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Hadamard upper bound on optimum joint
decoding capacity of Wyner Gaussian cellular
MAC
Muhammad Zeeshan Shakir1,2*, Tariq S Durrani2 and Mohamed-Slim Alouini1

Abstract

This article presents an original analytical expression for an upper bound on the optimum joint decoding capacity

of Wyner circular Gaussian cellular multiple access channel (C-GCMAC) for uniformly distributed mobile terminals

(MTs). This upper bound is referred to as Hadamard upper bound (HUB) and is a novel application of the

Hadamard inequality established by exploiting the Hadamard operation between the channel fading matrix G and

the channel path gain matrix Ω. This article demonstrates that the actual capacity converges to the theoretical

upper bound under the constraints like low signal-to-noise ratios and limiting channel path gain among the MTs

and the respective base station of interest. In order to determine the usefulness of the HUB, the behavior of the

theoretical upper bound is critically observed specially when the inter-cell and the intra-cell time sharing schemes

are employed. In this context, we derive an analytical form of HUB by employing an approximation approach

based on the estimation of probability density function of trace of Hadamard product of two matrices, i.e., G and

Ω. A closed form of expression has been derived to capture the effect of the MT distribution on the optimum joint

decoding capacity of C-GCMAC. This article demonstrates that the analytical HUB based on the proposed

approximation approach converges to the theoretical upper bound results in the medium to high signal to noise

ratio regime and shows a reasonably tighter bound on optimum joint decoding capacity of Wyner GCMAC.

1. Introduction
The ever growing demand for communication services

has necessitated the development of wireless systems

with high bandwidth and power efficiency [1,2]. In the

last decade, recent milestones in the information theory

of wireless communication systems with multiple

antenna and multiple users have offered additional new-

found hope to meet this demand [3-11]. Multiple input

multiple output (MIMO) technology provides substan-

tial gains over single antenna communication systems,

however the cost of deploying multiple antennas at the

mobile terminals (MTs) in a cellular network can be

prohibitive, at least in the immediate future [3,8]. In this

context, distributed MIMO approach is a means of rea-

lizing the gains of MIMO with single antenna terminals

in a cellular network allowing a gradual migration to a

true MIMO cellular network. This approach requires

some level of cooperation among the network terminals

which can be accomplished through suitably designed

protocols [4-6,12-16]. Toward this end, in the last few

decades, numerous articles have been written to analyze

various cellular models using information theoretic

argument to gain insight into the implications on the

performance of the system parameters. For an extensive

survey on this literature, the reader is referred to

[5,6,17-19] and the references there in.

The analytical framework of this article is inspired by

analytically tractable model for multicell processing

(MCP) as proposed in [7], where Wyner incorporated

the fundamental aspects of cellular network into the fra-

mework of the well known Gaussian multiple access

channel (MAC) to form a Gaussian cellular MAC

(GCMAC). The majority of the MCP models preserve

fundamental assumptions which has initially appeared in

Wyner’s model, namely (i) interference is considered

only from two adjacent cells; (ii) path loss variations

among the MTs and the respective base stations (BSs)
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are ignored; (iii) the interference level at a given BS

from neighboring users in adjacent cells is characterized

by a deterministic parameter 0 ≤ Ω ≤ 1, i.e., the colloca-

tion of MTs (users).a

A. Background and related study

In [7], Wyner considered optimal joint processing of all

BSs by exploiting cooperation among the BSs. It has

been shown that intra-cell time division multiple access

(TDMA) scheme is optimal and achieves capacity. Later,

Shamai and Wyner considered a similar model with fre-

quency flat fading scenario and more conventional

decoding schemes, e.g., single-cell processing (SCP) and

two-cell-site processing schemes [5,6]. It has also been

shown that the optimum joint decoding strategy is dis-

tinctly advantageous over intra-cell TDMA scheme and

fading between the terminals in a communication link

increases the capacity with the increase in the number

of jointly decoded users. Later, in [20] Wyner model has

been modified by employing multiple transmitting and

receiving antennas at both ends of the communication

link in the cellular network where each BS is also com-

posed of multiple antennas. Recently, new results have

been published by further modifying the Wyner model

with shadowing [21].

Recently, Wyner model has been investigated to

account for randomly distributed users, i.e., non-collo-

cated users [21-24]. In [22], an instant signal-interfer-

ence-ratio (SIR) and averaged throughout for randomly

distributed users have been derived by employing

TDMA and code division multiple access (CDMA)

schemes. It has been shown that the Wyner model is

accurate only for the system with sufficient number of

simultaneous users. It has also been shown that for

MCP scenario, the CDMA outperforms the inter-cell

TDMA which is opposite to the original results of

Wyner, where inter-cell TDMA is shown to be capacity

achieving [7]. Later in the article, similar kind of analysis

has also been presented for downlink case which is out

of scope of this article. The readers are referred to [22]

and references there in.

Although the Wyner model is mathematically tract-

able, but still it is unrealistic with respect to practical

cellular systems that the users are collocated with the

BSs and offering deterministic level of interference

intensity to the respective BS. As a consequence,

another effort has been made to derive an analytical

capacity expression based on random matrix theory

[21,23]. Despite the fact that the variable-user density

is used in this article, the analysis is only valid under

the asymptotic assumptions of large number of MTs

K, i.e., K ® ∞ and infinite configuration of number of

cooperating BSs N, i.e., N ® ∞ such that

K
N

→ c ∈ (0, 1)[17,21,23,24]. On the contrary, the main

contribution of our article is to offer non-asymptotic

approach to derive information theoretic bound on

Wyner GCMAC model where finite number of BSs

arranged in a circle are cooperating to jointly decode

the user’s data.

B. Contributions

In this article, we consider a circular version of Wyner

GCMAC (by wrap around the linear Wyner model to

form a circle) which we refer to as circular GCMAC (C-

GCMAC) throughout the article [12]. We consider an

architecture where the BSs can cooperate to jointly

decode all user’s data, i.e., macro-diversity. Thus, we dis-

pense with cellular structure altogether and consider the

entire network of the cooperating BSs and the users as a

network-MIMO system [12]. Each user has a link to

each BS and BSs cooperate to jointly decode all user’s

data. The summary of main contributions of this article

are described as follows. We derive a non-asymptotic

analytical upper bound on the optimum joint decoding

capacity of Wyner C-GCMAC by exploiting the Hada-

mard inequality for finite cellular network-MIMO setup.

The bound is referred to as Hadamard upper bound

(HUB). In this study, we alleviate the Wyner’s original

assumption by assuming that the MTs are uniformly

distributed across the cells in Wyner C-GCMAC.

In first part of this article, we introduce the derivation

of Hadamard inequality and its application to derive

information theoretic bound on optimum joint decoding

capacity which we referred to as theoretical HUB. The

theoretical results of this article are exploited further to

study the effect of variable path gains offered by each

user in adjacent cells to the BS of interest (due to vari-

able-user density). The performance analysis of first part

of this article includes the presentation of capacity

expressions over multi-user and single-user decoding

strategies with and without intra-cell and inter-cell

TDMA schemes to determine the existence of the pro-

posed upper bound. In the second part of this article,

we derive the analytical form of HUB by approximating

the probability density function (PDF) of Hadamard pro-

duct of channel fading matrix G and channel path gain

matrix Ω. The closed form representation of HUB is

presented in the form of Meijer’s G-Function. The per-

formance and comparison description of analytical

approach includes the presentation of information theo-

retic bound over the range of signal-to-noise ratios

(SNRs) and the calculation of mean area spectral effi-

ciency (ASE) over the range of cell radii for the system

under consideration.

This article is organized as follows. In Section II, sys-

tem model for Wyner C-GCMAC is recast in Hadamard
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matrix framework. Next in Section III, the Hadamard

inequality is derived as Theorem 3.3 based on Theorem

3.1 and Corollary 3.2. While in Section IV, a novel

application of the Hadamard inequality is employed to

derive the theoretical upper bound on optimum joint

decoding capacity. This is followed by the several simu-

lation results for a single-user and the multi-user sce-

narios that validate the analysis and illustrate the effect

of various time sharing schemes on the performance of

the optimum joint decoding capacity for the system

under consideration. In Section V, we derive a novel

analytical expression for an upper bound on optimum

joint decoding capacity. This is followed by numerical

examples and discussions in Section VI that validate the

theoretical and analytical results, and illustrate the accu-

racy of the proposed approach for realistic cellular net-

work-MIMO systems. Conclusions are presented in

Section VII.

Notation: Throughout the article, ℝN × 1 and ℂ
N × 1

denote N dimensional real and complex vector spaces,

respectively. Furthermore, ℙN × 1 denotes N dimensional

permutation vector spaces which has 1 at some specific

position in each column. Moreover, the matrices are

represented by an uppercase boldface letters, as an

example, the N × M matrix A with N rows and M col-

umns are represented as AN × M. Similarly, the vectors

are represented by a lowercase boldface italic version of

the original matrix, as an example, a N × 1 column vec-

tor a is represented as aN × 1. An element of the matrix

or a vector is represented by the non-boldface letter

representing the respective vector structure with sub-

scripted row and column indices, as an example an,m
refers to the element referenced by row n and column

m of a matrix AN × M. Similarly, ak refers to element k

of the vector a
N × 1. Scalar variables are always repre-

sented by a non-boldface italic characters. The following

standard matrix function are defined as follows: (·)T

denotes the non-Hermitian transpose; (·)H denotes the

Hermitian transpose; tr (·) denotes the trace of a square

matrix; det (·) and | · | denote the determinant of a

square matrix; ||A|| denotes the norm of the matrix A;

E[·] denotes the expectation operator and (∘) denotes

the Hadamard operation (element wise multiplication)

between the two matrices.

2. Wyner Gaussian cellular Mac model
A. System model

We consider a circular version of Gaussian cellular

MAC (C-GCMAC), where N = 6 cells are arranged in a

circle such that the BSs are located in the center of each

cell as shown in Figure 1[12,25]. The inspiration of

small number of cooperating BSs is based on [26] where

we have shown the existence of circular cellular struc-

ture found in city centers of large cities in the UK, i.e.,

Glasgow, Edinburgh, and London. It has been shown

that BSs can cooperate to jointly decode all users data.

Furthermore, we employed a circular array instead of

the typical linear array because of its analytical tractabil-

ity. In the limiting scenario of the large number of coop-

erating BSs, these two array topologies are expected to

be equivalent [25]. Moreover, each cell has K MTs such

that there are M = NK MTs (users) in the entire system.

Assuming a perfect symbol and frame synchronism at a

given time instant, the received signal at each of the BS

is given by[12]b

yj =

K
∑

l=1

hl
BjTj

xl
j +

∑

i=±1

K
∑

l=1

hl
BjTj+i

xl
j+i + zj, (1)

where {Bj}N
j=1 are the BSs; {Tj}N

j=1 are the source MTs, K

for each cell; xl
j represents the symbol transmitted by

the lth MT Tj in jth cell. Furthermore, the MTs are

assumed to transmit independent, zero mean complex

symbols such that each subject to an individual average

power constraint, i.e., E
[

‖ xl
j‖2

]

≤ P for all (j, l) = (1, ...,

N) × (1, ..., K) and zj is an independent and identically

distributed (i.i.d) complex circularly symmetric (c.c.s)

Gaussian random variable with variance σ 2
z such that

each zj ∼ CN (0, σ 2
z ). Finally, hl

BjTj
is identified as the

resultant channel fading component between the lth

MT Tj and the BS Bj in jth cell. Similarly, hl
BjTj+i

is the

resultant channel fading component between the lth

MT Tj+i in (j + i)th cell for i = ±1, belonging to adjacent

cells and BS Bj in jth cell. In general, we refer hl
BjTj

and

6

45
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W W W W

W

W

W W W W

j
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Figure 1 Uplink of C-GCMAC where N = 6 BSs are cooperating

to decode all users’ data; (the solid line illustrates intra-cell

users and the dotted line shows inter-cell users). For simplicity,

in this Figure there is only K = 1 user in each cell.
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as the intra-cell and inter-cell resultant channel fading

components, respectively, and may be expressed as

hl
BjTj+i

= (gl
BjTj+i

◦ �l
BjTj+i

) for {i = 0, ±1}, (2)

where (∘) denotes the Hadamard product between the

two gains; the fading gain gl
BjTj+i

is the small scale fading

coefficients which are assumed to be ergodic c.c.s Gaus-

sian processes (Rayleigh fading) such that each

gl
BjTj+i

∼ CN(0, 1) and �BjTj+i denotes frequency flat-path

gain that strictly depends on the distribution of the

MTs such that each �BjTj+i
∼ U(0, 1) (path gains

between the users and respective BSs follow normalized

Uniform distribution). In particular, the path loss

between the MTs and the BSs can be calculated accord-

ing to the normalized path loss mode1[20]

�l
BjTj+i

=

(

dl
BjTj

dl
BjTj+i

)η/2

for {i = 0, ±1}, (3)

where dl
BjTj

and dl
BjTj+i

are the distances along the line

of sight of the transmission path between the intra-cell

and inter-cell MTs to the respective BS of the interest,

respectively, such that dl
BjTj

≤ dl
BjTj+i

for (l = 1 ... K).

Furthermore, the path gains between the inter-cell MTs

and the respective BS are normalized with respect to the

distances between the intra-cell MTs and respective BS

such that 0 ≤ �l
BjTj+i

≤ 1 in (j + i)th cell for {i = 0, ± 1}

[20]. Also, the h is the path loss exponent and we

assumed it is 4 for urban cellular environment [2]. It is

to note that these two components of the resultant

composite fading channel are mutually independent as

they are because of different propagation effects. There-

fore, the C-GCMAC model in (1) can be transformed

into the framework of Hadamard product as follows:

yj =

K
∑

l=1

(

gl
BjTj

◦ �l
BjTj

)

xl
j +

∑

i=±1

K
∑

l=1

(

gl
BjTj+i

◦ �l
BjTj+i

)

xl
j+i + zj.(4)

For notation convenience, the entire signal model over

C-GCMAC can be more compactly expressed as a vec-

tor memoryless channel of the form

y = Hx + z, (5)

where y Î ℂ
N × 1 is the received signal vector, x Î

ℂ
NK ×1 represents the transmitted symbol vector by all

the MTs in the system, z Î ℂ
N × 1 represents the noise

vector of i.i. d c.c.s Gaussian noise samples with

E[z] = 0, E[zzH] = σ 2
z IN and H Î ℂ

N ×NK is the resultant

composite channel fading matrix. The matrix H is

defined as the Hadamard product of the channel fading

and channel path gain matrices given byc

HN,K � (GN,K ◦ �N,K), (6)

where GN,K Î ℂ
N×NK such that GN,K ∼ CN (0, IN) and

ΩN,K Î ℝ
N×NK such that �N,K ∼ U(0, 1). The modeling

of channel path gain matrix ΩN,K for a single-user and

the multi-user environments can be well understood

from the following Lemma.

Lemma 2.1: (Modeling of Channel Path Gain Matrix)

Let S be a circular permutation operator, viewed as N ×

N matrix relative to the standard basis for ℝN. For a given

circular cellular setup where initially we assumed K = 1

and N = 6 such that there are M = NK = 6 users in the

system. Let {e1, e2, ..., e6} be the standard row basis vec-

tors for ℝN such that ei = S ei+1 for i = 1, 2, ..., N. There-

fore, the circular shift operator matrix S relative to the

defined row basis vectors, can be expressed as [27,28]

S =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0
0 0 0 0 1 0

0 0 0 0 0 1
1 0 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(7)

The matrix S is real and orthogonal, hence S-1 = ST

and also the basis vectors are orthogonal for ℝN.

• Symmetrical channel path gain matrix: In this sce-

nario, the structure of the channel path gain matrix is

typically circular for a single-user case. Therefore, the

path gains between the MTs Tj+i for {i = 0, ±1} and the

respective BSs Bj are deterministic and can be viewed as

a row vector of the resultant N × N circular channel

path gain matrix Ω. Mathematically, the first row of the

channel matrix may be expressed asd

�(1, :) = (�BjTj
, �BjTj+i

0, 0, 0, �BjTj−i
), where �BjTj is the

path gain between the intra-cell MTs Tj and the respec-

tive BSs in jth cell and �BjTj+i for i = ± 1 is the channel

path gain between the MTs Tj+i for i = ± 1 in the adja-

cent cells and the respective BSs in jth cell. In this con-

text, it is known that the circular matrix Ω can be

expressed as a linear combination of powers of the shift

operator S[27,28]. Therefore, the resultant circular chan-

nel path gain matrix (symmetrical) for K = 1 active user

in each cell can be expressed as

�N,1 = IN + �BjTj+1
S + �BjTj−1

ST , (8)

where IN is N × N identity matrix; S is the shift opera-

tor and �BjTj±1
∼ U(0, 1). Furthermore, for the multi-

user scenario the channel path gain matrix becomes

block-circular matrix such that (8) may be extended as

�N,K = 1K ⊗ IN +
{(

�l=1
BjTj+1

, . . . , �K
BjTj+1

)

⊗ S
}

+
{(

�l=1
BjTj−1

, . . . , �K
BjTj−1

)

⊗ ST
}

, (9)
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where 1K denotes 1 × K all ones vector and (⊗)

denotes the Kronecker product.

• Unsymmetrical channel path gain matrix: In this

scenario, the MTs (users) in the adjacent cells are ran-

domly distributed across the cells in the entire system.

Therefore, the channel path gain matrix is not determi-

nistic, and hence, the resultant matrix is no more circu-

lar. In this setup, the channel path gain matrix for

single-user scenario can be mathematically modeled as

follows:

�N,1 = IN + �̂N,1 ◦ S + �̂N,1 ◦ ST , (10)

where �̂N,1 ∼ U(0, 1).

Similarly, for the multi-user scenario the channel path

gain matrix in (10) may be extended as follows:

�N,K = 1K ⊗ IN + �̂N,K ◦ {1K ⊗ S} + �̂N,K ◦ {1K ⊗ ST}. (11)

B. Definitions

Now, we describe the following definitions which we

used frequently throughout the article in discussions

and analysis.

i. Intra-cell TDMA: a time sharing scheme where

only one user in each cell in the system is allowed

to transmit simultaneously at any time instant.

ii. Inter-cell TDMA: a time sharing scheme where

only one cell in the system is active at any time

instant such that each local user inside the cell is

allowed to transmit simultaneously. The users in

other cells in the system are inactive at that time

instant.

iii. Channel path gain (Ω): normalized distance

dependent path loss offered by intra-cell and inter-

cell MTs to the BS of interest.

iv. MCP: a transmission strategy, where a joint recei-

ver decodes all users data jointly (uplink); while the

BSs can transmit information for all users in the sys-

tem (downlink).

v. SCP: a transmission strategy where the BSs can

only decode the data from their local users, i.e.,

intra-cell users and consider the inter-cell interfer-

ence from the inter-cell users as a Gaussian noise

(uplink); while the BSs can transmit information

only for their local users, i.e., intra-cell users

(downlink).

3. Information theory and Hadamard inequality
In this section, a novel expression for an upper bound

on optimum joint decoding capacity based on Hada-

mard inequality is derived [12]. The upper bound is

referred to as HUB. Let us assume that the receiver has

perfect channel state information (CSI) while the trans-

mitter knows neither the statistics nor the instantaneous

CSI. In this case, a sensible choice for the transmitter is

to split the total amount of power equally among all

data streams and consequently, an equal power trans-

mission scheme takes place [4-6,12]. The justification

for adopting this scheme, though not optimal, originates

from the so-called maxmin property which demon-

strates the robustness of the above mentioned technique

for maximizing the capacity of the worst fading channel

[3-6]. Under these circumstances, the most commonly

used figure of merit in the analysis of MIMO systems is

the normalized total sum-rate constraint, which in this

article is referred to as the optimum joint decoding

capacity. Following the argument in [8], one can easily

show that optimum joint decoding capacity of the sys-

tem of interest is

Copt(p(H), γ ) =
1

N
I(x; y|H), (12)

=
1

N
E[log2 det(IN + γ HHH)], (13)

where p (H) signifies that the fading channel is ergo-

dic with density p(H); IN is a N × N identity matrix and

g is the SNR. Here, the BSs are assumed to be able to

jointly decode the received signals in order to detect the

transmitted vector x. Applying the Hadamard decompo-

sition (6), the Hadamard form of (13) may be expressed

as

Copt(p(H), γ ) =
1

N
E

[

log2 det(IN + γ (G ◦ �) (G ◦ �)H
]

.(14)

Theorem 3.1: (Hadamard Product)

Let G and Ω be an arbitrary N × M matrices. Then,

we have [29-31]

G ◦ � = PT
N(G ⊗ �)PM, (15)

where PN and PM are N2 × N and M2 × M partial per-

mutation matrices, respectively (in some of the litera-

tures these matrices are referred to as selection matrices

[29]). The jth column of PN and PM has 1 in its ((j - 1)

N + j) th and ((j - 1) M + j) th positions, respectively,

and zero elsewhere.

Proof: See [[31], Theorem 2.5].

In particular if N = M, then we have

G ◦ � = PT
N(G ⊗ �)PN. (16)

Corollary 3.2: (Hadamard Product)

This corollary lists several useful properties of the par-

tial permutation matrices PN and PM. For brevity, the

partial permutation matrices PN and PM will be denoted

by P unless it is necessary to emphasize the order. In
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the same way, the partial permutation matrices QN and

QM, defined below, are denoted by Q[12].e

i. PN and PM are the only matrices of zeros and

onces that satisfy (15) for all G and Ω.

ii. PTP = I and PPT is a diagonal matrix of zeros and

ones, so 0 ≤ diag 0 (PPT ) ≤ 1.

iii. There exists a N2 × (N2 - N) matrix QN and M2

× (M2 - M) matrix QM of zeros and ones such that

π ≜ (P Q) is the permutation matrix. The matrix Q

is not unique but for any choice of Q, following

holds:

PTQ = 0; QTQ = I; QQT = I − PPT .

iv. Using the properties of a permutation matrix

together with the definition of π in (iii); we have

π πT = (P Q)

(

PT

QT

)

= PPT + QQT = I.

Theorem 3.3: (Hadamard Inequality)

Let G and Ω be an arbitrary N × M matrices. Then

[29,30,32]

GGH ◦ ��H = (G ◦ �) (G ◦ �)H + Ŵ(P,Q), (17)

where Ŵ(P,Q) = PT
N(G ⊗ �)QMQT

M(G ⊗ �)HPN and we

called it the Gamma equality function. From (17), we

can obviously deduce [29]

GGH ◦ ��H ≥ (G ◦ �)(G ◦ �)H. (18)

This inequality is referred to as the Hadamard

inequality which will be employed to derive the theoreti-

cal and analytical HUB on the capacity (14).

Proof: Using the well-known property of the Kro-

necker product between two matrices G and Ω, we have

[33]

GGH ⊗ ��H = (G ⊗ �) (G ⊗ �)H

using Corollary 3.2(iii) i.e., (PMPT
M + QMQT

M) = I, sub-

sequently we have

GGH ⊗ ��H = (G ⊗ �)(PMPT
M + QMQT

M)(G ⊗ �)H,

= (G ⊗ �)PMPT
M(G ⊗ �)H + (G ⊗ �)QMQT

M(G ⊗ �)H,

multiply each term by partial permutation matrix P of

appropriate order to ensure Theorem 3.1, we have

PT
N(GGH ⊗ ��H)PN =PT

N(G ⊗ �)PMPT
M(G ⊗ �)HPN

+ PT
N(G ⊗ �)QMQT

M(G ⊗ �)HPN,

subsequently, we can prove that

GGH ◦ ��H = (G ◦ �) (G ◦ �)H + Ŵ(P,Q)

and

GGH ◦ ��H ≥ (G ◦ �) (G ◦ �)H.

This completes the proof of Theorem 3.3. ■

An alternate proof of (18) is provided as Appendix A.

4. Theoretical Hub
In this section, we first introduce the theoretical upper

bound by employing the Hadamard inequality (18).

Later, we demonstrate the behavior of the theoretic

upper bound when various time sharing schemes are

employed. It is to note that the aim of employing the

time sharing schemes is to illustrate the usefulness of

HUB in practical cellular network. The upper bound on

optimum joint decoding capacity using the Hadamard

inequality (Theorem 3.3) is derived as

Copt(p(H), γ ) ≤ Copt(p(H), γ ) (19)

=
1

N
E

[

log2 det
(

IN + γ
(

GGH
)

◦
(

��H
))]

. (20)

Now, in the following sub-sections we analyze the

validity of the HUB on optimum joint decoding capacity

w.r.t a single-user and the multi-user environments

under limiting constraints.

A. Single-user environment

i. Low inter-cell interference regime

For a single-user case, as the inter-cell interference

intensity among the MTs and the respective BSs is neg-

ligible, i.e., Ω ® 0, the actual optimum joint decoding

capacity approaches to the theoretical HUB on the capa-

city, since G and Ω becomes diagonal matrices and (18)

holds equality results such that

GGH ◦ ��H = (G ◦ �) (G ◦ �)H. (21)

It is to note that this is the scenario in cellular net-

work when the MTs in adjacent cells are located far

away from the BS of interest. Practically, the MTs in the

adjacent cells which are located at the edge away from

the BS of interest are offering negligible path gain.

Proof: To arrive at (21), we first notice from (17) that

PT
N(G ⊗ �) QMQT

M = 0 only when G and Ω are the diag-

onal matrices. Using corollary 3.2(iii), i.e.,

QMQT
M = I − PMPT

M, we have PT
N(G ⊗ �) (I − PMPT

M) = 0

such that

PT
N(G ⊗ �) = PT

N(G ⊗ �)PMPT
M,
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multiply both sides by (G ⊗ Ω)H PN, we have

PT
N(G ⊗ �) (G ⊗ �)HPN = PT

N(G ⊗ �) PMPT
M(G ⊗ �)HPN,

using the well property of Kronecker product between

two matrices G and Ω which states that (G ⊗ Ω) (G ⊗

Ω)H = GGH
⊗ ΩΩ

H, we have

PT
N(GGH ⊗ ��H)PN = PT

N(G ⊗ �) PMPT
M(G ⊗ �)HPN,

ensuring Theorem 3.1, we finally arrived at

GGH ◦ ��H = (G ◦ �)(G ◦ �)H.

This completes the proof of (21). ■

Therefore, by employing (21) in the low inter-cell

interference regime, we have

C̄opt(p(H), γ ) = lim
�→0

1

N
E[log2 det(IN + γ (G GH) ◦ (��H))] (22)

= Copt(p(H), γ ). (23)

The summary of theoretical HUB on optimum joint

decoding capacity over flat faded C-GCMAC for K =

1 is shown in Figure 2. The curves are obtained over

10,000 Monte Carlo simulation trials of the resultant

channel fading matrix H. It can be seen that the theo-

retical bound is relatively lose in the medium to high

SNR regime as compared to the bound in the low

SNR regime (compare the black solid curve using (14)

with the red dashed curve using (20)). The upper

bound is the consequence of the fact that the determi-

nant is increasing in the space of semi-definite posi-

tive matrices G and Ω . It can be seen that in the

limiting environment, such as when Ω ® 0, the actual

optimum joint decoding capacity approaches the theo-

retical upper bound (compare the curve with red

square markers and the black dashed-dotted curve in

Figure 2). It is to note that the channel path gain Ω

among the MTs in the adjacent cells and BS of inter-

est may be negligible when the users are located at

the edge away from the BS of interest, i.e., MTs are

located far away from the BS of interest such that Ω

® 0.

ii. Tightness of HUB–low SNR regime

In this sub-section, we show that the actual optimum

joint decoding capacity converges to the theoretical

HUB in the low SNR regime whereas in the high SNR

regime, the offset from the actual optimum capacity is

almost constant [12]. In general, if ∆ is the absolute

gain inserted by the theoretical upper bound on Copt

which may be expressed as

� = C̄opt(p(H), γ ) − Copt(p(H), γ ), (24)

and asymptotically tends to zero as g ® 0, given as

�0 = lim
γ→0

γ
1

N
E[tr(Ŵ(P,Q))]. (25)

Proof: Using (24), we have

� =
1

N
E

[

log2

(

det(IN + γ (G GH ◦ ��H))

det(IN + γ (G ◦ �)(G ◦ �H))

)]

=
1

N
E

[

log2

(

1 + γ tr(G GH ◦ ��H) + O0(γ 2)

1 + γ tr((G ◦ �)(G ◦ �H)) + O1(γ 2)

)]

,

where we have made a use of property

det(I + γ A) = 1 + γ trA + O(γ 2)[33],f hence using (17),

the tightness on the bound becomes

=
1

N
E

[

log2

(

1 + γ tr((G ◦ �)(G ◦ �H)) + γ tr(Ŵ(P,Q))

1 + γ tr((G ◦ �)(G ◦ �H))

)]

=
1

N
E

[

log2(1 +
γ tr(Ŵ(P,Q))

1 + γ tr((G ◦ �)(G ◦ �H))

]

=
1

N
E[log2(1 + γ tr(Ŵ(P,Q)))],

in limiting case, using Taylor series expansion we have

� =
1

N
E[γ tr(Ŵ(P,Q)) − 1

2
γ 2(tr(Ŵ(P,Q)))2 +

1

3
γ 3(tr(Ŵ(P,Q)))3 − · · · ],

ignoring the terms with higher order of g, the asymp-

totic gain inserted by HUB on optimum joint decoding

capacity becomes

�0 = lim
γ→0

γ
1

N
E[tr(Ŵ(P,Q))].

This completes the proof of (25). ■

It is demonstrated in Figure 2 that as g ® 0, the gain

inserted by the upper bound ∆ = ∆0 ≈ 0 (compare the

black solid curve with the red dashed curve). It can be

seen from the figure that the theoretical HUB on opti-

mum capacity is loose in the high range of SNR regime

and comparably tight in the low SNR regime, and hence

C̄opt(p(H), γ ) ≈ Copt(p(H), γ ).

iii. Inter-cell TDMA scheme

Note that (21) holds if and only if Γ(P,Q) = 0, which is

mathematically equivalent to PT
N(G ⊗ �) QMQT

M = 0. It

is found that for a single-user case, i.e., K = 1 by

employing inter-cell TDMA, i.e., Ω = 0, the matrices

GN,1 and ΩN,1 become diagonal and Γ(P,Q) = 0. This is

considered as a special case in GCMAC decoding when

each BS only decodes its own local users (intra-cell

users) and there is no inter-cell interference from the

adjacent cells. Hence, the resultant channel fading

matrix is a diagonal matrix such that for the given GN,1

and ΩN,1 (21) holds and we have
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CTDMA
opt (p(H), γ K) = Copt(p(H), γ ) = Copt(p(H), γ ). (26)

The same has been shown in Figure 2. The black

dashed-dotted curve and the curve with red square mar-

ker illustrate optimum capacity and theoretical HUB,

respectively, when inter-cell interference is negligible, i.

e., using (23). Next, the curve with green circle marker

shows the capacity when inter-cell TDMA is employed,

i.e., using (26).

B. Multi-user environment

In this section, we demonstrate the behavior of the the-

oretical HUB when two implementation forms of time

sharing schemes are employed in multi-user environ-

ment. One is referred to as inter-cell TDMA, intra-cell

narrowband scheme (TDMA, NB), and other is inter-

cell TDMA, intra-cell wideband scheme [12]. We refer

the later scheme as inter-cell time sharing, wideband

scheme, (ICTS, WB) throughout the discussions. It is to

note that SCP is employed only to determine the appli-

cation of our bound for realistic cellular network.

i. Inter-cell TDMA, intra-cell narrow-band scheme (TDMA,

NB)

In multi-user case, when there are K active users in each

cell, then the channel matrix is no longer diagonal, and

hence (21) is not valid and Γ(P,Q) ≠ 0. However, the

results of single-user case is still valid when intra-cell

TDMA scheme is employed in combination with inter-

cell TDMA (TDMA, NB) scheme. If the multi-user

resultant channel fading matrix HN,K is expressed as (6),

then by exploiting the TDMA, NB scheme the rectangu-

lar resultant channel fading matrix HN,K may be reduced

to HN,1 and may be expressed as

HN,1 = (GN,1 ◦ �N,1), (27)

where GN,1 and ΩN,1 are exactly diagonal matrices as

discussed earlier in single-user case. The capacity in this

case becomes

CTDMA,NB
opt (p(H), γ K) =

1

N
E[log2 det(IN + γ HN,1HH

N,1)] (28)

= C
TDMA,NB

opt (p(H), γ K). (29)

The actual optimum capacity offered by this schedul-

ing scheme is equal to its upper bound based on the

Hadamard inequality. The scenario is simulated and

shown in Figure 3a,b for K = 5 and 10, respectively. It is

to note that the capacity in this figure is normalized

with respect to the number of users and the number of

cells. It can be seen that the actual optimum capacity

and the upper bound on the optimum capacity are iden-

tical when TDMA, NB scheme is employed in multi-

user environment (compare the curves with red circle

markers with the black solid curves in Figure 3a,b).

ii. Inter-cell time sharing, wide-band scheme, (ICTS, WB)

It is well known that the increase in number of users to

be decoded jointly increases the channel capacity

[5,6,13-16]. Let us consider a scenario in the multi-user

environment without intra-cell TDMA, i.e., there are K

active users in each cell and they are allowed to transmit

simultaneously at any time instant. Mathematically, the

local intra-cell users are located along the main diagonal

of a rectangular channel matrix HN,K. The capacity in

this case when only inter-cell TDMA scheme (ICTS,

WB) is employed becomes

CICTS,WB
opt (p(H), γ ) =

1

N
E[log2 det(IN + γ HN,KHH

N,K)] (30)

< C
ICTS,WB

opt (p(H), γ K). (31)

The capacity by employing ICTS, WB scheme for K =

5 and K = 10 is shown in Figure 3a,b, respectively. The

theoretical upper bound on the capacity using Hada-

mard inequality by employing ICTS, WB scheme is also

shown in this figure (compare the blue solid curve with

the red dashed curve). It is observed that the difference

between the actual capacity offered by ICTS, WB
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B
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Copt(p(H), γ);Ω∈(0, 1)

C̄opt(p(H), γ);Ω∈(0, 1)

C̄opt(p(H), γ);Ω→0

CTDMA
opt (p(H), γ )

Figure 2 Summary of optimum joint decoding capacity and

the Hadamard upper bound on optimum capacity; the black

solid curve illustrates the capacity using (14); the red dashed

curve illustrates theoretical HUB on capacity using (20); the

black dashed-dotted curve and the curve with red square

marker illustrate optimum capacity and theoretical HUB,

respectively, when inter-cell interference is negligible using

(23); the curve with green circle marker shows capacity when

inter-cell TDMA is employed using (26).
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scheme and its theoretical upper bound increases with

the increase in number of intra-cell users to be jointly

decoded in the multi-user case. An an example, at g =

20 dB and for K = 5 the relative difference in capacity

due to HUB is 6.5% and similarly the relative difference

is raised to 12% for K = 10. Thus, using an inequality

(18), multi-user decoding offers log2 (K) times higher

non-achievable capacity as compared to actual capacity

offered by this scheme. Also, it is well known that the

overall performance of ICTS scheduling scheme is

superior to the TDMA scheme due to the advantages of

wideband transmission (compare the black solid curves

with the blue solid curves in Figure 3a,b). The results

are summarized in Table 1 to illustrate the existence of

HUB for cooperative and non-cooperative BSs in cellu-

lar network.

5. Analytical Hub
In this section, we approximate the PDF of Hadamard

product of channel fading matrix G and channel path

gain matrix Ω as the PDF of the trace of the Hadamard

product of these two matrices, i.e., G and Ω. Recall

from (20) (section 4), an upper bound on optimum joint

decoding capacity (14) using the Hadamard inequality

(Theorem 3.3) is derived as

Copt(p(H), γ ) ≤ Copt(p(H), γ ) (32)

=
1

N
E

[

log2 det
(

IN + γ
(

G GH
)

◦
(

��H
))]

(33)

=
1

N
E

[

log2

(

1 + γ tr

(

⌣

G ◦
⌣

�

))]

, (34)

where we have made use of property

det(I + γ A) = 1 + γ trA + O(γ 2); also we have ignored

the terms with higher order of g for g ® 0;
⌣

G = GGH;

tr

(

⌣

G ◦
⌣

�

)

; tr

(

⌣

G ◦
⌣

�

)

denotes the trace of the Hada-

mard product of the composite channel matrix

(

⌣

G ◦
⌣

�

)

and

1

N
V

(
⌣

G ◦
⌣

�)
(γ ) =

1

N
E

[

log2(1 + γ tr

(

⌣

G ◦
⌣

�

))]

(35)

=

∫ ∞

0

log2(1 +
⌣
γ tr(

⌣

G ◦
⌣

�)) dF
⌣

G ◦
⌣

�

(tr(
⌣

G ◦
⌣

�)) (36)

is the Shannon transform of a random square Hada-

mard composite matrix

(

⌣

G ◦
⌣

�

)

and distributed

according to the cumulative distribution function (CDF)

denoted by F ⌣

G ◦
⌣

�

(

tr

(

⌣

G ◦
⌣

�

))

[17], where
⌣
γ = γ N2

and γ = P
/

σ 2
z is the MT transmit power over receiver

noise ratio.

Using trace inequality [34], we have an upper bound

on (34) as

&20 &15 &10 &5 0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

SNR (dB)

B
it
s/

se
c/

H
z

CTDMA,NB
opt (p(H), γ)

C̄TDMA,NB
opt (p(H), γ)

CICTS,WB
opt (p(H), γ)

C̄ICTS,WB
opt (p(H), γ)

(a) K = 5
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(b) K = 10

Figure 3 Summary of optimum joint decoding capacity and

theoretical Hadamard upper bound on the optimum capacity

for the multi-user case when TDMA, NB and ICTS, WB schemes

are employed. (a) K = 5; (b) K = 10.
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Copt(p(H), γ ) ≤ C̃opt(p(H), γ ) (37)

=
1

N
E

[

log2

(

1 + γ tr

(

⌣

G

)

tr

(

⌣

�

))]

. (38)

If u = x y; where x = tr

(

⌣

G

)

and y = tr

(

⌣

�

)

then (36)

can also be expressed as

C̃opt(p(H), γ ) =

∫ ∞

0

log2(1 +
⌣
γ u)dF

⌣

G ◦
⌣

�

(u) (39)

=

∫ ∞

0

log2(1 +
⌣
γ u)f

⌣

G ◦
⌣

�

(u)du. (40)

where f
⌣

G ◦
⌣

�

(u) is the joint PDF of the tr

(

⌣

G

)

and

tr

(

⌣

�

)

which is evaluated as follows in the next sub-

section.

A. Approximation of PDF of tr

(

⌣

G ◦
⌣

�

)

Let u = xy and v = x, then the Jacobian is given as

J

(

u, v

x, y

)

=

∣

∣

∣

∣

y x

1 0

∣

∣

∣

∣

= −x = −u

y
. (41)

f
⌣

G ◦
⌣

�

(u, v) du dv = f
⌣

G ◦
⌣

�

(x, y) dx dy = f
⌣

G ◦
⌣

�

(x, y)
y

u
du dv, (42)

so,

f
⌣

G ◦
⌣

�

(u, v) =
y

u
f

⌣

G ◦
⌣

�

(x, y). (43)

where we approximate the PDF of f
⌣

G ◦
⌣

�

(x, y) of Hada-

mard product of two random variables x and y as a pro-

duct of Gaussian and Uniform distributions, respectively,

such that their joint PDF can be expressed as

f ⌣

G ◦
⌣

�
(x, y) =

1√
2π

exp

(

−x2

2

)

f (y), (44)

where f(y) denotes the uniform distribution of MTs.

Using (43) and (44), the PDF of the trace of Hadamard

product of two composite matrices
⌣

G and
⌣

� may be

approximated as

f
⌣

G ◦
⌣

�

(u) =
1√
2π

∫ 1

0

y

u
exp

(

− u2

2y2

)

dy, (45)

by substituting (45) into (40), the analytical HUB on

optimum joint decoding capacity can be calculated as

C̃opt(p(H), γ ) =
1√
2π

∫ ∞

0

∫ 1

0

y

u
log2(1 +

⌣
γ u) exp

(

− u2

2y2

)

dydu, (46)

C̃opt(p(H), γ ) = 


⎛

⎝

⌣
γ

2

G5,3
4,6

⎛

⎝

1

16
⌣
γ

4

∣

∣

∣

∣

∣

∣

0, 1
4

, 3
4

, 1

0, 0, 0, 1
4

, 3
4

, 1
2

⎞

⎠ +
⌣
γ

2

G5,3
4,6

⎛

⎝

1

16
⌣
γ

4

∣

∣

∣

∣

1
4

, 1
2

, 3
4

, 1

0, 1
4

, 1
2

, 1
2

, 3
4

, 0

⎞

⎠

− 4
√

πG4,2
3,4

⎛

⎝

1

2
⌣
γ

2

∣

∣

∣

∣

∣

∣

−1, − 1
2

, 1

−1, −1, − 1
2 , 0

⎞

⎠

⎞

⎠ .

(47)

where we have made a use of Meijer’s G-Function

[35], available in standard scientific software packages,

such as Mathematica, in order to transform the integral

expression to the closed form and 
 = 1/64
√

2π2 ⌣
γ

2
.

6. Numerical examples and discussions
In this section, we present Monte Carlo simulation

results in order to validate the accuracy of the analytical

analysis based on approximation approach for upper

bound on optimum joint decoding capacity of C-

GCMAC with Uniformly distributed MTs. In the con-

text of Monte Carlo finite system simulations, the MTs

gains toward the BS of interest are randomly generated

according to the considered distribution and the capa-

city is calculated by the evaluation of capacity formula

(14). Using (34), the upper bound on the optimum capa-

city is calculated. It can be seen from Figure 4 that the

theoretical upper bound converges to the actual capacity

under constraints like low SNRs (compare the black

solid curve with the red dashed curve). In the context of

mathematical analysis which is the main contribution of

this article, (47) is utilized to compare the analytical

upper bound based on proposed analytical approach

with the theoretical upper bound based on simulations.

It can also be seen from Figure 4 that the proposed

approximation shows comparable results over the entire

range of SNR (compare the blue dotted curve and the

red dashed curve). However, it is to note that an

Table 1 Summary of theoretical Hadamard upper bound (HUB)

User(s) (K) Constraints for Copt(p(H); γ )=C̄opt(p(H); γ ) Constraints for Copt(p(H); γ ) <C̄opt(p(H); γ )

K = 1 (Cooperative
BS scenario)

i. Ω ® 0, i.e., low level of inter-cell interference to
the BS of interest.

ii. g ® 0, i.e., the gain inserted by HUB ∆ ® 0 and
is given by �0 = lim

γ→0
γE[tr(Ŵ(P,Q))].

� ∼ U(0, 1) (variable path gain among the MTs and the Bs of interest
due to Uniformly distributed MTs across the cells).

K > 1 (Non-
cooperative BS

scenario)

By employing intra-cell TDMA, intercell Narrowband
(TDMA, NB) scheme.

By employing Inter-cell Time Sharing, Wideband (ICTS, WB) scheme.
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analytical HUB on optimum joint decoding capacity of

multi-cell setup is comparably tighter in the high SNR

regime as compared to the HUB in the low SNR regime.

The proposed approximation based approach is useful

to represent the capacity for the realistic multi-cell

setup, i.e., variable user-density and therefore variable

channel path gain toward the BS of interest.

A figure of merit utilized in cellular communication,

which is referred to as mean ASE

Ae = Copt/πR2 bits/s/Hz/km2 (48)

averaged over a large number of fading realizations

gl
BjTj+i

and channel path gain �l
BjTj+i

for all (j, i) = (1 ...N)

× (0, ± 1) and K users [36]. Further, we assumed that

the range of cell radius R is 0.1 - 1 Km for the system

under consideration. The ASE quantifies the sum of

maximum bit rates/Hz/unit area supported by the BS in

a cell [36]. Figure 5a,b shows the ASE calculated for g =

-10 dB and g = 15 dB, respectively. It can be seen that

the analytical HUB on optimum joint decoding capacity

based on proposed approximation approach is close to

the Monte Carlo simulation results within the entire cell

radii for high SNR. On the other side for low SNRs, the

HUB is loose up to 500 meters approximately of cell

radius and comparably tighter within the higher range

of cell radii.

7. Conclusion
The analytical upper bound referred to as HUB is

derived on optimum joint decoding capacity for Wyner

C-GCMAC under realistic assumptions: uniformly dis-

tributed MTs across the adjacent cells; and the finite

number of cooperating BSs arranged in a circular con-

figuration. New analytical approach have been reported

to derive an information theoretic upper bound on the
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optimum joint decoding capacity of circular Wyner

GCMAC. This approach is based on the approximation

of the PDF of trace of composite Hadamard product

matrix (G ∘ Ω) by employing the Hadamard inequality.

A closed form expression has been derived to capture

the effect of variable user-density in GCMAC. The pro-

posed analytical approach has been validated by using

Monte Carlo simulations for variable user-density cellu-

lar system. It has been shown that a reasonably tighter

upper bound on optimum joint decoding capacity can

be obtained by exploiting Hadamard inequality for rea-

listic scenarios in cellular network. The importance of

the methodology presented here lies in the fact that it

allows a realistic representation of the MT’s spatial

arrangement. Therefore, this approach can be further

exploited in order to investigate the various practical

MT distributions and their effect on the optimum joint

decoding capacity of system under consideration.

Appendix A
An Alternate Proof Of (18)

Proof: We derive an alternate version of (17) for rank

one matrices G and Ω which also proves the Hadamard

inequality (18). Let us define G = u v
H and Ω = w z

H;

where u, v, w, z are N × 1 column vectors which corre-

sponds to a vector channel between a user in any of jth

cell and N BSs. Then,

G ◦ � = (u ◦ w) (v ◦ z)H, (A:49)

also is of rank at most one, and we calculate that

(G ◦ �)(G ◦ �)H = (u ◦ w)(v ◦ z)H(v ◦ z)(u ◦ w)H,(A:50)

=‖ v ◦ z‖2(u ◦ w) (u ◦ w)H, (A:51)

also we have

G GH = (u v
H)(u v

H) =‖ v‖2(u u
H), (A:52)

��H = (w z
H)(w z

H) =‖ z‖2(w w
H), (A:53)

this gives the formula

(G GH) ◦ (��H) =‖ v‖2 ‖ z‖2(u u
H) ◦ (w w

H), (A:54)

=‖ v‖2 ‖ z‖2(u w) ◦ (uH
w

H), (A:55)

comparing the formulas (A.51) and (A.55), we obtain

the identity

(G GH) ◦ (��H) =
‖ v‖2||z||2
||v ◦ z‖2

(G ◦ �)(G ◦ �)H. (A:56)

In particular, since the norm is sub-multiplicative rela-

tive to the Hadamard product

‖ v ◦ z ‖≥‖ v|| ‖ z ‖, (A:57)

finally, we can prove that

GGH ◦ ��H ≥ (G ◦ �)(G ◦ �)H. (A:58)

This completes the proof. ■

Remarks: The result (A.56) can be applied to the cor-

related scenario where the rank of the fading channel

matrix may reduce to 1 [2,15,26]. Alternatively, the

proof can be extended for channel matrix of any rank L.

As an example, if A is a diagonalizable matrix of size N

× N with rank L. Then, there are L square rank one

matrices given as A1, A2, ..., AL, such that A = A1 + A2

+ ... + AL and an alternative proof can be derived for

such matrices.

ENDNOTES
a MTs are also referred to as users and is interchange-

ably used throughout the article.
b Tj+1 ≜ Tj+1 mod N.
cThroughout this article, HN,K, GN,K and ΩN,K refers

to the channel matrices corresponding to N number of

cells and K users per cell in a C-GCMAC. For brevity,

the channel matrices will be expressed as H, G and Ω,

respectively, unless it is necessary to emphasis the num-

ber of cells and the number of users.
dHere, we used Matlab format to express row vector.

For an example, Ω(1, :) shows First row vector of matrix

Ω.
eAs an example, for N = 6 and K = 1, the partial per-

mutation matrices are P Î ℙ
36 × 6 and Q Î ℙ

36 × 30

[26].
fTerms with higher order of g are ignored ⇔ g

x
≈ 0;

∀x = 2, 3, ... [33].
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