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Abstract

line was carried out.

gene which leads to the amino acid exchange Kctd1?""

Background: Increased levels of blood plasma urea were used as phenotypic parameter for establishing novel mouse
models for kidney diseases on the genetic background of C3H inbred mice in the phenotype-driven Munich ENU
mouse mutagenesis project. The phenotypically dominant mutant line HSTO14 was established and further analyzed.

Methods: Analysis of the causative mutation as well as the standardized, systemic phenotypic analysis of the mutant

Results: The causative mutation was detected in the potassium channel tetramerization domain containing 1 (Kctd1)
thereby affecting the functional BTB domain of the protein.
This line is the first mouse model harboring a Kctd1 mutation. Kctd 1% homozygous mutant mice die perinatally.
Standardized, systemic phenotypic analysis of Kctd %" heterozygous mutants was carried out in the German Mouse
Clinic (GMQ). Systematic morphological investigation of the external physical appearance did not detect the specific
alterations that are described in KCTD1 mutant human patients affected by the scalp-ear-nipple (SEN) syndrome. The
main pathological phenotype of the Kctd1?”" heterozygous mutant mice consists of kidney dysfunction and secondary
effects thereof, without gross additional primary alterations in the other phenotypic parameters analyzed. Genome-
wide transcriptome profiling analysis at the age of 4 months revealed about 100 differentially expressed genes (DEGs)
in kidneys of Kctd1?”" heterozygous mutants as compared to wild-type controls.

Conclusions: In summary, the main alteration of the Kctd1?”" heterozygous mutants consists in kidney dysfunction.
Additional analyses in 9-21 week-old heterozygous mutants revealed only few minor effects.

Keywords: Animal model, Kctd1, SEN syndrome, Systematic phenotype analysis

Background

Biomedical research with mice as animal models
includes the search for and the analysis of alleles that
predispose for or protect against specific diseases. A
strategy for the search of novel disease-related alleles
consists in the random chemical mutagenesis of a large
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number of animals followed by systematic screening for
clinically relevant disease phenotypes. The alkylating agent
N-ethyl-N-nitrosourea (ENU) is mutagenic for premeiotic
spermatogonial stem cells and allows the production of a
large number of randomly mutagenized offspring from
treated males. ENU predominantly induces point muta-
tions [1]. In the phenotype-driven Munich ENU mouse
mutagenesis project using C3HeB/Fe] (C3H) inbred mice
as genetic background, a standardized screening profile of
clinical chemical blood plasma parameters was established
for the analysis of offspring of mutagenized mice in order
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to detect phenotypic variants [2, 3]. Several mutant lines
were established showing increased plasma urea levels as
a parameter that is indicative of kidney diseases [4].

Kctdl is a member of the potassium channel tetramer-
ization domain (Kctd) gene family. The N-termini of
KCTD proteins and some voltage-gated K™ (Kv) chan-
nels are homologous [5, 6]. KCTD1 is not a membrane
protein and is unlikely to be an ion channel protein [7].
The KCTD1 protein contains a N-terminal BTB (bric-a-
brac, tram track, broad complex) domain which is also
known as POZ (poxvirus and zinc finger) domain. The
BTB domain is a highly conserved motif of about 100
amino acids mostly identified at the N-terminus of over
200 human proteins, including transcription factors,
oncogenic proteins, and ion channel proteins [8]. BTB
domains are protein—protein interaction modules that
mediate both self-association and interaction with non-
BTB partners [9]. BTB domain—containing proteins
predominantly serve as transcriptional repressors and
have been implicated in many developmental processes.
Consequently, mutations of these proteins are linked
with cancers and developmental disorders [10]. Kctd
expression studies revealed high levels in fetal tissues
and low levels in adults suggesting their role during
development [11]. The KCTD1 protein is expressed in
the mammary gland, kidney, brain, and ovary [10].

KCTD proteins participate in a wide variety of cellular
functions including transcription regulation, cellular
proliferation, apoptosis, cell morphology, ion channel
assembly, and protein degradation through ubiquitina-
tion [12, 13] (and refs. Therein). Unlike other BTB family
proteins, KCTD1 does not contain any other domains
[10]. KCTD1 acts as a nuclear protein by inhibiting the
transactivation of the transcription factor AP-2a
(TFAP2A) and other TFAP2 family members via its BTB
domain [7]. In addition, KCTD1 functions as an inhibitor
of Wnt signaling pathway [14].

KCTDI encodes a 257 amino acid protein with a
predicted molecular mass of 29.4 kDa. The amino acid
sequence of KCTD1 is highly conserved with humans
and mice having the identical amino acid sequence. In
addition, a 265-amino-acid isoform is described in mice
differing by an 8 amino acid insertion immediately
following the start codon. Human and rat KCTD1 differ
only by a single amino acid residue [10] (http://www.
ensembl.org; http://www.uniprot.org). The MGI data-
base (http://www.informatics.jax.org) harbouring knockout
as well as mutant mouse alleles includes no information
about published Kctd1 mouse mutants (as of 03.03.2017).

Apart from the short isoform (257 aa in humans and
mice, and 265 aa in mice) harbouring only the BTB
domain, a long isoform of KCTD1 is described (861 aa
in mice) (http://www.ensembl.org). The long isoform
contains both a N-terminal DUF3504 domain and a
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C-terminal BTB domain. The putative function of
DUEF3504 is suggested to be DNA or protein binding [15].

In humans, heterozygous KCTDI missense mutations
occur in the scalp-ear-nipple (SEN) syndrome (OMIM
181270) or Finlay-Marks syndrome, which is a rare auto-
somal dominant disorder. All mutations were found in
the highly conserved BTB domain. The identified
missense mutations cause a loss of function via a
dominant-negative mechanism. The disease is character-
ized by cutis aplasia of the scalp, minor anomalies of the
external ears, digits and nails, and malformations of the
breast. The penetrance of the SEN syndrome appears to
be high, but the disease shows a substantially variable
phenotype within affected families [16, 17]. Less frequent
clinical observations include renal and urinary tract
malformations also leading to hypertension. In addition,
there are reports of partial manifestations in isolated or
familial cases including putative recessive inheritance
[18, 19] (and refs therein).

In addition, KCTDI has been associated in genome-
wide association studies (GWAS) with sudden cardiac
arrest due to ventricular tachycardia or ventricular fibrilla-
tion in patients with coronary artery disease [20]. Tenta-
tive associations with blood pressure were also described
for KCTDI [21].

The ENU mutagenesis-derived dominant mutant
mouse line HSTO014 showing increased plasma urea
levels was analyzed for the causative mutation. After the
identification of the mutation in Kctdl, a standardized,
systemic phenotypic analysis of Kctd1?”N heterozygous
mutant mice was carried out in the German Mouse
Clinic (GMC, http://www.mouseclinic.de) to examine
organ systems and/or pathways that may be affected by
the Kctdl mutation as primary or secondary effects. The
results should give hints for the assessment of the
mutant line as a model for the published heterozygous
KCTD1 mutations in humans.

Methods
Animals, linkage analysis, and detection of the causative
mutation
The dominant mutant line HST014 was established in the
clinical chemical screen of the phenotype-based Munich
ENU mouse mutagenesis project [22] on the C3HeB/Fe]
(C3H) inbred genetic background by detecting increased
plasma urea values at the age of three months (cut-off
level: 70 mg/dl, or 11.7 mmol/l). Mouse husbandry, breed-
ing, linkage analysis, and genome-wide mapping were
performed as described previously [4]. All mice had free
access to drinking water and a standard rodent diet
(V1124, Ssniff, Soest, Germany; Altromin chow #1314,
Altromin, Lage, Germany) ad libitum.

For linkage analysis of the causative mutation, auto-
mated DNA extraction from tissue lysates was performed


http://www.ensembl.org
http://www.ensembl.org
http://www.uniprot.org
http://www.informatics.jax.org
http://www.ensembl.org
http://www.mouseclinic.de

Kumar et al. Journal of Biomedical Science (2017) 24:57

using the AGOWA Mag Maxi DNA Isolation Kit
(AGOWA, Berlin, Germany). A genome-wide mapping
panel consisting of single nucleotide polymorphism (SNP)
markers was applied. The markers used are available upon
request. Genotyping using this panel was performed by
MassExtend, a MALDI-TOF high-throughput genotyping
system supplied by Sequenom (San Diego, CA, USA).
Additional fine mapping was performed using further
SNP and microsatellite markers. Chromosomal positions
of markers and genes are according to the GRCm38.p4
mouse genome assembly, 2016 (http://www.ensembl.org).
All genes located within the identified defined chromo-
somal region were examined for published data about
their wild-type and mutant function with respect to their
potential impact on renal function and renal diseases.

Exome sequencing

Genomic DNA from three controls and one mouse car-
rying the putative mutation was sheared by sonication
(Bioruptor, Diagenode, Liege, Belgium), end-repaired,
A-tailed and ligated to Illumina adapters. The resulting
whole genome sequencing libraries were amplified by six
cycles of PCR and then hybridized to a mouse whole
exome bait library. Fragments complementary to the
biotinylated exome bait library were enriched by pull-
down with paramagnetic streptavidin-coated beads
(Dynabeads M280, Invitrogen, USA) and finally ampli-
fied with barcoded Illumina adapters. All previously
described steps used reagents from the Agilent whole
exome kit and followed the protocol of the manufac-
turer. The resulting exome libraries were purified with
Ampure XP beads (Beckman-Coulter, USA), quantified
and assessed on the Bioanalyser (Bioanalyser 2100,
Agilent, Santa Clara, USA). Pooled, barcoded libraries
were sequenced on an Illumina Genome Analyzer IIx in
paired-end mode with a read length of 80 bp in either
direction. Sequence reads in fastq format were demulti-
plexed, adapter-clipped and quality filtered. After
mapping to the mouse genome with BWA, SNPs were
called using VARSCAN. Only SNPs that were exclusively
called in the mutant mouse and not in any of the three
controls were kept for further evaluation.

Phenotypic analysis in the German Mouse Clinic

Maintenance of the dominant mutant mouse line
Ketd 1PN involved repeated backcross to C3H wild-type
mice for more than ten generations, leading to the sub-
sequent loss of all non-causative ENU mutations not
linked to the Kctdl mutation. The comprehensive
phenotypic analysis was carried out in the German
Mouse Clinic at the Helmholtz Zentrum Miinchen by
using standardized examination protocols (http://www.
mouseclinic.de). The analysis covers several hundred
parameters in the fields of allergy, behavior, cardiovascular
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analysis, clinical chemistry, dysmorphology including
bone and cartilage, energy metabolism, eye morph-
ology and vision, immunology, molecular phenotyping,
neurology, nociception, and pathology. The complete
protocols of the examinations are described under http://
www.mouseclinic.de [23-25].

Ketd 1™ heterozygous mutant mice and wild-type con-
trol littermates were analyzed between 9 and 21 weeks of
age (see Additional file 1). Fifteen mice were analyzed per
sex and genotype (unless otherwise stated in the text of
the Results section). In addition, a renal function test
using metabolic cages for single mice (Tecniplast, Hohen-
peissenberg, Germany) was performed as described previ-
ously [23] in a second cohort of mice at an age of 28—
32 weeks comprising 12 animals per sex and genotype.
Mouse husbandry was done under a continuously con-
trolled specific pathogen free (SPF) hygiene standard ac-
cording to the FELASA recommendations [26] (http://
www.felasa.eu). All tests were carried out under the ap-
proval of the responsible animal welfare authority (Regier-
ung von Oberbayern).

Data are shown as mean + standard deviation. If not
otherwise stated, data were analyzed using R, a language
and environment for statistical computing. Tests for
genotype effects were made by using Wilcoxon rank
sum test or linear models depending on the assumed
distribution of the parameter and the questions
addressed to the data. For categorical data, Fisher’s exact
test was used. Statistically significant differences are
indicated for P < 0.05, 0.01, and 0.001.

Results

Generation of line Kctd1'*’™ and identification of the
causative mutation

The ENU mutagenesis-derived, dominant mutant line
HSTO014 with the G1 male founder ID 10295828 was
established on the C3H inbred genetic background by
showing increased plasma urea values at the age of
3 months (cut-off level: 70 mg/dl, or 11.7 mmol/l).
Complete penetrance of the mutant phenotype was
observed in offspring of matings of phenotypically
heterozygous mutant mice to wild-type C3H mice as
expected by the rules of Mendelian inheritance. Hetero-
zygous mutants of both sexes were viable and fertile,
and showed no grossly apparent phenotype compared to
wild-type controls.

Genome-wide linkage analysis of the causative muta-
tion was carried out with 45 phenotypically heterozygous
mutant G2 animals derived from two consecutive back-
cross matings of phenotypically heterozygous mutants to
BALB/c inbred mice. Using a set of 113 SNPs, the
mutant phenotype was mapped to the proximal region
of MMU18. Further fine mapping showed the highest x2
values for the polymorphic markers D18Mit68 (21.4 Mb;
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x2 value: 21.4) and rs29827614 (25.3 Mb; x2 value: 21.3).
The three candidate genes Kctdl (15.0 Mb), Agp4
(15.4 Mb) and Mep1b (21.1 Mb) were chosen for sequence
analysis. cDNA analysis of Agp4 and MepIb resulted in
identical sequences in wild-type and phenotypically
heterozygous mutant animals, which were also identical to
published sequences (http://www.ensembl.org).

Sequence analysis of the Kctdl cDNA revealed a point
mutation resulting in a T—A transversion at nucleotide
80 (ENSMUST00000025992.6, 265-amino-acid isoform),
leading to an amino acid exchange from isoleucine to as-
paragine at position 27. Therefore, the name of line
HST014 was designated as Kctd1>”N. The mutation af-
fects the highly conserved functional BTB domain of the
protein. Allelic differentiation of the Kctd1™” mutation
was performed by PCR-RFLP since the point mutation
abolished the restriction site for the enzyme Bsml (Fig. 1).
As the causative mutation mapped proximal to marker
D18Mit68 at 21.4 Mb, calculation of the probability of the
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existence of confounding non-segregating mutations was
done for the chromosomal region of 1 bp to 20 Mb of
chromosome 18, and the probability turned out to be
significantly low (P < 0.01) [27].

Kctd1P™ heterozygous mutants were crossed to
generate homozygous mutant animals. Analysis of 47
offspring at 3 months of age without prior loss of
animals after rearing from four mating pairs identified
no homozygous mutants, but heterozygous mutants
(n = 31; 66%) and wild-type mice (n = 16; 34%) in a 2:1
ratio. 21 fetuses at day E17.5 derived from three timed
matings of heterozygous mutant mice appeared grossly
normal in their morphology. Homozygous mutant
(n = 5), heterozygous mutant (n = 10), and wild-type
(n = 6) animals were observed according to the Men-
delian ratio. Additional offspring (n = 70) of matings of
heterozygous mutants were genotyped shortly after
birth. The results confirmed that Ketd1?”N homozy-
gous mutant mice showed perinatal death.

a
Wild-type Heterozygous mutant ~ Homozygous mutant
b M Het Wt Wt Wt Hom M
<— 519bp
<— 314 bp
<— 205bp
(o
Mouse NQGIPTPAQLTKSNAPVHIDVG - ---- IGRLFDGTEPIVLDSLKQHYF
Human NQGIPTPAQLTKSNAPVHIDVG  ----- IGRLFDGTEPIVLDSLKQHYF
Rat NQGIPTPAQLTKSNAPVHIDVG ~ ----- IGRLFDGTEPIVLDSLKQHYF
Rabbit NQGIPTPAQLTKSNAPVHIDVG ~ ----- IGRLFDGTEPIVLDSLKQHYF
Chicken NQGIPTPAQLTKSNAPVHIDVG - ---- IGRLFDGTEPIVLDSLKQHYF
Gorilla NQGIPTPAQLTKSNAPVHIDVG - ---- IGRLFDGTEPIVLDSLKQHYF
Dog NQGIPTPAQLTKSNAPVHIDVG  ----- IGRLFDGTEPIVLDSLKQHYF
Horse NQGIPTPAQLTKSNAPVHIDVG ~ ----- IGRLFDGTEPIVLDSLKQHYF
aa 24 45 aa 64 84
Fig. 1 Analysis of Kctd1 in wild-type and Kctd1?”" mutant mice. a Electropherogram of the Kctd1?”" mutation. The box shows the T—A transversion
from the wild-type codon ATT (I) to the mutant codon AAT (N) at amino acid position 27 (265 aa isoform). b Genotyping of mice by allele-specific
PCR-RFLP reaction. Bsml restriction digest of the 519 bp PCR product results in 314 bp and 205 bp fragments of the wild-type allele. Hom, Kctd 1™
homozygous mutant; Het, Kctd1?” heterozygous mutant; Wt, wild-type; M, pUC Mix 8 marker, MBI Fermentas. ¢ Partial protein sequence alignment
of murine KCTD1 with other species. Amino acid residue in red color shows the position of the Kctd1?”Y mutation. Amino acid residues in grey color
show the positions of mutations in humans affected by the SEN syndrome [17]. Amino acid number of the human sequence (257 aa) is murine amino
acid number (265 aa isoform) minus 8 )
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In addition, exome sequencing using genomic DNA of
a heterozygous mutant mouse was carried out for the
search for confounding mutations linked to the identi-
fied mutation KctdI””N. In addition to the already
detected point mutation in Kctd1, a second heterozygous
point mutation was found in the gene Dsglb (20.4 Mb
on MMU 18) leading to the amino acid exchange
DsgIb®***P (ENSMUST00000076737.6) and being inher-
ited together with the mutation KctdI™””™N. Therefore,
mutant offspring were selected carrying either only the
mutation KctdI””Y but not the second mutation
Dsg1b®*3P or vice versa. Kctd1””N heterozygous mutant
mice without the second mutation Dsglb®***P also
showed the primary phenotype of increased plasma urea
levels, whereas Dsglb®***” heterozygous mutant mice
without the mutation Ketd1”™N showed inconspicuous
plasma urea levels as well as the absence of another
apparent pathological phenotype. Genotypic analysis of
the progeny (1 = 53) of Kctd1™™ heterozygous mutant
mice without the second mutation DsgIb®***" shortly
after birth also confirmed that KctdI™”™ homozygous
mutant mice showed perinatal death. The cause of the
perinatal death of the homozygous mutant mice has to
be carried out in future analyses.

Phenotypic analysis in the German Mouse Clinic
Phenotypic analysis of mutant mice in the German
Mouse Clinic includes the aim to collect and deliver by
open access systemic phenome data of a high number of
mutant mouse lines in a standardized manner. The
complete phenotype reports of the Kctd1*”N mutant line
described here as well as of the HST014 mutants carry-
ing both mutations Kctd 1™ and Dsg1h***" will be de-
posited online (http://tools.mouseclinic.de/phenomap/
jsp/annotation/public/phenomap.jsf).

Behavioral and neurological analysis

Ketd 1N heterozygous mutant mice were tested at the
age of 9-10 weeks by open field test, modified SHIRPA,
grip strength, rotarod and acoustic startle response.
Body weights of heterozygous mutant and wild-type
mice showed no genotype-specific difference. The open
field test showed minor effects for the number of rear-
ings, the resting time and the latency to enter in the
center (Table 1).

The modified SHIRPA protocol is a semi-quantitative
screening method for the overall qualitative analysis of
abnormal phenotypes in mice using defined rating scales
and includes 17 test parameters each contributing to the
overall assessment of general health, posture and move-
ment, autonomic reflexes, as well as behavioral aspects.
Ketd1®™ heterozygous mutant mice showed similar
locomotor activity (P = 0.4; no. of squares entered in the
arena: 12.3 + 9.0 vs. 14.4 + 7.2 in males, and 9.7 + 5.5
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vs. 11.0 + 8.2 in females) compared to wild-type con-
trols. As phenotypical changes, they showed presence of
tremor, presence of tail dragging, and presence of trunk
curl (Table 2). All other SHIRPA parameters (body
position, defecation and urination during observation,
transfer arousal, gait, startle response, touch escape, limb
grasping, pinna reflex, contact righting, evidence of
biting, vocalization in and above the arena, unexpected
behaviors, and head bobbing) were without significant
alterations.

Measurement of the grip strength for two and four
paws to evaluate muscle strength revealed reduced
values in Kctd1™”N heterozygous mutants (Table 2).
Evaluation of motor coordination and balance in three
consecutive trials on the accelerating rotarod revealed
no significant genotype-specific differences (latency to
fall in sec for all three trials: P = 0.5; 113 + 44 vs.
106 + 37 in males, and 114 * 48 vs. 105 + 40 in females).
The usual improvement in the performance of the task
over the three trials as well as similar ratios of falling
and passive rotation were observed in both genotypes.

There were no genotype-specific effects on prepulse
inhibition of the acoustic startle response indicating that
both sensorimotor gating and recruiting are intact in the
mutants. Hearing sensitivity was assessed by measuring
the auditory brainstem response (ABR) to different audi-
tory stimuli in a subset of mice (n = 10 per sex and
genotype), when the animals were 18 weeks old. There
was no genotype-specific effect on hearing sensitivity.

In addition, analysis of the nociception by using the
hotplate test at 12 weeks of age showed no differences
between genotypes (data not shown).

Cardiovascular analysis

Ketd1P™ heterozygous mutant mice were tested at the
age of 15 weeks. Electrocardiography as well as evalu-
ation of the left ventricular function by transthoracic
echocardiography on conscious animals by analyzing the
heart parameters interventricular septum in systole
(IVSs), interventricular septum in diastole (IVSd), left
ventricular posterior wall in systole (LVPWs), left
ventricular posterior wall in diastole (LVPWd), left
ventricular internal dimension in systole (LVIDs) and left
ventricular internal dimension in diastole (LVIDd) were
done. Only minor changes were found in Kctd1”™
heterozygous mutants, and none of the findings repre-
sents a pathological cardiovascular state (Table 3).

Clinical chemistry and hematology analysis

Line Kctd1”™ was established based on increased
plasma urea levels in heterozygous mutant animals.
Plasma urea was found to be significantly increased
already at 6 and 9 weeks of age in both sexes (data not
shown). Clinical chemical analysis of blood plasma at
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Table 1 Open field behavioral analysis of line Kctd 1"

Parameter Heterozygous Wild-type Heterozygous Wild-type Genotype:
mutant males males mutant females females P-value

Distance traveled - total (cm) 8834 + 2939 10,050 + 2329 9823 £ 2178 10,138 £ 2682

Number of rearings - total 46 + 41 75+ 42 56 + 45 74 + 44 0.04

Percent distance in the center - total 104 + 85 13.1+73 125+93 147 + 83

Percent time spent in the center - total 69 £ 6.1 90+£56 88+79 102 £ 6.5

Whole arena - resting time (sec) 47 + 38 79 + 36 70 + 57 95 + 58 0.03

Whole arena - average speed (cm/s) 77 +27 90+ 23 88+ 22 93+ 28

Latency to enter in the center (sec) 349 + 377 125 + 209 122 + 228 81 + 137 0.047

Number of entries in the center 59 + 51 76 + 45 77 £ 57 87 + 54

9-week-old mice were tested in the open field for 20 min. Number per genotype and sex: n = 15. Data are presented as mean + standard deviation. Significance

vs. wild-type controls: Exact P values are indicated for P < 0.05

the age of 17 weeks revealed significantly increased
levels of urea, creatinine, potassium, calcium, o-
amylase activity and albumin in the heterozygous
mutants. In addition, decreased levels for chloride and
alkaline phosphatase activity were found in the hetero-
zygous mutants (Table 4).

Hematological analysis of 17-week-old mice indicated
decreased values for red blood cell count, hemoglobin,
hematocrit, mean corpuscular volume and mean corpus-
cular hemoglobin in heterozygous mutant mice (Table 5).
The erythropenic anemia may be due to kidney dysfunc-
tion. This alteration was also observed in other mutant
mouse lines showing increased plasma urea levels which
were established in the Munich ENU mouse mutagenesis
project [28, 29]. Future measurement of plasma erythro-
poietin (EPO) levels may further clarify this point.

A fasting intraperitoneal glucose tolerance test
(IpGTT) was carried out at the age of 14 weeks
(m = 14-15 per genotype and sex). Heterozygous
mutants showed slightly elevated basal glucose levels com-
pared to wild-type controls (P = 0.06; 5.3 + 0.4 mmol/l vs.
51 + 0.6 mmol/l in males, and 4.8 + 0.3 mmol/l vs.
4.6 £ 0.4 mmol/l in females), but no significant changes in
the area under the curve for 120 min. Slightly elevated
glucose levels of heterozygous mutants were also found
in fed mice.

Renal function analysis using metabolic cages was
carried out with additional animals at the age of 28-

32 weeks. Water consumption was not significantly
different between genotypes, but urinary volume was
slightly increased and urine pH and osmolality were
clearly altered in heterozygous mutant mice. Daily urine
calcium and magnesium excretion were significantly
increased in heterozygous mutant animals, while uric
acid and albumin excretion were decreased compared to
controls (Table 6).

Dysmorphology, bone and cartilage

Ketd 1”7 heterozygous mutant mice were tested at 12
and 18 weeks of age. The systematic morphological
investigation via visual inspection (shape, size, appear-
ance of head, limbs, digits, tail; appearance of vibris-
sae, teeth, lips, genitalia; coat color, texture and
appearance at multiple body sites; skin color, texture
and appearance at multiple body sites) found no
genotype-specific differences. X-ray analysis of the
skeleton (skull, mandible, maxilla, teeth, orbital cavity,
spine, ribs, scapula, clavicle, pelvis, femur, tibia, fibula,
humerus, ulna, radius, digits, joints) also found no
genotype-specific differences between heterozygous
mutants and wild-type controls.

Energy metabolism
Analysis of energy metabolism was done on 13-week-old
mice under ad libitum feeding conditions. No major

Table 2 Significant variations between mutant and wild-type mice in the modified SHIRPA and grip strength analysis of line Kctd 17
Test Parameter Heterozygous Wild-type Heterozygous Wild-type Genotype:
mutant males males mutant females females P-value
Modified SHIRPA Presence of tremor 6 of 15 0of 15 0of 15 0of 15 0.02
Presence of tail dragging 12 of 15 4 0of 15 6 of 15 20of 15 0.003
Presence of trunk curl 20f 15 0of 15 8of 15 20f 15 0.02
Grip strength Four paws (g) 219+9 260 + 20 223+18 236 + 22 < 0.001

9-week-old mice were tested. Number per genotype and sex: n = 15. Data are presented as total numbers (modified SHIRPA) and mean + standard deviation
(grip strength). Significance vs. wild-type controls: Exact P values are indicated for P < 0.05 (Modified SHIRPA: Fisher’s exact test)
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Table 3 Cardiovascular analysis of line Kctd1?™ by echocardiography

Parameter Heterozygous Wild-type Heterozygous Wild-type Genotype:
mutant males males mutant females females P-value

IVSs (mm) 0.55 £ 0.03 0.55 +0.02 0.55 £ 0.02 0.54 + 0.02

IVSd (mm) 0.54 £ 0.02 0.54 = 0.02 055+ 0.02 0.54 £ 0.02 0.04

LVPWs (mm) 0.54 £ 0.03 054 +0.02 054 + 0.02 0.54 £ 0.02

LVPWd (mm) 0.54 + 0.03 0.56 + 0.02 0.54 £ 0.01 0.55 + 0.02 0.03

LVIDs (mm) 139 + 049 144 + 0.60 153 £ 0.56 1.69 + 046

LVIDd (mm) 2.87 £ 043 287 £ 057 2.85 £ 047 298 £ 032

Heart rate (bpm) 579+ 114 530 + 150 474 + 167 453 + 122

Respiration rate (1/min) 264 + 36 250 + 29 224 + 50 238 + 52

Body weight (g) 313+ 14 323+19 268 £ 1.6 271 £ 21

15-week-old mice were tested. Number per genotype and sex: n = 14-15. Data are presented as mean + standard deviation. Significance vs. wild-type controls:

Exact P values are indicated for P < 0.05

IVSs interventricular septum in systole, /VSd interventricular septum in diastole, LVPWs left ventricular posterior wall in systole, LVPWd left ventricular posterior wall
in diastole, LVIDs left ventricular internal dimension in systole, LVIDd left ventricular internal dimension in diastole

genotype-related differences were obvious during energy
turnover measurements. The heterozygous mutants
showed slight hypophagia and consequently slightly
lower respiratory exchange ratios. Determination of
body composition (fat mass, lean mass) by time domain
nuclear magnetic resonance (TD-NMR) also showed
similar results for heterozygous mutants and wild-type
controls (Table 7) which was confirmed in the second
measurement at 19 weeks of age (data not shown).

Pathology

Analysis in the phenotype areas of allergy, eye as well as
immunology also showed no genotype-specific differences
in Kctd 1™ heterozygous mutants (data not shown).

The pathological analysis was carried out in 21-week-
old animals (n = 5 per sex and genotype). Macroscopic
examination of the organs (adrenal gland, blood vessels,
body weight, bone, brain, cartilage, cerebellum, cervix,
colon, duodenum, epididymis, esophagus, eyes, funiculus

Table 4 Clinical chemical analysis of line Kctd1?"V

Parameter Heterozygous Wild-type Heterozygous Wild-type Genotype:
mutant males males mutant females females P-value

Na (mmol/l) 157 £ 2 156 + 2 156 + 3 156 = 2

K (mmol/l) 51+£03 46 +02 44 +0.2 41 +02 < 0.001

Ca (mmol/l) 25+0.1 25+0.1 26£0.1 25£0.1 < 0.001

Cl (mmol/) 1M135+17 1148 £ 1.7 1139+ 15 117114 < 0.001

Pi (mmol/l) 22+02 22+03 21 +03 21 +£03

Total protein (g/l) 513+24 516+ 19 507 £ 19 487 £ 16

Creatinine (umol/l) 94+ 15 78+ 12 106 £ 0.7 95+ 12 < 0.001

Urea (mmol/l) 182+ 15 108 £ 0.8 169+ 14 101 £ 1.1 < 0.001

Cholesterol (mmol/I) 4.1+ 04 42+ 04 3003 28+03

Triglycerides (mmol/l) 41+ 05 42 +12 34 +08 34+10

ALT (U/1) 37+£4 39+£9 32£3 32+3

AST (U/1) 50+ 6 54 +17 51+7 517

AP (U/1) 90 +5 97 +8 132 £ 12 135+£8 0.04

a-Amylase (U/1) 776 £ 162 652 * 54. 695 + 91 534 + 39 < 0.001

Glucose (mmol/l) 105+ 20 92+ 16 102+ 15 98+ 1.2 P> 0.05 (0.06)

Albumin (g/1) 287+13 283+13 308+ 13 294 £ 1 0.02

17-week-old mice were tested. Number per genotype and sex: n = 11-14. Data are presented as mean + standard deviation. Significance vs. wild-type controls:

Exact P values are indicated for P < 0.05

Creatinine plasma creatinine analyzed by the enzymatic method, ALT alanine aminotransferase, AST aspartate aminotransferase, AP alkaline phosphatase
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Table 5 Hematological analysis of line Kctd1?”"

Parameter Heterozygous Wild-type Heterozygous Wild-type Genotype:
mutant males males mutant females males P-value

WBC (10°/) 106+ 15 106 = 2.0 109+18 96+ 1.2

RBC (WOé/ul) 95+ 04 102 £ 03 98 £ 04 98 £ 03 0.001

PLT (103/ul) 989 + 158 1051 £ 72 982 + 63 1002 + 60

HGB (g/dl) 154 £ 06 165+ 0.5 157 £ 06 163 £08 < 0.001

HCT (%) 448 + 1.7 481 +£13 460+ 1.7 466 +13 < 0.001

MCV (fl) 471 +£06 473 05 47.1 £ 05 476 + 06 0.005

MCH (pg) 161 £ 05 162+ 03 161+ 03 166 £ 05 0.005

MCHC (g/dl) 343+ 10 342+ 05 343+ 07 349+10

17-week-old mice were tested. Number per genotype and sex: n = 14-15. Data are presented as mean + standard deviation. Significance vs. wild-type controls:

Exact P values are indicated for P < 0.05

WBC white blood cell count, RBC red blood cell count, PLT platelet count, HGB hemoglobin, HCT hematocrit, MCV mean corpuscular volume, MCH mean

corpuscular hemoglobin, MCHC mean corpuscular hemoglobin concentration

spermaticus, heart, jejunum, kidneys, liver, lung,
lymph nodes, male accessory sex glands, mammary
gland, ovaries, pancreas, parathyroid, pituitary gland,
prostate, rectum, salivary glands, skeletal muscle, skin,
spinal cord, spleen, stomach, teeth, testis, thymus,

Additional phenotypic analysis of heterozygous mutants
harboring both mutations Kctd1'2”N and Dsg1b%93P

In addition to the results of the phenotypic analysis
of the Kctdl™”N heterozygous mutants described
above, heterozygous mutants harboring both muta-

thyroid, tongue, trachea, urinary bladder, uterus, tions Kctd1?”N and DsgIb®***" were previously ana-

vagina) and histological analysis of the above men- lyzed in the German Mouse Clinic before the

tioned organs including the kidneys (HE staining) successful segregation of the mutation Dsglh®*?3”

showed no genotype-specific differences. was carried out.

Table 6 Urine analysis of line Kctd 1"

Parameter Heterozygous Wild-type Heterozygous Wild-type Genotype:
mutant males males mutant females females P-value

Body weight (g) 360£19 371 €15 364 £33 375 +39

Water ad libitum

Water intake (ml/day) 38+ 08 39+08 41+08 37 +05

Urine volume (ml/day) 12+02 1.0+ 04 1.0+03 08+03 0.008

Osmolality (osmol/I) 23+04 30+07 29+ 06 40+ 09 < 0.001

Urine pH 59+02 62+03 6.1 £04 6.7 £03 < 0.001

Na (umol/day) 103 + 32 94 + 23 99 + 35 1M1 +£25

K (umol/day) 371+ 109 314 + 141 384 + 125 375+ 92

Ca (umol/day) 46+ 14 14 £ 06 72+29 18 +04 < 0.001

Cl (umol/day) 137 £ 46 139 + 42 139 + 47 175+ 41

Mg (umol/day) 30+9 19+12 38+ 12 31+7 0.009

Pi (umol/day) 264 + 34 277 £ 123 257 + 54 237 + 46

Creatinine (umol/day) 47 £ 06 49+ 18 43 +07 42 +05

Urea (mmol/day) 16 £ 04 16+ 06 1.7+£05 18 +£04

Uric acid (nmol/day) 318 £ 109 639 + 205 490 + 147 864 + 203 < 0.001

Glucose (umol/day) 21 +04 20+ 09 23+07 26+ 04

Total protein (mg/day) 13+3 13+5 25+15 26+19

Albumin (ug/day) 115 + 26 210+ 93 86 + 20 142 + 53 < 0.001

28-32-week-old mice were tested for 48 h in metabolic cages. Number per genotype and sex: n = 12. Data are presented as mean + standard deviation.
Significance vs. wild-type controls: Exact P values are indicated for P < 0.05 (2-way ANOVA)

Creatinine urine creatinine analyzed by the enzymatic method
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Table 7 Analysis of energy metabolism in line Kctd 1?7V
Test Parameter Heterozygous Wild-type Heterozygous Wild-type Geno-type:
mutant males males mutant females females P-value
Indirect calori-metry Body weight (g) 283+12 292+17 241 +16 240 + 2.7
Food intake (g) 09 £05 12+ 06 14+08 1.7 £07
Average VO, consumption (ml/h) 86+ 6 88+ 8 82+ 10 82+ 13
Average RER (VCO,/VO,) 0.79 + 0.03 081 +0.02 081 + 004 0.83 + 0.04 0.03
Average distance (cm in 20 min) 2777 + 810 2386 + 755 4467 + 5870 3681 + 3512
TD-NMR Body weight (g) 274 +12 284 +1.7 238+ 14 241 £18
Fat mass (g) 57+07 6.2+ 09 55+07 56+09
Lean mass (9) 177 £ 06 181 +£09 147 +08 149 + 08

Analysis was done on 13-week-old mice under ad libitum conditions. n = 14-15 per genotype and sex. Data are presented as mean + standard deviation. Significance

vs. wild-type controls: Exact P values are indicated for P < 0.05
RER respiratory exchange ratio, TD-NMR time domain nuclear magnetic resonance

Mice homozygous for a targeted mutation in Dsglb
are described to exhibit increased bone mineral content
as well as abnormal eye morphology, whereas humans
with various heterozygous mutations in the human
ortholog DSGI are described to show palmoplantar
keratoderma I (OMIM: 148700) and erythroderma with
palmoplantar keratoderma, hypotrichosis, and hyper-IgE
(OMIM: 615508) (http://www.informatics.jax.org).

Heterozygous mutants harboring both mutations
Ketd1P™ and DsgIb®***" and wild-type control litter-
mates were analyzed at an age of 2—4 months. The
results (data not shown) essentially confirm the pheno-
type of the Kctd1™”N heterozygous mutants described
above. Thus, in the behavioral and neurological analysis,
open field test, grip strength, rotarod and hotplate test
did not reveal genotype-specific differences. In the modi-
fied SHIRPA protocol, the mutants showed significantly
decreased locomotor activity (P < 0.01) and also less tail
elevation (P < 0.001). The significantly increased pre-
pulse inhibition of the mutants carrying both mutations
was not reproduced in the analysis of the Kctd1™™™
heterozygous mutants described above. The clinical-
chemical analysis confirmed the changes concerning
plasma urea, potassium, chloride and a-amylase activity
levels as well as the alterations of hematological parame-
ters. Metabolic cage analysis at the age of 14—15 weeks
found an increase in water intake and polyuria as well as
distinct hypercalciuria in the mutants. Morphological
analysis via visual inspection and x-ray and DXA (dual
energy X-ray absorption) analysis (determining bone
mineral density (BMD), bone mineral content (BMC),
bone content, lean mass and fat mass at the age of
17 weeks p.p.) as well as the pathological analysis
(macroscopic analysis of the organs and histological
analysis) found no genotype-specific differences. Thus,
unlike in other ENU-derived mutant mice showing hyper-
calciuria as consequence of kidney dysfunction [29-32],
heterozygous mutants harboring both mutations Kctd 12”N

and Dsglb®**" showed no significant alterations in the
parameters of bone mineralization at the analyzed age.
This may be re-analyzed in older Kctd1™™N heterozygous
mutants. In addition, absence of pathological states was
described in the cardiovascular analysis and for the energy
metabolism as well as in the analyses of allergy, eye,
immunology, and lung function (data not shown).
Transcriptome profiling was carried out in heterozy-
gous mutants harboring both mutations Ketd1*”N and
Dsg1b®**3P, Based on the basal phenotype of the mutant
line as well as expression and GWAS analyses in
humans [10, 20], the pathogenic effects of the Ktcdl
mutation were evaluated in brain, heart and kidney by
genome-wide transcriptome profiling analysis using
lumina MouseRef8 v2.0 Expression Bead Chips
containing about 25 K probes (25,600 well-annotated
Ref-Seq transcripts). Samples of selected organs (brain,
heart and kidney) of four mutant males were compared to
four wild-type males as controls at the age of 4 months (in
total 24 hybridizations). The raw data are available in the
GEO database (http://www.ncbi.nlm.nih.gov/geo/). Statis-
tical analysis of the gene expression patterns [33, 34] in
the brain identified 25 significantly regulated genes in
mutants vs. wild-type controls (false discovery rate
(FDR) = 2.7%, fold change >1.5). The range of the mean
log, ratios was 1.4 — 2.2 for the 17 up-regulated genes and
2.8 to-1.5 for the 8 down-regulated genes. Statistical ana-
lysis of gene expression patterns in the heart identified 23
significantly regulated genes (FDR = 1.6%, fold change
>1.5). The range of the mean log, ratios was 1.4 — 1.7 for
the 9 up-regulated genes and 1.8-1.4 for the 14 down-
regulated genes. Due to the low number of regulated
genes in brain and heart the functional classification of
these datasets revealed no over-representation in gene
ontology (GO) terms. Additionally, a detailed literature-
based research for the genes regulated in brain and heart
also indicated no clear functional changes on molecular
level in these organs. Statistical analysis of the gene
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expression patterns in the kidney identified 102 signifi-
cantly regulated genes in mutants vs. wild-type controls
(FDR = 3.8%, fold change >1.5). The range of the mean
log, ratios was 1.4 — 2.5 for the 61 up-regulated genes and
2.9-1.4 for the 41 down-regulated genes. Using Ingenutity
Pathway Analysis (IPA, http://www.ingenuity.com) the
regulated genes in kidney were classified by their molecu-
lar functions and over-represented GO terms were associ-
ated with tumorigenesis, cell death, cell movement,
hypertension, non-insulin-dependent diabetes mellitus,
inflammatory bowel disease, as well as renal and uro-
logical disorder. The data need to be functionally verified
in further experiments by using mice harboring the muta-
tion Ketd1”N without the second mutation Dsglh®*?.,

Discussion

The dominant mutant mouse line HST014 was estab-
lished on the C3H inbred genetic background based on
increased plasma urea levels, and the causative mutation
was identified as KctdI™™N affecting the highly con-
served BTB domain of the protein. Kctd 1N heterozy-
gous mutant animals were viable and fertile whereas
homozygous mutant animals showed perinatal death.

The data support the role of KCTD1 in mammalian
development. Kctdl was shown to inhibit the transacti-
vation of the Tfap2 transcription factor family which
plays an important role in embryogenesis and develop-
ment. Homozygous knockout mice for Tfap2a, Tfap2b
or Tfap2c exhibit lethal phenotypic defects in neural
tube, face, eye, heart, skin, urogenital tissues or extraem-
bryonic trophoblasts and usually die at birth [7]. In
addition, Tfap2b homozygous knockout mice show
neonatal or postnatal lethality with renal kidney cysts,
depending on the genetic background [35, 36].

The transcriptional repressor activity of KCTD1 is
mediated via the BTB domain [7]. In vitro mutagenesis
of critical amino acid residues in the BTB domain
resulted in the loss of BTB-dependent repression [37]. In
humans affected by the SEN syndrome, all heterozygous
KCTD1 missense mutations were identified in the BTB
domain. The Kctd1™™ mutation also alters the BTB
domain of the murine KCTD1 and presumably causes a
loss of function via a dominant-negative mechanism.

The human SEN syndrome is characterized by cutis
aplasia of the scalp as well as minor anomalies of the
external ears, digits and nails, and malformations of the
breast. The phenotype varies within the affected families.
Less frequent clinical characteristics include renal and
urinary tract malformations [17, 19]. In addition, KCTDI
has been associated with sudden cardiac arrest [20]. A
possible role of KCTDI in the brain was shown by its
interaction with PrP€ in vitro [38].

Nine-to-21 week-old Kctd1™”N heterozygous mutant
mice were examined using a standardized, systemic

Page 10 of 12

phenotypic analysis. Assessment of the reproducibility of
the results was done by using the data of the preceding
phenotypic analysis of heterozygous mutants harboring
both mutations Ketd 1™ and DsgIb“***". The concise
analysis of dysmorphology, bone and cartilage as well as
the pathological analysis revealed no visible alterations
of coat, external ears, digits and nails as well as nipples
characteristic for the SEN syndrome in humans. Further
analysis of the mutation in other mouse inbred strains
might examine the role of the genetic background on
the detected mutant phenotype. The main alteration of
Ketd 1PN heterozygous mutants in C3H mice consists in
kidney dysfunction. We found no gross histological
alternation in the kidneys of the mutant mice. This was
also observed in other mutant mouse lines showing
increased plasma urea levels which were established in
the Munich ENU mouse mutagenesis project [30, 32].
Clinical chemical blood analysis and metabolic cage ana-
lysis of 17-week old and 28-32-week old heterozygous
mutant mice, respectively, revealed signs of impaired
kidney function including increased plasma urea,
creatinine, and potassium levels, a slight increase in
water intake, mild polyuria, and hypercalciuria. However,
up to now creatinine clearance (calculated according to
the formula: creatinine clearance = [Crealos p urine X 24-h
urine volume / [Crea]plasma; data were normalized to 25 g
body weight) as an indicator for the general excretion
function of the kidney showed no lower values in mutants
compared to wild-type controls (data not shown). The
specific cause of the observed functional renal alteration is
not yet known and is a topic of subsequent analyses.

The altered RNA expression patterns in the kidneys of
heterozygous mutants confirmed the clinical results. The
data support the role of KCTDI in renal development
and/or physiology. These actions might partly be medi-
ated by Tfap2a, since several genes that were found to
be regulated in kidneys of KctdI”™ heterozygous
mutants have been identified as potential target genes of
Tfap2a [39]. In this context, the findings in homozygous
knockout mice of Tfap2b on the congenic 129P2 genetic
background also included symptoms of kidney dysfunc-
tion like defective tubular secretory function and ion
homeostasis, hypocalcemia, phosphatemia, hyperuremia,
and terminal renal failure [35]. For the SEN syndrome in
humans, renal anomalies were suggested to be more
common manifestations of the disease than anticipated.
Renal defects might contribute to morbidity and mortality
via renal insufficiency and renovascular hypertension.
Thus, all patients with SEN syndrome should undergo
detailed renal evaluation [18].

The other analyses revealed few minor effects in
cardiovascular and neurological parameters, and the
results of the Kctdl™™ heterozygous mutants were
within the physiological range of wild-type C3H mice.
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Analysis of RNA expression patterns also revealed few
genes that were regulated in heart and brain, and did not
indicate any clear tendency of alterations in these organs.

Conclusions

In summary, Kctd1*”N homozygous mutant mice on the
C3H inbred genetic background show perinatal death.
As the first mouse line harbouring a Kctdl mutation,
phenotypic analysis of Kctdl””N heterozygous mutants
at the age of 9-21 weeks revealed no visible alterations
of the external physical appearance as observed in the
human SEN syndrome. The main alteration of the
Ketd1™™™  heterozygous mutants consists in kidney
dysfunction. Additional analyses in 9-21 week-old het-
erozygous mutants revealed only few minor effects.

Additional file

Additional file 1: Time points of the phenotypic analyses for line Kctd 1™

in the German Mouse Clinic (GMC) (DOCX 32 kb)
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