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Abstract

We show that the degrees and relations of the Hochschild cohomology of a p-block algebra
of a finite group over an algebraically closed field of prime characteristic p are bounded in terms
of the defect groups of the block and that for a fixed defect d, there are only finitely many
Hilbert series of Hochschild cohomology algebras of blocks of defect d. The main ingredients are
Symonds’ proof of Benson’s regularity conjecture and the fact that the Hochschild cohomology
of a block is finitely generated as a module over block cohomology, which is an invariant of
the fusion system of the block on a defect group.

Let p be a prime and k an algebraically closed field of characteristic p. Let G be a finite group
and B a block algebra of kG; that is, B is an indecomposable direct factor of kG as a k-algebra.
A defect group of B is a minimal subgroup P of G such that B is isomorphic to a direct summand
of B ⊗kP B as a B-B-bimodule. The defect groups of B form a G-conjugacy class of p-subgroups
of G, and the defect of B is the integer d(B) such that pd(B) is the order of the defect groups of B.
Donovan’s conjecture predicts that there should be only finitely many Morita equivalence classes
of block algebras of a fixed defect d. If true, this would imply that there are only finitely many
isomorphism classes of Hochschild cohomology algebras of block algebras with a fixed defect d. We
showed in [9] that for any fixed integer n ≥ 0 the dimension of HHn(B) is bounded in terms of the
defect groups of B. Our first result adds to this that there is a bound on the degrees of generators
and relations of the Hochschild cohomology HH∗(B) depending only on the defect of B.

Theorem 1. There is a function g : N0 → N0 such that for any finite group and block algebra B of
kG of defect d the Hochschild cohomology HH∗(B) of B is determined, as a graded commutative
k-algebra, by homogeneous generators and relations in degrees less or equal to g(d).

Using the aforementioned bounds on the coefficients of the Hilbert series of HH∗(B) and
theorems of Hilbert and Serre, we show the following result:

Theorem 2. Let d be a nonnegative integer. There are only finitely many Hilbert series of
Hochschild cohomology algebras HH∗(B), with B running over the block algebras with defect d
of finite group algebras over k.

For the sake of completeness we mention that this result has a ‘converse’:
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Theorem 3. Let h ∈ Z[[t]]. There are at most finitely many positive integers d such that there
exists a block B of defect d of a finite group algebra over k whose Hochschild cohomology has h as
its Hilbert series.

In other words, the Hilbert series of the Hochschild cohomology of a block and its defect
‘determine each other up to finitely many possibilities’. Since the degree zero coefficient of the
Hilbert series of HH∗(B) is the dimension of Z(B), Theorem 3 would follow from a positive
solution to Brauer’s problem 21, stipulating that the defect of a block B should be bounded in
terms of a function depending only on the dimension of Z(B). By [10, Theorem], a positive solution
of Brauer’s problem 21 would in turn be a consequence of an affirmative answer to the Alperin-
McKay conjecture, stating that a block and its Brauer correspondent should have the same number
of ordinary irreducible characters of height zero.

Whether there are actually only finitely many isomorphism classes of Hochschild cohomology
algebras of blocks with a given defect d remains at this point an open problem. In view of Theorem
1, in order to show this, it would suffice to bound the size of the field generated by the coefficients
in the relations between a suitably chosen set of generators. Evidence in that direction includes
the work of Cliff, Plesken and Weiss [6], showing that HH0(B) ∼= Z(B) has always a k-basis with
multiplicative constants in the prime field Fp. Since principal blocks are defined over Fp, we can
conclude that there are only finitely many isomorphism classes of Hochschild cohomology algebras
of principal blocks with a given defect d; see Remark 7 below for more details.

The key ingredient for proving the above results is Symonds’ proof in [13] of Benson’s regularity
conjecture. The extension of the Castelnuovo-Mumford regularity to graded-commutative rings
with generators in arbitrary positive degrees is due to Benson [2, §4]. We follow the notational
conventions in Symonds [13]. In particular, if p is odd and T = ⊕n≥0T

n is a finitely generated
nonnegatively graded commutative k-algebra and M a finitely generated graded T -module, we
denote by reg(T,M) the Castelnuovo-Mumford regularity of M as a graded T ev-module, where
T ev = ⊕n≥0T

2n is the even part of T (which is then strictly commutative). We set reg(T ) =
reg(T, T ); that is, reg(T ) is the Castelnuovo-Mumford regularity of T as a graded T ev-module. We
use the properties of reg(T,M) from [13, §1] and [14, §2]. Benson conjectured in [2, 1.1] that for any
finite group G, reg(H∗(G;Fp)) should be zero, proved in [2, 4.2] the inequality reg(H∗(G;Fp)) ≥
0 and showed further in [4] that the conjecture holds in a number of cases. Symonds proved
Benson’s regularity conjecture in general in [13]. As an immediate consequence of the properties
of reg(H∗(G;Fp)) listed in [13, §1], we have the following:

Lemma 4. Let G be a finite group, H a subgroup of G and V a finitely generated kH-module. We
have reg(H∗(G; k),Ext∗kG(k; IndG

H(V ))) ∼= reg(H∗(H; k),Ext∗kH(k;V )).

Proof. By Eckman-Shapiro we have a graded k-linear isomorphism Ext∗kG(k; IndG
H(V )) ∼= Ext∗kH(k;V ),

which is easily seen to be an isomorphism as H∗(G; k)-modules, where on the right side the
H∗(G; k)-module structure is obtained from restricting the H∗(H; k)-module structure via the
graded algebra homomorphism H∗(G; k) → H∗(H; k) induced by ResGH . By a theorem of Evens
and Venkov, H∗(H; k) is finitely generated as a module over H∗(G; k). It follows that Hev(H; k) is
finitely generated as a module over Hev(G; k), and hence, by [13, 1.1], the regularity of Ext∗kH(k;V )
as a module over H∗(H; k) coincides with that of Ext∗kH(k;V ) as a module over H∗(G; k).

Combining the above Lemma with Symonds’ results in [13], [14] yields the following:

Proposition 5. Let G be a finite group. We have reg(HH∗(kG)) = 0, and for any block algebra
B of kG we have reg(HH∗(B)) ≤ 0.
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Proof. Set ∆G = {(x, x) | x ∈ G} ⊆ G×G. The ‘diagonal induction’ functor IndG×G
∆G induces a uni-

tary graded algebra homomorphism H∗(∆G; k) → HH∗(kG). By Eckmann-Shapiro, we have an
isomorphism of H∗(∆G; k)-modules HH∗(kG) ∼= H∗(∆G; kG). As a consequence of the theorem
of Evens and Venkov, HH∗(kG) is finitely generated as a H∗(∆G; k)-module, hence HHev(kG)
is finitely generated over Hev(∆G; k). Thus we have reg(HH∗(kG)) = reg(H∗(∆G; k), HH∗(kG))
by [13, 1.1]. Decomposing kG as a k∆G-module yields an isomorphism of H∗(G; k)-modules
H∗(∆G; kG) ∼= ⊕x H

∗(∆G; Ind∆G
∆CG(x)(k)), where x runs over a set of representatives of the con-

jugacy classes of G. Using Lemma 4 it follows from [13, Corollary 0.2] that the regularity of each
summand is zero. Using [13, Lemma 1.4. (4)] we get that reg(HH∗(kG)) = 0. Since HH∗(kG)
is the direct product of the algebras HH∗(B), with B runing over the blocks of kG, the second
statement follows.

Proof of Theorem 1. Let B be a block of kG with defect group P and fusion system F . Denote by
H∗(B) the corresponding block cohomology; that is, H∗(B) can be identified with the subalgebra
H∗F (P ; k) of H∗(P ; k) of F-stable elements. By [11, 5.6], [12, 4.3] there is an injective graded
algebra homomorphism δB : H∗(B) → HH∗(B) such that HH∗(B) is finitely generated as a
module over H∗(B). Let R be a Noether normalisation of Hev(B). Then HH∗(B) is finitely
generated as a module over the polynomial algebra R via the homomorphism δB restricted to R.
Since reg(HH∗(B)) ≤ 0 it follows from [13, 1.3] or [14, 2.1] that there is an integer g(F) such that
as a graded commutative k-algebra, HH∗(B) is generated by elements and relations in degree at
most g(F), depending only on the degrees of the generators of R. Since for a fixed integer d ≥ 0
there are at most finitely many isomorphism classes of finite p-groups of order pd and for any finite
p-group P there are only finitely many fusion systems on P it follows that there is an integer g(d)
as stated.

Remark 6. We have made no effort to construct a best possible bound g(d), but the proof of
the main result indicates where to look for improvements: one needs to bound the degrees of the
Noether normalisations of H∗F (P ; k) for any finite p-group P and any fusion system on P .

Remark 7. The principal block idempotent of a finite group algebra kG is contained in FpG, and
Lemma 4 and Proposition 5 remain true with k replaced by an arbitrary field of characteristic
p. A straightforward adaptation of the proof of Theorem 1 shows that for principal blocks, the
conclusion of Theorem 1 holds with Fp instead of k. If B is the principal block of FpG for some
finite group G, then each HHi(B) is a finite set whose cardinality is bounded by the defect d of B,
and hence there are only finitely many possible choices of generators and relations of HH∗(B) in
degree at most g(d). Moreover, for every field k containing Fp, the algebra k⊗Fp B is the principal
block of kG, and we have HH∗(k ⊗Fp B) ∼= k ⊗Fp HH

∗(B). It follows that there are only finitely
many isomorphism classes of Hochschild cohomology algebras of principal blocks with defect d of
finite group algebras over a fixed field of characteristic p.

Proof of Theorem 2. As before, let B be a block of a finite group algebra kG with defect group P
and fusion system F . Set d = d(B); that is, pd = |P |. Let H∗(B) and R be as in the proof of
Theorem 1. Then HH∗(B) is finitely generated as an R-module. By the Hilbert-Serre theorem
[1, Theorem 2.1.1], the Hilbert series hB(t) =

∑
i≥0 dimk(HHi(B))ti of HH∗(B) is a rational

function of the form

hB(t) =
f(t)∏r

i=1(1− tdi)
,
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where f ∈ Z[t, t−1] and where di > 0 is the degree of a homogeneous element ζi in R, such that the
set {ζi}1≤i≤r generates R as a k-algebra. As noted earlier, for fixed d there are only finitely many
isomorphism classes of block cohomology algebras H∗(B), and hence the di and r are bounded in
terms of d. Since HH∗(B) vanishes in negative degrees we have f ∈ Z[t]. It follows from Serre’s
formula [5, Theorem 4.4.3 (c)] that the degree of hB as a rational function is bounded by the
regularity of HH∗(B), which is at most zero by Proposition 5 above, and hence deg(f) ≤

∑r
i=1 di.

This implies that deg(f) is bounded in terms of a function depending only on d. By [9, Theorem
1], the coefficients dimk(HHn(B)) of the series hB(t) are bounded in terms of functions depending
only on n and d. Consider the equation

f(t) = hB(t)

r∏
i=1

(1− tdi) .

By the previous remarks, the absolute values of the coefficients of the right side are bounded in
terms of d in each degree, thus the same is true for the coefficients of f . Since deg(f) is bounded
in terms of d as well, this leaves only finitely many possibilities for f once the defect d is fixed.
Thus there are only finitely many possibilities of Hilbert series hB(t) of Hochschild cohomology
algebras of blocks B with a given defect d.

Remark 8. There is a vast amount of literature on the interplay between the Castelnuovo-
Mumford regularity and Hilbert series, predominantly for standard graded algebras. See [7] for an
introduction to the subject. For the use of commutative algebra in finite group cohomology, see
[3]. Both sources have long lists of further references.

Proof of Theorem 3. Write h(t) =
∑∞

n=0 ant
n with an ∈ Z, n ≥ 0. Suppose that B is a block

of kG such that dimk(HHn(B)) = an, for n ≥ 0. By [12, Corollary 4.3], the Krull dimension
of HH∗(B) is equal to the rank of a defect group P of B. The Krull dimension of HH∗(B) is
also equal to its Krull dimension as a module over the even part Hev(B) of block cohomology,
hence, by [1, Theorem 2.2.7], equal to the pole at t = 1 of h. In particular, h determines the
rank of P . The following argument to bound the exponent is as in the proof of [10, Theorem]. By
a result of Brauer, dimk(Z(B)) is equal to the sum

∑
(u,e) `(CG(u), e), where (u, e) runs over a

set of representatives of the G-conjugacy classes of B-Brauer elements, and where `(CG(u), e) is
the number of isomorphism classes of simple kCG(u)e-modules. Therefore, dimk(Z(B)) bounds
the number of summands in this sum, hence the number of different orders of elements in P ; in
particular, the exponent of P is bounded in terms of a function depending only on dimk(Z(B)) =
a0. Since the order of a finite p-group is bounded in terms of its rank and exponent (see Lemma
9 below) the result follows.

For the convenience of the reader, we include the following elementary group theoretic fact used
in the proof of Theorem 3:

Lemma 9. Let r and n be positive integers. There are only finitely many isomorphism classes of
finite p-groups of rank r and exponent pn.

Proof. Let P be a finite p-group of rank r and exponent pn. Let A be a subgroup of P which
is maximal with respect to being normal and abelian. Since the rank of A is at most r and the
exponent of A is at most pn, the order of A is at most pnr. By [8, Lemma 5.3.12] we have CP (A) =
A. Thus P/A acts faithfully on A, hence is isomorphic to a subgroup of Aut(A). This shows that
the orders of A and of P/A are bounded in terms of r, n, and hence so is the order of P .
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