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ABSTRACT   

By using a combination of type-I and regenerated gratings, the mechanical strength of optical fiber splices after exposure 

to temperatures over 1300 °C was characterized. Splice strength was found to decrease with temperature with a second-

order polynomial dependence after exposure to environments hotter than 500 °C. Splices exposed to temperatures above 

1300 °C were 80% more fragile than non-exposed splices. The lack of optical attenuation and the narrowing distribution 

of breaking strengths for higher temperatures suggest surface damage mechanisms, such as hydrolysis, play a key role in 

weakening post-heating and that damage mechanisms dominate over strengthening induced by crack melting. 
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1. INTRODUCTION  

Ensuring the mechanical integrity of optical fiber splices exposed to high temperatures after deployment and during the 

fabrication of brazed sensor packages
1
 is crucial in ensuring long-term reliability. This applies to both measurement and 

communication systems operating in harsh environments. The strength of splices after exposure to extreme temperatures 

is particularly important for strucutral
2
 and geodynamical

3
 monitoring systems, but large fluctuations in environmental 

strain and temperature are also common within applications in aerospace, nuclear and oil and gas industries
4,5

. 

In this work, the strength of fiber splices exposed to temperatures up to 1300 °C is investigated. A combination of type-I 

and regenerated gratings
6
 allow the thermal and mechanical loads on each splice to be fully characterized over a large 

temperature and strain range. This is, to our knowledge, the first time the strength of fiber splices has been tested after 

high temperature exposure. 

2. THEORETICAL BREAKING STRENGTH 

While the strength of pristine silica fibers can be as high as 14 GPa
7
, surface flaws introduced during sensor fabrication 

reduce the stress required to realize fracture. The Griffith‟s criterion describes how stress at fracture, σf, is related to the 

depth of the deepest flaw, a, in the fiber
8
: 

                    (1) 

When untampered with, the flaw sizes in a fiber follow a Wiebull distribution. However, further damage is introduced 

during processes such as coat stripping, the writing of Fiber Bragg Gratings (FBGs) and splicing
9
. Whereas FBG 

fabrication causes minimal decreases in strength
10

, the flaws introduced by splicing can lead to a strength degradation of 

up to 80% of the original value, depending on the splicing method used
11

. 

With electro-arc fusion splicing, used herein, silica fusion causes weaknesses in the vicinity of the splice, with fiber 

fracture generally occurring in the heat-affected zone
12

. Post-splice heat treatments such as a 700 °C fire-polish may be 

used to clean the fiber surface and melt surface cracks
13

, but the effects of prolonged heating post-splicing has, as yet, 

remained untested. In this work, FBG sensors are used to monitor temperature and strain during splice heating and 

stressing. Axial strain, εz, and temperature shifts, ΔT, induce linear fractional shifts in the FBG‟s Bragg wavelength via 

ΔλB/λB = (1-pe)εz + CTΔT, where pe =0.22, and CT are the strain-optic and temperature coefficients of silica respectively. 
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3. EXPERIMENTAL 

As brief acid stripping has been found to have little effect on the integrity of fibers
14, 15

, plated fiber specimens are 

soaked in 63% nitric-acid for 1 minute to remove their metallic coat. The polymer coats of SMF-28 fibers are 

mechanically stripped. Fibers are then cleaned with ethanol, cleaved and inserted into a BFS-60CCD fusion splicer. A 

prefusion cleaning routine of 20 mA current for 0.1 s removes carbon underlayers and contaminants. A hot-push under 

15mA current for 3 s allows fusion. Mechanical abrasion and exposure to humidity lead to surface roughening via 

hydrolysis
16

, so splice heating and breaking strength tests are performed immediately after splicing. 

Fibers are affixed to a translation stage by magnets as shown in Figure 1a). The spliced region is enveloped by a steel 

heat susceptor, Figure 1b), which is in turn heated by a 40 mm diameter induction coil, operating at a current of 200 A 

and frequency of 370 kHz. Heating time is varied from 0 to 35 s, before splices are allowed to cool for 3 minutes. The 

fiber is then removed from the heating rig, while points A and B labeled in Figure 1 are clamped using screws and 

moved apart by a translation stage. Meanwhile, interrogation of a type I FBG is used to infer the breaking strain. 

 

Figure 1. a) Susceptor-induction coil set up used to heat splices. Points A and B are later clamped and moved apart by a 

translation stage, while the sm125-500 interrogation unit measures strain in the labeled FBG. b) Dimensions of heat 

susceptor used to expose splices to elevated temperature. 

The relationship between induction time and temperature is found by replacing the splice in Figure 1 with a regenerated 

grating, fabricated similar to previous work
17

. A tunable laser unit (Micron Optics sm125-500) is used to measure Bragg 

shifts with 5 pm wavelength resolution at a rate of 2 Hz. Measured heat profiles and maximum temperatures for varying 

times are shown in Figure 2. Heating the gratings in an oven up to 300 °C in 50 °C steps allows characterization of CT 

and extrapolation to 1300 °C. It has been previously confirmed that CT for regenerated gratings is linear up to 1000 °C
17

. 

 

 

Figure 2. Heating profiles for 10, 15, 20 and 35 s induction heating times at 200 A and 370 kHz. Shown inset is the 

heating time vs maximum temperature relationship, which is linear until saturation due to increased radiative cooling. 



 

 
 

 

4. RESULTS AND DISCUSSION 

Fibers were strained at 0.4 mε/s to failure 40 times for each temperature point to ensure statistical significance. Repeated 

breaking at the splice implied this was always the largest flaw. A selection of breaking strength distributions are shown 

in Figure 3, along with a typical strain profile. These show a clear decrease in strength with increasing heat exposure. 

 

Figure 3. Normalised distribution of breaking strains of fiber splices heated to 1316, 1026 and 22 °C. A typical strain 

profile measured by the FBG during a splice stress test is shown inset 

 

Figure 4. Summary of splice strength after exposure to elevated temperature, with second-order polynomial fit. 

Average splice breaking strength as a function of temperature is shown in Figure 4. Heating to 500 °C causes almost no 

decrease in splice strength, agreeing with previous experiments performed with non-spliced fibers
18

. Exposure to higher 

temperatures reduced splice strength with a second-order polynomial dependence. Splices heated to 1316 °C displayed 

approximately an 80% decrease in strength. Throughout the experiments, heating led to very little optical attenuation, 

implying that damage was restricted to the fiber surface. As the rate of hydrolysis of silica is temperature dependent, it is 

likely that heating leads to accelerated ageing of spliced fiber surfaces
14

. While temperatures >700 °C may have caused 

crack melting, the reduction in strength shows damage mechanisms at the heat-affected zone dominate; a hypothesis 

further supported by the reduced distribution of strengths at higher temperatures. Even in the unheated case, splicing has 



 

 
 

 

reduced the strength of fibers to 10% of given manufacturer values. This is consistent with published data, but implies 

weakening via contaminants from the splicer and also the mechanical method of polymer coat stripping
19

. Nevertheless, 

the randomized, unbiased errors demonstrate that repetition of the experiment was consistent. This provides confidence 

that the reduction in strength with temperature is independent of other factors such as mechanical abrasion
20

. 

5. CONCLUSIONS 

It has been demonstrated that the strength of fiber splices decreases with a second-order polynomial dependence after 

exposure to temperatures above 500 °C in ambient environments. The lack of optical attenuation after heating implies 

that surface damage due to hydrolysis of the glass network in the vicinity of the splice was the cause of embrittlement. 

Heat damage was further supported by a reduction in the deviation of breaking distributions after exposure to increased 

temperature. This work demonstrates the importance of reducing splice stress after exposure to high temperatures. This 

highlights a major issue with the combined stress and heat exposure of conventional soldering methods. As such, the 

recommendation is to avoid using brazing methods to embed fiber splices directly into metal structures. 
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