϕ(i,a) = 0 for 1 ≤ a ≤ m
2 .

Conversely, we show that any commutative diagram as in 6.1 determines an element in Zn(mod(A))

and that this element is in the image of the canonical map ĤH
n
(A) → Zn(mod(A)). Since A is

symmetric, the projective A-module Aj is also injective. Thus we can extend ϕ(i,m−1) to a morphism
ϕi : Ai → Aj. Then ϕi is given by right multiplication with an element of the form crz for some
non negative integer r and some z ∈ Z(A). Here r is the smallest non negative integer such that
π−r(i) = j, or equivalently, such that icr = crj. This is also the smallest non negative integer such
that r ≡ d (mod e) because Σ has period 2e (if dimk(A) > 2) or 1 (if dimk(A) = 2). Set β = αr.

Then βA ∼= ΣnA⊗
k
A0(A) in mod(A ⊗

k
A0). Note also that β(j) = i. The map ζ : A → βA defined by

ζ(a) = crza is an A-A-bimodule homomorphism, hence determines an element in ĤH
n
(A). Let ϕ̄ be

the image of ζ in Zn(mod(A)). We will show that ϕ̄ coincides with ϕ̄(a,i) on U(i,a) for 1 ≤ a ≤ m− 1.
It suffices to show that the map ζ ⊗ IdAi : A ⊗

A
Ai → βA ⊗

A
Ai becomes ϕi upon composition with

the isomorphisms Ai ∼= A ⊗
A
Ai and βA ⊗

A
Ai ∼= βAi ∼= Aj, where the last isomorphism sends ai
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to β−1(ai) = β−1(a)j. This, however, is clear by 5.5. This shows the surjectivity of the map

ĤH
even

(A) → Zeven(mod(A)). The kernel of this map is contained in J(Z(A)) · ĤH
even

(A) and
hence nilpotent.

Using 6.2 one can be more precise regarding the dimension of Zn(mod(A)). This dimension will
be equal to the smallest non negative integer b with the property that right multiplication by crtb

annihilates all modules of length at most m
2 , by 6.2. Now crtb ∈ J(A)r+eb but crtb 6∈ J(A)r+eb+1.

Thus crtb annihilates all modules of length at most r+eb. Therefore b is the smallest integer satisfying

r + eb ≥

{
m
2 if m is even

m−1
2 if m is odd

Note that m = es+ 1. Thus the previous inequality is equivalent to

b ≥

{
s
2 − 2r−1

2e if es is odd
s
2 − r

e
if es is even

If s is even, so is es, and hence in this case we get b ≥ s
2 − r

e
. Since 0 ≤ r

e
< 1 and since s

2 is already

an integer, this forces b ≥ s
2 , and hence dimk(Z

2d(mod(A))) = s
2 . For s odd, similar arguments show

that regardless whether e is even or odd, we get b ≥ s+1
2 if 0 ≤ r < e

2 and b ≥ s−1
2 if r ≥ e

2 . Hence,
in that case we get the formulae

dimk(Z
2d(mod(A))) =

{
s+1
2 if 0 ≤ r < e

2
s−1
2 if e

2 ≤ r < e

This completes the proof of Theorem 1.2. �

Proof of Corollary 1.4. The kernel I of the canonical map Z(A) → Z0(mod(A)) contains Z(A) ∩

soc(A), and hence Z(A)/I is uniserial. This map factors through the canonical map ĤH
0
(A) →

Z0(mod(A)), hence is surjective. The dimension of Z0(mod(A)) follows from 1.2 applied to d = 0. �

§7 The odd part of the graded center of mod(A)

Proof of Theorem 1.3. Let A be a split basic indecomposable serial symmetric k-algebra. Keep the
notation from section 4. Let n be an odd integer and let ϕ̄ ∈ Zn(mod(A)). Let i ∈ I. Then
Σn(U(i,1)) ∼= U(j,m−1) for some j ∈ I. Using the effect of Σ on indecomposable non projective
A-modules one gets

Σn(U(i,a)) ∼= U(π1−a(j),m−a)

for 1 ≤ a ≤ m− 1. By 2.1 we may choose representatives ϕ(i,a) of ϕ̄(U(i,a)) such that the diagram

7.1.

U(i,1)

ϕ(i,1)
−−−−→ U(j,m−1)y

y

U(i,2)

ϕ(i,2)
−−−−→ U(π−1(j),m−2)y

y

U(i,3)

ϕ(i,3)
−−−−→ U(π−2(j),m−3)y

y

: :
y

y

U(i,m−1)

ϕ(i,m−1)
−−−−−→ U(π2−m(j),1)
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commutes in mod(A). Here the vertical arrows in the left column are inclusions while they are
surjections in the right column. As before, ϕ is uniquely determined by such a diagram. The
commutativity of the diagram 7.1 implies that

7.2. for 1 ≤ a ≤ m− 1 we have Im(ϕ(i,a)) ⊆ soc(U(π1−a(j),m−a)).

Indeed, this is true for a = 1 because U(i,1) is simple. Since the vertical maps in the left column of
the diagram 7.1 are injective with simple cokernel and the vertical maps in the right column of the
diagram 7.1 are surjective with simple kernel, an easy induction shows that 7.2 holds for all a such
that 1 ≤ a ≤ m− 1.

The top composition factor of U(i,a) is isomorphic to Sπ1−a(i). The bottom composition factor of
U(π1−a(j),m−a) is isomorphic to Sπ1−a(j). It follows that

7.3. if i 6= j then ϕ̄ = 0.

Together with 4.11 and 4.12 this implies that

7.4. we have i = j if and only if n = 2d− 1 for some integer d which is divisible by e.

This proves that Z2d−1(mod(A)) is zero unless possibly if e divides d. We need to consider the
case where e divides d. In that case we have i = j and any choice of a family of morphisms ϕ(i,a) :
U(i,a) → U(π1−a(i),a) whose images are in the socle of U(π1−a(i),a) make the diagram 7.1 commutative,
and hence defines a natural transformation Id → Σn. Not any such choice will define an element in
Zn(mod(A)), because we have in addition to make sure that the compatibility Σϕ̄(U) = −ϕ̄(Σ(U)) is
satisfied for all indecomposable non-projective A-modules U . In particular, ϕ̄ is already determined
by the family ϕ(i,a) with 1 ≤ a ≤ m

2 . Thus

dimk(Z
n(mod(A))) ≤

m

2

if n is an odd integer of the form n = 2d− 1 for some integer d.
Ifm is odd then any family ϕ(i,a) with 1 ≤ a ≤ m−1

2 which makes the upper half of 7.1 commutative

gives rise to an element in Zn(mod(A)) by applying powers of Σ to the morphisms in this familiy
and modifying by signs as appropriate. Thus, if m is odd then

dimk(Z
n(mod(A))) =

m− 1

2
=
es

2

Consider the case where m is even. In that case, any indecomposable A-module U of length m
2

has an odd period and hence the compatibility condition with Σ implies that ϕ̄(U) = −ϕ̄(U). If
char(k) 6= 2 this forces ϕ̄(U) = 0, and so ϕ̄ is determined by the familiy ϕ(i,a) with 1 ≤ a < m

2 , which

is equivalent to 1 ≤ a ≤ es−1
2 . Thus dimk(Z

n(mod(A))) = es−1
2 in that case. If char(k) = 2 then the

condition ϕ̄(U) = −ϕ̄(U) holds trivially, and so we get an extra dimension, leading to the formula

dimk(Z
n(mod(A))) = es+1

2 as stated. This completes the proof of Theorem 1.3. �

Proof of 1.5. If |P | = 2 then the trivial kP -module is, up to isomorphism, the unique indecomposable

non projective kP -module, and hence there is an isomorphism of functors ζ : Id ∼= Σ on mod(A).

Thus Z∗(mod(kP )) ∼= Ĥ∗(P ; k) ∼= k[ζ, ζ−1] as claimed. If |P | > 2, or equivalently, es ≥ 2, it follows

from 7.2 is that any odd degree element in Z∗(mod(A)) composed with any other odd degree element
or any even degree element in the radical of Z∗(mod(A)) yields zero. More explicitly, not only is
the odd degree part of Z∗(mod(A)) an ideal which squares to zero, but it is in fact annihilated by

Z2n(mod(A)) for any integer n not divisible by e and by the radical of Z0(mod(A)). The description
of the graded center in terms of generators and relations is obtained by taking for π the image of a
generator of the radical of Z(A)/(Z(A) ∩ soc(A)), for ζ the isomorphism Id ∼= Σ2 and for the τi any
k-basis of Z−1(mod(kP )). �
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Proof of 1.1. If char(k) = 2 and if es = 1 the result is a trivial verification (this is the case |P | = 2 in
1.5). If es ≥ 2 or if char(k) 6= 2, any two odd degree elements in Z∗(mod(A)) multiply to zero. Since
the even degree part of Z∗(mod(A)) is a quotient of the even part of the Tate analogue of Hochschild
cohomology by 1.2, the result follows. �

References

1. J. L. Alperin, Local Representation Theory, Cambridge University Press, Cambridge, 1985.
2. M. Auslander, I. Reiten, S. Smalø, Repesentation Theory of Artin Algebras, Cambridge University Press, Cam-

bridge, 1995.
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