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Abstract

We describe a n component abelian Hall fluid as a system of composite bosons moving in

an average null field given by the external magnetic field and by the statistical flux tubes

located at the position of the particles. The collective vacuum state, in which the bosons

condense, is characterized by a Knizhnik-Zamolodchikov differential equation relative to a

Û(1)n Wess-Zumino model. In the case of states belonging to Jain’s sequences the Knizhnik-

Zamolodchikov equation naturally leads to the presence of an Û(1)⊗ŜU (n) extended algebra.

Only the Û(1) mode is charged while the ŜU(n) modes are neutral, in agreement with recent

results obtained in the study of the edge states.
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It is well known that a simple physical idea lies behind the different theoretical descriptions

of the fractional quantum Hall effect (FQHE), namely that an Hall fluid should be described not in

terms of the ordinary electrons but of the quasiparticles obtained by binding to them an appropriate

number of vortices. This picture, clearly present in the Laughlin wave function1, widely discussed

and exploited by Wilczeck2 and formulated in the framework of a Ginsburg-Landau model by

several authors3, finds a precise mathematical formulation in two dimensional Conformal Field

Theory (2DCFT), where the non trivial braiding of two quasiparticles is realized as the exchange

of the corresponding Vertex Operators4, and in the Chern-Simons (CS) lagrangian approach5, that

gives the possibility of going beyond the mean field approximation, by evaluating the fluctuations

of the CS field6.

The most appealing realization of this physical idea has been put forward by Jain7, who has

suggested the possibility of looking at the FQHE for the electrons at filling ν = n/(2np ± 1) as a

manifestation of the integer effect for composite fermions obtained by attaching to each electron

an even number of flux units opposite to the external magnetic field. While the most direct

experimental support for this point of view derives from the observation that the most prominent

Hall plateaux are seen at the fillings ν = n/(2n ± 1) (principal sequence) and at ν = n/(4n ± 1),

further evidence has been gathered from the analysis of the energy gaps for such fillings8 and from

the study9 of properties of the state at ν = 1/2, the accumulation point of the principal sequence.

A very simple theoretical implementation of Jain’s approach has been obtained by studying

the motion of each quasiparticle in the presence of the external magnetic field and of infinitesimally

thin statistical flux tubes located at the position of the other quasiparticles10. This analysis, that

can be generalized to an arbitrary abelian Hall fluid, leads naturally to the Laughlin ground

state wave function (gswf) and has the advantage of preserving in the general case the algebraic

structures present in the case of filling ν = 1, that is well understood in terms of a single particle

description. As a consequence, in this framework, an easy proof has been given10,11 of the important

result12,13 that the Laughlin gswf can be characterized as a highest weight state of the W1+∞

algebra of the area preserving non singular diffeomorfisms.

However in this paper, instead of promoting the electrons to composite fermions, we will turn

them into composite bosons moving in an average null field made of the external magnetic field and

the statistical flux tubes attached to the particles. In this approach, a different characterization of

the ground state of a generic abelian Hall fluid can be obtained and typical properties of Jain’s states

can be unveiled. More specifically, for the simple case ν = 1/m the collective vacuum, in which

the composite bosons condense, is characterized as a solution of the Knizhnik-Zamolodchikov (KZ)
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equation14 for the correlators of a Û(1) Wess-Zumino field, making contact with the analysis of the

Hall effect in terms of 2DCFT. This result can be easily generalized to the generic n component

abelian Hall fluid, where the KZ equation is relative to Û(1)n 2DCFT correlators. More interesting

is the case of states belonging to Jain’s sequences, where the KZ equation exhibits the presence

of an Û(1) ⊗ ŜU(n) extended algebra. This approach confirms in a simple way results obtained

in the framework of representation theory of the W1+∞ algebra15 and by studying the dynamics

of the edge states in the presence of disorder16. It also gives a direct evidence that only the Û(1)

mode is charged while the remaining are neutral.

Let us start our discussion by recalling that in the ν = 1 case the analytic part of the Laughlin

wave function is easily obtained out the single particle states as a Slater determinant

χν=1(z1, z2, . . . , zN) =
∑

P

(−1)P (b†1)
ni1 (b†2)

ni2 . . . (b†N)niN χ0 , (1)

where ni1 , ni2 . . . niN
is a permutation, P , of the non negative integers smaller than the electron

number N , b†i and bi are creation and annihilation operators in the Fock-Bargmann representation:

b†i = zi , bi = ∂i , (2)

and the vacuum state is defined by biχ0 = 0. Following Jain7, one can describe the state at filling

ν = 1/(2p+ 1) ≡ 1/m as a system, at the effective filling νeff = 1, of composite fermions obtained

by binding −2p units of flux to each electron. By studying the motion of each composite fermion in

the presence of the external magnetic field and of the other particles10, one sees that the operators

b†i and bi are to be modified as follows:

b†i = zi , bi = ∂i − 2p∂i

∑

j 6=i

ln(zi − zj) = ∂i − 2p
∑

j 6=i

1

zi − zj

. (3)

This implies that the Fock space is built out of an intrinsically collective vacuum χc defined by the

condition biχc = 0, and that the ground state has the same structure than the one given in eq. 1,

namely:

χ 1
m

(z1, z2, . . . , zN ) =
∑

P

(−1)P (b†1)
ni1 (b†2)

ni2 . . . (b†N )niN χc =
∏

i<j

(zi − zj)
m . (4)

More generally, one can consider the case of a generic n component abelian Hall fluid charac-

terized by a symmetric integer valued matrix K with odd diagonal elements5. Then the generalized

Laughlin gswf, corresponding to the ground state of the composite fermions, is given by

χK({zI
i }) =

∏

I

∑

PI

(−1)PI (bI†
1 )nI

i1 (bI†
2 )nI

i2 . . . (bI†
N )

nI

iNI χc , (5)
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where i labels the electrons in a given component, I the different components and nI
i1

, nI
i2

. . . nI
iNI

is a permutation, PI , of the sequence of non negative integers smaller than the number NI of

electrons in the component I. We have introduced the new operators

(bI
i )

† = zI
i , bI

i = ∂I
i − ∂I

i

∑

′

HIJ ln(zI
i − zJ

j ) = ∂I
i −

∑

′ HIJ

zI
i − zJ

j

, (6)

where HIJ = KIJ −δIJ ,
∑

′

means the sum on all values of j, J such that zJ
j 6= zI

i and the collective

vacuum χc is defined by bI
i χc = 0.

As we have already mentioned, in this paper we follow a variation of this approach, by

describing the system as made out of composite bosons rather than composite fermions. For

example, in the case of filling ν = 1/(2p + 1) ≡ 1/m, we bind −m units of flux to the electrons

rather than −2p. Studying, along the same lines, the motion of the composite bosons one is lead

to the introduction of the new set of operators

B†
i = zi , Bi = ∂i − m ∂i

∑

j 6=i

ln(zi − zj) = ∂i − m
∑

j 6=i

1

zi − zj

. (7)

In this case the composite bosons will condense in a collective vacuum state, corresponding to the

Laughlin gswf, defined by

Biχ 1
m

(z1, z2, . . . , zN ) = 0 . (8)

More generally, in the n component case, the composite bosons will condense in a collective

vacuum defined by

BI
i χK({zJ

j }) = 0 , (9)

where the new set of operators is given by:

(BI
i )† = zI

i , BI
i = ∂I

i − ∂I
i

∑

′

KIJ ln(zI
i − zJ

j ) = ∂I
i −

∑

′ KIJ

zI
i − zJ

j

. (10)

In the case ν = 1/m the vacuum state condition, eq. 8, corresponds to the Knizhnik-Zamolodchikov

(KZ) linear differential equation for the correlators of an abelian Wess-Zumino field of conformal

weight m/2:


∂i − m
∑

j 6=i

1

zi − zj



 χ 1
m

(z1, z2, . . . , zN ) = 0 . (11)

Therefore to each particle we can associate an element of a local Û(1) group of conformal weight

m/2 that can be written as a Coulomb gas Vertex Operator (VO) V√
m(z) =: exp [i

√
mφ(z)] : ,

where φ(z) is a ( properly compactified ) free holomorphic scalar field, with the standard mode
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expansion

φ(z) = q − ip ln z + i
∑

n6=0

an

n
z−n. (12)

As a consequence, the Laughlin gswf can be expressed as a correlator of VO’s:

χ 1
m

(z1, z2, . . . , zN ) =
〈

V√
m (z1) . . . V√

m (zN )
〉

=
〈

N
√

m
∣

∣V√
m (z1) . . . V√

m (zN )
∣

∣ 0
〉

, (13)

where the Fock vacuum state, 〈N√
m|, with momentum N

√
m, has been introduced to take into

account momentum conservation. In the generic abelian case the equation defining the collective

bosonic vacuum has the form

(∂I
i −

∑

′ KIJ

zI
i − zJ

j

)χK({zI
i }) = 0 . (14)

The discussion relative to the one component case is easily generalized to the KZ equation for the

n component Hall fluid, provided the K matrix is positive definite. We will make this assumption

as only under this condition a completely consistent description on higher genus Riemann surfaces

can be achieved17. This amounts to disregard Hall fluids for which the edge currents propagate in

opposite directions18. For such fluids the quantization of Hall conductance is in general an open

problem that, for the case of Jain’s sequences, has been solved19,16 by taking the presence of disorder

explicitly into account. Under the positivity condition one can introduce a n-component vector of

independent holomorphic fields ~φ(z) and a set of n-component vectors ~βI such that ~βI · ~βJ = KIJ .

Then by defining the VO’s V~βI
(z) =: exp [i~βI · ~φ(z)] : and the currents Ja(z) = i∂φa(z) one obtains

the following operator product expansion (OPE)

Ja(z)V~βI
(w) ∼ (~βI)a

z − w
V~βI

(w) . (15)

Therefore one recognizes eq. 14 as the KZ equation for a Û(1)n Wess-Zumino model. The

corresponding correlators will be given by

χK({zI
i }) =

〈

n
∏

I=1

NI
∏

i=1

V~βI
({zI

i })
〉

. (16)

We turn now to the more interesting case relative to the fillings of the Jain’s sequences,

where out of the KZ equation will emerge the presence of an extended Û(1)⊗ ŜU(n) algebra. The

structure of the K matrix for the Jain’s sequences is given by KIJ = δIJ + 2p. Notice that for

the Jain’s sequences in all components there is the same number of electrons NI . This derives

from the condition NΦ = KIJNJ , where NΦ is the number of units of external magnetic flux, that

guarantees the cancellation, in the average, between the external magnetic field and the statistical

field of the composite bosons.
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The K matrix can be diagonalized by means of an orthogonal transformation, K = OT KdiagO,

where Kdiag = diag(1, . . . , 1, 2np + 1). The matrix element OIJ with I = 1, . . . , n − 1 and

J = 1, . . . , n are strictly related to the matrix elements of the diagonal generators of the SU(n)

group in the fundamental representation:

OaJ = taJJ ≡ (~uJ)a , a = 1, . . . , n − 1, (17)

(we have introduced the vectors ~uJ in order to simplify the notation). The remaining elements are

given by OnJ = 1/
√

n, J = 1, . . . , n. The explicit form of the matrix ta is given by

ta =
1

√

a(a + 1)
diag(1, . . . , 1,−a, 0, . . . , 0) , a = 1, . . . n − 1 . (18)

Notice that ta is traceless, as it should. We can then rewrite KIJ as follows:

KIJ =
1

ν
+ ~uI · ~uJ =

1

ν
+ taIIt

a
JJ , (19)

and express eq. 14 in a form that makes manifest the presence of an extended symmetry, namely

(∂I
i −

∑

′ ν−1

zI
i − zJ

j

+
∑

′ taIIt
a
JJ

zI
i − zJ

j

)χK({zL
l }) = 0 . (20)

where ν is the filling factor relative to the Jain’s states, ν = n/(2np+1). Notice that the numerator

of the term appearing in the first sum of eq. 20 corresponds strictly to the Û(1) case discussed

above, see eq. 11. This suggest to perform an orthogonal transformation on the φ-fields:

Φa = Oajφj , a = 1, 2, . . . , n − 1 , (21)

Φ+ = Onjφj =
1√
n

(φ1 + φ2 . . . φn) . (22)

We can then rewrite the energy-momentum tensor and the VO’s in terms of the new fields obtaining

T (z) = −1

2
: ∂~φ(z)·∂~φ(z) : = −1

2
: ∂Φ+(z)∂Φ+(z) : −1

2
:

n−1
∑

a

∂Φa(z)∂Φa(z) : , (23)

and

V~βI

(z) = : exp [~βI · ~φ(z)] : = : e
i√
ν
Φ+(z)

: : ei~uI ·~Φ(z) :≡ V+(z)V~uI
(z) . (24)

We identify i∂Φ+(z) as a Û(1) current and Ja(z) = i∂Φa(z) as the diagonal currents of ŜU(n).

Indeed

Ja(z)V~uI
(w) ∼ taII

z − w
V~uI

(w) . (25)

This identifies the coefficients taII in the second sum of the KZ eq. 20 as the correct representation

matrix elements. Although the non-diagonal terms do not appear in eq. 20, as they are absent in
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the energy-momentum tensor eq. 23, they are easily introduced as bilinear in the VO’s20. As the

roots of SU(n) are of the form ~α = ~uL − ~uM , one has J~α =: V~uL
V †

~uM
: and their action on the VO

V~uI
is given by

J~α(z)V~uI
(w) ∼ δIM

z − w
V~uL

. (26)

In terms of the new fields the gswf characterized by the KZ equation takes the form

χK({zI
i }) =

〈

0

∣

∣

∣

∣

∣

n
∏

I=1

NI
∏

i=1

V~uI
(zI

i )

∣

∣

∣

∣

∣

0

〉〈

∑

I,i

√
ν−1

∣

∣

∣

∣

∣

n
∏

I=1

NI
∏

i=1

V+(zI
i )

∣

∣

∣

∣

∣

0

〉

. (27)

Notice that the correlator factorizes and, while the Û(1) factor carries the full information

on the total momentum associated with the VO’s, the ŜU(n) factor automatically satisfies the

Coulomb gas neutrality condition. This implies, as it can be easily seen in terms of the equivalent

plasma picture, that the Û(1) mode is charged while the ŜU(n) modes are neutral. The same

result can also be obtained by recalling that the 2DCFT momentum is only rescaled with respect

to the physical charge or by explicitly evaluating the Hall conductance17.

The difference between a generic n component Hall fluid and one relative to the Jain’s se-

quences has important consequences on the structure of the theory on a non trivial compact

Riemann surface and on the nature of the edge excitations. It has been shown that while in the

generic case there are n sectors of charged edge excitations, in the Jain’s case only the Û(1) mode

is charged while the remaining n − 1 are neutral15,16. The same result has been obtained by an-

alyzing the gswf’s on a torus, in ref 17, where the correspondence between gswf’s on genus one

Riemann surface and edge states is discussed in the framework of 2DCFT, showing that both are

characterized by the same integer lattice Zn/KZn. The peculiar nature of the Jain’s sequences is

then related to the fact that the relative lattice can be recast in the much simpler form Z/(detK)Z,

in complete analogy to the case of a one-component fluid. Whether this characterization is physi-

cally relevant in explaining the observed prominence of Jain’s sequences is an open and interesting

problem.
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