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Abstract

Evolutionary dynamics have been traditionally studied in infinitely large homo-
geneous populations where each individual is equally likely to interact with every
other individual. However, real populations are finite and characterised by com-
plex interactions among individuals. In this work, the influence of the population
structure on the outcome of the evolutionary process is explored.

Through an analytic approach, this study first examines the stochastic evolution-
ary game dynamics following the update rules of the invasionprocess, an adaptation
of the Moran process, on finite populations represented by three simple graphs; the
complete graph, the circle and the star graph. The exact formulae for the fixation
probability and the speed of the evolutionary process underdifferent conditions are
derived, and the effect of the population structure on each of these quantities is stud-
ied.

The research then considers to what extent the change of the strategy update
rules of the evolutionary dynamics can affect the evolutionary process in structured
populations compared to the process in homogeneous well-mixed populations. As
an example, the evolutionary game dynamics on the extreme heterogeneous structure
of the star graph is studied analytically under different update rules. It is shown that
in contrast to homogeneous populations, the choice of the update rules might be
crucial for the evolution of a non-homogeneous population.

Although an analytic investigation of the process is possible when the contact
structure of the population has a simple form, this is usually infeasible on complex
structures and the use of various assumptions and approximations is necessary. This
work introduces an effective method for the approximation of the evolutionary pro-
cess in populations with a complex structure.

Another component of this research work involves the use of game theory for
the modelling of a very common phenomenon in the natural world. The models de-
veloped examine the evolution of kleptoparasitic populations, foraging populations
in which animals can steal the prey from other animals for their survival. A basic
game-theoretical model of kleptoparasitism in an infinite homogeneous well-mixed
population is extended to structured populations represented by different graphs.
The features of the population structure that might favour the appearance of klep-
toparasitic behaviour among animals are addressed.

In addition, a game-theoretical model is proposed for the investigation of the
ecological conditions that encourage foraging animals to share their prey, a very
common behaviour occurring in a wide range of animal species.





CHAPTER 1

Introduction

Evolution of populations has been an issue of great concern in the last centuries.

Although evolution is a broad term, one can simply define it asa process by which

populations change in the heritable characteristics over time. There have been vari-

ous theories proposed in order to explain evolutionary changes in populations. In the

middle of the 19th century, Charles Darwin published a book, entitled ‘On the Ori-

gin of Species by Means of Natural Selection’, suggesting a revolutionary theory to

explain evolution. Populations evolve by natural selection. Individuals occasionally

mutate. Mutation is a genetic change due to an error in the reproduction process.

These alterations generate differences among individualsin their ability to survive

and reproduce. If the new individuals have a survival and reproductive advantage in

their environment, then they reproduce at higher rates passing on their characteris-

tics to their offspring. Disadvantageous individuals havea lower chance of survival

and reproductive success and thus they are more likely to dieout over time. Neutral

mutant individuals, i.e. mutants that are neutral with respect to natural selection,

might incorporate into the population by neutral drift. Natural selection acts on in-

dividuals, but only the population of individuals evolves over time. The time needed

for a population to evolve depends on the nature of the population and might vary

from minutes to millions of years. A population might be a human population, an

animal population, a population of cells, multicellular organisms, molecules such as

DNA and proteins, or any other evolving population. An outgrowth of Darwinian

evolution is the cultural evolution which refers to cultural and social changes that

occur over time (for example an erroneous imitation of behavioural traits, changes

in the human language, ideas and opinions, strategic choices etc.).

Evolutionary game theory has been proven to be a powerful mathematical tool

for the description and the study of the evolution of populations consisting of in-

teracting individuals, including the evolution of populations of cells and viruses,

1
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the evolution of virulence in host-parasite interactions,the evolution of opinions

through social interactions, and the evolution of populations of animals competing

either over territory, mates, food or other biological resources, or for social status,

using different strategies.

This chapter is an introductory chapter in game theory and evolutionary graph

theory. It introduces the basic concepts of the classical and evolutionary game the-

ory and some of the fundamental tools for the study of evolutionary game dynamics

in finite homogeneous well-mixed populations of constant size through a stochas-

tic approach. The famous Moran process is described and important quantities in

the stochastic evolutionary process are considered. Then,evolutionary dynamics in

structured populations and the basic idea of studying evolution of populations rep-

resented by graphs are discussed. Applications of game theory in the modelling of

kleptoparasitism are also presented. At the end, the contributions and the outline of

this work are provided.

1.1 Classical game theory

Game theoryis the study of strategic decision-making of individuals. Game the-

ory has a long history with origin in the 1920s when John von Neumann published

a series of papers (summarised later in the book von Neumann and Morgenstern

(1944)), although discussions of game theory had started much earlier, at the be-

ginning of the 18th century. It has been applied to study individuals’ behaviour in

decision making problems in a wide variety of fields, including economics, biology,

ecology, computer science, sociology, psychology and political sciences.

A strategic gameis a model of interacting decision-makers, theplayers. At each

stage of the game, each of the players has to take anaction. The player’sstrategy

determines the action taken at every possible stage of the game. Each player has

a preference relation on the set of action profiles, which is represented by the so-

calledpayoffs, i.e. the payoffs define a preference ordering. In other words, a payoff

represents the motivation of a player to choose a specific strategy, the “award” of a

choice. The payoff of each player might be affected not only by its own action but

also by the action chosen by the other players that it is interacting with. In each case,

the players try to attain the maximum possible payoff by choosing an appropriate

action. The players might use pure strategies or mixed strategies. Apure strategy

defines a specific action that a player will take at every possible stage of the game.

The number of pure strategies can be either finite or infinite.A mixedstrategy is

a strategy according to which a player uses each of the available pure strategies
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with a certain probability. Since a probability can be any real number between 0

and 1, there is an infinite number of mixed strategies. A mixedstrategy is usually

represented by a row vector (probability vector) whoseith entry is the probability

that a player uses theith available pure strategy.

Depending on the nature of the strategic game, there are different ways to de-

scribe it. A commonly known type of game is the game innormal form(or strategic

form). Games in this form consist of a finite number of players, a set of pure strate-

gies available for each player to use, and the payoff function which determines the

payoff of each player depending on its strategy and the strategy of its opponents.

In normal form games all individuals play a strategy simultaneously, or individuals

are not aware of the strategy of their opponents. When there are just two players

and the number of available strategies for each player is finite, the game is usually

called aBimatrix game. In such games, the outcome of the payoff function can be

represented by a matrix, the so-calledpayoff matrix. Assume two players, Player 1

and Player 2, where Player 1 has a finite strategy setS= {S1, . . . ,Sm} and Player 2

a finite strategy setT = {T1, . . . ,Tn}. The column of the payoff matrix represents

the strategic choices of the one player and the row the strategic choices of the other.

Each element in rowi and columnj of the matrix is an ordered pair(si , t j), where

si represents the payoff received by the “row player” andt j the payoff received by

the “column player” when the row player plays strategySi and the column player

plays strategyTj . For every possible combination of pure strategiesSi , i ∈ [1,m],

andTj , j ∈ [1,n], there is a corresponding pair of numbers(si , t j). This game can be

represented by the following payoff matrix

Player 2 (Column Player)

Strategy T1 . . . Tj . . . Tn

S1 (s1, t1) . . . (s1, t j) . . . (s1, tn)

Player 1
...

... . . .
... . . .

...

(Row Player) Si (si , t1) . . . (si , t j) . . . (si , tn)
...

... . . .
... . . .

...

Sm (sm, t1) . . . (sm, t j) . . . (sm, tn)

. (1.1)

In the case ofsymmetric games, i.e. games where both players have the same

strategic choices,S= {S1 . . .Sn}, and the payoff obtained by using each strategy is

irrespective of the player that uses it, the game can be described by a squaren×n

payoff matrix, whose element in theith row and j th column represents the payoff of

the row player when using strategySi against the column player that uses strategySj .

3



Introduction

For example, in a two-player symmetric game in normal form where there are two

possible strategies for each player, A and B (such games are also called 2×2 games),

the interactions between the individuals can be described by the payoff matrix

A B

A a b

B c d

. (1.2)

An individual playing strategy A (A individual) obtains a payoff a when interacting

with another individual playing A and a payoffb when interacting with an individual

playing B (B individual). Similarly, an individual playingstrategy B obtains payoffs

c andd when interacting with an individual playing A and an individual playing B,

respectively.

In this work, we will consider two-player symmetric games innormal form.

1.1.1 Dominant strategies and Nash equilibria

In this section, we present in a simple way some important definitions and main

solution concepts of the classical game theory.

The best responsestrategy is the strategy (or strategies) that when it is used

against a given strategy offers the highest possible payoff. If this strategy is unique,

i.e. it results in a strictly higher payoff against a given strategy then it is called the

strict best response to that strategy.

A dominant strategy(strictly dominant strategy) is a strategy that is a (strict) best

response to every other strategy, i.e. it results in the highest payoff compared to the

other available strategies no matter what the opponent does.

A Nash equilibrium(Nash, 1951) is a set of strategies consisting of a strategy

for each player. The strategy of each player is a best response to the other players’

strategy, i.e. if any of the players chooses a different strategy and the strategies

of the other players remain unchanged, its payoff will either remain the same or

decrease. If the decrease in payoff is the only possible result of such a choice, then

the set of strategies is called astrict Nash equilibrium. If a player has a strictly

dominant strategy, then this strategy is obviously the one that is used in the Nash

equilibria of the game. In mathematical terms, in a two-player symmetric game, a

strategyi is a Nash equilibrium ifE(i, i)≥ E( j, i) ∀ j, and a strict Nash equilibrium

if E(i, i) > E( j, i) ∀ j 6= i, whereE(X,Y) represents the payoff for playing strategy

X against strategy Y. A game can have either a pure-strategy or a mixed-strategy

Nash equilibrium. Although in general pure strategy Nash equilibria may not exist,
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it is proved (Nash, 1951) that in a finite game (a game that has afinite number of

players and actions) there always exists a Nash equilibriumif individuals can use

mixed strategies.

Two concepts which are sometimes important are those of Pareto efficiency and

risk-dominance. A strategy is calledPareto efficient(or Pareto optimal) if there is

no any other strategy that can improve the payoff of a player without reducing the

payoff of at least one other player. Note that a Nash equilibrium is not necessarily

Pareto efficient; there might be sets of strategies which mayresult in better outcomes

for both players but are not Nash equilibria. A strategy is called risk dominantif it

has the largest basin of attraction, i.e. it becomes more preferable in cases where the

uncertainty about the strategy of the opponents increases.For example, in a 2×2

game described by the payoff matrix (1.2) where strategies Aand B are strict Nash

equilibria, i.e.a> c andb< d, if a> d then A is Pareto efficient, but ifa+b< c+d

then B is risk-dominant, given that each player assigns probability 0.5 to each of

the strategies A and B. It is often interesting to consider when selection favours

the Pareto efficient Nash equilibrium over the risk dominantNash equilibrium, for

example in coordination games (see Sections 1.3.3 and 3.4.2).

1.2 Evolutionary game theory

In contrast to the classical game theory where individuals play a static game and

choose the strategy that offers them the maximum possible payoff, given that all

individuals behave rationally, evolutionary game theory is a dynamic theory which

studies the evolution of populations where individuals interact repeatedly with other

individuals. The different strategies might be thought of as different types of in-

dividuals and the payoffs obtained by each individual when interacting with other

individuals are interpreted asfitness, which determines the reproductive and survival

success. Therefore, depending on the payoff values, the fitness of each individual

might be either constant (constant fitness) or dependent on the frequency (relative

proportion) of the other types of individuals in the population (frequency dependent

fitness).

The evolutionary process is mainly determined by the selection and mutation

process. In terms of the evolutionary game theory, under selection individuals with

the highest payoff (and thus fitness) are more likely to pass on their traits (genetic or

cultural) to subsequent generations. Consequently, the frequency of these individu-

als increases. Similarly, the frequency of the less successful individuals decreases.

Mutation can be interpreted as a change in the strategic choice of individuals in
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subsequent generations.

Evolutionary game dynamics have been traditionally studied in infinitely large

unstructured populations where every individual is equally likely to meet every other

individual. There are two traditional approaches to evolutionary game theory. The

first is the approach of Maynard Smith and Price (1973) who introduced the concept

of an Evolutionarily Stable Strategy. The second approach studies the variation in

the frequency of the different types of individuals over time through the construction

of a dynamical system of equations, the replicator equations.

1.2.1 Evolutionarily Stable Strategies

A strategy is anEvolutionarily Stable Strategy(ESS) (Maynard Smith and Price,

1973) if a population adopting that strategy cannot be invaded by a small number

of individuals playing any alternative strategy (mutant strategy), i.e. if it is stable

with respect to changes in strategic choices of individuals. But let us consider the

definition of an ESS in mathematical terms.

Consider an infinitely large resident population where all individuals use a strat-

egy (pure or mixed), R. Assume that initially all individualshave a background

(initial) fitness equal tofb and let∆ f (X,Y) be the change in fitness for an individ-

ual of a subpopulation that plays strategy X (X individual) when interacting with an

individual of a subpopulation that plays strategy Y (Y individual) (this is equal to

the payoff of an X individual when playing against a Y individual). The expected

fitness of an individual of a population where all individuals use strategy R, is

fR = fb+∆ f (R,R). (1.3)

Assume that this population is invaded by a very small proportion ε of mutant indi-

viduals that play strategy M. In this case, the expected fitness of a random R indi-

vidual of the population is given by

fR = fb+(1− ε)∆ f (R,R)+ ε∆ f (R,M), (1.4)

and the expected fitness of a random individual playing the mutant strategy is

fM = fb+(1− ε)∆ f (M,R)+ ε∆ f (M,M). (1.5)

Mutant individuals playing strategy M cannot invade a population of individuals

playing strategy R, if

fR > fM, (1.6)
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for all the possible strategies M6= R. Sinceε is a very small proportion close to

zero, this is true if

∆ f (R,R)> ∆ f (M,R) or (1.7)

∆ f (R,R) = ∆ f (M,R) and∆ f (R,M)> ∆ f (M,M). (1.8)

A strategy R is an ESS if either the condition (1.7) or the condition (1.8) holds for all

the available strategies M, M6= R. In words, the condition (1.7) means that a very

small proportion of mutant individuals playing strategy M cannot invade a popula-

tion of resident individuals playing R if an individual playing strategy R compared

with an individual playing strategy M has an advantage when both play against an

individual that plays R, i.e. if R is a strict best response to itself. The condition (1.8)

means that even if a resident individual does equally well with a mutant when play-

ing against a resident, the mutants cannot invade the population as long as a resident

does better when playing against a mutant, i.e. if R is a better response to M, than

M to itself.

It follows from conditions (1.7) and (1.8) that a necessary condition for a strat-

egy to be an ESS is for it to be a Nash equilibrium, and thus every ESS is a Nash

equilibrium. But note that a Nash equilibrium is not necessarily an ESS. If a strat-

egy is a strict Nash equilibrium, then condition (1.7) must hold, and thus every strict

Nash equilibrium is an ESS.

It should be noted that there might be conditions under whichthere are many

possible ESSs simultaneously and the population stabilised into one of these. On

the other hand, there might be circumstances in which there are no ESSs.

A limitation of the evolutionarily stable strategy conceptis that it begins from

the state in which all the members of the population play the same strategy with-

out considering how this state has been reached. In addition, it considers only the

stability of the population strategy in isolated changes inthe strategic choices of a

very small proportion of the population, without considering any mutations during

the evolutionary process. Furthermore, the concept holds as long as the population

size is infinite, and population structure and stochasticity are ignored.

1.2.2 Replicator Dynamics

In contrast to the concept of evolutionarily stable strategies, thereplicator dynamics

describe how the frequencies of strategies within a population change in time.

Consider a homogeneous well-mixed population of infinite size where individu-

als can use only pure strategies from a finite setS= {S1, ..Sn}. Let us consider the
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simplest case where individuals can use either strategy A orstrategy B. The game

played between the individuals is described by the payoff matrix (1.2). The expected

fitnesses of individuals playing strategy A and B are given respectively by

fA = fb+xAa+xBb, (1.9)

fB = fb+xAc+xBd. (1.10)

xA is the frequency of individuals playing strategy A, andxB the frequency of indi-

viduals playing B. The average fitness of the population is thus given by

F = xA fA+xB fB. (1.11)

Since the population consists only of individuals that playeither strategy A or strat-

egy B,xA+xB = 1. The evolution of the population can be described by the follow-

ing dynamic equation,

ẋA = xA( fA−F). (1.12)

This is called thereplicator equation(Taylor and Jonker, 1978; Hofbaueret al.,

1979; Hofbauer and Sigmund, 1998, 2003).

From equation (1.12), it is obvious that at any time, if the fitness of individuals

playing A is higher than the average fitness of the population, their frequency will

increase. If their fitness is lower than the average fitness ofthe population, then their

frequency will decrease. Hence, the replicator equation describes the deterministic

selection process where more successful strategies spreadin the population. As in

the approach discussed in the previous section, mutation isnot considered.

Substituting equations (1.9)–(1.11) into (1.12) we obtain

ẋA = xA(1−xA)( fA− fB) (1.13)

= xA(1−xA)
(

xA(a−b−c+d)+b−d
)

. (1.14)

From (1.14) we see that there are three generic equilibrium points,

x∗A = 0, (1.15)

x∗A = 1, (1.16)

x∗A =
b−d

b+c−a−d
, for a> c andb< d, or for a< c andb> d. (1.17)

Note that as in the ESS concept, the background fitness of individuals is irrelevant

and only the values of the payoffs matter.
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There are three distinct generic scenarios for the evolutionary process:

i. Dominance: In this case, either strategy A is always better no matter what the

opponent does and thus the equilibrium pointx∗A = 1 is stable (the case where

a > c andb > d), or B is always better than A and thus the equilibrium point

x∗A = 0 is stable (the case wherea < c and b < d). In each case, the better

strategy is a strict Nash equilibrium and therefore an ESS.

ii. Bistability: The two equilibrium pointsx∗A = 0 andx∗A = 1 are both strict Nash

equilibria, and thus strategies A and B are both ESSs. The equilibrium point

given by (1.17) is unstable. Evolution will result in the fixation of As when their

frequency is abovex∗A, and in their extinction when their frequency is belowx∗A.

This is the case wherea> c andb< d.

iii. Coexistence: The interior equilibrium point (1.17) is stable while the points

x∗A = 0 andx∗A = 1 are both unstable. This is the case wherea< c andb> d.

In the non-generic cases wherea≥ c andb> d, or a> c andb≥ d, strategy A

also dominates B. In the cases wherea ≤ c andb < d, or a < c andb ≤ d, B also

dominates A.

In the non-generic case wherea = c andb = d, i.e. fA = fB for all values of

xA, the two strategies do equally well and thus the frequency distribution of the

strategies remains constant. This case is called theneutral case. Although this case

is not much of interest in the replicator dynamics, as we willsee in Chapters 2 and

3, it is an interesting and important case in the stochastic evolutionary dynamics of

finite populations.

Note that constant selection, where individuals have constant fitness indepen-

dent of the interactions with other individuals and thus of the composition of the

population, can be obtained in the special case wherea= b andc= d.

The replicator equation can be generalised forn different strategic types of indi-

viduals. Consider a population where each individual interacts in equal likelihood

with any other individual and can use one of then available pure strategies of the set

S. The change of the frequenciesxi, i ∈ [1,n], of the different types of individuals

over time is described by the equations

ẋi = xi( fi −F), (1.18)

where fi is the expected fitness of an individual that uses strategySi and is given by

fi = fb+∑n
j=1x j∆ f (Si ,Sj), andF is the average fitness of the entire population and

is given byF = ∑n
i=1xi fi .
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1.3 Some classical games

In this section, we present some of the classical games that have been widely studied

and applied in different fields.

1.3.1 The Hawk–Dove game

TheHawk–Dovegame (Maynard Smith and Price, 1973; Maynard Smith, 1982) is

possibly the most classic evolutionary game. This game has been used extensively

for the modelling of competition of animals over food, mates, territories, and other

biological resources. According to this game, individualsinteract with each other

over a resource of valueV by playing either aggressively using the Hawk strat-

egy (H) or non-aggressively using the Dove strategy (D). If two individuals playing

Hawk meet, a fight takes place. At the end of the fight, the winner of the game gets

a payoffV while the loser pays a costC. Therefore, the two players obtain a payoff

on average equal to(V −C)/2. If two Doves meet, they either equally share the

resource (if divisible) or with equal probability one of thetwo takes the whole re-

source with no cost. Thus, in this case Doves obtain an average payoff equal toV/2.

If a Hawk meets a Dove, the Dove retreats leaving the resourceto the Hawk without

any cost, and thus the Hawk obtains a payoff,V, while the Dove gets nothing. This

game is described by the following payoff matrix:

H D

H a= V−C
2 b=V

D c= 0 d = V
2

. (1.19)

It is clear that sinceb> d, the Dove strategy is never evolutionarily stable because a

population of Doves can always be invaded by a Hawk. If the value of the resource

outweighs the cost of the fight, i.e. ifV > C ⇒ a > c, sinceb > d, an individual

always does better by playing the Hawk strategy no matter what the opponent does

(the Hawk strategy is strictly dominant). Thus, in an infinite homogeneous well-

mixed population the Hawk strategy is the unique pure ESS. Hawk is also the unique

pure ESS whenV =C, becauseb> d. If V <C ⇒ a< c, it is better to play Dove

when Hawks are common. Since it is better to play Hawk when Doves are common,

this leads to an evolutionarily stable mixed strategy. Assume that with probability

p∈ (0,1) individuals use the Hawk strategy, and with probability 1− p they use the

Dove strategy. In order a mixed strategy(p∗,1− p∗) to be an ESS, in a population

playing strategy(p∗,1− p∗), the fitness of an individual playing the Hawk strategy
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must be equal to the fitness of an individual playing the Dove strategy, i.e.

p∗
V −C

2
+(1− p∗)V = p∗ 0+(1− p∗)

V
2
. (1.20)

Solving forp∗ we obtain thatp∗ =V/C. It is easy to show that an individual playing

the mixed strategy(V/C,1−V/C) in a population playing any other strategy(p,1−

p), p ∈ [0,1], has a higher fitness than an individual of that population. Hence,

according to condition (1.8), there is a unique mixed ESS where individuals play

Hawk with probabilityV/C and Dove with probability 1−V/C. The mixed ESS

can also be found by using the approach in Section 1.2.2.

Note that here we assumed a monomorphic population where allindividuals

choose randomly between the pure strategies according to a given probability dis-

tribution, and thus all individuals play the same mixed strategy. A similar method

could be followed in the case of a polymorphic population where individuals use dif-

ferent pure strategies. In this case, the mixture of strategies is a polymorphic mixture

of individuals where a proportion of the population equal toV/C uses the pure Hawk

strategy and a proportion 1−V/C uses the pure Dove strategy. Mathematically, in

infinite unstructured populations, the two cases are equivalent because in either case

an individual of the population has a probabilityp of meeting an individual playing

Hawk and a probability 1− p of meeting an individual playing Dove.

1.3.2 The Prisoner’s Dilemma game

ThePrisoner’s Dilemma(Axelrod, 1984; Poundstone, 1992) is one of the most pop-

ular games in game theory and has been commonly applied for the study of the

evolution of cooperation.

Assume a population where individuals either cooperate (use strategy C) or de-

fect (use strategy D). Mutual cooperation results in a payoff R (reward) while mutual

defection results in a payoffP (punishment).T (temptation) is the payoff obtained

by a defector against a cooperator andS (sucker’s payoff) is the payoff of a cooper-

ator against a defector. The game is described by the payoff matrix

C D

C R S

D T P

. (1.21)

In the Prisoner’s Dilemma, the order of the elements of the payoff matrix (1.21)

is T > R> P> S. Thus, in this game, mutual cooperation results in a higher payoff

than mutual defection and therefore a population of all cooperators does better than
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a population of all defectors. However, sinceT > R andP > S, it is always better

to defect regardless of what the partner does and thus mutualdefection is the unique

Nash equilibrium, and defection is the only ESS.

In its simplest form, the Prisoner’s Dilemma can be described as the game where

a cooperator provides a benefitB to its partner at a costC to itself. A defector just

receives the benefit from a cooperator without paying any cost. The payoff matrix

of the game in this form is
C D

C B−C −C

D B 0

, (1.22)

with B>C> 0.

1.3.3 Coordination games

A coordination gameis a game with multiple pure strategy Nash equilibria. In

a two strategy game described by the payoff matrix (1.2), a coordination game is

defined bya > c andb < d, and thus strategies A and B are both Nash equilibria.

The replicator dynamics also predicts an unstable interiorequilibrium where the

population fraction of A individuals,x∗A, is given by (1.17). Usually, one of the

strategies in this game is Pareto efficient while the other one is risk dominant.

A famous coordination game is the so-called Stag Hunt game (Skyrms, 2004)

wherea> c> d > b.

1.3.4 The Snowdrift game

TheSnowdrift game(Sugden, 1986) is a game described by the payoff matrix (1.21)

with payoff rankingc> a> b> d. Hence, in this game the best strategy depends on

what the opponent plays and, as in the Hawk–Dove game forC>V, it is better to do

the opposite of what the opponent does. The Snowdrift game isactually a version of

the Hawk–Dove game described in Section 1.3.1 but it has beenwidely used in this

form for the study of the evolution of cooperation, where strategy A is described as

the cooperative strategy and B as the defective strategy.
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1.4 Stochastic evolutionary dynamics in finite homo-

geneous populations – The Moran process

The traditional evolutionary game theory has provided important insights into the

evolutionary game dynamics. However, both the concept of evolutionarily stable

strategies and the replicator dynamics describe a selection process in infinitely large

populations and they are usually not effective to describe the dynamics of real pop-

ulations of finite size, especially in cases where the size ofthe population is small.

A better understanding of the evolution of finite populations requires a stochastic

approach.

TheMoran processis a classical stochastic model originally formulated for mod-

elling population genetics (Moran, 1958, 1962) and later has been applied for the

study of evolutionary game dynamics in finite populations (Nowaket al., 2004; Tay-

lor et al., 2004). It is a process which has been commonly used for the study of

the evolution of finite homogeneous populations consistingof two types of individ-

uals, where each individual is equally likely to interact with every other individual.

Assume a finite population of sizeN which consists of two types of individuals.

According to this process, in each time step a random individual reproduces an off-

spring of the same type and a random individual dies. Thus, since in each step there

is exactly one birth event and exactly one death event, the population size remains

constant. In the case where the two types of individuals in the population have differ-

ent fitness the process is described as follows: in each time step, a random individual

of typeTi is chosen for reproduction with probability proportional to its fitness, i.e.

with probability

pi =
i f i

∑N
j=1 j f j

, (1.23)

where fi denotes the fitness of an individual of typeTi andi the number of the indi-

viduals of that type. Hence, the type of individual which hasthe fitness advantage

will be selected for reproduction with higher probability.For example, for two types

of individuals, A and B, an A individual is chosen for reproduction with probability

i fA/(i fA+(N− i) fB), wherei is the number of individuals of type A. The individual

chosen for reproduction produces an identical offspring which replaces a randomly

chosen individual (Figure 1.1). It should be noted that depending on the nature of the

process, the offspring can replace its parent or not. In thiswork, we assume that the

offspring cannot replace its parent. Due to the finiteness ofthe population size and

since in the process there are no mutations, eventually one of the two types of indi-

viduals will replace all the individuals of the other type and fixate in the population.
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Figure 1.1: The Moran process with frequency dependent fitness. A finite populationcon-
sists of two types of individuals, A and B. In each time step, an individual is randomly
selected for reproduction with probability proportional to its fitness. An individual is cho-
sen for death at random. An identical offspring of the individual chosen for reproduction
replaces the dead individual. Hence, in each time step the population size remains constant.

So, there are some reasonable questions: What is the probability that a particular

type will fixate? How long will it take to fixate given that thiswill happen? How

long will it take for one of the two types to fixate?

Consider a population consisting of two types of individuals, X and Y. Thefixa-

tion probabilityof type X is the probability that at the end of the evolutionary process

the population will consist only of X individuals, i.e. the probability that X individ-

uals will spread over the whole population and fixate. Themean absorption time(or

unconditional fixation time) is the mean number of time stepsneeded to reach one

of the two absorbing states of the dynamics, i.e. the required time for the process to

end up either in the state where all individuals are of type X or in the state where all

individuals are of type Y. Themean fixation time(or conditional fixation time) of X

individuals is the number of time steps required for X individuals to take over the
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entire population, given that this will happen. Another quantity of potential interest

that we introduce in this work is themean number of transitionsto absorption or

fixation, where the number of transitions is defined as in the time, except that events

where the population size of one type of individuals (and thus that of the other) is

unchanged are not counted.

Expressions for the fixation probability as well as the mean fixation time were

derived in Karlin and Taylor (1975). The fixation probability has later been consid-

ered in populations of finite size (Nowaket al., 2004; Tayloret al., 2004). Complete

derivations of the formulae of the fixation probability and the mean time to absorp-

tion and fixation in a homogeneous population of finite size can be found in Antal

and Scheuring (2006) and Traulsen and Hauert (2009). In Appendix A we repro-

duce these derivations and in some cases we present alternative formulae. Note that

these formulae can be applied to stochastic evolutionary processes where there is

no mutation and in each time step the number of individuals ofone type increases

by one, decreases by one or remains the same, and thus the population size remains

constant.

Consider a population of sizeN with two types of individuals, A and B. Ac-

cording to the Moran process, the number of A individuals in each time step can

increase by one, decrease by one or remain the same, with someprobabilities that

depend only on the current state of the system. Hence, the process is a Markov pro-

cess, which is essentially a discrete random walk on states 0≤ i ≤ N with absorbing

boundaries. The transition matrix of the process is a tri-diagonal matrix with entries

pi,i+1 =
i fA

i fA+(N− i) fB
·

N− i
N−1

, 1≤ i ≤ N−1, (1.24)

pi,i−1 =
(N− i) fB

i fA+(N− i) fB
·

i
N−1

, 1≤ i ≤ N−1, (1.25)

pi,i = 1− pi,i+1− pi,i−1, 1≤ i ≤ N−1, (1.26)

and zero everywhere else. Here,pi, j is the element in theith row and j th column of

the transition matrix and denotes the transition probability from the state withi A

individuals to the state withj A individuals. At the absorbing states,p0,0= pN,N = 1.

The fixation probability ofi ∈ [1,N] A individuals in a finite well-mixed popula-

tion of B individuals,APi, is given by (see Appendix A.1)

APi =

1+
i−1
∑
j=1

j
∏

k=1
qk

1+
N−1
∑
j=1

j
∏

k=1
qk

, (1.27)
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whereqk is the ratio of the probability of the number of A individualsbeing de-

creased by one,pk,k−1, and the probability of the number of A individuals being

increased by one,pk,k+1, i.e. qk = pk,k−1/pk,k+1. Clearly, the probability ofi A in-

dividuals dying out, i.e. the fixation probability ofN− i B individuals,BPi, is given

by BPi = 1−APi which leads to

BPi =

N−1
∑
j=i

j
∏

k=1
qk

1+
N−1
∑
j=1

j
∏

k=1
qk

. (1.28)

The (average) fixation probability of a single individual playing strategy X,XP1, will

be denoted byXP.

In the case where each of A individuals has relative constantfitness equal tor,

when compared to the fitness of a B individual, the transitionprobabilities are

pi,i+1 =
ir

ir +N− i
·

N− i
N−1

, 1≤ i ≤ N−1, (1.29)

pi,i−1 =
N− i

ir +N− i
·

i
N−1

, 1≤ i ≤ N−1, (1.30)

pi,i = 1− pi,i+1− pi,i−1, 1≤ i ≤ N−1, (1.31)

p0,0 = pN,N = 1, (1.32)

and equal to zero in any other case. In this caseqk = 1/r, and thus from the formula

(1.27) we obtain that in the Moran process the fixation probability of i ∈ [0,N] A

individuals which have a constant fitnessr times higher than that of B individuals,
APMi , is given by the simple formula

APMi =
1− r−i

1− r−N , r 6= 1 (1.33)

(the fixation probability of a single mutant A in the Moran process will be denoted

by APM). Hence, in contrast to the deterministic replicator dynamics (see Section

1.2), although individuals with fitnessr > 1 are favoured by selection (their fixation

probability is higher than that of a neutral individual, 1/N) their fixation is not cer-

tain, even in an infinitely large population. Similarly, although selection opposes the

fixation of individuals with fitnessr < 1 (their fixation probability is less than 1/N)

and thus their extinction is more likely, this is not certain. This occurs due to the fact

that even the fittest individual might not be chosen for reproduction and even the

least fit individual might be chosen for reproduction. This random effect is called
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random driftand is very important in the evolution of finite populations,especially

when the population size is small. Forr = 1, we have the case of so-calledneutral

drift, where all individuals have the same fitness. In this case, although there is no

natural selection, the frequencies A and B individuals willdrift until one strategy

takes over the entire population. The fixation probability of i As in this case is equal

to i/N. This should be expected, since every individual can reproduce or die with

equal probability. Thus, every single individual has probability 1/N to take over the

entire population and fixate no matter its type; since there are i individuals of type

A, their probability to fixate isi/N.

The mean time to absorption wheni ∈ [1,N] A individuals are introduced in a

population of B individuals,Ti, is given by (see Appendix A.2)

Ti =
APi

N−1

∑
j=1

1
p j, j+1

N−1

∑
l= j

l

∏
k= j+1

qk−
i−1

∑
j=1

1
p j, j+1

i−1

∑
l= j

l

∏
k= j+1

qk. (1.34)

The (average) time to absorption starting from a single individual playing strategy

X will be denoted byXT.

The fixation time ofi ∈ [1,N] A individuals in a population of Bs,AFi, is given

by (see Appendix A.3)

AFi =
N−1

∑
j=1

APj

p j, j+1

N−1

∑
l= j

l

∏
k= j+1

pk,k−1

pk,k+1
−

1
APi

i−1

∑
j=1

APj

p j, j+1

i−1

∑
l= j

l

∏
k= j+1

pk,k−1

pk,k+1
. (1.35)

The (average) fixation time of a single individual playing strategy X,XF1, will be

denoted byXF . The derivation of the mean time to fixation of B individuals can

be found in Antal and Scheuring (2006) and Traulsen and Hauert (2009). However,

these can also be derived from the formula (1.35) by symmetryarguments.

The above formulae are effectively a re-organisation of theones in Traulsen and

Hauert (2009).

Note that in the Moran process, the mean fixation time of a single A individual

when it is introduced into a population of Bs,AF , is the same as the mean fixation

time of a single B when it is introduced into a population of As, BF , for every

intensity of selection and for all games. Thus,AF = BF irrespective of which of

the two types of individuals has the highest chance to fixate into a population of the

other type. This does not hold in the cases where more than oneindividual of one

type invades in a population of individuals of the other type(Tayloret al., 2006).

In order to find the mean number of transitions before absorption occurs, as well

as the mean number of transitions before the fixation of A individuals, we consider

a process where in each of the time steps we have a transition from one state to a
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different state, i.e. in each time step the number of A individuals either increases

or decreases by one. The transition matrix of this process isa square matrix where

only the entries below and the entries above the main diagonal can be non-zero. The

elements of the transition matrix are

πi,i+1 =
fA

fA+ fB
, 1≤ i ≤ N−1, (1.36)

πi,i−1 =
fB

fA+ fB
, 1≤ i ≤ N−1, (1.37)

and zero everywhere else.

The mean number of transitions before absorption and fixation of A individu-

als occurs, starting fromi ∈ [1,N] As, is given by the formulae (1.34) and (1.35),

respectively, wherepi,i+1 = πi,i+1 andpi,i−1 = πi,i−1.

1.5 The effect of spatial structure on the outcome of

the evolutionary process

As we have seen in the previous sections, the traditional theory of evolutionary game

dynamics is based on the assumption that populations are infinitely large and well-

mixed. However, real populations, ranging from biology andecology to computer

science and socio-economics, are of finite size and exhibit some non-homogeneous

structure where any two individuals have not the same probability to meet. For

example, individuals might have a higher probability to interact with neighbouring

individuals than with distant individuals.

At its simplest, the spatial effects on the evolutionary game dynamics have been

considered by assuming that the individuals of the population are distributed over a

spatial array and interact with their nearest neighbours (see for example, Nowak and

May, 1992, 1993; Nowak, 2006; Killingback and Doebeli, 1996; Szab́o and T̋oke,

1998; Hauert, 2002; Hauert and Doebeli, 2004; Szabó and F́ath, 2007). This might

be a one-dimensional array, a two-dimensional array (e.g.,triangular lattice, square

lattice, hexagonal lattice) or higher dimensional array (e.g., cubic). However, biolog-

ically only lattices of dimension one, two and three are of interest. Each individual

adopts a strategy from a finite number of strategies available to use. Individuals up-

date their strategy following either deterministic or stochastic update rules. In the

deterministic evolutionary dynamics (in discrete time), in every generation each in-

dividual updates its strategy and adopts the strategy whichhas obtained the highest

total payoff among its strategy and its neighbours’ strategies. The total payoff of
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Figure 1.2: A spatial evolutionary game. Here, individuals of the population occupy the
cells of a square lattice and each of them interacts with its 8 neighbours. The game played
among the individuals is described by the payoff matrix (1.2). The payoff of each individ-
ual at the end of each round is the sum of the payoffs obtained by the games played with
each of its neighbours in the round. Every individual compares its payoff with that of its
neighbours and adopts the strategy which resulted in the highest payoff.The figure shows
the neighbourhood of an individual playing strategy A (black cells) whenit is introduced in
a population of individuals playing strategy B (white cells), from the end of the first round
to the end of the second round in the case whereb> d and 8b> c+7d.

each individual is the sum of the payoffs resulting from the interactions with each of

the connected neighbours. The update of individuals’ strategy is synchronous, i.e.

all individuals update their strategy simultaneously in discrete time steps (see Figure

1.2). In stochastic evolutionary dynamics the update of strategies is asynchronous.

Randomly selected individuals update their strategy sequentially following some

stochastic update rules (but in each generation the number of such updates is equal

to the number of individuals occupying the sites of the lattice so that on average

every individual updates its strategy once). For example, an individual is chosen at

random and updates its strategy adopting the strategy of a random neighbour with a

higher payoff with a probability proportional to the difference of their payoffs. Nu-

merous investigations of evolutionary games on different lattices and under different

dynamical processes have shown that the results of the evolutionary process might

be quantitatively and qualitatively different from the results obtained in the classical

evolutionary game theory. For example, although the classical evolutionary game

theory predicts that cooperators can never invade defectors in a Prisoner’s Dilemma

type of game, in the deterministic spatial Prisoner’s Dilemma, under some condi-

tions the survival of cooperators is possible and the two strategies can coexist in a

dynamic equilibrium (e.g., Nowak and May, 1992; Nowak, 2006). If the evolution-

ary process is described by a stochastic process, eventually defectors take over the

entire population. However, the two strategies might coexist for a very long time

19



Introduction

Figure 1.3: A population represented by a graph. Each individual of the population occupies
a vertex of the graph. The edges of the graph represent interactions between individuals.

before absorption. Similarly, in the spatial Hawk–Dove game, depending on the up-

date rules and the parameter values, the Hawk strategy mightdo better or worse than

what it does under the assumptions of the classical game theory (e.g., Killingback

and Doebeli, 1996; Hauert and Doebeli, 2004).

In real populations, the interactions among individuals usually form more com-

plex connectivity structures. These structures can be represented and modelled as a

collection of interacting units. At its simplest, a graph (or network) is a collection

of vertices representing well defined units that interact via a set of edges. Lieber-

manet al. (2005) have used tools from graph theory to model evolutionary dynamics

in structured populations. The idea was to represent the population of sizeN by a

graphG(V,E), whereV is the set of vertices of the graph andE the set of edges.

Each of theN individuals of the population occupies a vertex of the graph, and thus

|V|= N. The edges of the graph represent the interactions between individuals, and

thus determine who can replace whom (see Figure 1.3). The structures in the models

of spatial games described before are special cases of graphs.

The most widely considered evolutionary process in structured populations rep-

resented by graphs is theinvasion process(IP) (or birth-death process with selection

on the birth). The IP is an adaptation of the Moran process on graphs. Initially, a

number of mutant individuals X invades a population of resident individuals Y by

replacing an equivalent number of Ys at random. Then, at eachtime-step an individ-

ual is randomly selected for reproduction with probabilityproportional to its fitness.

The offspring of that individual, which is a perfect copy of its parent, replaces a

neighbouring connected individual which is chosen at random. The probabilities

that the offspring of an individuali replaces an individualj, wi, j , can be described

by the weight matrixW = [wi, j ], where 1≤ i ≤ N, 1≤ j ≤ N. Obviously, since the

offspring of each individual always replaces one other individual, the sum of the ele-
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ments of each row of the matrixW must be equal to 1, i.e.∑N
j=1wi, j = 1 ∀ i ∈ [1,N] ,

and thusW is a (right) stochastic matrix. Hence, the matrixW describes the process

and since it also represents which vertices are connected towhich other vertices, it

also determines the graph.

All graphs we study in this work are simple graphs, where eachindividual occu-

pies exactly one vertex, there are no self-loops, i.e. thereis no edge which connects a

vertex to itself, and there are no multiple-edges, i.e. every two vertices are connected

by at most one edge. In addition, the graphs are undirected, so if we can move from

vertex i to vertex j we can also move from vertexj to vertex i, and unweighted.

Lastly, all the graphs we consider are connected graphs, i.e. there is a path from any

vertex to any other vertex in the graph, and static, i.e. theydo not change over time.

On the unweighted complete graph, where every individual isconnected to ev-

eryone else and the offspring of each individual can replaceany other individual

with equal probability (so this is a special case of a weighted complete graph where

all the weights associated to the edges are equal to 1/(N−1)), the IP is equivalent to

the Moran process. Hence, the fixation probability ofi ∈ [0,N] mutants with relative

fitness equal tor on the unweighted complete graph withN vertices is equal to the

fixation probability ofi mutants in the homogeneous well-mixed population of size

N in the Moran process, given by the formula (1.33) for r 6= 1 and byi/N for r = 1.

Liebermanet al. (2005) have proved a theorem, the so-calledisothermal theo-

rem, which states that in the case of constant fitness, the IP on a graph is equivalent

to the Moran process, and thus mutants on that graph have fixation probability equal

to that in the Moran process, if and only if the graph is isothermal. An isothermal

graph is defined to be a graph where the sum of all the weights that lead to every

vertex is the same, i.e. the graph where∑N
i=1wi, j is equal to 1 for everyj ∈ [1,N],

and thus the matrixW is doubly stochastic (the sum∑N
i=1wi, j for some vertexj is

called thetemperatureof vertex j). Such graphs are for example the symmetric

graphs wherewi, j = w j,i for all i and j (e.g., regular graphs such as spatial lattices

and circle graphs, where all the edges have the same weight);but not all isothermal

graphs are symmetric.

The isothermal theorem is generalised for a broader class ofgraphs, where the

weights of the edges can be any non-negative real numbers, and thusW is not nec-

essarily stochastic. Consider a process on such a graph, where at each time step the

offspring of an individuali replaces an individualj with probability proportional to

the weight of the edgewi, j ∈ R≥0 multiplied by the fitness of the individuali. This

process is equivalent to the Moran process if and only if the sum of the weights that

lead to a vertex is equal to the sum of the weights that leave that vertex, for all the
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vertices of the graph, i.e. if and only if∑N
j=1wi, j = ∑N

j=1w j,i ∀ i ∈ [1,N]. Such

graphs which have this property are calledcirculation graphs. The above theorem

is called thecirculation theorem.

Hence, in the case where individuals have constant fitness, there is a large fam-

ily of graphs, the circulation graphs, that affect neither selection nor random drift,

leaving the probability of fixation unaffected. However, aswill be shown in Chapter

2, although the fixation probability on circulation graphs is identical to the fixation

probability in the Moran process, the mean time to absorption and fixation might be

remarkably different.

One question that is raised is the following: are there graphs that amplify or

suppress selection and therefore increase or decrease the chance of advantageous

mutants to fixate compared to their fixation probability in the Moran process? Fur-

thermore, what happens in the case where the fitness of individuals is not constant

but depends on the interaction with their neighbouring individuals, as happens in

many natural systems? Liebermanet al. (2005) have taken some first significant

steps in this direction. They have shown examples of graphs which amplify (sup-

press) selection over drift, i.e. graphs on which the fixation probability of an advan-

tageous mutant is higher (lower) than its fixation probability in the Moran process

(similarly, the fixation probability of a disadvantageous mutant is lower (higher) than

its fixation probability in the Moran process). The star graph is an example of such

an amplifier graph. The star graph is the graph which has one vertex, the centre,

connected to all other vertices, the leaves. It has been shown that in the IP, the fix-

ation probability of a randomly placed mutant with relativefitnessr on a very large

star ofN individuals(N → ∞) is approached by

Papp=
1− 1

r2

1− 1
r2N

. (1.38)

Hence, the fixation probability of a randomly placed mutant with relative fitnessr

on a large star graph in the IP is approximately equal to the fixation probability of a

mutant with fitnessr2 placed in a homogeneous well-mixed population of the same

size in the Moran process. In other words, the star graph amplifies the relative fit-

ness of a mutant individual fromr to r2, i.e selection is enhanced. This is because

the probability of mutants to increase their number on the leaves of the star, given a

resident in the centre, isr2 times higher than the respective probability of residents

given a mutant in the centre. Thus, the spread of an advantageous mutant (r > 1) is

favoured on the star while the spread of a disadvantageous mutant is inhibited. There

are also graphs in which the amplification (suppression) of the fitness of an advan-
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tageous (disadvantageous) mutant can be increased even more than the star graph,

and the fixation probability can become arbitrarily closed to 1 (zero) by increasing

the number of the vertices in a specific way (e.g., the super-star, the funnel and the

metafunnel, see Liebermanet al. (2005)). However, on such graphs the mean time

required for the system to reach fixation is extremely long. This is demonstrated in

Chapters 2 and 3 where the evolutionary process on the star graph is investigated

analytically.

In the case where the fitness of individuals depends on the interactions with

neighbouring individuals, and thus on the composition of the population, the evo-

lutionary process is more sensitive to the graph structure.As is demonstrated in

Chapter 2, in this case, even on circulation graphs the fixation probability might be

significantly varied.

Based on Liebermanet al. (2005), a large amount of interesting studies have

followed giving insight into the effect of the population structure on various evolu-

tionary processes (e.g., Ohtsukiet al. (2006); Ohtsuki and Nowak (2006a,b); Santos

et al. (2006b); Ohtsukiet al. (2007a,b); Tayloret al. (2007); Broom and Rychtá̌r

(2008); Ohtsuki and Nowak (2008); Tarnitaet al. (2009); Broomet al. (2010a);

Hadjichrysanthouet al. (2011); van Veelen and Nowak (2012). See also Nowaket

al. (2010) and Shakarianet al. (2012) for reviews).

1.6 Models of kleptoparasitism

Game theory has facilitated the mathematical modelling of systems emanated from

natural and social sciences. In this work, based on the modelling framework pro-

vided by game theory, we model and study a very common foraging behaviour of

animals, kleptoparasitism.

Kleptoparasitismis a form of feeding, where animals attempt to steal food al-

ready discovered by others. Different forms of kleptoparasitic behaviour are ob-

served in many species in the animal kingdom, for example species of spiders (e.g.,

Coyleet al., 1991), birds (e.g., Brockmann and Barnard, 1979), snails (e.g., Iyengar,

2002), lizards (e.g., Cooper and Pérez-Mellado, 2003), fish (e.g., Hamilton and Dill,

2003), primates (e.g., Janson, 1985), carnivores (e.g., Carboneet al., 2005) and in-

sects (e.g., Erlandsson, 1988). This behaviour of animals has been well documented

in a review paper (Iyengar, 2008). The biological phenomenon of kleptoparasitism

has attracted the interest of many researchers from different areas. There are a num-

ber of theoretical models focused on the kleptoparasitic behaviour of animals using

different mathematical methods, in particular evolutionary game theory. Two of the
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fundamental game-theoretical models that consider kleptoparasitic behaviour are the

producer-scrounger model, originally introduced by Barnard and Sibly (1981), and

the model of Broom and Ruxton (1998).

In its original form, the producer-scrounger game is a frequency-dependent game

where animals forage for food using two strategies. They either search for food (pro-

ducer’s strategy) or search for opportunities to kleptoparasitise (scrounger’s strat-

egy). The scrounger strategy does better when scroungers are rare and worse when

they are common. When the frequency of the two strategies is such that the payoff

obtained by each strategy is the same, there is a stable equilibrium where the two

strategies coexist. Many variations of this model have followed in order to consider

different factors that might affect the foraging process (e.g., Caraco and Giraldeau,

1991; Vickeryet al., 1991; Dubois and Giraldeau, 2005). One key feature of this

type of model is that food is usually discovered in patches and can be easily split

between foraging animals. Hence, the concept of food sharing is central to these

models. In addition, in these models costs from aggressive strategies are energetic,

rather than time, costs. Thus, the different strategies do not directly affect the distri-

bution of feeding and foraging animals, and the main effect of population density is

to reduce the “finder’s share”, the portion of the food eaten by a finder before other

foragers discover it.

The model of Broom and Ruxton (1998), based on the mechanistic model of

Ruxton and Moody (1997), follows a different approach. Usinga game-theoretical

approach, the authors have considered the ecological conditions under which at-

tacking to steal the food from other animals when the opportunity arises is the best

strategy that foraging animals should adopt in order to maximise their food intake

rate and consequently their fitness. Food in this model comesin single indivisible

items, which must be consumed completely by an individual. Thus, food can never

be shared and challenging animals attempt to steal the wholeitem from the owner,

or not. Note that the population density has a direct effect in this model as fights

take time; this loss of time is the cost to more aggressive strategies, and thus the

more potential kleptoparasites there are, the more time is wasted on fighting. The

present research work studies the evolution of kleptoparasitic populations under dif-

ferent circumstances based on the model of Broom and Ruxton (1998). Thus, let us

discuss this model in more detail.

According to this model, each of the animals in a population of foragers either

searches for food, has already acquired and is handling a food item prior to its con-

sumption, or fights with another animal over a food item. Let us denote byP the

population density, byS the density of searchers, byH the density of handlers and
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Table 1.1: Notation of the basic game-theoretical model of kleptoparasitism of Broom and
Ruxton (1998)

Population’s densities Meaning

P Density of the population

S,H,F Density of searchers, handlers and fighters

Model Parameters Meaning

ν f f Rate at which foragers find undiscovered food

νhH Rate at which foragers encounter handlers

th
Expected time for a handler to consume a food
item if it is not attacked

ta/2 Expected duration of a fight

α The probability that the attacker wins the fight

Strategies Meaning

p
The probability that a searcher attacks a handler
when they meet

by F the density of animals which are involved in a fight over a fooditem. When a

foraging animal encounters an animal in the handling state,it can either decide with

probability p to attack in order to steal the prey, or with probability 1− p to ignore

the handler animal and continue searching. There is a constant density of food items

f available and searchers cover an areaν f per unit time whilst searching for food,

so animals find food at rateν f f . The unit of time can vary depending on the animal

species, but this is usually the second or the minute (see forexample, Hockeyet al.,

1989). If a handler animal is not attacked, it consumes its food item in a time drawn

randomly from an exponential distribution with meanth. Attacked animals always

defend their food and a fight takes place. Searchers encounter handlers and engage

in a fight at ratepνhH. A fight lasts for a time drawn randomly from an exponential

distribution with meanta/2. At the end of the fight, each of the two animals wins

the food with equal probability, i.e. with probability 0.5.The loser returns to the

searching state while the winner starts handling the food item. The model notation

is summarised in Table 1.1.

The system of equations constructed to describe the dynamics of the three sub-

populations is the following:

dS
dt

=
1
th

H +
1
ta

F −ν f f S− pνhSH, (1.39)

dH
dt

= ν f f S+
1
ta

F −
1
th

H − pνhSH, (1.40)

dF
dt

= 2pνhSH−
2
ta

F. (1.41)
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Broom and Ruxton (1998) considered the optimal value ofp to be the value

which minimises the mean time required for a searcher that has just encountered a

handler to start handling a food item, as the less the required time, the higher the

food intake rate.

The food intake rate,γ, is given by

γ =
H
thP

, (1.42)

whereH is the proportion of handlers in the equilibrium state and isgiven by

H =
−(thν f f +1)+

√

(thν f f +1)2+4pthtaν f f νhP

2ptaνh
. (1.43)

It has been shown that there is always a unique ESS that animals can use. For ev-

ery set of parameter values, the intake rate of a searcher is maximised when it either

challenges a handler at every opportunity, or it always ignores a handler and contin-

ues searching for another food item for itself. It is proved that the optimal strategy

that should be adopted depends only on the fight duration,ta/2, and the rate at which

a food item is discovered,ν f f . In particular, it is shown that whentaν f f > 1, i.e.

when food can be discovered within a short time or/and any aggressive interactions

have a high time cost, a searcher animal should never attemptto steal a food item

from a handler. Hence, under these conditions the optimal strategy isp= 0. On the

other hand, iftaν f f < 1, i.e. the fight time cost is low or/and the available food is

scarce, then searchers should attempt to steal the food fromanother animal at every

opportunity, i.e. the optimal strategy isp = 1. In the case wheretaν f f = 1, the

choice of the strategy of the searcher is irrelevant.

Despite the simplicity of the model of Broom and Ruxton (1998),interesting

predictions are made about the ecological conditions underwhich animals should

attempt to steal food from other animals. However, this model is based on various

assumptions. One of the main assumptions is that the only choice for a handler an-

imal when it is challenged is to defend its food, and thus in this case a fight always

takes place. In addition, it is assumed that animals involved in an aggressive inter-

action are equally likely to win the fight and obtain the food.Broomet al. (2004), in

order to relax these assumptions, have later reconstructedthe model of Broom and

Ruxton (1998) in a more general and realistic framework. In this model, an attacked

animal has, apart from the possibility to defend its food, the possibility to surrender

its food to the attacker and resume searching for another food item, avoiding the

time cost of a fight. In addition, different competitive abilities between the attacker
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and the attacked animal are introduced, i.e. the probability of the attacking animal

winning and obtaining the food,α, varies between 0 and 1, as happens in natural

situations. In general, the circumstances under which fights occur might give a high

advantage to defender or attacker (the attacker might have to catch the defender in

the air, but the defender may be hampered by a heavy food item)and so this prob-

ability may be significantly less or greater than 0.5. In this extended model, it has

been shown that there are three possible ESSs; the Hawk strategy where animals

challenge handlers at every opportunity and defend their food when challenged, the

Marauder strategy where animals always attempt to steal thefood from other ani-

mals but never defend their food when attacked, and the Retaliator strategy where

animals never attack other animals to steal their food, but always resist and defend

their food when attacked. In contrast to the original model of Broom and Ruxton

(1998), where for every set of parameter values there is always a unique ESS, in the

extended model there are cases where between two regions in parameter space in

each of which there is a unique ESS, there might be a region where the two ESSs are

possible to exist simultaneously. In the case where each of the two animals which are

engaged in a fight are equally likely to win and obtain the food, i.e. α = 0.5 (this is a

main assumption of the model of Broom and Ruxton (1998)), the Retaliator strategy

is never an ESS and depending on the ecological parameters either the Hawk or the

Marauder strategy is the unique ESS or both are ESSs together. In particular, it is

shown that increasingν f f , i.e. increasing the rate at which food items are discov-

ered, or increasing the fight durationta/2, discourages any aggressive interactions

over food making the Marauder strategy the optimal strategy. Note that in this case

the occurrence of the Hawk strategy as an ESS is independent of the parameters

P, νh andth. However, the variation of these parameters affects the occurrence of

the Marauder strategy as an ESS. For example, the decrease ofνhP or the decrease

of th make this strategy less attractive. In the general case where the attacker and

the attacked animal do not have as equal probability to win the fight (α 6= 0.5), it

has been shown that whenta/2 andα are high, then the defence of a food item is

not favoured, whilst attacking handlers that surrender their food without a fight are

favoured. In particular, whenta/2 is very high, the Marauder strategy is the only

ESS. This also occurs whenα is very high, given thatta/2 is not very small. As one

could expect, whenta/2 is small and the probability that a handler defends its food

successfully, 1−α, is high then the Retaliator strategy is favoured. Note that the

Retaliator strategy is an ESS only when handlers have probability of at least 0.5 to

win the fight, otherwise this strategy is invaded by attacking strategies. Whenta/2 is

small and the probability of defending a food item successfully is neither very high
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nor very small, the Hawk strategy might be an ESS. The other parameters,P, ν f f ,

νh andth, are also very important for the strategic choices of animals. For example,

as we have seen in the case where each of the contestants has anequal probability to

win, the increase ofν f f favours the Marauder strategy.

A series of publications has appeared developing the original model of Broom

and Ruxton (1998) in a number of ways (e.g., Broom and Ruxton, 2003; Broom

and Rycht́ǎr, 2007; Lutheret al., 2007; Yates and Broom, 2007; Broomet al., 2008;

Broom and Rycht́ǎr, 2009, 2011). Croweet al. (2009) provide a brief review on the

main theoretical work on kleproparasitism prior to the investigation of a stochastic

model of kleptoparasitism in finite populations. A comparison between some main

models of kleptoparasitism is discussed in Vahl (2006) and an alternative model

is presented. There is also a series of related mechanistic,but not game-theoretic,

models which investigate interference competition where foraging animals engage

in aggressive interactions in order for example to defend their territory, resulting

in negative effects on their foraging efficiency (e.g., Beddington, 1975; Ruxtonet

al., 1992; van der Meer and Ens, 1997; Vahl, 2006; Smallegange and van der Meer,

2009; van der Meer and Smallegange, 2009).

1.7 Contributions

In this work, we have considered analytically the evolutionary game dynamics in

populations represented by a complete graph, a circle and a star graph. Although

there have been numerous studies carried out for the investigation of the influence

of the population structure on the evolution of populations, in most of these the

results have been derived under strong assumptions, for example under the assump-

tion that the population size is very large, or they are basedon approximation mod-

els and numerical simulations. We have derived the exact solutions of some of the

most important quantities in a stochastic evolutionary process. These include the

fixation probability and the speed of the evolutionary process under different condi-

tions, starting from any initial composition of a population consisting of two types

of individuals (see Chapters 2 and 3). Especially, the formulae of the mean time

to absorption and fixation on the star graph are the first general formulae for ab-

sorption and fixation times derived on an irregular graph. These solutions give the

possibility of a detailed consideration of the evolutionary process in different cases,

for example for different population sizes, different games and so on. In previous

studies a great emphasis has been given to the fixation probability and the study of

the speed of the evolutionary process is relatively rare. However, this quantity is also
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very important, especially in cases where evolution favours the existence of a mixed

population. In such cases, the fixation probability might not be sufficient to describe

the evolutionary dynamics of the system. For example, as we will see in Chapters

2 and 3, although a star graph favours the fixation of an advantageous mutant with

respect to its fixation probability, the time needed for its fixation might be extremely

long. A big part of this work has been published as two separate research articles in

Proceedings of the Royal Society A. These are the articles Broomet al. (2010a) and

Broomet al. (2010b).

A step forward in the research on the influence of the structure of the population

on the evolutionary process is the investigation of the process under different strategy

update rules. In this work, through an analytic approach it is shown that the choice

of the update rules might be crucial when the population has anon-homogeneous

structure (see Chapter 3). This work has been published as a research article in

Dynamic Games and Applications. This is the article Hadjichrysanthouet al. (2011).

The possibilities of an analytic investigation of the evolutionary dynamics on

graphs are very limited and the resort to numerical and approximation methods is

necessary for the exploration of the dynamics in complex graphs. This work (see

Chapter 4) proposes an effective approximation method for the study of the evolu-

tion of structured resident populations when invaded by mutant types of individuals.

This is a very promising method that can be applied to a wide range of graphs and

can significantly contribute to the consideration of the characteristics of the graphs

that affect the evolution of populations in different scenarios. This work has been

published as a research article in theJournal of Theoretical Biology. This is the

article Hadjichrysanthouet al. (2012).

A basic game-theoretical model of kleptoparasitism has been considered in the

case where the population of foraging animals forms a non-homogeneous structure

(see Chapter 5). This relaxes some of the strong implicit assumptions of some classic

models, such as the homogeneously mixing of animals and the infiniteness of the

population size. Although the steps taken in this directionare few, this work sets the

foundations for the study of some classic evolutionary models of foraging behaviour

of animals in a more realistic framework.

Cooperative and food sharing behaviour has been observed in awide variety

of animals and has attracted the research interest of scientists from different fields.

Many mathematical models have been constructed in order to explore the reasons

why animals share their food. However, many of these models were not sufficient to

explain why in many situations animals present this behaviour. In this work, based

on some classic models of kleptoparasitism, we have constructed a game-theoretical
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model for the examination of food sharing behaviour of animals in kleptoparasitic

populations (see Chapter 6). Although this work is based on a number of assump-

tions, it gives some important answers and raises some research questions for further

study on understanding this interesting animal behaviour.This work has been pub-

lished as a research article inBehavioral Ecology. This is the article Hadjichrysan-

thou and Broom (2012).

1.8 Outline

In Chapter 2, we investigate analytically the evolutionary game dynamics on the

complete graph, the circle and the star graph. We derive the exact formulae for

the fixation probability and the speed of the evolutionary process under different

conditions. These formulae can be applied to stochastic processes where there is

no mutation and the size of each type of individuals in each time step can vary at

most by one. We apply the results derived following the rulesof the IP. Through

numerical examples we compare the impact of the three structures on the above

quantities. We do this comparison in two specific cases. Firstly, we examine the

case where individuals have constant fitness. Then, we studythe case where the

fitness is not constant but depends on the composition of the population. The widely

used Hawk–Dove game is considered as an example.

In Chapter 3, we investigate the evolutionary dynamics underthree important

update rules additional to the IP and we explore the influenceof the change of the

update rule on the evolutionary process when the populationhas a non-homogeneous

structure. We study analytically an evolutionary game between two strategies inter-

acting on the extreme heterogeneous star graph. The evolutionary process is con-

sidered in different scenarios: the constant fitness case and the frequency dependent

fitness case when the individuals of the population play a Hawk–Dove game, a Pris-

oner’s Dilemma and a coordination game.

In Chapter 4, we propose an approximation method to model evolutionary game

dynamics on complex graphs. Comparisons of the predictions of the model con-

structed with the results of computer simulations reveal the effectiveness of the

method and the improved accuracy that it provides when, for example, compared

to well-known pair approximation methods. As an example, weinvestigate how

the Hawk and Dove strategies in a Hawk–Dove game spread in a population repre-

sented by a random regular graph, a random graph and a scale-free network, and we

examine the features of the graph which affect the evolutionof the population when

individuals play this particular game.
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Chapter 5 discusses a simple model of the evolution of kleptoparasitic popula-

tions in the case where the animal population has a structurerepresented by a graph.

Using the pair approximation method as well as through stochastic simulations we

explore the evolution of the population when it is represented by a regular graph, a

random graph and a scale-free network, and consider the characteristics of the graph

that might influence the evolution of such populations.

In Chapter 6, we propose a game-theoretical model for the exploration of those

ecological conditions that favour food sharing among animals in kleptoparasitic pop-

ulations. Analysis of the model shows that food sharing should occur in a wide range

of ecological conditions. In particular, if food availability is limited, the sharing

process does not greatly reduce the short-term consumptionrate of food, and food

defense has a high cost and/or a low probability of success, then the use of the food

sharing strategy is beneficial.

In Chapter 7, we summarise the main conclusions and contributions of this work

and we discuss some research topics of future interest.
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CHAPTER 2

Evolutionary dynamics on simple

graphs

2.1 Introduction

In this chapter, we study analytically the stochastic evolutionary game dynamics of

finite populations represented by three simple graphs; the complete graph, the circle

and the star graph. We consider the evolution of populationsplaying a strategy B

when invaded by a number of mutant individuals that play a different strategy, a

strategy A. The game played is described by the payoff matrix(1.2).

The complete graph (see Figure 2.1a) is the graph where everyindividual is

connected to every other individual. This graph is the regular graph with the highest

degree, equal toN− 1, whereN is the population size. The homogeneous well-

mixed population is a special case of a complete graph where all edges have identical

weights.

The circle (see Figure 2.1b) is a graph where each vertex is connected to two

other vertices. It is the regular graph with the smallest degree, equal to 2. The circle

is a graph which has been widely used in different fields. The evolutionary process

on the cycle has been investigated in various scenarios (e.g., Liebermanet al., 2005;

Nowak, 2006; Ohtsuki and Nowak, 2006a; Ohtsukiet al., 2006; Grafen, 2007; Ma-

suda, 2009; Tarnitaet al., 2009; Broomet al., 2010a; van Veelen and Nowak, 2012).

The star graph (see Figure 2.1c) is an irregular graph wheren vertices, the leaves,

are connected to only one vertex, the centre. Thus, the star has average degree equal

to 2n/(n+1). For very large population size this approaches the degree of the cir-

cle. However, as we will see later, the evolutionary processon the two graphs is

remarkably different. Evolution on a star-structured population has been commonly

studied (e.g., Liebermanet al., 2005; Nowak, 2006; Broom and Rychtá̌r, 2008; Fuet
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Figure 2.1: Structured populations represented by graphs withN = 6 vertices, two of which
are occupied by individuals playing strategy A (black vertices) while the rest of the vertices
are occupied by individuals playing strategy B (white vertices). (a) A complete graph, (b) a
circle graph, and (c) a star graph. The center vertex of the star and one of then= 5 leaves
(i = 1) are the vertices occupied by individuals playing strategy A.

al., 2009; Masuda, 2009; Tarnitaet al., 2009; Broomet al., 2010a). As we have seen

in Section 1.5, the fixation probability of a single mutant individual with relative

fitnessr introduced into a resident population structured as a star was first consid-

ered in Liebermanet al. (2005) following the rules of the invasion process (IP) and

assuming a large population size. An exact formula of the fixation probability in

this case was given later in Broom and Rychtá̌r (2008) (see also Masuda, 2009).

This has been extended in Broomet al. (2010a) to the more complicated case of fre-

quency dependent fitness by applying evolutionary game theory. In the same paper,

the absorption and fixation time of a mutant under the IP have also been considered.

In Broom et al. (2009), it is shown through a numerical investigation thatat least

for small graphs, under the IP the star is the structure in which a randomly placed

mutant has the highest chance of fixation.

The graph structures we study are all commonly considered structures in part

due to their symmetry and lack of complexity. In general, theanalytic investiga-

tion of the evolutionary process in structured populationsis very limited mainly due

to the large number of complex equations that one has to solve. The number of

equations corresponds to the number of distinct states on the graph (mutant-resident

formations) that the system can reach. For an arbitrary graph of N vertices, since

every vertex can be occupied by either a resident or a mutant individual, there are 2N

possible states that the system can reach. However, in many graphs many of these

states are identical, in the sense that one state can be obtained from the other due

to symmetries of the graph, and thus the system of equations can be significantly

reduced. For example, on a complete graph onlyN+1 of the 2N possible states are

distinct. The number of the distinct states is the same on thecircle given that mutant

individuals always form a connected segment, otherwise this number is much larger.

On the star the number is larger, equal to 2N. Broom and Rycht́ǎr (2008) (see also
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Broomet al., 2010b) using graph automorphisms have calculated the total number

of the distinct states on an arbitrary graph, and thus demonstrated the large number

of equations in the system and the complexity of analytic investigations.

In Sections 2.2 and 2.3, we derive the exact solutions of the fixation probability

and the mean absorption and fixation time starting from any number of A individuals

placed on a complete graph, a circle (as a segment) and a star graph. The solutions

are general and can be applied to stochastic evolutionary processes where there is

no mutation, just selection, and in each time step the numberof mutants increases

by one, decreases by one or remains the same. In Section 2.4, we apply our results

to the widely used IP. In section 2.5, we find appropriate conditions under which

one strategy is favoured over the other on each of the graphs.Then, in Section 2.6,

through numerical examples we compare the impact of the population size and the

individuals’ fitness on the quantities we consider, on the three graphs under the rules

of the IP. We note that the solutions of the mean time to absorption and the mean

fixation time of mutants in this process have the same behaviour as the individuals’

fitness and the population size vary. However, when mutant individuals become

extinct it usually happens in a short time, so the number of time-steps needed for

mutants’ fixation in each case is higher; in this work we will mainly focus on the

mean time to absorption.

2.2 Evolutionary games on the complete graph and

the circle

Since the uniformly weighted (or unweighted) complete graph is identical to a ho-

mogeneous well-mixed population, the fixation probability, the mean time to absorp-

tion and the mean fixation time starting fromi ∈ [1,N] individuals playing strategy

A is given by the formulae (1.27), (1.34) and (1.35), respectively.

On the circle, the spread of a single A individual (or a numberof A individuals

placed initially on connected vertices) always leads to a connected segment of As.

This obviously holds only in processes where there is no mutation, otherwise the

segments of As and Bs could split by the replacement of an A individual by a B

individual which is the offspring of a neighbouring A, or vice versa. Thus, any

transition from one state to a different state happens only when an individual in the

boundaries of the two connected segments (one consisting ofAs and one of Bs) is

replaced by the offspring of a neighbour of different type. As on a complete graph,

on a circle any two formations ofi As andN− i Bs are equivalent. Thus, the fixation

probability and the mean time to absorption and fixation starting from any number
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of individuals playing strategy A on a circle graph (given that these are connected)

are also given by the formulae (1.27), (1.34) and (1.35), respectively.

2.3 Evolutionary games on the star graph

In this section, we consider analytically and find exact formulae for the fixation

probability, the absorption and fixation time, and the mean number of transitions

before absorption and fixation occur, starting from any number of A individuals

placed at any possible position on a star of any size. As above, we assume that in

the evolutionary process there is no mutation.

Let pXY
i, j denote the transition probability from a state withi A individuals on the

leaves and an X∈ {A,B} individual in the center to the state withj A individuals

on the leaves and a Y∈ {A,B} individual in the center. Since in the process there

is no mutation and the number of A individuals can increase ordecrease at most by

one, onlypAA
i,i+1, pAB

i,i andpAA
i,i = 1− pAA

i,i+1− pAB
i,i (0≤ i ≤ n−1), andpBB

i,i−1, pBA
i,i and

pBB
i,i = 1− pBB

i,i−1− pBA
i,i (1≤ i ≤ n) can be non-zero.

2.3.1 Fixation probability on the star graph

Consider a star graph withn leaves being at the state where an X individual is in the

centre, andi X individuals andn− i Y individuals, 0≤ i ≤ n−1, are on the leaves.

In the next time step, the number of X individuals on the leaves can increase by one,

the number of X individuals on the leaves can remain the same but the individual in

the centre be replaced by the offspring of a Y individual on the leaves, or the system

can remain at the same state because of a replacement of either the X individual in

the centre by the offspring of an X individual on the leaves, or a replacement of an

X individual on the leaves by the offspring of the central individual.

Let us denote byXPA
i

(

XPB
i

)

the probability that individuals playing strategy X

fixate in a population originally consisting ofi A individuals on the leaves and an A

(a B) individual in the centre.

The fixation probabilitiesAPA
i andAPB

i are given by the solutions of the following

system of equations

APA
i = pAA

i,i+1
APA

i+1+ pAB
i,i

APB
i +

(

1− pAA
i,i+1− pAB

i,i

)

APA
i , 0≤ i ≤ n−1, (2.1)

APB
i = pBA

i,i
APA

i + pBB
i,i−1

APB
i−1+

(

1− pBA
i,i − pBB

i,i−1

)

APB
i , 1≤ i ≤ n, (2.2)
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with conditions on the absorbing states

APB
0 = 0, (2.3)

APA
n = 1. (2.4)

Rearranging equations (2.1)–(2.2) yields

APA
i = πAA

i,i+1
APA

i+1+πAB
i,i

APB
i , 0≤ i ≤ n−1, (2.5)

APB
i = πBA

i,i
APA

i +πBB
i,i−1

APB
i−1, 1≤ i ≤ n, (2.6)

whereπ denotes the transition probability conditional on the system not remaining

in the same state, i.e.

πAA
i,i+1 = 1−πAB

i,i =
pAA

i,i+1

pAA
i,i+1+ pAB

i,i

, 0≤ i ≤ n−1, (2.7)

πBA
i,i = 1−πBB

i,i−1 =
pBA

i,i

pBA
i,i + pBB

i,i−1

, 1≤ i ≤ n. (2.8)

Equation (2.5) can be written as

APA
i =

1

πAA
i−1,i

APA
i−1−

πAB
i−1,i−1

πAA
i−1,i

APB
i−1, 1≤ i ≤ n−1. (2.9)

From equation (2.6) and (2.3), fori = 1 we get

APB
1 = πBA

1,1
APA

1 . (2.10)

From (2.9), fori = 2 we get

APA
2 =

1

πAA
1,2

APA
1 −

πAB
1,1

πAA
1,2

APB
1

(2.10)
=

(

1−πAB
1,1πBA

1,1

πAA
1,2

)

APA
1 . (2.11)

But, πBA
1,1 = 1−πBB

1,0 andπAA
1,2 = 1−πAB

1,1. Thus, from (2.11) we obtain

APA
2 =

(

1+
πAB

1,1πBB
1,0

πAA
1,2

)

APA
1 . (2.12)

From (2.6), fori = 2, using (2.10) and (2.12) we get

APB
2 =

(

πBA
2,2+πBA

1,1πBB
2,1 +

πAB
1,1 +πBB

1,0πBA
2,2

πAA
1,2

)

APA
1 . (2.13)
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From (2.9), fori = 3, using (2.12)–(2.13) we get

APA
3 =

(

1

πAA
2,3

+
πAB

1,1πBB
1,0

πAA
1,2πAA

2,3

−
πAB

2,2πBA
2,2

πAA
2,3

−
πBA

1,1πAB
2,2πBB

2,1

πAA
2,3

−
πAB

1,1πBB
1,0πAB

2,2πBA
2,2

πAA
1,2πAA

2,3

)

APA
1 .

(2.14)

Using thatπBA
1,1 = 1−πBB

1,0, πAA
1,2 = 1−πAB

1,1, πAB
2,2 = 1−πAA

2,3 andπBA
2,2 = 1−πBB

2,1, from

(2.14), after some calculations we obtain

APA
3 =

(

1+
πAB

1,1πBB
1,0

πAA
1,2

+
πAB

2,2πBB
2,1πBB

1,0

πAA
1,2πAA

2,3

)

APA
1 . (2.15)

Continuing in the same way, we find that

APA
i = D(1, i)APA

1 , 1≤ i ≤ n, (2.16)

where

D(l ,m) = 1+
m−1

∑
j=l

πAB
j, j

j

∏
k=l

πBB
k,k−1

πAA
k,k+1

. (2.17)

From (2.16) and (2.4) we obtain

APA
1 =

1
D(1,n)

. (2.18)

Therefore, substituting (2.18) into (2.16) we find thatAPA
i (1≤ i ≤ n) is given by

APA
i =

D(1, i)
D(1,n)

, 1≤ i ≤ n. (2.19)

From equation (2.6) and (2.3) we find

APB
i =

i

∑
j=1

πBA
j, j

APA
j

i

∏
k= j+1

πBB
k,k−1, 1≤ i ≤ n. (2.20)

From (2.5) and (2.3) we get that fori = 0,

APA
0 = πAA

0,1
APA

1 =
πAA

0,1

D(1,n)
, (2.21)

and from (2.20) we get that fori = 1,

APB
1 = πBA

1,1
APA

1 =
πBA

1,1

D(1,n)
. (2.22)
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The average fixation probability of a single A individual randomly placed on the

star,AP, is given by

AP=
1

n+1
APA

0 +
n

n+1
APB

1 =
nπBA

1,1+πAA
0,1

n+1
1

D(1,n)
. (2.23)

(see also Tarnitaet al. (2009) for an alternative formula for the fixation probability

of a single mutant on the star).

2.3.2 Mean time to absorption on the star graph

As before, starting from a state with an X individual in the centre andi X individuals

andn− i Y individuals on the leaves, 0≤ i ≤ n−1, in one time step (this corre-

sponds to the addition of 1 in the equations (2.24) and (2.25)below) we might have

a replacement of a Y individual on the leaves by the offspringof the X individual in

the centre, a replacement of the X individual in the centre bythe offspring of a Y

individual on the leaves, or a replacement of an individual Xby an individual of the

same type.

Let us denote byTA
i

(

TB
i

)

the mean time to absorption starting fromi A individ-

uals on the leaves and an A (a B) in the centre.TA
i andTB

i are the solutions of the

system

TA
i = pAA

i,i+1TA
i+1+ pAB

i,i TB
i +

(

1− pAA
i,i+1− pAB

i,i

)

TA
i +1, 0≤ i ≤ n−1, (2.24)

TB
i = pBA

i,i TA
i + pBB

i,i−1TB
i−1+

(

1− pBA
i,i − pBB

i,i−1

)

TB
i +1, 1≤ i ≤ n, (2.25)

TB
0 = 0, (2.26)

TA
n = 0. (2.27)

Rearranging equations (2.24)–(2.25) we obtain the following system

TA
i = πAA

i,i+1TA
i+1+πAB

i,i TB
i +

1

pAA
i,i+1+ pAB

i,i

, 0≤ i ≤ n−1, (2.28)

TB
i = πBA

i,i TA
i +πBB

i,i−1TB
i−1+

1

pBB
i,i−1+ pBA

i,i

, 1≤ i ≤ n. (2.29)

Equation (2.28) can be written in the following form

TA
i =

1

πAA
i−1,i

TA
i−1−

πAB
i−1,i−1

πAA
i−1,i

TB
i−1−

1

πAA
i−1,i

(

pAA
i−1,i + pAB

i−1,i−1

) , 1≤ i ≤ n−1. (2.30)
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Solving the system of equations (2.29)–(2.30) and (2.26)–(2.27) inductively, as be-

fore, we find

TA
i = D(1, i)TA

1 −
i

∑
l=2

D(l , i)E(l), 1≤ i ≤ n, (2.31)

where

E(l) =
πAB

l−1,l−1

πAA
l−1,l

l−1

∑
j=1

(

∏l−1
k= j+1πBB

k,k−1

pBB
j, j−1+ pBA

j, j

)

+
1

pAA
l−1,l

. (2.32)

For i = n, TA
n = 0. Hence, from (2.31) we get

TA
1 =

1
D(1,n)

n

∑
l=2

D(l ,n)E(l). (2.33)

Substituting (2.33) into (2.31) and using (2.19) we find thatTA
i (1≤ i ≤ n) is given

by

TA
i = APA

i

n

∑
l=2

D(l ,n)E(l)−
i

∑
l=2

D(l , i)E(l), 1≤ i ≤ n. (2.34)

From equation (2.29) and (2.26) we find

TB
i =

i

∑
j=1

πBA
j, j

(

TA
j +

1

pBA
j, j

)

i

∏
k= j+1

πBB
k,k−1, 1≤ i ≤ n. (2.35)

From (2.28) and (2.26) we have that fori = 0,

TA
0 = πAA

0,1TA
1 +1=

πAA
0,1

D(1,n)

n

∑
l=2

D(l ,n)E(l)+1, (2.36)

where we have used thatpAA
0,1+ pAB

0,0 = 1.

From (2.35) we have that fori = 1,

TB
1 = πBA

1,1TA
1 +

1

pBB
1,0+ pBA

1,1

=
πBA

1,1

D(1,n)

n

∑
l=2

D(l ,n)E(l)+
1

pBB
1,0+ pBA

1,1

. (2.37)

Hence, the average time to absorption starting from a singleA individual randomly

placed on the star,AT, is given by

AT =
1

n+1
TA

0 +
n

n+1
TB

1 (2.38)

=
1

n+1

(

πAA
0,1 +nπBA

1,1

D(1,n)

n

∑
l=2

D(l ,n)E(l)+1+
n

pBB
1,0+ pBA

1,1

)

. (2.39)

40



Evolutionary dynamics on simple graphs

2.3.3 Mean time to fixation on the star graph

Let XFA
i

(

XFB
i

)

denote the mean fixation time of individuals playing strategy X

starting from the state withi As on the leaves and an A (a B) in the centre. Following

the same method as in Antal and Scheuring (2006),AFA
i andAFB

i are given by the

solution of the system

AzA
i = pAA

i,i+1
AzA

i+1+ pAB
i,i

AzB
i +
(

1− pAA
i,i+1− pAB

i,i

)

AzA
i +

APA
i , 0≤ i ≤ n−1,

(2.40)

AzB
i = pBA

i,i
AzA

i + pBB
i,i−1

AzB
i−1+

(

1− pBA
i,i − pBB

i,i−1

)

AzB
i +

APB
i , 1≤ i ≤ n, (2.41)

whereAzA
i = APA

i
AFA

i andAzB
i = APB

i
AFB

i . At the absorbing states,

AzB
0 = 0 becauseAPB

0 = 0, (2.42)
AzA

n = 0 becauseAFA
n = 0. (2.43)

Rearranging equations (2.40)–(2.41) we obtain the following system

AzA
i = πAA

i,i+1
AzA

i+1+πAB
i,i

AzB
i +

APA
i

pAA
i,i+1+ pAB

i,i

, 0≤ i ≤ n−1, (2.44)

AzB
i = πBA

i,i
AzA

i +πBB
i,i−1

AzB
i−1+

APB
i

pBB
i,i−1+ pBA

i,i

, 1≤ i ≤ n. (2.45)

Equation (2.44) can be written in the following form

AzA
i =

1

πAA
i−1,i

AzA
i−1−

πAB
i−1,i−1

πAA
i−1,i

AzB
i−1−

APA
i−1

πAA
i−1,i

(

pAA
i−1,i + pAB

i−1,i−1

) , 1≤ i ≤ n−1.

(2.46)

Solving the system of equations (2.45)–(2.46) and (2.42)–(2.43) as before, we find

AzA
i = D(1, i)AzA

1 −
i

∑
l=2

D(l , i)G(l), 1≤ i ≤ n (2.47)

⇒ AFA
i = AFA

1 −
1

APA
i

i

∑
l=2

D(l , i)G(l), 1≤ i ≤ n, (2.48)

where

G(l) =
πAB

l−1,l−1

πAA
l−1,l

l−1

∑
j=1

(

APB
j

pBB
j, j−1+ pBA

j, j

l−1

∏
k= j+1

πBB
k,k−1

)

+
APA

l−1

pAA
l−1,l

. (2.49)
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For i = n, AFA
n = 0 andAPA

n = 1. Hence, from (2.48) we get

AFA
1 =

n

∑
l=2

D(l ,n)G(l). (2.50)

Substituting (2.50) into (2.48) we find thatAFA
i (1≤ i ≤ n) is given by

AFA
i =

n

∑
l=2

D(l ,n)G(l)−
1

APA
i

i

∑
l=2

D(l , i)G(l), 1≤ i ≤ n. (2.51)

From equations (2.45) and (2.42) we find

AzB
i =

i

∑
j=1

πBA
j, j

(

AzA
j +

APB
j

pBA
j, j

)

i

∏
k= j+1

πBB
k,k−1, 1≤ i ≤ n, (2.52)

⇒ AFB
i =

1
APB

i

i

∑
j=1

πBA
j, j

(

APA
j

AFA
j +

APB
j

pBA
j, j

)

i

∏
k= j+1

πBB
k,k−1, 1≤ i ≤ n. (2.53)

From (2.44) and (2.42) we have that fori = 0,

AzA
0 = πAA

0,1
AzA

1 +
APA

0 ⇒ AFA
0 =

πAA
0,1

APA
1

APA
0

AFA
1 +1, (2.54)

where we have used thatpAA
0,1+ pAB

0,0 = 1. ButAPA
0 = πAA

0,1
APA

1 . Therefore, we obtain

that
AFA

0 = AFA
1 +1=

n

∑
l=2

D(l ,n)G(l)+1. (2.55)

From (2.53) we have that fori = 1,

AFB
1 =

πBA
1,1

APA
1

APB
1

AFA
1 +

1

pBB
1,0+ pBA

1,1

. (2.56)

But APB
1 = πBA

1,1
APA

1 . Therefore,

AFB
1 = AFA

1 +
1

pBB
1,0+ pBA

1,1

=
n

∑
l=2

D(l ,n)G(l)+
1

pBB
1,0+ pBA

1,1

. (2.57)

The average fixation time of a single A individual randomly placed on the star,AF ,

is given by

AF =
1

n+1
AFA

0 +
n

n+1
AFB

1 =
1

n+1

(

(n+1)
n

∑
l=2

D(l ,n)G(l)+1+
n

pBB
1,0+ pBA

1,1

)

.

(2.58)
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Note that by symmetry, replacingpAA
i,i+1 by pBB

n−i,n−i−1, pAB
i,i by pBA

n−i,n−i, pBB
i,i−1 by

pAA
n−i,n−i+1, pBA

i,i by pAB
n−i,n−i,

APA
i by 1−APB

n−i =
BPB

n−i andAPB
i by 1−APA

n−i =
BPA

n−i

in the above formulae, we find the respective formulae of the fixation probability

and absorption and fixation times of B individuals when they are introduced into a

population of As.

2.4 Evolutionary games on the complete graph, the

circle and the star graph under the update rules

of the invasion process

In this section, we investigate the evolutionary process onthe complete graph, the

circle and the star graph following the update rules of the commonly used IP (see

Section 1.5). Here, the fitness of each individual is assumedto be equal tof =

fb +wP, a linear function of the average payoffP obtained by the games played

with neighbouring individuals.fb is a constant background fitness andw ∈ [0,∞)

represents the intensity of selection which determines thecontribution ofP to fit-

ness. Whenw→ 0, the payoffP of each individual has a small contribution to the

overall fitness and we have so-calledweak selection. Thus, in this case the fitness

differences between the different types of individuals aresmall and the stochastic ef-

fects of the process are more pronounced. Whenw= 0 all individuals have the same

fitness and thus we have the case of neutral drift. Finally, when w → ∞ the con-

tribution of P to the fitness becomes arbitrarily large, and the effect of background

fitnessfb becomes negligible. Although the intensity of selection isirrelevant in the

traditional evolutionary game dynamics (since this cancels out), it is very important

in stochastic evolutionary dynamics in finite populations.

Note that since in the evolutionary process the probabilityof an individual being

chosen for reproduction is proportional to its fitness and this probability must be

non-negative, the fitness of individuals must be non-negative.

Depending on the nature of the game and the evolutionary process, the individ-

ual’s payoff, P, can be considered in different ways. Alternatively, for example,

the total payoff of an individual could be considered as justthe sum of the payoffs

obtained by each game played with each of its neighbours (accumulated payoff).

Although the choice of computing the payoff between these two ways does not in-

fluence the outcome of the evolutionary process on regular graphs where each indi-

vidual has the same degree (for example circles and completegraphs), it is crucial

on irregular graphs and depending on the evolutionary dynamics and the population
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structure, might yield remarkably different outcomes (seefor example, Santos and

Pacheco, 2006; Masuda, 2007; Tomassiniet al., 2007; Szolnokiet al., 2008). For

example, in the IP on a star graph the fitness of the individualin the central ver-

tex is significantly diminished when taking the average payoff, and the chance of

this individual to survive and reproduce is reduced. In contrast, the contribution of

the accumulated payoff to the fitness makes the individual inthe centre much fit-

ter (given positive payoffs) and its chance of survival and reproduction is higher.

However, in evolutionary dynamics where in each time step anindividual first re-

produces or dies at random, the fitness of the central individual does not matter and

since the individuals on the leaves interact just with the individual in the centre, the

way of computing the payoff is irrelevant. In this work, assuming that at each time

step individuals interact with neighbouring individuals at the same rate, the total

payoff of each individual in each step is considered to be theaverage of the ob-

tained accumulated payoff. Alternative fitness functions have also been considered,

for example the exponential function of the payoff,f = exp(wP) (Traulsenet al.,

2008). These fitness functions are usually used for modelling the evolution of finite

structured populations represented by graphs. Different fitness functions have also

been introduced for the modelling of evolutionary dynamicsbeyond the framework

of pairwise interactions between individuals (e.g., Broom and Rycht́ǎr, 2012).

For each of the graphs we consider, the complete graph, the circle and the star

graph, we first derive the transition probabilities following the update rules of the IP

and then, using the formulae of Sections 2.2 and 2.3, we derive the exact solutions

of the fixation probability, the mean absorption and fixationtime as well as the mean

number of transitions to absorption and fixation in this process.

Let us denote the following terms, which are useful in subsequent calculations.

Let

µi =
iα +(N−1− i)β

N−1
, (2.59)

νi =
iγ +(N−1− i)δ

N−1
(2.60)

be the fitness of an A and a B individual, respectively, that isneighbouring withi As

andN−1− i Bs (this is equal to the fitness of an individual in the center ofa star with

i As on the leaves, or an individual withi neighbouring As anywhere in a complete

graph). We have setα = fb+wa, β = fb+wb, γ = fb+wcandδ = fb+wd.
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2.4.1 Evolutionary games on the complete graph under the up-

date rules of the invasion process

On a complete graph consisting ofi individuals playing strategy A andN− i indi-

viduals playing B, the fitness of an A individual isfA = fb+wPA and that of a B

individual fB = fb+wPB, where

PA =
(i−1)a+(N− i)b

N−1
, (2.61)

PB =
ic+(N− i−1)d

N−1
. (2.62)

Note that these payoffs are identical to the payoffs obtained by an A and a B indi-

vidual, respectively, in a homogeneous well-mixed population of sizeN since an A

individual interacts another A with probability(i −1)/(N−1) and a B with proba-

bility (N− i)/(N−1), while a B individual interacts an A with probabilityi/(N−1)

and a B with probability(N− i−1)/(N−1).

Transition probabilities

The number ofi ∈ [1,N−1] A individuals on a complete graph in processes without

mutation can increase by one if the offspring of any A replaces any B individual.

Similarly, their number decreases by one if the offspring ofany of theN− i B indi-

viduals replaces any of the A individuals. Following the rules of the IP, the probabil-

ities of the number ofi A individuals increasing or decreasing on a complete graph

are given by

pi,i+1 =
i fA

i fA+(N− i) fB
·

N− i
N−1

=
i(N− i)µi−1

(N−1)
(

iµi−1+(N− i)νi
) , 1≤ i ≤ N−1, (2.63)

pi,i−1 =
(N− i) fB

i fA+(N− i) fB
·

i
N−1

=
i(N− i)νi

(N−1)
(

iµi−1+(N− i)νi
) , 1≤ i ≤ N−1, (2.64)

and zero in every other case. The probability of the system remaining at the same

state is obviouslypi,i = 1− pi,i+1− pi,i−1 ∀ i ∈ [0,N].
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Fixation probability

Substituting the transition probabilities (2.63)–(2.64)into (1.27) we get that the fix-

ation probability ofi ∈ [1,N] A individuals introduced on a complete graph where

vertices are occupied by B individuals is given by

APi =
A(0, i−1)
A(0,N−1)

, (2.65)

where

A( j,m) =
m

∑
l= j

l

∏
k= j+1

νk

µk−1
. (2.66)

Mean time to absorption

The mean time before absorption occurs starting fromi ∈ [1,N] individuals playing

strategy A on a complete graph is given by the formula (1.34).Substituting the

transition probabilities (2.63)–(2.64) into this we obtain

Ti =
APi

N−1

∑
j=1

h( j)A( j,N−1)−
i−1

∑
j=1

h( j)A( j, i−1), (2.67)

where

h( j) =
(N−1)

(

jµ j−1+(N− j)ν j
)

j(N− j)µ j−1
. (2.68)

Mean time to fixation

The substitution of the transition probabilities (2.63)–(2.64) into (1.35) give us the

mean fixation time ofi ∈ [1,N] A individuals when the update rules of the IP are

applied. This is given by the formula

AFi =
N−1

∑
j=1

APjh( j)A( j,N−1)−
1

APi

i−1

∑
j=1

APjh( j)A( j, i−1). (2.69)

Mean number of transitions before absorption/fixation occurs

Here, we count just the number of time steps in which the number of A individuals

either increases or decreases by one. Hence, we condition onthe number of As in

every step not being the same with that in the previous step, i.e. pi,i+1+ pi,i−1 = 1.

The non-zero conditional probabilities of transition on the complete graph following

46



Evolutionary dynamics on simple graphs

the rules of the IP are given by

πi,i+1 =
µi−1

µi−1+νi
, 1≤ i ≤ N−1, (2.70)

πi,i−1 =
νi

µi−1+νi
, 1≤ i ≤ N−1. (2.71)

Substituting the transition probabilities (2.70)–(2.71)into the formula (1.34), where

pi, j = πi, j ∀ i, j, we find the mean number of transitions needed before absorption

occurs starting fromi ∈ [1,N] individuals playing strategy A on a complete graph.

Similarly, the mean number of transitions before the fixation of i ∈ [1,N] indi-

viduals playing strategy A is obtained by substituting (2.70)–(2.71) into (1.35).

2.4.2 Evolutionary games on the circle graph under the update

rules of the invasion process

Transition probabilities

On the circle, every individual is connected either to two individuals playing strategy

A, to two individuals playing strategy B, or to one individualplaying each of the

strategies. An individual between two As has fitnessα if it is an A individual and

fitnessγ if it is a B individual. Note that a B individual is between twoAs whenever

it is the only individual playing B in the population. An individual between two

Bs has fitnessβ if it is an A individual and fitnessδ if it is a B individual. As

before, an A individual is between two Bs only if it is the only one of its type in

the population. Finally, an individual between an A and a B has fitness equal to

(α + β )/2 when playing strategy A and fitness equal to(γ + δ )/2 when playing

strategy B. The number of A individuals can increase (decrease) by one only if an

A (a B) individual on the boundary between the two segments, one consisting of

As and the other of Bs, reproduces and its offspring replaces aconnected individual

playing the other strategy. The non-zero probabilities of moving from one state to

another on the circle under the rules of the IP are the following

p1,2 =
β

β +(N−1)ν1
, (2.72)

pi,i+1 =
α +β

2
(

(i−1)α +β + γ +(N−1− i)δ
) , 2≤ i ≤ N−1, (2.73)
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pi,i−1 =
γ +δ

2
(

(i−1)α +β + γ +(N−1− i)δ
) , 1≤ i ≤ N−2, (2.74)

pN−1,N−2 =
γ

(N−1)µN−2+ γ
, (2.75)

and zero in any other case. The probability to remain in the same state ispi,i =

1− pi,i+1− pi,i−1, ∀ i ∈ [0,N].

Fixation probability

Substituting the transition probabilities (2.72)–(2.75)into (1.27) we obtain that, in

the IP, the fixation probability ofi ∈ [1,N− 1] A individuals on the circle,APi, is

given by

APi =

1+ γ+δ
2β

i−2
∑
j=0

(

γ+δ
α+β

) j

1+ γ+δ
2β B(1)

, N ≥ 3, (2.76)

where

B( j) =
N−2− j

∑
k=0

(

γ +δ
α +β

)k

+

(

γ +δ
α +β

)N−2− j 2γ
α +β

. (2.77)

Mean time to absorption

The mean time to absorption on a circle is given by formula (1.34). Substituting

the transition probabilities (2.72)–(2.75) we obtain thatin the IP the mean time to

absorption starting fromi ∈ [1,N−1] A individuals,Ti , is given by

Ti =
APiC1(N)−C1(i), (2.78)

where

C1(N) =
B(1)
p1,2

+
N−2

∑
j=2

B( j)
p j, j+1

+
1

pN−1,N
, (2.79)

C1(i) =
1

p1,2

i−2

∑
k=0

(

γ +δ
α +β

)k

+
i−1

∑
j=2

1
p j, j+1

i− j−1

∑
k=0

(

γ +δ
α +β

)k

. (2.80)

Mean time to fixation

The mean number of time steps before the fixation of A individuals starting from

i ∈ [1,N] As on the circle is given by formula (1.35). In the IP it is found that

AFi =
B(1)
p1,2

AP+
N−2

∑
j=2

B( j)
p j, j+1

APj +
APN−1

pN−1,N
−

1
APi

C2(i) (2.81)
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where

C2(i) =
AP
p1,2

i−2

∑
k=0

(

γ +δ
α +β

)k

+
i−1

∑
j=2

APj

p j, j+1

i− j−1

∑
k=0

(

γ +δ
α +β

)k

. (2.82)

Mean number of transitions before absorption/fixation occurs

In the case where the offspring of each individual can replace an individual of the

other type only, the process on the circle can be thought of asa process where only

the individuals on the boundaries of two segments of the different types can compete

for reproduction. These are the one A individual and the two Bswhen there is only

one A individual in the population, the two As and the two Bs on the boundaries

when there are at least two As and two Bs, and the two As and the one B, when

there is only one B individual in the population. Hence, in this case, the conditional

probabilities of transition on the circle are given by

π1,2 =
2β

2β + γ +δ
, (2.83)

π1,0 =
γ +δ

2β + γ +δ
, (2.84)

πi,i+1 =
α +β

α +β + γ +δ
, 2≤ i ≤ N−2, (2.85)

πi,i−1 =
γ +δ

α +β + γ +δ
, 2≤ i ≤ N−2, (2.86)

πN−1,N =
α +β

α +β +2γ
, (2.87)

πN−1,N−2 =
2γ

α +β +2γ
, (2.88)

and zero in any other case.

Substituting the transition probabilities (2.83)–(2.88)into the formula (1.34),

wherepi, j = πi, j ∀ i, j, one can obtain the mean number of transitions before ab-

sorption occurs when starting fromi ∈ [1,N− 1] A individuals on a circle. The

mean number of transitions beforei ∈ [1,N] A individuals fixate on the circle is

obtained by substituting (2.83)–(2.88) into the formula (1.35).
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2.4.3 Evolutionary games on the star graph under the update

rules of the invasion process

On a star graph withi As andn− i Bs on the leaves, the fitnesses of an A and a B

individual placed in the centre,fAc(i) and fBc(i) respectively, are given by

fAc(i) =
iα +(n− i)β

n
, (2.89)

fBc(i) =
iγ +(n− i)δ

n
. (2.90)

The fitness of an A (a B) individual on the leaves is equal toα (γ) when playing

against an A individual in the centre andβ (δ ) when playing against a B individual

in this position.

Transition probabilities

The number of A (B) individuals on the leaves of a star can increase by one, and

thus the number of Bs (As) decrease by one, if a B (an A) individual on the leaves

(given there is one) is replaced by the offspring of an A (a B) individual in the centre.

An individual in the centre changes type whenever an individual of the other type is

chosen for reproduction.

The transition probabilities between the different stateson the star graph in the

IP are given by

pAA
i,i+1 =

fAc(i)
fAc(i)+ iα +(n− i)γ

·
n− i

n
=

µi

iα +(n− i)γ +µi
·
n− i

n
, 0≤ i ≤ n−1,

(2.91)

pAB
i,i =

(n− i)γ
fAc(i)+ iα +(n− i)γ

=
(n− i)γ

iα +(n− i)γ +µi
, 0≤ i ≤ n−1, (2.92)

pBB
i,i−1 =

fBc(i)
fBc(i)+ iβ +(n− i)δ

·
i
n
=

νi

iβ +(n− i)δ +νi
·

i
n
, 1≤ i ≤ n, (2.93)

pBA
i,i =

iβ
fBc(i)+ iβ +(n− i)δ

=
iβ

iβ +(n− i)δ +νi
, 1≤ i ≤ n, (2.94)

and zero in any other case.pAA
i,i = 1− pAA

i,i+1− pAB
i,i ∀ i ∈ [0,n] andpBB

i,i = 1− pBB
i,i−1−

pBA
i,i ∀ i ∈ [0,n].

Fixation probability

Substituting the transition probabilities (2.91)–(2.94)into the formulae (2.19) and

(2.20) we find the fixation probability ofi (1 ≤ i ≤ n) A individuals on the leaves
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and an A individual in the centre,APA
i , and the fixation probability ofi (1≤ i ≤ n) A

individuals on the leaves with a B individual in the centre,APB
i , respectively. These

are given by the following formulae.

APA
i =

D(1, i)
D(1,n)

, 1≤ i ≤ n, (2.95)

APB
i =

i

∑
j=1

nβ
nβ +ν j

APA
j

i

∏
k= j+1

νk

nβ +νk
, 1≤ i ≤ n, (2.96)

where

D(l ,m) = 1+
m−1

∑
j=l

nγ
nγ +µ j

j

∏
k=l

νk (nγ +µk)

µk (nβ +νk)
. (2.97)

From equation (2.21), we obtain thatAPA
0 is given by

APA
0 =

β
(β +nγ)

1
D(1,n)

. (2.98)

Using the formula (2.23), we get the average fixation probability of a single A indi-

vidual randomly placed on the star,AP, when the update rules of the IP are followed

being given by

AP=
1

n+1

(

n2β
nβ +ν1

+
β

β +nγ

)

1
D(1,n)

. (2.99)

Mean time to absorption

The mean time to absorption starting fromi (1≤ i ≤ n) A individuals on the leaves

and an A individual in the centre,TA
i , and the mean time to absorption starting from

i A individuals on the leaves with a B individual in the centre,TB
i , in the IP are given

by the following formulae.

TA
i = APA

i

n

∑
l=2

D(l ,n)E(l)−
i

∑
l=2

D(l , i)E(l), 1≤ i ≤ n, (2.100)

TB
i =

i

∑
j=1

(

nβ
nβ +ν j

TA
j +λ j

) i

∏
k= j+1

νk

nβ +νk
, 1≤ i ≤ n, (2.101)

where

E(l) =
nγ

µl−1

l−1

∑
j=1

(

λ j

l−1

∏
k= j+1

νk

nβ +νk

)

+κl−1 (2.102)
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and

κi =
n

n− i
·

iα +(n− i)γ +µi

µi
, (2.103)

λi =
n
i
·

iβ +(n− i)δ +νi

nβ +νi
. (2.104)

These have been derived by substituting the transition probabilities (2.91)–(2.94)

into the formulae (2.34) and (2.35), respectively. From (2.36) we derive that the

mean time to absorption starting from a single individual placed in the centre of the

star is given by

TA
0 =

β
β +nγ

1
D(1,n)

n

∑
l=2

D(l ,n)E(l)+1. (2.105)

Using (2.39), we obtain that the average time to absorption starting from a single A

individual randomly placed on the star,AT, is given by

AT =
1

n+1

(

(

n2β
nβ +ν1

+
β

β +nγ

)

1
D(1,n)

n

∑
l=2

D(l ,n)E(l)+nλ1+1

)

. (2.106)

Mean time to fixation

Substituting the transition probabilities (2.91)–(2.94)into the formulae (2.51) and

(2.53), we obtain that the fixation time ofi (1≤ i ≤ n) A individuals on the leaves

and an A individual in the centre,AFA
i , and the fixation time ofi (1 ≤ i ≤ n) A

individuals on the leaves with a B in the centre,AFB
i , are given respectively by

AFA
i =

n

∑
l=2

D(l ,n)G(l)−
1

APA
i

i

∑
l=2

D(l , i)G(l), 1≤ i ≤ n, (2.107)

AFB
i =

1
APB

i

i

∑
j=1

(

nβ
nβ +ν j

APA
j

AFA
j +λ j

APB
j

) i

∏
k= j+1

νk

nβ +νk
, 1≤ i ≤ n, (2.108)

where

G(l) =
nγ

µl−1

l−1

∑
j=1

(

λ j
APB

j

l−1

∏
k= j+1

νk

nβ +νk

)

+κl−1
APA

l−1.

From (2.55), the mean fixation time of a single A individual placed in the centre of

the star graph,AFA
0 , is given by

AFA
0 =

n

∑
l=2

D(l ,n)G(l)+1. (2.109)
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The average fixation time of a single A individual randomly placed on the star,AF ,

when the update rules of the IP are followed, is given by

AF =
1

n+1

(

(n+1)
n

∑
l=2

D(l ,n)G(l)+nλ1+1

)

. (2.110)

Mean number of transitions before absorption/fixation occurs

On the star graph, if the offspring of an individual can replace only an individual of

the other type, thenpAA
i,i+1+ pAB

i,i = 1,∀ i ∈ [0,n−1], andpBB
i,i−1+ pBA

i,i = 1,∀ i ∈ [1,n].

Hence, in this case the transition probabilities are given by

πAA
i,i+1 =

iα +(n− i)β
iα +(n− i)β +n2γ

, 0≤ i ≤ n−1, (2.111)

πAB
i,i =

n2γ
iα +(n− i)β +n2γ

, 0≤ i ≤ n−1, (2.112)

πBB
i,i−1 =

iγ +(n− i)δ
n2β + iγ +(n− i)δ

, 1≤ i ≤ n, (2.113)

πBA
i,i =

n2β
n2β + iγ +(n− i)δ

, 1≤ i ≤ n, (2.114)

and zero in any other case. Substituting the transition probabilities (2.111)–(2.114)

into the formulae (2.34), (2.35) and (2.36), wherepXY
i, j = πXY

i, j ∀ i, j and∀ X,Y ∈

[A,B], one can derive the mean number of transitions before absorption occurs start-

ing from every possible state on the star graph. The mean number of transitions

before A individuals fixate on the star can be similarly obtained by substituting

(2.111)–(2.114) into the formulae (2.51), (2.53) and (2.55).

2.5 Favoured strategies on the complete graph, the

circle and the star graph under the update rules

of the invasion process

In evolutionary games, the comparison of the fixation probability of a single indi-

vidual playing strategy A in a population of individuals playing strategy B,AP, with

that of an individual playing strategy B in a population of individuals playing A,BP,

is of interest. Strategy A is said to be favoured by natural selection over strategy B

if it is more abundant (its average frequency is higher) in the stationary distribution

of the stochastic process. In evolutionary processes wherethere is no mutation, the

stationary distribution is non-zero only on the absorbing states, where the population
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consists only of individuals playing one of the two strategies. Hence, in this case,

the condition for strategy A to be favoured over strategy B reduces to the condition
AP> BP. WhenAP= BP, an A individual introduced into a population of Bs does

equally well as a B individual when it is introduced into a population of As. The

conditions under which one strategy is favoured over the other have been found for

several graphs and update rules under the assumption of weakselection (see Tarnita

et al., 2009). In general, many analytic results have been derived in the limit of weak

selection, because in this limit complicated non-linear functions can be approached

by linear functions, making the analytic investigation easier. In this section, we de-

rive the appropriate (general) conditions for strategy A tobe favoured over strategy

B on the complete graph, the circle and the star graph.

On a complete graph and a circle, the fixation probability of asingle B individual,
BP, is equal to the probability thatN− 1 A individuals do not fixate but die out.

Hence,

BP= 1−APN−1 (2.115)

= 1−

1+
N−2
∑
j=1

j
∏

k=1
qk

1+
N−1
∑
j=1

j
∏

k=1
qk

=

N−1
∏

k=1
qk

1+
N−1
∑
j=1

j
∏

k=1
qk

= AP
N−1

∏
k=1

qk (2.116)

⇒
AP
BP

=
N−1

∏
k=1

pk,k+1

pk,k−1
. (2.117)

Let ρG
UR denote the ratioAP/BP under the update rule UR on the graph G. Hence, a

strategy A is favoured over a strategy B on the graph G under the update rule UR if

ρG
UR > 1.

On a complete graph, substituting the transition probabilities in the IP, (2.63)–

(2.64), into (2.117) we obtain that

ρCG
IP =

j

∏
k=1

(k−1)α +(N−k)β
kγ +(N−k−1)δ

= exp

(

N−1

∑
k=1

ln
(k−1)α +(N−k)β
kγ +(N−k−1)δ

)

. (2.118)

For largeN, the sum in (2.118) can be approached by the following integral

I =
∫ N

1
ln

(

(α −β )k+Nβ
(γ −δ )k+Nδ

)

dk≈ N
∫ 1

0
ln

(

β
δ
(α/β −1)x+1
(γ/δ −1)x+1

)

dx. (2.119)
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Evaluating the integral we find that for largeN, I is approximated by

I = ln









α
δ

(

α
β

)

(

β
α−β

)

(

δ
γ

)

(

γ
δ−γ

)









, α 6= β , γ 6= δ . (2.120)

Thus, on a large complete graph we find that under the IP

ln(ρCG
IP )≈ ln









α
δ

(

α
β

)

(

β
α−β

)

(

δ
γ

)

(

γ
δ−γ

)









N

, α 6= β , γ 6= δ (2.121)

(see Fudenberget al., 2006; Antal and Scheuring, 2006). Hence, As are favoured

over Bs if α
(

α
β

)

(

β
α−β

)

> δ
(

δ
γ

)

(

γ
δ−γ

)

. In the limit of weak selection,w → 0, it

follows that individuals playing strategy A are favoured over individuals playing B

if a+b> c+d. This is the condition for strategy A to be the risk dominant strategy.

Note thata+b> c+d does not imply thatα
(

α
β

)

(

β
α−β

)

> δ
(

δ
γ

)

(

γ
δ−γ

)

.

On a circle, substituting the transition probabilities in the IP, (2.72)–(2.75), into

(2.117) we obtain that

ρC
IP =

β
γ

(

α +β
γ +δ

)N−2

. (2.122)

Hence, on a large circle, A individuals are favoured over B individuals if the simple

conditiona+b> c+d holds.

On a star graph graph withn leaves, a single B individual placed on a leaf has

fixation probability equal to the probability an A in the centre andn− 1 As on

the leaves are eliminated. Similarly, a single B placed in the centre has fixation

probability equal to the extinction probability ofn As on the leaves. Hence,

BP=
1

n+1

(

1−APB
n

)

+
n

n+1

(

1−APA
n−1

)

. (2.123)

Using (2.5)–(2.6), the fact thatπAA
i,i+1+πAB

i,i = 1 = πBA
i,i +πBB

i,i−1 and also (2.19) for

i = n−1, (2.123) can be written as

BP=
1

n+1

(

πBB
n,n−1+nπAB

n−1,n−1

)

(

n−1

∏
k=1

πBB
k,k−1

πAA
k,k+1

)

1
D(1,n)

. (2.124)

55



Evolutionary dynamics on simple graphs

Using (2.124) and (2.23) we obtain

ρS
UR =

πAA
0,1 +nπBA

1,1

πBB
n,n−1+nπAB

n−1,n−1

n−1

∏
k=1

πAA
k,k+1

πBB
k,k−1

. (2.125)

In the IP, as shown in Appendix B.2.1, for largen we find

ρS
IP > 1⇔ αβ

(

α
β

)
β

α−β
> γδ

(

δ
γ

)
γ

δ−γ
, α 6= β , γ 6= δ . (2.126)

In the case of weak selection, from the condition (2.126), itis obtained that on a

large star strategy A is favoured over strategy B if and only if a+b > c+d. This

agrees with the result of Tarnitaet al. (2009). Note thata+ b might be less than

c+d but αβ
(

α
β

)
β

α−β
higher thanγδ

(

δ
γ

)
γ

δ−γ
.

In general, it has been shown (Tarnitaet al., 2009) that in a game between two

strategies, A and B, played on a structured population, in thelimit of weak selec-

tion strategy A is favoured over strategy B (given that threenatural assumptions are

satisfied) if the linear inequality

σa+b> c+σd (2.127)

holds.σ is a parameter that depends on the population structure, thepopulation size,

the update rule and the mutation rate, but not on the payoff values.

2.6 Numerical examples

2.6.1 The constant fitness case

Although our emphasis will be on the frequency dependent fitness case which is

considered in the next section, we start by the case where theindividuals of the

population have constant fitness. Assume that mutant A individuals have relative

constant fitness equal tor and resident B individuals have fitness equal to 1. In this

case, the fitness of each individual depends only on its type (mutant or resident) and

is not affected by its interactions with other members of thepopulation. Therefore,

the configuration of the population is irrelevant. This casecan be considered as a

special case of an evolutionary game witha = b = r, c = d = 1, w = 1 and fb =

0. We consider and compare the fixation probability, the absorption and fixation

times as well as the mean number of transitions before absorption and fixation occur

when a single mutant is introduced on the three different structures. Many of the
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observations will then be carried over to the more complicated case of frequency

dependent fitness.

The fixation probability of a single mutant

Here, we compare the fixation probability of a single mutant on a complete graph

and a circle, which in this case is identical to the fixation probability in the Moran

process and on every circulation graph (see Liebermanet al., 2005), with the average

fixation probability of a mutant on a star. This comparison has also been considered

in Broom and Rycht́ǎr (2008).

The fixation probability of an advantageous mutant (r > 1) on the star is gener-

ally greater than the fixation probability in the Moran process. Similarly the fixation

probability of a disadvantageous mutant (r < 1) on the star is lower than the fix-

ation probability in the Moran process. Hence, the star graph enhances selection

in the evolutionary process when the rules of the IP are followed. On the star, the

average fixation probability of an advantageous mutant increases with the increase

of the population size and approaches the solution (1.38) derived by Liebermanet

al. (2005) in the case of very large populations. This tends to aconstant given by

1− 1/r2. In contrast, the fixation probability in the Moran process decreases and

converges to 1−1/r (see Figure 2.2a). In the case where a disadvantageous mutant

invades, the increase of the number of individuals reduces the chance of mutants to

fixate to zero, both on the star and in the Moran process.

Note that on a star graph, the variation of the fixation probability of a mutant on

the leaves is very different from that of the fixation probability of a mutant in the

centre as the population size increases. In particular, in the IP, if the first mutant is

placed in the centre, the larger the population size, the larger the probability of a

resident individual on the leaves being chosen for reproduction, and thus the higher

the probability for the mutant in the centre being killed andreplaced by the offspring

of the resident individual. Hence, the fixation probabilityof a mutant in the centre

decreases with the increase of the population size. However, if the first mutant is

placed on the leaves, it has a higher chance of being chosen for reproduction than

the resident in the centre, and this chance increases as the population size increases

resulting in an increase of the probability of mutant fixation. Since the probability

the first mutant to be placed on the leaves is higher and increases with the population

size, the average fixation probability increases as the population size increases (at

least for not very small populations).

For constant population size, the fitter the mutant, the higher the probability to

be chosen for reproduction. As a result, the greater the fitness of mutants is, the
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a) b)

Figure 2.2: Comparison of the average fixation probability of a single mutant on a star graph
(crosses) under the rules of the IP, with the approximation solution (1.38) (dotted line) and
the fixation probability in the Moran process (1.33) (solid line), in the constant fitness case
where (a)r = 1.5 and the number of vertices increases, (b) the number of vertices is equal
to 60 and the fitnessr increases.

higher their probability to fixate. In Figure 2.2b we observethe rapid increase in the

fixation probability of mutants on both the star graph and in the Moran process as

the fitnessr varies from values less than 1 to values higher than 1. Especially for

relatively large populations, the change in the fixation probability is almost a step

change atr = 1.

The mean time to absorption starting from a single mutant

In this section, we consider the average required times to absorption starting from a

single mutant on a star graph and compare with the times required on a circle and a

complete graph.

As has been shown in Liebermanet al. (2005), the fixation probability of mutants

introduced on any circulation graph (and thus on a complete graph and a circle) is

equivalent to the fixation probability in the Moran process.However, in contrast to

the fixation probability, considering the mean times to absorption and fixation we ob-

serve that different circulation graphs might yield significantly different absorption

and fixation times. In our comparison between the circle and the complete graph

we observe that absorption and mutant fixation is reached faster on the complete

graph than the circle and as the population size increases, the speed to absorption

and fixation decreases more on the circle. This is due to the fact that the number

of mutant-mutant and resident-resident replacements before absorption is higher on

the circle than on the complete graph. In addition, comparisons of the time before

absorption and fixation occur on the circle and the compete graph with that on the
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a) b)

Figure 2.3: Comparison of the mean time to absorption starting from a single mutant on a
star graph (crosses), a circle (circles) and a complete graph (boxes)under the rules of the IP,
in the constant fitness case where (a)r = 1.5 and the number of vertices increases, (b) the
number of vertices is equal to 60 and the fitnessr increases.

star have shown that the absorption and fixation on the star isthe slowest (see Figure

2.3). Hence, the advantage of the high probability that a mutant has to fixate on a

star graph is accompanied by the disadvantage of the high times needed to absorp-

tion and fixation. Note that on a star, for largeN, the first mutant is placed on a

leaf with very high probability, thus a mutant placed on a leaf is quite safe, being

killed at each time step with probability of the order of 1/N2; this increases the time

needed for mutant elimination. For exactly the same reasons, even when all individ-

uals but the last one (which is inevitably on a leaf) are mutants, at each time step

the probability of mutant fixation is again of the order of 1/N2, which increases the

time needed for mutants to fixate.

In Figure 2.3a it is observed that the increase of the population size increases

the time to absorption in all structures, as expected. For constant population size,

the mean time to absorption is an increasing function ofr ∈ (0, rslowest) and the

time then decreases to a constant forr > rslowest, in all three graphs. The constant

corresponds to the number of steps needed for absorption given a mutant is selected

for reproduction at every time step. Again, the limit is largest for the star (as there

the mutant-mutant replacements are most frequent), followed by the circle and then

by the complete graph. The value ofrslowest is different for different structures, but

approaches 1 in each case asN increases. This means that absorption times are

slowest in the case of neutral drift for large populations. This is because in this case

individuals of the different types drift until an absorbingstate is reached. Forr ≈ 0,

on the circle and the complete graph the mean absorption timeis aroundN−1 (since

a mutant never gives birth, and the probability that it is killed at each time step is

1/(N− 1)). However, on the star the mean absorption time is much larger, about
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((N−1)3+1)/N, since if the mutant is placed in the centre it is killed immediately,

and otherwise it is killed at each step with probability 1/(N−1)2 (see Figure 2.3b).

For a more detailed consideration of the fixation probability and the times to

absorption and fixation of a mutant on a star graph in the case of constant fitness,

see Section 3.4.1.

The mean number of transitions before absorption occurs starting from a single

mutant

In this section, we compare the effect of the three structures on the mean number of

transitions before one of the two types of individuals reaches fixation, starting from

a single mutant.

We first note that since on every circulation graphpi,i−1/pi,i+1 = 1/r, as for the

fixation probability (see Liebermanet al. (2005), Section 1.5), the mean number

of transitions before absorption and mutants’ fixation willbe identical with that in

the Moran process. Using the formula (1.34) withpi,i+1 = πi,i+1 = r/(r + 1) and

pi,i−1 = πi,i−1 = 1/(r + 1), we obtain that the mean number of transitions before

absorption starting from a single mutant A in a B resident population of sizeN in

the Moran process, MM , is given by

MM = APM

N−1

∑
j=1

(N− j)

(

r +1
r j

)

=
rN − rN−1

rN −1

N−1

∑
j=1

(N− j)

(

r +1
r j

)

. (2.128)

APM is the fixation probability of a single mutant A in the Moran process given by

(1.33). Similarly, using (1.35), the mean number of transitions before As’ fixation

starting from a single A,AMM , is found to be

AMM =
N−1

∑
j=1

APM j(N− j)

(

r +1
r j

)

=
N−1

∑
j=1

rN − rN− j

rN −1
(N− j)

(

r +1
r j

)

, (2.129)

whereAPM j is the fixation probability ofj A individuals in the Moran process.

The increase of the population size increases the number of transitions until ab-

sorption in all structures. In particular, the number of transitions on the star increases

much more than that in the Moran process, since the increase of the population size

increases the chance of the first mutant being placed on a leaf. This results in the

large number of replacements of the individual which occupies the central vertex by

an individual of the other type before one of the two absorbing states is reached (see

Figure 2.4a).

As for the absorption and fixation times, for constant population size, the in-
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a) b)

Figure 2.4: Comparison of the mean number of transitions until absorption starting from
a single mutant on a star graph (crosses) under the rules of the IP, with themean number
of transitions in the Moran process, in the constant fitness case where (a) r = 1.5 and the
number of vertices increases, (b) the number of vertices is equal to 60 and the fitnessr
increases.

crease of the fitness of disadvantageous mutants (r < 1) increases the mean number

of transitions before one of the types of individuals in the population fixates, in all

structures. In particular, the less the mutants’ fitness,r, the faster the spread of resi-

dent individuals, and asr approaches zero, the number of transitions before residents

fixation approaches 1, which is the transition where the firstmutant is replaced by a

resident. In each case, above a value ofr which approaches one as the population

size increases and at which the mean number of transitions reaches the maximum

value, the fitter the mutants, the lower the mean number of transitions before their

fixation. As the fitness of mutants becomes infinitely large, the mean number of tran-

sitions before absorption tends to the initial number of resident individuals (N−1),

in all structures, since then in each time step a resident individual is replaced by the

offspring of a mutant (see Figure 2.4b).

2.6.2 The frequency dependent fitness case – The Hawk–Dove

game played on graphs

In the previous example, we have assumed that the fitness of individuals is constant.

However, in natural systems, the fitness of individuals depends on their interactions

with other individuals of the population (see for examples,Maynard Smith and Price,

1973; Maynard Smith, 1982). In this section, we compare the fixation probability,

the mean times to absorption and fixation and the mean number of transitions to

absorption and fixation, when individuals use the strategies of a Hawk–Dove game

(Maynard Smith and Price (1973); Maynard Smith (1982). See also Section 1.3.1)
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on a complete graph, a circle and a star graph.

The Hawk–Dove game is particularly interesting because in the infinite well-

mixed population the evolutionary game dynamics yields a mixture of individuals

playing Hawk or Dove.

The fixation probability of a mutant

On a star graph, a Dove has a higher fitness than a neighbouringHawk in very few

cases, moreover only in those where the fixation of the Hawk isalready very likely

(if N is not small). Indeed, if a Dove is in the center, then its fitness is no more than

fb+wV/2 while the fitness of a Hawk on a leaf isfb+wV. If a Dove is on a leaf with

a Hawk in the center, then the fitness of the Dove is equal to thebackground fitness,

fb, while the fitness of the Hawk ranges fromf b+wV (with no other Hawks in the

population, i.e. when there is the highest danger of Hawk extinction), continuously

going down to almostfb+w(V−C)/2 (if there are Hawks on almost all other leaves,

i.e. when Hawks are almost fixed in the population).

The increase of the costC in relation with the value of the resourceV, decreases

the probability of Hawks being chosen for reproduction (when they interact with

other Hawks) and thus their fixation probability on all of thethree structures de-

creases asC increases (see Figure 2.5c and 2.5d). It is observed that thestar yields

the highest fixation probability for a single mutant Hawk compared to the other

two structures (see Figure 2.5). On the star graph, it is shown that if the values

of the payoffs are such that Hawks are favoured over Doves (ρS
IP > 1), then an in-

crease of the population size increases the average fixationprobability of a randomly

placed mutant Hawk,HP (see Figure 2.5a). In this case,HP is found to approach

wV(3 fb+2wV)/2( fb+wV)2, and thus it becomes independent of the fight costC

(for a detailed consideration of the limits of the fixation probability of a single mu-

tant on the star graph in various scenarios, see Chapter 3). This is because when

there is a large number of mutant Hawks on the star, those on the leaves only play

against the central individual, their fitness is independent of C when playing with a

resident Dove in the central position and they are fitter thanthat Dove. If extinction

happens it is very likely to happen early on (due to bad luck) when there are few

Hawks, and in a large population if there are few Hawks the fitness of (the central)

Hawk individuals does not depend much uponC. Thus, the increase of the popula-

tion size decreases the effect of the cost,C. In contrast, on a circle or a complete

graph, the increase in the population size yields lower fixation probability (see Fig-

ures 2.5a and 2.5b). Note that, in our example, for smallN the expected pattern of

declining fixation probability with population size happens on the star as well. On a
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a) b)

c) d)

Figure 2.5: Comparison of the average fixation probability of a single mutant Hawk on a
star graph (crosses), a circle (circles) and a complete graph (boxes)under the rules of the IP,
in the Hawk–Dove game described by the payoff matrix (1.19) in the case where (a)V = 1
andC = 0.2, (b)V = 1 andC = 4.7, and the number of vertices varies, (c) the number of
vertices is equal to 10,V = 1 andC varies, (d) the number of vertices is equal to 60,V = 1
andC varies. In all cases,fb = 2 andw= 1.

large circle, if Hawks are favoured over Doves, i.e. ifC< 2V (see Section 2.5), then

from the formula (2.76) we find that as the population size increases,HP decreases

and approaches

HP≈
4w( fb+wV)(2V −C)

11(wV)2−5w2VC+24fbwV−8 fbwC+16f 2
b

. (2.130)

On a large complete graph, if the Hawk is the favoured strategy thenHP approaches

wV/2( fb+wV) with increasing population size. Therefore, in this case, as happens

on a star graph, the larger the population size, the smaller the dependence of the

fixation probability on the cost of the fightC. In the case where Dove is the favoured

strategy (ρG
IP < 1), the increase of the population size reduces the fixation probability

of Hawks rapidly to zero, in all structures (see Figure 2.5b). Especially on a large

complete graph and a large star the fixation probability of Hawks is almost a step
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function with the step occurring whenρCG
IP ≈ 1 andρS

IP ≈ 1, respectively (see Figure

2.5d).

Whether the fixation probability of Hawks is greater on the circle or on the com-

plete graph depends on the values ofV andC (see Figures 2.5c and 2.5d). When

C is small, Hawks do better on the circle than on the complete graph. This is be-

cause even when the Hawk population is small, competing Hawks and Doves both

gain their payoff from 50% Hawks and 50% Doves (given there are more than two

Hawks and two Doves in the population), and this is advantageous to a Hawk when

C is small, when compared to the well-mixed population case. WhenC is large,

Hawks again do better on the circle. Here, the Hawk’s chance of fixation in either

case is low, and it needs good luck to reach a high proportion in the population. If

this occurs, then on the complete graph it must achieve fixation with a payoff derived

mainly from contests against Hawks, which will be low for largeC, as opposed to

the case on the circle, which is still from 50% Hawk and 50% Dove contests. It is

also observed that the population sizeN is also very important in this comparison.

Values ofV andC which yield higher fixation probability on the circle than onthe

complete graph for small population size, might result in higher fixation probability

on the complete graph for large population size.

The behaviour of the solution of the fixation probability of asingle individual

playing the Dove strategy when it is introduced into a population playing the Hawk

strategy is almost symmetric on the three graphs. When the cost of the fight,C, and

the payoff obtained when the fight is won,V, are such that all the graphs favour

the evolution of the Hawk strategy over the Dove strategy, then the star is the worst

graph for Doves with respect to their probability of fixation, followed either by the

circle or the complete graph, depending on the values ofV andC, and the population

size (see Figure 2.6a). In this case, the increase of the population size reduces the

fixation probability of Doves to zero, in all structures. WheneverC is high compared

to V such that the Dove strategy is favoured over the Hawk strategy on all the three

graphs we consider, the numerical examples indicate that the chance of Doves to fix-

ate is higher on the complete graph followed by that on eitherthe star or the circle,

depending on the size of the population. In this case, the advantage of Doves with

respect to their fixation probability on both the complete graph and the star increases

with the increasing population size (if the population is not too small) while that of

the circle decreases (see Figure 2.6b). As one could expect,the greater the value of

the costC, i.e. the less the chance of Hawks to be chosen for reproduction when con-

nected to other Hawks, the higher the probability of Doves totake over a population

of Hawks in all structures (see Figures 2.6c and 2.6d). Especially in large popula-
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a) b)

c) d)

Figure 2.6: Comparison of the average fixation probability of a single mutant Dove on a
star graph (crosses), a circle (circles) and a complete graph (boxes)under the rules of the IP,
in the Hawk–Dove game described by the payoff matrix (1.19) in the case where (a)V = 1
andC = 0.2, (b)V = 1 andC = 4.7, and the number of vertices varies, (c) the number of
vertices is equal to 10,V = 1 andC varies, (d) the number of vertices is equal to 60,V = 1
andC varies. In all cases,fb = 2 andw= 1.

tions, onceC increases to values such that the Dove strategy becomes the favoured

strategy, then a rapid increase in the fixation probability of Doves occurs.

Mean time to absorption starting from a single mutant

As already mentioned in the example of the constant fitness case, the increase of the

population size increases the mean time to absorption in allstructures. Depending

on the values ofC, this increase might be much higher on the star (see Figures 2.7

and 2.8). Our numerical examples suggest that the star always yields the highest

absorption time, while depending on the values ofV, C and the population size,

absorption is reached faster either on the complete graph oron the circle.

On the complete graph and the star graph, since the probability of a Hawk’s re-

production decreases with the increase ofC (when it interacts with at least one other

Hawk), the time to Hawks’ fixation increases in increasingC. On the other hand,
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a) b)

c) d)

Figure 2.7: Comparison of the mean time to absorption starting from a single mutant Hawk
on a star graph (crosses), a circle (circles) and a complete graph (boxes) under the rules of
the IP, in the Hawk–Dove game described by the payoff matrix (1.19) in the case where (a)
V = 1 andC= 0.2, (b)V = 1 andC= 4.7, and the number of vertices varies, (c) the number
of vertices is equal to 10,V = 1 andC varies, (d) the number of vertices is equal to 60,V = 1
andC varies. In all cases,fb = 2 andw= 1.

sinceC matters only when there are enough Hawks in the population, the change

of C does not much affect the time of Hawks being eliminated (especially at the

beginning of the invasion). Consequently, for smallN, the mean time to absorption

increases with the increase ofC (see Figure 2.7c). WhenN is large, there is a cer-

tain tendency for the number of Hawks to stabilise around theinternal equilibrium

point of the stochastic process. However, the extinction ofeither Hawks or Doves is

inevitable and the evolutionary process ends at absorptiondue to stochasticity in a

finite population, as opposed to the result of evolutionary pressure. Hence, on each

of the complete graph and the star the process takes the most time when the average

fixation probability of a single Hawk is equal to the average fixation probability of a

single Dove, i.e. whenρCG
IP ≈ 1 andρS

IP ≈ 1, respectively (see Figure 2.7d).

On the circle, when a single Hawk is introduced into a population of Doves,

in small populations, although a decrease in the absorptiontime is observed asC
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a) b)

c) d)

Figure 2.8: Comparison of the mean time to absorption starting from a single mutant Dove
on a star graph (crosses), a circle (circles) and a complete graph (boxes) under the rules of
the IP, in the Hawk–Dove game described by the payoff matrix (1.19) in the case where (a)
V = 1 andC= 0.2, (b)V = 1 andC= 4.7, and the number of vertices varies, (c) the number
of vertices is equal to 10,V = 1 andC varies, (d) the number of vertices is equal to 60,V = 1
andC varies. In all cases,fb = 2 andw= 1.

increases, this is not significant since absorption occurs relatively fast. However, in

very large populations there is a pronounced decrease of themean time to absorption

whenC becomes higher than 2V. This is because, whenC > 2V, a Dove on the

boundary between two segments, one consisting of more than one Hawk and one

consisting of more than one Dove, becomes fitter than a neighbouring Hawk and

thus Hawks are more likely to go extinct in significantly lesstime (see Figure 2.7).

A symmetric situation occurs when in a population of Hawks a single individual

uses the Dove strategy. WhenC increases compared toV, the Hawks lose their

advantage and it thus takes longer to eliminate Doves. WhenC increases above the

value at whichC ≈ 2V, then on a large circle there is a significant increase of the

absorption time, since in this case, a single Dove spreads inthe population playing

the Hawk strategy and eventually fixates (see Figure 2.8).
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a) b)

c) d)

Figure 2.9: Comparison of the mean number of transitions until absorption starting from a
single mutant Hawk on a star graph (crosses), a circle (circles) and a complete graph (boxes)
under the rules of the IP, in the Hawk–Dove game described by the payoffmatrix (1.19) in
the case where (a)V = 1 andC = 0.2, (b)V = 1 andC = 4.7, and the number of vertices
varies, (c) the number of vertices is equal to 10,V = 1 andC varies, (d) the number of
vertices is equal to 60,V = 1 andC varies. In all cases,fb = 2 andw= 1.

The mean number of transitions before absorption occurs

Here, through numerical examples we compare the mean numberof transitions to

absorption on the three different structures. We present examples in the cases where

a single individual playing one strategy invades into a population playing the other

in a Hawk–Dove game (see Figures 2.9 and 2.10). In this evolutionary dynamics, the

behaviour of the solutions of the mean number of transitionsbefore absorption and

fixation are similar to the behaviour of the solutions of the mean time to absorption

and fixation. Clearly, the mean number of transitions before the fixation of either

strategy is lower than the respective time to fixation, apartfrom some extreme cases

where the two quantities can be equal.

As we have seen in the constant fitness case, the mean number oftransitions

before absorption increases as the population size increases, with the increase on the

star to be much larger than that on a circle and a complete graph, especially when
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a) b)

c) d)

Figure 2.10: Comparison of the mean number of transitions until absorption starting from a
single mutant Dove on a star graph (crosses), a circle (circles) and a complete graph (boxes)
under the rules of the IP, in the Hawk–Dove game described by the payoffmatrix (1.19) in
the case where (a)V = 1 andC = 0.2, (b)V = 1 andC = 4.7, and the number of vertices
varies, (c) the number of vertices is equal to 10,V = 1 andC varies, (d) the number of
vertices is equal to 60,V = 1 andC varies. In all cases,fb = 2 andw= 1.

the cost of playing Hawk against a Hawk is very high (due to thehigh number of

transitions before Hawks take over the entire population and fixate).

Note that as for the fixation probability, the mean number of transitions is no

longer identical on all circulation graphs in the frequencydependent fitness case.

Here, depending on the values of the payoffs and the population size, the mean num-

ber of transitions before absorption is either greater on the circle or on the complete

graph.

In addition, although in our examples, especially those in Figures 2.7c and 2.7d,

the mean time to absorption in most of the cases is higher whenindividuals are

placed on a circle than when they are placed on a complete graph, the mean number

of transitions before absorption is higher on the complete graph. This verifies that

absorption on the circle is usually reached slower than on the complete graph due to

larger number of replacements between individuals of the same type.

69



Evolutionary dynamics on simple graphs

2.7 Discussion

In this chapter, we have studied analytically the stochastic evolutionary game dy-

namics in finite structured populations represented by three simple graphs; a com-

plete graph, a circle and a star graph. We first derived the exact solutions of the

fixation probability, the mean absorption time, the mean fixation time as well as the

mean number of transitions before absorption and mutants’ fixation occur, starting

from any number of mutant individuals introduced into the three graphs. Using these

results we have obtained conditions under which the mutant strategy is favoured over

the population strategy. The solutions are general and can be applied to stochastic

evolutionary processes where in each time step there is one birth and one death event

and there is no mutation, just selection. We have applied theresults in the IP and,

through numerical investigation, we have considered the effect of the three popula-

tion structures on the above quantities when a single mutantindividual invades into

a resident population. We have first studied the case where the fitness of individuals

does not depend on the interactions with neighbouring individuals but remains con-

stant. We have then adapted the classical Hawk–Dove game to evolution on graphs.

In the constant fitness case, an advantageous mutant has always a higher proba-

bility to fixate on the star than on a circulation graph, such as a complete graph and a

circle, where the fixation probability is equal to the fixation probability in the Moran

process. Similarly, a disadvantageous mutant has a lower chance to fixate on the

star. Thus, the star graph acts as an amplifier of the fitness and enhances selection.

However, the star graph costs to mutants a very long time before their fixation. We

have also demonstrated that although the fixation probability on the complete graph

and the circle (and every circulation graph) is identical with the fixation probability

in the Moran process, the absorption and fixation times are different. The complete

graph is the quickest of the three graphs for mutant individuals and the star the slow-

est. For large population size, for each graph, times are longest in the case of neutral

drift, where mutants’ fitness is identical to that of residents.

Applying the Hawk–Dove game we have seen that there is not a consistent rela-

tionship between the three graphs regarding which gives thehighest mutant fixation

probability and the fastest time to absorption and fixation,since this depends on the

cost of the fightC and the payoff of the winV. The size of the population is also

very important in such comparisons as a strategy might does better on one graph

than on other graphs in populations of small size but worse inlarger populations.

In addition, even on a specific graph, a strategy might be favoured over the other

strategy for small population sizes but not for large population sizes. However, there

are certainly features of interest. For example, on the complete graph and the star
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we observe that values ofC andV such thatρG
IP ≈ 1 yield very slow fixation times

for large population sizes, as selection pressure favours the mixture of the two strate-

gies. Thus the two strategies coexist for a long time before the extinction of one of

the two strategies, an inevitable event due to the finitenessof the population. In-

deed, it would be of interest to consider the quasi-stationary distribution of such a

population, conditional on such extinctions not occurring(this may resemble more

accurately the results of simulations, for instance). For such values ofC andV there

is also a step change in the fixation probability of a single Hawk, with a significant

non-zero probability forρG
IP > 1, and a near zero value otherwise. Hence, although

the detailed consideration of the absorption and fixation time is particularly novel, it

is demonstrated that this is a significant quantity for the description of the evolution-

ary process, especially in cases where evolution favours the coexistence of strategies,

as the fixation probability itself in such cases is not sufficient to describe the evo-

lution of the system. The circle, which is another regular graph, exhibits different

behaviour. As on the complete graph and the star, whenC andV take values such

thatρC
IP < 1, the fixation probability of a single Hawk decreases rapidly to zero, while

a significant decrease of the absorption and fixation time also occurs. An interesting

relationship between the circle and the complete graph is observed, where low and

high values ofC, compared toV, give higher fixation probabilities on the circle than

the complete graph, with intermediate values higher on the complete graph.

The structure of the population can significantly affect theoutcome of the evolu-

tionary process. It has been shown that the magnitude of thiseffect depends on the

population size and the fitness of individuals. Another interesting factor that might

influence the evolutionary process is the update rules of theevolutionary dynamics.

In the next chapter, we investigate the impact that the strategy update rules might

have on the evolution of a population by considering the evolutionary process on the

extreme structure of the star graph under various update rules.
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CHAPTER 3

Evolutionary dynamics on graphs

under various update rules

3.1 Introduction

In Chapter 2, it has been shown the significant role that the population structure

might play in the evolutionary process following the updaterules of the invasion

process (IP). Moreover, there are a number of update rules that can be followed. This

has not been of great importance historically, since the evolutionary process on ho-

mogeneous populations is not significantly affected by the choice of the update rules.

However, recent studies suggest that different update rules might result in signifi-

cant differences in the evolutionary process in populations with a non-homogeneous

structure (for example, Antalet al., 2006; Soodet al., 2008; Masuda, 2009). In this

chapter we consider analytically the stochastic evolutionary process following four

commonly used update rules on the simplest heterogeneous graph, the star graph.

The fitness of each individualf , as in Section 2.4, is assumed to bef = fb+wP,

where fb is the constant background fitness of every individual,P is the average of

the payoffs obtained by the games played against all the neighbouring connected

individuals andw∈ [0,∞) represents the intensity of selection.

We assume a certain number of individuals playing a strategyX is introduced

into a finite population of individuals playing a strategy Y.Due to the finiteness of

the population, through evolution the population will eventually reach a state where

all individuals play the same strategy. For four different update rules, we investigate

the fixation probability and the mean absorption and fixationtimes (see Section 1.4),

when the individuals of the population are placed on a star graph, starting from any

population composition.

In Section 3.2 we first present the update rules we will consider and the transition
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probabilities under each of them on the star graph. The transition probabilities under

the different update rules on the circle and the complete graph are also presented.

In Section 3.3, for each of the update rules we derive the appropriate conditions

under which one strategy is favoured over the other. In Section 3.4, we apply our

results to two specific cases; the case where individuals have constant fitness, and

the frequency dependent fitness case where the fitness of individuals depends on the

interactions with the different types of neighbouring individuals. In the latter case,

we study three example games; the Hawk–Dove game, the Prisoner’s Dilemma and

coordination games.

3.2 Evolutionary games on star graphs under various

update rules

3.2.1 Update rules – Transition probabilities

In Chapter 2, the evolutionary process on the star has been considered analytically

under the update rules of the IP. Here, we consider three update rules additional to

the IP;the birth-death process with selection on the death(BD-D), thebiased voter

model(VM) (or death-birth process with selection on the death) and thedeath-birth

process with selection on the birth(DB-B).

Consider a game between two strategies, A and B, interacting ona star graph

with n leaves. The game played is described by the payoff matrix (1.2).

The BD-D process (Masuda, 2009) is a process where at each timestep an indi-

vidual is chosen for reproduction at random and then its offspring replaces a neigh-

bouring individual which is chosen with probability inversely proportional to its

fitness for death. Thus, in this process, the number of A individuals on the leaves

of the star increases (decreases) by one if an A (a B) individual placed in the center

is chosen for reproduction at random, with probability 1/(n+1), and its offspring

replaces a B (an A) individual on the leaves which is chosen inversely proportional

to its fitness. Thus, the fitness of the individual in the centre in this case is irrelevant.

The individual in the centre is replaced by the offspring of an individual of the other

type whenever an individual of the other type is chosen randomly for reproduction,

and thus irrespective of the fitness of individuals. The transition probabilities from
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one state to another under this process are

pAA
i,i+1 =

1
n+1

·

1
γ (n− i)

i 1
α +(n− i)1

γ
=

(n− i)α
(n+1)

(

iγ +(n− i)α
) , (3.1)

pAB
i,i =

n− i
n+1

, (3.2)

pBB
i,i−1 =

1
n+1

·

1
β i

i 1
β +(n− i) 1

δ
=

iδ
(n+1)

(

iδ +(n− i)β
) , (3.3)

pBA
i,i =

i
n+1

, (3.4)

and zero in any other case.pAA
i,i = 1− pAA

i,i+1− pAB
i,i and pBB

i,i = 1− pBB
i,i−1− pBA

i,i , ∀

i ∈ [0,n]. We recall thatpXY
i, j denotes the transition probability from a state with

i A individuals on the leaves and an X individual in the center to the state with

j A individuals on the leaves and a Y individual in the center (see Section 2.3).

α = fb+wa, β = fb+wb, γ = fb+wcandδ = fb+wd.

In the VM (Antalet al., 2006), an individual first dies with probability inversely

proportional to its fitness, and thus fitter individuals are more likely to survive, and

is then replaced by the offspring of a randomly chosen neighbour. In this process,

the number of A individuals on the leaves increases (decreases) by one given an A

(a B) individual is placed in the centre, whenever a B (an A) individual on the leaves

is chosen for death, since in this case the individual in the centre will inevitably

reproduce and its offspring will replace the dead individual. The individual in the

centre is replaced by an individual of the other type whenever it is chosen for death

and a random individual of the other type on the leaves for reproduction. Thus, the

non-zero transition probabilities are

pAA
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1
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1
fAc(i)

+ i 1
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=
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(

iα +(n− i)β
)
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·
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pAA
i,i = 1− pAA

i,i+1− pAB
i,i and pBB

i,i = 1− pBB
i,i−1− pBA

i,i , ∀ i ∈ [0,n]. Recall thatfAc(i)
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( fBc(i)) is the fitness of an A (a B) individual placed in the centre of a star with i As

andn− i Bs on the leaves (see Section 2.4.3).

In the DB-B process (Ohtsukiet al., 2006), in each time step an individual dies

at random. Then, the gap is occupied by the offspring of a neighbouring individual

chosen with probability proportional to its fitness. In cultural evolution and learning

on social networks, this process can also be described as follows: a random indi-

vidual is chosen to update its strategy (or idea, opinion, etc.) and adopts one of its

neighbours’ strategies proportional to their fitness. In this process, the number of A

individuals on the leaves increases (decreases) by one, given an A (a B) individual

is in the centre, whenever a B (an A) individual on the leaves is chosen to die at

random. Thus, the increase (decrease) of individuals on theleaves is unaffected by

the fitness of individuals. An individual in the centre is replaced by an individual

of the other type if it is chosen for death at random, with probability 1/(n+1), and

is replaced by the offspring of an individual of the other type, which is chosen for

reproduction from among the individuals on the leaves with probability proportional

to its fitness. Thus, the probabilities of moving from one state to another in this

process are given by

pAA
i,i+1 =

n− i
n+1

, (3.9)

pAB
i,i =

1
n+1

·
γ(n− i)

iα +(n− i)γ
=

(n− i)γ
(n+1)

(

iα +(n− i)γ
) , (3.10)

pBB
i,i−1 =

i
n+1

, (3.11)

pBA
i,i =

1
n+1

·
β i

iβ +(n− i)δ
=

iβ
(n+1)

(

iβ +(n− i)δ
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and zero in any other case.pAA
i,i = 1− pAA

i,i+1− pAB
i,i and pBB

i,i = 1− pBB
i,i−1− pBA

i,i , ∀

i ∈ [0,n].

We observe that fora= c andb= d the BD-D and DB-B processes are equivalent

to the respective cases of neutral drift, because then an A and a B individual on the

leaves have equal fitness when playing against either an A or aB individual in the

centre, and the central individual is selected at random irrespective of its fitness.

In all processes, at every time step an individual gives birth and an individual

dies. Thus, the population size remains constant. As in the IP, it is assumed that in

the evolutionary processes there is no mutation, just selection. It should also be noted

that to be meaningful in the context of all of the above stochastic dynamics, since

the transition probabilities from one state to another are proportional or inversely

proportional to fitness, the fitness of each individual has tobe non-negative (in some
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cases strictly positive), and we assume this throughout this work.

Surprisingly, we observe that forb = c, the conditional transition probabilities

(2.7)–(2.8) are equal in the VM and the DB-B process. Thus, in this case the fixation

probabilities of any number of mutants placed at any position on the star are equal

in the two processes, irrespective of what the population size and the elements of the

payoff matrix are.

For informational reasons, in Appendix B.1 we also present the transition proba-

bilities on the circle under the three additional update rules. The fixation probability,

the absorption and fixation times as well as the mean number oftransitions before

absorption and fixation on the circle under the different update rules can be con-

sidered by using the formulae derived in Chapter 2. The evolutionary process on

the circle under different update rules has also been studied in Ohtsuki and Nowak

(2006a).

On a complete graph of finite sizeN, the transition probabilities under the IP

have been derived in Section 2.4.1.

Following the update rules of the BD-D process described above, the transition

probabilities on the complete graph are given by
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·
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(i−1) 1
fA
+(N− i) 1
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+ i
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where fA = fb+wPA ( fB = fb+wPB) is the fitness of an A (a B) individual on the

complete graph. The payoffsPA andPB are given by (2.61)–(2.62).

In the VM, the transition probabilities on the complete graph are

pi,i+1 =
(N− i) 1

fB

i 1
fA
+(N− i) 1

fB

·
i

N−1

=
(N− i)

(

(i−1)α +(N− i)β
)

(N− i)
(

(i−1)α +(N− i)β
)

+ i
(

iγ +(N− i−1)δ
) ·

i
N−1

, (3.15)
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pi,i−1 =
i 1

fA

i 1
fA
+(N− i) 1

fB

·
N− i
N−1

=
i
(

iγ +(N− i−1)δ
)

(N− i)
(

(i−1)α +(N− i)β
)

+ i
(

iγ +(N− i−1)δ
) ·

N− i
N−1

. (3.16)

In the DB-B process, the transition probabilities are given by

pi,i+1 =
N− i

N
·

i fA

i fA+(N− i−1) fB

=
N− i

N
·

i
(

(i−1)α +(N− i)β
)

i
(

(i−1)α +(N− i)β
)

+(N− i−1)
(

iγ +(N− i−1)δ
) , (3.17)

pi,i−1 =
i
N
·

(N− i) fB
(i−1) fA+(N− i) fB

=
i
N
·

(N− i)
(

iγ +(N− i−1)δ
)

(i−1)
(

(i−1)α +(N− i)β
)

+(N− i)
(

iγ +(N− i−1)δ
) . (3.18)

The detailed consideration of the evolutionary process on the complete graph

under different update rules is of less interest, especially when the population size

is relatively large. Figure 3.1 shows the fixation probability and the mean time to

absorption of a single Hawk in a Hawk–Dove game, described bythe payoff matrix

(1.19), as the costC varies. It is observed that mutants have almost the same prob-

ability to fixate under the different dynamics (especially in large populations) with

those in the IP and the VM being identical. In general, it is shown that the fixation

probability of any number of mutants under these two processes is identical on all

regular graphs of the same size for all games (Antalet al., 2006; Soodet al., 2008).

The mean time needed for the system to reach absorption and mutant fixation is also

almost independent of the choice of the update rule.

3.3 Favoured strategies on a star graph under various

update rules

In this section, we present the appropriate conditions under which one of the strate-

gies, A or B, is favoured over the other, i.e. the conditions where the fixation proba-

bility of a single individual playing the one strategy X in a population of individuals

playing the other strategy Y,XP, is higher than the fixation probability of a single

individual playing Y in a population of individuals playingX, YP. Hence, we seek

conditions onρS
UR T 1 (see section 2.5). We recall thatρG

UR is defined as the ratio
XP/YP on a graph G under the update rule UR. The analytic derivation of the con-
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a) b)

Figure 3.1: (a) The fixation probability of Hawks, and (b) the mean time to absorption,
starting from a single mutant Hawk on a complete graph withN = 60 vertices under the IP
(crosses), the BD-D process (diamonds), the VM (circles) and the DB-B process (boxes),
in the Hawk–Dove game described by the payoff matrix (1.19) as the fight cost,C, varies.
V = 1, fb = 2 andw= 1.

ditions is shown in the Appendix B.2. The respective condition in the IP has been

derived in Section 2.5.

In the BD-D process, for largen we find (see Appendix B.2.2)

ρS
BD-D ≷ 1⇔

(

δ
β

)
β

δ−β
≷
(

α
γ

)
γ

α−γ
, α 6= γ, β 6= δ . (3.19)

In the VM, for largen we find (see Appendix B.2.3)

ρS
VM ≷ 1⇔ α(β +δ )

(

α
β

)
γ

β−α
≷ δ (γ +α)

(

δ
γ

)
β

γ−δ
, α 6= β , γ 6= δ . (3.20)

In the DB-B process for largen we find (see Appendix B.2.4)

ρS
DB-B ≷ 1⇔ α(β +δ )

(

α
γ

)
γ

γ−α
≷ δ (γ +α)

(

δ
β

)
β

β−δ
, α 6= γ, β 6= δ . (3.21)

In the limit of weak selection, i.e. whenw→ 0, as in the IP, from (3.19), (3.20)

and (3.21) it follows that on a large star, under all dynamicsAs are favoured if and

only if a+b> c+d, which is in agreement with the results of Tarnitaet al. (2009)

where the IP and the DB-B process in this case are considered.

It is shown (see Appendix B.2.5) that in the BD-D and DB-B processes,

ρS
BD-D T 1⇔ αβ T γδ , ∀ n, (3.22)

ρS
DB-B T 1⇔ αβ T γδ , ∀ n. (3.23)
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In the case of weak selection, it follows from (3.22) and (3.23) that under the BD-D

and the DB-B processes, As are favoured if and only ifa+b> c+d, ∀ n; this agrees

with Tarnitaet al. (2009) where the DB-B process is considered. In these dynamics,

for αβ = γδ , pAA
i,i+1 = pBB

n−i,n−i−1, pAB
i,i = pBA

n−i,n−i, pBB
i,i−1 = pAA

n−i,n−i+1 and pBA
i,i =

pAB
n−i,n−i. Hence,APA

i = BPB
n−i,

APB
i = BPA

n−i, TA
i = TB

n−i, TB
i = TA

n−i and therefore
AT = BT, andAFA

i = BFB
n−i,

AFB
i = BFA

n−i and thereforeAF = BF , ∀ 0≤ i ≤ n.

Note that for the two birth-death processes (the IP and the BD-D process) there

is a step change inρS
UR going from 0 to infinity in the limiting case of largen, so

that for a small change in parameter values there is a huge change in the relative

probabilities of fixation of the two strategies, whereas thechange is gradual for the

death-birth processes (VM and DB-B process).

On a complete graph, the condition for each of the strategiesto be favoured in

the VM is equivalent to that in the IP (see formula (2.121)). Similarly, we find that

ρCG
UR in the BD-D and DB-B processes also satisfies (2.121) in the caseof a large

population. Hence, As are favoured over Bs ifα
(

α
β

)

(

β
α−β

)

> δ
(

δ
γ

)

(

γ
δ−γ

)

and the

step change described above occurs, in all processes. Thus,in the two processes

where births occur first, evolution on a large star has similar characteristics to that

on the complete graph of the same size, with the interaction of the whole population

occurring through the central individual, which is continuously replaced. Note that

for β = γ, ρS
IP = ρCG

IP and forα = δ , ρS
BD-D = ρCG

IP . In the other two processes there is

a big difference between the star and the complete graph, as achange in the central

individual has a big impact on subsequent evolution on a star.

3.4 Numerical examples

3.4.1 The constant fitness case

In this case we assume that A individuals have constant relative fitness equal tor

and B individuals fitness equal to 1.

The average fixation probability of a single mutant

In all dynamicsAP T 1/(n+ 1) if and only if r T 1, and thus selection favours

(opposes) the fixation of As whenr > 1 (r < 1). The relationship between fixation

probabilities under the different dynamics we consider is shown in Table 3.1. Note

that forn> 3, there is one and only one value ofr > 1, r1(n), and one and only one

value of r < 1, r2(n) (the exact values ofr1(n) and r2(n) depend onn), such that
APBD-D = APVM (XPUR denotes the fixation probability of a single individual playing
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strategy X following the update rule UR). Asn increases,r1(n) increases rapidly to

infinity while r2(n) decreases rapidly to zero (the behaviour ofr1(n) and r2(n) as

the population size increases is shown in Figure 3.3). Thus,except for values ofr

more extreme than these critical values, as observed from Table 3.1, the birth-death

processes yield a higher chance of fixation for a random mutant with r > 1 and less

for a mutant withr < 1. The average fixation probability in some specific cases is

shown in Figure 3.2.

Whenn is large we find that (see Appendices B.3.1 and B.3.2)

APIP ≈
1−1/r2

1−1/r2n , r 6= 1, (3.24)

APBD-D ≈
1−1/r
1−1/rn = APM , r 6= 1, (3.25)

whereAPM is the fixation probability of a single mutant in the Moran process and

on every circulation graph (see Section 1.5). Substituting(2.7)–(2.8) into (2.23) and

using (3.5)–(3.12) appropriately, we get (see Appendix B.3.3) that in the case of

constant fitness,

APVM =
rn(r +1)

(rn+1)(n+ r)
r2−1

r2−
(

rn+1
r(n+r)

)n−1 <
r +1
n+1

, (3.26)

APDB-B =
1

n+1

(

1
n+1

+
r

n+2r −1

)

rn+1
r +1

<
r +1
n−1

(3.27)

and thus, in contrast to the birth-death processes, for the death-birth processes the

increase of the population size decreases the chance of fixation to zero. Forr < 1

the fixation probability of a mutant decreases withn in all dynamics.

As r decreases, the fixation probability under all dynamics decreases. Moreover,

decreasingr to 0, the fixation probabilities under all dynamics but DB-B approach 0;
APDB-B converges to 1/(n+1)2. Thus, following the DB-B process, even an invader

mutant with almost zero fitness has a non-negligible chance to fixate, especially for

smalln. As r increases to infinity,APIP andAPVM tend to 1, whileAPBD-D converges

to (1/(n+ 1))(1/(n+1)+n) andAPDB-B to (n/(n+ 1))(1/(n+1)+ 1/2). Hence,

under the BD-D and DB-B processes, even for an infinite fitnessr, the fixation of

a mutant in a finite structured population can be significantly less than 1. This case

appears even in a homogeneous well-mixed population of finite size under the DB-B

process where the fixation probability of a single mutant tends to 1−1/(n+1) asr

tends to infinity. This is due to the fact that fit individuals have a chance of not being

chosen for reproduction, and individuals with low fitness have a chance to survive
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a) b)

Figure 3.2: The average fixation probability of a single mutant on a star graph under theIP
(crosses), the BD-D process (diamonds), the VM (circles) and the DB-B process (boxes), in
the constant fitness case where (a)r = 3 andn varies, (b)n= 60 andr varies. The solid line
represents the fixation probability in the Moran process and the dashed-dotted line represents
the fixation probability of a single mutant in the case of neutral drift, 1/(n+1).

and reproduce, and eventually through evolution to spread and eliminate the individ-

uals with higher fitness. Although in infinitely large homogeneous populations these

replacements have negligible impact on the outcome of evolution, they might be im-

portant in finite populations, especially if these have a non-homogeneous structure

under some evolutionary dynamics.

Mean time to absorption starting from a single mutant

Although the fixation of an advantageous mutant randomly placed on the star is more

likely in the birth-death processes (except some special cases), absorption in these

processes is reached slower than in the death-birth processes (except some extreme

cases ofn > 4 andr ≈ 0). The comparison of the absorption times between the

different dynamics is shown in Table 3.1. Figure 3.4 represents the absorption times

for some specific values ofr andn.

Here, we show explicit approximations of the absorption times starting from a

single mutant given by (2.39) for extreme values ofr.

For r ≈ 0, in the IP and the VM,πAB
i,i ≈ πBB

i,i−1 ≈ 1 andπAA
i,i+1 ≈ πBA

i,i ≈ 0. In the

BD-D process, fori 6= 0, πAB
i,i ≈ 1 andπAA

i,i+1 ≈ 0. In the DB-B process, fori 6= n,

πBB
i,i−1 ≈ 1 andπBA

i,i ≈ 0. Given these approximations, following the same procedure
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as that shown in Section 2.3, we find that forr ≈ 0

AT IP ≈ n(n−1)+1> ATDB-B, (3.28)

ATBD-D ≈
n2+1
n−1

+
1

n+1
> ATVM , (3.29)

ATVM ≈ 1, (3.30)

ATDB-B ≈
n

n+1

n−1

∑
i=1

(

1
i

)

+
1

n+1
+n> ATBD-D (for n> 4) (3.31)

(XTUR denotes the mean time to absorption starting from a single individual playing

strategy X following the update rule UR).

For r ≫ 1, in the IP and the VM,πAB
i,i ≈ πBB

i,i−1 ≈ 0 andπAA
i,i+1 ≈ πBA

i,i ≈ 1. In the

BD-D process, fori 6= n, πBB
i,i−1 ≈ 0 andπBA

i,i ≈ 1. Finally, in the DB-B process, for

i 6= 0, πAB
i,i ≈ 0 andπAA

i,i+1 ≈ 1. Using these approximations and the formula (2.39),

we find that for larger ≫ n

AT IP ≈
n−1

∑
i=0

n(i+1)
n− i

> ATVM , (3.32)

ATBD-D ≈ n

(

n+
1

n+1

)n−1

∑
i=1

(

1
i

)

+n+
1

n+1
> AT IP, (3.33)

ATVM ≈ n2 > ATDB-B, (3.34)

ATDB-B ≈
n(n+3)
2(n+1)

n−1

∑
i=1

(

1
i

)

+
n(n+1)+2

2(n+1)
. (3.35)

Note that in the DB-B process once there is an A individual on a leaf and in the

centre, then the mean absorption time does not depend onr; specifically, substituting

(3.9)–(3.12) and (2.7)–(2.8) appropriately into the formula giving TA
1 , (2.31), after

some calculations it is proved thatTA
1 DB-B

= (n+1)∑n−1
i=1 1/i.

Using the formulae of Section 2, we find that in the limit of a large population

size, in the birth-death processes absorption occurs in a number of time steps that is

O(n2 lnn). However, in the death-birth processes, absorption is reached much faster,

in O(n) time steps.

In a large population, Figure 3.4 suggests that following the birth-death pro-

cesses, absorption is reached slower for a value ofr close to 1 (this value tends to

1 as the population size increases). Thus, in large populations neutral mutants yield

higher absorption times. However, following the death-birth processes absorption

time increases with the increase inr.
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Table 3.1: Comparison of the average fixation probability and the mean times to absorption
and fixation of a single mutant on a star graph in the constant fitness case between the IP, the
BD-D process, the VM and the DB-B process. The variation ofr1(n), r2(n), r3(n), r4(n),
r5(n) andr6(n) with n is shown in Figure 3.3. Apart from some extreme cases, the two birth-
death processes (IP and BD-D) yield a higher fixation probability for advantageous mutants
(r > 1) and a lower fixation probability for disadvantageous mutants (r < 1) compared to the
death-birth processes (VM and DB-B). On the other hand, death-birth processes yield much
lower absorption and fixation times than birth-death processes

Comparison of fixation probabilities

n= 1 r T 1
APIP =

APVM = APM = r/(r +1)

r/(r +1)T APBD-D = APDB-B = 1/2

n= 2,3
r > 1 APIP >

APM > APVM > APBD-D > APDB-B > 1/(n+1)

r < 1 APIP <
APM < APVM < APBD-D < APDB-B < 1/(n+1)

n≥ 4

1< r < r1(n) APIP >
APM > APBD-D > APVM > APDB-B > 1/(n+1)

1< r1(n)< r APIP >
APM > APVM > APBD-D > APDB-B > 1/(n+1)

r < r2(n)< 1 APIP <
APM < APVM < APBD-D < APDB-B < 1/(n+1)

r2(n)< r < 1 APIP <
APM < APBD-D < APVM < APDB-B < 1/(n+1)

∀ n r = 1 APIP =
APM = APBD-D = APVM = APDB-B = 1/(n+1)

Comparison of absorption times

n= 1 ∀ r AT IP =
ATBD-D = ATVM = ATDB-B = 1

n= 2

1< r < r3(n) AT IP >
ATBD-D > ATVM > ATDB-B

1< r3(n)< r ATBD-D > AT IP >
ATVM > ATDB-B

r < 1 ATBD-D > AT IP >
ATDB-B >

ATVM

n≥ 3

1< r < r3(n) AT IP >
ATBD-D > ATVM > ATDB-B

1< r3(n)< r ATBD-D > AT IP >
ATVM > ATDB-B

r < r4(n)< 1 ∗ AT IP >
ATBD-D > ATDB-B >

ATVM

r4(n)< r < 1 ATBD-D > AT IP >
ATDB-B >

ATVM

∀ n r = 1 AT IP =
ATBD-D > ATVM = ATDB-B

Comparison of fixation times

n= 1 ∀ r AF IP =
AFBD-D = AFVM = AFDB-B = 1

n= 2

1< r < r5(n) AF IP >
AFBD-D > AFDB-B >

AFVM

1< r5(n)< r AFBD-D > AF IP >
AFDB-B >

AFVM

r < 1 ∗∗ AFBD-D > AF IP >
AFVM > AFDB-B

n≥ 3

1< r < r5(n) AF IP >
AFBD-D

1< r5(n)< r AFBD-D > AF IP

1< r < r6(n) AFDB-B >
AFVM

1< r6(n)< r AFVM > AFDB-B

r < 1 ∗∗ AFBD-D > AF IP >
AFVM > AFDB-B

∀ n r = 1 AF IP =
AFBD-D > AFVM = AFDB-B

∗ For n> 4 andr ≈ 0, AT IP >
ATDB-B >

ATBD-D >
ATVM .

∗∗ For r ≈ 0, AFBD-D > AFVM > AF IP >
AFDB-B.
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a) b)

c) d)

Figure 3.3: The behaviour of (a)r1(n), (b) r2(n), (c) r3(n) (dotted line) andr4(n) (dashed
line), and (d)r5(n) (dotted line) andr6(n) (dashed line), asn increases (see Table 3.1).

a) b)

Figure 3.4: The mean time to absorption starting from a single mutant on a star graph under
the IP (crosses), the BD-D process (diamonds), the VM (circles) and the DB-B process
(boxes), in the constant fitness case where (a)r = 3 andn varies, (b)n= 60 andr varies.

Mean fixation time of a single mutant

As in the case of the absorption time, apart from some specialcases ofr ≈ 0 where
AFVM , for example, increases rapidly, the fixation time is generally higher in the
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a) b)

Figure 3.5: The mean fixation time of a single mutant on a star graph under the IP (crosses),
the BD-D process (diamonds), the VM (circles) and the DB-B process (boxes), in the con-
stant fitness case where (a)r = 3 andn varies, (b)n= 40 andr varies.

birth-death processes than the death-birth processes (XFUR denotes the mean fixation

time of a single individual playing strategy X following theupdate rule UR). The

comparison of the fixation times for various scenarios is shown in Table 3.1. Figure

3.5 shows an example of the mean fixation times of a single mutant as the population

size and the mutant’s fitness vary.

In the limit of a larger (r → ∞), the fixation time of a single mutant in the IP

and VM,AF IP andAFVM , are equal toAT IP given by (3.32) andATVM given by (3.34),

respectively. In the BD-D and DB-B processes we find that

AFBD-D ≈ n(n+1)
n−1

∑
i=1

(

1
i

)

+n+
1

n+1
, (3.36)

AFDB-B ≈ (n+1)
n−1

∑
i=1

(

1
i

)

+
n(n+1)+2

2(n+1)
. (3.37)

The fixation times in the limiting case ofr → 0 are of less interest since in this case

the chance of fixation of the mutant individual is very small and we condition on its

fixation.

It should be noted that, especially in large populations,AFDB-B is affected less by

the change inr than the fixation times under other dynamics (as seen forAPDB-B and
ATDB-B above).

In the limit of large population size, the fixation time in thebirth-death processes

is O(n3) while in the death-birth processes the limit isO(nlnn). Numerical exam-

ples suggest that in large populations, following the birth-death processes, as the

absorption time, the mean fixation time of a neutral mutant isthe highest.
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3.4.2 The frequency dependent fitness case – example games on

star graphs

In this section, we apply the results obtained in the previous sections to cases where

the fitness of each individual depends on the composition of the population (fre-

quency dependent fitness). We consider various evolutionary games which in an

infinite well-mixed population result in different evolutionary outcomes.

A Hawk–Dove game on the star graph

The average fixation probability of a single mutant Hawk

Consider a Hawk–Dove game (see Section 1.3.1) described by the payoff matrix

(1.19) played on a star graph.

The illustration of the dependence of the average fixation probability of a single

Hawk on the star,HP, on the population size and the fight cost,C, is shown in

Figure 3.6 in an example. For comparison, in Figure 3.6b the respective fixation

probabilities of a single Hawk when invading in a complete graph is also presented.

As we have seen in Section 3.2.1, on the complete graph the update rules do not

much influence the fixation probabilities, especially in relatively large populations.

As in the constant fitness case, there is a step change in the fixation probability in all

dynamics. IfρCG
UR > 1, mutants fixate with a probability almost independent ofC; for

ρCG
UR < 1, the fixation probability presents a rapid change and mutants’ elimination

becomes almost certain. However, different update rules yield considerably different

results on a star graph.

Here, we can observe two qualitatively different behaviours, one for birth-death

processes and another for death-birth processes. In the birth-death processes, for

largen, HP exhibits a step function behaviour based onρS
UR; in fact, for largen we

find that (see Appendices B.3.1 and B.3.2)

HPIP ≈















1− γδ
β2

1−
(

γδ
β2

)n ≈ 1− γδ
β 2 , ρS

IP > 1

0, ρS
IP < 1

, (3.38)

HPBD-D ≈











1− δ
β

1−
(

δ
β

)n ≈ 1− δ
β , ρS

BD-D > 1

0, ρS
BD-D < 1

. (3.39)

On the other hand, in the death-birth processes, bothHPVM andHPDB-B are bounded
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a) b)

Figure 3.6: The average fixation probability of a single mutant Hawk on a star graph under
the IP (crosses), the BD-D process (diamonds), the VM (circles) and the DB-B process
(boxes), in the Hawk–Dove game described by the payoff matrix (1.19) in the case where
(a) V = 1, C = 1.5 andn varies, (b)n = 60, V = 1 andC varies. fb = 2 andw = 1. The
thick lines represent the respective case on the complete graph and the dashed-dotted line
represents the fixation probability of a single mutant in the case of neutral drift, 1/(n+1).

above by(β + δ )/δ (n+ 1) (see Appendix B.3.3) and thus decrease to 0 asn in-

creases to infinity.

Figure 3.6b suggests that when Hawks are favoured over Dovesin the different

update rules, the complete graph promotes the fixation of Hawks compared to the

star graph in the BD-D, VM and DB-B process. Moreover, in the IP,favoured Hawks

have much higher chance to fixate on a star graph.

Note that in the case of weak selection, in large stars and complete graphs,

Hawks are favoured over Doves if the simple conditionC < 2V holds, in all up-

date rules.

In the case where a mutant Dove invades into Hawks, all the above results can

be easily obtained by interchanging the two strategies, i.e. by exchangingα andδ ,

andβ andγ.

Mean time to absorption and fixation starting from a single mutant Hawk

A comparison of the absorption times for varying populationsize and varying

fight cost,C, for the game with payoff matrix (1.19) is shown in Figure 3.7. The

absorption times on the complete graph asC varies are also presented in Figure 3.7b

for comparison. As shown in Section 3.2.1, the time needed for mutants to either

fixate or die out on a complete graph is almost unaffected by the update rule fol-

lowed. In large populations, values of the payoffs such thatρCG
UR ≈ 1 lead to the

highest times before absorption and fixation occur, in all the update rules. In con-
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a) b)

Figure 3.7: The mean time to absorption starting from a single mutant Hawk on a star graph
under the IP (crosses), the BD-D process (diamonds), the VM (circles) and the DB-B process
(boxes), in the Hawk–Dove game described by the payoff matrix (1.19) in the case where
(a)V = 1,C= 1.5 andn varies, (b)n= 60,V = 1 andC varies. fb = 2 andw= 1. The thick
lines represent the respective case on the complete graph.

trast to the case of the complete graph, on the star graph, as in the constant fitness

case, we observe that the speed to absorption and fixation might significantly vary

when following different update rules. There is again a quantitative and qualita-

tive distinction between birth-death and death-birth processes. In most of the cases

the birth-death processes yield much higher absorption andfixation times than the

death-birth processes. In large populations, both the absorption and fixation times in

the two birth-death processes achieve local maxima for parameter values such that

ρS
IP ≈ 1 andρS

BD-D ≈ 1, since then the two strategies coexist for a long time before ab-

sorption/fixation occurs. In the VM and DB-B process, although the absorption and

fixation times increase asC increases, they are affected less by the variation ofC. In

our example, we can see that for the VM asC → 5 (i.e. the fitness of a Hawk indi-

vidual when playing with just another Hawk tends to 0),HTVM (and similarlyHFVM)

sharply increases. An initial Hawk on a leaf can be eliminated by chance, but if it is

not, eventually it will occupy the center. At that moment, a Hawk on the leaves has

a very very small fitness, so it will be eliminated and replaced by an offspring of the

individual in the center; this process will be repeated manytimes before absorption

occurs.

Figure 3.7b suggests that the process on the star might reachone of the two

absorbing states much slower than on the complete graph whenfollowing the birth-

death update rules, but much faster when following the death-birth update rules.
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Prisoner’s Dilemma on the star graph

Consider a Prisoner’s Dilemma game (see Section 1.3.2) described by the payoff

matrix (1.22) played on a star graph.

A cooperator and a defector in the centre of the star, respectively, have fitness

fCc = fb+w

(

iB
n
−C

)

, (3.40)

fDc = fb+w
iB
n
, (3.41)

given i cooperators on then leaves. A cooperator on a leaf has fitnessfb+w(B−C)

against a cooperator in the centre and fitnessfb−wCagainst a defector in the centre.

Similarly, a defector on a leaf has fitness equal tofb+wB against a cooperator in

the centre and fitness equal tofb against a defector in the centre. Thus, a cooperator

always does worse than a defector no matter its position and the composition of the

population. By (3.22) and (3.23), in the BD-D and DB-B processes, cooperation is

never favoured over defection for any intensity of selection and any population size.

By (2.126) and (3.20) this is true under the IP and the VM as wellin large popula-

tions. Moreover, by (2.91)–(2.94) and (3.1)–(3.12), the number of cooperators from

any state and in any population size increases (decreases) by one with probability

less than (greater than) or equal to the respective probability in the case of neutral

drift. Thus, the fixation probability of cooperators starting from any possible state

will always be less than that of neutral mutants,i/(n+1) (apart from the DB-B pro-

cess which can be equal toi/(n+1)). Hence, the star graph is not a good graph for

the evolution of cooperation.

Numerical examples suggest that a single cooperator almostalways has the high-

est chance of fixation following the two death-birth processes, with that in the DB-B

process the highest and that in the IP the smallest one (see Figure 3.8). Similarly,

the birth-death processes favour the fixation of a single defector into a population

of cooperators while in the death-birth processes the cooperators’ population has a

higher chance to resist the invasion of a defector, with the fixation probability of

the defector close to 1/(n+1), especially for a sufficiently large population. As in

the Hawk–Dove game, the absorption and fixation times in the birth-death processes

have important quantitative and qualitative differences from those in the death-birth

processes. The times to absorption and fixation in the birth-death processes are

much higher, mainly due to the large number of defector-defector replacements be-

fore their fixation.

Comparisons with the complete graph (see Figure 3.8b) indicate that in the IP,
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a) b)

Figure 3.8: The average fixation probability of a single mutant cooperator on a star graph
under the IP (crosses), the BD-D process (diamonds), the VM (circles) and the DB-B process
(boxes), in the Prisoner’s Dilemma game described by the payoff matrix (1.22) in the case
where (a)B= 2,C= 1 andn varies, (b)n= 60,B= 1 andC varies. fb = 10 andw= 1. The
thick lines represent the respective case on the complete graph and the dashed-dotted line
represents the fixation probability of a single mutant in the case of neutral drift, 1/(n+1).

the star graph impedes cooperation while in the BD-D, VM and DB-B processes

it promotes cooperation (although as we have seen the probability of cooperators

fixating is very small in all of these processes).

Coordination games on the star graph

Consider a Stag Hunt game (see Section 1.3.3) described by thepayoff matrix (1.2)

played on the star graph. Strategy A is Pareto efficient (a> d) and strategy B is risk

dominant (a+b< c+d). On a large star graph, in the case of weak selection the risk

dominant strategy is always favoured over the Pareto efficient strategy (sincec+d

is higher thana+b), in all the update rules. For any non-zero intensity of selection,

sincea+ b < c+ d anda > c > d > b, αβ is lower thanγδ as well and thus the

BD-D and DB-B processes always favour the risk dominant strategy over the Pareto

efficient strategy on a star graph of any size. It is shown numerically that this holds

for the IP and the VM as well. Numerical examples also indicate that in none of the

update rules is the fixation of strategy A favoured by selection, i.e.AP is always less

than 1/(n+1) in all update rules.

However, in a coordination game where B is not the risk dominant strategy, i.e.

A is both the Pareto efficient and risk dominant strategy (a> d anda+b> c+d),

then A might be favoured over B for any non-zero intensity of selection in all the

update rules. In addition, it is shown that selection might favour the fixation of A

and oppose the fixation of B, i.e.AP > 1/(n+ 1) > BP, under any of the update

rules. Moreover, the chance of As’ fixation remains relatively small. Figure 3.9
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a) b)

Figure 3.9: The average fixation probability of a single mutant playing strategy A on a star
graph under the IP (crosses), the BD-D process (diamonds), the VM (circles) and the DB-B
process (boxes), in a coordination game in the case where (a)a= 35 andn varies, (b)n= 60
anda varies.b= 3, c= 5, d = 4, fb = 2 andw= 1. The thick lines represent the respective
case on the complete graph and the dashed-dotted line represents the fixationprobability of
a single mutant in the case of neutral drift, 1/(n+1).

shows the average fixation probability of a single A on the star for an example set of

parameters, as the population size and the payoffa, vary. The respective probability

in the case of the complete graph is also presented in Figure 3.9b. We again observe

that in large stars, in the two birth-death processes IP and BD-D, values of payoffs

such thatρS
IP < 1 andρS

BD-D < 1 result in an almost zero fixation probability while a

rapid increase in the fixation probability occurs asρS
IP andρS

BD-D become bigger than

1. The most advantageous update rule for the fixation of strategy A can be either the

IP, the BD-D process or the DB-B process. Numerical examples indicate that the

fixation probability of strategy A under the VM is always lower than that in the DB-

B process. In this game, the speed of the evolutionary process is again much slower

in the birth-death processes with the fixation time of mutants in large populations

highest whenρS
IP ≈ 1 andρS

BD-D ≈ 1 .

Comparisons of the results on the star with those on the complete graph suggest

that apart from cases where the payoffa is much larger than the other payoffs and the

population size is relatively small, in the two birth-deathprocesses the heterogeneity

of the star graph inhibits the spread of strategy A. However,in the two death-birth

processes, the star might be a better graph for As to spread.

3.5 Discussion

In this chapter, we have investigated analytically stochastic evolutionary processes

on the simplest irregular graph, the star graph. Using the formulae of the fixation
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probability and absorption and fixation times derived in Section 2.3, we have studied

the process under different update rules, in various evolutionary games which re-

sult in different evolutionary outcomes in infinitely largehomogeneous well-mixed

populations. It has been shown that although the choice of the update rule of the

evolutionary process does not significantly affect the evolution of mutants on ho-

mogeneous populations, it might cause considerable differences if these invade in

a population with a non-homogeneous structure. However, inmost of the cases,

these differences are mainly due to the extreme structure ofthe graph rather than the

dynamics themselves.

The IP in combination with the specialness of the star, enhances significantly

the selection pressure and outweighs drift. At least for thecases where a mutant

always does better (worse) than a resident individual, for example in the constant

fitness case and the Prisoner’s Dilemma, the fixation probability of mutants is al-

ways higher (lower) than the respective probability on a complete graph of the same

size. This happens only in the IP. In the DB-B process the selection pressure is con-

siderably nullified and random drift is emphasised partly due to the dynamics itself

but mainly due to properties of the star graph. When an individual on a leaf dies

randomly, which is the usual event, especially in large populations, it is inevitably

replaced by the offspring of the individual in the centre (the fitness of individuals

does not contribute to the process). If the individual in thecentre dies (with prob-

ability 1/(n+1)) then it is replaced by the offspring of an individual on the leaves

which is chosen with probability proportional to fitness, and thus the fitness of the

individual in the centre is irrelevant. Hence, especially in large populations, the

spread and fixation of mutants happens almost randomly. In the BD-D process, al-

though the first event happens randomly as well, since the increase or decrease of

mutants on the leaves depends on the fitness of the individuals in this position, the

contribution of the fitness in the BD-D process is much higher than that in the DB-B

process. Finally, in the VM, although selection operates onn+ 1 individuals (as

in the IP), the process on the star is a strong suppressor of fitness. In this process,

especially in large populations, the individual in the centre is quite safe and occupy-

ing this position at the beginning of the process is highly advantageous. However,

the most likely initial position is a leaf, a position from which the role of the fit-

ness is diminished. Hence, in most of the cases, birth-deathprocesses yield higher

(lower) fixation probabilities of advantageous (disadvantageous) mutants than the

death-birth processes. However, these processes usually require exceedingly long

times to fixation, which are much larger than the respective times in the death-birth

processes.
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For the BD-D and DB-B processes, where the first event happens randomly,

we have seen that even a mutant with infinite fitness has a chance of not fixating

which is independent of its fitness. On the other hand, in the DB-B process, even an

invader mutant with almost zero fitness has a small chance to fixate which does not

depend on its fitness. Hence, both the update rule and the structure of the population

might result in a relatively high chance of fixation of the less fit individuals and the

elimination of the fitter individuals even in these extreme cases.

Most of the previous studies of evolutionary processes on graphs have consid-

ered the case of weak selection. It has been shown that in thiscase, following the

rules of the IP and DB-B process, mutants on a large star playing strategy A are

favoured over residents playing strategy B ifa+b> c+d (Tarnitaet al., 2009). We

have shown that this condition holds for the BD-D process and the VM as well. In

addition, for each of the dynamics we have found appropriateconditions for strat-

egy A to be favoured over strategy B for any intensity of selection. Especially in the

BD-D and DB-B processes, we have shown that mutant individualsplaying strategy

A on a star of any size are favoured over Bs if the simple condition αβ > γδ holds.

In the case whereαβ = γδ , the fixation probability as well as the absorption and

fixation time of a number of individuals of either type in a population of the other

type are identical for any population size.

When a strategy A loses the advantage it has over strategy B andBs become

favoured, the average fixation probability of a mutant individual playing strategy A

on a large star tends rapidly to zero when following the two birth-death processes.

At this point, the fixation time takes the highest value. Thisalso happens in the well-

mixed population. Birth-death dynamics on a star effectively act like a well-mixed

population when the population size is large, as the centralvertex is continuously

replaced and all the others have the same relationship to each other through it. For

death-birth dynamics this does not happen since the dynamics are very different.

The central vertex is highly important and occupying it is a great advantage. In both

processes, the increase of the population size results in animportant decrease of the

contribution of the fitness in the evolutionary process and the probability of fixation

is close to 1/(n+1), as occupying the centre or not at the start is the key event. In

particular, in the DB-B process, a single random event can cause big changes in the

evolutionary process on the star irrespective of the fitnessof individuals.

Considering the evolution of cooperation in the Prisoner’s Dilemma we have

seen that the heterogeneity of the star is an inhospitable environment for cooperation

to evolve. It is proved that cooperation is never favoured byselection while defection

is always favoured, in all update rules. However, it has beenshown that there are
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update rules under which cooperation is encouraged more on the star than on the

complete graph. In a similar way, in a Stag Hunt type of game itis difficult for the

Pareto efficient strategy to evolve on the star. In particular, it is shown that in all

update rules the risk dominant strategy is always favoured over the Pareto efficient

strategy, and selection never favours the Pareto efficient strategy.

The investigation of the evolutionary process on the star graph under four update

rules has demonstrated that both the structure of the population and the update rule

when applied in a non-homogeneous structure might have an important influence on

the outcome of the evolutionary dynamics. However, it is notclear to what extent

the reported characteristics depend upon the unique character of the star. So far,

almost all the other analytical investigations have involved regular graphs where the

differences of the evolutionary process under different update rules are relatively

minor. On the other hand, it is likely that whilst other irregular graphs may display

properties of the star, behaviour will in general not be as extreme as that observed

on the star (see Broomet al., 2009). Thus, it would be of interest to investigate

whether, and to what extent, some of the observed phenomena hold for larger classes

of graphs.
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CHAPTER 4

Evolutionary dynamics on complex

graphs

4.1 Introduction

In Chapters 2 and 3, we have seen that an analytic approach of the evolutionary dy-

namics is possible when individuals of the population occupy the vertices of simple

graphs with a lot of symmetry and lack of complexity. Such graphs are the complete

graph (Tayloret al., 2004), the circle (Ohtsuki and Nowak, 2006a; Broomet al.,

2010a), the star (Broom and Rychtá̌r, 2008; Broomet al., 2010a; Hadjichrysanthou

et al., 2011) and the line (Broom and Rychtá̌r, 2008). See also Liebermanet al.

(2005). Moreover, real populations have some complex structures where the ana-

lytic investigation of the dynamics is usually impossible,especially when the fitness

of individuals depends on the composition of the population, due to the large number

of the possible configurations of the population through evolution. In such cases the

use of approximation methods is essential. The investigation of evolutionary models

on complex graphs is often limited to individual-based stochastic simulations that

can be difficult to validate, time consuming to run and the results generated can lack

generality. To tackle this problem, researchers from different areas have developed

different techniques that allow us to derive low-dimensional ODE (ordinary differ-

ential equation) models that, under certain assumptions about the structure of the

network and the dynamics running on it, can approximate wellthe average outcome

from stochastic network simulations. Establishing the clear relation between the

exact-stochastic and approximate model is challenging since this requires a mathe-

matical handle on both solutions as well as the formulation of an appropriate limit in

which the exact-stochastic model approaches the deterministic limit. One such well

known class of approximate models is that of thepairwise models(e.g., Matsuda
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et al., 1992; van Baalen and Rand, 1998; Keeling, 1999; Eames and Keeling, 2002;

House and Keeling, 2011) where the dynamics at the vertex level, in a population

with graph-like contact structure, is described in terms ofthe dynamics of pairs of

individuals, and the hierarchical dependence on higher order structures is cut off via

an appropriately constructed closure. In recent years, other models of similar na-

ture have been derived, for example, theProbability Generating Functionapproach

(Volz and Meyers, 2007; Volz, 2008) and more notably theEffective Degree model

(Lindquistet al., 2011). These models have arisen in the context of epidemiology but

their formulation and properties makes them amenable to be used for the modelling

of evolutionary game dynamics on graphs.

In this chapter, using the techniques of the Effective Degree model (Lindquist

et al., 2011) we consider evolutionary game dynamics when individuals interact on

different complex graphs playing two strategies, A and B. Thegame played is de-

scribed by the payoff matrix (1.2). Individuals update their strategies following the

update rules of the biased voter model (VM) as described in Section 3.2 (see also

Antal et al., 2006). VM type dynamics is one of the classical interacting particle

systems which has been applied to many evolutionary processes, from opinion and

culture dynamics to processes in population genetics and kinetics of catalytic re-

actions (e.g., Liggett, 1985; Frachebourg and Krapivsky, 1996; San Miguelet al.,

2005; Castellanoet al., 2009), and has received considerable attention.

We show that for randomly or proportionately mixed networks, with or without

degree heterogeneity, the model constructed, called theNeighbourhood Configura-

tion model, provides an excellent approximation to output from simulation models,

even for relatively small graph sizes. Following the same evolutionary dynamics

we also construct a pairwise model and highlight its merits and shortcomings when

compared to the Neighbourhood Configuration model. As an example, we consider

the evolutionary process in a Hawk–Dove game when played in three types of graph

which have been widely used; a random regular graph, a randomgraph and a scale-

free network.

4.2 Approximate models of evolutionary game dynam-

ics on graphs

4.2.1 Pairwise model

In this section, we first approach the evolutionary process by using the pair approx-

imation method (Matsudaet al., 1992; van Baalen and Rand, 1998; Keeling, 1999;
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Eames and Keeling, 2002; House and Keeling, 2011). This is a method where the

frequency of higher order moments, such as triples composedof three vertices con-

nected in a line, is approximated by the frequency of lower order moments, such

as pairs and single vertices. This method works well with graphs with no or little

heterogeneity in the number of connections, but can be extended to more heteroge-

neous graphs with a significant increase in the number of equations. Such methods

assume that the underlying graphs have undirected edges andthat these are either

unweighted or uniformly weighted. This approximation method has been used in

previous work for the investigation of the evolutionary process in structured popu-

lations under different update rules (e.g., Morris, 1997; Hauert and Doebeli, 2004;

Hauert and Szab́o, 2005; Ohtsukiet al., 2006; Ohtsuki and Nowak, 2006b; Morita,

2008; Fuet al., 2010). Here, we follow a similar procedure to approach theprocess

when the update rules of the VM are followed.

Assume a population ofN individuals playing either strategy A or strategy B

placed on a regular graph of degreek. Let pA (pB) denote the proportion of A

(B) individuals in the population andpAB the frequency of AB pairs. Let alsoqB|A

denote the conditional probability that a neighbour of a chosen A individual is a B

individual, i.e.qB|A = pAB/(pAA+ pAB) = pAB/pA (thus 1−qB|A = qA|A = pAA/pA

denotes the conditional probability that a neighbour of a chosen A individual is

another A individual). The equivalent expressions also hold for qA|B andqB|B. The

edges of the graphs we consider are assumed to be undirected and thereforepAB =

pBA.

Since all the vertices of the graph are assumed to be topologically equivalent,

every pair of A (B) individuals is equally likely to be connected with probabilityqA|A

(qB|B). The probability that from thek connections of an A individual,i of them are

with other As (and thusk− i are with Bs),lA(i), is approximated by assuming that it

follows a binomial distribution. This is given by

lA(i) =

(

k
i

)

qA|A
i (1−qA|A

)k−i
=

k!
i!(k− i)!

qA|A
iqB|A

k−i . (4.1)

Similarly, the probability that a B individual is connectedwith i As andk− i Bs is

assumed to be given by

lB(i) =

(

k
i

)

(

1−qB|B
)i

qB|B
k−i =

k!
i!(k− i)!

qA|B
iqB|B

k−i . (4.2)

As defined in Section 2.4 , the fitness of each individual is assumed to be equal

to f = fb+wP, whereP is the average payoff obtained by the games played with

99



Evolutionary dynamics on complex graphs

neighbouring individuals,fb is a constant background fitness of individuals andw∈

[0,∞) represents the intensity of selection which determines thecontribution ofP to

fitness. An A individual which is connected withi other A individuals has fitness

equal to

fA(i) = fb+w

(

ia+(k− i)b
k

)

. (4.3)

A B individual which is connected withi As has fitness equal to

fB(i) = fb+w

(

ic+(k− i)d
k

)

. (4.4)

Let us denote byF the sum of the inverse of the fitnesses of all individuals,

F = pA

k

∑
i=0

lA(i)
fA(i)

+ pB

k

∑
i=0

lB(i)
fB(i)

. (4.5)

The probability that an A individual dies (with probabilityinversely proportional to

its fitness) and is replaced by a randomly selected neighbouring B individual,PA→B,

is given by

PA→B =
pA

F

k

∑
i=0

lA(i)
fA(i)

·
k− i

k
. (4.6)

One of the B individuals dies with probability inversely proportional to its fitness

and is replaced by a random neighbouring A individual with probability

PB→A =
pB

F

k

∑
i=0

lB(i)
fB(i)

·
i
k
. (4.7)

The rate of increase of the frequency of A individuals,pA, (given one transition in

each iteration step) is given by the following equation

ṗA =
1
N

PB→A−
1
N

PA→B

=
1

NF

k

∑
i=0

(k−1)!
i!(k− i)!

(

pBqA|B
iqB|B

k−i i
fB(i)

− pAqA|A
iqB|A

k−i k− i
fA(i)

)

. (4.8)

When an A individual connected toi other As is replaced by a B individual, the

number of AA pairs decreases byi and therefore the frequency of AA pairs,pAA,

decreases byi/(kN/2) (kN/2 is the total number of edges). This happens with

probability

PAA→AB =
pA

F

lA(i)
fA(i)

·
k− i

k
. (4.9)
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Similarly, the number of AA pairs increases byi and thereforepAA increases by

i/(kN/2) when a B connected toi As is replaced by an A. This happens with prob-

ability

PAB→AA =
pB

F

lB(i)
fB(i)

·
i
k
. (4.10)

According to the above, the rate of increase of the frequencyof AA pairs (given one

transition in each iteration step) is given by the followingequation

ṗAA =
k

∑
i=0

2i
kN

PAB→AA−
k

∑
i=0

2i
kN

PAA→AB

=
2

kNF

k

∑
i=1

(k−1)!
(i−1)!(k− i)!

(

pBqA|B
iqB|B

k−i i
fB(i)

− pAqA|A
iqB|A

k−i k− i
fA(i)

)

.

(4.11)

Since,pA+ pB = 1, pAB = pBA = pA− pAA andpBB = 1− pAA−2pAB, the system

can be described by just two dynamical equations, say (4.8) and (4.11). Note that

the frequency of larger clusters can be approximated by the frequencies of the pairs.

For example, the frequency of the three cluster XYZ,pXYZ, can be approximated by

pXYpYZ/pY.

4.2.2 Neighbourhood Configuration model

The effective degree model (Lindquistet al., 2011) stems from a model first pro-

posed by Ball and Neal (2008) in the context of anSIR type infectious disease

transmission model, where vertices in a graph are accountedfor not only by their

disease status but also by their number of susceptibleS and infectedI neighbours,

referred to as the effective degree of the vertices. Keepingtrack of recovered neigh-

boursR is not important as they play no part in the dynamics. Lindquist et al.

(2011) formalised this model by categorising each vertex according to its disease

state as well as the number of its neighbours in the various disease states. Based on

heuristic arguments and on the assumption of proportionatemixing, Lindquistet al.

(2011) derived a system of ODEs in terms of susceptible and infected vertices with

all possible neighbourhood configurations. In this chapter, we adopt this method

to approach the stochastic evolutionary dynamics in a two-strategy game played on

complex graphs.

Assume, as above, that a resident population of B individuals placed on an undi-

rected and connected static graph is invaded by a number of mutant A individuals.

The evolutionary dynamics of the evolutionary process is described by the update

rules of the VM. Each individual on the graph is classified according to its strategy
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and the number of its connected individuals playing each of the strategies. Let us

denote byMm,r (Rm,r ) the number of individuals in the class where individuals play

the mutant (resident) strategy and each of them is connectedto m other mutant in-

dividuals andr residents. Considerm andr as the number of edges that start from

an individual of anMm,r or Rm,r class and end at a mutant or a resident, respectively.

Assume that the maximum degree of a vertex on the graph isDmax and therefore

m≥ 0, r ≥ 0 and 1≤ m+ r ≤ Dmax. Hence, the number of different classes is equal

to ∑Dmax
k=1 2(k+1) = Dmax(Dmax+3).

The sum of the inverse of the fitnesses of all individuals,F , is given by

F =
Dmax

∑
k=1

∑
i+ j=k

(

Mi, j
1

(iα + jβ )
/

(i+ j)
+Ri, j

1

(iγ + jδ )
/

(i+ j)

)

, (4.12)

whereα = fb+wa, β = fb+wb, γ = fb+wc andδ = fb+wd. Let us also define

some terms which will be useful in subsequent calculations.Let LXY be the number

of edges which connect an individual of type X to an individual of type Y (with X

and Y being the start and destination vertex, respectively), where X and Y denotes

either a mutant (M) or a resident (R) individual.

LMR =
Dmax

∑
k=1

∑
i+ j=k

jMi, j , LRM =
Dmax

∑
k=1

∑
i+ j=k

iRi, j ,

LMM =
Dmax

∑
k=1

∑
i+ j=k

iMi, j , LRR =
Dmax

∑
k=1

∑
i+ j=k

jRi, j . (4.13)

In addition, we use the following notation:

H1 =
Dmax

∑
k=1

∑
i+ j=k

i j
iα + jβ

(Mi, j −δ i j
mr), H2 =

Dmax

∑
k=1

∑
i+ j=k

i j
iγ + jδ

(Ri, j −δ i j
mr),

H3 =
Dmax

∑
k=1

∑
i+ j=k

i2

iγ + jδ
Ri, j , H4 =

Dmax

∑
k=1

∑
i+ j=k

j2

iα + jβ
Mi, j , (4.14)

whereδ i j
mr is a function defined as

δ i j
mr =







1, i = m, j = r

0, otherwise
. (4.15)

An individual might move from one class to another, either bythe change of its

strategy or due to the change of a neighbour’s strategy. The probability that an A

mutant individual of theMm,r class is replaced by a B resident individual and move
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to theRm,r class is equal to the probability that this individual is selected for death

(with probability inversely proportional to its fitness) and is replaced by the offspring

of one of its neighbouring residents (which is chosen at random). This probability is

equal to
1

(mα+rβ )
/

(m+r)

F
·

r
m+ r

=
r

F(mα + rβ )
. (4.16)

Similarly, an individual of theRm,r class moves to theMm,r class with probability

1

(mγ+rδ )
/

(m+r)

F
·

m
m+ r

=
m

F(mγ + rδ )
. (4.17)

A mutant connected tomother mutants andr residents leaves theMm,r class and en-

ters theMm+1,r−1 class when a neighbouring resident is replaced by a mutant. The

probability of such a movement is approximated in the following way. The proba-

bility that a resident individual from anRi, j class is selected to die and is replaced

by an offspring of a mutant neighbour is equal to

Ri, j

1

(iγ+ jδ )
/

(i+ j)

F
·

i
i+ j

= Ri, j
i

F(iγ + jδ )
. (4.18)

We now use an approximation to estimate the probability thata resident individual

which is replaced by a mutant is connected to a mutant from theMm,r class. This is

assumed to be equal to the probability that a randomly chosenedge which connects

a resident individual with a mutant (starts from a resident and ends at a mutant), is

an edge which connects the replaced resident with that mutant individual from the

Mm,r class (i edges connect the replaced resident with a mutant andr edges connect

an individual of theMm,r with a resident, and so there areir different ways of having

such a connection). This probability is given by

ir
Dmax

∑
k=1

∑
i+ j=k

iRi, j

. (4.19)

Hence, the probability that a mutant from theMm,r class moves to theMm+1,r−1 class

can be approximated by

Dmax

∑
k=1

∑
i+ j=k

Ri, j

1

(iγ+ jδ )
/

(i+ j)

F
·

i
i+ j

·
ir

Dmax

∑
k=1

∑
i+ j=k

iRi, j

=
H3r

FLRM
. (4.20)
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In the same way, the probability that a mutant individual from theMm,r class moves

to theMm−1,r+1 class is equal to the probability that a neighbouring mutantof that

individual is replaced by a resident. The probability of such a transition is approx-

imated by the probability that a mutant individual of the population dies, is then

replaced by a neighbouring resident individual, and the replaced individual is con-

nected to the mutant from theMm,r class, i.e. by the probability

Dmax

∑
k=1

∑
i+ j=k

(Mi, j −δ i j
mr)

1

(iα+ jβ )
/

(i+ j)

F
·

j
i+ j

·
im

Dmax

∑
k=1

∑
i+ j=k

iMi, j −m

=
H1m

F(LMM −m)
.

(4.21)

The termMi, j − δ i j
mr represents the number of mutants in anMi, j class that can be

replaced by a resident such that the transition of a mutant from theMm,r class to the

Mm−1,r+1 class is possible. Wheni =mand j = r, 1 is subtracted fromMm,r because

the movement of an individual from theMm,r to theMm−1,r+1 cannot be a result of

its own replacement. In other words, if a mutant from theMm,r class dies and is

replaced by a resident, there are otherMm,r −1 mutants from that class that might be

connected to it and thus move to theMm−1,r+1 class. The term∑Dmax
k=1 ∑i+ j=k iMi, j −m

corresponds to the number of edges that connect any mutant (starting from it), except

the specific one from theMm,r class, to other mutants. The death and replacement

events have already happened and we are looking for the probability that a random

edge that goes from a mutant to another mutant is an edge that connects the replaced

mutant to a mutant from theMm,r class. This edge obviously cannot be any of them

edges of that individual.

By symmetric arguments, the probability that an individual leaves theRm,r class

and enters theRm+1,r−1 class is given by

Dmax

∑
k=1

∑
i+ j=k

(Ri, j −δ i j
mr)

1

(iγ+ jδ )
/

(i+ j)

F
·

i
i+ j

·
jr

Dmax

∑
k=1

∑
i+ j=k

jRi, j − r

=
H2r

F(LRR− r)
, (4.22)

while the probability of leaving theRm,r class and moving to theRm−1,r+1 class is

given by

Dmax

∑
k=1

∑
i+ j=k

Mi, j

1

(iα+ jβ )
/

(i+ j)

F
·

j
i+ j

·
jm

Dmax

∑
k=1

∑
i+ j=k

jMi, j

=
H4m

FLMR
. (4.23)
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Rm−1,r+1
⊳

H4m

FLMR

Rm,r

H2(r + 1)

F
(

LRR − (r + 1)
)Rm−1,r+1

⊲
Rm,r

H2r

F (LRR − r)
Rm,r

⊲
⊳

H4(m+ 1)

FLMR

Rm+1,r−1

Rm+1,r−1

Mm−1,r+1
⊳

H1m

F (LMM −m)
Mm,r

H3(r + 1)

FLRM

Mm−1,r+1

⊲
Mm,r

m

F (mγ + rδ)
Rm,r

▽

r

F (mα+ rβ)
Mm,r

△

H3r

FLRM

Mm,r

⊲
⊳

H1(m+ 1)

F
(

LMM − (m+ 1)
)Mm+1,r−1

Mm+1,r−1

Figure 4.1: Diagram showing all the probabilities of transition from and to the classesMm,r

andRm,r .

The transition probabilities of moving from and to theMm,r andRm,r classes are

represented schematically in the diagram in Figure 4.1

The dynamics of theDmax(Dmax+3) different classes of the population is de-

scribed by the following differential equation based compartmental model

Ṁm,r =−
1

F

(

H3r
LRM

+
H1m

LMM −m
+

r
mα + rβ

)

Mm,r +
H1(m+1)

F
(

LMM − (m+1)
)Mm+1,r−1

+
H3(r +1)

FLRM
Mm−1,r+1+

m

F(mγ + rδ )
Rm,r , (4.24)

Ṙm,r =−
1

F

(

H2r
LRR− r

+
H4m
LMR

+
m

mγ + rδ

)

Rm,r +
H4(m+1)

FLMR
Rm+1,r−1

+
H2(r +1)

F
(

LRR− (r +1)
)Rm−1,r+1+

r

F(mα + rβ )
Mm,r , (4.25)

for {(m, r) : m≥ 0, r ≥ 0,1≤ m+ r ≤ Dmax}.

The density of As in the population is given bypA = ∑Dmax
k=1 ∑m+r=k Mmr/N, and

the density of Bs bypB = ∑Dmax
k=1 ∑m+r=k Rmr/N.

Note that for very large population sizes, the subtractionsof m andm+1 from

LMM , andr andr +1 fromLRR as well as those ofδ i j
mr in the termsH1 andH2, in the

model (4.24)–(4.25), can be omitted since their effect is negligible (see for example

Lindquistet al. (2011) and Gleeson (2011) where in models of a similar nature such

subtractions are avoided). However, this would reduce the accuracy of the solution

of the model when the population size is small. Moreover, it should be mentioned

that the above subtractions might result in negative valuesof Mm,r and/orRm,r for

some values ofm and r. This is due to the fact that the numerical solution of the

system might lead to non-integer values of these quantitieswhich lie between 0 and

1. As a result, the termsLMM −m, LMM − (m+1), LRR− r andLRR− (r +1) might
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become negative. This problem can be solved by setting theseterms to be bounded

below by 1, which is the minimum natural value that these terms can take.

4.2.3 Numerical examples and comparisons with stochastic sim-

ulations

In this section, we examine the effectiveness of the two approximation models de-

scribed in Sections 4.2.1 and 4.2.2; the pairwise model and the Neighbourhood Con-

figuration model. As specific examples we consider the evolution of the population

when individuals play Hawk–Dove type games (see Section 2.6.2) (Maynard Smith

and Price, 1973; Maynard Smith, 1982).

We consider Hawk–Dove type games played on three commonly used families of

graphs; the random regular graphs, the random graphs and thescale-free networks.

The random graph we consider is an Erdős–Ŕenyi type random graph (Erdős and

Rényi, 1959) generated as described in Lindquistet al. (2011). Assume a popula-

tion of N vertices with no connections between them. Firstly, every (non-connected)

vertex is connected to a random vertex with degree less than the maximum allowable

degreeDmax. In order to ensure that the graph will be connected (there will be a path

between every two vertices of the graph), initially a pair ofvertices is connected, and

then each of the remaining (non-connected) vertices is connected to a randomly cho-

sen vertex which is already connected, sequentially. Afterthe connection of all the

vertices, two vertices with degree less thanDmax are chosen at random and become

connected. The last step is iterated until the desired average degree of the graph,

〈k〉, is reached. The random regular graphs are generated in the same way as the

random graph by assuming thatDmax= k, i.e. with the restriction that every vertex

has the same number of connections. The scale-free networksare graphs that have

power-law (or scale-free) degree distributions. These aregenerated following the al-

gorithm of preferential attachment (Barabási and Albert, 1999; Albert and Barabási,

2002). The initial graph consists of a small number ofm0 vertices connected withl0
edges. A new vertex of degree equal tom (≤ m0) is added to the graph and each of

its edges is connected to one of the existing vertices. The probability that one of the

m edges is connected to vertexi with degreeki is equal toki/∑N
j=1k j (preferential

attachment). This process is repeated until the network is composed ofN vertices.

Given that this happens aftert = N−m0 iteration steps, the number of new edges

that will be added in the graph will be equal tomt. Therefore, the network obtained

has average degree equal to〈k〉 = 2(mt+ l0)/N, which for sufficiently largeN is

well approximated by 2m. Note that in all the graphs we consider, it is assumed that
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Figure 4.2: Change over time in the proportion of individuals playing the Hawk strategy
in a Hawk–Dove game played on a random regular graph withk = 4, a random graph with
〈k〉 = 4 andDmax = 10, and a scale-free network with〈k〉 = 4. The solid lines represent
the solution of the Neighbourhood Configuration model, the dashed-dotted lines represent
the solution of the pairwise model, and the circles represent the average of100 stochastic
simulations. A 95% bootstrap confidence interval for the mean of the simulation results is
also presented. The upper curves of each sub-figure represent the case of a game described
by the payoff matrix (1.19) whereV = 6, C = 10, fb = 4 andw = 1. The lower curves
represent the case of a game whereV = 4,C= 10, fb = 4 andw= 1.

the edges between vertices are undirected, every two vertices are connected with at

most one edge and there are no self-loops.

In all the examples, it is assumed that at the initial state ofthe process the popula-

tion consists of 50% of individuals playing the Dove strategy and 50% of individuals

playing the Hawk strategy, randomly distributed among the vertices of the graph, so

that there is no initial advantage to either of the strategies. The population size,N, is

relatively small,N = 400. The results of the pairwise model and the Neighbourhood

Configuration model are compared with the average of 100 different network reali-

sations. The equilibrium densities of the strategies have been obtained by averaging

the frequency over the last 5000 iteration steps in 40000 iteration steps (for each

graph convergence to an equilibrium state was effectively achieved at a significantly

earlier time).

The numerical examples shown in Figure 4.2 indicate that, onthe three types of

graph we consider, the prediction of the change in the frequencies of strategies over

time given by the solution of the Neighbourhood Configurationmodel (4.24)–(4.25)

agrees very well with the results of computer simulations. The numerical results also

indicate that the more detailed model provides an approximation with improved ac-

107



Evolutionary dynamics on complex graphs

4 5 6 7 8 9 10
0.24

0.26

0.28

0.3

0.32

0.34

0.36

Average degree of the graph

P
ro

po
rt

io
n 

of
 H

aw
ks

 in
 th

e 
eq

ui
lib

riu
m

V=4, C=10, f
b
=4, w=1

4 5 6 7 8 9 10
0.59

0.6

0.61

0.62

0.63

0.64

0.65

0.66

V=6, C=10, f
b
=4, w=1

Figure 4.3: The proportion of Hawks in the equilibrium on random graphs of different
average degree,〈k〉. The maximum degree of a vertex,Dmax, in each of the graphs is equal
to 〈k〉+6. The squares represent the solution of the Neighbourhood Configuration model,
the diamonds represent the solution of the pairwise model, and the circles represent the
average of 100 stochastic simulations.

curacy compared to the solution of the pairwise model. Although it is observed that

contact structure has little effect on such evolutionary dynamics, the effectiveness of

the Neighbourhood Configuration model is clearer on heterogeneous graphs and in

general on graphs of low degree, when compared with the pairwise model. As the

average degree of the graph increases, i.e. the homogeneityof the graph increases,

the predictions of both models are in good agreement with simulation results (see

for example, Figure 4.3).

Although the aim of this chapter is to present this powerful approximation meth-

od for the approximation of the evolutionary game dynamics in structured popu-

lations, let us consider some main conclusions about the effect of the population

structure on the outcome of the evolutionary dynamics in a Hawk–Dove game.

Specifically, we discuss how the Hawk and Dove strategies spread in a population

represented by a random regular graph, a random graph and a scale-free network.

Numerical examples suggest that increasing the heterogeneity of the graph favours

the emergence of the Hawk strategy. Following the update rules of the VM, fitter

mutants that occupy vertices of high connectivity have an increased chance to sur-

vive and reproduce (Soodet al., 2008; Hadjichrysanthouet al., 2011). Therefore, as

is observed in Figure 4.2, scale-free networks provide an encouraging environment

for the Hawk strategy. However, the most important feature of a graph that affects

108



Evolutionary dynamics on complex graphs

the evolutionary process is its average degree. The resultsof our examples indicate

that in all types of graph we consider, a decrease of the average number of neigh-

bours that each individual has tends to deviate the equilibrium frequency of Hawks

from the equilibrium frequency in the case of the well-mixedpopulation, and this

deviation is more pronounced for lower degree graphs. Depending on the values of

the payoffs, the decrease of the average degree of the neighbours might enhance or

inhibit the use of the Hawk strategy (and thus the Dove strategy). In particular, if

the payoffs are such that the equilibrium frequency of Hawksin a well-mixed pop-

ulation is less than half of the population, the decrease of the average number of

neighbours decreases their frequency at equilibrium conditions (at least when the

average degree is already sufficiently small). If the payoffs are such that the equi-

librium frequency in a well-mixed population is higher thanhalf, the equilibrium

frequency will tend to increase as the average number of neighbours decreases (see

in Figure 4.3 the effect of the variation of the average degree of a random graph in

two example games). Note that the improved approximation ofthe Neighbourhood

Configuration model when compared to that of the pairwise model is not very clear

in our examples presented in Figure 4.3, mainly due to the particular example games

and the graphs on which the games are played. However, the scope of this figure is

to illustrate the effect of the average connectivity of the graph at the equilibrium

state of the system.

It should be noted that, due to the nature of the evolutionarydynamics as well as

to the nature of the game we consider, the evolution of the population is very slow,

especially for graphs of low connectivity, and to speed up the evolutionary process

and reduce the computation time, we reduce the population size and the number of

simulations realised. However, small population sizes andsmall number of realisa-

tions of stochastic simulations result in larger oscillations of the simulation results

due to the increase of the sensitivity of the process to stochastic effects. Increasing

the population size and the number of realisations, this effect is reduced and the dif-

ference between the predictions of the computer simulations and the predictions of

the Neighbourhood Configuration model decreases.

4.3 Discussion

In this work, we have investigated the stochastic evolutionary game dynamics in

structured populations following the update rules of the VMdynamics, a dynamics

which is applied in many models that arise in various fields. Whilst analytic in-

vestigation of this dynamics is possible when populations have a simple structure,
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the study of the dynamics in complex structures requires theuse of approximation

techniques. Here, we propose a Neighbourhood Configuration model for the study

of the stochastic evolutionary dynamics of a two-strategy game on complex graphs.

This modelling framework offers a flexible way to carry out a systematic analysis

of evolutionary game dynamics on graphs and to establish thelink between network

topology and potential system behaviours.

As an example, we have considered a Hawk–Dove game played in three widely

used types of graph; random regular graphs, random graphs and scale-free networks.

The solutions of the model constructed in comparison with the outcome of stochastic

simulations imply that the method followed is a powerful andeffective method for

the approximation of such evolutionary processes. In addition, comparisons with

the results of the extensively used pairwise approximationsuggest that this method

improves the accuracy of the approximation solutions.

Although the aim of this chapter is the introduction of the Neighbourhood Con-

figuration model for the approximation of evolutionary gamedynamics on graphs,

we have considered some important characteristics of the graph that might affect

the evolution of a population when a Hawk–Dove game is playedamong individu-

als. The spatial effects in this evolutionary game have received considerable atten-

tion in many previous works, including Killingback and Doebeli (1996), Hauert and

Doebeli (2004), Tomassiniet al. (2006), Broomet al. (2010a), Voelkl (2010) and

Hadjichrysanthouet al. (2011). One of the main research questions is whether there

are structures and strategy update rules which favour the persistence of the cooper-

ative Dove-like behaviour over the Hawk-like behaviour compared to the evolution

in classical evolutionary game theory under the assumptionthat the population is

well-mixed and infinitely large. Killingback and Doebeli (1996) have shown that,

for a wide range of parameter values, the square lattice structure may favour the

Dove strategy, with respect to the equilibrium frequency ofDoves in the population

compared to the equilibrium frequency in the classical Hawk–Dove game. On the

other hand, in Hauert and Doebeli (2004), extending the investigation of the evolu-

tion in this type of game to a broader class of lattices and under different strategy

update rules, the authors concluded that spatial structureusually does not promote

the evolution of the Dove strategy. Santos and Pacheco (2005) showed that among

other structures, in Hawk–Dove type games (specifically, inthe Snowdrift game),

under some specific strategy update rules, the evolution of the Dove-like (cooper-

ative) strategies are facilitated particularly on scale-free networks due to the exis-

tence of highly connected Doves (see also Santoset al., 2006a). Tomassiniet al.

(2006), based on the results of computer simulations, have considered the game
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played among individuals on lattices, random graphs and small-world networks and

shown that, compared with the case of the well-mixed population, these types of net-

work might enhance or inhibit the use of the Dove strategy (the proportion of Doves

at the equilibrium state might be either higher or lower thantheir proportion given

by the theoretical solution of the classical evolutionary game theory), depending on

the update rule and the ratioV/C. In Broomet al. (2010a), Voelkl (2010) and Had-

jichrysanthouet al. (2011) it has been shown through an analytical and numerical

investigation that the Dove behaviour is favoured on some structures with respect to

the probability and time to fixation. In this chapter, through numerical examples we

have shown that the population structure might significantly influence the evolution

of the population. The most important feature of the graph that affects evolution

in our examples seems to be average connectivity. Decreasing the average number

of connections of each individual increases the differencebetween the proportion

of Hawks from their proportion in the equivalent infinite homogeneous well-mixed

population, in the direction of the nearest absorption state. Hence, depending on the

values of the payoffs, the decrease of the average connectivity of the graph enhances

or inhibits the use of the Hawk strategy. In addition, heterogeneous graphs have

been shown to facilitate the spread of Hawks. Particularly,the existence of highly

connected vertices promotes the Hawk strategy and scale-free networks appear to be

the most hospitable environment among the graphs we have considered.

The approximation method presented in this chapter is undoubtedly a useful tool

which provides an effective way to consider evolutionary dynamics on a wide range

of graphs. We believe that its use in future research could give insight into the in-

fluence of the population structure on the outcome of such dynamics (see Gleeson,

2011). Future work could involve the application of the Neighbourhood Configura-

tion model in the investigation of other type of dynamics, for example birth-death

dynamics where the birth event happens first followed by the death and replacement

events. One extension of the model could be the inclusion of amutation process, a

process that usually occurs in natural systems. For example, it could be assumed that

with a certain probability the offspring of an X individual is not a copy of its parent

but is a Y individual. This would add some complication in themodel, because in

this case an X might be replaced by a Y, which is the offspring of a neighbouring X

individual. Such an extension would allow us to consider theeffect of mutation on

evolution on graphs, an important factor that has rarely been studied. This method

is also amenable to be extended to dynamic graphs and thus offer further potential

advantages to modellers (see a modelling framework in this direction in the context

of disease propagation in Marceauet al. (2010) and Tayloret al. (2012)).
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CHAPTER 5

Models of kleptoparasitism on graphs

5.1 Introduction

The game-theoretical model of Broom and Ruxton (1998) on the evolution of klep-

toparasitic populations (see Section 1.6), as well as a large amount of work which

has followed based on this model, assumed that the population of foraging animals

is an infinitely large and well-mixed population where everyanimal is equally likely

to meet any other animal. However, in natural situations, animals usually forage in

small groups forming some complex relationships and socialstructure (e.g., Krause

et al., 2007; Croftet al., 2008). A number of stochastic models have been devel-

oped to consider the evolution of kleptoparasitic populations of finite size (see Yates

and Broom, 2007; Croweet al., 2009). Moreover, the effect of the structure of such

populations on the evolutionary process remains a significant research question.

In this chapter, we explore the role of the population structure in the evolution

of kleptoparasitic populations. We extend the original model of Broom and Ruxton

(1998) by assuming that animals occupy the vertices of a static graph. First, we

consider a regular graph, i.e. the case where each animal of the population has an

equal number of connections. Then, we examine the evolutionof the population

when animals have more complex structures represented by a random graph or a

scale-free network.

5.2 Models of kleptoparasitism on random regular

graphs – The pair approximation model

In this section, we consider the basic model of Broom and Ruxton(1998) (also

discussed in Section 1.6) assuming that the animals of the population occupy the
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vertices of a regular graph.

In order to consider the dynamics of a population of which individuals are placed

on a regular graph, we use the pair approximation method (Matsudaet al., 1992;

van Baalen and Rand, 1998; Keeling, 1999; Eames and Keeling, 2002; House and

Keeling, 2011, see also Section 4.2.1).

Assume that animals of a finite population occupy the vertices of a regular graph

of degreek, i.e. every animal has exactlyk neighbours. Let[X] be the number of

animals in stateX, [XY] the number of pairs between an animal in stateX and an

animal in stateY, X−Y, and[XYZ] the number of triples of typeX−Y−Z. X, Y,

andZ represent any of the states that an animal can be in; the searching stateS, the

handling stateH and the fighting stateF . Note that two connected animals in the

fighting stateF might fight each other or they might fight with another animal.We

distinguish these different types of pairs of animals in thefighting state by denoting

by [FFj ] the number of pairs of animals which are fighting each other,Fj −Fj , and

by [FF ] the number of pairs of animals which are involved in a fight butare not

fighting each other,F −F .

The total population size,P, is assumed to be constant and so

[S]+ [H]+ [F] = P. (5.1)

Note thatX −X pairs are counted twice (once in each direction, and thus[XX] is

always even) whileX −Y pairs are counted once in each direction. There are 10

distinct pairs. However, due to the fact that[XY] = [YX] and that

[SS]+ [HH]+ [FF ]+ [FFj ]+2[SH]+2[SF]+2[HF] = kP, (5.2)

the dynamics of the 10 pairs, can be described by the dynamicsof only 6 pairs.

As in the original model, the animals in the searching stateSchange to the han-

dling stateH at rateν f f , where the time units depend on the animal species, but

they are usually seconds or minutes (see for example, Hockeyet al., 1989). Thus, at

the same rate,S−S, S−H andS−F pairs becomeS−H, H −H andH −F pairs,

respectively. Single animals in stateH move to stateS at rate 1/th and thus, with

the same rateS−H, H −H andH −F pairs becomeS−S, S−H andS−F pairs,

respectively. A pair consisting of a searcher and a handler,S−H, engage in a fight at

ratepνh. Hence, at ratepνh, pairsS−H becomeFj −Fj . Thus,pνh[SH] single ani-

mals in stateSandpνh[SH] single animals in stateH move to stateF . If S−H pairs

are connected to an animal already involved in a fight,F , then the triplesF −S−H

andF −H −SbecomeF −Fj −Fj , both at ratepνh. Hence,S−F andH −F pairs
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becomeF −F pairs at ratespνh[FSH] andpνh[FHS], respectively. If anS−H pair

engage in a fight and this pair is connected to either an animalSor an animalH such

thatS−H −Sor H −S−H triples exist, thenS−F andH −F pairs, respectively,

will be generated whileS−H pairs will be reduced. Therefore, the number ofS−F

andH −F pairs is increased with ratepνh[SHS] andpνh[HSH], respectively, while

the number ofS−H pairs is decreased with ratepνh([SHS] + [HSH]). Similarly,

if an S−H pair is connected to anS in a way a tripleS−S−H exists, then the

S−Spairs becomeS−F pairs at ratepνh[SSH]. By symmetry,H−H pairs become

H −F pairs at ratepνh[HHS]. Fights end at rate 2/ta and therefore with this rate

pairs of animals leave the fighting stateF . Half of them move to theSstate and half

of them move to theH state. With this rate,Fj −Fj pairs becomeS−H pairs as well.

The pairs of animals which consist of at least one animal involved in a fight, i.e. the

S−F, H −F andF −F pairs also becomeS−H andS−S, H −SandH −H, and

S−F andH −F pairs with rate 1/ta, respectively (with probability 0.5 the animal

in stateF of each of the pairs will be either the winner or the loser of the fight).

According to the above, the dynamics of the different singles and pairs can be

described by the following system of differential equations

d[S]
dt

=
1
th
[H]+

1
ta
[F ]−ν f f [S]− pνh[SH], (5.3)

d[H]

dt
= ν f f [S]+

1
ta
[F ]−

1
th
[H]− pνh[SH], (5.4)

d[F ]
dt

= 2pνh[SH]−
2
ta
[F ], (5.5)

d[SS]
dt

=
2
th
[SH]+

2
ta
[SF]−2ν f f [SS]−2pνh[SSH], (5.6)

d[HH]

dt
= 2ν f f [SH]+

2
ta
[HF]−

2
th
[HH]−2pνh[HHS], (5.7)

d[FF ]

dt
= 2pνh([FSH]+ [FHS])−

4
ta
[FF ], (5.8)

d[FFj ]

dt
= 2pνh[SH]−

2
ta
[FFj ], (5.9)

d[SH]
dt

= ν f f [SS]+
1
th
[HH]+

1
ta

(

[SF]+ [HF]+ [FFj ]
)

−

−ν f f [SH]−
1
th
[SH]− pνh([SH]+ [SHS]+ [HSH]) , (5.10)

d[SF]
dt

=
1
th
[HF ]+

1
ta
[FF ]+ pνh([SHS]+ [SSH])−

−ν f f [SF]−
2
ta
[SF]− pνh[FSH], (5.11)
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d[HF]
dt

= ν f f [SF]+
1
ta
[FF ]+ pνh([HSH]+ [HHS])−

−
1
th
[HF]−

2
ta
[HF]− pνh[SHF]. (5.12)

The number of the triples[ABC] can be evaluated by using the following moment

closure approximation (see for example, Keeling, 1999; Rand, 1999)

[ABC] =

(

k−1
k

)

[AB][BC]
[B]

. (5.13)

Note that instead of closing the system of equations at the level of pairs by approxi-

mating the triples by expressions in terms of pairs, it is possible to close the system

at higher order configurations, for example at the level of triples by approximating

the forth-order moments by expressions in terms of triples and thus in terms of pairs

(see for example Bauch (2005) for the derivation of a triple approximation in an SIS

epidemic model). This can result in a better approximation of the solution.

5.2.1 Equilibrium points

The equilibrium points of the system of equations (5.3)–(5.12) are the solutions of

the system

d[S]
dt

=
d[H]

dt
=

d[F ]

dt
=

d[SS]
dt

=
d[HH]

dt
=

d[FF ]

dt

=
d[FFj ]

dt
=

d[SH]
dt

=
d[SF]

dt
=

d[HF]
dt

= 0. (5.14)

Approximating the number of triples by the expression (5.13) and using equation

(5.1) we find that at the equilibrium the number of singles is given by

[S] = m, [H] = thν f f m, [F ] = pthtaν f f νhq, (5.15)

and the number of the different pairs by

[SS] = q, (5.16)

[HH] = t2
h(ν f f )2q, (5.17)

[FF ] =

(

k−1
k

)2 p2t2
ht2

a(ν f f )2ν2
hq3

m2 , (5.18)

[FFj ] = pthtaν f f νhq, (5.19)

[SH] = thν f f q, (5.20)
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[SF] =

(

k−1
k

)

pthtaν f f νhq2

m
, (5.21)

[HF] =

(

k−1
k

)

pt2hta(ν f f )2νhq2

m
. (5.22)

We have set

m=
P− pthtaν f f νhq

1+ thν f f
, (5.23)

and

q=
kP
(

F ±
√

F2−4pthtaν f f νhG
)

2pthtaνhν f f G
, (5.24)

where

F = thν f f
(

2kptaνh+ thν f f +2
)

+1, (5.25)

G= thν f f
(

k2ptaνh+ thν f f +2
)

+1. (5.26)

Note that in expression (5.24), only the point where the square root is subtracted

can give a biologically plausible equilibrium solution, because only then canm, in

(5.23), be non-negative.

5.2.2 Effect of the degree of the graph

The decrease of the number of neighbours of each animal decreases the rate at which

animals engage in fights for food. Therefore the number of animals which are either

searching for food or handling a food item at each time increases (see Figure 5.1).

However, it is shown that decreasing the number of neighbouring animals has almost

the same effect as decreasing the rate at which foragers encounter handlers in a

homogeneous well-mixed population, i.e. as decreasingνh. Numerical investigation

has shown that whenνh = 1/k, although an increase in the density of animals in

stateF and that of pairsS−S, H −H, S−H and Fj − Fj is observed with the

decrease of the degree of the graphk, as well as a decrease in the densities ofS, H,

F −F, S−F andH−F , these changes in the densities are almost negligible (see for

example Figure 5.2). A more pronounced effect of the variation of k is observed in

the densities ofF −F andFj −Fj pairs. In the example of Figure 5.2b, the actual

number ofFj −Fj pairs,[FFj ], decreases ask increases due to the fact that the rate

at which animals engage in fights over food is inversely proportional to k (when

νh = 1 the actual number[FFj ] increases ask increases but the density ofFj −Fj

pairs decreases as well). On the other hand, the density ofF −F pairs increases as

k increases because the higher the number of connections of each animal, the higher
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Figure 5.1: Change over time in the density of searchers (S), handlers (H) and fighters (F)
on a random regular graph withk = 4. The circles represent the average of 1000 stochastic
simulations. The respective solution in the well-mixed population is representedby the solid
line. ta/2= 0.5, th = 1,ν f f = 1,νh = 1, p= 1,P= 1.
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Figure 5.2: (a) The equilibrium density of handlers (H) and fighters (F), and (b) the equi-
librium density of the pairsF −F andFj −Fj , on random regular graphs of different degree.
ta/2= 0.5, th = 1,ν f f = 1,νh = 1/k, p= 1,P= 1. Note that in this example the equilibrium
density of searchers and that of handlers are equal.

the chance of an animal being next to another animal which is fighting.

Hence, the evolution of a kleptoparasitic population when animals are placed

on a regular graph is not significantly affected compared to the evolution of the

respective homogeneous well-mixed population. This is mainly due to the fact that

the number of connections is the same for every animal and thus every animal has the

same chance to engage in an aggressive interaction. In addition, all animals discover

food items at a constant rate, independently of the population structure; obviously

this reduces the effect of any population structure in general.
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5.2.3 Clustering effect

Using the moment closure approximation (5.13) to approximate triples in terms of

pairs, we ignore the actual structure of the graph. For example, using (5.13), we

count the triples as three vertices connected in a line ignoring the fact that the three

vertices might form a loop. For instance, in a triple where aB individual is connected

to an A individual and aC individual, A can also be connected toC. The most

commonly used method to take into consideration such triangular loops, is to use

the following closure approximation (see Keeling, 1999):

[ABC] =
(k−1)

k
[AB][BC]

[B]

(

1−φ +φ
N
k

[AC]
[A][C]

)

. (5.27)

φ is defined as the ratio of the number of triangles to the numberof connected triples

and is usually called theclustering coefficient. Whenφ is small, paired individuals

are more likely to have different neighbours while whenφ is large many of the neigh-

bours of two connected individuals will be common. Forφ = 0 this approximation

is equivalent to (5.13). Similar approximations can be constructed for larger loops,

e.g. squares. However, the effect of loops of higher than three vertices will be much

less than the effect of the loops of three vertices.

Considering the effect of the ratioφ on the dynamics of kleptoparasitic popula-

tions described by the system of equations (5.3)–(5.12), itis shown that the variation

of φ does not greatly affect the dynamics of the different groups. As φ increases,

a small decrease is observed in the density of the subpopulation of fighters, and

thus the density of searchers and handlers increases (see Figure 5.3a for an exam-

ple). One reason for this is that a searcher in a tripleS−H −S or a handler in a

triple H −S−H are less likely to fight if the triples form a triangle, i.e. ifthe two

searchers of the first triple and the two handlers of the second triple are also con-

nected. The number of all of the pairs of animals in the different states, apart from

the S−F andH −F pairs, decreases with the increase ofφ , with the number of

F −F pairs being the most affected (see Figure 5.3b) due to the fact that the chance

of a searcher or a handler being involved in a fight reduces when this forms a triangle

with an Fj −Fj pair. The number ofS−F andH −F pairs increases (see Figure

5.3b). This is mainly due to effect of the fact that when a fighttakes place between

S−H pairs which are connected to a searcher or a handler animalX, such as triples

X−H−SandX−S−H exist, then twoX−F pairs are created if those triples form

a triangle, i.e. whenX andS, andX andH, respectively, are also connected. At the

same time, as mentioned above, the chance of animalX engaging in a fight in this

case decreases. Thus, the number ofX−F pairs increases. The number of the pairs
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Figure 5.3: (a) The equilibrium density of handlers (H) and fighters (F), and (b) the equilib-
rium density of the pairsF −F andS−F , on a random regular graph of degreek= 4 as the
ratio φ varies.ta/2= 0.5, th = 1,ν f f = 1,νh = 1/k, p= 1,P= 1. Note that in this example
the equilibrium density of searchers and that of handlers are equal.

S−F andH−F is the most affected by the variation ofφ after the number ofF −F

pairs. Note that as the connectivity of the graph increases,the above effect of the

ratio φ decreases even more.

5.3 Models of kleptoparasitism on random graphs

and scale-free networks

In the previous section, it has been shown that in homogeneous well-mixed klep-

toparasitic populations described by the model of Broom and Ruxton (1998), the

decrease of the number of connections of each animal and the change of the actual

structure of the population does not significantly affect the evolution of the popu-

lation, given that this decrease is the same for every animal. However, numerical

investigations show that evolution might be affected if theanimals are placed on

degree-heterogeneous graphs and this effect becomes more pronounced when the

heterogeneity of the graph increases.

Figure 5.4 and Figure 5.5 show the variation in the density ofsearchers, han-

dlers and fighters over time when the structure of the population is represented by a

random graph and a scale-free network, respectively (see Section 4.2.3 for a descrip-

tion and instructions for the construction of these graphs). Although the effect on

the density of the three subpopulations is not clear when thepopulation structure is

represented by a random graph with low-degree heterogeneity, there is a pronounced

effect when the population structure has the features of a scale-free network. The

existence of highly connected animals reduces the number offights taking place
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Figure 5.4: Change over time in the density of searchers (S), handlers (H) and fighters (F)
on a random graph with average degree〈k〉= 4 and maximum degree of a vertex equal to 12.
The circles represent the average of 1000 stochastic simulations. The respective solution in
the well-mixed population is represented by the solid line.ta/2= 0.5, th = 1,ν f f = 1,νh =
1/〈k〉, p= 1,P= 1.
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Figure 5.5: Change over time in the density of searchers (S), handlers (H) and fighters (F) on
a scale-free network with average degree〈k〉= 4. The circles represent the average of 1000
stochastic simulations. The respective solution in the well-mixed population is represented
by the solid line.ta/2= 0.5, th = 1,ν f f = 1,νh = 1/〈k〉, p= 1,P= 1.

over food and thus the number of animals searching for food orhandling a food

item increases. This is due to the fact that the lowly connected animals placed on a

scale-free network that are linked with a highly connected animal have a very small

(or even zero) chance to interact aggressively, either as attacking searchers or at-

tacked handlers, especially in the case where the highly connected animal is already

involved in a fight. This has a direct consequence on the food consumption of an-

imals with high connectivity. The higher the number of connections of an animal,

the higher its chance of attacking a neighbouring animal as asearcher or being at-

tacked by other animals as a handler. Thus, animals with highconnectivity most of
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Table 5.1: The equilibrium proportion of searchers, handlers and fighters that occupy ver-
tices of degreed in a scale-free network with maximum degreeDmax. Recall that the degree
distribution of a scale-free network follows a power law, and thus such graphs have few
large degree vertices and many small degree vertices. The results presented are the average
of 200 simulations.ta/2= 0.5, th = 1,ν f f = 1,νh = 1/〈k〉, p= 1,P= 1. The foraging time
is equal to 100. Note that the average food intake rate of the population placed on a scale-
free network is equal to 0.4321 and is higher than the intake rate of the infinitewell-mixed
population described by the model of Broom and Ruxton (1998), which is equal to 0.4142

Degree of the vertices,d

1≤ d ≤ 1
5Dmax

1
5Dmax< d ≤ 2

5Dmax
2
5Dmax< d ≤ 3

5Dmax
3
5Dmax< d ≤ 4

5Dmax
4
5Dmax< d ≤ Dmax

Proportion of Searchers 0.4394 0.2308 0.1850 0.1500 0.0500

Proportion of Handlers 0.4421 0.2258 0.1650 0.1450 0.0550

Proportion of Fighters 0.1185 0.5433 0.6500 0.7550 0.8450

Per capita food consumption 0.4383 0.2260 0.1691 0.1188 0.0892

the time fight over food with another animal resulting in the reduction of their food

consumption rate.

Table 5.1 shows how the animals in the searching, handling and fighting states

are distributed over the vertices of different degree in a scale-free network when the

system reaches an equilibrium state in a simulation model, as well as the per capita

consumption of food items for those animals. Note that although the increase of the

heterogeneity of a graph results in the decrease of the handling ratio of animals at

highly connected vertices, the average handling ratio, andthus the food intake rate of

the population, increases compared to that of the respective well-mixed population

of the same size, or the infinite homogeneous well-mixed population of the model of

Broom and Ruxton (1998). This is because, increasing the degree of heterogeneity

of the graph, the number of highly connected vertices decreases and thus, the number

of less connected vertices increases. Many of the animals inthe poorly connected

vertices have a common connected animal which most of the time fights with one of

them. Hence, the other animals can search, find and consume food with a very small

risk of being engaged in an aggressive interaction.

The average food intake rate calculated from the simulationmodel is equal to

0.4321. This is smaller than the intake rate predicted by theformula (1.42) of Broom

and Ruxton (1998). The formula predicts an intake rate equal to 0.4358. This dis-

crepancy is attributed to the fact that the intake rate givenby (1.42) is calculated

under the assumption that the population reaches an equilibrium state in a relatively

short time, which is ignored because this is negligible compared to the total forag-

ing period of the population. Luther and Broom (2004) have proved later that the
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assumption made is reasonable, at least for realistic ecological parameters. A short

foraging period in the simulation model enhances the importance of the initial pe-

riod of evolution before convergence to equilibrium and might result in a noticeable

reduction of the value of the average intake rate. In general, the speed at which

the equilibrium state is reached is very important. Some animal populations have

limited foraging periods and under some ecological conditions (e.g., rare food items

and high handling times) the converge to the equilibrium state might be very slow

compared to these periods.

5.3.1 The simulation model

In this chapter, we simulated the evolution of kleptoparasitic populations, as de-

scribed by the simple model (1.39)–(1.41) of Broom and Ruxton (1998) (see Sec-

tion 1.6), on graphs. Initially, all animals are at the searching state. In a small time

intervalδ t < 0.01, an animal in the searching state discovers a food item, indepen-

dently of the graph structure, with probability 1− exp(−ν f f δ t) (i.e. the number

of food-discoveries in the time intervalδ t is assumed to follow a Poisson distri-

bution with associated parameterν f f δ t). Similarly, in the intervalδ t, a handler

animal consumes a food item with probability 1−exp(−t−1
h δ t). The probability of

a searcher being engaged in a fight depends on the number of neighbouring animals

handling a food item,kH . This is taken to be equal to 1−exp(−kHνhδ t). Similarly,

the probability of a handler being discovered by a searcher and engaged in a fight

is equal to 1−exp(−kSνhδ t), wherekS is the number of the neighbouring animals

of the handler searching for food. Equivalently, a searcher(handler) is engaged in a

fight with every neighbouring handler (searcher) with probability 1 −exp(−νhδ t).

A fight ends with probability 1−exp(−(2/ta)δ t), and each of the animals obtains

the food with probability 0.5.

5.4 Discussion

In this chapter, we have considered the original model of kleptoparasitism proposed

by Broom and Ruxton (1998) in finite structured populations. The structure of the

population is represented by a graph. Using the pair approximation method, we

first constructed a model in order to study the evolution of the population in the

case where every animal has an equal number of neighbours, that is, in the case

where the population can be represented by a random regular graph. Then, using

numerical simulations, we examined the evolution of kleptoparasitic populations on

degree-heterogeneous graphs, such as random graphs and scale-free networks.
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It has been shown that, in general, the population structuredoes not greatly af-

fect the evolution of the population, mainly due to the fact that animals can dis-

cover items of food independently of the population structure. The only effect of the

structure is caused due to the change of the rate at which eachanimal is involved in

aggressive interactions. In particular, in regular graphswith lower degree the pro-

portion of fights will be less and therefore the proportion ofanimals searching or

handling a food item will be higher. This is due to the decreased number of neigh-

bours of each animal and thus the decreased rate at which eachanimal is engaged

in a fight. Moreover, since the population remains homogeneous, in the sense that

every animal is exactly the same, the effect of the decrease of the degree of a regular

graph has almost the same effect as that of the decrease of therate at which animals

meet each other in a homogeneous well-mixed population.

A more important influence of the population structure on theevolution of klep-

toparasitic populations was observed on degree-heterogeneous structures, where the

chance of being engaged in a fight, either as a searcher or a handler, is not the same

for every animal in the population, due to the different degree of connectivity of

animals. Especially in scale-free networks, where the variance in the degree distri-

bution is high, the effect of the structure is more pronounced. It has been shown

that, due to the fact that highly connected animals are more likely to fight over food

with a neighbouring animal, the higher the connectivity of an animal the worse for

the animal with respect to the consumption of food. On the other hand, poorly con-

nected animals handling a food item have a higher chance of consuming the food

before being challenged by other animals. This results in the increase of their food

intake rate.

Although highly connected animals do worse than poorly connected animals on

scale-free type networks, such animals are few. Hence, the number of aggressive

interactions among animals on such structures are fewer than those in a well-mixed

population. Consequently, the number of animals searching or handling a food item

at any time is higher, and thus the average intake rate of the population is higher than

the respective rate in a well-mixed population.

It would be of interest to explore further the effect of the population structure on

the foraging efficiency of animals in kleptoparasitic populations, and populations in

general where animals interact with each other for their survival. In nature, within

a population of foraging animals, animals might use different strategies to obtain

food. For example, some animals might attempt to steal food from animals of the

same species (intraspecific kleptoparasitism), some others might attempt to steal

food from animals of different species (interspecific kleptoparasitism), some might
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attempt to steal from other animals no matter if these are of the same species or dif-

ferent, or they might avoid any aggressive interactions. The study of the evolution

of structured populations of different species of animals that use different foraging

strategies would be interesting. In a stochastic process describing the evolution of

a finite population, evolution will eventually lead to the dominance of one strategy

for every species of animal. Moreover, in some cases strategies might coexist for a

long time before the fixation of one of them. However, in a deterministic process,

under some conditions, some strategies could coexist by forming clusters of animals

playing the same strategy on specific parts of a graph where for example the con-

nectivity of the vertices is high or low. In addition, an extension would be the study

of such evolutionary processes on graphs where food items are not homogeneously

distributed but the density of some items in some areas is higher than the density

in other areas, as happens in natural systems. Although it isexpected that, in gen-

eral, there will be less aggressive behaviours in areas witha higher density of food

items, how the different strategies are distributed on different graphs under different

ecological conditions is a research question.
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CHAPTER 6

Food sharing in kleptoparasitic

populations

6.1 Introduction

Animals adopt varied foraging tactics in order to survive. In many biological sit-

uations, animals decide to share their food to avoid any injuries or energetic and

time costs of a possible conflict with an attacking foraging animal, or to obtain other

immediate or delayed benefits such as mating opportunities and reciprocal altru-

ism. Food sharing is commonly observed in animal populations in a wide range

of species, including social carnivores, insects, birds, cetaceans, vampire bats and

primates (for reviews, see Feistner and McGrew, 1989; Stevens and Gilby, 2004).

In the literature, food sharing is defined in many different ways and various theo-

retical models have been developed to consider the different biological situations

where food sharing among animals occurs. In the rest of this chapter, we con-

sider food sharing in kleptoparasitic populations, populations where foraging ani-

mals steal food discovered by others (see Section 1.6). We define food sharing to

be the situation where the resource owner shows tolerance and allows a competi-

tor animal to consume a part of its food although it has the ability to fight and try

to keep all of its food. There are many game-theoretical models which investigate

food sharing behaviour as an alternative strategy of foraging animals in aggressive

populations. The Dove strategy in the famous and widely usedHawk–Dove game

(Maynard Smith and Price, 1973; Maynard Smith, 1982, see also Section 1.3.1) can

be thought of as an example of this non-aggressive behaviour. However, the Hawk–

Dove game and a large number of variations of this game (see for example, Sirot,

2000; Duboiset al., 2003) are unable to show why in many biological situations

animals prefer to share the acquired prey avoiding any contests. The non-aggressive
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behaviour of the Dove is shown to never be a pure ESS, and can only exist as a

mixed ESS (with Hawks) in a proportion depending on the valueof the resource

and the cost of a potential contest. This is mainly due to the fact that the Hawk–

Dove game considers just a single contest between two strategies, the Hawk and the

Dove strategy. Although the reward for adopting the Hawk strategy against an ani-

mal playing Hawk might be equal to or lower than the reward foradopting the Dove

strategy, in a contest between a Hawk and a Dove, Hawk always receives the greater

reward. However, in group foraging populations, animals usually have repeated in-

teractions over food items. In iterated Hawk–Dove type games, it has been shown

that if the attacked animal can adopt the strategy of its opponent (for example, play a

Retaliator type strategy (Maynard Smith and Price, 1973; Maynard Smith, 1982) or

a tit-for-tat type strategy (Axelrod and Hamilton, 1981)),then, under some circum-

stances, food sharing without any aggressive interactionsmight be an ESS (Dubois

and Giraldeau, 2003, 2007). A different game-theoretical food sharing model is con-

sidered in Stevens and Stephens (2002) in a situation where the owner of the food

might decide to share its food with a beggar due to the fitness costs of harassment

or interference (e.g., screams, slapping of the ground, grabbing at the food). In this

case, it is shown that food sharing might be the optimal choice for the food owner

in situations where the fitness cost caused by the beggar’s harassment, if the food is

defended, exceeds the fitness cost of sharing.

In this chapter, we extend the model of kleptoparasitism presented in Broom

et al. (2004) (see also Section 1.6) by assuming divisible food items and allowing

animals to share their prey with attacking foraging animals. A foraging animal,

encountering an animal handling a food item has the possibility to either attack at-

tempting to steal or share the food, or just ignore it and continue foraging. On the

other hand, an attacked animal which owns a food item, has thepossibility to defend

its food, to share it or to retreat leaving all the food to the attacking animal. Through

a game-theoretical approach we examine the optimal strategy for an animal under

different ecological circumstances.

6.2 The model

In a population of foragers of densityP, each animal might either be in the state of

searching for food, or the state where it is handling a food item that it has acquired.

Let S denote the density of searchers andH the density of handlers. Each handler

consumes the food item and resumes searching in a time drawn from an exponential

distribution with meanth, so equivalently following a Markov process at ratet−1
h .
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Searchers are assumed to find food at rateν f f . As well as finding food themselves

when foraging, searchers can acquire food by trying to stealit from a handler, and

they can search an areaνh per unit time for handlers. Once a searcher comes upon a

handler, it attacks to either steal or share the food item with probabilityp1 or ignores

the handler with probability 1− p1 and continues searching for food. If the searcher

attacks, the handler might decide to resist and defend its food item. This happens

with probability p3. In this case, the attacking searcher and the defender engage in

a fight. LetA andRdenote the density of attacking searchers and defenders, respec-

tively. The rate at which searchers encounter handlers and engage in a fight (become

attackers,A) is equal top1p3νhH, whereas handlers are found by searchers and re-

sist a possible attack (become defenders,R) with rate p1p3νhS. The fight lasts for

a time drawn from an exponential distribution with meanta/2. The attacker animal

wins the fight and becomes a handler with probabilityα and thus, with the same

probability, the defender loses its food and starts searching again; so this happens

at rate 2α/ta. Otherwise, the attacking searcher loses the fight and returns to the

searching state with rate 2(1−α)/ta and thus, with the same rate, the defender wins

and continues handling its food. Note that the winner of the fight might face other

subsequent challenges.

So far, the model described is the same as the model investigated in Broomet

al. (2004). In this chapter, this model is extended by assumingthat attacked animals

can share a food item as follows. Assume that food items are divisible. The attacked

handler might decide to share its food with an attacking searcher, with probabilityp2.

In this case, searchers become sharers with ratep1p2νhH and the attacked handlers

with rate p1p2νhS. Let C be the density of sharers. If the handler decides to share

its food with the searcher, both take a half of the food. It is assumed, for reasons of

simplicity, that both of the two sharers hold the food item and feed simultaneously on

it. This discourages other animals from attempting to stealor share the food because

this would be a difficult, risky and dangerous venture. So, food sharing results in

the mutual protection of the two sharers from other predators. As a result, a sharer

animal consumes its portion of the food item without any interruptions. Sharers eat

their food unperturbed in a time drawn from an exponential distribution with meantc,

or equivalently with ratet−1
c . Once the halves of the food item have been consumed,

the sharers start foraging again. Throughout this chapter,it is assumed that 2tc ≥ th,

that is, the decision of food sharing might either have no time cost or has some cost,

but is never beneficial with respect to the handling time. Theattacked handler, in

order to avoid any time cost either from a fight or from the sharing process, might

decide neither to defend its food item nor to share it, but to leave it to the attacking
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Table 6.1: Notation of the game-theoretical model of food sharing in kleptoparasitic popu-
lations

Population’s densities Meaning

P Density of the population

S,H,C,A,R
Density of searchers, handlers, sharers, attackers
and defenders

Model Parameters Meaning

ν f f Rate at which foragers find undiscovered food

νhH Rate at which foragers encounter handlers

th
Expected time for a handler to consume a food
item if it is not attacked

tc
Expected time for a sharer to consume the half of
a food item

ta/2 Expected duration of a fight

α The probability that the attacker wins the fight

Strategies Meaning

p1
The probability that a searcher attacks a handler
when they meet

p2
The probability that an attacked handler shares
its food item

p3
The probability that an attacked handler defends
its food item

animal and return to the searching state. This happens with probability 1− p2− p3

for any challenge, and so occurs at ratep1(1− p2− p3)νhH for each searcher and

ratep1(1− p2− p3)νhS for each handler.

It should be noted that in the case where all the members of thepopulation do not

challenge, the strategy used by an animal in the handling position may be thought

irrelevant because none of the animals will ever be attackedand thus each searcher

finds a food item for itself in an average time equal to 1/ν f f and each handler

consumes a discovered food item in timeth. However, we assume that occasionally

a challenge occurs “by mistake” (this is a version of the classical trembling hand

argument of Selten (1975)). Thus, a handler animal of a population where animals

never challenge, at some point might be faced by a foraging animal which attempts

to steal or share the food.

The model parameters and notation are summarised in Table 6.1.

The differential equation based compartmental model that describes the dynam-
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ics of the different groups of the population in the above situation is the following

dS
dt

=
1
th

H +
1
tc

C+
2
ta
(1−α)A+

2
ta

αR−ν f f S− p1(p2+ p3)νhSH, (6.1)

dH
dt

= ν f f S+
2
ta

αA+
2
ta
(1−α)R−

1
th

H − p1(p2+ p3)νhSH, (6.2)

dC
dt

= 2p1p2νhSH−
1
tc

C, (6.3)

dA
dt

= p1p3νhSH−
2
ta

A, (6.4)

dR
dt

= p1p3νhSH−
2
ta

R. (6.5)

The above system of equations is a closed system where the population density,P,

remains constant, i.e.

P= S+H +C+A+R, (6.6)

and one of the equations (6.1)–(6.5) is thus redundant. Notethat because only two

animals can be involved in a fight over a specific food item, thedensity of the attack-

ing animals,A, is always equal to that of the attacked animals,R. Hence, mathemati-

cally, the variablesA andRcould be defined as one variable, for exampleF = A+R,

and therefore the system of equations (6.1)–(6.5) could be reduced to four equations.

However, because the attacking and the attacked animals might have different com-

petitive abilities(α 6= 0.5), we distinguish the two classes. This distinction is useful

in subsequent calculations when we consider the average time to the consumption

of a food item, since whenα 6= 0.5, the time needed for the animals in each of the

two classes is different (see Section 6.3).

We assume that the population rapidly converges to the equilibrium state (for a

proof of this assumption for the original model of Broom and Ruxton (1998), see

Luther and Broom (2004)). In the equilibrium conditions,

dS
dt

=
dH
dt

=
dC
dt

=
dA
dt

=
dR
dt

= 0. (6.7)

From the equation
dC
dt

= 2p1p2νhSH−
1
tc

C= 0, (6.8)

it follows that in the equilibrium, the number of sharers is given by

C= 2p1p2tcνhSH. (6.9)
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Similarly, from the equations
dA
dt

=
dR
dt

= 0, (6.10)

it is derived that the number of attackers and defenders in the equilibrium is given

by

A= R=
p1p3taνhSH

2
. (6.11)

Substituting equations (6.9) and (6.11) into the system of equations

dS
dt

=
dH
dt

= 0, (6.12)

and solving the system forSusing equation (6.6), it is obtained that in the equilib-

rium, the densities of the different groups of the population, S,H,C,A andR, are

given by

(S,H,C,A,R) =
(

H
thd(H,p1,p2)

,H, 2p1p2tcνhH2

thd(H,p1,p2)
, 1

2
p1p3taνhH2

thd(H,p1,p2)
, 1

2
p1p3taνhH2

thd(H,p1,p2)

)

, (6.13)

whered(H, p1, p2) = ν f f − p1p2νhH, i.e. the difference between the rate at which

searchers discover food items and the rate at which they become sharers. Note that

this term is clearly positive since every food item can be shared at most once (and

some are not shared) and it must be discovered beforehand. By (6.6) and (6.13),H

is given by the biologically relevant solution of the quadratic equation

p1
(

p2(2tc− th)+ p3ta
)

νhH2+
(

p1p2thνhP+ thν f f +1
)

H − thν f f P= 0, (6.14)

i.e. the positive solution,

H =
−(p1p2thνhP+thν f f+1)+

√

(p1p2thνhP+thν f f+1)
2
+4p1thν f f νhP

(

p2(2tc−th)+p3ta
)

2p1νh

(

p2(2tc−th)+p3ta
) , (6.15)

given that 2p1νh
(

p2(2tc− th)+ p3ta
)

> 0.

6.3 Optimal strategies

We are interested in finding conditions under which animals playing strategy(p1, p2,

p3), i.e. animals that attack handlers with probabilityp1 and share or defend their

food when they are attacked with probabilityp2 and p3, respectively, have greater

fitness than animals playing any other strategy(q1,q2,q3). We are ultimately looking

for conditions when the overall strategy(p1, p2, p3) is an ESS.

A strategy is considered to be optimal if it minimises the average time needed to
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the consumption of a food item. This minimisation results inthe maximising of the

long-term food intake rate of an animal playing this strategy and thus its fitness.

6.3.1 Average time for a single animal to consume a food item

Assume that a mutant animal playing strategy(q1,q2,q3) invades into a population

playing strategy(p1, p2, p3).

If the mutant is in the searching state and encounters a handler it has two options:

- It attacks in order to share or steal the food item with probability q1. Note that

once it attacks, what will happen next depends on the handler’ s strategy.

- It ignores the handler animal and continues searching for afood item for itself

with probability 1−q1.

If the mutant is in the handling state and is attacked by a searcher animal playing

the population strategy it has three options:

- It shares the food item with probabilityq2.

- It defends its food and a fight takes place with probabilityq3.

- It leaves the food to the attacker and resumes searching with probability 1−

q2−q3.

Assume that a mutant searcher playing(q1,q2,q3) has just come upon a han-

dler playing the population strategy,(p1, p2, p3). If the mutant searcher ignores the

handler, with probability 1−q1, then it will need an average timeT∗
S until the con-

sumption of a food item. Otherwise, if the mutant attacks, with probabilityq1, the

average time needed for the consumption of a food item depends on the action that

the handler animal will take. If the handler decides to sharethe food, with prob-

ability p2, then the further expected time required to the consumptionof a whole

food item by the mutant isT∗
C. If the attacked handler decides to defend its food,

with probability p3, then a fight takes place and the attacking mutant will need an

average timeT∗
A to consume a food item. Finally, if the attacked animal decides

to leave its food to the attacking animal without taking any action, with probability

1− p2− p3, the attacking searcher animal becomes a handler and it thenrequires an

average timeT∗
H until the consumption of a food item.T∗

SA is given by the following

equation

T∗
SA = q1

(

p2T∗
C + p3T∗

A +(1− p2− p3)T
∗
H

)

+(1−q1)T
∗
S . (6.16)
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Table 6.2: Notation of the required times to the consumption of a food item from the differ-
ent foraging states

Notation Meaning

TSA
The average time needed for a searcher animal who has
just encountered a handler to consume a food item

THA
The average time needed for a handler animal who has just
encountered a searcher to consume a food item

TS
The average time needed for an animal who has just
become a searcher to consume a food item

TH
The average time needed for an animal who has just
become a handler to consume a food item

TA
The average time needed for an attacker who has just
engaged in a fight to consume a food item

TR
The average time needed for a defender who has just
engaged in a fight to consume a food item

TC
The average time needed for a sharer to consume a food
item

Recall that we assume that two animals that share a food item doso equally. Each

of the sharers needs a timetc until consumption of the half of the food and once it

consumes it, it returns to the searching state. From the searching state, the mutant

needs a time on average equal toT∗
S in order to consume a whole food item. The

average time needed for a mutant sharer to consume a whole food item,T∗
C, is given

by

T∗
C = tc+

T∗
S

2
. (6.17)

The sharing process described above is, in terms of expectedreward, entirely equiv-

alent to a process where if a searcher and a handler decide to share the food, at the

end of the sharing period, with probability 0.5 one of the twoanimals obtains the

food item while the other takes nothing. The loser then has toresume searching for

a new food resource and thus spend an average timeT∗
S until the consumption of

a food item. Both animals suffer a time cost from the sharing process equal totc.

Hence, the time that a sharer needs for the consumption of a food item is on average

equal to 0.5tc+0.5(tc+T∗
S ), which leads to (6.17).

Substituting (6.17) into (6.16) we obtain

T∗
SA = q1

(

p2tc+ p3T∗
A +(1− p2− p3)T

∗
H

)

+
(

1−q1+
q1p2

2

)

T∗
S . (6.18)

An attacker animal that has just been involved in a fight will have a cost of an aver-

age timeta/2 spent in the contest. With probability 1−α the attacker loses the fight
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Figure 6.1: Schematic representation of all the possible events that might happen until the
consumption of a food item by a mutant searcher playing strategy(q1,q2,q3) who encounters
a handler of a population playing strategy(p1, p2, p3). The transition probabilities and the
expected times (in bold) to move from one state to another are shown.
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Figure 6.2: Schematic representation of all the possible events that might happen until the
consumption of a food item by a mutant handler playing strategy(q1,q2,q3) who encounters
a searcher of a population playing strategy(p1, p2, p3). The transition probabilities and the
expected times (in bold) to move from one state to another are shown.

and starts searching again for food, whereas with a complementary probabilityα, it

beats the defender and acquires the food item. Thus,T∗
A is given by the following

equation

T∗
A =

ta
2
+(1−α)T∗

S +αT∗
H. (6.19)

A searcher animal is looking either for a food resource or fora handler animal.

At this stage, it spends an average time equal to 1
/(

ν f f +νhH
)

before it finds

either an unattended food item (this happens with probability ν f f
/(

ν f f +νhH
)

)

and becomes a handler, or a handler animal (with probabilityνhH
/(

ν f f +νhH
)

).
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Thus,T∗
S is given by the following equation

T∗
S =

νhH
ν f f +νhH

T∗
SA+

ν f f

ν f f +νhH
T∗

H +
1

ν f f +νhH
. (6.20)

Once the searcher animal acquires a food item, it either consumes it without being

found by any searcher animal, with probability(1/th)
/

((1/th)+νhS), or it is discov-

ered by a searcher, with probabilityνhS
/

((1/th)+ νhS), resulting in an additional

expected time costT∗
HA until the consumption of a food item. The average time that

the animal spends in the handling state before it either consumes its food item or is

discovered by a searcher animal is equal to 1
/

((1/th)+νhS). T∗
H is thus given by

T∗
H =

1
1+ thνhS

0+
thνhS

1+ thνhS
T∗

HA +
th

1+ thνhS
. (6.21)

The time needed for the mutant searcher, who has just come upon a handler playing

the population strategy, to consume a food item,T∗
SA, in the different scenarios is

represented schematically in the diagram shown in Figure 6.1. The notation of food

consumption times from the different foraging states is shown in Table 6.2.

Substituting equations (6.19), (6.20) and (6.21) into (6.18), after some calcula-

tions we obtain the following equation

(

1−
(

1−q1+
q1p2

2
+(1−α)q1p3

) νhH
ν f f +νhH

)

T∗
SA = q1p2tc+q1p3

ta
2
+

+
(

1−q1+
q1p2

2
+(1−α)q1p3

) 1
ν f f +νhH

+

+

(

(

1−
q1p2

2

)

ν f f +q1
(

1− p2− (1−α)p3
)

νhH

)

th(1+νhST∗HA)

(1+ thνhS)(ν f f +νhH)
.

(6.22)

If a mutant animal in the handling state is attacked by a searcher animal playing

the population strategy, with a non-zero probability (p1 6= 0), thenT∗
HA is given by

the following equation

T∗
HA = p1

(

q2T∗
C +q3T∗

R +(1−q2−q3)T
∗
S

)

+(1− p1)T
∗
H, (6.23)

whereT∗
R is the average time required until the consumption of a food item for a

handler which decides to defend its food against a challenge. Substituting (6.17)

into (6.23) we obtain

T∗
HA = p1

(

q2tc+q3T∗
R +

(

1−
q2

2
−q3

)

T∗
S

)

+(1− p1)T
∗
H. (6.24)
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In a similar way as before,T∗
R is given by

T∗
R =

ta
2
+αT∗

S +(1−α)T∗
H. (6.25)

The time required for the attacked mutant handler to consumea food item,T∗
HA, in

the different scenarios is represented schematically in the diagram shown in Figure

6.2.

Substituting equations (6.20), (6.21) and (6.25) into (6.24), we obtain



1−

(

(

1− p1q2
2

)

ν f f +
(

1− p1+(1−α)p1q3
)

νhH
)

thνhS

(1+ thνhS)(ν f f +νhH)



T∗
HA = p1q2tc+

+ p1q3
ta
2
+ p1

(

1−
q2

2
− (1−α)q3

) 1+νhHT∗
SA

ν f f +νhH
+

+

(

(

1−
p1q2

2

)

ν f f +
(

1− p1+(1−α)p1q3
)

νhH

)

th
(1+ thνhS)(ν f f +νhH)

.

(6.26)

T∗
SA andT∗

HA are given by the solution of the system of equations (6.22) and (6.26).

The average time required to the consumption of a food item for a single searcher

animal who has just met a handler in a population where all animals play strategy

(p1, p2, p3), TSA, and the respective time of a single handler of the same population

who has just met a searcher,THA, can be found by solving the system of equations

(6.22) and (6.26) substituting(p1, p2, p3) for (q1,q2,q3).

In the case where none of the animals of the population challenges any other

animal, i.e. p1 = q1 = 0, but occasionally a challenge might occur “by mistake”,

the average time needed for the attacked handler animal to consume a food item if it

adopts a strategy different from that of the population,(0,q2,q3), is given by

T∗
HA = q2

(

tc+
T∗

S

2

)

+q3T∗
R +(1−q2−q3)T

∗
S , (6.27)

whereT∗
R is given by equation (6.25). Because the population is not making chal-

lenges,T∗
S = (1/ν f f )+ th andT∗

H = th. Substituting into equation (6.27), we obtain

that the average time needed for the attacked handler animalto consume a food item

if it adopts a different strategy from that of the population, (0,q2,q3), is given by

T∗
HA = q2

(

tc−
1
2

(

1
ν f f

+ th

))

+q3

(

ta
2
− (1−α)

1
ν f f

)

+
1

ν f f
+ th. (6.28)

If a mutant animal can invade a population then its strategy(q1,q2,q3) must be a
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better strategy than that of the population(p1, p2, p3) at least at one of the two deci-

sion points, when a searcher and potentially making a challenge or when receiving

a challenge as a handler. A mutant that follows a different strategy from that of the

population at just one decision point and where the strategythat is followed is bet-

ter than that of the population, can obviously invade. When considering whether a

particular strategy is an ESS or not, it is sufficient to investigate invasion by mutants

which differ in strategy at one of the two decision points only. This is because if a

mutant that differs in strategy at both of the decision points can invade, it must have

a superior strategy at at least one of the decision points, and so an animal that shares

the same strategy as the mutant at this decision point, and the same strategy as the

population at the other, could also invade.

A mutant that uses a strategy different from that of the population at just the

searching state is able to invade ifT∗
SA ≤ TSA, i.e. if the decision that it will make

at the point when it will meet a handler, when searching for food, will lead to at

least as small a time until the consumption of a food item. Similarly, a mutant that

plays differently from the population just at the handling state is considered to be

able to invade if the decision it will make in an encounter with a searcher, when

handling a food item, will not lengthen the time to the consumption of a food item,

i.e. if T∗
HA ≤ THA. Note that it is possible that under certain parametersT∗

SA is

independent ofq1 and all values 0≤ q1 ≤ 1 give identical times. Similarly,T∗
HA

might be independent ofq2 and q3. In these circumstances, in such asymmetric

games, the population can still be invaded by genetic drift.

Appendix C.1 investigates the possible existence of mixed ESSs. In some cases

it is proved that at least for non-generic parameter sets there is no mixed ESS. In

other cases it is not proved but extensive numerical investigation yields results con-

sistent with no mixed ESS. Our working assumption from theseresults is that there

are no mixed ESSs. Thus, if the population plays a non-pure strategy(p1, p2, p3),

for an invading animal there will be a pure strategy that willdo at least as well as

playing the population strategy, and so(p1, p2, p3) could not be an ESS because this

pure strategy would invade the population. Hence, we need toconsider only two

strategies for a foraging animal (always or never attempt tosteal or share the prey

of the other animal when the opportunities arise) and three strategic choices for an

attacked animal (always share the food, always defend the food, or always surrender

it to the attacking animal) as the components of the potential optimal strategy in any

given population. Therefore, there are six possible pure strategies that an animal can

use and need to be considered:

- Strategy (0,0,0) (Dove, D): the animal never challenges handlers and always
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retreats leaving the food to a challenger.

- Strategy (0,1,0) (Non-Attacking Sharer, NAS): the animalnever challenges

handlers and always shares its food when it is challenged.

- Strategy (0,0,1) (Retaliator, R): the animal never challenges handlers but al-

ways resists when it is challenged.

- Strategy (1,0,0) (Marauder, M): the animal challenges handlers at every op-

portunity but always retreats leaving the food to a challenger.

- Strategy (1,1,0) (Attacking Sharer, AS): the animal challenges handlers at ev-

ery opportunity and always shares the food when it is challenged.

- Strategy (1,0,1) (Hawk, H): the animal challenges handlers at every opportu-

nity and always resists any challenges.

6.3.2 The optimal strategy for an animal in the searching state

Consider a population playing strategy(p1, p2, p3) that is potentially invaded by a

mutant animal playing a different strategy(q1,q2,q3). For reasons explained in the

previous section, in order to study whether the mutant can invade because it uses a

better strategy at the searching state, we assume that the strategy which is used by

all the animals when they are in the handling state is the same, i.e. p2 = q2 and

p3 = q3. We consider the strategy used by a searcher animal of the population when

coming across a handler,p1, to be advantageous over a mutant strategy,q1, (and

thus the population cannot be invaded by the mutant) if the average time required

for the searcher playing the population strategy to gain andconsume a food item,

TSA, is less than that required for the mutant searcher,T∗
SA. Using the equations

(6.22), (6.26) and (6.13)–(6.15) we find all the necessary conditions under which

a mutant playing strategyq1 ∈ {0,1 : q1 6= p1} cannot invade a population playing

strategyp1 ∈ {0,1 : p1 6= q1} for the cases where eitherp2 = q2 = 0 andp3 = q3 = 1,

p2 = q2 = 1 andp3 = q3 = 0, or p2 = q2 = 0 andp3 = q3 = 0. These are summarised

in Table 6.3 (conditions (C.3), (C.6), (C.9), (C.10), (C.13) and (C.16)).

6.3.3 The optimal strategy for an animal in the handling state

In the handling position, an animal can use three strategieswhen it is challenged. It

shares the food with the challenger, it defends its food, or it retreats leaving the food

to the attacking animal, and depending on the ecological conditions it obtains the
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Table 6.3: Conditions under which a mutant playing strategy(q1,q2,q3) cannot invade a population playing strategy(p1, p2, p3)

Mutant’s strategy,(q1,q2,q3)

(0,0,0) (0,1,0) (0,0,1) (1,0,0) (1,1,0) (1,0,1)

Population’s
strategy,
(p1, p2, p3)

(0,0,0)
/ 2tc− th >

1
ν f f

ν f f >
2(1−α)

ta

The mutant
always invades — —

(C.1) (C.2) (C.3)

(0,1,0) 2tc− th <
1

ν f f
/ 2tc− th < ta−

1−2α
ν f f — 2tc− th >

1
ν f f —

(C.4) (C.5) (C.6)

(0,0,1) ν f f <
2(1−α)

ta
2tc− th > ta−

1−2α
ν f f

/

— — ν f f >
2α
ta

(C.7) (C.8) (C.9)

(1,0,0)
The mutant
never invades — —

/ 2tc− th >
1

ν f f
ν f f >

2(1−α)

ta
−

thν f f νhP

thν f f +1
(C.10) (C.11) (C.12)

(1,1,0) — 2tc− th <
1

ν f f −νhHa

∗
— 2tc− th <

1
ν f f −νhHa

∗ /

(2tc− th)(ν f f −ανhHa)ν f f <
(taν f f +α)ν f f +(1−α)

(

(thνhP−
1)ν f f − (ν f f +νhP)thνhHa

)

∗

(C.13) (C.14) (C.15)

(1,0,1)
— — ν f f <

2α
ta

ν f f <
2(1−α)

ta
+(1−2α)νhHb

∗∗

(2tc− th)(ν f f +ανhHb)>
ta(ν f f +2ανhHb)+
αthνh(P−Hb)+2α −1 ∗∗

/

(C.16) (C.17) (C.18)
∗Ha is given by the solution of the equation(2tc− th)νhH2

a +(thν f f + thνhP+1)Ha− thν f f P= 0.
∗∗Hb is given by the solution of the equationtaνhH2

b +(thν f f +1)Hb− thν f f P= 0.
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highest benefit when it always takes one of these three actions. As before, assume

that a population already at equilibrium conditions is invaded by a mutant, which

now uses a different strategy as a handler but the same strategy as a searcher.

Optimal strategies in an aggressive population

Assume that all the members of the population behave aggressively when encoun-

tering a handler animal, i.e.p1 = q1 = 1. We consider the strategy of an attacked

handler of the population to be advantageous over the strategy used by an attacked

handler mutant (and thus the mutant cannot invade) if the average time required for

the first to consume a food item,THA, is less than that required for the second,T∗
HA

(in this case, this is equivalent to the comparison ofTSA with T∗
SA because the times

needed for animals which always challenge, i.e. whenp1 = q1 = 1, to acquire a

food item and be discovered by a foraging animal are identical, independently of

the strategies they use as handlers). Using again equations(6.22), (6.26) and (6.13)–

(6.15) we find the necessary conditions under which a mutant in this scenario cannot

invade a population playing a different strategy at the handling state. These condi-

tions are presented in Table 6.3 (conditions (C.11), (C.12), (C.14), (C.15), (C.17)

and (C.18)).

Optimal strategies in a non-aggressive population

In the case where all the members of the population do not challenge, i.e.p1 = q1 =

0, an animal of the population playing(0, p2, p3) does better than a mutant playing

(0,q2,q3), and thus the population cannot be invaded by this mutant, ifTHA < T∗
HA,

where by (6.28) (THA in this case is similarly given by (6.28) substitutingp2 andp3

for q2 andq3, respectively) we obtain the condition

(q2− p2)

(

tc−
1
2

(

1
ν f f

+ th

))

+(q3− p3)

(

ta
2
− (1−α)

1
ν f f

)

> 0. (6.29)

The conditions under which a mutant playing strategy (0,q2,q3) is unable to invade

a population playing strategy (0, p2, p3) are summarised in Table 6.3 (conditions

(C.1), (C.2), (C.4), (C.5), (C.7) and (C.8)).

6.4 Evolutionarily Stable Strategies

Table 6.3 shows all the appropriate conditions under which apopulation playing

strategy(p1, p2, p3) cannot be invaded by a mutant playing a different strategy atone
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a) b)

Figure 6.3: Graphs showing examples of the region where each of the four possible ESSs
(Retaliator (R), Marauder (M), Attacking Sharer (AS) and Hawk (H)) isan ESS as the
duration of the content,ta/2, and the handling time of a sharer,tc, vary. In each re-
gion, a single letter ‘X’ indicates that the strategy X is the unique ESS, ‘X,Y’ indicates
that the strategies X and Y are simultaneous ESSs, and ‘X, Y, Z’ that the three strategies
X, Y and Z are simultaneous ESSs. (a)th = 3,ν f f = 0.5,νh = 1.5,α = 0.7,P = 1, (b)
th = 3,ν f f = 1,νh = 2,α = 0.2,P= 1.

of the two decision points,(q1,q2,q3), for all the possible cases where all animals

play a pure strategy.

According to the results shown in Table 6.3, strategies (0,0,0) and (0,1,0) can

never resist all of the possible invading strategies and there are thus four possible

ESSs:

- Strategy (0,0,1) is an ESS if the conditions (C.7), (C.8) and (C.9) are satisfied.

- Strategy (1,0,0) is an ESS if the conditions (C.11) and (C.12)are satisfied.

- Strategy (1,1,0) is an ESS if the conditions (C.13), (C.14) and (C.15) are sat-

isfied.

- Strategy (1,0,1) is an ESS if the conditions (C.16), (C.17) and (C.18) are sat-

isfied.

Figure 6.3 shows the regions in parameter space in which eachof the four strate-

gies, Retaliator, Marauder, Attacking Sharer and Hawk, is anESS, for specific pa-

rameter values as the duration of the contest,ta/2, and the handling time of a sharer,

tc, vary. Figure 6.4 shows how these regions vary as the densityof the population,

P, and the rate at which foragers find undiscovered food,ν f f , vary.

Obviously, these regions in theta/2− tc plane in Figure 6.3 andP− ν f f plane

in Figure 6.4 will vary, depending on the other parameter values. However, some
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a) b)

Figure 6.4: Graphs showing examples of the region where each of the four possible ESSs
(Retaliator (R), Marauder (M), Attacking Sharer (AS) and Hawk (H)) isan ESS as the den-
sity of the population,P, and the rate at which foragers find undiscovered food,ν f f , vary.
In each region, a single letter ‘X’ indicates that the strategy X is the unique ESS, ‘X,Y’
indicates that the strategies X and Y are simultaneous ESSs, and ‘X, Y, Z’ that the three
strategies X, Y and Z are simultaneous ESSs. (a)ta/2= 0.5, th = 3, tc = 4,νh = 1.5,α = 0.7,
(b) ta/2= 0.5, th = 3, tc = 2,νh = 2,α = 0.2.

general conclusions can be extracted. Figure 6.3 and Figure6.4 suggests that be-

tween the regions where two strategies are unique ESSs, there can be a region where

the two strategies are simultaneous ESSs and among the regions of three pairs of

ESSs configured by three strategies, there might be a region where the three strate-

gies might coexist as ESSs. This excludes the possibility ofthe Retaliator and the

Hawk strategies being simultaneous ESSs, because this can never happen due to the

contradiction of the conditions (C.9) and (C.16) (see Table 6.3). This gives eleven

distinct regions as summarised in Figure 6.3 and Figure 6.4.It appears that every set

of parameters yields one or more pure ESSs. Numerical examples on a wide range

of parameter values indicate that there is no parameter set where this is not the case

i.e. that there are not any mixtures of strategies or cases where there are no ESSs.

Although we do not believe that there will be any parameter set where there will be

such a polymorphic mixture or no ESS (in similar models such cases do not occur,

and for an argument that actual mixed ESSs are not possible, see Appendix C.1), we

cannot definitively rule out this possibility.

6.5 Predictions of the model

In the case where neither the members of the population nor any mutant share the

food, i.e. in the case wherep2 = q2 = 0, all the above results agree with the results
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obtained in previous work (Broomet al., 2004). Hence, here we concentrate on

the cases where the members of the population or a mutant animal or both, always

share their food when they are attacked, i.e. cases where either p2 or q2 or both are

equal to 1. This provides both new potential ESSs and also newmutant strategies to

invade other strategies, so that strategies that were ESSs in Broomet al. (2004) will

no longer be in some cases.

In a non-attacking population, a sharer does better than a Dove when they are

attacked if the average time needed for a sharer to consume a whole food item

(tc + ((1/ν f f ) + th)/2) is less than the average time needed to find an undiscov-

ered food item (1/ν f f ) and consume it (th) (equivalently in this case, if the time the

sharer needs to consume the half of the food item (tc) is on average less than half of

the time needed to find and consume a whole food item (((1/ν f f )+ th)/2)). On the

other hand, an Attacking Sharer mutant does better than a member of a population of

Non-Attacking Sharers iftc ≤ ((1/ν f f )+ th)/2 as well. Hence, as we see in Table

6.3, condition (C.4) contradicts condition (C.6) and thus a Non-Attacking Sharer is

never an ESS. The food sharing strategy can be an ESS only if the sharer challenges

a handler at every opportunity when it is in the searching state. A population of

Attacking Sharers can potentially be invaded by Non-Attacking Sharers, Marauders

and Hawks. The conditions under which a Non-Attacking Sharer and a Marauder

can invade a population of Attacking Sharers are the same. This occurs because in

such a population a Marauder can invade if it is better for anyhandler to give up a

food item rather than share (so being a searcher is better than sharing a food item)

and a Non-Attacking Sharer can invade if it is better not to challenge for a food item

that will be shared (so again searching is better than sharing). Increasing the rate at

which foragers find food,ν f f , increases the parameter range where Non-Attacking

Sharers and Marauders invade the population of Attacking Sharers. Depending on

the values of the other parameters, the increase ofν f f might favour the invasion of

Hawks as well (usually when food is difficult to discover). Hence, increasingν f f

decreases the range of the parameter values in which the Attacking Sharer strategy

is an ESS (see Figure 6.4 for an example). A similar situationappears by decreas-

ing the area in which foragers search for handling sharers per unit time, νh. As is

observed in the conditions (C.13)–(C.15) and Figure 6.4, the decrease of the density

of the population,P, might also create unpropitious circumstances for food sharing.

For a given set of parameter values for which the Attacking Sharer strategy is an

ESS, increasing the time cost of the sharing process, which results in the increase

of tc, the area where the Attacking Sharer strategy is an ESS reduces, as one would

expect. Depending on the other ecological conditions, thisstrategy might coexist as
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an ESS with either one of the other possible ESSs (Retaliator,Marauder or Hawk)

or two of them (Retaliator and Marauder or Marauder and Hawk).At very high

levels oftc such that the time spent in sharing would be better spent in searching for

another food item or in defending the food item, Attacking Sharer cannot be an ESS.

In this case, the predictions of the model approach those of the model of Broomet

al. (2004), where sharing was not possible (see Figure 6.3 for an example). In con-

ditions where the duration of aggressive interactions is high, the defending strategy

is less profitable and thus the avoidance of any aggressive interaction is favoured.

Hence, under these circumstances, it is observed that animals should decide either

to surrender their food (use the Marauder strategy) or to share it (use the Attacking

Sharer strategy) when they are challenged, even if they havea high probability of

defending their food successfully. Therefore, at high fightdurations each of Ma-

rauder and Attacking Sharer strategies might be the unique ESS or both might be

ESSs simultaneously (see Figure 6.3 for an example).

6.5.1 A special case

As a special case, we consider the case where 2tc = th, i.e. where sharing does not

reduce the speed of food consumption. The results obtained in this case are shown

in Table 6.4. It is observed that, as well as the Dove and Non-Attacking Sharer

strategies, which as we have seen in the previous section arenever ESSs, in this case

the Marauder strategy is also never an ESS because it can always be invaded by an

Attacking Sharer animal. The Attacking Sharer strategy canonly be invaded by the

Hawk strategy. Moreover, this can happen just in the few cases where the chance of

a successful defence is relatively high, i.e. the probability α is relatively small, and

the time spent in a contest,ta/2, is small. Forα ≥ 0.5, the conditions (C.7) and (C.9)

indicate that the Retaliator strategy can never be an ESS. In this case, the condition

(C.18) also indicates that an Attacking Sharer can always invade a population play-

ing Hawk and thus the Hawk strategy can never be an ESS as well.Hence, at least

for α ≥ 0.5, Attacking Sharer is the only ESS no matter what the other parameter

values are. The Hawk strategy is an ESS mainly whenta/2 andα are small. Asta/2

and/orα increase, depending on the other parameter values, there might be a range

where the pure Hawk ESS coexists with the pure Attacking Sharer ESS. When the

defender is likely to succeed, i.e.α is small, defence of the food item might be the

favoured strategy even if the fight time is relatively long, especially in cases where

available food is scarce. Hence, there is a range where either pure Retaliator is the

only ESS, or the pure Retaliator ESS coexists with the pure Attacking Sharer ESS.

Although such ecological conditions favour a handler animal defending its food in
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Figure 6.5: A graph showing an example of the region where each of the three possible
ESSs (Retaliator (R), Attacking Sharer (AS) and Hawk (H)) can occur inthe special case
where 2tc = th, as the probabilityα of the challenger winning and the duration of the content,
ta/2, vary. In each region, a single letter ‘X’ indicates that the strategy X is theunique ESS,
‘X,Y’ indicates that the strategies X and Y are simultaneous ESSs, and ‘X, Y,Z’ that the
three strategies X, Y and Z are simultaneous ESSs. 2tc = th = 3,ν f f = 0.5,νh = 1.5,P= 1.

a fight, in an Attacking Sharer population the subsequent potential attacks that a de-

fender faces make the defending strategy less attractive. For similar reasons, in a

population that is using the Attacking Sharer ESS, every searcher should attempt to

share. Now, in a population using the Retaliator ESS, defending the food is a more

attractive strategy than sharing it because a successful defence is likely and animals

in the population do not attack. On the other hand, attackinga handler and engaging

in a fight in conditions where aggressive interactions favour the attacked handler is

not a good strategy and thus attacking strategies cannot invade.

Figure 6.5 shows a region with all the possible ESSs in this specific case, as the

probabilityα of the challenger winning and the duration of the content,ta/2, vary.

6.6 Discussion

Food sharing is a very common tactic adopted by a broad group of animal species

for their survival. Using a game-theoretical approach, thepresent model investigates

the ecological circumstances under which animals should share their food when they

are challenged by other foraging animals. We have extended the game-theoretical

model of Broomet al. (2004) by allowing animals to share their food. Animals in

the present model can choose among two additional strategies; either to attempt to

share or steal the food from a handler when foraging and sharetheir food when they

are challenged by a forager, or to ignore any opportunities to share or steal the food
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Table 6.4: Conditions under which a mutant playing strategy(q1,q2,q3) cannot invade a population playing strategy(p1, p2, p3) in the special case where
2tc = th

Mutant’s strategy,(q1,q2,q3)

(0,0,0) (0,1,0) (0,0,1) (1,0,0) (1,1,0) (1,0,1)

Population’s
strategy,
(p1, p2, p3)

(0,0,0)
/ The mutant always

invades
ν f f >

2(1−α)

ta

The mutant always
invades

— —

(0,1,0)
The mutant
never invades

/

ν f f >
1−2α

ta
—

The mutant always
invades

—

(0,0,1) ν f f <
2(1−α)

ta
ν f f <

1−2α
ta

/

— — ν f f >
2α
ta

(1,0,0)
The mutant
never invades

— —
/ The mutant always

invades
ν f f >

2(1−α)

ta
−

thν f f νhP

thν f f +1

(1,1,0) —
The mutant
never invades

—
The mutant
never invades

/ (taν f f +α)(thν f f + thνhP+
1)− (1−α)(thν f f +1)> 0

(1,0,1) — — ν f f <
2α
ta

ν f f <
2(1−α)

ta
+(1−2α)νhHb

∗

ta(ν f f +2ανhHb)+αthνh(P−
Hb)+2α −1< 0 ∗

/

∗Hb is given by the solution of the equationtaνhH2
b +(thν f f +1)Hb− thν f f P= 0.
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of other animals when foraging but share when another animalattacks. This model

is likely to be an improvement if caught food items are at least partly divisible, for

instance fruit species (e.g., White, 1994), as opposed to forexample a nut or a fish

(e.g., Iyengar, 2008) that are hard to divide, in which case the original modelling

system will be more appropriate. At the opposite extreme, insituations where food

items come in patches, for instance seed patches (e.g., Barnard and Sibly, 1981),

which are easily divisible, then the producer-scrounger type models (e.g., Dubois

and Giraldeau, 2003; Duboiset al., 2003; Dubois and Giraldeau, 2005, 2007) could

be appropriate models.

Considering the time needed for a food item to be acquired and consumed, the

model predicts that there is a wide range of ecological conditions in which attempt-

ing to share or steal the food at every opportunity and sharing the food when attacked

is the optimal strategy that should be used by animals. The non-aggressive strategy

where animals do not challenge other animals but share theirfood when challenged

can never be an ESS because, depending on the ecological parameters, this strategy

is always invaded either by the Dove or by the Attacking Sharer strategy. This adds

one possible ESS to the model of Broomet al. (2004). Investigation of the model

suggests that under any ecological parameters, there is always at least one ESS that

an animal can use. Every two ESSs can occur as ESSs simultaneously, apart from

the Retaliator and the Hawk strategy where it is shown that they can never be ESSs

simultaneously. It is also possible that under some conditions there are three simul-

taneous ESSs (Retaliator, Marauder and Attacking Sharer, orMarauder, Attacking

Sharer and Hawk).

Different ecological factors might influence the strategicchoice of food shar-

ing. Food availability is one of the crucial factors. In conditions of limited food

availability the use of the Attacking Sharer strategy is enhanced, whereas at high

food densities food sharing becomes a less profitable strategy. A high time cost of

food defence, a small probability of a successful food defence, a high rate at which

searchers encounter handlers, a high population density and a low time cost of food

sharing are also conditions which favour animals sharing their food. In the special

case where food sharing has no additional time cost, foraging animals should al-

most always attempt to share food with a handler and handlersshould almost always

share their food. Defending the food might be the optimal strategy for the owner,

especially when food is difficult to be discovered, and the success of this is likely.

Moreover, attacking at every opportunity and defending when attacked is an ESS in

limited cases, where the time cost of the defence is small, but never attacking and

always defending might be an ESS even if the defence will result in a high time cost.
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Attacking and always retreating when attacked never occursin this case because

sharing is always a better strategy.

Food sharing is a complicated mechanism. Different animal species share their

food for different reasons and under different ecological and biological conditions.

In many situations, food sharing is a voluntary process where animals choose to

share their food without any kind of menace from other foraging animals. This

process might result in immediate benefits for animals, for example the creation of

cooperation for the increase of foraging success or predation avoidance, or the in-

crease of mating opportunities (see Stevens and Gilby, 2004). It is also often the case

that sharing occurs between relatives or between animals with a social interaction,

even if those animals are not relatives, e.g. between roost mates (Wilkinson, 1990).

In such cases, food sharing might not be immediately beneficial but result in long

term benefits such as future reciprocal sharing, i.e. altruism (see Stevens and Gilby,

2004). In the present model, food sharing is considered to bethe process where a

food owner shows tolerance to an attacking foraging animal and shares its food with

it, although it would be better for the owner not to be discovered by any other animal.

This animal behaviour might occur, for example, in cases where a beggar challenges

a food owner, a situation which is observed in monkeys and chimpanzees popula-

tions (for examples of this behaviour, see Stevens and Gilby(2004)). A particular

feature of our model compared with other models in the literature, is that by sharing

food, the two animals protect each other from potential subsequent costly challenges

that might extend the time until the consumption of a food item. Hence, on average

a half of the food item is consumed without the risk of other delays apart from the

time required for sharing. This, under certain conditions,might be the least costly

process with respect to the expected time needed for the consumption of food and

thus a process which maximises the food intake rate. Although there is no empiri-

cal data to support precisely the above assumptions, there is evidence that in nature,

animals in many cases prefer to share food with other animalsto reduce the risk of

losing the entire prey. For example, a lion instead of defending its prey against an

approaching member of the pride, might share it in order to increase the efficiency

of defending the prey from invading hyenas (see for example,Cooper, 1991; Stevens

and Gilby, 2004).

In addition, our model assumes that the members of the population are of the

same type. However, real populations consist of individuals with biological and

physiological differences and the optimal strategic choices depend on the charac-

teristics of the individuals and those of their opponent. For example, recent ob-

servational and experimental studies on the dung roller beetle Canthon cyanellus

149



Food sharing in kleptoparasitic populations

cyanellushave shown that males of similar size are more likely to sharethe resource

rather than to fight over this (Chamorro-Florescanoet al., 2011). Fight duration may

be correlated with the differences between the opponents aswell (e.g., Roveroet al.,

2000). The size and the quality of the food items or the estimation of the value of the

resource might also affect significantly the frequency of food sharing (e.g., White,

1994) as well as the contest duration (e.g., Enquist and Leimar, 1987).

In our model all costs are expressed in terms of time used and we ignore other

costs which can be important, such as energy costs and possible injuries resulting

from fights (for a model which incorporates energy costs see Vahl, 2006). For sim-

plicity, we also do not impose extra time penalties on animals in contests. A resulting

limitation is that the winner and the loser of a contest face the same cost. Although

this can be the case in nature (e.g., Smith and Taylor, 1993),experimental studies

have shown that either the loser (e.g., Chellappa and Huntingford, 1989; Neatet

al., 1998) or the winner (e.g., Hack, 1997) might suffer higherenergetic or other

cost, such as a high recovery time cost. For instance, if the handler uses more en-

ergy (e.g., because it is carrying a food item during the contest) then it might need

a higher recovery time. This would decrease the food intake rate making the de-

fending strategy less attractive and the choice of alternative strategies more likely

(see also, Luther and Broom, 2004). In the same way, although it is assumed that

the cost from the sharing process is equal for the two animalsthat share food, in

reality the two animals might suffer a different cost. Furthermore, it is assumed

that once an animal loses a contest with another animal, it does not initiate a new

fight with the same animal but starts searching for alternative food resources. This

is generally reasonable, as often contests between animalscan have strong (at least

short-term) effects on their relationship (winner and loser effects) which reinforce

the dominance of the winner (see for example, Dugatkin, 1997). Similarly, in related

contests between animals for territory acquisition, animals that lose an agonistic in-

teraction often leave the areas in which they were defeated (see for example, Stamps

and Krishnan, 1994). However, we should note that in some cases an animal may

attack repeatedly the owner after iterated losing tries (e.g., Stamps, 1994). One way

that the model could be extended and relax this assumption isby introducing the

choice to the loser animal to attack the winner again or not, following similar as-

sumptions to those made in some owner-intruder types of games (e.g., Morrell and

Kokko, 2003).

Another interesting extension of the model that could add some realism is to

assume that the attacking animal, after its first attack, hasthe possibility to update

its strategy based on the decision of the attacked handler. For example, it could be
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assumed that if the attacking searcher is offered a share, ithas the possibility to either

give up and resume searching for another food item, or attackagain attempting to

get the whole food item from the present handler. A handler sharer, being attacked

again by the attacking searcher either defends the food and afight takes place or it

retreats and leaves the food to the attacker in order to avoida fight. This extension

would add new strategic choices for the animals. However, itwould not add any new

observable behaviour (at any time the new strategies will look exactly the same as

the strategies in the model considered in this chapter). Although an analysis of such

extended models is required in order to extract safe conclusions, we predict that the

new strategies under some conditions might be able to invadeother strategies that in

the current model are ESSs. This would reduce the regions in parameter space where

each of the current strategies is evolutionarily stable. For example, we can predict

that under some circumstances, an animal should attack again a handler that offers a

share in the first attack but will give up on a second attack. Inthe current model, for

very large fight duration,ta/2, the optimal strategy for an attacked handler might be

to offer a share to an attacking searcher and the optimal strategy for the challenger

to accept the share (see for example Figure 6.3). However, ifthe challenger has the

possibility to attack again, then this would be the best strategic choice for it because

the defender will retreat and leave the food item to the attacker rather than defend it

and engage in a very long fight. Similarly, whenta/2 is small, it might be optimal

for an attacked handler to offer a share (see Figure 6.3). However, in the extended

model, it might be better for the challenger to attack again because it will be worth

fighting for the whole food item.

In natural systems, foraging animals might be faced with more than one for-

aging option with different variance in food intake. For example, they might be

faced with a constant food resource versus a variable food resource, a food resource

with fixed delay versus the same food resource with variable delay, or an immedi-

ate gain of food versus a delayed gain. There is strong empirical evidence that a

forager’s choice may depend on many ecological factors, such as the energetic sta-

tus of the animal, the type of food variance, the energy requirements of the animal

within a certain time interval and the probability of delaysdue to different kinds of

unpredictable interruptions (for example bad weather). The forager might be either

risk-averse and choose the predictable option, or risk-prone and choose a risky op-

tion, respectively (see for example, Kacelnik and Bateson, 1996). For example, an

animal with low food reserves might choose a safe lower levelof return, provided

it is sufficient for survival. Food sharing might be a way for animals to reduce such

variances in food intake (e.g., Wenzel and Pickering, 1991). Although the present
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model does not consider any risk associated with alternative food sources, it would

be interesting to incorporate in future work such parameters that might influence the

foraging decisions.

Further research taking into consideration all these different factors will help us

to better understand the reasons why and the conditions under which animals prefer

to share their food.
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CHAPTER 7

Conclusions and future work

In this research work, considering the evolutionary process in structured popula-

tions, through either an analytic approach on some simple graph structures or the use

of approximation and numerical methods on complex graph structures, it has been

demonstrated that the dynamics of an evolving population might be significantly

influenced by the structure of the population. In stochasticevolutionary dynamics,

the population structure might remarkably enhance selection and eliminate random

drift or vice versa. The extent of the structure effect depends on the update rules of

the evolutionary dynamics, on the fitness of individuals as well as on the population

size.

The significance of the consideration of the time required for the evolutionary

process to end has also been highlighted. This quantity is usually ignored and an

emphasis is given just to the probability of fixation. However, in some cases, the

fixation probability is not sufficient to describe the evolution of the system, since a

given type of individual might have a very high chance to fixate but this might need

extremely long time to happen.

The possibilities for analytic investigations of the evolutionary dynamics in stru-

ctured populations are very limited and numerical and approximation methods are

essential for the exploration of the dynamics in complex structures. In this work,

a powerful approximation method has been proposed. This method can effectively

approximate the results of the evolutionary process in a broad class of structures and

could give insight to the effect of the population structureon evolutionary dynamics.

In all evolutionary processes that have been considered in this work, it has been

assumed that there is only a selection process and no mutation occurs during the

process. The results derived can also be applied in processes where the mutation

rate is very small, since in these cases the system will reachan absorbing state and

stay there for a very long time before a new mutation occurs. The limit of zero or
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very small mutation rate is a basic assumption that has been made in most of the

studies on evolutionary processes in graph structured populations. However, there

are evolutionary processes with high mutation rates, especially genetic processes,

such as the evolution of many populations of bacteria and viruses. It would be

interesting to consider how mutation affects the evolutionary process in structured

populations. Obviously, if in the processes considered in this work there is a high

mutation rate (an individual playing strategy X can reproduce an individual playing

Y, or vice versa, with high probability), evolution will drive the system away from

the absorbing states and both strategies will always present in the population. In

such cases, it would be interesting to study the stationary probability distribution

of the system and find appropriate conditions under which theaverage abundance

of strategy X is higher than the average abundance of strategy Y. Of course, the

consideration of an evolutionary process with arbitrary mutation rates will be more

complicated, even in simple graphs. In some cases, the number of states that the

system can reach as well as the number of possible transitions will increase because

it will be possible an individual of type X is replaced by an individual of type Y

which is an offspring of a neighbouring individual of type X.For example, even on

simple graphs like a circle, the number of the reachable possible states starting from

any connected segment of mutant individuals would increasedramatically, since

any connected segment could split into two. On a star graph, the state where all

individuals but the centre one are of the same type would alsobe reachable (in the

case of zero mutation rate, the system can reach such a state only if it starts from

it at the beginning of the process). The approximation modelpresented in Chapter

4 could be extended for the study of evolutionary processes with arbitrary mutation

rates in a large class of graphs.

A limitation of the evolutionary models in graph structuredpopulations is that

they consider pairwise interactions between neighbouringindividuals, which are

represented by the edges of the graph. However, in real populations many individu-

als might interact simultaneously. For example, more than two animals might fight

over a food item, over territorial possession or other resource. Broom and Rychtá̌r

(2012) have proposed a new modelling framework for the studyof evolutionary

dynamics in structured populations. They introduced a model for the competition

between territorial animals where animals can move betweendifferent territories

with a certain probability and interact with other animals.The size of the interacting

groups is varied, depending on the structure of the territories and the probabilities

of the animals being in each territory. This model could be extended for the study

of evolutionary game dynamics in such structured populations following some up-
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date rules. This would allow us to examine the effect of the population structure in

more realistic scenarios. This modelling framework could also be applied for the

modelling of kleptoparasitism in structured populations where animals in the differ-

ent territories could have different rates of discovering afood item and encountering

handlers.

In van Veelen and Nowak (2012), following the work of Gokhaleand Traulsen

(2010) and previous theoretical models in well-mixed populations, the authors study

two-strategy multi-player symmetric games on the circle. Instead of every individual

interacting with its nearest neighbours as assumed in Chapter 2, it interacts withn−1

nearest neighbours simultaneously, playing a game withn−1 individuals on the left,

a game withn−2 individuals on the left and one on the right and so on. They find

analytically appropriate conditions for one strategy to befavoured over the other in

well-known games following the update rules of the IP and theDB-B process (see

Chapter 3). One restriction of this model is that although each individual interacts

with n−1 other individuals, its offspring can replace only an individual next to it.

It would be interesting to seek methods for the analysis of the case where any of

the n− 1 individuals that an individual interacts with could be replaced, although

this will make the model more complicated. The model could also be considered on

other graphs where due to symmetric properties an analytic investigation could be

possible, such as the star graph.

Another limitation of the present research work, and in general of a large amount

of work where models of evolution in graph structured populations are considered, is

that the graph structure is static. This implies that the number of individuals remains

constant over time and each individual interacts only with afixed number of other

individuals. In reality, in many populations both the number of individuals and the

connectivity of each individual vary with time, and thus thepopulation structure is

dynamic and evolves. The development of approximation methods for the study of

the evolutionary process on time-evolving graphs is an interesting research topic.

Some significant work has been already done in this direction(e.g., Pachecoet al.,

2006a,b; Kun and Scheuring, 2009; Poncelaet al., 2009; Wuet al., 2010).

So, how have populations evolved and how do they continue to evolve? What

are the factors that influence the evolutionary processes? What is the extent of their

influence? Mathematics has provided powerful tools to explore theories and argu-

ments, fill the gaps and give answers.
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APPENDIX A

Stochastic evolutionary dynamics in

finite homogeneous populations

A.1 Fixation probability

The fixation probability ofi ∈ [1,N−1] A individuals in a finite well-mixed popu-

lation of sizeN, APi, is given by the solution of the system

APi = pi,i+1
APi+1+ pi,i−1

APi−1+(1− pi,i+1− pi,i−1)
APi , 1≤ i ≤ N−1. (A.1)

It is assumed that there is no mutation, just selection, thatis each offspring is always

a perfect copy of its parent, and thus the evolutionary process lasts until one of

the types of individuals takes over the population replacing all the individuals of

the other type. Hence, the process has two absorbing states;the state where A

individuals die out (i = 0) and the state where they fixate in the population (i = N).

At the absorbing states

AP0 = 0, (A.2)
APN = 1. (A.3)

Equation (A.1) can be rearranged to

APi+1−
APi = qi

(

APi −
APi−1

)

, (A.4)

whereqi = pi,i−1/pi,i+1.

Let xi =
APi −

APi−1. From equation (A.4) we get

xi+1 = qixi . (A.5)
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We have

x1 =
AP1−

AP0 =
AP1 (A.6)

x2 =
AP2−

AP1 = q1x1 = q1
AP1 (A.7)

...

xN = APN −APN−1 = qN−1xN−1 = q1q2 · · ·qN−2qN−1
AP1. (A.8)

Summing allxi, i ∈ [1,N], we obtain

N

∑
i=1

xi =
AP1−

AP0+
AP2−

AP1+ · · ·+APN −APN−1 =
APN −AP0 = 1. (A.9)

Thus,

N

∑
i=1

xi = (1+q1+ · · ·+q1q2 · · ·qN−1)
AP1 =

(

1+
N−1

∑
j=1

j

∏
k=1

qk

)

AP1 = 1. (A.10)

Hence, the fixation probability of a single A individual in a finite well-mixed popu-

lation of B individuals is given by

AP1 =
1

1+
N−1
∑
j=1

j
∏

k=1
qk

. (A.11)

Similarly, we have

i

∑
i=1

xi =
APi ⇒

(

1+
i−1

∑
j=1

j

∏
k=1

qk

)

AP1 =
APi . (A.12)

Thus, from (A.11) and (A.12), it follows thatAPi, i ∈ [1,N], is given by formula

(1.27).
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A.2 Mean time to absorption

The mean time to absorption starting fromi ∈ [1,N− 1] A individuals in a finite

well-mixed population of sizeN, Ti, is given by the solution of the system

Ti = pi,i+1Ti+1+ pi,i−1Ti−1+(1− pi,i+1− pi,i−1)Ti +1, 1≤ i ≤ N−1, (A.13)

T0 = 0, (A.14)

TN = 0. (A.15)

Equation (A.13) can be written in the form

Ti+1−Ti = qi (Ti −Ti−1)−
1

pi,i+1
. (A.16)

Following the method of Section A.1, letyi = Ti −Ti−1. Then (A.16) is written as

yi+1 = qiyi −
1

pi,i+1
. (A.17)

We have

y1 = T1−T0 = T1 (A.18)

y2 = T2−T1 = q1y1−
1

p1,2
= q1T1−

1
p1,2

(A.19)

y3 = T3−T2 = q2y2−
1

p2,3
= q1q2T1−

1
p1,2

q2−
1

p2,3
(A.20)

...

yN = TN −TN−1 = q1q2q3 · · ·qN−1T1−
1

p1,2
q2 · · ·qN−1−

1
p2,3

q3 · · ·qN−1−

−
1

pN−2,N−1
qN−1−

1
pN−1,N

. (A.21)

Summing over allyi, i ∈ [1,N], we get

N

∑
i=1

yi = T1−T0+T2−T1+ · · ·+TN −TN−1 = TN −T0 = 0 (A.22)

⇒ (1+q1+q1q2+ · · ·+q1q2q3 · · ·qN−1)T1−
1

p1,2
−

1
p2,3

−·· ·−

−
1

pN−1,N
−

1
p1,2

q2−·· ·−
1

p1,2
q2 · · ·qN−1−·· ·−

1
pN−2,N−1

qN−1 = 0. (A.23)
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From the equation (A.23) we obtain that the mean time to absorption starting from

a single A individual,T1, is given by

T1 =
AP

N−1

∑
j=1

1
p j, j+1

N−1

∑
l= j

l

∏
k= j+1

qk. (A.24)

Similarly,

i

∑
i=1

yi = T1−T0+T2−T1+ · · ·+Ti −Ti−1 = Ti −T0 = Ti . (A.25)

Following the same way, we obtain that the mean time to absorption starting from

i ∈ [1,N] A individuals,Ti , is given by (1.34).

A.3 Mean time to fixation

The fixation time ofi ∈ [1,N−1] A individuals in a finite well-mixed population of

sizeN, AFi, is given by the solution of the system

APi
AFi = pi,i+1

APi+1
AFi+1+ pi,i−1

APi−1
AFi−1+(1− pi,i+1− pi,i−1)

APi
AFi +

APi,

(A.26)

1≤ i ≤ N−1

(see Antal and Scheuring (2006) and Traulsen and Hauert (2009)). The boundary

conditions of the system areAP0
AF0 = 0 becauseAP0 = 0, andAPN

AFN = 0 because
AFN = 0.

Let us use the notationAzi =
APi

AFi. Equation (A.26) can be written as

Azi+1−
Azi = qi(

Azi −
Azi−1)−

APi

pi,i+1
. (A.27)

Following the same method as in Sections A.1 and A.2 we find

Az1 =

N−1
∑
j=1

APj
p j, j+1

N−1
∑

l= j

l
∏

k= j+1

pk,k−1
pk,k+1

1+
N−1
∑
j=1

j
∏

k=1

pk,k−1
pk,k+1

. (A.28)
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But Az1 =
AP1

AF1. Thus, the fixation probability of a single A individual in a finite

well-mixed population of B individuals,AF1, is given by

AF1 =
N−1

∑
j=1

APj

p j, j+1

N−1

∑
l= j

l

∏
k= j+1

pk,k−1

pk,k+1
. (A.29)

Similarly, we find

Azi =

(

1+
i−1

∑
j=1

j

∏
k=1

pk,k−1

pk,k+1

)

Az1−
i−1

∑
j=1

APj

p j, j+1

i−1

∑
l= j

l

∏
k= j+1

pk,k−1

pk,k+1

(A.28)
= APi

(

N−1

∑
j=1

APj

p j, j+1

N−1

∑
l= j

l

∏
k= j+1

pk,k−1

pk,k+1

)

−
i−1

∑
j=1

APj

p j, j+1

i−1

∑
l= j

l

∏
k= j+1

pk,k−1

pk,k+1
. (A.30)

Thus, substituting backAzi =
APi

AFi, we find that the fixation time ofi ∈ [1,N] A

individuals,AFi, is given by (1.35).
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APPENDIX B

Evolutionary dynamics on graphs

under various update rules

B.1 Derivation of the transition probabilities on the

circle under various update rules

In the BD-D process, the transition probabilities from one state to another on a circle

of sizeN are the following:

p1,2 =
1
N
, (B.1)

p2,3 =
2
N
·

α +β
α +β + γ +δ

, (B.2)

pi,i+1 =
2
N
·

2α
2α + γ +δ

, 3≤ i ≤ N−2, (B.3)

pN−1,N =
2
N
·

α
α + γ

, (B.4)

p1,0 =
2
N
·

δ
β +δ

, (B.5)

pi,i−1 =
2
N
·

2δ
α +β +2δ

, 2≤ i ≤ N−3, (B.6)

pN−2,N−3 =
2
N
·

γ +δ
α +β + γ +δ

, (B.7)

pN−1,N−2 =
1
N
. (B.8)

In the VM, the transition probabilities between the different states on the circle
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are given by

p1,2 =
2βδ

4βδ +
(

(N−3)β +δ
)

(γ +δ )
, (B.9)

pi,i+1 =
2αδ (α +β )

4αδ (α +β + γ +δ )+
(

(N− i−2)α +(i−2)δ
)

(α +β )(γ +δ )
,

(B.10)

2≤ i ≤ N−2,

pN−1,N =
α(α +β )

4αγ +
(

α +(N−3)γ
)

(α +β )
, (B.11)

p1,0 =
δ (γ +δ )

4βδ +
(

(N−3)β +δ
)

(γ +δ )
, (B.12)

pi,i−1 =
2αδ (γ +δ )

4αδ (α +β + γ +δ )+
(

(N− i−2)α +(i−2)δ
)

(α +β )(γ +δ )
,

(B.13)

2≤ i ≤ N−2,

pN−1,N−2 =
2αγ

4αγ +
(

α +(N−3)γ
)

(α +β )
. (B.14)

In the DB-B process, the transition probabilities on the circle are given by

p1,2 =
2
N
·

β
β +δ

, (B.15)

pi,i+1 =
2
N
·

α +β
α +β +2δ

, 2≤ i ≤ N−3, (B.16)

pN−2,N−1 =
2
N
·

α +β
α +β + γ +δ

, (B.17)

pN−1,N =
1
N
, (B.18)

p1,0 =
1
N
, (B.19)

p2,1 =
2
N
·

γ +δ
α +β + γ +δ

, (B.20)

pi,i−1 =
2
N
·

γ +δ
2α + γ +δ

, 3≤ i ≤ N−2, (B.21)

pN−1,N−2 =
2
N
·

γ
α + γ

. (B.22)

It is observed that the ratiopi,i−1/pi,i+1 in the IP and the VM is equal∀ 1≤ i ≤

N−1. Therefore, the fixation probability of mutants from any state is identical in the

two processes. In addition, since the probabilities of having a transition given that
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the number of mutants either increases or decreases by one ineach state are the same

in the two processes, the mean number of transitions before absorption and mutants’

fixation are also identical. However, the mean time to absorption and fixation are

different.

B.2 Derivation of the results in section 3.3

B.2.1 Derivation of ρS

IP

Substituting the transition probabilities (2.91)–(2.94)into (2.125), we obtain that in

the IP the ratioρS
IP is given by

ρS
IP = y1(n)y2(n), (B.23)

where

y1(n) =
β
(

n3(nγ +β )+n2β +(n−1)δ + γ
)(

n2γ +(n−1)α +β
)

(nβ + γ)
γ
(

n3(nβ + γ)+n2γ +(n−1)α +β
)(

n2β +(n−1)δ + γ
)

(nγ +β )
(B.24)

and

y2(n) =
n−1

∏
k=1

(

kα +(n−k)β
)(

n2β +kγ +(n−k)δ
)

(

kγ +(n−k)δ
)(

n2γ +kα +(n−k)β
) . (B.25)

We have

lim
n→∞

y1(n) = 1. (B.26)

y2(n) can be written as

y2(n) = exp

(

n

∑
k=1

ln

(

kα +(n−k)β
)(

n2β +kγ +(n−k)δ
)

(

kγ +(n−k)δ
)(

n2γ +kα +(n−k)β
)

)

. (B.27)

For largen, the above sum can be approached by the following integral

I =
∫ n

1

(

ln

(

x(α −β )+nβ
n2γ +x(α −β )+nβ

)

− ln

(

x(γ −δ )+nδ
n2β +x(γ −δ )+nδ

))

dx

⇒ I ≈
n2γ

α −β

∫ a
nγ

b
nγ

ln

(

u
u+1

)

du−
n2β

γ −δ

∫
γ

nβ

δ
nβ

ln

(

v
v+1

)

dv, α 6= β , γ 6= δ .

(B.28)
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Evaluating the above integrals we find

I ≈ n

(

1
α −β

(

α lnα −β lnβ
)

+ lnβ −

(

1
δ − γ

(

δ lnδ − γ lnγ
)

+ lnγ
))

(B.29)

= ln









αβ
γδ

(

α
β

)
β

α−β

(

δ
γ

)
γ

δ−γ









n

. (B.30)

Therefore, from (B.23), (B.26), (B.27) and (B.30) we obtain thatfor largen,

ln(ρS
IP)≈ ln









αβ
γδ

(

α
β

)
β

α−β

(

δ
γ

)
γ

δ−γ









n

, α 6= β , γ 6= δ . (B.31)

B.2.2 Derivation of ρS

BD-D

Substituting the transition probabilities (3.1)–(3.4) into (2.125), we obtain that in the

BD-D processρS
BD-D is given by

ρS
BD-D = y3(n)y4(n), (B.32)

where

y3(n) =

(

n(n+1)
(

(n−1)β +δ
)

+(n−1)β +2δ
)(

(n−1)γ +2α
)

(

n(n+1)
(

(n−1)γ +α
)

+(n−1)γ +2α
)(

(n−1)β +2δ
) (B.33)

and

y4(n) =
n−1

∏
k=1

α
(

(n−k)β +(k+1)δ
)

δ
(

(n−k+1)α +kγ
) =

n−1

∏
k=1

n+1+k(β/δ −1)
n+1+k(γ/α −1)

. (B.34)

We have

lim
n→∞

y3(n) = 1. (B.35)

y4(n) can be written as

y4(n) = exp

(

n

∑
k=1

ln
n+1+x(β/δ −1)
n+1+x(γ/α −1)

)

. (B.36)
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For largen, the above sum can be approached by the following integral

I = n
∫ 1

0
ln

(

1+x(β/δ −1)
1+x(γ/α −1)

)

dx. (B.37)

Evaluating the above integral we find

I = n

(

β
δ −β

(

lnδ − lnβ
)

−
γ

α − γ
(

lnα − lnγ
)

)

= ln









(

δ
β

)
β

δ−β

(

α
γ

)
γ

α−γ









n

, (B.38)

α 6= γ, β 6= δ .

Therefore, from (B.32), (B.35), (B.36) and (B.38) we obtain thatfor largen,

ln(ρS
BD-D)≈ ln









(

δ
β

)
β

δ−β

(

α
γ

)
γ

α−γ









n

, α 6= γ, β 6= δ . (B.39)

B.2.3 Derivation of ρS

VM

Substituting the transition probabilities (3.5)–(3.8) into (2.125), we obtain that in the

VM ρS
VM is given by

ρS
VM = y5(n)y6(n), (B.40)

where

y5(n) =
β
(

(n+1)β +(n−1)δ +2γ
)(

(n−1)α +β + γ
)

(nγ +β )
γ
(

(n+1)γ +(n−1)α +2β
)(

(n−1)δ +β + γ
)

(nβ + γ)
(B.41)

and

y6(n) =
n−1

∏
k=1

(

kα +(n−k)β
)(

kγ +(n−k)δ +β
)

(

kγ +(n−k)δ
)(

kα +(n−k)β + γ
) . (B.42)

We have

lim
n→∞

y5(n) =
α(β +δ )
δ (γ +α)

. (B.43)

y6(n) can be written as

y6(n) = exp

(

n

∑
k=1

ln

(

kα +(n−k)β
)(

kγ +(n−k)δ +β
)

(

kγ +(n−k)δ
)(

kα +(n−k)β + γ
)

)

. (B.44)
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For largen, the above sum is approached by the following integral

I = n
∫ 1

0

(

ln

(

x(α −β )+β
x(α −β )+β + γ/n

)

− ln

(

x(γ −δ )+δ
x(γ −δ )+δ +β/n

))

dx. (B.45)

Evaluating the integral we find

I ≈
γ

β −α
(

lnα − lnβ
)

−
β

γ −δ
(

lnδ − lnγ
)

= ln

(

α
β

)
γ

β−α

(

δ
γ

)
β

γ−δ

, α 6= β , γ 6= δ . (B.46)

Therefore, from (B.40), (B.43), (B.44) and (B.46) we obtain thatfor largen,

ρS
VM ≈

α(β +δ )
δ (γ +α)

(

α
β

)
γ

β−α

(

δ
γ

)
β

γ−δ

, α 6= β , γ 6= δ . (B.47)

B.2.4 Derivation of ρS

DB-B

Substituting the transition probabilities (3.9)–(3.12) into (2.125), we obtain that in

the DB-BρS
DB-B is given by

ρS
DB-B = y7(n)y8(n), (B.48)

where

y7(n) =

(

(n+3)β +(n−1)δ
)(

(n−1)α +2γ
)

(

(n+3)γ +(n−1)α
)(

(n−1)δ +2β
) (B.49)

and

y8(n) =
n−1

∏
k=1

(

kα +(n−k)γ
)(

(k+1)β +(n−k)δ
)

(

kα +(n−k+1)γ
)(

kβ +(n−k)δ
) . (B.50)

We have

lim
n→∞

y7(n) =
α(β +δ )
δ (γ +α)

. (B.51)

y8(n) can be written as

y8(n) = exp

(

n

∑
k=1

ln

(

kα +(n−k)γ
)(

(k+1)β +(n−k)δ
)

(

kα +(n−k+1)γ
)(

kβ +(n−k)δ
)

)

, (B.52)

where for largen the above sum can be approached by the following integral

I = n
∫ 1

0

(

ln

(

x(α − γ)+ γ
x(α − γ)+(1+1/n)γ

)

− ln

(

x(β −δ )+δ
x(β −δ )+δ +β/n

))

dx. (B.53)
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Evaluating the integral we find

I ≈
γ

γ −α
(

lnα − lnγ
)

−
β

β −δ
(

lnδ − lnβ
)

= ln

(

α
γ

)
γ

γ−α

(

δ
β

)
β

β−δ

, α 6= γ, β 6= δ . (B.54)

Therefore, from (B.48), (B.51), (B.52) and (B.54) we obtain thatfor largen,

ρS
DB-B ≈

α(β +δ )
δ (γ +α)

(

α
γ

)
γ

γ−α

(

δ
β

)
β

β−δ

, α 6= γ, β 6= δ . (B.55)

B.2.5 Proposition

In the BD-D and DB-B processes,ρS

BD-D
T 1⇔ αβ T γδ , ∀ n,

and ρS

DB-B
T 1⇔ αβ T γδ , ∀ n.

Proof

In the BD-D process, (B.32) can be written in the form

ρS
BD-D =

fBD-D

(

β
δ

)

fBD-D

( γ
α
) , (B.56)

where

fBD-D(x) =
(

2+n(n+1)+
(

n(n+1)+1
)

(n−1)x
)

(n+x)
n−2

∏
k=2

(

n+k(x−1)+1
)

.

(B.57)

fBD-D(x) is a monotonically increasing function. Hence,

ρS
BD-D T 1⇔

β
δ
T γ

α
⇔ αβ T γδ , ∀ n. (B.58)

Similarly, in the DB-B process, (B.48) can be written in the form,

ρS
DB-B =

fDB-B

( γ
α
)

fDB-B

(

β
δ

) , (B.59)

where

fDB-B(x) =
2x+n−1

(n+3)x+n−1

n−1

∏
k=1

n+k(x−1)
n−k+(k+1)x

. (B.60)
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fDB-B(x) is a monotonically decreasing function. Hence,

ρS
DB-B T 1⇔

β
δ
T γ

α
⇔ αβ T γδ , ∀ n. (B.61)

B.3 Derivation of the results in section 3.4

B.3.1 Approximation of APIP in a large population

Substituting the transition probabilities in the IP, (2.91)–(2.94), into (2.23) we obtain

APIP =

1
n+1

(

n3β
n2β+(n−1)δ+γ +

β
nγ+β

)

1+
n−1
∑
j=1

n2γ
n2γ+ jα+(n− j)β

j
∏

k=1

(kγ+(n−k)δ )(n2γ+kα+(n−k)β)
(kα+(n−k)β )(n2β+kγ+(n−k)δ)

. (B.62)

The product in (B.62) can be written as

exp

(

j

∑
k=1

ln

(

kγ +(n−k)δ
)(

n2γ +kα +(n−k)β
)

(

kα +(n−k)β
)(

n2β +kγ +(n−k)δ
)

)

. (B.63)

For largen, the sum in (B.63) can be approached by the following integral

I = n
∫ z

0
ln





nγ
β

1

1+xα−β
β

+1



 dx−n
∫ z

0
ln

(

nβ
δ

1

1+xγ−δ
δ

+1

)

dx, z= j/n.

(B.64)

Evaluating the integral we find that for largen,

I = ln
(

WIP(z)
)n
, (B.65)

where

WIP(z) =

(

γδ
β 2

)z
(

1+ γ−δ
δ z
)

(

δ
γ−δ +z

)

(

1+ α−β
β z
)

(

β
α−β +z

) , α 6= β , γ 6= δ . (B.66)

From (B.62), (B.63) and (B.65) we obtain that for largen, APIP can be approached

by
APIP =

1
n−1
∑
j=0

(

WIP(z)
)n
. (B.67)

In a Hawk–Dove type game,β 2 > γδ . If WIP(1) > 1, i.e if αβ
(

α
β

)
β

α−β
<
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γδ
(

δ
γ

)
γ

δ−γ
(which is equivalent toρS

IP < 1) thenWIP(z) takes its maximum value

whenz= 1. In this case,
HPIP =

1
(

WIP(1)
)n ≈ 0. (B.68)

If WIP(1) < 1, i.e if αβ
(

α
β

)
β

α−β
> γδ

(

δ
γ

)
γ

δ−γ
(which is equivalent toρS

IP > 1) then

WIP(z) takes its maximum value whenz= 0. In this case,

HPIP =
1

n−1
∑
j=0

(

γδ
β 2

) j
=

1− γδ
β 2

1−
(

γδ
β 2

)n ≈ 1−
γδ
β 2 . (B.69)

Following the same procedure in the constant fitness case, wefind that for large

n the fixation probability of a single mutant,APIP, is given by

APIP =
1

n−1
∑
j=0

(

1
r2

) j
=

1− 1
r2

1− 1
r2n

, r 6= 1. (B.70)

For r = 1, APIP = 1/(n+1) ∀ n and thus for largen, APIP ≈ 0 .

B.3.2 Approximation of APBD-D in a large population

Substituting the transition probabilities in the BD-D process, (3.1)–(3.4), into (2.23)

we obtain

APBD-D =

1
n+1

(

1
n+1 +

n((n−1)β+δ )
(n−1)β+2δ

)

1+
n−1
∑
j=1

(n− j)α+ jγ
(n− j+1)α+ jγ

j
∏

k=1

δ ((n−k+1)α+kγ)
α((n−k)β+(k+1)δ )

. (B.71)

The product in (B.71) can be written as

j

∏
k=1

δ
(

n+1+k
( γ

α −1
))

β
(

n+ δ
β +k

( δ
β −1

)) = exp

(

j

∑
k=1

ln
δ
(

n+1+k
( γ

α −1
))

β
(

n+ δ
β +k

( δ
β −1

))

)

. (B.72)

For largen, the sum in (B.72) can be approached by the following integral

I = n
∫ z

0
ln

(

δ
β

1+x
( γ

α −1
)

1+x
( δ

β −1
)

)

dx, z= j/n. (B.73)
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Evaluating the integral we find that for largen,

I = ln
(

WBD-D(z)
)n
, (B.74)

where

WBD-D(z) =

(

δ
β

)z
(

1+ γ−α
α z
)

(

α
γ−α +z

)

(

1+ δ−β
β z
)

(

β
δ−β +z

) , α 6= γ, β 6= δ . (B.75)

From (B.71), (B.72) and (B.74) we obtain that for largen, APBD-D can be approached

by
APBD-D =

1
n−1
∑
j=0

(

WBD-D(z)
)n
. (B.76)

In a Hawk–Dove type game,β > δ . If WBD-D(1) > 1, i.e if
(

δ
β

)
β

δ−β
<
(

α
γ

)
γ

α−γ

(which is equivalent toρS
BD-D < 1) thenWBD-D(z) takes its maximum value whenz= 1.

In this case,
HPBD-D =

1
(

WBD-D(1)
)n ≈ 0. (B.77)

If WBD-D(1) < 1, i.e if
(

δ
β

)
β

δ−β
>
(

α
γ

)
γ

α−γ
(which is equivalent toρS

BD-D > 1) then

WBD-D(z) takes its maximum value whenz= 0. In this case,

HPBD-D =
1

n−1
∑
j=0

(

δ
β

) j
=

1− δ
β

1−
(

δ
β

)n ≈ 1−
δ
β
. (B.78)

In our examples,α might become equal toγ. Hence, it remains to consider the case

whereα = γ.

From (B.73), forα = γ, we get

I = n
∫ z

0
ln





δ
β

1

1+x
(

δ
β −1

)



 dx, z= j/n. (B.79)

Evaluating the above integral we find that for largen,

I = ln
(

W′
BD-D(z)

)n
, (B.80)
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where

W′
BD-D(z) =

(

δ
β

)z ez

(

1+ δ−β
β z
)

(

β
δ−β +z

) . (B.81)

Therefore, for largen, theAPBD-D in this case is approached by

APBD-D =
1

n−1
∑
j=0

(

W′
BD-D(z)

)n
. (B.82)

Sinceβ > δ , W′
BD-D(1) is always less than 1, i.e.

(

δ
β

)
β

δ−β
> e, andW′

BD-D(z) takes its

maximum value whenz= 0. Thus, in this case, the fixation probability is approached

by (B.78). Note that, following the same method as in AppendixB.2.2, we find that

for α = γ, ln(ρS
BD-D)≈ ln

(

(

δ
β

)
β

δ−β
/

e

)n

. Therefore, in this case, mutant Hawks are

always favoured over Doves.

In the constant fitness case, from (B.76) we obtain that for large n, APBD-D is

approached by

APBD-D =
1

n−1
∑
j=0

(1
r

) j
=

1− 1
r

1− 1
rn

, r 6= 1. (B.83)

For r = 1, APBD-D = 1/(n+1) ∀ n and thus for largen, APBD-D ≈ 0 .

B.3.3 APVM and APDB-B in a large population

In the VM,

APVM <
1

n+1

(

πAA
0,1 +nπBA

1,1

)

=
nβ

n+1

(

1
nβ + γ

+
1

nδ +β + γ −δ

)

. (B.84)

In a Hawk–Dove game, sinceβ > δ ,

HPVM <
1

n+1

(

β +δ
δ

)

. (B.85)

In the constant fitness case,

APVM <
r +1
n+1

, ∀ r. (B.86)
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In the DB-B process,

APDB-B <
1

n+1

(

πAA
0,1 +nπBA

1,1

)

=
n

n+1

(

1
n+1

+
β

nδ +2β −δ

)

. (B.87)

In a Hawk–Dove game, as in the VM,

HPDB-B <
1

n+1

(

β +δ
δ

)

. (B.88)

In the constant fitness case, forr ≥ 1/2

APDB-B <
r +1
n+1

, (B.89)

while for r < 1/2,
APDB-B <

r +1
n−1

. (B.90)

Therefore,∀ r, APDB-B <
r+1
n−1.

Hence, both in the VM and the DB-B process, the average fixationprobability of a

single mutant decreases to 0 asn increases to infinity.

Note that in the case where a mutant Dove invades into a population of Hawks,

all the above results can be obtained by exchangingα andδ , andβ andγ.
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APPENDIX C

Food sharing in kleptoparasitic

populations

C.1 The optimal strategy is always pure

In the model considered, there are 21 possible groups of strategies that an animal

can play, 6 of which consist of pure strategies and 15 of mixedstrategies. These are

summarised in Table C.1.

Strategies denoted by (*) in Table C.1 are strategies withp2 = 0, that is, strate-

gies where animals never share their food. In this case, the model reduces to the

model considered in Broomet al. (2004). In this paper, the authors have shown that

the mean time required for a searcher animal that has just encountered a handler to

consume a food item is a strictly monotonic function (exceptwith the possible ex-

ception of a non-generic parameter set, see below) of the probability with which the

searcher attacks the handler,p1. Therefore, depending on the parameter values, the

searcher animal minimises the time it needs for the consumption of a food item by

playing eitherp1 = 0 or p1 = 1. Any other strategy 0< p1 < 1 results in a higher

expected time and thus cannot be evolutionarily stable. Similarly, it has been shown

that the average time needed for a handler to consume a food item after being at-

tacked by a searcher is either a strictly increasing or a strictly decreasing function of

p3 and therefore the optimal strategy is always eitherp3 = 0 or p3 = 1, depending

on the parameter values.

Strategies denoted by (**) are the two additional pure strategies to the model of

Broom et al. (2004) wherep2 = 1, i.e. the strategies where animals always share

their food when other animals attack. It has been shown in Chapter 6 that under

certain conditions one of these can be an ESS, the other not.

In the case where none of the animals of the population behaveaggressively, i.e.
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Table C.1: Possible ESSs. Strategies denoted by * are strategies withp2 = 0, strategies
denoted by ** are pure strategies withp2 = 1, and strategies denoted by *** are strategies
with p1 = 0 and 0< p2 < 1

Strategy at the handling state,p2, p3

p2 = 1 p2 = 0

p2 = p3 = 0

p2 = 0 0< p2 < 1 0< p2 < 1 0< p2 < 1

p3 = 0 p3 = 1 0< p3 < 1 p3 = 0 0< p3 < 1 0< p3 < 1

p2+ p3 = 1 p2+ p3 < 1

Strategy at
the searching
state,p1

p1 = 0 ** * * * *** *** ***

0< p1 < 1 S 1 * * * S 2 S 4 S 6

p1 = 1 ** * * * S 3 S 5 S 7

p1 = q1 = 0 (strategies denoted by (***) in Table C.1 are such strategies where 0<

p2 < 1), the average time required for an attacked mutant handlerthat plays strategy

(0,q2,q3) to consume a food item,T∗
HA, is a function of the form (see equation

(6.28))

T∗
HA = c1q2+c2q3+c3, (C.1)

wherec1, c2 andc3 depend only on the parameters of the modelta, th, tc,ν f f andα.

Hence, if the values of the parameters are such thatc1 andc2 are both greater than

zero, then the optimal strategy for the mutant isq2 = q3 = 0. In any other case, if

c1 < c2, the optimal strategy isq2 = 1 andq3 = 0, whereas ifc1 > c2 the optimal

strategy isq2 = 0 andq3 = 1.

It remains to consider whether any of the strategies (S 1)–(S7) is an ESS. Due

to the complexity of the mathematical formulae, an analyticinvestigation is very

difficult. Hence, we consider whether each of the remaining strategies is an ESS

mainly through extensive numerical investigation.

Regarding strategies (S 1), from equation (6.18) we get that in a population that

plays strategy(0< p1 < 1,1,0),

T∗
SA(0,1,0) = T∗

S (0,1,0), (C.2)

while

T∗
SA(1,1,0) = T∗

C(1,1,0) = tc+
T∗

S (1,1,0)
2

(C.3)

(TX(p1, p2, p3) denotes the average time required for an animal at state X to consume

a food item when playing strategy(p1, p2, p3)). If there is any equilibrium strategy

(p∗1,1,0) in (S 1), thenTSA(p∗1,1,0) should be equal toT∗
SA(0,1,0) andT∗

SA(1,1,0).

But whenT∗
SA(0,1,0) = T∗

SA(1,1,0), thenT∗
S (0,1,0) = T∗

S (1,1,0). Hence, equating
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equations (C.2) and (C.3), we get

T∗
S (0,1,0) = T∗

S (1,1,0) = TS(p
∗
1,1,0) = 2tc. (C.4)

On the other hand, if the strategy(p∗1,1,0) is an equilibrium strategy, then it can-

not be invaded by the mutant strategy(p∗1,0,0), i.e. the average required time for

the mutant handler that has just been attacked in a population that plays strategy

(p∗1,1,0), T∗
HA(p

∗
1,0,0), is higher than the average time required when playing the

population strategy,THA(p∗1,1,0). Using equation (6.24) we find that

T∗
HA(p

∗
1,0,0)> THA(p

∗
1,1,0) (C.5)

⇒ T∗
S (p

∗
1,0,0)> TC(p

∗
1,1,0)⇒ T∗

S (p
∗
1,0,0) = TS(p

∗
1,1,0)> 2tc. (C.6)

This contradicts (C.4). Consequently, there is not any equilibrium strategy(0 <

p1 < 1,1,0). This is also verified from the results of numerical examplesfor a wide

range of parameter values (see Figure C.1a for an example).

In a similar way it is proved that there is no equilibrium strategy in the class of

strategies (S 6). If there was an equilibrium strategy(0 < p∗1 < 1,0 < p∗2 < 1,0 <

p∗3 < 1), p∗2+ p∗3< 1, thenT∗
HA(p

∗
1,0,0), T∗

HA(p
∗
1,1,0) andT∗

HA(p
∗
1,0,1) should all be

identical, otherwise one of the strategies(p∗1,0,0), (p
∗
1,1,0), (p

∗
1,0,1) could invade

(p∗1, p
∗
2, p

∗
3). In this case, using equations (6.24) and (6.25) we find that

TS(p
∗
1, p

∗
2, p

∗
3)−TH(p

∗
1, p

∗
2, p

∗
3) =

1
1−α

ta
2
. (C.7)

On the other hand, if(p∗1, p
∗
2, p

∗
3) is an equilibrium strategy, thenT∗

SA(p
∗
1, p

∗
2, p

∗
3) =

T∗
SA(1, p

∗
2, p

∗
3) = T∗

SA(0, p
∗
2, p

∗
3) which yields that

T∗
SA(1, p

∗
2, p

∗
3) = T∗

S (0, p
∗
2, p

∗
3) = T∗

S (1, p
∗
2, p

∗
3) = T∗

S (p
∗
1, p

∗
2, p

∗
3). (C.8)

Substituting into equation (6.20) we obtain that

T∗
S (p

∗
1, p

∗
2, p

∗
3)−T∗

H(p
∗
1, p

∗
2, p

∗
3) =

1
ν f f

. (C.9)

Hence, if a strategy of the (S 6) class is an equilibrium strategy, then (C.7) and (C.9)

must hold. This leads to

1−α = ν f f
ta
2
, (C.10)

i.e. that the probability of a challenger losing a fight is equal to the ratio of the

expected duration of the fight and the mean time searching forfood. These are all
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a) b)

Figure C.1: (a) The expected time until the consumption of a food item of searcher animals
playing strategies(1,1,0), (0,1,0) and(0 < p1 < 1,1,0) in a population playing strategy
(0< p1 < 1,1,0) for the example considered in Figure 6.3b forta/2= 1 andtc = 2. Numer-
ical examples indicate that in every population which adopts a strategy(0 < p1 < 1,1,0),
a mutant animal that plays either strategy(0,1,0) or strategy(1,1,0) always does better
than any other animal that uses the population strategy. Thus, such populations can be in-
vaded by those mutant strategies and as a result, strategies(0 < p1 < 1,1,0) cannot be
ESSs. (b) The expected time until the consumption of a food item of handler animals play-
ing strategies(0.8,1,0), (0.8,0,0) and(0.8,0< p2 < 1,0) in a population playing strategy
(0.8,0< p2 < 1,0) for ta/2= 1, th = 3, tc = 2,ν f f = 1,νh = 1.5,α = 0.3,P= 1. An equi-
librium strategy(0< p1 ≤ 1,0< p2 < 1,0) cannot be evolutionarily stable.

biologically-determined parameters, and we assume that the chance of their precise

coincidence in this way is negligible (i.e. the case is non-generic). Thus, for exam-

ple, such a case would correspond to a region of zero area in a figure such as Figure

6.3, equivalent to the boundary lines.

Numerical investigation also indicates that mixed strategies in the classes (S 4),

(S 5) and (S 7) are always invaded and so there are no mixed ESSsin these classes.

Concerning strategies (S 2) and (S 3), numerical examples on awide range

of parameter values also imply that for every value ofp2, 0 < p2 < 1, strategies

(0 < p1 < 1, p2,0) can always be invaded either by strategy(0, p2,0) or by strat-

egy (1, p2,0). On the other hand, numerical examples indicate that for given p∗1,

0 < p∗1 ≤ 1, there is a strategyp∗2, 0< p∗2 < 1, such that for specific values of pa-

rameters all the invading strategies(p∗1,0 ≤ q2 ≤ 1,0) do equally well in a pop-

ulation playing(p∗1, p
∗
2,0), i.e. THA(p∗1, p

∗
2,0) = T∗

HA(p
∗
1,0 ≤ q2 ≤ 1,0), whereas

any other strategy does worse. Any other population playinga different strategy

(p∗1,0 < p2 < 1,0), p2 6= p∗2, can be invaded either by the strategy(p∗1,0,0) or the

strategy(p∗1,1,0) (see Figure C.1b for an example). However, in a population that

plays a strategy(p1,0≤ q2 ≤ 1,0), the required time for an attacked handler play-
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ing the population strategy,THA(p1,0≤ q2 ≤ 1,0), is less than that required by an

attacked handler playing(p∗1, p
∗
2,0). In other words, if an infinitesimal portion of

the population deviates from the equilibrium strategy, evolution will drive the pop-

ulation away from that equilibrium. Thus, according to the second condition of

Maynard Smith and Price (1973) for a strategy to be an ESS (seeSection 1.2.1), the

strategy(p∗1, p
∗
2,0) cannot be ESS. Hence, none of the strategies (S 2) and (S 3) can

be evolutionarily stable.
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Cooper, W.E., Ṕerez-Mellado, V. (2003). Kleptoparasitism in the Balearic lizard,

Podarcis lilfordi. Amphibia-Reptilia, 24 (1982), 219–224.

Coyle, F.A., O’Shields, T.C., Perlmutter, D.G. (1991). Observations on the behavior

of the kleptoparasitic spider,Mysmenopsis furtiva(Araneae, Mysmenidae).The

Journal of Arachnology, 19 (1), 62–66.

Croft, D.P., James, R., Krause, J. (2008).Exploring animal social networks. Prince-

ton, New Jersey: Princeton University Press.

Crowe, M., Fitzgerald, M., Remington, D., Rychtá̌r, J. (2009). On deterministic and
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