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ABSTRACT 21 

 22 

Empirical preprocessing methods such as multiplicative scatter correction (MSC) and extended 23 

multiplicative scatter correction (EMSC) are widely used to remove light scattering effects from spectra 24 

of samples containing particulate species. When these methods are used, the parameters that are applied 25 

for correcting the spectra are normally discarded. If the scatter correction method is effective, these 26 

parameters should contain information regarding the particulate species since it is this component which 27 

contributes to the light scattering effects. This study had two objectives. The first objective was to 28 

examine the nature and extent of information contained in scatter correction parameters. The second 29 

objective is to examine whether this information can be effectively extracted by proposing a method to 30 

obtain particularly, the mean particle diameter from the scatter correction parameters. The approach 31 

used for this investigation is to examine the scatter correction parameters in terms of the information 32 

regarding particle size and particle concentration by using a dataset in which particle size and particle 33 

concentration vary significantly. It was found that the MSC parameters contained significant 34 

information regarding particle size and concentration. A two-step method to obtain simultaneously the 35 

particle concentration and particle diameter was proposed and tested using a 2-component and 4-36 

component data set. It was found that the approach which uses the MSC parameters gave a better 37 

estimate of the particle diameter compared to using Partial Least Squares (PLS) regression for the 2-38 

component data. For the 4 component data it was found that PLS regression gave better results but 39 

further examination indicated this was due to chance correlations of the particle diameter with the two 40 

of the absorbing species in the mixture. 41 

42 
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1. Introduction 43 

Multivariate calibration methods such as Partial Least Squares (PLS) regression have been widely 44 

used to build calibration models for predicting the concentrations of chemical components from near-45 

infrared (NIR) spectra. When samples containing particles are encountered, multiple light scattering 46 

effects introduce nonlinearities leading to degradation in model performance. Several empirical 47 

preprocessing methods such as multiplicative scatter correction (MSC), standard normal variate (SNV), 48 

extended multiplicative scatter correction (EMSC), orthogonal signal correction (OSC), and optical path 49 

length estimation and correction (OPLEC) have been used to mitigate light scattering effects.[1-6] 50 

When dealing with particulate systems, it is generally assumed that the information removed from the 51 

measured spectra by the application of these empirical methods is essentially the manifestation of the 52 

underlying physics of light scattering without significant loss of chemical information, thus improving 53 

the performance of the multivariate regression models in estimating chemical information from the 54 

corrected spectra.  55 

When these methods are used, the parameters that are applied for correcting the spectra are normally 56 

discarded since they are supposed to contain only physical information. If the scatter correction method 57 

is effective, the scatter correction parameters would be expected to contain information regarding the 58 

particulate species since it is this component which contributes to the light scattering effects. If this 59 

information can be extracted then it could provide valuable extra information (particle size) in addition 60 

to estimates of concentrations which are obtained from the calibration models built on the scatter-61 

corrected spectra.  62 

Several studies can be found in the literature where scatter correction techniques are applied and 63 

compared in terms of the improvement in performance of models built using the corrected spectra.  64 

However, the performances of the empirical methods appear to be dependent on the system studied with 65 

no single empirical scatter correction method consistently outperforming others across a number of 66 

different types of datasets. Among the empirical methods, the more recently developed OPLEC method 67 
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has been promising,[6, 7] though it has not yet been applied widely enough to conclude that the method 68 

is indeed consistently superior to other available methods. A study based on simulations using a 69 

rigorous light propagation model indicated that most of the common scatter correction methods led to 70 

similar model performances.[8] In addition, this study also indicated that the effectiveness of a 71 

particular scatter correction technique was also dependent on measurement configuration. To-date 72 

however, to our knowledge, there have been no in-depth studies that have examined the information 73 

contained in the scatter correction parameters themselves. Such a study will be useful for understanding 74 

the nature and characteristics of information contained in the parameters of a particular scatter 75 

correction method. This could help in identifying situations where they perform the best and could 76 

potentially help in modifying the methods to produce more effective scatter correction techniques.  77 

The implicit assumption when applying scatter correction methods is that light scattering effects 78 

manifesting as an additive or multiplicative or more complex (e.g. wavelength dependent) effects in the 79 

measured spectra are removed. However, there are other non-chemical effects which can lead to similar 80 

manifestations in the spectra as the assumed effect of light scattering (e.g. instrument drift). In other 81 

words, the corrections are not necessarily specific to scattering. Hence the terms Multiplicative Signal 82 

Correction and Extended Multiplicative Signal correction can sometimes be found in the literature 83 

where “signal” is used instead of “scatter” to denote that the techniques are more general in terms of the 84 

non-chemical information removed by them.[5] Similarly, the SNV method is clearly a general method 85 

which has also been used to correct light scattering effects.  86 

In any dataset consisting of spectroscopic measurements of particulate systems, we can expect the 87 

non-chemical variations to be a combination of effects with the light scattering effects usually being the 88 

most dominant. There are four possibilities why one scatter correction technique might work better than 89 

others: (1) The method removes the most amount of variation due to light scattering compared to others; 90 

(2) The method removes the most amount of variation due to all non-chemical effects present in the 91 

measurements; (3) The method linearizes the measurements most effectively compared to other 92 
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methods, (4) The method removes the least amount of relevant chemical information; and (5) The 93 

method is the most effective in terms of a combination of the previous four aspects.  Therefore the most 94 

effective “scatter correction” method will differ from one system to another depending on the dominant 95 

type of non-chemical variations in the measurements that form the datasets.  96 

This study had two objectives. The first objective was to examine the nature and extent of information 97 

contained in scatter correction parameters.  The second objective is to examine whether this information 98 

can be effectively extracted by proposing a method to obtain particularly the particle size from the 99 

scatter correction parameters. The approach used for this investigation is to examine the scatter 100 

correction parameters in terms of the information regarding particle size and particle concentration by 101 

using a dataset in which particle size and particle concentration vary significantly and where the values 102 

of these parameters have been accurately measured. Since particle concentration and size are the two 103 

sample parameters that affect the extent of light scattering by a sample, it follows that any effective 104 

correction step will contain information regarding these two sample parameters. Following this logic, if 105 

the scatter correction step is effective, then it should be possible to extract information regarding particle 106 

size and/or particle concentrations from the scatter correction parameters. This is investigated through 107 

an approach for building models to obtain particle size information using the scatter correction 108 

parameters. The investigation into the effectiveness of the scatter correction approach to specifically 109 

provide information regarding particle size was carried out using two models systems namely, a two 110 

component and a four component system both containing polystyrene latex particles as the scattering 111 

species.   112 

 113 

2. Materials and Methods 114 

2.1 Experimental dataset 115 

The two datasets used in this study were obtained from previously published works.[9, 10] A brief 116 

description of the datasets is given here.  Both datasets contain measurements taken using a Cary 5000 117 
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spectrometer equipped with an external diffuse reflectance accessory and 1 mm sample thickness was 118 

chosen. The first dataset is a polystyrene-water system that consists of a total of 35 samples with 5 119 

particle diameters (dp = 100, 200, 300, 430 and 500 nm) and 7 particle concentrations (y = 0.1, 0.5, 0.9, 120 

1.23, 1.6, 1.95 and 2.3 in wt. %) for each particle size.[9] Spectra were collected using 0.4 sec as 121 

integrating time for a wavelength range of  =1550 – 1850 nm with 4 nm interval, resulting in 75 122 

discrete wavelengths per spectrum. The raw spectra were smoothed using Savitsky-Golay filter with 123 

window width of 9 and polynomial order of 3 to remove noise in the measurements.  124 

The second dataset is a 4-components system that consists of water (H2O), deuterium oxide (D2O), 125 

ethanol (C2H5OH), and polystyrene particles.[10] The concentration of each component was varied so 126 

that the correlation between concentration of polystyrene particles and other components in the sample 127 

is negligible. In this dataset there are samples containing the same particle diameter and particle 128 

concentration while concentrations for other components vary. 5 particle diameters (dp = 100, 200, 300, 129 

430 and 500 nm) and 5 concentrations (y = 1, 2, 3, 4, and 5 in wt. %) were employed to form this dataset 130 

of 45 samples. Spectra were collected in the range of  =1500 – 1880 nm with 2 nm intervals and 10 sec 131 

as the integrating time. The same smoothing conditions applied to the first dataset were also employed 132 

for this dataset before subjecting to scatter correction methods. Both datasets contained measurements 133 

from three different measurement configurations namely, total reflectance (Rd), total transmittance (Td) 134 

and collimated transmittance (Tc). 135 

2.3 Estimation of particle size from MSC parameters 136 

The first step in this approach is to establish the relationship between the MSC parameters and 137 

particle size (diameter) using the calibration dataset. In other words we develop models for expressing 138 

the additive (a) and multiplicative (b) term of MSC parameters as a function of particle diameter ( pd ) 139 

and particle concentration ( y ). As will be seen in the next section, the MSC parameters are dependent 140 

on both particle diameter and concentration. Given these “direct” relations, we can then write inverse 141 

relations i.e. particle diameter as a function of particle concentration and MSC parameters a or b or 142 
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both. This relationship can then be used to estimate the diameter of particles in a sample i given the 143 

concentration of particles and the MSC parameters ai and bi for that sample. Usually the actual particle 144 

concentration of a sample is also unknown. Therefore it has to be estimated. This can be done in the 145 

usual manner of building a calibration model for the concentration using PLS regression. Then in the 146 

inverse expression, the estimated particle concentration ( ŷ ) is used. The methodology is summarized by 147 

the flowchart shown in Fig. 1. 148 

The methodology consists of two stages, the calibration model building stage (Stage 1 shown in 149 

black) where the models for estimating pd  and y  are developed using the calibration dataset, and the 150 

prediction stage (Stage 2 shown in blue) to estimate particle diameter 
p

d̂  and particle concentration ŷ  151 

from spectra of unknown sample conditions.  for a two component system is considered. In Stage 1, 152 

measured spectra (xmeas) from a set of calibration samples of known y  and pd  is subjected to an 153 

empirical scatter correction method such as MSC. The MSC equation is given by:  154 

= a+b +
meas ref

x x e                                          (1) 155 

where xmeas is the spectrum measured from the sample, and xref is a reference spectrum. The values of 156 

parameters a and b are estimated using ordinary least-squares regression of xmeas onto xref. The error 157 

term, e, contains the chemical information of the sample since it is the portion that is not explained by 158 

the physical variations (changes in baseline/slope). Note that the letters in bold indicate vectors. Once a 159 

and b are estimated, Eq. (1) can be rearranged as follows: 160 

( )= a b = + b
corr meas ref

x x - / x e/                     (2) 161 

where xcorr is the spectrum corrected using MSC and should be as similar to xref as possible (in a least 162 

squares sense). This means that the difference between xcorr and xref, i.e. e/b, can be considered to be 163 

independent of the scattering effect. In this work, the reference spectrum for this example was taken to 164 

be the average spectrum of the whole calibration dataset.  165 
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Based on the functional forms identified through the analysis of the relationships between the MSC 166 

parameters and the particle diameter (dp) and concentration (y) are obtained. For the two-component 167 

dataset, the expressions were (discussed in §3.1): 168 

       2 3 2

a 1 2 3 1 p 2 p
a = + y+ y + y + d + d1         (3) 169 

     2

b 1 1 p 2 p
b = + y + d + d1                            (4) 170 

where coefficients (αi, βj and ηk) were determined based on the best fit of y and dp to the MSC parameters 171 

a and b. It is worth noting that the expressions may not be unique therefore care has to be taken to 172 

ensure that the coefficients used in the functional forms are significant. 173 

Eqs. (3) and (4) can then be re-arranged so that dp can be expressed as:  174 

1
( ) 4 1

2

    
   

    

1/2

2 a
p 1 1 2 2 3

2 1 2 3

a -
d = f a, y = - - -

y+ y + y


  

   
          (5) 175 

1
( ) 4 1

2

    
   

    

1 2

2 b
p 1 1 2

2 1

b -
d = g b, y = - - -

y


  

 
                         (6) 176 

It is also possible to obtain an expression for dp that includes both parameters a, b and the measured and 177 

corrected spectrum, xmeas and xcorr. The expression simultaneously makes use of particle size 178 

information contained in these parameters as well as that remaining in the corrected spectrum, thereby 179 

providing the possibility of better estimation of dp owing to the augmented information contained in 180 

such an expression. In order to do this, we start with the re-arranging Eq.(2):  181 

= a+b
meas corr

x x                                       (7) 182 

Substituitng Eqs. (3) and (4) into Eq. (7), and carrying out algebraic manipulations an expression for 183 

dp as a function of a, b, xcorr, xmeas and y can be obtained. Maple version 13 (Waterloo Maple Inc.) was 184 

employed to solve for dp to obtain the following expression: 185 
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 

 

 

 

(     )

1

2 4

 
 
 

corr

corr

corr

corr
corr

corr meas

corr

x x

x

x

x x

x x

x

p meas

3 2

3 1 2 1 1 1 1 1

2
3 2

3 1 2 1 1 1 1 1

2
2

3 2 2 2 1 2 1 2
3 2 2 2 1 2 1 2

3 2

3 2 1 a b

1

d = h a, b, y, ,

y + y + y+ y

y + y + y+ y-
    =

y y + y+ + - y y + y+ +

y + y + y+ + -

+ y

       

       

               

    



 
 
  
  
   
  
  
  
  
  
   

1
2

  (8) 186 

Note that xcorr and xmeas are scalars when writing dp in this form indicating that the measured and 187 

corrected absorbance in the equation are for a particular wavelength. Therefore we obtain a solution for 188 

dp at each wavelength. As a result dp estimated by this equation is obtained by averaging over all the 189 

wavelengths. 190 

For the 4-component data, following the same procedure leads to the following equations.  191 

3 4

2 2 2 2 2 2

a 1 2 1 p 2 p 1 p 2 p p p
a = + y+ y + d + d y d y d y d y d                     (9) 192 

2 2 2 2 2 2

2 2 2 3 4b 1 1 p p 1 p p p p
b = + y y d d y d y d y d y d                      (10) 193 

2 4

2
p

b b a c
d

a

   
                                              (11)                                                                                                                                194 

where  2 2

2 2 4 2 2 4corr
a = y y x y y                                195 

 2 2

1 1 3 1 1 3corr
b = y y x y y                                 196 

 2 2

1 2 1 2a meas corr b
c = y y x x y y                          197 

 198 

 199 

In Stage 2, the spectrum of a sample whose particle size and concentration have to be estimated is 200 

subjected to the scatter correction method using the same reference spectrum (xref) that corrects the 201 

calibration set. The corrected spectrum is then subjected to the PLS calibration model built in Stage 1 to 202 

obtain an estimate of the particle concentration ŷ . This value of ŷ  is then used along with one of the 203 
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three inverse expressions mentioned above to get 
p

d̂ . Thus estimates for both particle diameter and 204 

concentration are obtained from the spectrum.  205 

It should be noted that while the methodology is described for the case where MSC is used as scatter 206 

correction method, it can be easily applied to any other scatter correction technique provided the scatter 207 

correction parameters obtained from a technique have extractable information regarding the particle 208 

diameter. 209 

 210 

3. Results and Discussion  211 

An initial analysis was carried out using data from each of the measurement configurations, namely 212 

total transmittance (Td), total reflectance (Rd) and collimated transmittance (Tc). MSC, and two 213 

versions of EMSC namely EMSCL and EMSCW [8, 11] were applied to the datasets and the scatter 214 

correction parameters were examined. In this paper, only the results from data taken with the 215 

measurement configuration for which the scatter correction parameters exhibit a clear relationship with 216 

particle parameters (particle size and concentration) are shown in order to keep the discussion clear and 217 

concise. For the 2-component system MSC parameters obtained from the Td spectra and for the 4-218 

component system MSC parameters obtained from the Rd spectra exhibited the clearest relationship 219 

with respect to pd  and y . The differences in performance of scatter correction methods in relation to 220 

measurement configuration was seen in an earlier simulation study[8] and observations made in this 221 

study using experimental data is consistent with that study. Therefore, when applying the method 222 

described in this paper for extracting particle size information, the choice of measurement configuration 223 

is an important factor. 224 

Initial analysis showed that while EMSC could provide better scatter correction from the point of 225 

view of better performing calibration models for particle concentration, for the datasets considered here, 226 

the parameters obtained by applying EMSC did not show clear relationship with either pd  or y , 227 
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indicating that any information on these properties that may be embedded in the parameters are not 228 

easily (if at all) extractable. Therefore MSC which showed clear dependence on particle diameter and 229 

concentration is used in the discussions below. It should be noted that it is possible to use EMSC for the 230 

step where a calibration model is built to predict the particle concentration 
p

d̂  in order to get better 231 

estimates of ŷ  while using the MSC parameters to obtain the particle diameter information. For sake of 232 

simplicity, in this paper we chose MSC for correcting the spectra which is used to build the PLS model 233 

for ŷ  as well as for estimating 
p

d̂  from the MSC parameters. 234 

 235 

3.1 Analysis of scatter correction parameters in two- and four-component systems 236 

For the first dataset (polystyrene-water), MSC was applied to the Td spectra after smoothing, and the 237 

MSC parameters, a and b, were plotted against pd  and y  to investigate the information contained in 238 

the parameters. Fig. 2 shows that both parameters vary systematically with the scattering related sample 239 

conditions i.e. pd  and y . Figs. 2(a1) and (b1) show the variations in a and b with variations in particle 240 

diameter at fixed concentrations. Figs. 2(a2) and (b2) show the variations in a and b with variations in 241 

particle concentration at fixed particle diameters. It is clear that the MSC parameters are impacted by 242 

both particle concentration and diameter. The variation of both a and b with particle diameter was found 243 

to be well explained by a second order polynomial fit for each concentration. This can be seen from the 244 

solid curves in Figs. 2(a1) and (b1) which are obtained by regression. The effect of particle 245 

concentration on the MSC parameter a at fixed particle diameter required a third order polynomial 246 

which is indicated by the solid curves in Fig. 2(a2) while b was found to be well described by a linear fit 247 

which is shown by the solid lines in Fig. 2(b2). This analysis suggested the use of equations of the form 248 

given by Eqs. (3) and (4). The coefficients in these equations were estimated using least squares 249 

regression. The values and 95% confidence intervals of the coefficients in Eqs. (3) and (4) are given in 250 

Table 1. The confidence intervals indicate that all the coefficients are significant.Similar analysis was 251 
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carried out with Rd spectra of the 4-component system .. Figs. 3(a1) and (b1) show the variations in a 252 

and b with variations in particle diameter at fixed concentrations. Figs. 3(a2) and (b2) show the 253 

variations in a and b with variations in particle concentration at fixed particle diameters. In this case, 254 

second order polynomial curves best described the variations of both a and b with particle diameter at 255 

fixed particle concentrations as well as with particle concentration at fixed particle diameters. The solid 256 

curves in the subplots of Fig. 3 are the best fit curves obtained by regression in each case. It is observed 257 

that, compared to the 2-component system, the MSC parameters for the 4-component system exhibit 258 

larger uncertainty in terms of their variations with pd  and y . This leads to higher error in fitting the 4-259 

component samples as can be clearly observed by examining the fitted curves in Fig. 3. This analysis 260 

indicates that MSC parameters appear to contain extractable information regarding the scatter-related 261 

sample characteristics namely particle size and concentration.  262 

The variations in the MSC parameters at each particle diameter and concentration seen in Fig. 3 263 

suggest that the scatter correction parameters are influenced by one or more factors in addition to 264 

particle diameter and concentration. One plausible explanation is that the changes in concentrations of 265 

other components in the mixture will result in a change in the refractive index of the suspending 266 

medium. This will affect the intensity of light in two ways. It will affect the reflectance/transmittance at 267 

the glass boundaries of the cuvette and thus the overall intensity collected by the detector.[12] Also, a 268 

change in refractive index of a sample affects the magnitude of light scattered by the particles since light 269 

scattering by particles is fundamentally due to the refractive index contrast between the particles and the 270 

suspending (liquid) medium. 271 

 A simulated dataset consisting of spectra simulated for the same conditions as the samples in the 272 

experimental dataset was used to check the above hypothesis. Simulations were based on the Radiative 273 

Transfer Theory (RTT) which has been widely used in medical diagnostics and atmospheric sciences to 274 

accurately model the propagation of light through turbid media and known to provide good agreement 275 

with experimental data [13]. Details of the simulation are given in the supporting information. The 276 
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absorption and scattering coefficients were calculated by using Mie Theory which accurately models 277 

scattering by spherical particles. The bulk absorption coefficients a and the bulk scattering coefficients 278 

s obtained using Mie theory  are  shown in Figures 4(c) and (d), respectively. The effect of change in 279 

the refractive index of the mixture due to the change in sample composition is observed from the slight 280 

difference between two adjacent s curves in Fig. 4(d). This small difference in the bulk scattering 281 

coefficient leads to differences in the spectra of samples which contain the same particle diameter and 282 

concentration but different composition of the liquid species in the mixture.  283 

In Fig. 5, the relationship between MSC parameters used to correct the simulated Rd spectra (Rd_sim) 284 

with concentration and diameter show very similar patterns as observed in Fig. 3 which was obtained 285 

from the experimental dataset. The same uncertainty in MSC parameters for samples with the same 286 

particle conditions is also observed from the simulated dataset. It should be noted that in the 287 

simulations, no instrumental drift or other physical changes that induce variations in the spectra were 288 

included. The similarity in the uncertainties in the MSC parameters therefore implies that the 289 

baseline/slope change in the spectra of samples with the same sample conditions is due to the difference 290 

in refractive index of the samples due to differences in the concentrations of the liquid species which is 291 

captured by the MSC method. This conclusion can be made because in the simulations, the refractive 292 

index of the suspending medium comprising the liquid species in the mixture is the only physical 293 

property that is varying when particle diameter and particle concentrations are fixed. This analysis 294 

indicates that the scatter correction parameters are affected not just by particle size and concentration 295 

but also to a small extent by the refractive index of the medium. In other words, these parameters are a 296 

function of particle diameter, particle concentration and the refractive index of the mixture. 297 

 298 

3.2 Extracting particle size information from scatter correction parameters 299 

Given that the particle size information is present in the scatter correction parameters, it would be of 300 

interest to know if this information is extractable. Researchers have attempted to obtain particle size 301 
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information through applying multivariate calibration models such as PLS to the spectra directly or after 302 

correction by empirical preprocessing methods.[15-18] It is however unclear, in these studies, whether it 303 

is the particle size or concentration that is modeled since the concentration of the particle in these 304 

studies are strongly correlated to the particle size. For instance, Rantanen et al reported a method for in-305 

line particle diameter monitoring for high shear granulations in which the particle diameter increases 306 

during the process.[18] With the chemical contents in the granulator remaining the same, it implies that 307 

the particle number density decreases which can then be related to the changes in the particle diameter. 308 

Instead of modeling the particle diameter directly, multivariate regression is likely to model the 309 

information related to the particle number density, a correlated factor to the particle diameter, especially 310 

on the data preprocessed to remove scatter-related information. Since the effect of particle size on 311 

spectra is nonlinear and confounding effects arise due to competing absorption and scattering effects on 312 

the spectra, it may be more effective to use the scatter correction parameters. This is because the effect 313 

of absorption is decoupled and also because of the possibility of obtaining linear (in the sense of the 314 

regression parameters) models relating scatter correction parameters to particle sizes.  315 

In this study, we compared the performance of models for estimating the particle diameter 
p

d̂  using 316 

(a) PLS model built on spectra without applying scatter correction (xmeas); (b) PLS model built on 317 

spectra after applying scatter correction (xcorr); and (c) Regression models using MSC parameters and 318 

following the methodology described in §2.3. For the approach (c), 3 equations for estimating particle 319 

diameter namely,  Eqs. (5),(6) and(8) for the 2-component dataset and Eqs. (9)-(11) for the 4 component 320 

dataset, were investigated. The two stage approach proposed in §2.3 was tested using cross-validation. 321 

The two steps were carried out by using all but one of the samples in stage 1 and applying the resultant 322 

model (Stage 2) to the left-out sample. This process is continued till all the samples have been left out 323 

from stage 1 once. Table 2 summarizes the performances of the different models for the 2- and 4-324 

component datasets which are discussed in the proceeding sections. 325 

3.2.1 Two-component system 326 
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From Table 2 it is seen that using the MSC parameters to estimate 
p

d̂  leads to an appreciable 327 

reduction in the estimation errors. Using PLS models built on either xmeas or xcorr leads to similar 328 

performance in terms of RMSECV which is also evident in the RMSECV curves for the two models in 329 

Fig. 8(a). All the three equations used to predict 
p

d̂  using MSC parameters (Eqs. (5), (6), and (8)) lead 330 

to appreciable reduction in the error compared to the PLS models. Eqs. (5) and (6) which use MSC 331 

parameters a and b respectively give more or less similar performance with around 55% reduction in 332 

error. Eq. (8) which combines the information contained in a and b provides the best performance with 333 

around 70% reduction in error. The predicted versus the actual diameters for the two PLS models and 334 

the model using Eq. (8) are given in the Supporting Information (Figxx). As mentioned previously the 335 

use of Eqs. (5), (6), and (8) for obtaining 
p

d̂  requires the concentration of the particles to be estimated, 336 

and this was provided using PLS model built on the spectra for this purpose. Table 2 summarizes the 337 

performance of PLS models built on un-corrected xmeas and the scatter-corrected xcorr spectra to predict 338 

particle concentration. As expected the estimation error in concentration is lower when xcorr are used. If 339 

the scatter correction method is effective in selectively removing the underlying scattering and other 340 

non-chemical effect, then it should lead to a better PLS model for predicting particle concentration. . 341 

Therefore when using the three equations (Eqs. (5), (6) and (8)), the concentrations of particles 342 

estimated from the corrected spectra were provided as input. 343 

3.2.2 Four-component system 344 

In the case of 4-component system, the results were different from that observed in the 2-component 345 

dataset. From Table2, the lowest error in predicting particle diameter is obtained using a PLS model 346 

built on the spectra without scatter correction (xmeas). The PLS model built on xcorr leads to more than 347 

100% increase in the error. .. The best model for predicting the particle diameter using the MSC 348 

parameters was given by Eq. (11) which combines information in a, b, and xcorr. Unlike the 2-349 

component system, the error in this case is more than 100% higher compared to the PLS model using 350 
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xmeas. The reason for this was investigated first by examining the performance of the PLS model to 351 

predict particle concentration which is an input for Eq. (11). From Table 2, it is seen that RMSECV for 352 

the estimated concentration is much higher compared to the 2-component dataset. Both xmeas and xcorr 353 

give similar levels of error in the estimated concentration though the model built on xcorr requires fewer 354 

numbers of latent variables. If the large error in estimated diameter pd̂  is due to the error contributed 355 

by ŷ , then by replacing ŷ  by the actual concentration y  should result in significant improvement and 356 

lead to similar performances that seen for the 2-component dataset. However, the error in estimated pd̂  357 

did not reduce significantly indicating that the source of this increase in error lies elsewhere.  358 

Further investigation was carried out by examining the concentrations of the different components and 359 

their correlation structure. The 4-component dataset was designed to eliminate the concentration 360 

correlation between the polystyrene particles and other components of the system. However, in the 361 

dataset the particle diameter is weakly correlated to the main constituents of the medium, H2O and D2O 362 

with a correlation coefficient of about 0.26 with each of these components. This raises the possibility 363 

that the PLS model built on xmeas for estimating particle diameter will be improved by such a 364 

correlation. Examining the scores of the PLS model, it was found that the scores of the first latent 365 

variable and to a certain extent the second latent variable are linearly related to pd , as indicated in Figs. 366 

12(b1) and (b2). Examining the loadings of these two latent variables shown in Figs. 12(a1) and (a2), 367 

we see that they appear to be explaining variations that affect the baseline of the spectra i.e. light 368 

scattering. Applying MSC and then building a PLS model on xcorr would result in the removal of 369 

information regarding particle diameter and should lead to models with higher errors in the estimation 370 

of particle size. The scores of the first and second latent variables obtained by applying PLS to xcorr in 371 

Figs. 13(b1) and (b2) shows that the first latent variable no longer possesses a clear relationship with 372 

particle diameter. Also the first latent variable now resembles more like the second LV for the un-373 

corrected spectra (Fig. 12(a2)). However, there is no significant pattern in this case with respect to pd . 374 
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It is also interesting to note that the number of latent variables required for the PLS model to predict 375 

particle diameter is reduced from 7 when xmeas is used to 4 when xcorr is used. This explains the increase 376 

in the error in the estimated particle diameter when PLS is applied after scatter correction. Despite this 377 

removal of particle size information, the model obtained from xcorr is still statistically significant and 378 

almost of similar level of performance as the models using the scatter correction parameters to estimate 379 

particle size. This is probably due to the fact that xcorr still has chemical information regarding H2O and 380 

D2O which are in turn correlated to the particle diameter thus providing the ability to predict particle 381 

diameter despite most of the information regarding this parameter has been removed by scatter 382 

correction. The MSC parameters on the other hand, do not include the correlation between particle size 383 

and the concentrations of H2O and D2O, since these parameters are indicative of baseline and slope 384 

changes in the spectra while absorptivity changes (and thus information) due to concentration changes 385 

in H2O and D2O remain in the corrected spectra. 386 

Recalling that the MSC parameters for the 4-component dataset are affected by particle size, 387 

concentration and the refractive index of the suspending medium (§3.1), it should be pointed out that the 388 

models relating particle diameter to the MSC parameters were developed by neglecting the effect of the 389 

refractive index changes. This could also potentially lead to an increase in the error in estimating 390 

particle diameter. A further point to be noted is that for the 4-component system, the prediction of 391 

particle size by using equations that arise from inverting the expressions relating a or b (i.e. Eqs. 9) and 392 

(10)) led to two positive values for the particle diameter when the quadratic equations are solved. The 393 

ambiguity resulting from this meant that the expressions were not practically usable and therefore the 394 

results pertaining to these inverted equations are not shown in Table 1. This problem was not 395 

encountered when the combined Eq. (11) was used. Since the equations relating the MSC parameters to 396 

particle diameter and concentration that are given here are not necessarily unique, it may be possible to 397 

develop an alternative regression model to overcome this problem.   398 

4. Conclusions  399 



18 

 

This study provides an insight into the nature of information contained in the scatter correction 400 

parameters. It shows that a scatter correction technique which leads to better calibration models for 401 

estimating concentration of chemical species need not necessarily be the best in terms of the scatter 402 

correction parameters containing extractable information. It was found that the MSC parameters 403 

contained significant information regarding scatter-causing properties namely particle size and 404 

concentration. The parameters from EMSC which leads to better performing calibration models 405 

compared to MSC do not show a clear relationship with the scatter-causing properties. This may be due 406 

to the fact that the information is spread over a larger number of parameters and also the possibility that 407 

EMSC might be removing other non-chemical variations that may be presented in the dataset. Further, 408 

whether a clear relationship between the MSC parameters and the particle size and concentration was 409 

observed depended strongly on the measurement configuration, indicating that the performance of a 410 

scatter correction technique will depend on the measurement configuration. This is in line with the 411 

observations made in an earlier study based on simulations.[8]
 

412 

Given that the information regarding particle size is present in the MSC parameters, a method to 413 

extract this information was proposed and evaluated using the two-component and four-component 414 

datasets. It was found that for the 2-component dataset, the method was effective in extracting this 415 

information and the model resulting from this method led to a reduction of about 70% in the error in the 416 

estimation of particle size compared to models obtained by applying PLS to the spectra. For the 4-417 

component dataset, the error in using the proposed method was considerably higher. This appears to be 418 

due to the increased uncertainty contributed by the changes in the refractive index of the suspending 419 

medium which is not included in the model. Also the PLS model built on the spectra led to considerably 420 

lower error compared to the proposed method. Analysis indicates that this is due to chance correlations 421 

between particle diameter and the concentrations of D2O and H2O present in the mixture.  422 

 423 
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Fig. 1. A flowchart of the methodology used for estimating particle 

diameter and concentration. The method involves Stage 1 : Calibration 

model building (steps in black) and Stage 2 :  Prediction of particle 

diameters and concentrations of unknown samples (steps in blue). 
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Fig. 2. (a) Measured total transmittance spectra (xmeas) of polystyrene-water 2-component 

dataset. (b) MSC preprocessed spectra (xcorr) using the mean of xmeas as a reference 

spectrum. 



Fig. 3. (a) Changes in MSC parameter a in the 2-component system with (a1) particle diameter 

and (a2) concentrations. (b) Changes in MSC b with (b1) particle diameter and (b2) 

concentrations. Solid curves were generated from the best fit obtained using least squares 

regression. 
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Fig. 4. (a) Measured total reflectance spectra (xmeas) of the  4-component dataset. (b) MSC 

preprocessed spectra (xcorr) using the mean of xmeas as a reference spectrum. 
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Fig. 5. (a) Changes in MSC parameter a in the 4-component system with (a1) particle 

diameter and (a2) concentrations. (b) Changes in MSC parameter b with (b1) particle 

diameter and (b2) concentration. Solid curves were generated from the best fit obtained 

by least squares regression. 



Fig. 6. (a) Simulated total reflectance spectra (Rd_sim) of the  4-component dataset. (b) 

MSC preprocessed spectra (Rd_simcorr) using the mean of Rd_sim as a reference spectrum. 

The bulk absorption and scattering coefficients used for the simulation are in (c) and (d), 

respectively. 
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Figure 7 

Fig. 7. Results of simulated spectra (Rd_sim) of the 4-component system after MSC 

preprocessing. (a) Changes in MSC parameters a with (a1) particle diameter and (a2) 

concentrations. (b) Changes in MSC b with (b1) particle diameter and (b2) 

concentration. Solid curves were generated from the best fit obtained by least squares 

regression. 

1 2 3 4 5
0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0
 100 nm  200 nm  300 nm

 430 nm  500 nm

b

Particle concentration / %

100 200 300 400 500
-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

a
Particle diameter / nm

 1%

 2%

 3%

 4%

 5%

1 2 3 4 5

-0.5

0.0

0.5

1.0

1.5
 100 nm  200 nm  300 nm

 430 nm  500 nm

a

Particle concentration / %

(a1) 

(a2) 

(b1) 

(b2) 



Figure 8 

0 100 200 300 400 500 600
0

100

200

300

400

500

600
 0.1%    0.5%  0.9%

 1.23%  1.6%  1.95%

 2.3%

E
s
ti

m
a
te

d
 d

ia
m

e
te

r 
/ 
n

m

Actual diameter / nm

0 100 200 300 400 500 600
0

100

200

300

400

500

600
 0.1%    0.5%  0.9%

 1.23%  1.6%  1.95%

 2.3%

E
s
ti

m
a
te

d
 d

ia
m

e
te

r 
/ 
n

m

Actual diameter / nm

0 1 2 3 4 5 6 7 8 9 10
60

80

100

120

140

160

R
M

S
E

C
V

 /
 n

m

Number of latent variables

 PLS model on x
meas

 PLS model on x
corr

0 100 200 300 400 500 600
0

100

200

300

400

500

600
 0.1%    0.5%  0.9%

 1.23%  1.6%  1.95%

 2.3%

E
s
ti

m
a
te

d
 d

ia
m

e
te

r 
/ 
n

m
Actual diameter / nm

(a) 

(b2) 

(b1) 

(b3) 

Fig. 8. (a) RMSECV curves of PLS models for estimating particle diameter in 2-

component system from xmeas and xcorr. (b1) and (b2) are the predictions using PLS 

models built on xmeas and xcorr, respectively. (b3) is estimated using the inversion Eq. 

(A.8) in Supplementary Information which combines MSC parameters and xcorr. 
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Fig. 9. (a) RMSECV curves of PLS models for estimating particle concentration in  the two-component system. 

(b1) and (b2) show plots of estimated versus actual values of particle concentration in the system for PLS models 

built on xmeas and xcorr, respectively. 
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Fig. 10. (a) RMSECV curves of PLS models for estimating particle diameter in 4-

component system. (b1) and (b2) are the prediction using PLS models built on xmeas and 

xcorr, respectively. (b3) is estimated using inversion Eq. (A.11) in Supplementary 

Information which combines MSC parameters and xcorr. 
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Fig. 11. (a)RMSECV curves of PLS models for estimating particle concentration in the four-component system. 

(b1) and (b2) show plots of estimated versus actual values of  particle concentration in the system for PLS models 

built on xmeas and xcorr, respectively. 
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Figure 12 

Fig. 12. (a1)-(a3) loading curves and (b1)-(b3) scores of the first 3 loadings of the PLS model built on xmeas to 

estimate particle diameter.   



Figure 13 

Fig. 13. (a1)-(a3) loading curves and (b1)-(b3) scores of the first 3 loadings of the PLS model built on xcorr to 

estimate particle diameter.   
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