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a b s t r a c t

This paper presents the preliminary navigation and orbit determination analyses for the

European Student Moon Orbiter. The severe constraint on the total mission Dv and the

all-day piggy-back launch requirement imposed by the limited available budget, led to

the choice of using a low-energy transfer, more specifically a Weak Stability Boundary

one, with a capture into an elliptic orbit around the Moon. A particular navigation

strategy was devised to ensure capture and fulfil the requirement for the uncontrolled

orbit stability at the Moon. This paper presents a simulation of the orbit determination

process, based on an extended Kalman filter, and the navigation strategy applied to the

baseline transfer of the 2011–2012 window. The navigation strategy optimally allocates

multiple Trajectory Correction Manoeuvres to target a so-called capture corridor. The

capture corridor is defined, at each point along the transfer, by back-propagating the set

of perturbed states at the Moon that provides an acceptable lifetime of the lunar orbit.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The considerable number of unmanned missions to the
Moon, proposed or completed in the last decade, is the
evidence of a revived interest in lunar exploration [1–3].

Scheduled for launch in 2014–15, the European Stu-
dent Moon Orbiter (ESMO) [4,5] will be the first lunar

micro-satellite designed entirely by the student popula-
tion and currently the only mission to the Moon planned
by the European Space Agency for the near future. Using
chemical propulsion, ESMO is devised to reach and enter a
polar orbit, with a primary mission objective to acquire
surface images of the South Pole. A Narrow Angle CCD
Camera (NAC) will capture high resolution images over a
period of six months. To complement the scientific
return, the current optional secondary payloads include
a small radar, a radiation monitoring experiment, a
passive microwave radiometer, and a telecommunication
experiment to test a lunar internet protocol.

In the recent past, a considerable number of mission
studies analysed various options for transfers to the Moon:
from simple Hohmann-like transfers [1] to ballistic trans-
fers with phasing loops [6], from Low-Thrust spirals [7] to
Weak Stability Boundary (WSB) transfers and other types of
low-energy transfer via the L1 and L2 Lagrangian points [8].

In the case of ESMO, the limited available budget
excludes a dedicated launch and imposes an all-day
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piggy-back payload launch requirement in which ESMO
has little or no control over the launch date. This,
coupled with the severe constraint on the Dv budget,
suggested the use of a WSB transfer after an extensive
analysis of all other options [9]. A WSB transfer has the
benefit of offering a higher degree of flexibility in the
final selection of the launch vehicle and an associated
reduction in Dv. However, this benefit comes with a
higher sensitivity to the errors introduced by the
launcher and the major Dv manoeuvres. Therefore, a
particular navigation strategy had to be devised to
achieve the desired orbit around the Moon at minimum
cost. The navigation strategy aims at maintaining the
spacecraft within a capture corridor by optimally execut-
ing a number of TCM’s throughout the transfer. The
corridor is defined by the back propagation of the set of
states, at the Moon, that ensures the required stability of
the lunar orbit.

This paper presents the Orbit Determination (OD)
analysis of ESMO and the proposed optimal trajectory
control strategy to ensure capture at the Moon, for the
baseline transfer scenario of the 2011–2012 launch
window.

2. Nominal transfer design

The baseline solution at the end of the Phase A [10]
envisaged a WSB-type of transfer from the Earth to the
Moon. At the Moon the spacecraft would be inserted into
a moderately elliptical polar orbit with orbital elements
reported in Table 1.

The orbit defined in Table 1 provides repeated pas-
sages at low altitude over the South Pole of the Moon for
at least 6 months. A WSB transfer, as illustrated in Fig. 1,
was selected as it offers an inclination change and the
raise of perigee at zero cost, therefore saving Dv.

In an ideal WSB transfer, the spacecraft needs to
perform an initial Trans-lunar Insertion Manoeuvre (TLI)
to be injected into the transfer trajectory to the Moon. The
spacecraft then reaches a point above 106 km from the
Earth, in a wide region around the L1 or the L2 Lagrangian
points of the Earth–Sun system. After performing a small
(possibly zero) Dv manoeuvre the spacecraft coasts back
towards the Moon, where it is weakly captured. A final
Lunar Orbit Insertion (LOI) manoeuvre ensures injection
into the desired lunar orbit. In the case of ESMO each WSB
transfer is designed by matching two separate legs: one
from TLI to the weak stability region of the Earth–Sun
system and one from the weak-stability region to LOI

[9,11]. The point at which the two legs are matched is
here called WSB point and the corresponding manoeuvre,
WSB manoeuvre.

From a computational point of view, a WSB transfer
can be fully defined by the following 13 parameters:

� Departure date tTLI.
� Duration of the TLI–WSB leg tTLI–WSB.
� Duration of the WSB–LOI leg tWSB–LOI.
� Modulus, azimuth and elevation of the DV of TLI

manoeuvre defined in the Earth centred inertial refer-
ence frame DvTLI aTLI bTLI.
� Modulus, azimuth and elevation of the DV of LOI

manoeuvre defined in the Moon centred inertial refer-
ence frame DvLOI aLOI bLOI.
� RAAN and true anomaly of the osculating Keplerian

elements at departure, in the Earth-equatorial refer-
ence frame OGTO, nGTO.
� RAAN and true anomaly of the osculating Keplerian

elements at arrival, in the Moon-equatorial reference
frame OLO, nLO.

The remaining Keplerian elements of the departure
and arrival orbits are considered to be constant, since they
are defined by the launcher insertion orbit and by the
desired lunar orbit. The 13 scalar quantities define a
design vector y¼[tTLI tTLI–WSB tWSB–LOI DvTLI aTLI bTLI DvLOI

aLOI bLOI oGTO OGTO oLO OLO]T.
The design vector y allows computing the Cartesian

state vector of the spacecraft right after the TLI manoeuvre
and before the LOI manoeuvre. Then, the orbital motion is
propagated forwards in the TLI–WSB leg and backwards in
the WSB–LOI leg. A gradient-based optimiser is then used
to match the position of the two legs at WSB and to
minimise the total Dv of the transfer. The latter includes
the cost of the TLI manoeuvre, the LOI manoeuvre and a
WSB manoeuvre. The WSB manoeuvre is required to match
the velocities of the two legs. For the propagation of the

Table 1
Parameters of the lunar orbit.

Parameter Value

a 3586 km

e 0.4874

i 89.91

O 63.81

o 292.91

n 01

0

5

10

x 10
5

−5

0

5

x 10
5

−6

−4

−2

0

2

4

6

x 10
5

x [km]

WSB transfer trajectory in the Earth−centred Earth equatorial system

y [km]

z 
[k

m
]

TLI−WSB leg

Moon orbit

WSB−LOI leg

WSB point

Fig. 1. WSB transfer trajectory in the Earth-centred equatorial reference

frame.
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two legs, the motion of the spacecraft is governed by the
following system of differential equations taking into
account the gravitational attraction of the Earth, the Sun
and the Moon:

_r ¼ v

_v ¼�
mE

r3
r�mS

rSsc

rSsc
3
�

rSE

rSE
3

� �
�mM

rMsc

rMsc
3
�

rME

rME
3

� �
ð1Þ

where r and v are respectively the position and velocity
vectors of the spacecraft with respect to the Earth in the
J2000 inertial reference frame, rSsc and rSE are the Sun-
spacecraft and Sun–Earth vectors, rSsc and rSE are the
Moon-spacecraft and Moon–Earth vectors, mE, mS and mM

are the planetary constants of Earth, Sun and Moon
respectively. The position of Sun and Moon with respect
to the Earth and the spacecraft are calculated using an-
alytical ephemeris [12,19] accounting for secular variations
in the orbital elements of both the Earth and the Moon. An
analytical model was used to describe the secular variation
of the angles between the Earth-equatorial and the Moon-
equatorial reference frame [13]. The dynamic equations
were numerically integrated with an explicit, variable step
size, Runge–Kutta integration method with a 10�9 and
10�9 relative and absolute accuracies respectively.

In a nominal transfer, only the three manoeuvres men-
tioned above are required. However, given the sensitive-
ness of the transfer to even small variations in each of the
manoeuvres and in the initial states, ESMO will require to
perform a number of correction manoeuvres. The man-
oeuvres are planned and executed according to the esti-
mation of the state vector of the spacecraft coming from a
number of orbit determination campaigns.

3. The capture corridor

In order to successfully derive the accuracy require-
ment for orbit determination throughout the WSB trans-
fer, leading to lunar insertion, the required level of
accuracy at lunar insertion needs to be defined. An error
in the determination of the exact lunar injection man-
oeuvre would directly translate into ESMO entering a
deviated orbit around the Moon. This would imply a
longer or shorter mission lifetime. Therefore, early ana-
lyses focused on investigating the influence of insertion
errors (i.e. sensitivity) in the initial lunar orbital ele-
ments and their associated effect on the estimated
orbital lifetime around the Moon. This early analysis
permitted the definition of a capture corridor that
guarantees the correct lunar insertion.

3.1. Sensitivity analysis

The sensitivity of ESMO’s orbit around the Moon was
assessed by randomly perturbing the nominal states at
lunar insertion using a Latin Hypercube distribution
[14]. The perturbation ranged from 1% to 5% of the
nominal values of the orbital elements. For each error,
ten sets of modified orbital elements were randomly
generated. An example of perturbed orbital parameters
is shown in Table 2.

The orbital elements for each case were then propagated
forward in time for six months or until ESMO crashed on the
surface of the Moon. The AGI Satellite Tool Kits (STK) [15]
was used to propagate the orbit. The dynamic model
included the inhomogeneous gravity field of the Moon with
tesseral harmonics up to 21�21, plus the gravity pull of the
Earth and the Sun. Because of the uncertainty on the value
of the harmonic coefficients of the Moon, due to lack of
observations on the far side, the propagation was repeated
with different gravity models and for a variable number of
harmonics [16], up to 60. For each case the temporal
behaviour of the perilune altitude was assessed.

The increase in error corresponds to an increase in
probability that ESMO would experience a reduction in
orbital lifetime. Table 3 reports the average lifetime for a
1% error in orbital insertion. ESMO may experience a
reduction in lifetime of approximately twenty days. For a
5% error instead, ESMO could experience a ninety-nine
day reduction of its orbital lifetime. For the sake of the
present analysis a reduction of up to 20 days was deemed
to be acceptable to respond to the mission requirement
that asks for an uncontrolled stable orbit for about six
months [17]. Therefore, a 1% error was used throughout
the remaining analyses.

Errors in the orbital elements can be translated into
errors in the radial, transversal and out-of-plane com-
ponents of position and velocity at the Moon. Figs. 2 and
3 show a displaced set of states for a 1% variation with
respect to the nominal elements at the Moon. The r–t–h

reference frame is defined with respect to the Earth
centred inertial reference frame at epoch. A zero varia-
tion corresponds to the nominal value. The level of
acceptable error in the estimation of the states at the
Moon will define the required tracking capability of the
ground stations. Note that the goal of this analysis is
only to derive an upper limit on the acceptable
tracking error.

Table 2
Lunar orbit: nominal parameters and error distribution for 1% error.

Parameter Nominal value 3s

a (km) 3586 35.86

e 0.4874 0.0049

i (deg.) 89.9 0.8990

O (deg.) 63.8 0.6380

o (deg.) 292.9 2.929

n (deg.) 0 0

Table 3
Influence of insertion error against orbital decay time.

Error in orbital insertion (%) Decay time, Tþ insertion (days)

1 159

2 133

3 119

4 105

5 81
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3.2. Corridor generation

Assuming an error in the states at lunar injection
derived from the 1% error in the orbital elements, a region
of state space (position and velocity) at different times
(tinsertion�Dt) prior to the lunar orbital insertion was
generated. This region, called the capture corridor, defines
a set of positions and velocities that ESMO must have in
order to be captured at the Moon at tinsertion with the
required accuracy.

The size of the capture corridor defines the required
knowledge of ESMO’s position and velocity along both
legs of the WSB transfer. Orbit determination must there-
fore be able to discriminate with 99% probability (3s)
between whether or not ESMO is inside or outside the
corridor at any time along the transfer. Without this level
of accuracy, it would not be possible to predict whether or
not ESMO is on course for lunar insertion. Note that
inaccuracies or contingencies in the injection manoeuvre
were not included within this analysis and will add up to
the overall lifetime of the lunar orbit.

To assess the relative size of the corridor at tinsertion�

Dt, the corridor must first be considered at tinsertion. Fig. 4
defines the relative radial–transversal and out-of-plane
reference frame at ESMO’s nominal injection point, the
radius r defines the position vector with respect to the
Moon in the Moon equatorial reference frame. At the
injection point, the insertion accuracy is given as a
function of the error in position and velocity. This error
is then propagated backwards. The set of backwards
propagated states defines a region (or cloud) in the state
space that surrounds the nominal solution. Each point
inside the cloud represents a pair of position and velocity
that will lead to capture at lunar insertion if the state is
propagated forward.

The displacement dr and the velocity variation dv on
the r–h plane were randomly generated within a given
range. The perturbed state vector ½rþdrvþdv� was then
propagated backwards for Dt. The displacement vector dr
is defined as

dr¼ dr½cosy,0,siny�T ð2Þ

and the velocity variations dv are defined as follows:

dv¼ dv½cosWcosf,cosWsinf,sinW�T

f¼
f

2p ; W¼
cosðWþp=2Þþ1

2
ð3Þ

The quantities f and W are taken randomly within the
interval [0,1], with uniform distribution. The displace-
ment norm dr is taken from the interval [0, er], with
uniform distribution, where er is the expected error in
position. With this choice it is implicitly assumed that
there is 100% probability that the displacement is in that
interval. Therefore, there is a 100% probability that if
ESMO is within the corridor at all times along the transfer,
then it is captured at the Moon. The reverse is not true in
general. For the velocities, the norm dv is taken from the
interval [0, ev] with uniform distribution.

A total of 10,000 perturbed state vectors were propa-
gated backwards from lunar injection to one week, two
weeks along the transfer and up to the WSB point. The
resulting positions and velocities were then projected
onto the r–h and r–t planes at epoch. Fig. 5 shows a
sketch of a perturbed solution intersecting the r–h plane.

−200
0

200 −400
−200

0
200

400
−100

0

100

t [k
m]

Position error in the r−t−h reference frame

r [km]

h 
[k

m
]

Fig. 2. Relative error in position projected along the radial, transversal
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Fig. 4. Schematic of the r–h plane at the lunar orbit insertion point.
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Figs. 6–8 show the results of the backward propaga-
tion (position and velocity dispersion in the r–h plane) at
one week from lunar injection for a trajectory departing on
16 March 2011. Errors used are er¼5 km and ev¼10 m/s.
Figs. 10–13 display the result of the propagation at two
weeks before lunar injection. The position and velocity

Fig. 5. Schematic of the backward propagation.
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Fig. 6. Position dispersion at one week from lunar injection, r–h plane.
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plots report the variation with respect to the nominal value
and, therefore, are centred around the origin. As long as
ESMO is located within the trajectory corridor then orbital
insertion around the Moon can be achieved.

Note that the trajectories corresponding to the curl
(Figs. 6, 8, 10 and 12) will not reach the WSB region and
do not represent feasible transfers. Furthermore, it is im-
portant to underline how the corridor tends to get thinner
in the normal and transversal directions while it seems to
stretch along the radial direction. Close ups in Figs. 7, 9,
11 and 13 allow for an estimation of the size of the
corridor along the r–h directions. From Fig. 7 one can see
that, at one week, the corridor has a half-width of roughly
300 km along the radial and 400 km along the normal
direction; in terms of velocity (Fig. 9), the dimensions are
0.01 km/s along the radial and 0.001 km/s along the out of
plane directions. At two weeks before LOI, the half-width
of the corridor in position (Fig. 11) is roughly 400 km
along the radial and 300 km along normal directions; in
velocity (Fig. 13), they are 0.03 km/s and 0.002 km/s
respectively. The required orbit determination accuracy
was derived from the size of the corridor at the farthest
point from the Earth, along the transfer trajectory. Table 4
reports the worst-case required orbit determination accu-
racy at the WSB point assuming a 100% margin, i.e. the
maximum allowable error in position and velocity was
reduced to less than half of the actual size of the corridor
at the farthest point from the Earth.

4. Orbit determination process

The actual satisfaction of the OD requirements
derived in the previous section was assessed by model-
ling and simulating the OD process with the tracking
stations allocated to ESMO. As shown in Fig. 14, the
output of the OD process was then used to allocate a
number of trajectory correction manoeuvres in order to
remain within the capture corridor at one week from
lunar orbit insertion.

The diagram in Fig. 14 represents the algorithm simu-
lating the orbit determination process and the optimal
allocation of TCM’s. The Orbit Determination processes
range and range rate, angle and angles rate measure-
ments, coming from a single ground station, and produces
an estimate of the state of the spacecraft using a Kalman
filter. State estimation is then used in the Navigation
block (see Fig. 14), which generates an optimised seq-
uence of correction manoeuvres.

The estimation accuracy, together with the additional
errors introduced during the execution of the correction
manoeuvres, has considerable effects on the Navigation

−2000 −1000 0 1000 2000 3000

−2000

−1000

0

1000

2000

Error in position in r−h plane 2 weeks befor LOI

r [km]

h 
[k

m
]

Fig. 11. Position dispersion at two weeks from lunar injection, r–h plane

(close up around the nominal transfer).
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Fig. 12. Velocity dispersion at two weeks from lunar injection, r–h plane.
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Table 4
Orbit determination accuracy requirements at 2 weeks from tinjection.

Position Velocity

25 km Radial (range) 0.005 km/s Radial (range rate)

10 km Along track 0.001 km/s Along track

10 km Out of plane 0.001 km/s Out of plane
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budget and on the possibility for ESMO to be captured
around the Moon. Therefore, the OD process is simulated
by introducing random errors in the initial states of the
nominal trajectory and in the measurements. The magni-
tude of the errors in the initial state was derived from the
3s launch dispersion: 1 m/s in velocity and 1 km in posi-
tion. The errors in the measurements instead were
derived from the available information on the tracking
stations. The set of measurements includes range and
range rate r and _r, from the ground station, plus the
pointing angles and their variations with time A, E, _A and
_E (respectively azimuth, elevation, azimuth rate and ele-
vation rate). Since the actual position of the spacecraft is
given in the Earth Centred Inertial (ECI) reference frame, it
is necessary to write the state of ESMO as it was seen in
the local South East Zenith (SEZ) reference frame of the
ground station as shown in Fig. 15.

The range in the ECI reference frame is given by the
difference in position of the spacecraft and ground station
location:

qECI ¼ rECI�rsite�ECI ð4Þ

where rsite�ECI is the ECI position of the ground station.
The range and velocity vectors in the SEZ frame are given
by the following transformations:

qSEZ ¼AECI2ECEFAT
ECI2ECEFqECI

_qSEZ ¼ASEZ2ECEF AT
ECI2ECEF vECI ð5Þ

where ASEZ–ECEF and AECI–ECEF are respectively the trans-
formation matrix from the Earth Centred Earth Fixed
(ECEF) reference frame to SEZ and the transformation

matrix from ECEF to ECI [20]:

AECI2ECEF ¼

cosy �siny 0

siny cosy 0

0 0 1

0
B@

1
CA

ASEZ2ECEF ¼

sinfcosl �sinfsin �cos

�sinl cosl 0

cosfcos cosfsin sinf

0
B@

1
CA ð6Þ

F and l are the latitude and longitude of the ground
station; y is the rotation angle between the ECI and ECEF
reference frame about the z-axis:

y¼ 280:4606þOt ð7Þ

Fig. 14. Orbit determination and navigation algorithm.

Fig. 15. Reference frames [20].
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where O is the Earth’s angular speed expressed in deg/day
and t is the time expressed in MJD2000. Finally the set of
simulated measurements is obtained from the SEZ posi-
tion and velocity:

r¼ 9qSEZ9

E¼ asin
rZ

r

A¼ asin
rEffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

Sþr2
E

q

_r ¼
_qSEZUqSEZ

r

_A ¼
_rSrEþ _rErS

r2
Sþr2

E

_E ¼
_rZ�rsinE

r2
Sþr2

E

ð8Þ

The actual measurements were simulated by perturb-
ing the nominal ones with a random noise with normal
distribution. Ionospheric and tropospheric refractions
were not taken into account since their effect is expected
to be corrected at ground station level before the infor-
mation is provided to flight dynamics for orbit determi-
nation. The measurements are then processed by means
of an Extended Kalman Filter [18,21] (EKF). This is a well-
known dynamic optimal filter which was first employed
in the Apollo program. This kind of filter is suitable for
both real-time and off-line applications. Within the
ESMO programme the use of a sequential estimator has
two motivations: since an autonomy experiment was
proposed, the use of a sequential estimator, would allow
both an efficient processing of the measurements on
ground, with an online response to any contingent
situation, and the testing of the autonomous navigation
strategies; besides being a unique educational opportu-
nity, ESMO offers the chance to experiment new solu-
tions and working methodologies that can be used in
future extremely low cost missions. The EKF assumes
that the true state x¼[r,v]T in the ECI reference frame is
close to the estimated state. The dynamic and measure-
ment model used in the filtering take the following form:

_xðtÞ ¼ fðxðtÞ,tÞ

yk ¼ hðxkÞþmk ð9Þ

where f(x(t),t) is the set of nonlinear continuous-time
equations represented in Eq. (1), h(xk) is the set of
nonlinear discrete time equations for the measurements,
coming from Eq. (6), and mk is the measurements noise
defined as mk ¼Rrn, where R is a diagonal matrix whose
components along the diagonal are the squared values of
the Ground Station errors reported in Table 5 (in the
same order) and rn 2 Nð0,1Þ is a vector of random
numbers taken from a normal distribution. Note that a
minimal process noise was considered during the analy-
sis because the dynamical model is expected to be fairly
complete with the unmodeled components orders of
magnitude lower than the modelled ones (e.g. solar
pressure, inhomogeneous gravity field of the Earth,
etc.). The system is characterised by an initial state
estimate x0 and state covariance matrix P0. The EKF is
composed of two conceptually distinct phases: the time

update and the measurements update. The time update
phase consists of the propagation of the latest estimate
xþk to obtain an a-priori estimate at current epoch x�kþ1

with the corresponding covariance matrix P�kþ1:

x�kþ1 ¼ xðtkþ1;xðtkÞ ¼ x�k Þ

P�kþ1 ¼Ukþ1Pþk UT
kþ1 ð10Þ

where Ukþ1 is the state transition matrix coming from
the linearization of the dynamic equations about the
updated state x�kþ1:

Ukþ1 ¼Ukþ1ðtkþ1,tkÞ ¼ IþFkDt

Fk ¼
@fðx�k Þ

@x�k
ð11Þ

The measurement update phase consists of the com-
putation of the Kalman gain Kkþ1 and the state estimate
xþkþ1 and covariance matrix, Pþkþ1 updates

Kkþ1 ¼ P�kþ1HT
kþ1½Hkþ1P�k HT

kþR��1

xþkþ1 ¼ x�kþ1þKkþ1ðykþ1�hðx�kþ1ÞÞ

Hkþ1 ¼
@hðx�kþ1Þ

@x�kþ1

Pþkþ1 ¼ ðI�Kkþ1Hkþ1ÞP
�
kþ1 ð12Þ

where Hkþ1 is the Jacobian matrix of the measurement
function. As an example of the application of the EKF to
the OD of ESMO, a three-day OD campaign using Raisting
as ground station, and a Ku-band transponder was simu-
lated. Table 4 reports the errors which were used in the
simulations.

Table 6, Figs. 16 and 17 report the results of the OD
process and show the convergence history of the filtering
process in number of filter iterations. Note that, the
difference between the exact state and the estimated
one at the end of the OD campaign fulfils the require-
ments derived in previous sections. These results confirm

Table 6
Position and velocity errors at the end of the OD

process.

OD duration 3 days

Difference in position Dr 0.720 km

Difference in velocity Dv 0.0106 m/s

rðDrÞ 0.4139 km

rðDvÞ 0.0054 m/s

Table 5
Magnitude of the random errors on mea-

surements for OD simulation.

Measurement error 3s

Dr 30 m

D _r 15 cm/s

Da 10 Arcsec

D _a 10�7 deg/s

Db 10 Arcsec

D _b 10�7 deg/s
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that the filter is able to handle the current measurement
and process noise and correctly respond to the mission
requirements.

5. Navigation strategy

Besides setting the upper limits on the measurements
errors, the capture corridor provides the basis for the
definition of a robust navigation strategy. The premise is
to manoeuvre and maintain ESMO within the capture
corridor at all times with enough margin to accommodate
any orbit determination error. Intermingled along the
transfer and in between the orbit determination segments
are TCM’s optimally timed to remain within the corridor
till insertion. The goal of each TCM is that of minimising
the deviation from the nominal trajectory at a certain
point along the transfer. To ensure capture around the
Moon, ESMO must be inside the capture corridor at all
times. Therefore, after each orbit determination segment
a TCM may, or may not, be required.

Orbit determination is assumed to occur over a three
day period before each planned corrective action. This is
to guarantee a good level of convergence of the filter. It is
also assumed that the first orbit determination process
occurs one week after the trans-lunar injection man-
oeuvre is performed.

Throughout the navigation analysis process, a number
of sources of inherent error were considered. The error in
the major Dv manoeuvres at the trans-lunar injection
burn is assumed to range between 0 and 10 m/s in every
direction. It was also assumed that each TCM in itself was
affected by an error (due to misfiring of the thrusters) that
must be accounted for. The analysis was conducted ass-
uming a manoeuvre error of 1%, 5%, 10% of the nominal
correction component in every direction. As before, a
symmetric interval [�e e] around each nominal compo-
nent of the Dv was considered and values were sampled,
with uniform distribution, from the hypercube [�e e]3.

Following each TCM, the possible outcome of errors in
both position and velocity of ESMO is measured at the
next orbit determination point. In this sense, ESMO
should be visible during all TCM’s. The sum of all the
TCM’s will lead to an increase in the mission Dv and
propellant budget. Thus, the scheduling (time and date),
direction and magnitude of the TCM’s were optimised
using the function fmincon of the MATLABRM Optimisa-
tion Toolbox [22]. Two TCM’s were allocated after each
OD to correct the trajectory up to the next way point twp,
i.e. the time along the trajectory where the spacecraft is
expected to be within the corridor. Two way points were
used in this analysis: one is the WSB point, i.e. when the
spacecraft starts flying back towards the Moon, and the
other is one week before lunar orbit injection. At the way
point the nominal state of the spacecraft is xnominal(twp)
and the state provided by the implementation of the
TCM’s is x (twp). Each TCM is defined by its time of
execution tTCM and the components of the velocity varia-
tion with respect to the local velocity vector. Note that a
minimum delay of 12 h is inserted between the end of
the OD and the first TCM, and also a minimum delay of
24 h between the first and second TCM, and a minimum
delay of 12 h between the second TCM and the time at
way point twp. These time spans are allocated in order to
collect the telemetry data prior to manoeuvre planning
and to upload the commands necessary to implement the
correction manoeuvre. The function fmincon was then
used to solve the following constrained optimisation
problem:

min
u2U

DvTCM1
þDvTCM2

s:t:

xðtwpÞ�xnominalðtwpÞ ¼ 0 ð13Þ

with solution vector u¼ tTCM1 DvTCM1=x
DvTCM1=y

h
DvTCM1=z

tTCM2
DvTCM2=x

DvTCM2=y
DvTCM2=z

�T 2 U. The solution space
U is defined by the following lower and upper boundaries:
ul¼[tendODþ12 h�0.1 km/s�0.1km/s�0.1km/s(tendODþtwp)/
2þ12 hs�0.1 km/s�0.1 km/s�0.1 km/s] and uu¼[(tendODþ

twp)/2�12 h 0.1 km/s 0.1 km/s 0.1 km/s twp�12 h 0.1 km/s
0.1 km/s 0.1 km/s], where tendOD is the end time of the last
OD campaign preceding the allocation of the TCM’s. In order
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to collect sufficient data on the probability of success of the
OD and navigation process, 100 repeated simulations were
run for each scenario. Each scenario is defined by different
ground station characteristics, number of allocated TCM’s
and error magnitude for each manoeuvre. In accordance to
the current mission requirements all measurements for orbit
determination will be gathered from the Raisting tracking
stations. The number of OD campaigns is set a priori and
their distribution along the trajectory is such that they
provide good access to the ground station and good naviga-
tion capabilities during critical flight phases. The first OD for
each leg is performed within 3 days after the TLI and the
WSB manoeuvres. Prompt OD and Navigation are able to
reduce the effects and errors such manoeuvres can introduce
into the trajectory. Note that although two TCMs are nor-
mally allocated after each OD campaign, if the required
correction is negligible the TCM is not performed. Further-
more, because the time of the TCMs is optimised and one OD
campaign follows each executed TCM within 10 days, also
the time of the OD is defined to optimally accommodate the
required TCMs.

Fig. 18 illustrates a possible navigation strategy. This
includes eight TCM’s and six orbit determination cam-
paigns, each one lasting for three days. After the initial
translunar injection burn, a first orbit determination cam-
paign is performed. Using the outcome of the orbit
determination process, two TCM’s are allocated taking
as way point the WSB point. However, only one of them is
performed before a second orbit determination process
occurs. After the second orbit determination campaign,
another two TCM’s are planned, and so on and so forth till
the first way point is reached. On the way back to the
Moon, the same OD and Navigation process is repeated
using the same method until ESMO reaches one week
prior to lunar insertion. An example is presented in
Table 7. The table reports the beginning and end of each
orbit determination campaign and the date and magni-
tude of the allocated TCM.

Note that the TCM4 includes the WSB manoeuvre, the
magnitude of which in the nominal solution, is 49.5 m/s,
therefore the total navigation budget is the sum of all the

TCM’s minus the nominal WSB manoeuvre. Table 8
shows the mean and variance over 100 runs of the
position and velocity achieved at the second way point
and the corresponding navigation budget for different
errors in the components of all the Dv manoeuvres
(including TCM’s).

The last row of Table 8 reports the number of sampled
transfers that are outside the corridor at one week from
lunar orbit insertion. As expected a higher error in the
execution of the manoeuvre (for example due to the poor
control of the thrust vector) reduces the controllability of
the system and therefore the final error in position and
velocity is higher than in the case of a well controllableFig. 18. Example of a possible navigation strategy.

Table 7
Example of Orbit Determination (OD) and TCM allocation for a 1% error

in the Dv components of each manoeuvre.

GTO–WSB Leg

OD 1 Start 19/03/2011

End 22/03/2011

TCM 1 22/03/2011, DV¼6.4m/s

OD 2 Start 02/04/2011

End 05/04/2011

TCM 2 06/04/2011, DV¼0.1 m/s

OD 3 Start 17/04/2011

End 20/04/2011

TCM 3 21/04/2011, DV¼0.15 m/s

TCM 4 26/04/2011, DV¼50.2 m/s

Moon-WSB Leg

OD 4 Start 04/05/2011

End 07/05/2011

TCM 5 07/05/2011, DV¼2.8 m/s

OD 5 Start 17/05/2011

End 20/05/2011

TCM 6 20/05/2011, DV¼0.28 m/s

OD 6 Start 30/05/2011

End 02/06/2011

TCM 7 02/06/2011, DV¼0.11 m/s

TCM 8 08/06/2011, DV¼2.8 m/s

Total TCM DV (m/s) 62.4

Additional DV (m/s)

wrt nominal solution

11.9

Table 8
Navigation statistics for different levels of accuracy in the execution of

the manoeuvres, and assuming Ku-band data link for orbit

determination.

Error on Dv 1% 5% 10%

Position (km)

Mean 7.4 13.3 39.4

Std 4.2 7.9 28.2

Velocity (km/s)

Mean 2.26�10�5 9.12�10�5 2.60�10�4

Std 1.40�10�5 6.65�10�5 2.13�10�4

Extra DV (m/s)

Mean 9.0 14.1 21.2

Std 3.8 4.5 6.0

Solutions outside

1 week corridor

0 0 0
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system. Nonetheless for the selected baseline the max-
imum navigation budget results to be slightly above
20 m/s with no solutions left outside the capture corridor.

Figs. 19 and 20 show an example of final velocity at
one week before LOI obtained implementing the pro-
posed OD/TCM process for both a 5% error in the Dv

manoeuvres. The dots represent the back propagation
from LOI, i.e. the corridor, while the stars the 100
simulated transfers.

In order to assess the worst case scenario for the orbit
determination process it was assumed that Raisting was
using a link in S-band thus having a higher beam width of
about 50 arcsec. The navigation strategy still consists of
six orbit determination campaigns (three days each) and
eight TCM’s executed throughout the transfer.

As shown in Table 9, despite the reduced perfor-
mance, the additional required Dv is limited to a max-
imum of 28 m/s on average (40 m/s including a 3s
standard deviation). In this case the effect of errors on
both OD and corrections manoeuvre is magnified,
increasing the navigation budget by 48% for a 10% error
in the Dv components.

6. Discussion

The analysis in this paper has shown the potentiality of
an OD approach based on an extended Kalman filter, and
the associated navigation strategy, for a low cost mission
like ESMO. However, before an actual operational imple-
mentation of both the OD and navigation approaches in
this paper, a number of extensions are required to incor-
porate a higher fidelity dynamic, ground segment and
space segment models. This extension includes the effect
of solar pressure during coasting arcs, the accurate mod-
elling of all manoeuvres considering the actual thrust
profile (which is dependent on both the propulsion and
the attitude subsystems) and higher fidelity model of the
measurements. In this respect some recent analyses [23]
have shown the effect of the error in the pointing angle
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Table 9
Transfer statistics for different levels of thrust and ADCS accuracy, using

S-band for orbit determination.

Error on Dv 1% 5% 10%

Position (km)

Mean 34.9 36.3 54.1

s 19.2 19.9 26.7

Velocity (km/s)

Mean 9.92�10�5 1.23�10�4 2.56�10�4

s 6.86�10�5 7.58�10�5 5.72�10�4

Extra DV (m/s)

mean 10.5 14.1 28.0

s 3.7 4.6 12.0

Solutions outside

1 week corridor

0 0 0
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measurements the pointing angles in comparison to an
OD strategy based only on range and range-rate measure-
ments. Although, the corridor-based navigation strategy is
robust against inaccuracies in measurements and TCM
execution, the quality of the measurements might lead to
a redefinition of the OD strategy or a relaxation of the
requirements on the final lunar orbit.

Furthermore, an optimal allocation of the last OD cam-
paign and TCM has shown that in a number of cases a
correction at less than one week from orbit insertion
might be appropriate. This suggests that once a baseline
transfer is available the whole OD and navigation strate-
gies will need to be accurately tailored on that specific
baseline. Because one of the main requirements for ESMO
is to have a transfer solution for every day of the launch
window, the OD and navigation strategies will need to be
defined (or redefined) with very short notice to accom-
modate the availability of launch opportunities.

7. Concluding remarks

This paper presented a first analysis of the orbit deter-
mination requirements and possible navigation strategies
for ESMO. The proposed corridor-targeting approach
yields good results at a relatively low Dv cost. This is
coupled with mild orbit determination accuracy. This
approach therefore seems to be ideal for small spacecraft
missions that are constrained with a low mission Dv.
However, in the assessment of the current navigation
strategy, still a number of sources of noise need to be
considered, in particular the accuracy of the ground
station tracking system related to the ionospheric effects
and process noise due to unmodelled components. The
final design and construction of the ground station will
allow using actual measurement data, in order to validate
and consolidate the analysis. The data suggest that less
accurate tracking systems and higher error in the TCM’s
could lead to velocity poorly controllable system and a
difficult targeting of the corridor. On the other hand the
current targeting strategy considers a conservative 1%
error and the exact satisfaction of the terminal constraint
when planning the TCM’s. Integrating attitude dynamics
and propulsion systems into the flight dynamics will
allow precisely simulating the manoeuvres and their im-
pacts on the navigation. A more flexible strategy is under
investigation that aims at a weak temporary capture in
case of major contingencies or underperformance of the
engines.

An autonomous navigation experiment is currently
under study in order to provide navigation and control
during one week of autonomous operations. The idea is to
use attitude sensors and payload camera, in order to
perform on-board trajectory estimation and operate the
spacecraft autonomously, thus improving the likelihood
of the mission success. Furthermore, throughout this
analysis the number of TCM’s was not optimised. Further

work will address this optimisation and a more tailored
orbit determination process of ESMO.
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