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Zusammenfassung

Variationelle Methoden bilden einen grundlegenden Baustein für die Lösung vieler
Probleme der Bildverarbeitung, etwa für das Problem der Segmentierung, der Tiefen-
schätzung, des optischen Flusses, der Objekterkennung etc. Viele dieser Prob-
leme werden mithilfe eines Markovschen Zufalls-Feldes (MRF) oder eines Label-
Zuweisungsproblems mit stetigen Variablen beschrieben. Das Finden einer Maximum
A-Posteriori (MAP)-Konfiguration eines für das jeweilige Problem angepassten MRF
oder das Finden eines Minimierers eines Label-Zuweisungsproblems ergibt eine Lö-
sung des usprünglichen Problems. In beiden Fällen ist das Lösen eines strukturierten
Optimierungsproblem erforderlich.
In dieser Arbeit studieren wir neue Erweiterungen für Markovsche Zufalls-Felder

and Label-Zuweisungsprobleme, welche globale statistische Informationen und Be-
dingungen in das jeweilige Modell integrieren. Zu diesem Zweck schlagen wir hand-
habbare konvexe Relaxierungen des zugehörgien Optimierungsproblems, sowie Algo-
rithmen, die diese lösen können, vor. Wir schlagen darüberhinaus einen allgemeinen
Algorithmus vor, mithilfe dessen man einen Teil der MAP-Konfiguration eines MRF
mithilfe von gebräuchlichen Relaxierungen finden kann.
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Abstract

Variational methods constitute the basic building blocks for solving many image
analysis tasks, be it segmentation, depth estimation, optical flow, object detection
etc. Many of these problems can be expressed in the framework of Markov Ran-
dom Fields (MRF) or as continuous labelling problems. Finding the Maximum
A-Posteriori (MAP) solutions of suitably constructed MRFs or the optimizers of the
labelling problems give solutions to the aforementioned tasks. In either case, the
associated optimization problem amounts to solving structured energy minimization
problems.

In this thesis we study novel extensions applicable to Markov Random Fields and
continuous labelling problems through which we are able to incorporate statistical
global constraints. To this end, we devise tractable relaxations of the resulting energy
minimization problem and efficient algorithms to tackle them. Second, we propose
a general mechanism to find partial optimal solutions to the problem of finding a
MAP-solution of an MRF, utilizing only standard relxations.
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1 Introduction

Markov Random Fields (MRF), also known as graphical models, come from statistics
and play a key role in most problems of image analysis. Finding the most likely
configuration of a MRF, also called MAP-inference or energy minimization problem
for graphical models, is of great importance in computer vision, bioinformatics, com-
munication theory, statistical physics, combinatorial optimization, signal processing,
information retrieval and statistical machine learning, see [2, 40, 111] for an overview
of applications. MRFs factorize according to a given graphical structure, which gives
us a way to build large models from simple building blocks. Often, this structure
consists of a data term indicating which configuration each variable should take
and pairwise regularization terms, which couple variables, which are expected to be
directly related to each other. This structure helps in modelling and optimization.
The counterpart of MAP-inference in the variational community are continuous

labelling problems. They usually consist of a dataterm and a regularizer. After
discretizing, such problems can be expressed as MRFs with unaries for the data term
and, under some conditions, pairwise terms for the regularizer.
Yet, there remain problems connected with the usage of MRFs. Among those,

we will study the following two problems: First, finding MAP-solutions is, except
for special cases, NP-hard [95]. Second, standard MRFs with low order potentials
(pairwise, ternary etc.) are often not expressive enough. Both problems pose questions
from the viewpoint of mathematical optimization:

1. How shall we find in practice MAP-solutions of such models?

2. How shall we extend MRFs to enable them to capture more global interactions,
while still maintaining computational efficiency?

Analoguous questions can be posed for continuous labelling problems.
In this thesis we will study both problems. Our contribution consists in:

First, we will propose how to find part of a MAP-configuration of a standard pairwise
MRF while only utilizing approximate solvers for this task. Such solvers, while
fast in practice, produce solutions which may in general be far away from
the MAP-configuration. The part of the generated solutions which equals the
MAP-configuration is called partially optimal or persistent, see Chapter 3.

Second, we will propose global data terms based on Wasserstein distances [108].
These distances measure similarity between histograms, hence can be used to
relate global properties of images, like grayvalue or feature distributions, to
each other, see Chapter 5. We will use Wasserstein distances to solve denoising
problems with statistical information on grayvalue distributions in Section 5.4
and for segmentation and cosegmentation in Section 5.5.
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1 Introduction

1.1 Notation

The following table summarises notation used throughout this thesis. Specific notation
will be introduced at the beginning of the chapter where it will be needed.

General Notation
|A| the cardinality of a set A
N natural numbers
Z whole numbers
Na,b subset {x ∈ N : a ≤ x ≤ b}
Za,b subset {x ∈ Z : a ≤ x ≤ b}
R real numbers
R+ set of non-negative reals {x ∈ R : x ≥ 0}
R reals plus infinity, R ∪ {∞}
(a, b) open interval between a and b, i.e. {x ∈ R : a < x < b}
[a, b] closed interval between a and b, i.e. {x ∈ R : a ≤ x ≤ b}
A×B Cartesian product of sets A and B
An n-fold Cartesian product of set A, i.e. A× . . .×A︸ ︷︷ ︸

n times
P(A) power set {B : B ⊂ A}
Rn×m set of real-valued m× n-matrices
xi i-th entry of vector x ∈ Rn
〈a, b〉 scalar product of a, b ∈ Rn, i.e.

∑n
i=1 ai · bi

‖x‖ Euclidean norm of x, i.e. ‖x‖ =
√
〈x, x〉

ei i-th unit vector of Rn (0, . . . , 0, 1︸︷︷︸
i-th position

, 0, . . . , 0)

En basis of Rn consisting of all unit vectors, i.e. {e1, . . . , en} redbesser machen
f|C restriction to C ⊂ A of a function f : A→ B

sign(x) sign of x, i.e.


1, x > 0
0, x = 0
−1, x < 0
Markov Random Fields

G = (V, E) graph G with vertex set V and edge set E ⊂ V × V
Λ local polytope, defined in (2.2.7)
µ (pseudo-)marginals µ ∈ Λ

Convex Analysis
conv(A) convex hull of A ⊂ Rn, i.e. {

∑n+1
i=1 αix

i|
∑n+1
i=1 αi = 1, α ≥ 0, xi ∈ A}

∆n n-dimensional simplex, i.e. {a ∈ Rn+ :
∑n
i=1 ai = 1} = conv(En)

proxf (·) prox-operator for function f , i.e. proxf (x0) = min
x

1
2‖x

0 − x‖+ f(x)

χA(·) indicator function on set A, i.e. χA(x) =
{

0, x ∈ A
∞, x /∈ A

σA(·) support function of set A, i.e. σA(x) = supy∈A〈x, y〉
Variational Analysis

BV(A,B) space of funtions f : A→ B of bounded variation, see Definition 4.1.1

2



1.1 Notation

Ck(Ω) space of k-times differentiable functions on Ω
Ckc (Ω) space of compactly supported k-times differentiable functions on Ω
Df derivative operator, also in the weak sense of BV-functions
C ′ set of lifted functions, see Definition 4.3.1
C ′′ convex hull of C ′, see (4.3.4)

Measure Theory
Lp(A) space of p-integrable functions on domain A
(V,Σ) measurable space of image values with the associated Borel-σ-Algebra.
M+(A) space of finite, nonnegative Borel measures with domain A
Π(ν1, ν2) space of coupling measures with marginals ν1 and ν2, see Definition 5.1.2
νxA measure ν restricted to set A
f∗ν pushforward of measure ν by map f defined by (f∗ν)(A) = ν(f−1(A))
K dual admissible set for the Wasserstein distance, see Definition 5.1.4
νIΩ histogram of I|Ω, see Definition 5.2.2
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2 Markov Random Fields and Inference

In this chapter we give a short introduction to Markov Random Fields, insofar as
is needed for this thesis, the associated MAP-inference problem and an overview of
solvers used in this thesis for this task.

2.1 Basic Definitions

Markov Random Fields describe models together with a probability distribution,
which factorize over a graphical structure.

Definition 2.1.1 (Label set and label space). Given an undirected graph G = (V, E),
we associate to each node v ∈ V a label set Xv. The label space is the Cartesian
product of all label sets: X =

⊗
v∈V Xv.

Remark 2.1.1. We will be mainly interested in discrete label sets, which means
Xu = {1, . . . , n} for some n ∈ N. From now on, we will always assume that |Xv| > 1.
For notational convenience we write Xuv = Xu ×Xv and for subsets A ⊂ V we

write XA =
⊗
v∈A xv. To each vertex v ∈ V we associate a variable xv ∈ Xv.

Definition 2.1.2 (Labeling). An assignment x =
⊗
v∈V xv ∈ X of each variable xv

∀v ∈ V is called a labeling.

We use the notation xuv = (xu, xv) for uv ∈ E . Notations like x ∈ XA implicitly
indicate that the vector x only has components xu indexed by u ∈ A. With x|A ∈ XA

we denote restriction of the labeling x ∈ XV to the set A ⊂ V . We want to associate
to each labeling a cost. The cost should factorize according to the graphical structure
described by G. This is done with the use of potentials.

Definition 2.1.3 (Potentials). To each vertex v ∈ V we associate a unary potential
θu : Xu → R and for each edge (uv) ∈ E we associate a pairwise potential θuv :
Xu ×Xv → R.

Now we connect all definitions to define Markov Random Fields.

Definition 2.1.4 (Markov Random Field). A Markov Random Field (MRF) is a
tuple (G = (V, E), X, (θv)v∈V ∪ θ)uv∈E) consisting of a graph G, a label space X and
unary and pairwise potentials θ. The probability of a labeling x ∈ X is

p(x) =
exp

(∑
v∈V

θv(xv) +
∑
uv∈E

θuv(xu, xv)
)

Z(θ) , (2.1.1)

5



2 Markov Random Fields and Inference

where Z(θ) is the partition function

Z(θ) =
∑
x∈X

exp
(∑
v∈V

θv(xv) +
∑
uv∈E

θuv(xu, xv)
)
. (2.1.2)

Remark 2.1.2. We can also define higher order Markov Random Fields by considering
hypergraphs H = (V,S), where S ⊂ P(V ) ranges over some subsets of the vertices
and where to each s ∈ S we associate a potential θs : Xs → R. For example, if
|s| = 3, we call θs a ternary potential.

2.2 MAP-Inference Problem

Definition 2.2.1 (MAP-Inference). The Maximum A-Posteriori inference problem
for a Markov Random Field (G,X, θ) (short MAP-inference) consists of finding a
most probable labeling, called MAP-solution, which is

x∗ ∈ argmaxx∈XV p(x) (2.2.1)

Such an x∗ is also called the mode of the MRF. Finding the mode is equivalent to
the energy minimization problem

min
x∈X

EV(x) :=
∑
v∈V

θv(xv) +
∑
uv∈E

θuv(xu, xv) , (2.2.2)

Definition 2.2.2 (Marginals). In the literature, MAP-inference also encompasses
the more general problem of determining the marginals of p, that is computing the
unary marginals

µv(i) =
∑

x∈X,xv=i
p(x) for all v ∈ V and i ∈ Xv , (2.2.3)

and the pairwise marginals

µuv(i, j) :=
∑

x∈X,xuv=(i,j)
p(x) for all uv ∈ E and (i, j) ∈ Xuv . (2.2.4)

Remark 2.2.1. It can be easily seen that finding the mode of an MRF can be
accomplished by first computing the marginals and then selecting the most probable
configurations in each vertex and edge suitably. Hence, marginalization is more
general than mode-finding. In this thesis, we will not compute marginals, but below
we will use the space of all possible marginals to linearize problem (2.2.2).

MAP-inference, i.e. finding a solution to (2.2.2), could theoretically be accom-
plished by enumerating all possible assignments x ∈ X. This would entail enu-
merating

∏
v∈V |Xv| possibilities, which is exponential in |V|, hence not practicable.

Therefore, polyhedral approaches where considered in the literature [112, 113]. To
linearize (2.2.2), we first introduce the standard overcomplete representation for
unary and pairwise marginals [111].
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2.2 MAP-Inference Problem

Definition 2.2.3 (Overcomplete Representation). To each variable v ∈ V and each
label i ∈ Xv = {1, . . . , n} we associate ei, the i-th unit vector. Abusing notation,
we define the unary cost in the overcomplete representation as 〈θv, ei〉 := θv(i). To
each edge uv ∈ E and each label combination (i, j) ∈ Xuv we associate the unit
vector ei+j·|Xu|. Abusing notation, we define the pairwise cost in the overcomplete
representation as 〈θuv, ei+j·|Xu|〉 := θuv(i, j).

The set of all marginals belonging to a probability distribution factorizing according
to the graph G is

Definition 2.2.4 (Marginal Polytope). The marginal polytope is the set

MV := conv


µ :

∑
xv∈V µv(xv) = 1, v ∈ V,∑
xv∈V µuv(xu, xv) = µu(xu), xu ∈ Xu, uv ∈ E ,∑
xu∈V µuv(xu, xv) = µv(xv), xv ∈ Xv, uv ∈ E ,

µv(xv) ∈ {0, 1}, v ∈ V, xv ∈ Xv

µuv(xu, xv) ∈ {0, 1}, (xu, xv) ∈ Xuv, uv ∈ E .


(2.2.5)

The extreme points ofMV are by definition those marginals which correspond to
a labeling x ∈ X via the overcomplete representation. Hence we can now reformulate
problem (2.2.2) as the following linear program.

min
µ∈ΛV

〈θ, µ〉 :=
∑
v∈V

∑
xv∈Xv

θv(xv)µv(xv) +
∑
uv∈E

∑
xuv∈Xuv

θuv(xuv)µuv(xuv) . (2.2.6)

Slightly abusing notation we will denote the objective function in (2.2.6) as EV(µ).
It is unlikely that an efficient algorithm for MAP-inference exists, as the correspond-

ing minimization problem is NP-hard [95]. Hence, it is unlikely, that the marginal
polytope can be separated in polynomial time, as this would entail a polynomial
time algorithm for MAP-inference [31]. There exist however special cases, where
polynomial time algorithms exist [22, 52, 53, 59, 92]. These approaches usually rely
on solving a linear relaxation of the MAP-inference problem and showing its tightness
for the special cases considered.
To this end, we introduce the local polytope.

Definition 2.2.5 (Local Polytope). The local polytope is the set

ΛV :=


µ :

∑
xv∈V µv(xv) = 1, v ∈ V,∑
xv∈V µuv(xu, xv) = µu(xu), xu ∈ Xu, uv ∈ E ,∑
xu∈V µuv(xu, xv) = µv(xv), xv ∈ Xv, uv ∈ E ,

µv(xv) ≥ 0, v ∈ V, xv ∈ Xv

µuv(xu, xv) ≥ 0, (xu, xv) ∈ Xuv, uv ∈ E .


(2.2.7)

We define ΛA for A ⊂ V similarly.

Remark 2.2.2. It is easily seen that MV ⊂ ΛV . For trees, MV = ΛV holds. For
graphs with cycles, strictness of this inequality can already be seen on models on the
complete graph with four variables [112, Fig. 6]. Hence, variables µ ∈ ΛV are called
pseudo-marginals.
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2 Markov Random Fields and Inference

The problem of finding
min
µ∈ΛV

EV(µ) (2.2.8)

is called solving the local polytope relaxation of (2.2.2).
The local polytope can be described by inequalities whose number is polynomial in

the input size of the underlying graph. Hence, solving the local polytope relaxation
can be accomplished in polynomial time as well [45]. Note however that µ ∈ ΛV
may not correspond to any probability distribution. In fact, when an optimal µ∗
for (2.2.8) is not integral, i.e. µ /∈ {0, 1}|ΛV |, this is usually due to µ /∈MV .
For algorithmic purposes, it has turned out that solving the dual of (2.2.8) can

be more advantageous than solving the primal formulation. First we introduce
reparametrizations. It is well-known [89] (see also [112]) that representation (2.2.2)
of the energy function is not unique. There are other potentials, which keep the
energy of all labelings unchanged.

Definition 2.2.6 (Reparametrization). Potentials

θφv (xv) := θv(xv)−
∑

u:uv∈E
φvu(xv) , (2.2.9)

θφuv(xu, xv) := θuv(xu, xv) + φvu(xv) + φuv(xu) (2.2.10)

with some numbers φuv(xu), uv ∈ E, xu ∈ Xu are called reparametrized poten-
tials.The vector θφ is called reparametrization of θ.

The dual problem to (2.2.8) can now be compactly written.

Definition 2.2.7 (Dual Formulation of the Local Polytope Problem). The dual
to (2.2.8) is

maxz,φ
∑
v∈V zv

s.t. zv ≤ θφv (xv) ∀v ∈ V , xv ∈ Xv

0 ≤ θφuv(xuv) ∀uv ∈ E , xuv ∈ Xuv .

(2.2.11)

Note that each reparametrization gives us a lower bound: For each vertex v ∈ V we
choose label xv ∈ Xv such that θφv (xv) is minimal and for each edge uv ∈ E we choose
label combination xuv such that θφuv(xuv) is minimal. Summing those potential values
gives a lower bound for (2.2.2). In case the minimal labels are consistent, i.e. there
exists a labeling x ∈ XV such that xu ∈ argmini θφu(i) ∀u ∈ V and θφuv(xuv) = 0
∀uv ∈ E , the lower bound is the value of the energy minimization problem (2.2.2).

2.3 Solving MAP-Inference in Practice

In the preceeding Section 2.2 we have introduced the local polytope relaxation
commonly used to approximately solve the underlying MAP-inference problem (2.2.2).
However, large-scale problem sizes prohibit usage of off-the-shelf LP-solvers, as
those algorithms empirically exhibit quadratic space and time complexity. Hence,
approximate solvers were developed to efficiently arrive at points close to the solution
of either (2.2.8) or (2.2.11). The following solution paradigms stand out:
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2.3 Solving MAP-Inference in Practice

• Dual block coordinate ascent methods based on belief propagation, described
in Section 2.3.1,

• Proximal minimization algorithms from the field of convex variational analysis,
described in Section 4.4.3,

• Dual decomposition [54, 55, 85] methods,

• Max-flow based techniques [11, 12, 30, 47, 49, 51, 53, 56, 82].

We will not detail the latter two methodologies here, since we will only use the first
two in this thesis. For a comprehensive overview of solvers for MAP-inference and
their respective applicability and merits, see [41].

2.3.1 Dual Block Coordinate Ascent Algorithms

Algorithms from this class historically arose from the belief propagation algo-
rithms [111], also known as message passing. It was observed in [110], that be-
lief propagation algorithms are connected to the dual of the local polytope relax-
ation (2.2.11). When applied to tree-structured graphs G, those algorithms amount
to dynamic programming. In this case, they are exact [59] and can not only output
the mode, but also marginals. Unfortunately, early versions of belief propagation
algorithms were not convergent on graphs with cycles, but could oscillate [111]. To
overcome this defect, monotonically increasing variants of those algorithms were
developed [28, 29, 33, 34, 48, 50, 65, 88, 91, 98, 112, 117]. The algorithms directly
addressing Problem (2.2.11) rely on performing in some sequence the marginaliza-
tion (2.3.1) and averaging (2.3.2) operations described below.
Remark 2.3.1. The well-known dual block coordinate ascent algorithm TRW-S [48]
will be used in chapter 3. In chapter 5.5 we will extend the dual block coordinate
ascent operations described below to include operations for the Wasserstein distance
described in chapter 5.

2.3.1.1 Basic Update Operations

The marginalization operation is applied to paiwise reparametrized potentials and
consists in finding for fixed label xu ∈ Xu the best possible label xv ∈ Xv such that
θφuv(xuv) is minimal and updating the φ-variables by the value of the reparametrized
potential.

Definition 2.3.1 (Marginalization Update).

φuv(xu)−= min
xv∈Xv

θφv (xu, xv) (2.3.1)

Lemma 2.3.1. Operation (2.3.1) increases the lower bound.

Proof. Note that operation (2.3.1) respects the condition θφuv ≥ 0 in (2.2.11). Also,
operation (2.3.1) decreases the φ-variables, hence increases each component of θφv ,
hence we can increase the zv-variable and thereby increase the dual lower bound.
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2 Markov Random Fields and Inference

The second operation is applied to reparametrized unary potentials and consists
of averaging the φ-variables, which are connected to the associated node v ∈ V.

Definition 2.3.2 (Averaging Update). Let (ωu)vu∈E be some sequence of non-
negative weights and α = minxv∈Xv θφv (xv). The averaging operation consists in

φvu(xv)+=ωu ·
(
θφv (xv)− α

)
(2.3.2)

Lemma 2.3.2. Let the weights ω in Definition 2.3.2 be such that
∑
u:vu∈E ωu ≤ 1

and ωu ≥ 0 ∀u : uv ∈ E. Then Operation (2.3.2) increases the lower bound.

Proof. Note that the right hand side of (2.3.2) is positive, hence the pairwise
reparametrized potentials θφvu stay feasible. Let ω =

∑
u:vu∈E ωu. The new reparametrized

unary is equal to

θφv (xv)−
∑

u:uv∈E
ωu ·

(
θφv (xv)− α

)
= (1− ω) · θφv (xv) + ω · α . (2.3.3)

Due to ω ≤ 1 the minimum over the latter is the minimum of θφv , hence the lower
bound is not decreased.

Various message passing algorithms differ in the sequence of steps by which the
above two operations are performed, as well as in the choice of weights ωu. These
choices make a great difference in practice. A particularly choice is the TRWS [48, 50]
algorithm, detailed in Algorithm 1. The backward iteration is done analoguously, by
traversing the nodes in reverse order and exchanging < by > and vice versa.
Unfortunately, applying the operations (2.3.1) and (2.3.2) iteratively need not

result in convergence to the optimum of relaxation (2.2.11), see [48, 50]. Instead,
they may get stuck in so-called arc-consistent dual solutions, which constitute fixed
points of this class of algorithms and where no dual increase is possible any more.
However, these fixed points are usually very good in practice.

Remark 2.3.2. The algorithms [34, 88] address optimization of a smoothed formulation
of (2.2.8). Specifically, the objective function also includes an entropic term. This
results in a smooth dual problem. Replacing the operations (min,+) by (+, ·) in the
marginalization operation, leads to dual block coordinate ascent for their smooth
dual. Due to smoothnedd, these algorithms converge and have no suboptimal fixed
points.

2.3.1.2 Obtaining Labelings from Dual Solutions

One drawback of optimizing the dual formulation (2.2.11) is that no labelings x ∈ X,
which is what we seek, or at least pseudo-marginals µ ∈ ΛV are returned, but only
a lower bound on the energy of the MAP-solution is computed. To overcome this
problem, various rounding algorithms have been proposed [48, 87, 114]. One of the
best procedures is the rounding approach from [48]. It consists in first choosing an
order of the vertices in V , i.e. {v1, . . . , v|V|} = V , then traversing all nodes in this order
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2.3 Solving MAP-Inference in Practice

Algorithm 1: One forward iteration of TRWS [48]
Input : Graph G = (V = {1, . . . , n}, E), potentials θu, u ∈ V, θuv, uv ∈ E .

1 for u = 1, . . . , n do
2 Receive Messages:
3 for v : uv ∈ E , v < u do
4 Compute φu,v(xu) −= minxv∈Xv{θφuv(xu, xv)} ∀xu ∈ Xu

5 end
6 Round Primal Solution:

x∗u = minx∈Xu{θφu(x) +
∑
v:uv∈E,v<u θ

φ
uv(xu, x∗v)}.

7 Send Messages:
8 Compute δ∗(xu) = θφu(xu)−minx′u∈Xu{θ

φ
u(x′u)}. Set ω = 1

|{v:uv∈E,v>u}| .
for v : uv ∈ E , v > u do

9 Update φ(u,v) += ω · δ∗

10 end
11 end

and choosing a minimal label x∗v ∈ argminxvk∈Xvk θ
φ
vk

(xv)+
∑
l<k:vkvl∈E θ

φ
vkvl

(xvk , x∗vl).
See also Algorithm 1.
The difference EV(x∗) − 〈1, z〉 between the energy of the MAP-inference prob-

lem (2.2.2) and the dual lower bound obtained by minimizing (2.2.11) is called the
integrality gap and is always non-negative. A vanishing integrality gap means that
we have found an optimal reparametrization θφ and a MAP-solution x∗ ∈ X. While
often not zero, the integrality gap is usually small for typical image analysis tasks.
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3 Partial Optimality for Markov Random
Fields

This chapter is based on publications [101, 102].

3.1 Introduction

In this chapter we consider the MAP-inference (2.2.2) problem. As previously
noted, MAP-inference is NP-hard and we cannot expect to obtain MAP-solutions in
polynomial time. In practice, the local polytope relaxation (2.2.8) is good and the
associated integraily gap is small and close approximate solutions can be obtained
efficiently in big MRFs commonly arising in image processing by approximate methods
as discussed in Section 2.3 and [40, 105]. However, the obtained rounded solutions
do not need to coincide with the MAP-solutions, as long as the integrality gap is
strictly larger than zero. If one could prove, that some variables of the solution given
by such approximate algorithms belong to an optimal configuration, the value of
such approximate methods would be greatly enhanced. In particular, the problem
for the remaining variables could be solved by stronger, but computationally more
expensive methods to obtain a global optimum as done e.g. in [43].
In particular, natural questions are: (i) Is there a subset A ⊂ V and a labeling

x0 of the original NP-hard problem (2.2.2) such that a for minimizer x∗ of some
relaxation x0

v = µ∗v ∀v ∈ A holds? In other words, is x∗ partially optimal or persistent
on some set A? (ii) Given a approximate solution x∗, how can we determine such a
set A?
In this chapter we propose a novel polynomial time algorithm to gain such a

partially optimal solution for the MAP-inference problem with general discrete
MRFs from possibly also non-exact solutions of the commonly used local polytope
relaxation (2.2.8). Our algorithm is initialized with variables taking integral values
in the solution of a convex relaxation of the MAP-inference problem and iteratively
prunes those variables, which do not satisfy our criterion for partial optimality. We
show that our pruning strategy is in a certain sense theoretically optimal. Also
empirically our method outperforms previous approaches in terms of the number
of persistently labelled variables. The method is very general, as it is applicable to
models with arbitrary factors of an arbitrary order and can employ any solver for the
considered relaxed problem. Our method’s runtime is determined by the runtime of
the convex relaxation solver for the MAP-inference problem. Solving over the local
polytope amounts to solving a linear problem for which any linear programming (LP)
solver can be used and for which dedicated and efficient algorithms exist.
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3 Partial Optimality for Markov Random Fields

3.1.1 Related Work

We distinguish two classes of approaches to partial optimality.

3.1.1.1 Roof duality based approaches

The earliest paper dealing with persistency is [67], which states a persistency criterion
for the stable set problem and verifies it for every solution of a certain relaxation.
This relaxation is the same, as used by the roof duality method in [8] and which is
also the basis for the well known QPBO-algorithm [8, 82]. The MQPBO method [47]
extends roof duality to the multi-label case. The authors transform multi-label
problems into quadratic binary ones and solve them via QPBO [8]. However, their
transformation is dependent upon choosing a label order and their results are so as
well, see the experiments in [101], where the label order is sampled randomly. It is
not known how to choose an optimal label order to obtain the maximum number of
persistent variables.

The roof duality method has been extended to higher order binary problems in [26,
37, 39]. The generalized roof duality method for binary higher order problems [39]
computes partially optimal variables directly for higher order potentials, while
Ishikawa’s and Fix et al’s approaches [26, 37] transform the higher order problem to
ones with unary and pairwise terms only. Fix et al’s method [26] is an improvement
upon Ishikawa’s [37].
Windheuser et al [115] proposed a multi-label higher-order roof duality method,

which is a generalization of both MQPBO [47] to higher order and Kahl and Strand-
mark’s work [39] to the multi-label case. However Windheuser et al neither describe an
implementation nor provide experimental validation for the higher order multi-label
case.

3.1.1.2 Labeling testing approaches

A different approach, specialized for Potts models, is pursued by Kovtun [57], where
possible labelings are tested for persistency by auxiliary submodular problems. The
dead-end elimination procedure [23] tests, if certain labels of nodes cannot belong to
an optimal solution. It is a local heuristic and does not perform any optimization.
Since for non-binary multi-labeling problems the submodular approximations

constructed by approaches of class (i) are provably less tight than the standard local
polytope relaxation [94, Prop. 1], we consider class (ii) in this paper. Specifically,
based on ideas in [101] to handle the Potts model, we develop a theoretically
substantiated approach to recognizing partial optimality for general graphical models,
together with a competitive comparison to the 5 approaches [26, 37, 39, 47, 57]
discussed above, that define the state-of-the-art.

3.1.1.3 Unified study

In addition we point to the recent paper [93], which provides a unified study of most
mentioned methods and a systematic way of their analysis. While their persistency
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3.1 Introduction

criterion is provably not weaker than ours, due to the general structure of the
resulting LP it cannot be applied to large-scale problems in a straightforward manner.
Moreover, our approach is directly applicable to higher order models and tighter than
the local polytope relaxations, whereas [93] requires generalization to these cases,
though such a generalization is presumably possible. We show that our algorithm
solves a special case of the maximal presistency problem formulated in [93].

3.1.1.4 Shrinking technique.

The recent work [86] proposes a method for efficient shrinking of the combinatorial
search area with the local polytope relaxation. Though the algorithmic idea is similar
to the presented one, the method [86] does not provide partially optimal solutions.
We refer to Section 3.3 for further discussion.

3.1.2 Contribution and Organization

We propose a novel method for computing partial optimality, which is applicable
to general graphical models with arbitrary higher order potentials. Our algorithm is
initialized with variables taking integral values in the solution of a convex relaxation
of the MAP-inference problem and iteratively prunes those, which do not satisfy our
persistency criterion. We show that our pruning strategy is in a certain sense theo-
retically optimal. Though the used relaxation can be chosen arbitrarily, for brevity
we restrict our exposition and experiments to the local polytope relaxation (2.2.7).
Tighter relaxations provably yield better results. However even by using the local
polytope relaxation we can often achieve a substantially higher number of persistent
variables than competing approaches, which we confirm experimentally. We also
show how our approach can be made invariant against reparametrizations. This
improves our partial optimality criterion and we can show equivalence with the
all-to-one improving mapping class of partial optimality methods proposed in [93].
Our approach is very general, as it can use any, also approximate, solver for the
considered convex relaxation. Moreover, the computational complexity of our method
is determined mainly by the runtime of the used solver.
The comparison to existing persistency methods is summarized in Table 3.1.
Our code together with the experimental setup is available at http://paulswoboda.

net.

3.1.2.1 Organization

In Section 3.2 our persistency criterion is presented. The corresponding algorithm
and its theoretical analysis are presented in Sections 3.3, 3.4 and 3.5 respectively.
Extensions to the higher order case and tighter relaxations are discussed in Section 3.6.
Section 3.7 provides experimental validation of our approach and a comparison to
the existing methods [26, 37, 39, 47, 57].
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Auxiliary problem
Boros & Hammer 2002 [8] − − + QPBO
Kovtun 2003[57] + − − submodular
Rother et al. 2007 [82] − − + QPBO
Kohli et al. 2008 [47] + − + QPBO
Kovtun 2011 [58] + − + submodular
Ishikawa 2011 [37] − + + QPBO
Fix et al. 2011 [26] − + + QPBO
Kahl & Strandmark 2012 [39] − + + bi-submodular
Windheuser et al. 2012 [115] + + + bi-submodular
Swoboda et al. 2013 [101] + − − local polytope
Shekhovtsov 2014 [93] + − + general linear program
Ours + + + any convex relaxation

Table 3.1 - Comparison between partial optimality methods. A detailed description is presented
in Section 3.1.1.

3.2 Persistency

Assume we have marginals µ ∈ ΛV . We say that the marginal µu, u ∈ V , is integral if
µu(xu) ∈ {0, 1} ∀xu ∈ Xu. In this case the marginal corresponds uniquely to a label
xu with µu(xu) = 1. If this integrality condition holds for all u ∈ V the corresponding
vector µ will be denoted as δ(x). For a wide spectrum of problems however most of
the entries of optimal marginals µ∗ for the local polytope relaxation will be integral.
Unfortunately, there is no guarantee that any of these integral variables will be part
of a globally optimal solution to (2.2.6), except in the case of binary variables, that
is Xu = {0, 1} ∀u ∈ V, and unary and pairwise potentials [32].

Let the boundary nodes and edges of a subset of nodes A ⊂ V be defined as follows:

Definition 3.2.1 (Boundary and Interior). For the set A ⊂ V the set ∂VA :=
{u ∈ A : ∃v ∈ V\A s.t. uv ∈ E} is called its boundary. The respective set of bound-
ary edges is defined as ∂EA = {uv ∈ E : u ∈ A and v ∈ V\A}. The set A\∂VA is
called the interior of A.

An exemplary graph illustrating the concept of interior and boundary nodes can
be seen in Figure 3.1.

Definition 3.2.2 (Persistency). A labeling x0 ∈ XA on a subset A ⊂ V is partially
optimal or persistent if x0 coincides with an optimal solution to (2.2.2) on A.

In the remainder of this section, we state our novel persistency criterion in Theo-
rem 3.2.1. Taking additionally into account convex relaxation yields a computationally
tractable approach in Corollary 3.2.1.
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3.2 Persistency

Figure 3.1 - An exemplary graph containing inside nodes (yellow with crosshatch pattern)
and boundary nodes (green with diagonal pattern). The blue dashed line encloses the set A.
Boundary edges are those crossed by the dashed line.

As a starting point, consider the following sufficient criterion for persistency of
x0 ∈ XA. Introducing a concatenation of labelings x0 ∈ XA and x̃ ∈ XV\A as

(x0, x̃) :=
{
x0
v, v ∈ A,
x̃v, v ∈ V\A , the criterion reads:

Proposition 3.2.1. The partial labeling x0 ∈ XA is persistent if there holds

∀x̃ ∈ XV\A : x0 ∈ argmin
x∈XA

EV((x, x̃)) . (3.2.1)

Proof. Consider the equation

min
x∈XV

E(x) = min
x̃∈XV\A

min
x∈XA

EV((x, x̃)) . (3.2.2)

Let x̃ ∈ XV\A be such that it leads to a minimal value on the right hand side
of (3.2.2). Then x̃ is part of an optimal solution. By the assumption (3.2.1), x0 is
an optimal solution to the inner minimization problem of (3.2.2), hence (x0, x̃) is
optimal for (2.2.2).

This means that if we fix any labeling x̃ on the complement of A and optimize with
respect to x0 on A, the concatenated labeling (x0, x̃) has to be optimal. Informally
this means that the solution x0 is independent of what happens on V\A. This
criterion however is hard to check directly, as it entails solving NP-hard minimization
problems over an exponential number of labelings x̃ ∈ XV\A.

We relax the above criterion (3.2.1) so that we have to check the solution of only
one energy minimization problem by modifying the unaries θv on boundary nodes so
that they bound the influence of all labelings on V\A uniformly.

Definition 3.2.3 (Boundary potentials and energies). For a set A ⊂ V and a test
labeling y ∈ XA, we define for each boundary edge uv ∈ ∂EA, u ∈ ∂VA the “boundary”
potential θ̂uv,yu : Xu → R as follows:

θ̂uv,yu(xu) :=
{

maxxv∈Xv θuv(xu, xv), yu = xu
minxv∈Xv θuv(xu, xv), yu 6= xu

. (3.2.3)
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θ

θ(3, 1)θ(3, 2)θ(3, 3)

θ(2, 1)θ(2, 2)θ(2, 3)

θ(3, 1)θ(3, 2)θ(3, 3)

θ̂y

min
i=1,2,3

θ(3, i)

max
i=1,2,3

θ(2, i)

min
i=1,2,3

θ(1, i)
y = 2

Figure 3.2 - Illustration of a boundary potential θ̂y constructed in (3.2.3). The second label
comes from the test labeling y, therefore entries are maximized for the second row and minimized
otherwise.

Define the energy ÊA,y : XA → R with test labeling y as

ÊA,y(x) := EA(x) +
∑

uv∈∂EA : u∈∂VA

θ̂uv,yu(xu) , (3.2.4)

where EA(x) =
∑
u∈A

θu(xu)+
∑

uv∈E:u,v∈A
θuv(xuv) is the energy with potentials with support

in A.

Given a test labeling y ∈ XA, energy (3.2.4) assigns a higher value than the original
energy (2.2.2) for all labelings conforming to y and makes it more favourable for all
labelings not conforming to y. An illustration of a boundary potential is depicted in
Figure 3.2.
As a consequence, if the test labeling y from Definition 3.2.1 minimizes the

energy (3.2.4), the proof of the following theorem asserts that changing an arbitrary

labeling x ∈ XV as follows: x′(v) =
{
y(v), v ∈ A
x(v), v /∈ A will always result in a labeling

with not bigger energy (2.2.2), hence y in particular fulfills the conditions (3.2.1) of
Proposition 3.2.1 and thus is persistent.

Theorem 3.2.1 (Partial optimality criterion). A labeling x0 ∈ XA on a subset
A ⊆ V is persistent if

x0 ∈ argminx∈XA ÊA,x0(x) , (3.2.5)

where ÊA,x0 is the augmented energy functional (3.2.4).

To prove the theorem we need the following technical lemma.

Lemma 3.2.1. Let A ⊂ V be given together with y ∈ XA. Let x0 and x′ be two
labelings on V such that x0|A = y. Then it holds for uv ∈ ∂EA, u ∈ ∂VA that

θuv(x0
u, x
′
v) + θ̂uv,y(x′u)− θ̂uv,y(x0

u) ≤ θuv(x′u, x′v) . (3.2.6)

Proof. The case x′u = x0
u is trivial. Otherwise, by Definition 3.2.3, inequality (3.2.6)
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3.2 Persistency

is equivalent to

θuv(x0
u, x
′
v) + min

xv∈Xv
θuv(x′u, xv) − max

xv∈Xv
θuv(x0

u, xv) − θuv(x′u, x′v) ≤ 0 . (3.2.7)

Choose x′v for xv in the minimization and maximization in (3.2.7) to obtain the
result.

Proof of Theorem 3.2.1. Let

x̃ ∈ arg min
x∈XV

x|A=x0|A

EV(x) . (3.2.8)

and let x′ ∈ XV be an arbitrary labeling. Then

EV(x̃) = EA(x0) + EV\A(x̃) +
∑

uv∈∂EA

θuv(x0
u, x̃v) (3.2.9)

=EA(x0) +
∑

uv∈∂EA

θ̂uv,y(x0
u) (3.2.10)

+ EV\A(x̃) +
∑

uv∈∂EA

[
θuv(x0

u, x̃v)− θ̂uv,y(x0
u)
]

(3.2.11)

=ÊA,x0(x0) + EV\A(x̃) +
∑

uv∈∂EA

[
θuv(x0, x̃v)− θ̂uv,x0(x0

u)
]

(3.2.12)

≤ÊA,x0(x′) + EV\A(x′) +
∑

uv∈∂EA

[
θuv(x0, x′v)− θ̂uv,x0(x0

u)
]

(3.2.13)

=EA(x′) +
∑

uv∈∂EA

θ̂uv,x0(x′u) (3.2.14)

+ EV\A(x′) +
∑

uv∈∂EA

[
θuv(x0

u, x
′
v)− θ̂uv,x0(x0

u)
]

(3.2.15)

≤EA(x′)+EV\A(x′)+
∑

uv∈∂EA

θuv(x′u, x′v) = EV(x′). (3.2.16)

The equality (3.2.9) is due to definition of x̃ in (3.2.7). The first inequality (3.2.13)
is due to x0 ∈ argminx ÊA,x0(x), as assumed, and of x̃ for (3.2.8). The second
inequality (3.2.16) is due to Lemma 3.2.1. Hence x0 is part of a globally optimal
solution, as x′ was arbitrary.

Checking the criterion in Theorem 3.2.1 is NP-hard, because (3.2.5) is a MAP-
inference problem of the same class as (2.2.2). By relaxing the minimization prob-
lem (3.2.5) one obtains the polynomially verifiable persistency criterion in Corol-
lary 3.2.1.

Corollary 3.2.1 (Tractable partial optimality criterion). Labeling x0 ∈ XA on
A ⊂ V fulfilling the condition

δ(x0) ∈ argminµ∈ΛA ÊA,x0(µ) (3.2.17)
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3 Partial Optimality for Markov Random Fields

Algorithm 2: Finding persistent variables.
Data: G = (V, E), θu : Xu → R, θuv : Xuv → R
Result: A∗ ⊂ V, x∗ ∈ XA∗

1 Initialize:
2 Choose µ0 ∈ argminµ∈ΛV EV(µ)
3 A0 = {u ∈ V : µ0

u ∈ {0, 1}|Xu|}
4 t = 0
5 repeat
6 Set xtu such that µtu(xtu) = 1, u ∈ At

7 Choose µt+1 ∈ argminµ∈ΛAt ÊAt,xt(µ)
8 t = t+ 1
9 W t = {u ∈ ∂VAt−1 : µtu(xt−1

u ) 6= 1}
10 At = {u ∈ At−1 : µtu ∈ {0, 1}|Xu|}\W t

11 until At = At−1;
12 A∗ = At

13 Set x∗ ∈ XA∗ such that µtu(x∗u) = 1

is also a solution to (3.2.5), hence persistent on A.

Proof. Expression (3.2.17) implies

δ(x0) ∈ argminµ∈ΛA,µ∈{0,1} ÊA,x0(µ) (3.2.18)

because δ(x0) is integral by definition. As (2.2.2) and (2.2.6) are equivalent and the
corresponding labeling x0 satisfies the conditions of Theorem 3.2.1, x0 is partially
optimal on A.

3.3 Persistency Algorithm

Now we concentrate on finding a set A and labeling x ∈ XA such that the solu-
tion of minµ∈ΛA ÊA,x(µ) fulfills the conditions of Corollary 3.2.1. Our approach is
summarized in Algorithm 2.
In the initialization step of Algorithm 2 we solve the relaxed problem over V

without boundary labeling and initialize the set A0 with nodes having an integer
label. Then in each iteration t we minimize over the local polytope the energy ÊAt,xt
defined in (3.2.4), corresponding to the set At and boundary labeling coming from the
solution of the last iteration. We remove from At all variables which are not integral
or do not conform to the boundary labeling. In each iteration t of Algorithm 2 we
shrink the set At by removing variables taking non-integral values or not conforming
to the current boundary condition. See Figure 3.3 for an illustration of one iteration
of Algorithm 2.
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3.3 Persistency Algorithm

nodes At,
nodes V\At.

Boundary costs
are assigned to
boundary nodes
on ∂VAt .

Having solved the
inference problem:

nodes are frac-
tional,

nodes disagree
with previous la-
beling,

nodes agree.

Variables are
pruned. A new
set At+1 is con-
structed.

Figure 3.3 - Illustration of one iteration of Algorithm 2.

3.3.1 Convergence

Since V is finite and |At| is monotonically decreasing, the algorithm converges in at
most |V| steps. Solving each subproblem in Algorithm 2 can be done in polynomial
time. As the number of iterations of Algorithm 2 is at most |V|, Algorithm 2 itself is
polynomial as well. In practice only few iterations are needed.

After termination of Algorithm 2, we have

δ(x∗) ∈ argminµ∈ΛA∗ ÊA∗,x∗(µ) . (3.3.1)

Hence x∗ and A∗ fulfill the conditions of Corollary 3.2.1, which proves persistency.

3.3.2 Choice of Solver

All our results are independent of the specific algorithm one uses to solve the relaxed
problems minµ∈ΛA ÊA,y, provided it returns an exact solution. However this can be
an issue for large-scale datasets, where classical exact LP solvers like e.g. the simplex
method become inapplicable. It is important that one can also employ approximate
solvers, as soon as they provide (i) a proposal for potentially persistent nodes and (ii)
sufficient conditions for optimality of the found integral solutions such as e.g. zero
duality gap. These properties have the following precise formulation.

Definition 3.3.1 (Consistent labeling). A labeling c ∈
⊗

v∈V (Xv ∪ {#}) is called
a consistent labeling for the energy minimization problem (2.2.2), if from cv ∈ Xv

∀v ∈ V follows that c ∈ argminx∈XV EV(x).
We will call an algorithm for solving the energy minimization problem (2.2.2)

consistency ascertaining, if it provides a consistent labeling as its output.

Consistent labelings can be constructed for a wide range of algorithms, e.g.:
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3 Partial Optimality for Markov Random Fields

• Dual decomposition based algorithms [42, 55, 85, 88] deliver strong tree agree-
ment [109] and dual block coordinate ascent methods [48, 50] and algorithms
considering the Lagrangian dual [28, 34, 90] return strong arc consistency [112]
for some nodes. If one of these properties holds for a node v, we set cv as the
corresponding label. Otherwise we set cv = #.

• Naturally, any algorithm solving minµ∈ΛV E(µ) exactly is consistency ascer-
taining with

cv =
{
xv, µv(xv) = 1
#, µv /∈ {0, 1}|Xv | .

Proposition 3.3.1. Let operations µ ∈ argmin(...) in Algorithm 2 be exchanged with

∀v ∈ V, xv ∈ Xv, µv(xv) :=


1, cv = xv
0, cv /∈ {xv,#},

1/|Xv|, cv = #

where c are consistent labelings returned by a consistency ascertaining algorithm
applied to the corresponding minimization problems. Then the output labeling x∗ is
persistent.

Proof. At termination of Algorithm 2 we have obtained a subset of nodes A∗, a test
labeling y∗ ∈ XA, a labeling x∗ equal to y∗ on A and a consistency mapping cu = x∗u
for u ∈ A∗. Hence, by Definition 3.3.1, x∗ ∈ argminx∈XA ÊA∗,y∗ and x

∗ fulfills the
conditions of Theorem 3.2.1.

Remark 3.3.1. Note that a bad or early stopped solver, i.e. one which rarely (or
even never) returns an optimality certificate or solves a weak relaxation, will also
work with Algorithm 2. However it will find smaller (or even empty) partial optimal
solutions.

3.3.3 Comparison to the Shrinking Technique (CombiLP) [86]

The recently published approach [86], similar to Algorithm 2, describes how to
shrink the combinatorial search area with the local polytope relaxation. However (i)
Algorithm 2 solves a series of auxiliary problems on the subsets At of integer labels,
whereas the method [86] considers nodes, which got fractional labels in the relaxed
solution; (ii) Algorithm 2 is polynomial and provides only persistent labels, whereas
the method [86] has exponential complexity and either finds an optimal solution or
gives no information about persistence.

From the practical point of view, both algorithms have different application scenar-
ios: CombiLP [86] will only work on sparse graphs, as otherwise the combinatorial
part, which one has to solve with exact methods, becomes too big, as the boundary
∂VA for A ( V grows very quickly then. Also, even for sparse graphs, the combinato-
rial part may not grow too big during the application of the algorithm, as otherwise
the combinatorial solver will again not be able to cope with it. Our algorithm does
not possess these two disadvantages. From the perspective of running time it does
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3.4 Largest Persistent Labeling

C
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bi
LP

[8
6]

O
ur

m
et
ho

d

Dense graphs − +
Very large-scale − +
Big fractional part of LP solution − +
Relaxed MAP-inference is
solved only once + −

Provides a complete solution
to Labeling Problem (2.2.2) + −

Table 3.2 - Comparison between our method and CombiLP [86].

not matter how big the set V\At becomes during the iterations of Algorithm 2.
On the other hand, the subsets of variables to which the method [86] applies a
combinatorial solver to achieve global optimality are often smaller than V\At in
Algorithm 2, because potentials in CombiLP [86] remain unchanged in contrast to
the perturbation (3.2.4). Another advantage of the method [86] is that it needs to
solve the (typically) big LP relaxation of the original problem only once, whereas
our method does this iteratively, which makes it often slower than CombiLP.
One other possible application scenario which is possible with our method but

not with CombiLP [86] is the following: Assume we want to solve an extremely big
inference problem, one that does not fit even into memory. To do this, choose a
subset A ( V of nodes of the graphical model, solve the inference problem on the
induced subgraph G(A) with some boundary conditions, and find a partially optimal
labeling on it. This is akin to the windowing technique of [93]. By doing so for an
overlapping set of subgraphs, one may try to find a labeling for the overall problem
on G.

The major differences between CombiLP [86] and our method are summarised in
Table 3.2.

3.4 Largest Persistent Labeling

Let A0 ⊆ V and µ0 ∈ ΛA0 be defined as in Algorithm 2. Subsets A ⊂ A0 which fulfill
the conditions of Corollary 3.2.1 taken with labelings µ0|A can be partially ordered
with respect to inclusion ⊂ of their domains. In this section we will show that the
following holds:

• There is a largest set among those, for which there exists a unique persistent
labeling fufilling the conditions of Corollary 3.2.1.

• Algorithm 2 finds this largest set.
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3 Partial Optimality for Markov Random Fields

This will imply that Algorithm 2 cannot be improved upon with regard to the
criterion in Corollary 3.2.1.

Definition 3.4.1 (Strong Persistency). A labeling x∗ ∈ XA is called strongly persis-
tent on A, if x∗ is the unique labeling on A fulfilling the conditions of Theorem 3.2.1.

Lemma 3.4.1. Let x∗ ∈ XA be strongly persistent. Then for any optimal solution x
of (2.2.2) we have x∗ = x|A.

Proof. This follows from Inequality (3.2.13) being strict in this case.

Theorem 3.4.1 (Largest persistent labeling). Algorithm 2 finds a superset A∗ of
the largest set A∗strong ⊆ A∗ ⊂ V of strongly persistent variables identifiable by the
criterion in Corollary 3.2.1.

To prove the theorem we need the following technical lemma.

Lemma 3.4.2. Let A ⊂ B ⊂ V be two subsets of V and µA ∈ ΛA marginals on A
and xA ∈ XA a labeling fulfilling the conditions of Corollary 3.2.1 uniquely (i.e. xA
is strongly persistent). Let yB ∈ XB be a test labeling such that yB|A = xA.

Then for all marginals µ∗ ∈ argminµ∈ΛB ÊB,yB(µ) on B it holds that µ∗v(xAv ) = 1
∀v ∈ A.

Proof. Similar to the proof of Theorem 3.2.1. Replace V by B.

Proof of Theorem 3.4.1. We will use the notation from Algorithm 2. It will be
enough to show that for every A ⊆ V such that there exists a strongly persistent
labeling x ∈ XA we have A ⊆ At in each iteration of Algorithm 2 and furthermore
xv = xtv for all v ∈ VA. Hence the union of sets A′strong, for which a strongly persistent
labeling exists which fulfills the conditions of Corollary 3.2.1, is a subset of At ∀t.
Also by Lemma 3.4.1 the associated strongly persistent labelings agree where they
overlap, hence we are done.

For t = 0 apply Lemma 3.4.2 with A := A and B := A0(= V). Condition x = yB|A
in Lemma 3.4.2 is assured by Corollary 3.2.1. Hence, Lemma 3.4.2 ensures that for
all µ0 ∈ argminµ∈ΛV E(µ) it holds that µ0

v(xv) = 1 for all v ∈ A.
Now assume the claim to hold for iteration t− 1. We need to show that it also

holds for t. For this invoke Lemma 3.4.2 with A := A, B := At−1 and yB := xt−1.
The conditions of Lemma 3.4.2 hold by assumption on t − 1. Lemma 3.4.2 now
ensures that for all µt ∈ argminµ∈ΛAt−1 ÊAt−1,xt−1(µ) there holds µt(xAv ) = 1 ∀v ∈ A.

From the proof of Theorem 3.4.1 we can directly conclude the existence and
uniqueness of a largest strongly persistent labeling identifiable by Corollary 3.2.1
and a set supporting it.

Corollary 3.4.1. There exists a unique largest set A∗strong, for which there exists a
strongly persistent labeling identifiable by Corollary 3.2.1.

Also exactly the largest strongly persistent labeling identifiable by Corollary 3.2.1
can be found under a mild uniqueness assumption.
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3.5 Reparametrization and Optimality of the Method

Corollary 3.4.2. If there is a unique solution of minµ∈ΛAt ÊAt,xt(µ) for all t = 0, . . .
obtained during the iterations of Algorithm 2, then Algorithm 2 finds the largest
subset of persistent variables identifiable by the sufficient partial optimality criterion
in Corollary 3.2.1.

Remark 3.4.1. Above we showed that Algorithm 2 will find a persistent labeling which
contains the largest strongly persistent one identifiably by Corollary 3.2.1. The two
may differ when the optimization problems solved in the course of Algorithm 2 have
multiple optima. The simplest example of such a situation occurs if the relaxation
minµ∈ΛV EV(µ) is tight, but has several integer solutions. Any convex combination of
these solutions will form a non-integral solution, hence the strongly persistent labeling
is defined on a smaller set than any integral solution of minµ∈ΛV EV(µ), which is
non-strongly persistent. Note however that a labeling obtained by Algorithm 2,
also when it is not strongly persistent, comes from one globally optimal labeling,
i.e. it can be completed to a globally optimal labeling by solving for the remaining
variables.

3.5 Reparametrization and Optimality of the Method

The boundary potentials (3.2.3) and hence the persistency approach described above
are dependent on reparametrization, see Section 2.2. Below, we will study how to
choose an optimal reparametrization θφ for the partial optimality problem.

3.5.1 Optimal Reparametrization

In the context of partial optimality, we call a reparametrization optimal, if it gives
the largest persistent set.
The only coordinates of the reparametrization vector φ, which can potentially

influence the solution of the test problem (3.2.5) are φv,u(xv), u ∈ ∂VA, uv ∈ ∂EA.
Reparametrization φv,u(xv), v ∈ A "inside" A does not influence the solution, because
it does not change the augmented energy ÊA,· of any labeling. Similarly, the
reparametrization φu,v(xu), u, v /∈ A "outside" A does not influence it, because the
optimization is performed over A only.

Considering the reparametrized potentials θφ and subtracting maxxv∈Xv θuv(yu, xv)
in (3.2.3) the boundary potentials θ̂φuv,yu(xu) can be equivalently exchanged with{

0, yu = xu
min
xv∈Xv

θφuv(xu, xv)− max
xv∈Xv

θφuv(yu, xv), yu 6= xu
. (3.5.1)

It means that the labelings x not coinciding with y on ∂VA will be "encouraged" with
(typically negative) value ∆φ

uv(xu) := min
xv∈Xv

θφuv(xu, xv)− max
xv∈Xv

θφuv(yu, xv). Intuitively

clear that the bigger ∆φ
uv(xu) is, the better the proposal labeling y|A comparing

to x|A 6= y|A is and hence the greater the found persistent set A∗ returned by
Algorithm 2 would be. We will prove correctness of this intuition formally, but
first let us find the maximal possible value of ∆φ

uv(xu) w.r.t. the reparametrization
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3 Partial Optimality for Markov Random Fields

φ, where we consider as non-zero only coordinates φv,u(xv), u ∈ ∂VA, uv ∈ ∂EA,
xv ∈ Xv.

Clearly

∆φ
uv(xu) ≤ min

xv∈Xv
(θφuv(xu, xv)− θφuv(yu, xv)) (3.5.2)

= min
xv∈Xv

(θuv(xu, xv) + φv,u(xv)− θuv(yu, xv)− φv,u(xv)) (3.5.3)

= min
xv∈Xv

(θuv(xu, xv)− θuv(yu, xv)) , (3.5.4)

hence, the right-hand-side of this inequality does not depend on the reparametrization,
whereas the left-hand-side does. There is indeed such a reparametrization that turns
the inequality (3.5.2) into equality and in this way guarantees the largest possible
values of ∆φ

uv(xu) for all xu. This, as we show below, optimal reparametrization is
defined as

φu,v(xv) = −θuv(yu, xv) , (3.5.5)

which can be seen when plugging (3.5.5) into (3.5.1).
Moreover, since as we mentioned above the reparametrization "outside" and "inside"

At does not influence the criterion (3.2.3), we can construct a single, equal for all
iterations of Algorithm 2 optimal reparametrization ψ according to the rule (3.5.5)
as

ψu,v(xv) = −θuv(yu, xv), u ∈ V, uv ∈ E , (3.5.6)

where y is arbitrarily extended from A0 to V. Now we are ready to formulate our
main result related to the reparametrization.
Let us denote by ÊφA,y the energy with boundary labeling defined as in Defini-

tion 3.2.3 w.r.t. the potentials θφ. Then for the reparametrization ψ defined as
in (3.5.6) there holds

Lemma 3.5.1. From
δ(y) ∈ arg min

µ∈ΛA
ÊA,y(µ) (3.5.7)

follows δ(y) ∈ arg minµ∈ΛA Ê
ψ
A,y(µ), which means: if y satisfies the persistency crite-

rion of Corollary 3.2.1 w.r.t. potentials θ then it satisfies it w.r.t. the reparametrized
potentials θψ.

Proof. From (3.5.2) and (3.5.7) it follows that for all uv ∈ EA, xu ∈ Xu there holds
θ̂ψuv,y(xu)− θ̂ψuv,y(yu) ≥ θ̂uv,y(xu)− θ̂uv,y(yu) and hence

ÊψA,y(µ) − ÊψA,y(y)
(3.5.2)
≥ ÊA,y(µ) − ÊA,y(y) ≥ 0 (3.5.8)

for all µ ∈ ΛA. Thus ÊψA,y(y) ≤ ÊψA,y(µ), which proves the statement of the lemma.

Remark 3.5.1. Lemma 3.5.1 holds for any polytope containing all integer solutions,
i.e. ΛA ⊇MA and hence it holds also when ΛA =MA. In this case it corresponds
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3.5 Reparametrization and Optimality of the Method

to the non-relaxed persistency criterion provided by Theorem 3.2.1.

Let now Aφ,∗y be the largest set containing all strongly persistent variables satisfying
Corollary 3.2.1 w.r.t. the reparametrized potentials θφ and test labeling y ∈ XV . Let
also A∗y correspond to the trivial reparametrization φ ≡ 0.

Applying Lemma 3.5.1 to the set A∗y leads to the following

Theorem 3.5.1. For any test labeling y ∈ XV there holds A∗y ⊆ Aψ,∗y .

Proof. Same proof as in Lemma 3.5.1 applied to A∗y.

Remark 3.5.2. For Potts models, where θuv(xu, xv) =
{

0, xu = xv
α, xu 6= xv

, the inequal-

ity (3.5.2) holds as equality also for trivial reparametrization φv,u(xv) = 0 ∀u, v ∈ V ,
uv ∈ E , xv ∈ Xv. For such models Algorithm 2 with trivial reparametrization delivers
the same persistent set as with the optimal one (3.5.6).

3.5.2 Optimality of the Method

Theorem 3.4.1 proves optimality of Algorithm 2 w.r.t. the formulated persistency
criterion provided by Theorem 3.2.1. However it does not prove optimality of the
method with respect to other possible criteria and hence does not guarantee its
superiority over other partial optimality techniques. There is however a recent
study [93], which provides such an optimal relaxed persistency criterion covering
all existing methods. In what follows we will introduce key notions from [93] and
show that our persistency criterion coincides with the optimal one provided in [93]
for a certain class of persistency methods, those providing only node-persistency, i.e.
either eliminating all labels except one in a given node or not eliminating any.

Definition 3.5.1. A mapping p : XV → XV is called (strictly) improving for the
potentials θ if it is idempotent (p(p(x)) = p(x)) and for all x ∈ XV such that p(x) 6= x

there holds 〈θ, δ(p(x))〉 ≤ 〈θ, δ(x)〉 (resp. 〈θ, δ(p(x))〉 < 〈θ, δ(x)〉).

Following [93] we consider only node-wise maps of the form p(x)v = pv(xv), where
pv : Xv → Xv are idempotent, i.e. pv(pv(xv)) = pv(xv) for all xv ∈ Xv. This class is
already general enough to include nearly all existing techniques.
Improving mappings defines persistency due to the following proposition:

Proposition 3.5.1 (Stat.1[93]). Let p be an improving mapping. Then there exists
an optimal solution x of (2.2.2) such that for all v ∈ V from pv(i) 6= i follows xv 6= i.
In case p is strictly improving this holds for any optimal solution.

For an idempotent mapping p a linear mapping P : RΣ → RΣ satisfying δ(p(x)) =
Pδ(x) for all x ∈ XV is called its linear extension. A particular linear extension
denoted as [p] is defined as follows. For each pv we define the matrix Pv ∈ RXv×Xv
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by Pv,ii′ =
{

1, pv(i′) = i

0, pv(i′) 6= i
. The linear extension P = [p] is given by

(Pµ)v =
∑

i′∈Xv
Pv,ii′µv(i′) = Pvµv; (3.5.9)

(Pµ)uv = PuµuvP
>
v .

Denote by I the identity matrix. From Definition 3.5.1 follows that p is improving
iff the value of

min
x∈XV

〈θ, (I − [p])δ(x)〉 ≡ min
x∈XV

〈(I − [p])>θ, δ(x)〉 ≡ min
µ∈MV

〈(I − [p])>θ, µ〉 (3.5.10)

is zero. If additionally p(x) = x for all minimizers of (3.5.10) then the mapping p is
strictly improving.

Problem (3.5.10) is of the same form as energy minimization (2.2.2) and is therefore
as hard as Problem (3.5.10). Its relaxation is obtained by letting µ vary in the local
polytope ΛV ⊂ RΣ, an outer approximation toMV .

Definition 3.5.2. Mapping p : XV → XV is ΛV -improving for potentials θ ∈ RΣ if

min
µ∈ΛV

〈(I − [p])>θ, µ〉 = 0 . (3.5.11)

If additionally [p]µ = µ for all minimizers µ of (3.5.11) then p is strictly ΛV-
improving.

Compared to (3.5.10), only the polytope was changed to ΛV ⊃MV . This implies
the following simple fact:

Proposition 3.5.2. If mapping p is (strictly) ΛV-improving then it is (strictly)
improving.

The method presented in this work can be interpreted as considering all-to-one
node-wise mappings p having the form

pv(i) =
{
yv, if v ∈ A
i, if v /∈ A (3.5.12)

for a fixed test labeling y. All labels in the nodes v ∈ A ⊂ V are mapped to yv.
Among all all-to-one (strictly) ΛV -improving mappings the one with the largest set
A will be called maximal.

Corollary 3.2.1 determines ΛV -improving mappings, as stated by

Lemma 3.5.2. The relaxed persistency criterion provided by Corollary 3.2.1 with the
reparametrization given by (3.5.6) is equivalent to Definition 3.5.2 with the improving
mapping p defined as in (3.5.12) for a given test labeling y.

Proof. For future references we write down potentials θψ with ψ defined by (3.5.6)
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explicitly:

θψu (xu) = θu(xu) +
∑

v∈nb(u)
θuv(xu, yv) , (3.5.13)

θψuv(xu, xv) = θuv(xu, xv)− θuv(xu, yv)− θuv(yu, xv) .

In what follows we will show that the criteria (3.2.17) and (3.5.11) coincide. Both
of them represent the local polytope relaxation of specially constructed energy
minimization problems. To prove that the relaxations coincide it is sufficient to prove
that the non-relaxed energies are equal.
First we write down the non-relaxed test problem (3.2.5) with potentials θψ as

arg min
x∈XV

∑
v∈V

βv(xv) +
∑
uv∈E

βuv(xu, xv) +
∑

uv∈∂EA : u∈∂VA

θ̂ψuv,yu(xu) (3.5.14)

with potentials β equal to θψ on A and vanishing outside it, i.e.

βu(xu) =

 θu(xu) +
∑

v∈nb(u)
θuv(xu, yv), u ∈ A

0, u ∈ V\A
(3.5.15)

βuv(xu, xv) =
{
θuv(xu, xv)− θuv(xu, yv)− θuv(yu, xv), u, v ∈ A

0, otherwise . (3.5.16)

Border potentials θ̂ψ for uv ∈ E , u ∈ VA, v ∈ V\A and xu 6= yu read:

θ̂ψuv,yu(xu) = min
xv∈Xv

θψuv(xu, xv) (3.5.17)

= min
xv∈Xv

(θuv(xu, xv)− θuv(xu, yv)− θuv(yu, xv)) (3.5.18)

=− θuv(xu, yv) + min
xv∈Xv

(θuv(xu, xv)− θuv(yu, xv)) ; (3.5.19)

for xu = yu:

θ̂ψuv,yu(yu) = max
xv∈Xv

θψuv(yu, xv) (3.5.20)

= max
xv∈Xv

(θuv(yu, xv)− θuv(yu, yv)− θuv(yu, xv)) (3.5.21)

=− θuv(yu, yv) . (3.5.22)

Note that (3.5.17) turns into (3.5.20) when xu = yu, hence it is sufficient to use only
expression (3.5.17).
The non-relaxed version of condition (3.5.11) defining ΛV -improving all-to-one

mapping with the labeling proposal y can be formulated as checking whether

y ∈ arg min
x∈XV

∑
v∈V

γv(xv) +
∑
uv∈E

γuv(xu, xv) +
∑

u∈∂EA

γ̂uv,yu(xu) (3.5.23)
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3 Partial Optimality for Markov Random Fields

with potentials γ defined as:

γu(xu) =
{
θu(xu)− θu(yu), u ∈ A

0, u ∈ V\A (3.5.24)

γuv(xu, xv) =
{
θuv(xu, xv)− θuv(yu, yv), u, v ∈ A

0, otherwise . (3.5.25)

and the border term

γ̂uv,yu(xu) = min
xv∈Xv

(θuv(xu, xv)− θuv(yu, xv)) . (3.5.26)

Comparing (3.5.24), (3.5.25) and (3.5.26) to (3.5.15), (3.5.16) and (3.5.17) respec-
tively it can be seen that they can be transformed to each other by several operations,
which equally change energies of all labelings and thus do not influence the criterions
provided by Theorem 3.2.1 and [93, eq.(14)]. These operations are:

1. Subtract θu(yu) from βu(xu) for all u ∈ VA, xu ∈ Xu.

2. Subtract θuv(yu, yv) from βuv(xu, xv) for all uv ∈ EA, (xu, xv) ∈ Xu ×Xv.

3. Reparametrize β with the reparametrization vector φ defined as

φu,v(xu) =
{
−θuv(xu, yv), u ∈ A

0, u ∈ V\A . (3.5.27)

The following theorem states that our method provably delivers the best results
among the methods providing node-persistency:

Theorem 3.5.2. Under conditions of Corollary 3.4.2, Algorithm 2 with the reparametriza-
tions given by (3.5.6) finds the maximal strict ΛV-improving all-to-one mapping for
a given proposal labeling x0.

Proof. Under condition of Corollary 3.4.2 (i.e. when on each iteration there is a unique
solution µt) Lemma 3.5.2 guarantees equivalence of our criterion (Corollary 3.2.1
with reparametrization ψ) to Definition 3.5.2 for the strict ΛV -improving all-to-one
mapping. Theorem 3.4.1 states that Algorithm 2 delivers the largest set A∗ satisfying
this criterion, which in turn proves the theorem.

3.6 Extensions

3.6.1 Higher Order Models

Assume now we are not in the pairwise case anymore but have an energy minimization
problem over a hypergraph G = (V, E) with E ⊂ P(V) a set of subsets of V:

min
x∈XV

EV(x) :=
∑
e∈E

θe(xe) . (3.6.1)
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All definitions, our persistency criterion and Algorithm 2 admit a straightforward
generalization. Analoguously to Definition 3.2.1 define for a subset of nodes A ⊂ V
the boundary nodes as

∂VA := {u ∈ A : ∃v ∈ V\A,∃e ∈ E s.t. u, v ∈ e} (3.6.2)

and the boundary edges as

∂EA := {e ∈ E : ∃u ∈ A,∃v ∈ V\A s.t. u, v ∈ e} . (3.6.3)

The equivalent of boundary potential in Definition 3.2.3 for e ∈ ∂EA is

θ̂e,y(x) :=


max

x̃∈Xe : x̃|A∩e=x|A∩e
θe(x̃), x|A∩e = y|A∩e

min
x̃∈Xe : x̃|A∩e=x|A∩e

θe(x̃), x|A∩e 6= y|A∩e
. (3.6.4)

Now Theorem 3.2.1, Corollary 3.2.1 and Algorithm 2 can be directly translated to
the higher order case.

3.6.2 Tighter Relaxations

Essentially, Algorithm 2 can be applied also to tighter relaxations than ΛA, e.g. when
one includes cycle inequalities [96]. One merely has to replace the local polytope ΛA
for A ⊂ V by the tighter feasible convex set:

Proposition 3.6.1. Let the polytopes Λ̃A ⊇ MA satisfy Λ̃A ⊆ ΛA ∀A ⊆ V. Use
Λ̃At in place of ΛAt in Algorithm 2 and let Ã∗ be the corresponding persistent set
returned by the modified algorithm. Let A∗strong ⊆ A∗ be the largest subset of strongly
persistent variables identifiable by Corollary 3.2.1 subject to the relaxations Λ̃A and
ΛA. Then A∗strong ⊆ Ã∗strong.

Remark 3.6.1. For approximate dual solvers for tighter relaxations like [97, 99] there
are analogues of strict arc-consistency, hence these are also consistency-ascertaining
solvers as in Definition 3.3.1 and we can also use these algorithms in Algorithm 2
with the obvious modifications.

Optimal reparametrization for tighter relaxations and higher order models is
beyond the scope of this work.

3.7 Numerical Experiments

We tested our approach with initial and optimal reparametrizations (described in
Section 3.5) on several datasets from different computer vision and machine learning
benchmarks, 47 problem instances overall, see Table 3.3. We describe each dataset
and the corresponding experiments in detail below.
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3.7.1 Competing methods

We compared our method to MQPBO [47, 94], Kovtun’s method [57], Generalized
Roof Duality (GRD) by Kahl and Strandmark [39], Fix et al’s [26] and Ishikawa’s
Higer Order Clique Reduction (HOCR) [37] algorithms. For the first two methods
we used our own implementation, and for the other the freely available code of
Strandmark [100]. We were unable to compare to the method of Windheuser et
al. [115], because the authors do not give a description for implementing their method
in the higher order case and only provide experimental evaluation for problems with
pairwise potentials, where their method coincides with MQPBO [47].

3.7.2 Implementation details

We employed TRWS as an approximate solver for Algorithm 2 and strong tree
agreement as a consistency mapping (see Proposition 3.3.1) for most of the pairwise
problems. We stop TRWS once it has either arrived at (i) tree-agreement; (ii) a
small duality gap of 10−5; (iii) when number of nodes with tree agreement did not
increase over the last 100 iterations or (iv) overall 1500 iterations. For the higher-
order models protein-interaction, cell-tracking and geo-surf we employed
CPLEX [36] as an exact linear programming solver. We have run Algorithm 2 with
boundary potentials computed as in (3.2.3) for all problems and with boundary
potentials computed with the optimal reparametrization as in (3.5.1) for the pairwise
problems.

3.7.3 Datasets and Evaluation

We give a brief characterization of all datasets below and in Table 3.3. We also
report the obtained total percentage of persistent variables of our and competing
methods in Table 3.4. The percentage of partial optimality is computed as follows:
Suppose we have found a persistent labeling on set A ⊂ V. Then the percentage is
1−

∑
u6∈A log |Xu|∑
u∈V log |Xu|

. Note that by this formulation we take into account the size of the

label space for each node. For an uniform label space the above formula equals |A||V| .
The latter measure was used in [102].

The problem instances teddy, venus, family, pano, Potts and geo-surf were
made available by [40], while the datasets side-chain and protein-interaction
were made available by [2].

The problem instances teddy and venus come from the disparity estimation
for stereo vision [105]. None of the competing approaches was able to find even a
single persistent variable for these datasets, presumably because of the large number
of labels, whereas we labeled over one third of them as persistent in teddy, though
none in venus.
Instances named pano and family come from the photomontage dataset [105].

These problems have more complicated pairwise potentials than the disparity es-
timation problems, but less labels. For both datasets we found significantly more
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3.7 Numerical Experiments

Experiment #Instances #Labels #Vertices Order

teddy 1 60 168749 2
venus 1 20 166221 2
family 1 5 425631 2
pano 1 7 514079 2
Potts 12 ≤12 ≤424720 2
side-chain 21 ≤483 ≤1971 2
protein
-interaction 8 2 14440 3
cell-tracking 1 2 41134 9
geo-surf 1 7 837 3

Table 3.3 - Short summary of experiments.

persistent variables than MQPBO, in particular, we were able to label more than a
third of the variables in pano.

We also chose 12 relatively big energy minimization problems with grid structure
and Potts interaction terms. The underlying application is a color segmentation
problem previously considered in [101]. Our general approach reproduces results
of [101] for the specific Potts model.
We considered also side-chain prediction problems in protein folding [116].

The datasets consist of pairwise graphical models with 32−1971 variables and 2−483
labels. The problems with fewer variables are densely connected and have very big
label spaces, while the larger ones are less densely connected and have label space
up to 81 variables.
The protein interaction models [38] aim to find the subset of proteins, which

interact with each other. Roof-duality based methods, i.e. Fix et at, GRD, HOCR [26,
37, 39] gave around a quarter of persistent labels. This is the only dataset where our
methods gives worse results. Note that for higher-order models we do not provide an
optimal reparametrization and hence our method is not provably better then the
competitors. We consider this as a direction for future work.

The cell tracking problem consists of a binary higher order graphical model [44].
Given a sequence of microscopy images of a growing organism, the aim is to find
the lineage tree of all cells. For implementation reasons we were not able to solve
cell-tracking dataset with Ishikawa’s [37] method. However Fix [26] reports that
his method outperforms Ishikawa’s method [37]. Other methods are not applicable
even theoretically.
Last, we took the higher order multi-label geometric surface labeling prob-

lems (denoted as geo-surf in Table 3.3) from [35]. The only instance having an
integrality gap has 968 variables with 7 labels each and has ternary terms. Note that
MQPBO cannot handle ternary terms, Fix et al’s [26] Ishikawa’s [37] methods and
the generalized roof duality method by Strandmark and Kahl [39] cannot handle
more than 2 labels. Hence we report our results without comparison.
Exemplary pictures comparing the pixels optimally labelled between Kovtuns’s
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teddy 0 † † † † 0.3820 0.3820
venus 0 † † † † 0 0
family 0.0432 † † † † 0.0044 0.0611
pano 0.1247 † † † † 0.2755 0.3893
Potts 0.1839 0.7475 † † † 0.9220 0.9220
side-chain 0.0247 † † † † 0.1747 0.2558
protein
-interaction † † 0.2603 0.2545 0.2545 0.0008 †
cell-tracking † † † 0.1771 † 0.2966 †
geo-surf † † † † † 0.0743 †

Table 3.4 - Percentage of persistent variables obtained by methods [47],[57],[39],[26],[37] and
our methods with boundary potentials computed as in (3.2.4) (Ours original) and as in (3.5.1)
(Ours optimal). Notation † means inapplicability of the method.

method [57] and our method for some Potts-models can be seen in Figure 3.4.

3.7.4 Runtime

The runtime of our algorithm mainly depends on the speed of the underlying solver for
the local polytope relaxation. Currently there seems to be no general rule regarding
the runtime of our algorithm, neither in the number of Algorithm 2-iterations nor in
the number of TRWS [48]-iterations. We show three iteration counts for instances of
the Potts dataset in Figure 3.5.

3.8 Conclusion

We have presented a novel method for finding persistent variables for undirected
graphical models. Empirically it outperforms all tested approaches with respect
to the number of persistent variables found on every single dataset. Our method
is general: it can be applied to graphical models of arbitrary order and type of
potentials. Moreover, there is no fixed choice of convex relaxation for the energy
minimization problem and also approximate solvers for these relaxations can be
employed in our approach.
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3.8 Conclusion

Kovtun’s method [57]

Our method

Figure 3.4 - Comparison between Kovtun’s method [57] and our method. The red area denotes
pixels which could not be labelled persistently. Contrary to ours the Kovtun’s method allows
to eliminate separate labels, which is denoted by different intensity of the red color: the more
intensive is red, the less labels were eliminated.
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Figure 3.5 - Iterations needed by TRWS [48] in Algorithm 2 for three instances from the Potts
dataset.
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4 Continuous Variational Image Labeling

In this chapter we will introduce two key variational imaging problems from a
continuous perspective. These problems will require the introduction of the space of
functions of bounded variation. Finally, we will discuss the relationship to MRFs
and proximal algorithms for solving convex relaxations.
We assume throughout this chapter that Ω ⊂ Rk is the domain on which the

problems we are interested in live. Associated to Ω is the set of all measurable subsets
of Ω formed by the Borel σ-algebra. In typical imaging applications Ω = [0, 1]2.
The two key problems that we will treat are

1. The minimal partition problem

min
(Ω1,...,Ωk)

{
k∑
i=1

ˆ
Ωi
di(x) dx+ Per(Ωi)

}
, (4.0.1)

where di are cost functions denoting which label x ∈ Ω shall take, Per(Ωi) is
the perimeter of Ωi and (Ω1, . . . ,Ωk) partition Ω [15, 19, 61, 73], and

2. the real-valued labeling problem

min
u:Ω→R

{ˆ
Ω
f(u(x), x) dx+ |Du|

}
, (4.0.2)

where f is a cost function describing which value u(x) shall take in x ∈ Ω [72].

We will study the associated function spaces in which the above problems have
minimizers and are well-defined. Also we will study reformulation and convex
relaxation techniques which make the above problems solvable.
This chapter contains a short summary of necessary results from [6] and [72].

4.1 Functions of Bounded Variation

Both of the key problems above will be stated for functions of bounded variation,
which we introduce below.

Definition 4.1.1 (Functions of Bounded Variation). Let u ∈ L1(Ω). We say that
u is a function of bounded variation in Ω if the distributional derivatives of u are
representable by a finite Radon measure in Ω, i.e. if

ˆ
Ω
u
∂φ

∂xi
dx = −

ˆ
Ω
φ dDiu ∀φ ∈ C1

c (Ω), i = 1, . . . , k . (4.1.1)

The space of all functions of bounded variation is denoted by BV(Ω).
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When functions are smooth, their associated level sets are smooth as well. For
functions of bounded variation this is not true anymore. Their level sets are however
of finite perimeter, when we extend the definition suitably.

Definition 4.1.2 (Perimeter). Let A ⊂ Ω be a measurable subset. The perimeter of
A in Ω is the variation of 1A in Ω, i.e.

Per(A,Ω) := sup
{ˆ

A
divφ dx : φ ∈ C1

c (Ω)k, ‖φ‖∞ ≤ 1
}
. (4.1.2)

In the remainder, we will often write Per(A) instead of Per(A,Ω), when Ω is clear
from the context. For sets with C1-boundary, the above definition gives the volume
of the boundary. See [6, Section 3.3] for a detailed discussion.
The integral over the perimeter of all levelsets of a functions is also finite for

functions of bounded variation. This is expressed by the famous Coarea formula.

Theorem 4.1.1 (Coarea Formula). If u ∈ BV(Ω), the level set {u > t} has finite
perimeter in Ω for a.e. t ∈ R and

|Du|(B) =
ˆ ∞
−∞
|Dχ{u>t}|(B) dt

Du(B) =
ˆ ∞
−∞

Dχ{u>t}(B) dt .
(4.1.3)

As is common in the image analysis literature, we define

TV (u) = |Du|(Ω) (4.1.4)

to be the total variation. For a comprehensive treatment of functions of bounded
variations, see [6].

4.2 Minimal Partition Problems and Perimeter

In segmentation problems we are interested in a partition of Ω.

Definition 4.2.1 (Partition). A partition of a set Ω is a tuple (Ω1, . . . ,Ωk) of subsets
of Ω such that Ωi ∩ Ωj = ∅ for i 6= j and Ω1 ∪ . . . ∪ Ωk = Ω.

Usually, we want to find sets Ωi forming a partition such that their shape is regular.
A common way to accomplish this task is to penalize by the perimeter Per(Ωi,Ω).
The minimal partition problem is

Definition 4.2.2 (Minimal Partition Problem). Given d1, . . . , ck ∈ L1(Ω), the
minimal partition problem is

min(Ω1,...,Ωk)
∑k
i=1 Per(Ωi) +

´
Ωi di(x) dx

s.t. (Ω1, . . . ,Ωk) is a partition
(4.2.1)
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4.2 Minimal Partition Problems and Perimeter

e1 e2

e3

Partition (Ω1,Ω2,Ω3) of Ω Values taken by indicator function u : Ω→ E3

Figure 4.1 - Lifted representation of an image

The above problem (4.2.1) weighs local data terms favoring a specific class against
a geometric term favoring smoothness of the contour of the area occupied by the
class. Problem (4.2.1) has the drawback that it entails minimization over sets, which
is not amenable to algorithms. A common remedy is to study problem (4.2.1) in
terms of labeling functions.

Definition 4.2.3 (Labeling functions). The space of labeling functions is

BV(Ω, Ek) =
{
u ∈ BV(Ω)k : u(x) ∈ Ek a.e. x ∈ Ω

}
, (4.2.2)

A partition (Ω1, . . . ,Ωk) corresponds uniquely to u ∈ BV(Ω, Ek) via the relation

x ∈ Ωi ⇔ u(x) = ei . (4.2.3)

The relationship between partitions and labeling functions is illustrated in figure 4.1.

By the coarea formula we see that the level set of the i-th component is in BV(Ω),
if and only if set Ωi is of finite perimeter. Hence (4.2.3) is well-defined. Moreover, we
can reformulate the minimal partition problem (4.2.1) in terms of labeling functions.

Theorem 4.2.1. The minimal partition problem (4.2.1) is equivalent to

min
u∈BV(Ω,Ek)

k∑
i=1

TV(ui) +
ˆ

Ω
di(x)ui(x) dx . (4.2.4)

Proof. Follows from Definition 4.2.3 and the Coarea formula (4.1.3).

Unfortunately, BV (Ω, Ek) is not a convex set and therefore problem (4.2.4) is not
a convex problem anymore. Hence we let functions take values in the simplex ∆k,
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which is the convex hull of Ek:

BV(Ω,∆k) =
{
u ∈ BV(Ω)k : u(x) ∈ ∆k a.e. x ∈ Ω

}
, (4.2.5)

The resulting relaxation is

min
u∈BV(Ω,∆k)

k∑
i=1

TV(ui) +
ˆ

Ω
di(x)ui(x) dx . (4.2.6)

Note that the space BV(Ω,∆k) is convex and consequently (4.2.6) is convex also. In
the case of k = 2, i.e. two labels, relaxation (4.2.6) is exact [19]. More specifically,
we can threshold u∗ optimal for (4.2.6) at every value t ∈ (0, 1) and the level sets
({u1 > t}, {u1 ≤ t}) will give a minimal partition for (4.2.1).

4.3 Functional Lifting for Real-Valued Labeling

We will now study the second of the key problems (4.0.2). First, we note that
minimization in (4.0.2) should occur over BV(Ω,R), as this ensures that the term
|Du| is well-defined. For (4.0.2) the space of functions is convex, in comparison to
the minimal partition problem (4.2.1), whereas the dataterm f(u(x), x) may not be
convex. We will discuss the concept of functional lifting, also known as calibration
which allows us to still manage the non-convexity by introducing an extra dimension.
This technique was introduced in [5] and is commonly applied to many optimization
problems.

Definition 4.3.1 (Lifted Functions). Let

C ′ =

φ ∈ BV (Ω× R, {0, 1}) :
lim

γ→−∞
φ(·, γ) = 1,

lim
γ→∞

φ(·, γ) = 0,
Dγφ(·, γ) ≤ 0

 . (4.3.1)

Every function u : Ω→ R corresponds uniquely to a function φ ∈ C ′ via the relation

−Dγφ = Hkxgraph(u) , (4.3.2)

where Hkxgraph(u) is the restriction of the k-dimensional Hausdorff measure to the
graph of u.

The above definition states in words that for each x ∈ Ω, the lifted function φ is
the decreasing jump function with jump point at value u(x). In other words, the
extra dimension introduced by the lifting represents the range of u. An illustration
of the lifting from Definition 4.3.1 can be seen in figure 4.2
Minimization problem (4.0.2) can be restated in terms of the lifted function as

min
φ∈C′

ˆ
Ω×R

f(γ, x) · (−Dγφ(x, γ)) + |Dxφ(x, γ)| dx dγ . (4.3.3)
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x

u(x)

u 7→ φ

Figure 4.2 - Ordered lifted representation of an image

Note that (4.3.3) is now convex in the objective. It also corresponds to the original
problem (4.0.2) via relation (4.3.2). Finally, noting that φ ∈ C ′ ⇔ u ∈ BV(Ω,R)
gives equivalence between (4.0.2) and (4.3.3).

However, note that we have replaced the nonconvexity in the data term of (4.0.2)
by the non-convexity of C ′ in (4.3.3). By taking the convex hull of C ′, which is given
by

C ′′ =

φ ∈ BV (Ω× R, [0, 1]) :
lim

γ→−∞
φ(·, γ) = 1,

lim
γ→∞

φ(·, γ) = 0,
Dγφ(·, γ) ≤ 0

 . (4.3.4)

we obtain a convex minimization problem. This relaxation is exact.

Theorem 4.3.1 (Exactness of functional lifting). Problems

min
u∈BV(Ω,R)

ˆ
Ω
f(u(x), x) + |Du(x)| dx (4.3.5)

and
min
φ∈C′′

ˆ
Ω×R

f(γ, x) · (−Dγφ(x, γ)) + |Dxφ(x, γ)| dx dγ (4.3.6)

are equivalent. By thresholding an optimal lifted function φ of the second problem
and using relation (4.3.2) we obtain an optimal function u to the first problem.

Proof. See [72].

4.4 Discretized Variational Problems and MRFs

For numerical treatment, we have to discretize the domain Ω into finitely many
points v ∈ V. We will present two approaches below.
The minimal partition problem (4.2.1) has a discrete value space. For the real-

valued labeling problem (4.0.2) we have to discretize the value domain also.
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4 Continuous Variational Image Labeling

4.4.1 Discretization of the Value Domain

For the real-valued labeling problem we discretize the extra dimension introduced
by the lifting (4.3.1) by Za,b. In this case we implicitly assume that the data term
in (4.0.2) forces the optimizer to have values in Za,b−1. We still denote the lifted sets
by C ′ and C ′′.

Definition 4.4.1 (Discrete Lifted Functions). Let

C ′ =
{
φ : Ω× Za,b → {0, 1} : φ(·, a) = 1, φ(·, b) ≡ 0,

Dγφ(·, γ) ≤ 0

}
. (4.4.1)

where the discrete gradient is Dγφ(x, γ) = φ(x, γ + 1) − φ(x, γ). Every function
u : Ω→ Za,b corresponds uniquely to a function φ ∈ C ′ via the relation

−Dγφ(x, γ) =
{

1, u(x) = γ

0, otherwise , (4.4.2)

Alternatively, we can model the value set Za,b−1 in a MRF by the discrete label
set Xv = {1, . . . , k := b− 1− a} for every v ∈ V . The bijective relationship between
such a lifting defined in terms of indicator functions u : Ω→ Ek and the one defined
by Definition 4.4.1 is achieved via mapping A : Ek → {(b0, . . . , bk) ∈ {0, 1}k+1 : bi ≥
bi+1} via A(ey) = (1, . . . , 1, 0, . . . , 0), where the 1/0-transition occurs after the y-th
position.

4.4.2 Discretization of Ω

There are two main approaches to discretizing the domain Ω.

4.4.2.1 Discretization on a Grid

When Ω = [0, 1]2, discretization is usually performed by defining a grid. We denote
the resulting points by xi,j , i, j = 0, . . . , n − 1. Neighboring grid elements are
connected and pairwise potentials are defined by 1{xi,j+1 6=xi,j} and 1{xi+1,j 6=xi,j} for
the Potts-model, analoguously for TV . Note that this discretization might introduce
metrification artifacts [60], which can be alleviated by introducing a more complicated
neighborhood system on the grid [10].

4.4.2.2 Discretization by Superpixels

Alternatively, we can use superpixels to presegment the image domain Ω into mean-
ingful small regions. A common method is SLIC [3]. Neighboring superpixels uv ∈ E
are connected via pairwise potentials defined by αuv1{xu 6=xu} for the Potts-model,
analoguously for TV , where αuv is the length of the border between superpixel u
and v.
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4.4.3 Proximal Splitting Algorithms

To solve discretization of the convex relaxations (4.2.6) and (4.3.6), proximal splitting
algorithms are commonly used [15, 61, 71, 73]. For solving the MAP-inference problem
with the local polytope relaxation, proximal splitting methods were proposed as
well [64, 78, 90].
Remark 4.4.1. We will use proximal splitting algorithms in connection with the
Wasserstein distance, which is described in Chapter 5. Specifically, we will use
proximal splitting techniques for image histogram regularization in Section 5.4 and
in connection with segmentation and cosegmentation in Section 5.5.

The starting point is the prox-operator, which will be the basic building blocks for
the proximal splitting algorithms.

Definition 4.4.2 (Proximity Operator). Let f : Rn → R be a function. The
prox-operator of f at x0 ∈ Rn is

proxfi(x
0) = argminx∈RN

1
2‖x− x

0‖2 + fi(x) (4.4.3)

Note that the prox-operator might not be well-defined. The argmin in (4.4.3)
might be empty or have more than one element. However, the prox-operator is
well-defined, when the function f is proper convex and lower-semicontinuous.

Definition 4.4.3 (Proper Functions). A function f : Rn → R is called proper if
∃x0 ∈ Rn with f(x0) <∞.

Definition 4.4.4 (Convex Functions). A function f : Rn → R is convex, if

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y) (4.4.4)

holds for all x, y ∈ Rn and 0 ≤ α ≤ 1.

Definition 4.4.5 (Lower Semicontinuity). A function f : Rn → R is lower semicon-
tinuous (lsc) if

lim inf
x→x0

f(x) ≤ f(x0) (4.4.5)

holds for all x0 ∈ R.

Proposition 4.4.1. Let f : Rn → R be proper convex and lsc. Then the prox-
operator proxf is well-defined for all x ∈ Rn.

Proof. See [81, Example 10.2]

In the sequel we will always assume that all functions are proper convex lsc.
Note that computing the proximity operator is at least as hard as computing

minx∈Rn f(x) for any function f , as the algorithm given by xk+1 = proxf (xk) would
result in a sequence of points converging to argminx∈Rn f(x) [79]. Also, for the
minimization problems interesting us in this thesis, the prox-operator will not be
efficiently computable. However, we can often decompose function f : RN → R into
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4 Continuous Variational Image Labeling

Algorithm 3: Douglas Rachford algorithm.
Data: f1, f2 : Rn → R, ε ∈ (0, 1), γ > 0, y0 ∈ Rn

1 for n = 1, . . . do
2 xn = proxγf2(yn)
3 λn ∈ [ε, 2− ε]
4 yn+1 = yn + λn

(
proxγf1(2xn − yn)− xn

)
5 end

several functions f1, . . . , fk : RN → R such that f = f1 + . . .+ fk. It is assumed that
for each function fi, i = 1, . . . , k, the prox-operator is efficiently computable. Usually,
this means that evaluating the prox-operator amounts to evaluating a closed form
expression or some other efficient operation, e.g. applying the Fourier transformation
or soft-thresholding. Proximal splitting algorithms work by iteratively evaluating
prox-operators for the functions f1, . . . , fk and combining the resulting points. One
classic proximal splitting scheme is the Douglas-Rachford algorithm detailed in
Algorithm 3.

Theorem 4.4.1. Assume that f1, f2 : Rn → R are proper convex lsc functions. Then
the sequence xn generated by the Douglas-Rachford algorithm 3 converges to some
element of argminx∈Rx f1(x) + f2(x).

Proof. See [21].

One drawback of the Douglas-Rachford algorithm is that in can only handle
splitting into two functions. Classically, this is overcome by replicating variables as
follows: Assume that we have a function f : Rn → R split into f = f1 + . . . fk, where
k ∈ N. Define g1, g2 : (Rn)k → R,

g1(x1, . . . , xk) =
{

0, x1 = . . . = xk

∞, otherwise (4.4.6)

and
g2(x1, . . . , xk) = f1(x1) + . . .+ fk(xk) . (4.4.7)

To any minimizer x∗ of f1 + . . . + fk corresponds a minimizer (x∗,1, . . . , x∗,k) of
function g1 + g2 with x∗,1, . . . , x∗,k = x∗ by construction.

The proximal operator for g1 is


∑k
i=1 xi
...∑k

i=1 xi

, i.e. k-times the averaging operation,

while the proximal operator for g2 is the direct sum of the proximal operators of
f1, . . . , fk.

Other notable proximal algorithms include [9, 16, 77]. For an overview of proximal
optimization algorithms see [20, 69].
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5 The Wasserstein Distance for
Variational Imaging

In this chapter we first introduce the Wasserstein distance in Section 5.1. To utilize the
Wasserstein distance in imaging, we will describe how to construct image histograms
in Sections 5.2 and 5.3. Based on this formalism, we will treat two applications of
the Wasserstein distance in image analysis:

First, regularizing the grayvalue distribution of an image in Section 5.4 and

Second, using Wasserstein distances as dataterms for segmentation and cosegmenta-
tion in Section 5.5.

Sections 5.4 and 5.5 of this chapter are based on publications [103] and [104]
respectively.

5.1 Wasserstein Distances

Definition 5.1.1 (Measurable space). A tuple (V,Σ) consisting of an underlying
space V and a σ-algebra over V, i.e. Σ ⊂ 2V is called a measurable space. Each
element of Σ is called measurable.

Usually, we will omit the set of measurable subsets Σ for brevity. See [7] for an
introduction to the associated measure theory.
We will encounter the following two examples.

Example 5.1.1 (Borel σ-algebra). Rk, the k-dimensional Euclidean space can be
equipped with the Borel σ-algebra, which is derived from the topology of Rk, see [7].
Example 5.1.2 (Discrete Measurable Space). The discrete set {0, . . . , k − 1} can be
equipped with the power set as σ-algebra Σ = P(V)
For an image I : Ω→ V, the image value set V will be either the measurable set

from Example 5.1.1 or 5.1.2. The first choice corresponds to natural images, for
gray-value images we can use (R,B(R)) and (R3,B(R3)) for color images. The second
choice corresponds to labeling problems with discrete value space. The Wasserstein
distance will live on the image value set V.

We also assume we are given a measurable similarity function c : V×V→ R which
will denote similarity of any two points in V. Given two measures ν1, ν2 : Σ→ R+
with ν1(V) = ν2(V), the Wasserstein distance W (ν1, ν2) ∈ R of these two measures
is computed by evaluating the cost of an optimal rearrangement of ν1 onto ν2 with
regard to the similarity function c on V. Specifically, consider the space of all coupling
measures of ν1 onto ν2, that is all measures on V× V with marginals ν1 and ν2:
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5 The Wasserstein Distance for Variational Imaging

Definition 5.1.2 (Coupling Measure). Let ν1, ν2 be two measures on V. The space
of coupling measures is defined by

Π(ν1, ν2) =
{
π a measure on V× V : π(A × V) = ν1(A)

π(V×B) = ν2(B) ∀A,B ∈ Σ
}
.

(5.1.1)

Measures in Π are also known as rearrangements or transport plans in the literature.
The Wasserstein distance is defined as the infimum over all possible rearrangements
with regard to the cost c:

Definition 5.1.3 (Wasserstein Distance). Let ν1 and ν2 be two measures. The
Wasserstein distance is defined by

W (ν1, ν2) = inf
π∈Π(ν1,ν2)

ˆ
V×V

c dπ . (5.1.2)

The Wasserstein distance is also known as the optimal transport or earth mover’s
distance in the literature. It can be shown that under mild assumptions on c the
infimum is attained and the distance is finite, see [108]. The Wasserstein distance is
a metric on the space of probability measures whenever c is a metric on V, hence it
gives a reasonable distance for measures when c is properly chosen.
As the Wasserstein distance can be computed via a linear program, it also has a

dual formulation.

Definition 5.1.4 (Dual Wasserstein Distance). Let c : V × V → R be a cost
function and let ν1, ν2 be two measures on V. Let the dual admissible set, called dual
Kantorovich set from now on, be

K :=
{
ψ,ψ′ ∈ L1(V) : ψ(y1) + ψ′(y2) ≤ c(y1, y2) ∀y1, y2 ∈ V

}
. (5.1.3)

The dual formulation of the Wasserstein distance is

W (ν1, ν2) = sup
(ψ,ψ′)∈K

ˆ
V
ψ dν1 +

ˆ
V
ψ′ dν2 (5.1.4)

Theorem 5.1.1 (Equivalence of Primal and Dual Wasserstein Distance). Assume
the cost c : V× V→ R is lower semicontinuous such that

c(y1, y2) ≥ a(y1) + b(y2) ∀y1, y2 ∈ V (5.1.5)

for some a, b ∈ L1(V) upper semicontinuous (i.e. −a,−b are lower semicontinuous.
Then the values of the primal (5.1.2) and dual (5.1.4) formulation of the Wasserstein
distance are equal.

Proof. See [108, Theorem 5.10].
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The dual formulation of the Wasserstein distance can be advantageous, as the
number of variables is smaller: While the coupling measure lives in the space V2, the
variables needed in (5.1.4) are functions defined on V.

Remark 5.1.1. The duality in Theorem 5.1.1 is also known as Kantorovich duality .

The minimization problem (5.1.2) has linear objective and constraints and is
therefore a linear optimization problem, which means it is globally solvable. Moreover
it is jointly convex in both of its arguments under mild conditions as well, so it is
naturally usable in a convex variational setting.

Theorem 5.1.2. Let V be a Polish space, let c : V × V → R ∪ {∞} be a lower
semicontinuous function, and let W be the associated Wasserstein distance with regard
to c. Let (Φ, λ) be a probability space and let ν1 and ν2 be two measurable functions
defined on Φ with values in the space of probability distributions over V. Assume that
c(v1, v2) ≥ a(v1) + b(v2), where a ∈ L1(dν1(φ)dλ(φ)), b ∈ L1(dν2(φ)dλ(φ)). Then

W

(ˆ
φ
ν1(φ)dλ(φ),

ˆ
φ
ν2(φ)dλ(φ)

)
≤
ˆ
φ
W (ν1(φ), ν2(φ)) dλ(φ) . (5.1.6)

Proof. See Theorem 4.8 in [108]

Finally, the Wasserstein distance offers much flexibility in modelling similarity of
measures by choosing an appropriate cost function c in (5.1.2).
A comprehensive treatment of Wasserstein distances can be found in [108].

5.1.1 Hoeffding-Fréchet Bounds

In this section we investigate V = R. In this scenario, we can represent measures by
distribution functions (d.f.s) and derive explicit formulas for the Wasserstein distance
under some conditions. The resulting formulation is known as Hoeffding-Fréchet
bound.

Theorem 5.1.3 ([76, Thm. 3.1.1]). Let F1, F2 be two real d.f.s and F a d.f. on R2.
Then F has marginals F1, F2, if and only if

max{F1(γ1) + F2(γ2)− 1, 0} ≤ F (γ1, γ2) ≤ min{F1(γ1), F2(γ2)} (5.1.7)

By (5.1.2) the Wasserstein distance with marginal d.f.s F1, F2 can be computed
by solving the optimal transport problem. In terms of d.f.s this can be written as
follows.

Corollary 5.1.1. Let F1, F2 be two real d.f.s. The Wasserstein distance can be
written as

W (dF1, dF2) = min
F

ˆ
R2
c(dF1, dF2) dF, s.t. F respects the conditions (5.1.7)

(5.1.8)
where dFi shall denote the measure associated to the d.f. Fi, i = 1, 2.
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5 The Wasserstein Distance for Variational Imaging

Under convexity assumptions on the cost c, the Wasserstein distance additionally
can be computed in closed form.

Proposition 5.1.1. Let F1, F2 be two d.f.s. Let the cost function c : R2 → R be
c(y1, y2) = Φ(y1 − y2), where Φ is convex. Then the Wasserstein distance can be
computed by

W (F1, F2) =
ˆ 1

0
c
(
F−1

1 (s), F−1
2 (s)

)
ds . (5.1.9)

Proof. See [76].

This result will help us in designing efficient algorithms.

5.2 Histogram Construction for Images

In the preceeding section 5.1 we have presented the Wasserstein distance, which gives
us the possibility to compare histogram to each other. In this section, we will show
how to construct histograms for given images or for subsets of the image domain.

Let Ω ⊂ R2 be the image domain, typically Ω = [0, 1]2. We will denote images by
I, I1, I2 : Ω→ V and always assume that all images are measurable mappings. To be
able to define the Wasserstein distance of image histograms, we first equip the image
domain Ω with additional structure.

Definition 5.2.1 (Measure space). A measure space is a triple (Ω,Σ, λ), where
(Ω,Σ) is a measurable space, see Definition 5.1.1, and M+(Ω) 3 λ : Σ → R+ is a
measure.

See again [7] for an introduction to the associated measure theory.
Example 5.2.1 (Lebesgue measure). The Lebesgue measure λ : B(Rk)→ R+ is defined
on the Borel σ-algebra and assigns to each rectangle [a1, b1]× . . .× [ak, bk] the value
(b1 − a1) · . . . · (bk − ak) and is extended uniquely to B(Rk).
Example 5.2.2 (Counting Measure). The counting measure λ : P({1, . . . , n})→ R+
is defined on the power set of any discrete set and is defined by λ(A) = |A| ∀A ⊂
{1, . . . , n}.

In what follows, we will assume that either Ω = [0, 1]2 or Ω = {1, . . . , n}. The first
choice corresponds to image analysis in the continuous domain, the second choice
corresponds to a discretized image domain used for the numerical implementation.
If Ω is discrete and we work on an image grid, we also consider Ω = {1, . . . , n1} ×
{1, . . . , n2}, which is equivalent to the discrete choice with n = n1 ·n2. In both cases,
the associated measures are taken from Examples 5.2.1 and 5.2.2 respectively.

Definition 5.2.2 (Image Histogram). Let (Ω,Σ, λ) be a measure space and let
(V,ΣV) be a measurable space. Let I : Ω→ V be a measurable mapping. Let Θ ⊂ Ω
be a measurable subset of the image domain. The image histogram νIΘ of I restricted
to Θ is defined as the pushforward

νIΘ = (I|Θ)∗νxΘ , (5.2.1)
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where νxΘ is the measure ν restricted to subset Θ. Specifically, the measure for
measurable set A ⊂ V is

νIΘ(A) = ν(I−1(A) ∩Θ) =
ˆ

Θ
1{I(x)∈A}(x)dν(x) . (5.2.2)

If subset Θ = Ω, we also omit the subscript and just write νI .
In the discrete case, i.e. Ω = {1, . . . , n}, V = {1, . . . ,m}, evaluating the image

histogram νIΘ amounts to

νIΘ(A) = |{x ∈ Θ : I(x) ∈ A}| . (5.2.3)

The general setup however allows to state the model in a continuous setting and
makes notation easier.

Example 5.2.3. In Section 5.4 we will consider grayvalue histograms and we will want
to find grayvalue images having a grayvalue distribution close to a known one. In
the histogram construction, the subset Θ will be Ω, i.e. the histogram will be taken
over the whole domain of the image. The unknown will be the image I : Ω→ R and
we will minimize the functional

min
I:Ω→R

R(I) +W (νIΩ, νprior) , (5.2.4)

where R(I) is a regularization and data term as in ordinary image denoising, and
νprior is the a-priori known grayvalue distribution.

Example 5.2.4. In Section 5.5 we will consider images I : Ω → V taking values in
some feature space, e.g. V = R3 denoting the color space. For segmentation, the
image I is fixed, but the subset Θ, describing the object to be segmented, will be
unknown. This leads to the following minimization problem

min
Θ∈Σ

R(Θ) +W (νIΘ, νprior) , (5.2.5)

where R(Θ) is a regularizer of the shape given by Θ and νprior is the given appearance
distribution of the sought-after object.

Note that in both examples 5.2.3 and 5.2.4 the histogram construction follows
the same mathematical principle, while the tasks at hand are unrelated to each
other. This demonstrates the broad range of application scenarios covered by the
Wasserstein distance and our variational framework.

5.3 Linear Histogram Construction

In the preceeding Section 5.2 we have presented an approach to construct histograms
from given images I and subsets of the image gomain Θ. However, the transformations
I 7→ νIΘ for given Θ and Θ 7→ νIΘ for given image I are both nonlinear, hence difficult
to use in a variational setting. In this section we will show how to change the image
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value domain to be able to linearize the histogram construction. The procedures will
be akin to the lifting techniques in Sections 4.2 and 4.3.

5.3.1 Discrete Value Domain

Assume that V = {1, . . . , k} is discrete. Then we can view I : Ω→ V equivalently as
I : Ω→ Ek.

Proposition 5.3.1 (Linear Histogram Construction). Let an image I : Ω → Ek.
Then the appearance histogram νI from I by the approach from Definition 5.2.2
corresponds to

νI(A) =
ˆ

Ω×A
〈1{y∈A}, I(x)〉 dν(x, y) . (5.3.1)

Also procedure (5.3.1) is linear in I.

With this construction, we can use the Wasserstein distance in variational problems,
as it is convex in both of its arguments, hence the whole approach results in a convex
function.
Note that this procedure is akin to the convexification of the minimal partition

problem in Section 4.2.

5.3.2 Ordered Value Domains

Assume that the value domain is either R or subset of Z. As in Section 4.3 we will
lift the image I : Ω→ V to (abusing notation) I : Ω×V→ {0, 1} with I(x,−∞) = 1
and I(x,∞) = 0 and DγI(x, γ) ≤ 0 with the same correspondence as in (4.3.2). The
histogram of the lifted image I is

Definition 5.3.1 (Linear Histogram Construction). Define the image histogram of
lifted image I : Ω×V→ {0, 1} for any Θ ⊂ Ω by

νIΘ(A) =
ˆ

Ω×V
〈1A,−DγI(x, γ)〉 dx dγ . (5.3.2)

Proposition 5.3.2. Histogram construction of the original image as in Defini-
tion 5.2.2 and of the lifted image as in Definition 5.3.1 lead to the same histogram
νIΘ.
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5.4 Convex Variational Image Restoration With Histogram
Priors

In this section we present a novel variational approach to image restoration (e.g.,
denoising, inpainting, labeling) that enables to complement established variational
approaches with a histogram-based prior based on the Wasserstein distance enforcing
closeness of the solution to some given empirical measure. By minimizing a single
objective function, the approach utilizes simultaneously two different sources of
information for restoration: spatial context in terms of some smoothness prior and non-
spatial statistics in terms of the novel prior utilizing the Wasserstein distance between
probability measures. We study the combination of the functional lifting technique
with two different relaxations of the histogram prior and derive a jointly convex
variational approach. Mathematical equivalence of both relaxations is established
and cases where optimality holds are discussed. Additionally, we present an efficient
algorithmic scheme for the numerical treatment of the presented model. Experiments
using the basic total-variation based denoising approach as a case study demonstrate
our novel regularization approach.
The work of this section is based on publication [103].

5.4.1 Introduction

A broad range of powerful variational approaches to low-level image analysis tasks
exist, like image denoising, image inpainting or image labeling [61, 68]. It is not
straightforward however to incorporate directly into the restoration process statistical
prior knowledge about the image class at hand. Particularly, handling global statistics
as part of a single convex variational approach has not been considered so far.

We introduce a class of variational approaches of the form

inf
I
F (I) + λR(I) + κW (νI , ν0), (5.4.1)

where F (I) + λR(I) is any energy functional consisting of a data fidelity term F (I)
and a regularization term R(I), W (νI , ν0) denotes the histogram prior in terms of
the Wasserstein distance between the histogram corresponding to the minimizing
image I : Ω → R to be determined and some given histogram ν0 and λ > 0 and
κ > 0 are parameters weighing the influence of each term. We require R(I) to be
convex. As a case study, we adopt for R(I) = TV(I), the Total Variation (4.1.4),
and F (I) =

´
Ω f(I(x), x)dx, where f can also be a nonconvex function. The basic

Rudin Osher Fatemi (ROF) denoising approach of [84] is included in this approach
with f(I(x), x) = (I(x)− I0(x))2, where I0 is the image to be denoised.

Note that minimizing the second term R(I) in (5.4.1) entails spatial regularization
whereas the third Wasserstein term utilizes statistical information that is not spatially
indexed in any way. As an illustration, consider the academical example in figure 5.1.
Knowing the grayvalue distribution of the original image helps us in regularizing
the noisy input image. We tackle the corresponding main difficulty in two different,
mathematically plausible ways: by convex relaxations of (5.4.1) in order to obtain a
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5 The Wasserstein Distance for Variational Imaging

Figure 5.1 - Denoising experiment of a noisy image (upper row, left side) taking into account
statistical prior information through convex optimization (lower row, left side) infers the correct
image structure and outperforms hand-tuned established variational restoration (lower row, right
side). Enforcing global image statistics to be similar to those of the clean image (upper row, right
side) gives our approach an advantage over methods not taking such information into account.
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computationally tractable approach. Comparing these two relaxations – one may be
tighter than the other one – reveals however mathematical equivalence. Preliminary
numerical experiments demonstrate that the relaxation seems to be tight enough so as
to bias effectively variational restoration towards given statistical prior information.

5.4.2 Related Work

Image regularization by variational methods is a powerful and commonly used tool
for denoising, inpainting, labeling and many other applications. As a case study
in connection with (5.4.1), we consider one of the most widely used approaches for
denoising, namely the Rudin, Osher and Fatemi (ROF) model from [84]:

min
I∈BV(Ω)

‖I − I0‖2 + λTV(I), (5.4.2)

where U0 is the input image, TV denotes the Total Variation and BV(Ω) is the
space of functions of bounded variation with domain Ω ⊂ Rd and values in R. The
minimization problem (5.4.2) is convex and can be solved to a global optimum
efficiently by various first-order proximal splitting algorithms even for large problem
sizes, e.g. by the Douglas-Rachford, Algorithm 3, or alternatively by Primal-Dual
methods [16] or other proximal minimization algorithms for nonsmooth convex
optimization [9, 77].

We can also use more general data terms instead of the quadratic term in (5.4.2).
We have shown in Section 4.3 how a possibly non-convex data term

´
Ω f(I(x), x)dx

can be optimized to optimality. Still this data function is local and does not take
into account global statistics.

In the case that some prior knowledge is encoded as a histogram, the Wasserstein
distance and the associated Optimal Transport are a suitable choice for penalizing
deviance from prior knowledge. More generally the Wasserstein distance can be used
as a distance on histograms over arbitrary metricized spaces.
Regarding utilization of the Wasserstein distance in variational imaging, recent

applications include [17, 70] in connection with segmentation and [25] for texture
synthesis.

The authors of [75] propose an approach to contrast and color modification. Given
a prior model of how the color or grayvalues are distributed in an image, the
authors propose a variational formulation for modifying the given image so that these
statistical constraints are met in a spatially regular way. While their algorithm is fast,
high runtime performance is achieved by minimizing a non-convex approximation of
their original energy. In contrast, we directly minimize a convex relaxation of the
original energy, hence we may hope to obtain lower energies and not to get stuck in
local minima.

Our variational approach employing the Wasserstein distance as a histogram-based
prior through convex relaxation appears to be novel.
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5.4.3 Contribution

We present

• a variational model with a histogram-based prior for image restoration (Sec-
tion 5.4.4),

• two convex relaxations of the original problem together with discussions of
cases where optimality holds (Sections 5.4.7 and 5.4.8),

• a proof of equivalence for the two presented relaxations (Section 5.4.9),

• an efficient numerical implementation of the proposed variational model (Sec-
tion 5.4.10),

• experimental validation of the proposed approach (Section 5.4.11).

5.4.4 Problem and Mathematical Background

We introduce the original non-convex model, consider different ways to write the
Wasserstein distance and introduce the functional lifting technique for rewriting the
resulting optimization problem to show well-posedness and to make it amenable for
global optimization.

5.4.5 Problem Statement

Let the image domain be Ω = [0, 1]2 and let I0 : Ω→ R be a given noisy grayvalue
image. Let the desired grayvalue histogram be ν0. Our aim is to obtain an image
I from I0 such that I is at the same time close to I0, denoised, and such that its
grayvalue histogram νI is similar to ν0. To this end consider the following energy
minimization problem:

min
I∈BV(Ω)

E(I) =
ˆ

Ω
f(I(x), x)dx+ λTV(I) + κ min

π∈Π(νI ,ν0)
〈c, π〉 . (5.4.3)

By minimizing (5.4.3) we obtain a solution u which remains faithful to the data by
the fidelity term f , is spatially coherent by the Total Variation term and has global
grayvalue statistics similar to ν0 by the Wasserstein term.
Taking into account the dual Wasserstein distance (5.1.4), the energy in prob-

lem (5.4.3) can be reformulated as

Edual(I) =
ˆ

Ω
f(I(x), x)dx+ λTV(I) + κ sup

(ψ,ψ′)∈K

(ˆ
R
ψdνI +

ˆ
R
ψ′dν0

)
, (5.4.4)

where K is the dual Kantorovich set. This leads to saddle point problem via the
Lagrangian

L(I, ψ, ψ′) =
ˆ

Ω
f(I(x), x)dx+ λTV(I) + κ

(ˆ
R
ψdνI +

ˆ
R
ψ′dν0

)
, (5.4.5)
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and
min

I∈BV Ω
E(I) = min

I∈BV(Ω)
sup

(ψ,ψ′)∈D
L(I, ψ, ψ′) (5.4.6)

holds.
Note however that both energies (5.4.3) and (5.4.4) are not convex due to the

nonlinear transformation I → νI and the possible nonconvexity of f . Hence we have
to convexify energy (5.4.3), which will be done below.

5.4.6 Functional Lifting

While the Wasserstein distance (5.1.2) is convex in both of its arguments, see
Theorem 5.1.2, the energies in (5.4.3) and (5.4.4) are not convex due to the nonconvex
transformation I 7→ νI in the first argument of the Wasserstein term and the possible
nonconvexity of f . To overcome the nonconvexity of both the data term and
the transformation in the first argument of the Wasserstein distance we lift the
function I as in Section 4.3. Instead of I we consider the lifted image I ′ ∈ C ′ as in
Definition 4.3.1, which allows us both to linearize the fidelity term and to convexify
the Wasserstein distance.
Consider the Lagrangian with lifted primal part

L′(I ′, ψ, ψ′) =
−
´

Ω
´
R f(γ, x)DγI

′(x, γ) dx+ λ
´
RTV(I ′(·, γ))dγ

+κ
(´

R ψdν
I′ −
´
R ψ
′dν0

)
.

(5.4.7)

For a pair (I, I ′) as in Definition 4.3.1 the identity

L(I, ψ, ψ′) = L′(I ′, ψ, ψ′) (5.4.8)

holds true by the coarea formula, see [6]. Consequently, we have

inf
I∈BV(Ω)

sup
(ψ,ψ′)∈K

L(I, ψ, ψ′) = inf
I′∈C′

sup
(ψ,ψ′)∈K

L′(I ′, ψ, ψ′) . (5.4.9)

Note that L′ is convex in I ′ and concave in (ψ,ψ′), hence is easier to handle from an
optimization point of view.

Theorem 5.4.1. Let Ω ⊂ R2 be bounded, let f(x, γ) be continuous and let the cost
c of the Wasserstein distance fulfill the conditions from Theorem 5.1.1. Then there
exists a minimizer I ′ of infI′∈C′ sup(ψ,ψ′)∈K L

′(I ′, ψ, ψ′).

Proof. We first show that the set C ′ is compact in the weak∗ topology in BV. By
theorem 3.23 in [6], C ′ is precompact. It then remains to prove that C ′ is closed in
the weak∗-topology. Thus let (I ′n) in C ′ converge weakly∗ to I ′, which means that
(I ′n) converges strongly in L1

loc and DγI
′
n converges weakly∗. DγI

′
n(·, γ) ≤ 0 means

ˆ
Ω×R

wDγI
′
n ≥ 0 ∀w ∈ Cc(Ω× R) . (5.4.10)

This property is preserved under weak∗-convergence by definition. I ′(x, γ) ∈ {0, 1} a.e.
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as convergence in L1 implies pointwise convergence of some subsequence. Obviously
I ′n(·,−∞) = 1 and I ′n(·,∞) = 0 are naturally preserved in the limit.
The first term in the energy (5.4.7) is lower semicontinuous by assumption. The

TV-term is lower-semicontinuous by Theorem 5.2 in [6].
The Wasserstein term in (5.4.7) has the form sup{(ψ,ψ′)∈K}

´
R ψ dν

I′ −
´
R ψ
′ dν0

and can thus be written as

sup
{(ψ,ψ′)∈K,ψ,ψ′∈Cc(R)}

− 1
|Ω|

ˆ
R

ˆ
Ω
ψ(γ)dxDγI

′(x, γ)−
ˆ
R
ψ′(γ) dν0(γ) . (5.4.11)

Hence it is a supremum of linear functionals and lsc as well.
As a supremum of positive sums of lsc terms, sup(ψ,ψ′)∈K∩Cc(R)2 L′(·, ψ, ψ′) is lsc

as well. A minimizing sequence therefore has a weakly∗-convergent subsequence due
to compactness of C ′. The limit is a minimizer by the lower semicontinuity of the
energy.

As we have shown above, the proposed lifted model is well-posed, which means
that the minimizer is attained under mild technical conditions. Then by (5.4.9)
and (5.4.6) also the original energy is well-posed.
Remark 5.4.1. We have considered a spatially continuous formulation, as discretiza-
tions thereof suffer less from grid bias [46, 60] than purely discrete formulations.
Thus, proving existence of a solution of the spatially continuous model substantiates
our approach from a modelling point of view.
Remark 5.4.2. As discussed in Section 5.4.1, we merely consider total variation based
regularization as a case study, but this restriction is not necessary. More general
regularizers can be used as well as long as they are convex, e.g. quadratic or Huber
functions. Then all the statements still hold, see [73]. In the present paper however,
we rather focus on the novel prior based on the Wasserstein distance.

5.4.7 Relaxation as a Convex/Concave Saddle Point Problem

Optimizing energies (5.4.3) and (5.4.4) is not tractable, as it is a nonconvex problem.
Also solving (5.4.9) is not tractable, as the set C ′ is nonconvex. The latter can be
overcome by considering the convex hull C ′′ of C ′

C ′′ := convC ′ (5.4.12)

which leads to a relaxation as a convex/concave saddle point problem of the mini-
mization problem (5.4.9), which is solvable computationally.

Proposition 5.4.1. The Lagrangian L′ from (5.4.7) is convex/concave and

min
I∈BV (Ω)

E(I) ≥ min
I′∈C′′

sup
(ψ,ψ′)∈K

L′(I ′, ψ, ψ′). (5.4.13)

If
min
I∈C

sup
(ψ,ψ′)∈K

L(I, ψ, ψ′) = sup
(ψ,ψ′)∈K

min
I∈C

L(u, ψ, ψ′) (5.4.14)
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holds, then the above relaxation is exact.

Proof. Note that C ′′ is a convex set, in particular it is the convex hull of C ′. L′ is
also convex in I ′, therefore the right side of (5.4.13) is a convex/concave saddle point
problem. For fixed (ψ,ψ′) we have the following equality:

min
I∈BV (Ω)

L(I, ψ, ψ′) = min
I′∈C′′

L′(I ′, ψ, ψ′), (5.4.15)

which is proved in [72].

minI∈BV (Ω)E(I) = minI∈BV (Ω) sup(ψ,ψ′)∈K L(I, ψ, ψ′)
(∗)
≥ sup(ψ,ψ′)∈KminI∈BV (Ω) L(I, ψ, ψ′)

(∗∗)= sup(ψ,ψ′)∈KminI′∈C′′ L′(I ′, ψ, ψ′),

(5.4.16)

where (∗) is always fulfilled for minimax problems and (∗∗) is a consequence of (5.4.15).
This proves (5.4.13). If (5.4.14) holds, then (∗) above is actually an equality and the
relaxation is exact.

Remark 5.4.3. The relaxation presented above will provide us with a model for
numerically obtaining solutions in section 5.4.11 for the model (5.4.3). This relaxation
technique also works with histograms of dimension > 1, see [13] for lifting techniques
for vector valued functions, but the exactness of the functional lifting as done in
(5.4.7) may not hold any more. Also it is computationally more expensive.

5.4.8 Relaxation with Hoeffding-Fréchet Bounds

A second relaxation can be constructed using Hoeffding-Fréchet bounds introduced
in Section 5.1.1. Using Corollary 5.1.1, where we replace the distribution functions
F1 by the distribution function of νI′ , which is

´
Ω
´ γ
−∞−Dγ′I

′(x, γ′) dγ′ dx, and the
lifting technique from Definition 4.3.1 we arrive at the following relaxation:

minI′,F
´

Ω
´
R−f(γ, x)DγI

′(x, γ)dx+ λ
´
RTV(I ′(·, γ)dγ + κ

´
R2 c dF,

s.t. FI′(γ) = 1
|Ω|
´

Ω
´ γ
−∞−Dγ′I

′(x, γ′) dγ′ dx,
Fν0(γ) = ν0((−∞, γ]),
FI′(γ1) + Fν0(γ2)− 1 ≤ F (γ1, γ2) ≤ min{FI′(γ1), Fν0(γ2)}
I ′ ∈ C ′′

(5.4.17)

The minimization problem (5.4.17) is a relaxation of (5.4.3). Just set

I ′(x, γ) =
{

1, u(x) < γ

0, u(x) ≥ γ

and let F be the d.f. of the optimal transport measure with marginals νI′ and ν0.

Remark 5.4.4. It is interesting to know, when relaxation (5.4.17) is exact. By the
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coarea formula [118] we know that
´

Ω
´
R−f(γ, x)DγI

′(x, γ) dγ dx+ λ
´
RTV(I ′(·, γ))dγ

=
´ 1

0
´

Ω f(I ′α(x), x)dxdα+ λ
´ 1

0 TV(I ′α)dα ,
(5.4.18)

where I ′α corresponds to the thresholded function I ′α = 1{I′>α} ∈ C ′ via rela-
tion (4.3.2). However such a formula does not generally hold for the optimal trans-
port: Let I ′α = 1{I′>α} and let Fα be the d.f. of the optimal coupling with marginal
d.f.s FI′α and Fν0 . Then

F =
ˆ 1

0
Fα dα (5.4.19)

has marginal d.f.s
´ 1

0 FI′αdα and Fν0 , but it may not be optimal.
A simple example for inexactness can be constructed as follows: Let the data term

be f ≡ 0 and let ν0 = 1
2(δ0 + δ1) and let the cost for the Wasserstein distance be

c(γ1, γ2) = λ|γ1 − γ2|. Every constant function with I(x) = const ∈ [0, 1] will be
a minimizer if λ is small and κ is big enough. The objective value will be λ

2 . But
relaxation (5.4.17) is inexact in this situation: Choose I ′(x, γ) = 1

2 ∀γ ∈ (0, 1) and
the relaxed objective value will be 0.

Remark 5.4.5. The above remark was concerned with an example, where a convex
combination of optimal solutions to the non-relaxed problem is a unique solution of
the relaxed problem with lower objective value.

By contrast, in Section 5.4.11 two different academical examples are shown, which
illustrate the behaviour of our relaxation (5.4.17) in situations when the non-relaxed
solution is unique, see Figures 5.2. Then exactness may hold or not, depending on
the geometry of level sets of solutions. No easy characterization seems to be available
for the exactness of model (5.4.17).

5.4.9 Relationship between the two Relaxations

Both relaxations from Sections 5.4.7 and 5.4.8 seem to be plausible but seemingly
different relaxations. Their different nature reveals itself also in the conditions for
which exactness was established. While the condition in Proposition 5.4.1 depends
on the gap introduced by interchanging the minimum and maximum operation,
relaxation (5.4.17) is exact if a coarea formula holds for the optimal solution. It turns
out, however, that both equations are equivalent, hence both optimality conditions
derived in Sections 5.4.7 and 5.4.8 can be used to ensure exactness of a solution to
either one of the relaxed minimization problems.

Theorem 5.4.2. The optimal values of the two relaxations (5.4.13) and (5.4.17) are
equal.

Proof. It is a well known fact that

min
x∈X

max
y∈Y
〈Kx, y〉+G(x)−H∗(y) (5.4.20)
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and
min
x∈X

H(Kx) +G(x) (5.4.21)

are equivalent, where G : X → [0,∞] and H∗ : Y → [0,∞] are proper, convex, lsc
functions, H∗, defined by H∗(y) = supx〈x, y〉 −H(x), is the convex conjugate of H
and X and Y are two real vector spaces, see [80] for details.

To apply the above result choose

G(I ′) =
ˆ 1

0

ˆ
Ω
−DγI

′(x, γ) · f(γ, x)dx+ λ

ˆ 1

0
TV(I ′(·, γ))dγ + χC′′(I ′), (5.4.22)

H∗(ψ,ψ′) = κ

ˆ 1

0
ψ′dν0 + χK(ψ,ψ′) (5.4.23)

and
K : C ′′ →M+(R)2,

K(I ′) = (κνI′ , 0) (5.4.24)

(5.4.20) corresponds with the above choices to the saddle point relaxation (5.4.13).

Recall that H = (H∗)∗ if H is convex and lsc, i.e. H is the Legendre-Fenchel
bidual of itself, see [80]. Hence, for positive measures ν, ν̃, the following holds true:

H(ν, ν̃) = supψ,ψ′{
´ 1

0 ψdν −
´ 1

0 ψ
′dν̃ −H∗(ψ,ψ′)}

= sup(ψ,ψ′)∈K{
´ 1

0 ψdν −
´ 1

0 ψ
′dν̃ − κ

´ 1
0 ψ
′dν0}

= σK(ν, ν̃ + κν0)
(∗)= W (ν, ν̃ + κν0)

(5.4.25)

where σA(x) = supa∈A〈a, x〉 is the support function of the set A and κ is the weight
for the Wasserstein term in (5.4.3). To prove (∗), we invoke Theorem 5.1.1, which
states that

σK(ν, ν̃) = sup
(ψ,ψ′)∈K

ˆ 1

0
ψdν −

ˆ 1

0
ψ′ν̃ = min

π∈Π(ν,ν̃)

ˆ
R2
c(γ1, γ2)dπ(γ1, γ2) = W (ν, ν̃),

(5.4.26)
and we have infinity for measures which do not have the same mass.

Thus, the energy in (5.4.21) can be written as

G(I ′) +H(κνI′ , 0) = G(I ′) +W (κνI′ , κν0) = G(I ′) + κW (νI′ , ν0) . (5.4.27)

This energy is the same as in relaxation (5.4.17), which concludes the proof.

5.4.10 Optimization

We present six experiments and the numerical method used to compute them.
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5.4.10.1 Implementation

First, we discretize the image domain Ω to be {1, . . . , n1} × {1, . . . , n2} and use
forward differences as the gradient operator. Second, we discretize the values image
I ′ can take to {0, 1, . . . , k − 1, k}. Hence we consider images taking only finitely
many grayvalues. The resulting space of images I ′ can be identified with

Cd =
{
I ′ : Ω× {0, 1, . . . , k} → R : I ′(·, k) = 0, I ′(·, 0) = 1,

I ′ (·, l) ≤ I ′ (·, l − 1)

}
. (5.4.28)

The dual Kantorovich set for the discretised problem is then

Kd =
{
ψ,ψ′ : {0, 1, . . . , k} → R : ψ(y1) + ψ′(y2) ≤ c(y1, y2) ∀y1, y2

}
. (5.4.29)

After computing a minimizer I ′∗ of the discretized energy, we threshold it at the
value 0.5 to obtain I ′∗ = 1{I′∗>0.5} and then calculate I? by the discrete analogue of
relation (4.3.2).
For computing a minimizer of the discretized optimization problem

min
I′∈Cd

max
(ψ,ψ′)∈Kd

E′(I ′, ψ, ψ′) (5.4.30)

it is expedient to use first order algorithms like the Douglas Rachford Algorithm 3
or [9, 16, 77] as the dimensionality of the problem is high. To use such algorithms
it is necessary to split the function max(ψ,ψ′)∈Kd L

′(I ′, ψ, ψ′) into a sum of terms,
whose proximity operators can be computed efficiently. Hence consider the following
equivalent minimization problem:

min
I′,g∈(Rn1×n2×k×2)

〈f̃, I ′〉+‖g‖1 +χ{(u,v) : ∇u=v}(I ′, g)+χCd(I
′)+W (νI′ , ν0) , (5.4.31)

where f̃ comes from the local cost factor in (5.4.7).

• The proximity operator of the term ‖g‖1 is the soft-thresholding operator.

• proxχ{(u,v) : ∇u=v}
(I ′, g) can be efficiently computed with Fourier transforms, see

for example [77].

• proxχCd can be computed by projection onto the set of non-increasing sequences.
To compute this projection, we employ the algorithm proposed in [15], Appendix
D. It is trivially parallelisable and converges in a finite number of iterations.

• Finally, the proximity operator for the Wasserstein distance can be computed
efficiently in some special cases, as discussed in the next Section 5.4.10.2.

We can either use [77] to minimize (5.4.31) directly, which is equivalent to using the
Douglas-Rachford described in Algorithm 3 on a suitably defined product space as
in Section 5 and absorbing the linear term in the functions in (5.4.31) arbitrarily.
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5.4.10.2 Wasserstein Proximation for c(γ1, γ2) = |γ1 − γ2| by soft-thresholding

In general, computing the proximity operator for the Wasserstein distance can be
expensive and requires solving a quadratic program. However, for the real line and
convex costs, we can compute the proximity operator more efficiently, as shown
in (5.1.9). One algorithm for the cost function c(γ1, γ2) = |γ1 − γ2| is presented
below.
The proximation for the weighted Wasserstein distance is

argminI′
1
2‖I

′0 − I ′‖22 + λW (νI′ , ν0). (5.4.32)

For the special case we consider here, there is a simple expression for the Wasserstein
distance:
Proposition 5.4.2 ([76]). For two measures ν1, ν2 on the real line and c(y1, y2) =
|y1 − y2|, the Wasserstein distance is

W (ν1, ν2) =
ˆ
R
|Fν1(γ)− Fν2(γ)| dγ (5.4.33)

Due to DγI
′(x, y) ≤ 0 and I ′(x, 0) = 1, we can also write FνI′ (γ) as

FνI′ (γ) = 1
|Ω|

ˆ
Ω

ˆ γ

−∞
−Dγ′I

′(x, γ′) dγ′ dx = 1
|Ω|

ˆ
Ω

1− I ′(x, γ)dx . (5.4.34)

Next we show how to solve in closed form the proximity operator for the Wasserstein
distance in the present case.
Proposition 5.4.3. Given I ′0, λ > 0, the optimal Ĩ ′ for the proximity operator

Ĩ ′ = argminI′
1
2‖I

′ − I ′0‖22 + λW (FνI′ , Fν0) (5.4.35)

is determined by
Ĩ ′(x, γ) = I ′(x, γ) + cγ , (5.4.36)

where

cγ = shrink
([
− 1
|Ω|

ˆ
Ω
I ′0(x, γ)dx− Fν0(γ) + 1

]
,
λ

|Ω|

)
+ 1
|Ω|

ˆ
Ω
I ′0(x, γ)dx+Fν0(γ)−1

(5.4.37)
and shrink denotes the soft-thresholding operator defined componentwise by

shrink(a, λ)i = max{|ai| − λ, 0} · sign(ai) (5.4.38)

for a ∈ Rn, λ > 0.
Proof. By proposition 5.4.2 and the characterisation of FνI′ in (5.4.34), proxima-
tion (5.4.32) reads

argminI′
1
2‖I

′0 − I ′‖22 + λ

ˆ
R
|1−

( 1
|Ω|

ˆ
Ω
I ′(x, γ)dx

)
− Fν0(γ)|dγ. (5.4.39)
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Note that (5.4.39) is an independent optimization problem for each γ. Thus, for each
γ we have to solve the problem

argminI′(·,γ)
1
2‖I

′0(·, γ)− I ′(·, γ)‖22 + λ|1−
( 1
|Ω|

ˆ
Ω
I ′(x, γ)dx

)
− Fν0(γ)|. (5.4.40)

It can be easily verified that the solution to problem (5.4.40) is I ′0(·, γ) + cγ , where
cγ ∈ R and

cγ ∈ argminc∈R
1
2 |Ω|c

2 + λ| 1
|Ω|

ˆ
Ω
I ′0(x, γ)dx+ c+ Fν0(γ)− 1| (5.4.41)

and hence

cγ = shrink
(
− 1
|Ω|

ˆ
Ω
I ′0(x, γ)− Fν0(γ) + 1, λ

|Ω|

)
+ 1
|Ω|

ˆ
Ω
I ′0(x, γ)dx+ Fν0(γ)− 1.

(5.4.42)

For the discretized problem one just needs to replace integration with summation to
obtain the proximation operator. Concluding, the cost for the Wasserstein proximal
step is linear in the size of the input data.

Remark 5.4.6. We have seen in Proposition 5.4.2 that W1(νI′ , ν0) = ‖HI ′ − (1 −
Fν0)‖1, where H is an operator corresponding to a tight frame, i.e. HH∗ = |Ω|−1,
hence it is also possible to derive Proposition 5.4.3 by known rules for proximity
operators involving composition with tight frames and translation.

5.4.11 Numerical Experiments

We want to show experimentally

1. that computational results conform to the mathematical model,

2. that the convex relaxation is reasonable.

Note that we do not claim to achieve the best denoising or inpainting results and we
do not wish to compete with other state-of-the-art methods here. We point out again
that the Wasserstein distance can be used together with other variational approaches
to enhance their performance, e.g. with nonlocal total variation based denoising,
see [27].

Remark 5.4.7. As detailed in Section 4.3, we lift our functional, so that it has
one additional dimension, thereby increasing memory requirements and runtime of
our algorithm. Non-convex approaches like [75] do not have such computational
requirements. Still, the viability of the lifting approach we use was demonstrated
in [73] for our variational model without the Wasserstein term. Also all additional
operations our algorithm requires can be done very fast on recent graphic cards,
hence the computational burden is tractable.
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(a) The gray area
is to be inpainted
with partly black and
white, with slightly
more white.

(b) The circle in
the middle has
been inpainted with
slightly more white
as demanded by the
Wasserstein term.

(c) The gray area is
the area to be in-
painted with a given
Wasserstein prior fa-
voring the gray area
to be half black and
half white.

(d) Inpainting re-
sult: we obtain a
non-integral solution
visualized by gray
color.

Figure 5.2 - Examples illustrating tightness and failure of tightness of our relaxation (5.4.17).

We have generally chosen the parameters λ, κ by hand to obtain reasonable results,
if not stated differently.

In the first experiment we compare total variation denoising and total variation
denoising with the Wasserstein term for incorporating prior knowledge. The data
term is f(s, x) = (I0(x)− s)2, where I0 is the noisy image in figure 5.1. The cost for
the Wasserstein distance is c(y1, y2) = κ|y1−y2|, κ > 0. To ensure a fair comparison,
the parameter λ for total variation regularization without the Wasserstein term was
hand-tuned in all experiments to obtain best results. The histogram was chosen to
match the noiseless image. See Figure 5.1 for the results.
Note the trade-off one always has to make for pure total variation denoising: If

one sets the regularization parameter λ high, the resulting grayvalue histogram of
the recovered image will be similar to the noisy input image and generally far away
from the histogram of ground truth. By choosing lower data fidelity and higher
regularization strength we may obtain a valid geometry of the image, however then
the grayvalue histogram tends to be peaked at one mode, as total variation penalizes
scattered histograms and tries to draw the modes closer to each other, again letting
the recovered grayvalue histogram being different from the desired one. By contrast,
the Wasserstein prior in (5.4.3) guarantees a correct grayvalue histogram also with
strong spatial regularization.
The second set of experiments illustrates where exactness of our relaxation may

hold or fail, depending on the geometry of the level sets of solutions, see the Figures 5.2.
The gray area is to be inpainted with a Wasserstein prior favoring the gray area to
be partly black and partly white. Note that both settings illustrate cases, when the
global Wasserstein term is indispensable, as otherwise there would be completely
no control over how much of the area to be inpainted ends up being white or black.
While our relaxation is not exact for the right experiment in Figure 5.2, thresholding
at 0.5 still gives a reasonable result.
The third experiment is a more serious denoising experiment. Notice that again
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(a) Tiger denoising experiment with the original image on the left, the image denoised
with the Wasserstein term in the middle and the standard ROF-model on the right.

(b) Detailed view of the tiger denoising experiment revealing that contrast is better
preserved when the Wasserstein term is used.

Figure 5.3 - Tiger denoising experiment

pure total variation denoising does not preserve the white and black areas well, but
makes them gray, while the approach with the Wasserstein distance preserves the
contrast better, see Figure 5.3.
In the fourth experiment we compare image inpainting with a total variation

regularization term without prior knowledge and with prior knowledge, see Figure 5.4
for the results. The region where the data term is zero is enclosed in the blue
rectangle. Outside the blue rectangle we employ a quadratic data term as in the
first experiment. Total variation inpainting without the Wasserstein term does not
produce the results we expected, as the total variation term is smallest, when the
gray color fills most of the area enclosed by the blue rectangle. Heuristically, this is
so because the total variation term weighs the boundary length multiplied by the
difference between the gray value intensities, and a medium intensity minimizes this
cost. Thus the TV-term tends to avoid interfaces, where high and low intensities
meet, preferring smaller intensity changes, which can be achieved by interfaces with
gray color on one side. Note that also the regularized image with the Wasserstein
term lacks symmetry. This is also due to the behaviour of the TV-term described
above.
In the fifth experiment we consider inpainting again. Yevgeni Khaldei, the
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5.4 Convex Variational Image Restoration With Histogram Priors

Figure 5.4 - Inpainting experiment with the original image and the inpainting area enclosed in
a blue rectangle on the left, the inpainting result with the Wasserstein term in the middle and the
result where only the TV-regularizer is used on the right. By enforcing the three regions to have
the same size with the Wasserstein term, we obtain a better result than with the Total Variation
term alone.

Figure 5.5 - Here we want to inpaint the area occupied by the watch of the soldier, see the
second left image. Our approach, on the second right image gives better results again than the
approach with TV alone.

photographer of the iconic picture shown on the left of Figure 5.5 had to remove the
second watch. Trying to inpaint the wrist with a TV-regularizer and a Wasserstein
term results in the middle picture, while only using a TV-regularizer results in the
right picture. Clearly using the Wasserstein term helps.
In the sixth experiment we have a different setup. The original image is on the

left of Figure 5.6. The histogram ν0 was computed from a patch of clouds, which
did not include the plane. The data term is f(x, y) = λmin(|I0(x)− y|2, α), where
α > 0 is a threshold, so the data term does not penalize great deviances from the
input image too strongly. The Wasserstein term penalizes the image of the plane
whose appearance differs from the prior statistics. The TV-regularizer is weighted
weaker than in the previous examples, because we do not want to smooth the clouds.

Note that unlike in ordinary inpainting applications, we did not specify the location
of the plane beforehand, but the algorithm figured it out on its own. The total variation
term finally favors a smooth inpainting of the area occupied by the plane. In essence
we have combined two different tasks: Finding out where the plane is and inpainting
that area occupied by it. See Figure 5.6 for results.
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Figure 5.6 - Unsupervised inpainting using empirical measures as priors. Objects not conforming
to the prior statistics are removed without labeling image regions.

5.4.12 Conclusion

We have presented in this section a novel method for variational image regularization,
which takes into account global statistical information in one model. By solving a
relaxation of the nonconvex problem we obtain regularizd images which conform to
some global image statistics, which sets our method apart from standard variational
methods. Moreover, the additional computational cost for the Wasserstein term we
introduced is negligible, however our relaxation is not tight anymore as in models
without the latter term. In our experiments the relaxation was seen to be tight
enough for good results.
Our future work will consider extensions of the present approach to multidimen-

sional input data and related histograms, e.g. based on color, patches or gradient
fields. The theory developed in this section regarding the possible exactness of
solutions does not carry over without modifications to such more complex settings.
Moreover, it is equally important to find ways related to our present work to minimize
such models efficiently.
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5.5 Segmentation and Cosegmentation with the
Wasserstein distance

In this section we present novel variational approaches for segmenting and cosegment-
ing images. Our supervised segmentation approach extends the classical Continuous
Cut approach by a global appearance-based data term enforcing closeness of aggre-
gated appearance statistics to a given prior model. This novel data term considers
non-spatial, deformation-invariant statistics with the help of the Wasserstein distance
in a single global model. The unsupervised cosegmentation model also employs the
Wasserstein distance for finding the common object in two images. We introduce
convex relaxations for both presented models together with efficient algorithmic
schemes for computing global minimizers. Numerical experiments demonstrate the
effectiveness of our models and the convex relaxations.
The work of this section is based upon publication [104].

5.5.1 Introduction

In this chapter we will treat the segmentation problem (4.2.1), which is

E(Ω1, . . . ,Ωk) = 1
2

k∑
i=1

Per(Ωi; Ω) +
k∑
i=1

ˆ
Ωi
di(x)dx , (5.5.1)

See [15, 61, 73] for treatments of this problem, including relaxations, discretizations
and extensions of the minimization problem (5.5.1). In the case of two classes this is
the well-known Continuous Cut segmentation model, see [18]. This model can be
exactly solved by variational methods, see [19].
Often the potential functions di(x) = − log(pi(I(x))) are chosen as the negative

log-likelihood of some probability density pi modelling the data. Using such potentials
di poses in general the following problems:

1. For some probability densities pi the resulting potential functions di may not
be discriminative or even misleading for some x ∈ Ω. See Figure 5.7 for an
illustration.

2. For individual components of the resulting partition, the corresponding appear-
ance measures may not match well the model distributions pi.

3. In unsupervised settings like cosegmentation, which is the task of finding the
same object in two different images, we have no knowledge of the probability
distribution coming from the object we wish to cosegment. Consequently,
no probability models pi or potential functions di are available and must be
inferred as part of the optimization problem.

These problems more or less persist, even if we use more elaborate potential
functions. We resolve this issue by making our data term dependent on the whole
segmentation.
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Figure 5.7 - Inadequacy of local costs for segmentation. Figure (a) shows the result of the
Continuous Cut segmentation, Figure (b) the result of our approach and Figure (c) the resulting
and prior foreground color histograms. The blue areas in Figures (a) and (b) denote the areas
determined to be foreground by the respective algorithms. The ground truth foreground is the
penguin, while the background is the white area behind it as well as the “EMMCVPR” inscription.
We set di(x) = − log(pi(I(x))) in the Continuous Cut model with accurate distributions pi for the
two classes. White and black color can be found in fore- and background, hence local potentials
di for both classes are not discriminative or may lead to wrong segmentations. Although the local
potentials di used in the Continuous Cut model indicate that the “EMMCVPR” inscription should
be foreground, it is labelled correctly as background, because the regularization strength is set
high. However the white belly of the penguin is labelled wrong, because white is more probable
to be background and the regularizer is not able to fill in the correct information. In contrast,
our approach correctly determines fore- and background, because it works on the appearance
histograms of the whole segmentation and enforces them to be close to the prespecified ones as
can be seen in Figure (c).

We propose to solve the first and second of the stated problems by introducing the
Wasserstein distance on global appearance measures. By using such a global term,
we force each of the subsets Ωi of the partition (Ω1, . . . ,Ωk) to have an appearance
measure which is near a prespecified one. To approach the third problem, we use
the Wasserstein distance to measure closeness between appearance measures of the
common object in the two images and ensures that they are similar.

5.5.2 Related Work

5.5.2.1 Segmentation

Foreground/background segmentation with the Wasserstein distance was already
proposed in the two papers [70] and [17].
Peyré et al. introduce in [70] a data term based on the Wasserstein distance and

an approximation thereof for reasons of efficiency. The model proposed there is not
convex, so it may get stuck in local minima. By contrast, we derive a fully convex
model and work directly with the Wasserstein distance.
The work of Chan et al. in [17] boils down to the Continuous Cut model. The

novelty is the computation of the local costs d1 and d2 from (5.5.1). They are
computed by comparing patches around pixels to a foreground and a background
histogram with the Wasserstein distance. The model remains convex, as it amounts
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to solving a Continuous Cut, so global minimizers can be computed very efficiently
with existing methods. Our approach differs in that we use the Wasserstein distance
(i) on arbitrary images opposed to grayvalue images and (ii) as a truly global data
term that depends on the segmentation. We point out however that the limitation
to grayvalue images in [17] is only made for computational reasons as the one
dimensional Wasserstein distance is very fast to compute and is not an inherent
limitation of the algorithm in [17].

5.5.2.2 Cosegmentation

Rother et al. introduce in [83] the cosegmentation task into the literature. To solve
the problem, they propose to find a MAP configuration of an MRF with pairwise
potentials for spatial coherency and a global constraint to actually cosegment two
images. The resulting MRF is not easy to optimize however, and the authors employ
a trust region algorithm, which they call trust region graph cut. The algorithm they
employ is not guaranteed to find a global optimum, may get stuck in local optima
and is dependent upon initialization. In comparison, we solve a convex relaxation
that is not dependent upon initialization and gives a reasonably tight global optimum
of the relaxed problem.
Vicente et al. give in [106] an overview over several models for cosegmentation.

They all have in common that they seek the object to be cosegmented to have similar
appearance histograms. The approaches considered in [106] fall into two categories:
(i) the histogram matching term may not be very general or (ii) may be difficult to
optimize. Approaches falling into category (ii) are solved with EM-type algorithms
which alternatingly compute appearance models and then match according to them.
Our approach can match appearance measures very flexibly and leads to a single
convex model, hence solving both of the problems of the approaches encountered in
the paper [106].

Another approach to cosegmentation is presented in [107], where object proposals
for the objects to be cosegmented are computed and taken as labels in a graphical
model. This approach is different from ours, as it relies heavily on object proposals,
which are computed with sophisticated but mathematically less explicit methods from
the realm of computer vision. For these proposals a big array of complex features is
computed. These features are used to compare objects in different images and find
the matching ones. Our model does not need object proposals to be computed but
finds the cosegmented objects in a mathematically more explicit variational manner
by minimizing one single convex energy function. Still, sophisticated features can be
introduced in our model as well, however this is not the focus of this section.

5.5.2.3 Numerical Follow-up Work

Recently, the authors in [74] have proposed a novel algorithm to solve the variational
problems we have proposed faster.
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5.5.3 Contribution

We present

• A new variational model for supervised segmentation with global appearance-
based data-terms, see Section 5.5.4,

• a new variational model for unsupervised cosegmention of two images based on
the similarity of the appearance measures of the respective cosegmentations,
see Section 5.5.5,

• convex relaxations for both models together with efficient numerical schemes
to minimize them, see Sections 5.5.6 and 5.5.7,

• experimental validation of the proposed approach, see Section 5.5.8.

5.5.4 Variational Model for Supervised Segmentation

We will combine into a single variational problem the spatial regularization from the
minimal partition problem (5.5.1), appearance measures from subsets of the image
domain constructed by (5.2.2) and the Wasserstein distance (5.1.2) for comparing
the resulting measures to obtain a new model for segmenting images.
We assume in this setting that one image I : Ω→ V and k probability measures

νi over V are given. For a partition (Ω1, . . . ,Ωk) of Ω we enforce the measures νIΩi to
be similar to the prespecified measures νi by using the Wasserstein distance (5.1.2)
with k different similarity functions c1, . . . , ck.

Replacing the data term with the potential functions di in the minimal partition
problem (5.5.1) by the Wasserstein distance yields

Eseg(Ω1, . . . ,Ωk) = 1
2

k∑
i=1

Per(Ωi,Ω) +
k∑
i=1

W
(
νIΩi , |Ωi| · νi

)
. (5.5.2)

The additional multiplicative factor |Ωi| in the second argument of the Wasserstein
distance above is needed to ensure that measures of equal mass are compared, as
otherwise the Wasserstein distance is∞. This is due to the fact that the space (5.1.1)
of coupling measures Π is empty for measures of differing masses.

Minimizing (5.5.2) over all partitions (Ω1, . . . ,Ωk) of Ω results in partitions, which
have regular boundaries due to the perimeter term, and the appearance measures of
the partition νIΩi being similar to the given appearance measures νi. Note that the
measures νIΩi depend on the partition through Ωi.
As for the minimal partition problem in Section 4.2, we replace the sets Ωi by

indicator functions ui = 1Ωi and minimize over them.

Proposition 5.5.1. Let ui = 1Ωi. Then (5.5.2) is equal to

Jseg(u) = 1
2
∑k
i=1
´

Ω|Du
i| dx+

∑k
i=1W

( ´
Ω u

i(x)δI(x)dx,
´

Ω u
i(x)dx · νi

)
.

(5.5.3)
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Minimizing (5.5.2) over all partitions (Ω1, . . . ,Ωk) such that each Ωi has a finite
perimeter is equivalent to minimizing (5.5.3) over u ∈ BV(Ω, Ek).

The functional Jseg(·) from (5.5.3) is convex, as the Total Variation term is convex
and the Wasserstein term is so as well by Theorem 4.8 in [108]. However Ek is a
nonconvex set, so taken together minimizing minu∈BV(Ω,Ek) Jseg(u) is not a convex
problem. Thus, as in Section 4.2 and 5.3, we take the convex hull BV(Ω,∆k) of
BV(Ω, Ek) to make the whole energy convex.

inf
u∈BV(Ω,∆k)

Jseg(u) . (5.5.4)

Remark 5.5.1. It is possible to introduce additional local costs di : Ω→ R without
compromising convexity of (5.5.3), i.e. to minimize

inf
u∈BV(Ω,∆k)

Jseg(u) +
k∑
i=1

ˆ
Ω
di(x)ui(x)dx . (5.5.5)

Numerically it comes at a negligible cost to do so. However we chose not to use local
costs to demonstrate most directly the power of the global Wasserstein cost.

Remark 5.5.2. (5.5.3) is the Continuous Cut model when we choose k = 2, two
points v1, v2 ∈ V and ν1 = δv1 and ν2 = δv2 , as then we can replace the Wasserstein
distance by multiplication with a local data term. The resulting model is the minimal
partition problem (5.5.1) for two classes. In [19] it is shown that a global minimizer
of the non-relaxed problem can be obtained by thresholding.

5.5.5 Variational Model for Unsupervised Cosegmentation

Let two images I1, I2 : Ω→ V be given and let c be some similarity function for the
Wasserstein distancee. Suppose an object is present in both images, but we have no
information about the appearance, location or size of it, Thus, we consider the fully
unsupervised setting. The task is to search for two sets Ω1,Ω2 ⊂ Ω such that Ω1 and
Ω2 are the areas occupied in I1 resp. I2 by the common object. Let νI1Ω1

and νI2Ω2
be

the appearance measures of the common object in images I1 and I2 respectively. We
know that both appearance measures should be similar. Therefore we will use the
Wasserstein distance W

(
νI1Ω1

, νI2Ω2

)
as a penalization term for enforcing similarity of

the appearance measures νI1Ω1
and νI2Ω2

.
Consider the energy

Ecoseg(Ω1,Ω2) =
2∑
i=1

Per(Ωi,Ω) +W
(
νI1Ω1

, νI2Ω2

)
+

2∑
i=1

P · |Ω\Ωi| (5.5.6)

where P > 0 and P · |Ω\Ωi| penalizes not selecting an area as the common object.
This latter term is called the ballooning term in [106] and is needed to avoid the
empty cosegmentation. Minimizing (5.5.6) results in two sets Ω1 and Ω2 which have
a short boundary due to the perimeter term and such that the appearance measures
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νI1Ω1
and νI2Ω2

are similar. Note that neither νI1Ω1
nor νI2Ω2

are known but completely
depend on the segmentation.
The main difference between the segmentation model (5.5.2) and the cosegmen-

tation model (5.5.6) is that in the segmentation model the second argument in the
Wasserstein distance is fixed while we allow it to vary in the cosegmentation model.

By the same arguments as in Section 5.5.4 and Proposition 5.5.1, we can establish
a similar correspondence between (5.5.6) and a suitable convex formulation in the
space of indicator functions.

Proposition 5.5.2. Let ui = 1Ωi. Then (5.5.6) is equal to

Jcoseg(u1, u2) =
∑2
i=1
´

Ω|Du
i| dx+W

(´
Ω u

1(x)δI1(x)dx,
´

Ω u
2(x)δI2(x)dx

)
+
∑2
i=1 P ·

´
Ω(1− ui(x)) dx

.

(5.5.7)
Minimizing Ecoseg(Ω1,Ω2) (5.5.6) over all sets Ω1,Ω2 ⊂ Ω with finite perimeter
is equivalent to minimizing Jcoseg(u1, u2) over all {0, 1}-valued functions of finite
variation.

As in Section 5.5.4, Jcoseg is convex, whereas the space of {0, 1}-valued functions
is not. Relaxing to functions ui ∈ BV(Ω, [0, 1]), i = 1, 2 yields a convex relaxation.

Note that due to aggregating the appearance in the two measures νI1Ω1
and νI2Ω2

in a
translation-, rotation- and deformation-invariant way, the resulting cosegmentation
energy also exhibits these properties.

Remark 5.5.3. (5.5.6) implicitly defines the size constraint |Ω1| = |Ω2|, since the
Wasserstein distance requires both measures to have equal mass. Weakening this
constraint is beyond the scope of this work.

5.5.6 Numerical Implementation with Proximal Algorithms

It is common to solve convex large-scale non-smooth problems with first order
algorithms like [9, 16, 24]. To efficiently solve our models with such schemes, it is
necessary to split our energies into suitable convex funtions, such that the proximity
operators for each function can be computed efficiently. Our splitting results in
2 +k convex non-smooth functions for the segmentation functional (5.5.3) and 3 such
functions with an additional linear term for the cosegmentation functional (5.5.7).
We use the Algorithm 3 and the technique from Section 5 to handle an arbitrary
number of functions.

In practice our image domain is discrete. Here we assume discretization of Ω as in
Section 4.4 The gradient operator will be approximated by forward differences.

We can rewrite the energy function (5.5.3) for the segmentation problem as follows
by splitting variables for the gradient operator:

Jseg(u, g) = χ{∇u=g} + χ{u∈∆k} + ‖g‖+
k∑
i=1

W i
seg(ui) , (5.5.8)

72



5.5 Segmentation and Cosegmentation with the Wasserstein distance

where W i
seg(u) = W

(∑
x∈Ω u(x)δI(x), (

∑
x∈Ω u(x)) νi

)
are the Wasserstein terms in

(5.5.3). The energy (5.5.7) for the cosegmentation problem can be split as follows:

Jcoseg(u, g) =
2∑
i=1

{
χ{∇ui=gi} + ‖gi‖

}
+〈d, u〉+χ{u∈[0,1]|Ω|}+Wcoseg(u1, u2) , (5.5.9)

where Wcoseg(u1, u2) = W
(∑

x∈Ω u
1(x)δI1(x),

∑
x∈Ω u

2(x)δI2(x)
)
is the Wasserstein

term in (5.5.7) and 〈d, u〉 takes care of the balloning term.
We solve (5.5.3) and (5.5.7) with [77], which is equivalent to using the Douglas-

Rachford described in Algorithm 3 on a suitably defined product space as in Section 5
and absorbing the linear term arbitrarily. For this we need to evaluate efficiently
the proximity operators for each convex function in (5.5.8) and (5.5.9). Proximity
operators for all the convex functions in (5.5.8) and (5.5.9) except for the Wasserstein
term can be computed very efficiently by standard methods:

• proxχ{∇u=g}
(u0, g0) is the projection onto the set {∇u = g} and can be com-

puted with Fourier transforms.

• prox∆k
(u0) is the projection onto the simplex and can be computed in a small

finite number of steps with the algorithm from [66].

• prox‖g‖(g0) amounts to computing the shrinkage operator.

The Wasserstein proximity operator can be computed more efficiently with the
technique detailed below.

5.5.6.1 Dimensionality Reduction for the Proximity Operator of the
Wasserstein Distance

In general, computing the proximity operator of the Wasserstein distance can be
expensive and requires solving a quadratic program with |Ω|+|V|2 variables. However
due to symmetry we can significantly reduce the size of the quadratic program to
|V|2 variables, such that the Wasserstein proximation step is independent of the size
of the image.

In practice we will solve the problem on an image grid Ω = {1, . . . , n}2 and the
number of values a pixel can take is usually significantly smaller than the number of
pixels (e.g. 256 values for gray-value images and for color pictures we may cluster
the colors to reduce the number of distinct values as well, while the number of pixels
|Ω| = n2 can be huge). Hence, we may assume |Ω| � |V|.

In the following we only discuss the segmentation case. Dimensionality reduction
for the cosegmentation case works analoguously.
Due to the representation of the Wasserstein distance (5.1.2), the proximity

operator proxW i
seg

(u0) = argminu‖u− u0‖2 +W i
seg(u) of the Wasserstein distance in
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the segmentation problem (5.5.8) can be written equivalently as

argmin{u,π}
∑
x∈Ω(u(x)− u0(x))2 +

´
V×V c(v1, v2) dπ(v1, v2)

s.t. π(V ×A) =
∑
{x∈I−1(A)} u(x) ∀A ⊂ V

π(B ×V) = (
∑
x∈Ω u(x)) νi(B) ∀B ⊂ V

π ≥ 0

(5.5.10)

Note that the Wasserstein distance term above is invariant to permutations of values
inside each set {I−1(v)} ∀v ∈ V. The quadratic term

∑
x∈Ω(u(x)− u0(x))2 dx also

possesses similar symmetries. This enables us to reduce the number of variables as
follows:
Let nv = |I−1(v)| be the number of pixels which take the value v ∈ V and let

ν0 =
∑
x∈Ω u

0(x)δI(x). Consider the problem

argminπ∈P(V×V)
´
V
nv ·

(
π(V × {v})− ν0({v})

)2
dv +

´
V×V c(v1, v2) dπ(v1, v2)

s.t. π(B ×V) = π(V ×V) · ν1(B) ∀B ⊂ V
π ≥ 0

(5.5.11)
The relation between the two minimization problems (5.5.10) and (5.5.11) is:

Lemma 5.5.1. The minimization problems (5.5.10) and (5.5.11) are equivalent in
the following sense: For I(x) = v ∈ V the optimal solutions û of (5.5.10) and π̂ of
(5.5.11) correspond to each other via the relation

û(x) = u0(x) + π̂(V × {v})− ν0({v})
nv

. (5.5.12)

Lemma 5.5.1 allows for efficiently solving (5.5.10) via (5.5.11) and (5.5.12).

5.5.7 Numerical Implementation with Message Passing

The proximal algorithms proposed in Section 5.5.6 can solve problems with large
image domain and medium size Wasserstein distance term. The evaluation of the
prox-operator for the Wasserstein distance is equal to a min-cost flow problem with
quadratic costs, for which no fast practical schemes are known. Hence, the need to
evaluate the prox-operator for the Wasserstein distance prohibits cost matrices of
large dimension.
On the other hand, very efficient min-cost flow solvers exist for computing the

Wasserstein distance, however the quadratic term in the prox-operator prohibits
application of those. Hence, to address larger scale problem we propose to use message
passing algorithms as introduced in Section 2.3.1, as these do not need to evaluate prox-
operators. As a case study, we will investigate the cosegmentation problem (5.5.7).
For this purpose, we extend the sequential message passing algorithm [48, 50]
presented in Algorithm 1 for MAP-inference in pairwise MRFs.

The message passing scheme requires us to consider the discretized problem directly.
Hence, we assume that the image domain has been discretized: Ω = {1, . . . , n}. The
TV-term in the discretized model amounts to Potts-terms and the ballooning term
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results in unaries. Hence, excluding the Wasserstein term, problem (5.5.7) amounts
to two separate MRFs Gi = (V i, E i, θi), i = 1, 2, which we can solve with the standard
local polytope relaxation. The respective pairwise marginals in the local polytope
relaxation (2.2.7) will be denoted by µ1 and µ2 for the first and the second MRF
problem.

The overall problem is

minµ1,µ2
∑2
i=1

{∑
u∈Vi〈θu, µiu〉+

∑
uv∈Ei〈θuv, µiuv〉

}
+W (νI1{u:µ1

u(0)=1}, ν
I2
{u:µ2

u(0)=1})
s.t. µi ∈ ΛGi ∩ {0, 1}dim(ΛGi ), i = 1, 2

(5.5.13)
where W (·, ·) is the Wasserstein distance of the histograms, as in Definition 5.1.3
and νI1{u:µ1

u(0)=1} is the foreground area in image 1 as defined by the lifting process in

Definition 5.2.2, similarly for image 2. Similarly to (5.5.7), the unaries θiu =
(

0
P

)
i = 1, 2 take into account the ballooning term and the pairwise potentials θiuv =(

0 1
1 0

)
, i = 1, 2 the perimeter term. The label set is Xi

u = {0, 1}, i = 1, 2, label 0

denoting foreground and 1 background.

We can linearize the Wassestein distance term as follows: Define θW ∈ R(n+1)×(n+1)

by

θW (u, v) =


c(I(u), I(v)), u, v ≤ n
∞, u < v = n+ 1
∞, v < u = n+ 1
0, u = v = n+ 1

. (5.5.14)

Then

W (νI1{u:µ1
u(0)=1}, ν

I2
{u:µ2

u(0)=1}) =



min
π∈R(n+1)×(n+1)

+
〈θW , π〉

s.t.
∑n+1
v=1 π(u, v) = µ1

u(0) ∀u = 1, . . . , n
π(u, v + 1) = µ1

u(1) ∀u = 1, . . . , n∑n+1
u=1 π(u, v) = µ2

v(0) ∀v = 1, . . . , n
π(n+ 1, v) = µ2

v(1) ∀v = 1, . . . , n


(5.5.15)

holds. Problem (5.5.15) is a linear assignment problem, which is a special case of
the minimum cost flow problem on the complete bipartite graph with n+ 1 edges in
each component [4].

We propose two variants of message passing to optimize (5.5.15): The first solves
the underlying min-cost flow problem for W with message passing, the second one
relies on a dedicated combinatorial min cost flow solver.
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5.5.7.1 Min-Cost Flow via Message Passing

Consider the relaxation

minµ1,µ2,π1,π2
∑2
i=1

{∑
u∈Vi〈θu, µiu〉+

∑
uv∈Ei〈θiuv, µiuv〉+ 〈12θW , π

i〉
}

s.t. µi ∈ ΛGi , i = 1, 2∑
v=1,...,n+1 π

1(u, v) = 1 ∀u = 1, . . . , n∑
u=1,...,n+1 π

2(u, v) = 1 ∀v = 1, . . . , n∑
v∈V2 π1(u, v) = µ1

u(0), π(u, n+ 1) = µ1
u(1) ∀u ∈ V1∑

u∈V1 π2(u, v) = µ2
v(0), π(n+ 1, v) = µ2

v(1) ∀v ∈ V2

π1(u, v) = π2(u, v)

(5.5.16)

Combining

n+1∑
v=1

π1(u, v) = µ1
u(0), π1(u, v + 1) = µ1

u(1) ∀u = 1, . . . , n (5.5.17)

n+1∑
u=1

π2(u, v) = µ2
v(0), π2(n+ 1, v) = µ2

v(1) ∀v = 1, . . . , n (5.5.18)

π1 = π2 (5.5.19)
(5.5.20)

leads to
n+1∑
v=1

πi(u, v) = µ1
u(0), πi(u, v + 1) = µ1

u(1) ∀u = 1, . . . , n (5.5.21)

n+1∑
u=1

πi(u, v) = µ2
v(0), πi(n+ 1, v) = µ2

v(1) ∀v = 1, . . . , n (5.5.22)

(5.5.23)

for i = 1, 2, hence (5.5.16) is a relaxation of (5.5.13).

Let the reparametrization analoguously to (2.2.10) be given by

θi,φu (xu) = θiw(xu) +
∑
v:uv∈Ei φuv(xu) + φiuW (xu)

θi,φuv (xuv) = θiuv(xuv)− φuv(xu)− φvu(xv)

θ1,φ
W (u, v) = 1

2θW (u, v) + φW (u, v) +

φ1
uW (0), u ≤ n
φ1
uW (1), u = n+ 1

θ2,φ
W (u, v) = 1

2θW (u, v)− φW (u, v) +

φ2
vW (0), v ≤ n
φ2
vW (1), v = n+ 1

(5.5.24)

The additional variables φW correspond to the constraint π1 = π2 and φ1
uW to∑n+1

v=1 π
1(u, v) = µ1

u(0), π1(u, v + 1) = µ1
u(1), analoguously for φ2

vW .
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5.5 Segmentation and Cosegmentation with the Wasserstein distance

Then the dual problem reads

maxφ
∑2
i=1

{∑
v∈Vi minxu∈Xu{θi,φ}

}
+
∑n+1
u=1

{
minv=1,...,n+1{1

2θ
1,φ
W (u, v)}

}
+
∑n+1
v=1

{
minu=1,...,n+1{1

2θ
2,φ
W (u, v)}

}
s.t. θi,φuv ≥ 0 ∀uv ∈ E i, i = 1, 2

(5.5.25)
Problem (5.5.25) is solved via Algorithm 4.
Due to lemmata 2.3.1 and 2.3.2 we only have to prove that lines 6-8 and 15-24

of Algorithm 4 increase the dual lower bound. Lines 25-34 increase the dual bound
analoguously.

Proposition 5.5.3. Lines 6-8 and 15-24 of Algorithm 4 increase the dual lower
bound (5.5.25).

Proof. (i) In lines 6-8 the dual lower bound is non-decreasing Note that the change is≥
0, hence minv=1,...,n+1{1

2θ
1,φ
W (u, v)} increases in (5.5.25). Moreover

∑n+1
v=1

{
minu=1,...,n+1{1

2θ
2,φ
W (u, v)}

}
stays the same in (5.5.25), as for each v = 1, . . . , n+1, the minimum minu=1,...,n+1{1

2θ
2,φ
W (u, v)}

is not decreased.
(ii) In line 15, there are two cases: 1. θ2,φ

W (u, v) = minu=1,...,n+1 θ
2,φ
W or 2.

θ2,φ
W (u, v) > minu=1,...,n+1 θ

2,φ
W . In the first case, the change θ2,φ

W (u, v)−minv′ 6=v θ2,φ
W (u, v′)

is non-positive, hence the reparametrization θ1,φ
W (u) may decrease. On the other hand,

minv′=1,...,n+1 θ
2,φ
W (u, v′) increases by the same amount, therefore minv′=1,...,n+1 θ

1,φ
W (u, v′)+

minu′=1,...,n+1 θ
2,φ
W (u′, v) is non-decreasing, hence the dual lower bound is non-decreasing.

In the second case, the change θ2,φ
W (u, v)−minv′ 6=v θ2,φ

W (u, v′) is non-negative, hence
minv′=1,...,n+1 θ

1,φ
W (u, v′) is non-decreasing. On the other hand, minu′=1,...,n+1 θ

2,φ
W (u′, v)

stays constant.
(iii) In lines 18-24 δ ≥ 0. Hence, the reparametrization of all connected factors is

increased. On the other hand, due to the choice of ω, θ1,φ
W = α after line 24, hence

the lower bound for θ1,φ
u stays constant.

5.5.7.2 Min-Cost Flow via Combinatorial Min-Cost Flow Solver

We will use a minimum cost flow solver to first solve the Wasserstein distance W
and second, to compute new reparametrizations of W in (5.5.15). By this approach,
we avoid the copy of the assignment matrix as in Section 5.5.7.1. We connect the
Potts-MRFs with the min-cost flow problem similarly as in Section 5.5.7.1:

n∑
v=1

π(u, v) =µ1
u(1)

π(u, n+ 1) =µ1
u(0) ,

(5.5.26)

and similary for µ2.
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Algorithm 4: One forward iteration of message passing for (5.5.16)
Input : Graphs Gi = (V i = {1, . . . , n}, E i), potentials θiu, u ∈ V i,

θiuv, uv ∈ E i, i = 1, 2, Wasserstein cost θW ∈ R(n+1)×(n+1).
1 for i = 1, 2 do
2 for u = 1, . . . , n do

// Receive message from pairwise potentials
3 for v : uv ∈ E i, v < u do
4 Compute φiuv(xu) −= minxv∈Xv{θi,φuv (xu, xv)} ∀xu ∈ Xu

5 end
// Receive message from Wasserstein potential

6 Compute α = minv=1,...,n+1{θi,φW (u, v)}
7 φiuW (0) −= minv=1,...,n{θi,φW (u, v)} − α
8 φiuW (1) −= θi,φW (u, n+ 1)− α

// Send message to pairwise potentials
9 Compute δ∗(xu) = θi,φu (xu)−minx′u∈Xu{θ

i,φ
u (x′u)}. Set

ω = 1
1+|{v:uv∈E,v>u}| .

10 for v : uv ∈ E i, v > u do
11 Update φi(uv) += ω · δ∗.
12 end
13 end
14 end

// Process θ1,φ
W

// Receive messages from θ2,φ
W

15 for v = 1, . . . , n do
16 Compute φW (u, v) += θ2,φ

W (u, v)−minv′ 6=v θ2,φ
W (u, v′).

17 end
// Send messages

18 Set ω = 1
n+2 .

19 Set δ(v) = θ1,φ
W (u, ·)−minv=1,...,n+1{θ1,φ

W (u, v)}.
20 φW (u, ·) −= ω · δ.
21 for u = 1, . . . , n do
22 φuW (0) += ω ·minv=1,...,n{δ(v)}.
23 φuW (1) += ω · δ(n+ 1).
24 end

// Process θ2,φ
W

// Receive messages from θ1,φ
W

25 for u = 1, . . . , n+ 1 do
26 Compute φW (u, v) −= θ1,φ

W (u, v)−minu′ 6=u θ1,φ
W (u′, v).

27 end
// Send messages

28 Set ω = 1
n+2 .

29 Set δ(u) = θ2,φ
W (u, ·)−minu=1,...,n+1{θ2,φ

W (u, v)}.
30 φW (·, v) −= ω · δ.
31 for v = 1, . . . , n do
32 φvW (0) += ω ·minu=1,...,n{δ(u)}.
33 φvW (1) += ω · δ(n+ 1).
34 end78
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The whole inference problem amounts to

minµ1,µ2,π
∑2
i=1

{∑
u∈Vi〈θu, µiu〉+

∑
uv∈Ei〈θiuv, µiuv〉

}
+ 〈θW , π〉

s.t. µi ∈ ΛGi , i = 1, 2∑
v∈V2 π(u, v) = µ1

u(0), π(u, n+ 1) = µ1
u(1) ∀u ∈ V1∑

u∈V1 π(u, v) = µ2
v(0), π(n+ 1, v) = µ2

v(1) ∀v ∈ V2

(5.5.27)

Introduce again dual variables φiuW , i = 1, 2 for the constraints (5.5.26) and dual vari-
ables φiuv, i = 1, 2 for the constraints defining ΛGi . Then define the reparametrization
similarly as in (2.2.10) to be

θi,φu (xu) = θiu(xu) +
∑
v:uv∈E1 φiuv(xu) + φiuW (xu)

θi,φuv (xuv) = θiuv(xuv)− φiuv(xu)− φivu(xv)

θφW (u, v) = θW (u, v)−


φ1
uW (u)(0) + φ2

vW (v)(0), u, v ≤ n
φ1
uW (u)(0) + φ2

vW (v)(1), u < v = n+ 1
φ1
uW (u)(1) + φ2

vW (v)(0), v < u = n+ 1
φ1
uW (u)(1) + φ2

vW (v)(1), u = v = n+ 1

(5.5.28)

The dual problem reads

maxφ
∑2
i=1

{∑
v∈Vi minxu∈Xu{θi,φ}

}
+ min

π∈R(n+1)×(n+1)
+ :π1=1,π>1=1〈θ

φ
W , π〉

s.t. θi,φuv ≥ 0 ∀uv ∈ E i, i = 1, 2
(5.5.29)

Problem (5.5.29) is solved via Algorithm 5.

Proposition 5.5.4. Algorithm 5 increases the dual lower bound (5.5.29).

Proof. Due to lemmata 2.3.1 and 2.3.2 it only remains to prove that (5.5.33) in-
creases (5.5.29). The update operations (5.5.33) result in positive changes to φiuW by
construction of (5.5.32) as well. Hence, minxu∈Xu{θi,φu (xu)} increases by definition
of reparametrization (5.5.28).
Second, by (5.5.33), denote by θ̃φW the potential θφW after executing Algorithm 5.

It holds that θφW (u, v) ≥ −λ∗(u) + λ′∗(v). It follows that

minπ∈R(n+1)×(n+1):π1=1,π>1=1
∑n+1
u,v=1 π(u, v) · θ̃φW (u, v)

≥ minπ∈R(n+1)×(n+1):π1=1,π>1=1
∑n+1
u,v=1 π(u, v) · (−λ∗(u) + λ′∗(v))

=
∑n+1
u=1(−λ∗(u)) +

∑n+1
v=1 λ

′∗(v))
(5.5.30)

The last equality is due to
∑n+1
v=1 π(u, v) = 1 =

∑n+1
u=1 π(u, v). Therefore the last line

above is independent of π.

Remark 5.5.4. One can see that (5.5.32) is a totally unimodular problem and can
be solved with a minimum cost network flow solver. Therefore, Algorithm 5 can be
implemented efficiently. In particular, we use the primal network simplex solver from
the LEMON project [62] to compute all needed minimum cost flow problems.
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Algorithm 5: One forward iteration of message passing for (5.5.27)
Input : Graphs Gi = (V i = {1, . . . , n}, E∗), potentials θiu, u ∈ V i,

θiuv, uv ∈ E i, i = 1, 2, Wasserstein cost θW ∈ R(n+1)×(n+1).
1 for i = 1, 2 do
2 for u = 1, . . . , n do
3 Receive Messages:
4 for v : uv ∈ E i, v < u do
5 Compute φiuv(xu) −= minxv∈Xv{θi,φu v(xu, xv)} ∀xu ∈ Xu

6 end
7 Send Messages:
8 Compute δ∗(xu) = θi,φu (xu)−minx′u∈Xu{θ

i,φ
u (x′u)}. Set

ω = 1
1+|{v:uv∈E,v>u}| .

// Message to pairwise potentials
9 for v : uv ∈ E i, v > u do

10 Update φi(uv) += ω · δ∗.
11 end

// Message to Wasserstein potential
12 Update φi(uW ) += ω · δ∗.
13 end
14 end

// Message from Wasserstein potential
15 Compute

π∗ ∈ argmin
π∈R(n+1)×(n+1)

+
〈θφW , π〉

s.t. π1 = 1, π>1 = 1

(5.5.31)

λ∗, λ′∗ ∈ argmin
λ,λ′∈R(n+1)

+
〈1, λ〉 − 〈1, λ′〉

s.t. θφW (i, j) + λ(i)− λ′(j)
{

= 0, π∗(i, j) = 1
≥ 0, π∗(i, j) = 0

(5.5.32)
Set

φ1
u(1) −= max

v=0,...,n

1
2θ

φ
W (u, v) + λ∗(u)− λ′∗(v)

φ1
u(0) −=1

2θ
φ
W (i, j) + λ∗(i)− λ′∗(j)

φ2
v(1) −= max

u=0,...,n

1
2θ

φ
W (i, j) + λ∗(u)− λ′∗(v)

φ2
v(0) −=1

2θ
φ
W (i, j) + λ∗(u)− λ′∗(v)

(5.5.33)
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5.5.8 Numerical Experiments

To show the performance of our method we have restricted ourselves to only consider
colors as features. Hence the features alone are not very distinctive, but the whole
energy function makes our approach work. Our label space V is the CIE 1931 color
space and our cost function c will be derived from the euclidean distance on the
above color space. More sophisticated features can be used in our variational models
with no additional computational cost in the minimization procedure. Choosing such
features however goes beyond the scope of this section, that is purely devoted to the
novel variational approach, rather than to specific application scenarios. Also, more
sophisticated regularizers can be employed as well, e.g. one could vary weights in
the total variation term or use nonlocal versions of it, see [27] for the latter.

5.5.8.1 Segmentation

In our experimental setting we assume that we have probability measures ν1, ν2 at
hand for the foreground and background classes, which we employ in the global
Wasserstein data-term. We could in addition determine potential functions to enhance
segmentation results and solve model (5.5.5), e.g. by di(x) = − log(pi(I(x))), where
pi is the density of νi. We chose to not use the latter to show the strength of the
global Wasserstein term alone and the tightness of our relaxation. See [15, 19, 61, 73]
for numerical examples of segmentation results with potential functions alone.
For the foreground and background appearance measures we chose a part of

the foreground and background of the image respectively and constructed prior
appearance measures ν1, ν2 from them. In a preprocessing step, we clustered the
color values of the image by the k-means method [63]. The number of prototypes
was set to 50. The quadratic problem in the prox-step (5.5.11) of the Wasserstein
distance is thus a 50 × 50 convex quadratic problem and efficiently solvable. We
conducted four experiments with textured objects, for which it is not always easy to
find discriminative prototypical vectors, but where the color histogram catches much
information about the objects’ appearance, see figure 5.8. Note for example that the
cheetah’s fur has the same color as the sand in the image, but the distribution of the
black dots and the color of the rest of the fur is still distinctive. The fish has black
regions, exactly as in the background, but the white and black pattern is distinctive
again, so a reasonable segmentation can be obtained.

5.5.8.2 Cosegmentation

For cosegmentation we first subdivide the image into superpixels with SLIC [3].
Then we modify the cost function c as follows: For each superpixel in image 1
we consider k nearest superpixels in image 2 and vice versa. For these pairs we
let c be the euclidean distance. For all other pairs of superpixels we set c to ∞.
Obviously, the optimal transport plan will be zero where the distance c is ∞, hence
we may disregard such variables. By this procedure we reduce the problem size and
computational complexity substantially while not reducing the quality of the solution.
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Figure 5.8 - Supervised segmentation experiments with global segmentation-dependent data
term using the Wasserstein distance. Note that because the results correspond to global optima
of a single convex functional, undesired parts of the partition are solely due to the – in our case:
simple color – features and the corresponding prior appearance measures.

The prox-step proxWcoseg
(u1, u2) can be further reduced with a technique similar to

the one presented in Section 5.5.6.1.
Four experiments can be seen in figure 5.9. The foreground objects were taken

from the dataset [14]. We rotated these objects, translated them and added different
backgrounds. As the Wasserstein term does not depend upon location and spatial
arrangement of the pixels contributing to the cosegmentation, we could find the
common objects independently of where and in which orientation they were located
in the images without explicitly enumerating over all different possible such configu-
rations, but by solving a single convex optimization problem to its global optimum.
Note that in this unsupervised setting, no prior knowledge about the objects is used.

5.5.8.3 Comparison of Algorithms for the Cosegmentation Problem

The proximal algorithm described in Section 5.5.6 is slow due to the need to evaluate
the proximal term for the Wasserstein distance. This amounts to a minimum cost flow
problem with quadratic costs, for which no practically fast algorithm is known. We
solve this problem with the quadratic program solver from the MOSEK [1] software
suite. Still, for medium-sized problems, evaluating the Wasserstein proximal term
takes more than one minute.
Hence we show below runtimes of the faster message-passing algorithms from

Section 5.5.7. In Figure 5.10 we compare the two message-passing algorithms
regarding iteration agains energy, while in Figure 5.11 we compare energies against
the time taken to compute them. We ran the message passing algorithms until the
dual lower bound was not increased anymore. Note that the x-axis is in log-scale for
easier comparison in both Figures 5.10 and 5.11.
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Figure 5.9 - Unsupervised cosegmentation: foreground regions in two images are separated at
arbitrary locations where the Wasserstein distance between the corresponding histograms is small.
This distance depends on the unknown segmentation, and both are consistently determined by
a single convex variational problem. No prior knowledge at all was used in these unsupervised
experiments.

Remark 5.5.5. The message passing algorithm utilizing a dedicated min-cost flow
solver from Section 5.5.7.2 beats the one using message passing for the Wasserstein
distance from Section 5.5.7.1. This is due to the fact that the min-cost flow solver
propagates information much faster: It need not coordinate between two copies
of the assignment, each of which only incorporates part of the constraint, as the
message-passing algorithm from Section 5.5.7.1 does.
Remark 5.5.6. While the proximal algorithm from Section 5.5.6 is currently not
competitive with regard to runtime, this may change upon implementation of an
efficient quadratic minimum cost solver. Also the work [74] presents an alternative
primal-dual algorithm which is faster then our proximal algorithm for problems with
Wasserstein distances.

5.5.9 Conclusion

We presented new variational models for segmentation and cosegmentation. Both
utilize the Wasserstein distance as a global term for enforcing closeness between
suitable appearance measures. We also derived convex relaxations of the models
and presented efficient numerical methods for minimizing them. Both models can
be easily augmented by using different regularizers or additional data terms and
any features known from the literature. Future work will focus on extending the
proposed models by also including more spatial information. It is obvious, that e.g.
cosegmented objects should have a similar spatial layout or shape. For example, it
should be possible to find a registration between them. For segmentation, we would
like to include more spatial information as well into our prior knowledge, e.g. we
would like to encode the spatial arrangement of the objects we want to segment.
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Figure 5.10 - Convergence plot comparing energies (vertical scale) against iterations (horizontal
scale) for the presented algorithms for the four cosegmentation problem instances from Figure 5.9.
The red line denotes the primal bound obtained by message passing utilizing a min-cost flow
solver, see Section 5.5.7.2, the blue line its lower bound. The green line denotes the lower bound
of message passing without utilization of a min-cost flow solver, as in Section 5.5.7.1. The
rounding of this algorithm did not produce feasible primal solutions, except for the witch instance,
were it is indicated by the orange line.
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Figure 5.11 - Convergence plot comparing energies (vertical scale) against runtime in seconds
(horizontal scale) for the presented algorithms for the four cosegmentation problem instances
from Figure 5.9. Colors have the same meaning as in Figure 5.10.
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6 Conclusion

In this thesis we presented two extensions of MAP-inference.
First, we addressed in Chapter 3 the partial optimality problem and proposed

a way to utilize standard suboptimal solvers for MAP-inference to obtain part of
globally optimal solutions. The runtime of our proposed method is dependent on
the used approximate solver. Advances in this area will lead to faster inference
also for partial optimality. Also solvers based on tighter relaxations will benefit our
persistency approach and lead to a larger number of persistently labelled variables.

Second, we extended standard labeling problems corresponding to pairwise MRFs
with a higher order term based on the Wasserstein distance in Chapter 5. We
covered three applications scenarios: denoising (in Section 5.4), segmentation and
cosegmentation (in Section 5.5). Those tasks all either benefitted or were made
possible by the Wasserstein distance. It is noteworthy, that the additional Wasserstein
distance terms for those problems are based on a common framework. It is therefore
reasonable to predict that the Wasserstein distance can be used in many more
applications.
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