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Abstract

Coreference resolution is the task of determining which expressions in a text are used

to refer to the same entity. This task is one of the most fundamental problems of

natural language understanding. Inherently, coreference resolution is a structured

task, as the output consists of sets of coreferring expressions. This complex structure

poses several challenges since it is not clear how to account for the structure in terms

of error analysis and representation.

In this thesis, we present a treatment of computational coreference resolution that

accounts for the structure. Our treatment encompasses error analysis and the rep-

resentation of approaches to coreference resolution. In particular, we propose two

frameworks in this thesis.

The first framework deals with error analysis. We gather requirements for an ap-

propriate error analysis method and devise a framework that considers a structured

graph-based representation of the reference annotation and the system output. Error

extraction is performed by constructing linguistically motivated or data-driven span-

ning trees for the graph-based coreference representations.

The second framework concerns the representation of approaches to coreference

resolution. We show that approaches to coreference resolution can be understood

as predictors of latent structures that are not annotated in the data. From these la-

tent structures, the final output is derived during a post-processing step. We devise a

machine learning framework for coreference resolution based on this insight. In this

framework, we have a unified representation of approaches to coreference resolution.

Individual approaches can be expressed as instantiations of a generic approach. We

express many approaches from the literature as well as novel variants in our frame-

work, ranging from simple pairwise classification approaches to complex entity-centric

models. Using the uniform representation, we are able to analyze differences and sim-

ilarities between the models transparently and in detail.

Finally, we employ the error analysis framework to perform a qualitative analysis

of differences in error profiles of the models on a benchmark dataset. We trace back
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differences in the error profiles to differences in the representation. Our analysis shows

that a mention ranking model and a tree-based mention-entity model with left-to-

right inference have the highest performance. We discuss reasons for the improved

performance and analyze why more advanced approaches modeled in our framework

cannot improve on these models. An implementation of the frameworks discussed in

this thesis is publicly available.

iv



Zusammenfassung

Koreferenzresolution ist eine der grundlegenden Aufgaben des automatischen Textver-

stehens. Die Aufgabe besteht darin zu ermitteln, welche Ausdrücke in einem Text sich

auf die gleiche Entität beziehen. Koreferenzresolution ist per Definition ein struktu-

riertes Problem, da die Ausgabe eines Koreferenzresolutionssystems aus Mengen ko-

referenter Ausdrücke besteht. Aus dieser komplexen Struktur ergeben sich einige Her-

ausforderungen, da es nicht klar ist, wie die Struktur adäquat für die Fehleranalyse

und die Repräsentation von Ansätzen zur Koreferenzresolution berücksichtigt werden

kann.

In dieser Doktorarbeit untersuchen wir automatische Koreferenzresolution im Hin-

blick darauf, wie die Struktur berücksichtigt werden kann. Hierbei widmen wir uns

sowohl der Fehleranalyse, als auch der Repräsentation von Ansätzen. Insbesondere

schlagen wir zwei Frameworks vor.

Das erste Framework befasst sich mit Fehleranalyse. Wir stellen zunächst Bedingun-

gen auf, welche eine Methode zur Fehleranalyse berücksichtigen sollte. Davon ausge-

hend entwickeln wir ein Framework, welches auf einer strukturierten graphbasierten

Repräsentation der Referenzannotation und der Ausgabe beruht. In diesem Frame-

work werden Fehler extrahiert, indem linguistisch motivierte oder aus Daten induzier-

te Spannbäume der graphbasierten Repräsentationen erstellt werden.

Mit dem zweiten Framework widmen wir uns der Repräsentation von Ansätzen zur

Koreferenzresolution. Wir zeigen, dass Ansätze zur Koreferenzresolution als Prädikto-

ren von latenten Strukturen, welche nicht in den Daten annotiert sind, verstanden wer-

den können. Aus diesen latenten Strukturen wird dann in einem Nachbereitungsschritt

die Ausgabe berechnet. Von dieser Erkenntnis ausgehend entwickeln wir ein Machine-

Learning-Framework für Koreferenzresolution. In diesem Framework können wir ver-

schiedene Ansätze einheitlich darstellen. Insbesondere können wir sie als Instanzen

eines generischen Ansatzes auffassen. Wir stellen sowohl viele Ansätze aus der Litera-

tur als auch neue Varianten dieser Ansätze in unserem Framework dar. Die Spannbrei-

te der Ansatzklassen, welche wir betrachten, reicht hierbei von simplen paarweisen
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Klassifikationsmethoden bis hin zu komplexen entitätsbasierten Modellen. Durch die

einheitliche Repräsentation können wir Unterschiede und Gemeinsamkeiten der An-

sätze transparent und detailliert analysieren.

Schließlich benutzen wir das Fehleranalyse-Framework, um einen Vergleich der

Fehler verschiedener Modelle auf einem Benchmark-Korpus durchzuführen. Wir füh-

ren hierbei Unterschiede in den Fehlern auf Unterschiede in der Repräsentation zu-

rück. Unser Vergleich zeigt, dass ein Mention-Ranking-Modell und ein Mention-Entity-

Modell, welches auf Antezedentenbäumen beruht, die besten Ergebnisse liefern. Wir

besprechen, wodurch diese guten Ergebnisse zustande kommen. Weiterhin analysie-

ren wir, weshalb komplexere Ansätze die Ergebnisse nicht verbessern können. Eine

Implementation der beiden Frameworks ist als Download verfügbar.
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1 Introduction

The aim of research in natural language understanding is to devise computational

models that are able to extract meaning from a text. One of the most fundamental

and popular subtasks of natural language understanding is coreference resolution, the

task of determining which expressions in a text are used to refer to the same entity. As

an example, consider the following text snippet1.

(1) [Vicente del Bosque]1 admits it will be difficult for [him]1 to select

[David de Gea]2 in Spain’s European Championship squad if [the

goalkeeper]2 remains on the sidelines at [Manchester United]3.

[De Gea’s]2 long-anticipated transfer to [Real Madrid]4 fell through on

Monday due to miscommunication between [the Spanish club]4 and

[United]3 and [he]2 will stay at [Old Trafford]3 until at least January.

We have marked all expressions that are used to refer to entities which are men-

tioned at least twice. Two expressions have the same index if they are used to refer

to the same entity. Even in this short text, eleven such expressions appear which are

used to refer to four different entities.

In order to correctly resolve the coreference relations in the text, we have to over-

come two challenges. First, the task necessitates the inclusion and coordination of

many different knowledge sources. For instance, the expression he in the last sentence

is ambiguous: It could either be used to refer to VINCENTE DEL BOSQUE, or to DAVID DE

GEA2. However, there are strong syntactic hints that DAVID DE GEA is the correct en-

tity, for example the parallelism of he and De Gea’s in the coordinated clauses. On the

1Taken from http://www.theguardian.com/football/2015/sep/02/david-de-gea-manchester-
united-spain-del-bosque, accessed 11 January 2016.

2Throughout the thesis, we stick to the notation established in this introduction for examples: in an
example, mentions are marked with square brackets with indices. When they have the same index,
they are coreferent. In running text, entities are written in SMALL CAPS and expressions that are
used to refer to entities are written in italics.

1

http://www.theguardian.com/football/2015/sep/02/david-de-gea-manchester-united-spain-del-bosque
http://www.theguardian.com/football/2015/sep/02/david-de-gea-manchester-united-spain-del-bosque


1 Introduction

other hand, knowledge about the real world facilitates determining that Real Madrid
and the Spanish club corefer.

Second, the task is a structured task, since coreference is a relation between refer-

ring expressions. Therefore, the desired output consists of sets of coreferring men-

tions. Hence, for an adequate modeling of the task, researchers have to account for

this structural complexity.

In the research presented in this thesis we focus on the second challenge. We aim

to devise a representation formalism and an analysis method for computational coref-

erence resolution which both adequately account for the inherent structure. In the

remainder of this chapter, we further motivate the research conducted in this thesis

and formulate main research questions (Section 1.1), briefly summarize our contribu-

tions (Section 1.2), present the outline of the thesis (Section 1.3) and describe which

parts of this thesis were published (Section 1.4).

1.1 Motivation and Research Questions

As we have described above, the objects of interest in computational coreference reso-

lution are the sets of coreferring expressions. This suggests that models for coreference

resolution should output these sets. However, from a modeling or machine learning

perspective, reasoning over these sets is difficult for two reasons. First, the number

of disjunctions into sets is exponential in the number of referring expressions. Hence,

the search space is very large. Second, researchers have to solve the complex task

of representing and scoring disjunctions of referring expressions into sets. Therefore,

approaches to coreference resolution make assumptions to simplify the task. They

rely on a simpler representation and then induce the disjunction into sets from this

representation. In the literature we can encounter many different approaches relying

on different representations. For instance, the simplest approaches cast the problem

as a binary classification (coreferent or non-coreferent?) of pairs of referring expres-

sions. More sophisticated models use structured prediction methods to determine the

strongest coreference relations in a set. On the surface, these approaches tackle the

task in very different manners. However, they all are models for the same task that

make use of different assumptions and representations to cope with the structural com-

plexity inherent to coreference. This observation leads to the first research question

investigated in this thesis: does there exist a unified representation of approaches

2



1.2 Contributions

to coreference resolution? If we can answer this question affirmatively, some follow-

up questions and research opportunities naturally emerge. The first question is, of

course, how different approaches to coreference resolution can be expressed in the

representation. Based on the unified representation, we can investigate what we can

deduce about modeling assumptions of the approaches and about differences and sim-

ilarities between approaches. Moreover, we can study to which extent they model the

structure inherent to coreference.

In order to further deepen our understanding of computational coreference resolu-

tion, we do not only need to understand the approaches on a representational level,

we also need to be able to analyze and compare the output of different approaches.

Both reference annotation and system output consist of disjunctions into sets of re-

ferring expressions. It is not clear from the set-based representation how to extract

useful information – how can we compare these sets of sets to understand what went

wrong in our prediction? This motivates our second research question: given the dis-

junction into sets as annotated in the data, and as predicted by the system, what is an

appropriate way to extract errors? In order to answer this question, we first have

to define an appropriate error representation. This representation should respect the

structural complexity of the task and provide useful information to the developer of a

coreference resolution system or a researcher working on coreference resolution.

Finally, assuming we have devised a unified representation for approaches and an

appropriate method for extracting errors, we can combine these contributions to per-

form a large-scale qualitative analysis of approaches to coreference resolution. With

this analysis, we can investigate the third main research question: how do approaches

to coreference resolution differ qualitatively and how far can these differences be

attributed to the differences in the representations? Such an analysis will enable

us to assess the impact of more sophisticated representations and of modeling assump-

tions.

1.2 Contributions

We answer the first research question by proposing a unified representation of ap-

proaches to coreference resolution. The proposed representation is based on the in-

sight that approaches to coreference resolution output disjunctions into sets, but their

internal representation can be understood as latent coreference structures that encode

3



1 Introduction

coreference relations. We formulate this representation as part of a machine learning

framework for coreference resolution. We show how various machine learning ap-

proaches to coreference resolution can be expressed in this framework and compare

the latent structures they are based on, analyzing differences, strengths, weaknesses

and modeling assumptions.

We answer the second question by motivating and developing a method for error

analysis of coreference resolution approaches. This method takes the structure of

coreference into account by representing reference annotation and system output as

graphs, and then extracts errors based on spanning trees of these graphs. We discuss

various linguistically motivated and data-driven methods to compute such spanning

trees.

Finally, we answer the third question by employing the error analysis method to

perform an in-depth analysis of the approaches expressed in the machine learning

framework on a benchmark data set. We compare models in the order of increasing

expressiveness and complexity. We devise meaningful categories for the errors made

by the models, and relate these errors to the structures the models operate on. We

find that a mention ranking model and a tree-based mention-entity model using left-

to-right inference work best. We discuss the reasons for their superior performance.

The error analysis framework, the machine learning framework and the coreference

resolution models discussed in this thesis are implemented as an open source Python

library3.

1.3 Outline

The remainder of this thesis is organized into eight chapters.

In Chapter 2, we describe the task of coreference resolution in detail. We give a for-

mal definition and discuss linguistic properties, main modeling issues and evaluation

of the task.

In Chapter 3, we discuss related work in the three subfields of coreference resolution

this thesis is concerned with: machine learning models, representation frameworks

and error analysis.

In Chapter 4, we present our method for error analysis. We first motivate the need

for error analysis and gather requirements for an error analysis method. We devise a

3Available for download at http://smartschat.de/software.

4

http://smartschat.de/software


1.4 Published Work

graph-based method based on spanning tree extraction following these requirements.

In Chapter 5, we review approaches to coreference resolution and observe that the

approaches can be understood as predictors of latent structures. This observation forms

the basis for a machine learning framework for coreference resolution that we present

in that chapter. This framework allows for a unified representation of approaches to

coreference resolution.

After having established a formal framework, we can now express approaches to

coreference resolution in the framework. In Chapter 6, we demonstrate how various

approaches to coreference resolution can be expressed in our framework.

Turning towards the experiments, in Chapter 7 we describe the features used by the

models discussed in this thesis.

In Chapter 8, we perform a large-scale qualitative analysis of the approaches imple-

mented in our framework. To compare the approaches we employ the analysis method

presented in Chapter 4.

In Chapter 9, we summarize the answers the research in this thesis gives for the

research questions formed in the motivation. We furthermore discuss avenues for

future work.

1.4 Published Work

Most research presented in this thesis is an extension of published research first-

authored by the author of this thesis. If not noted otherwise, the presented research is

based on the contribution of the author of this thesis to the published research.

The error analysis framework presented in Chapter 4 was published in Martschat

and Strube (2014) and Martschat et al. (2015b). A preliminary version of the un-

derlying analysis method was presented in Martschat (2013). The machine learning

framework presented in Chapter 5 and the discussion of structures for coreference res-

olution presented in Chapters 6 and 8 are based on research presented in Martschat

et al. (2015a) and Martschat and Strube (2015). Our coreference resolution system,

which implements the error analysis and machine learning frameworks discussed in

this thesis, employs the mention extraction and mention property computation de-

scribed in Martschat et al. (2012).

5





2 Coreference Resolution

Coreference resolution is a fundamental task in natural language processing with vary-

ing specifications over the years. In this chapter, we give a linguistic and formal def-

inition and treatment of the task tackled in this thesis (Section 2.1). Based on the

formal definition, we introduce a graph-based representation of coreference relations

between mentions, which will serve as the representational foundation for the ma-

chine learning framework as well as the error analysis framework presented in this

thesis (Section 2.2). Based on the formal representation and the linguistic properties,

we highlight some issues that complicate modeling (Section 2.3). Lastly, we discuss

the issue of coreference resolution evaluation (Section 2.4).

2.1 Problem Definition

In this thesis, we tackle the problem of noun phrase coreference resolution. The com-

mon definition of this task is to determine which noun phrases in a text are used to

refer to the same entity1. This task has been the focus of large evaluation campaigns

(MUC-6, 1995; MUC-7, 1998; NIST, 2003; Pradhan et al., 2011, 2012) and the major-

ity of work on coreference resolution (see Section 3.1). Extensions of the task consider

other constituents as potential referring expressions, such as verb phrases or clauses

(Eckert and Strube, 2000; Chen et al., 2011; Kolhatkar and Hirst, 2012), or consider

weaker relations than the identity of reference, which is also called bridging (Poesio

et al., 2004; Hou et al., 2013).

2.1.1 Formal Modeling

For a formal definition of the task, we first define the meaning of reference to the same
entity. In this regard we follow van Deemter and Kibble (2000). We first introduce

terminology and notation for the linguistic expressions that are used to refer to entities.
1Following common terminology, we will also say that the noun phrases themselves refer to entities.

7



2 Coreference Resolution

Definition 1. Let d be a document and let Md be the set of all noun phrases and pronouns
in d. We call the elements of Md candidate referring expressions or mentions.

We order the mentions according to their position in the text. This ordering will be

convenient for the presentation of the error analysis and machine learning frameworks

we devise later in this thesis.

Definition 2. We define a total ordering over the mentions in Md as follows. m < n if
either m starts before n, or m and n start at the same token, but m ends before n. We
write m1, . . . ,mk for the mentions in this order.

Mentions are used to refer to entities. We express the reference via a function

Referent that maps mentions to the entities they refer to.

Definition 3 (Referent). For a mention m ∈ Md, Referent(m) is the entity m refers to.
If m does not refer to any entity, Referent(m) is undefined.

The Referent function induces a coreference relation on the set of mentions.

Definition 4. Two mentions m,n ∈ Md are coreferent if and only if Referent(m) =

Referent(n). We also write coreferent(m,n).

This relation is reflexive, symmetric and transitive, therefore it is an equivalence
relation. The equivalence classes contain all mentions that refer to the same entity.

Given a document, our aim is to predict these equivalence classes: we do not want to

determine to which entities the mentions refer to, we only are interested in whether

they refer to the same entity or not.

We also need terminology to talk about two mentions referring to the same entity

according to the prediction of the coreference resolution system at hand. A coreference

resolution system S gets as input a set of mentions, Md,S, and outputs assignments of

mentions to entities, which we denote via a function EntityS. Note that Md,S can

be different from Md. This difference can be attributed to preprocessing errors or

annotation decisions. For example, in the OntoNotes annotation (Weischedel et al.,

2011), non-referring noun phrases are not annotated as mentions, but most systems

extract all noun phrases as mentions.

Definition 5. For a coreference resolution system S and a mentionm ∈Md,S, EntityS(m)

is the entity m refers to according to the system output of S. If m does not refer to any
entity according to S, EntityS(m) is undefined.

8



2.1 Problem Definition

Typically, since it is not part of the task, coreference resolution systems do not output

an explicit representation of the entities the mentions refer to. Instead they represent

the entities via arbitrary integer identifiers. However, this representation is sufficient

to again induce an equivalence relation from this output.

Definition 6. Two mentions m,n ∈ Md,S are in the same system entity according to S if
EntityS(m) = EntityS(n). We also write sameEntityS(m,n).

We can now give a formal definition of the task.

Definition 7. The task of coreference resolution is as follows. Devise a system S that,
given a document d, predicts the equivalence classes of the coreferent relation over Md via
the sameEntityS relation over Md,S.

We also refer to the equivalence classes as coreference chains. Whether we refer to

the classes according to the coreferent relation or according to the sameEntityS relation

will be clear from the context.

2.1.2 The Linguistics of Coreference

This formal definition is sufficient to obtain a generic representation of the objects of

interest, and to develop machine learning methods. However, the definition does not

relate the coreference relation to the linguistic properties of the mentions or the con-

text in which the mentions appear. Arguably, the linguistic properties of the mentions

and the context influence the processing of coreference relations between mentions.

For example, when employed as referring expressions, pronouns behave differently

from proper names.

Our aim is to devise adequate analysis methods and representations for approaches

to coreference resolution. Therefore we need to understand what aspects in the out-

put of an approach are useful to analyze, which features can be helpful for coreference

resolution, and which factors contribute to a linguistically adequate representation of

the task. To sum up, our aim presupposes a deeper understanding of the interactions

between the processing of coreference relations and the linguistic context of the men-

tions. We now revisit the coreference relation with these considerations in mind.

2.1.2.1 Reference and Referent

In the formal definition we inferred an equivalence relation from the Referent assign-

ment of mentions to entities. Hence, we established a relation between expressions

9



2 Coreference Resolution

in a text solely based on a relation of these expressions to the real world. Our defini-

tion of coreference does not account for relations between the expressions that can be

obtained by a linguistic analysis of the text.

In order to be able to complement our definition of coreference by a linguistic anal-

ysis, we need to introduce a model of text understanding. We adopt the popular

approach based on discourse models (Webber, 1979). A text forms a discourse, which

is a set of utterances. When processing a text, the hearer/reader constructs a discourse
model, which relates linguistic expressions.

We have to distinguish between the referent and the reference of a mention (Chrystal,

2008, p. 407f.). As expressed in Definition 4, the referent of a mention is the entity the

mention refers to. This relation is an extra-linguistic relation.

In contrast, reference is a phenomenon which relates mentions in the discourse

model: some mentions rely on other mentions for their interpretation. More specifi-

cally, this phenomenon is called anaphoric reference. The mention which depends on

another mention for its interpretation is called anaphor, the mention it refers to is

called antecedent2. Anaphoric reference not only encompasses coreference. However,

we restrict ourselves to anaphoric reference where the two participating mentions re-

fer to the same entity.

2.1.2.2 Coreference versus Anaphoric Reference

From the definitions it follows that two mentions can be coreferent without being in

a relationship of anaphoric reference (Fraurud, 1990, p. 406f.). Consider for example

the mentions of APPLE in Example (2)3:

(2) Six university researchers have revealed deadly zero-day flaws in [Apple’s]1
iOS and OS X, claiming it is possible to crack [Apple’s]1 password-

storing keychain, break app sandboxes, and bypass [its]1 App Store

security checks.

Neither of the two proper name mentions of APPLE relies on the other for its inter-

pretation. We can observe the same phenomenon for definite common nouns, most

notably in conversations, as in Example (3)4:
2A mention can refer back or forward in a discourse. If it is referring forward, it is also called an

cataphor. We use the term anaphor for both cases.
3Taken from http://www.theregister.co.uk/2015/06/17/apple_hosed_boffins_drop_0day_
mac_ios_research_blitzkrieg/, accessed 18 June 2015.

4Appears in document ch_0030, part 003 of the OntoNotes 5.0 corpus (Weischedel et al., 2013).
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2.1 Problem Definition

(3) A: Wow. With [the traffic]1 and everything?

B: with yeah [the traffic]1

However, the majority of nouns which are not the first in their respective coreference

chain are used anaphorically. This even holds to a certain extent for proper names,

such as Mrs. Clinton in the following example5.

(4) [Hillary Clinton]1 called for “common-sense” gun control measures

and said the fatal shooting of nine people at an African-American church

was not an “isolated” tragedy, but a chilling reminder of enduring

racism and “bigotry” in the U.S.

In a speech Saturday at a conference of U.S. mayors, [Mrs. Clinton]1,

spoke extensively about the murders and praised [the victims’ families]2,

who in court proceedings said [they]2 forgave the white suspect, 21-

year-old Dylann Roof.

To correctly determine the referent of Mrs Clinton, we need to know that it refers

back to Hillary Clinton.

As is common in research on coreference resolution, we slightly abuse the termi-

nology and use the terms anaphor and antecedent also for mention pairs that do not

exhibit anaphoric reference:

Definition 8. Let Md be the set of mentions in a document d. Given two mentions m,n ∈
Md with coreferent(m,n) such that n precedes m in d, we call m the anaphor and n the
antecedent6.

2.1.2.3 Reference and the Type of Referring Expression

In this thesis, we are investigating noun phrase coreference in English. When refer-

ring, writers and speakers of English can choose between three types of noun phrases:

noun phrases headed by proper names, headed by common nouns and headed by

pronouns. Much research in linguistics is concerned with how speakers and writers

5Taken from http://blogs.wsj.com/washwire/2015/06/20/hillary-clinton-calls-for-
tighter-gun-control-after-charleston-church-shooting/, accessed 12 August 2015.

6In a pair (m,n), we first denote the anaphor and then the antecedent. This differs from standard
terminology, where the order is vice-versa (e.g. Fernandes et al., 2014). However, this change in
terminology will make the representation of the error analysis and machine learning frameworks in
Chapter 4 and Chapter 5 more convenient.
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2 Coreference Resolution

choose between theses types, and how hearers and readers process them. According

to Gundel et al. (1993), “It is widely recognized that the form of referring expressions

[...] depends on the assumed cognitive status of the referent, i.e. on assumptions that

a coöperative [sic!] speaker can reasonably make regarding the addressee’s knowledge

and attention state in the particular context in which the expression is used” (Gundel

et al., 1993, p. 275).

Approaches differ in how they model and treat the cognitive status. For instance,

Clark and Marshall (1981) claim that the choice of referring expression is governed

by mutual knowledge. They distinguish between three types of mutual knowledge,

community membership, physical co-presence and linguistic co-presence. For example,

writers employ proper names when they can assume that the writer and the readers

share the knowledge about the referent of the proper name. Linguistic co-presence on

the other hand encourages the use of pronouns.

To better understand coreference, we briefly review research on how the different

mention types establish reference, and how they are processed. In particular, we are

interested in what the factors of choosing and comprehending the different types of

noun phrases are, how they establish reference, whether they are used anaphorically

or not, and how difficult it is for humans and algorithms to resolve these references.

We support our discussion by a corpus study of the coreference relation on the

CoNLL-2012 training data subset (Pradhan et al., 2012) of the OntoNotes 5.0 cor-

pus (Weischedel et al., 2013). The corpus spans several genres, from news wire to

transcribed telephone conversations. We describe the corpus in more detail in Sec-

tion 8.1. Table 2.1 shows an overview of the coreference properties in this corpus for

proper names, common nouns and pronouns. We provide a fine-grained distinction

by distinguishing between definite, indefinite, bare and other noun phrases, and by

distinguishing pronouns according to their canonical form (for example, the canonical

form of him is he). For each class of mentions, we count the total occurrences in the

corpus, occurrences in coreference chains, and the proportion of mentions that are

first in their chains, compared to all mentions of that type in any coreference chain.

Proper Names. Proper names are names of specific entities. Proper names can be

used to refer to entities which writer and reader share knowledge about, like Apple
and Hillary Clinton in Examples (2) and (4) respectively. However, proper names are

also frequently used to introduce entities (probably) unknown to the reader, as in the
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2.1 Problem Definition

Type Occurrences In Chain First in Chain Perc. First in Chain

Proper Name 99,858 43,598 12,664 29%
Common Noun 193,930 39,189 17,041 43%

Definite 81,742 27,601 8,230 30%
Indefinite 23,560 3,062 2,634 86%
Bare 66,896 5,739 4,312 75%
Other 21,732 2,787 1,865 67%

Pronoun 78,796 66,491 2,469 4%
I 14,208 13,844 682 5%
you 13,077 9,055 351 4%
we 8,132 5,640 727 13%
he 14,625 14,468 117 1%
she 3,534 3,489 42 1%
it 12,359 8,045 203 3%
they 12,447 11,795 319 3%
this 2,780 1,334 167 13%
that 2,873 1,593 99 6%

Table 2.1: Coreference statistics for the CoNLL-2012 training portion of the OntoNotes
5.0 corpus. For each mention type total occurrences, occurrences in coref-
erence chains and percentage of occurrences as first mention in a chain are
shown.

following example7.

(5) [Giant Group Ltd.]1 said [it]1 terminated negotiations for the purchase

of [Aspen Airways, a Denver-based regional carrier that operates the

United Express connector service under contract to UAL Corp.’s United

Airlines]2.

[Giant, a Beverly Hills, Calif., collection of companies that is controlled

by Hollywood producer Burt Sugarman]1, didn’t give a reason for halt-

ing its plan to acquire [the airline]2, and [Aspen]2 officials couldn’t be

reached for comment.

The entity GIANT GROUP LTD. is introduced by the proper name Giant Group Ltd.
7Appears in document wsj_2424 from the OntoNotes 5.0 corpus.
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2 Coreference Resolution

Even if the reader is not familiar with Giant Group Ltd., the reader can understand the

text by inferring from the first sentence that Giant Group Ltd. is a company since it

had plans to purchase another company. By means of an apposition, we extend our

knowledge of Giant Group Ltd in the second sentence.

As we can see from the examples presented so far, proper names can be used to

refer to known and unknown entities, and they are used anaphorically and non-

anaphorically. They play an important role in introducing entities into a discourse,

either by referring to known entities or by referring to unknown entities which are

then described later (as in Example (5)). This assessment is also supported by the

numbers in Table 2.1: from the proper names in coreference chains, about 30% are

first in chain, and they constitute a large proportion of all mentions that are first in

their respective chains.

Proper names are used when referring to entities that are uniquely identifiable (Gun-

del et al., 1993; Mulkern, 1996). However, we do not always use proper names when

referring to such entities. Consider the following pair of examples, taken from Gordon

et al. (1993):

(6) [Bruno]1 was the bully of the neighborhood.

[Bruno]1 chased Tommy all the way home from school one day.

(7) [Bruno]1 was the bully of the neighborhood.

[He]1 chased Tommy all the way home from school one day.

In Example (6), the entity BRUNO is referred to twice in adjacent sentences by the

proper name Bruno. In contrast, in Example (7), the entity is introduced by the proper

name Bruno and then referred to by the pronoun he. Example (7) is more readable

than Example (6), due to the repeated name penalty: in contexts such as in the sen-

tences displayed in the example, repeating the proper names increases reading time,

which suggests that it hampers processing of the discourse (Gordon et al., 1993).

Hence, the choice of whether to employ proper names or not is governed by context

factors and the status of the entities in memory. In general, proper names are used to

refer to entities stored in long-term memory, while for example pronouns are used to

refer to entities stored in short-term memory (Ariel, 1988).

As we could already see from the examples in this section, coreference between

proper names can often be resolved by simple string similarity heuristics (Hillary Clin-
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2.1 Problem Definition

ton and Mrs. Clinton; Giant Group Ltd. and Giant; ...). Many examples, however,

require world knowledge, such as in the following example8:

(8) While the mild winters make this comfortable living for almost three

million seniors, the largest elderly population in the United States, this

year it is not the weather drawing [Al Gore and George W. Bush]1 to

[the Sunshine State]2.

[Both candidates]1 list 25 reasons to keep coming back, [Florida’s]2 25

electoral votes.

The resolution is facilitated if we know that the Sunshine State is a nickname for

FLORIDA.

Common Nouns. Common nouns are designators for classes of entities or for abstract

concepts, such as book, money, people or happiness. We abuse notation and call all

noun phrases common nouns which have a common noun as their head, such as a new
book or the happiness I pursue.

We can distinguish these noun phrases based on their determiner. Definite noun
phrases are noun phrases that begin with the determiners the/this/that/these/those or

a possessive phrase, such as the book, my people or Obama’s presidency. Indefinite noun
phrases begin with the indefinite article a or an such as a statue. Bare noun phrases
are noun phrases without any determiner, as for example books or new data. These

three are the most frequent classes of noun phrases. We subsume the remaining noun

phrases in an Other category9.

Each of these classes serves different functions in a discourse. Definite noun phrases,

which are also called definite description, are similar to proper names: they refer to

specific entities or concepts. Most uses of the definite presuppose “the existence of the

entity, set or quantity that the addressee is expected to be able to identify” (Huddleston

and Pullum, 2002, p. 369). Hence, they are often used to refer to entities already

introduced into the discourse. Entities can also be introduced into a discourse if the

entity which is referred to is identifiable by both the writer/speaker and reader/hearer,

as in the following example10.

8Appears in document mnb_0010 of the OntoNotes 5.0 corpus.
9This a diverse category, containing nouns with determiners such as some, every, all and one; and also

containing coordinated phrases. A discussion of these is out of scope of this thesis.
10Appears in document ectb_1070, part002 in the OntoNotes 5.0 corpus.
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(9) [The devastating 21 September earthquake of 1999]1 left Taiwan’s

landscape covered in scars, but researchers discovered that the places

least damaged by [the quake]1 were areas of natural forest.

Here, the devastating 21 September earthquake of 1999 refers to a particular, iden-

tifiable earthquake, which the header/reader can identify by the detailed lexical de-

scription.

In contrast, the use of the indefinite article a/an does not presuppose existence or

being able to identify, the addressee “is not expected to be able to identify anything”

(Huddleston and Pullum, 2002, p. 371). Indefinite noun phrases play a prime role in

introducing new entities into discourse, since they can express existential quantifica-

tion, such as in Example (10). This property is also evident from the numbers in Table

2.1: from all uses of indefinite noun phrases in coreference chains, 86% are the first

mention in the chain.

(10) I’ve bought a new book.

Bare plurals are often used for the same purpose as indefinite noun phrases (in

English, there is no plural indefinite determiner). However, bare plurals also can often

be interpreted generically, such as Pandas in the following example.

(11) Pandas prefer bamboo.

Here Pandas does not refer to a specific set of panda bears, but to any set of panda

bears. Besides the bare plural, definite and indefinite noun phrases also permit this use

for many nouns (we can also say a/the panda prefers bamboo). Finally, noun phrases

in the Other category have diverse usage, which is often non-referential, such as in the

following example.

(12) Every cat likes that.

Resolving coreference between common nouns is one of the most difficult subtasks

of coreference resolution. To understand why, let us consider a few examples in order

of increasing difficulty.

(13) [Recognition Equipment Inc.]1 said [it]1 settled a civil action filed against

[it]1 by [the federal government]2 on behalf of the U.S. Postal Service.

[The government]2 sued [the company]1 in April, seeking $23,000

and other unspecified damages related to an alleged contract-steering

scheme.
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2.1 Problem Definition

In this example11, there is a head match between the mentions the federal govern-
ment and the government. This head match provides a strong clue for coreference,

which is also correct in this case. However, a head match does not always induce

coreference12:

(14) The suit charged [the defendants]1 with causing Peter E. Voss, an ex-

member of the Postal Service board of governors, to accept $23,000 in

bribes, kickbacks and gratuities.

[...]

The [five additional defendants]2 weren’t parties to the settlement .

Here, the defendants and the five additional defendants do not corefer. This can be

inferred from the pre-modifier additional. Hence, modifier agreement is an important

issue in resolving common noun coreference. Accurately modeling this agreement

requires deep language understanding.

Finally, we consider mentions with no head match between the anaphor-antecedent

pair13:

(15) In accordance with the urban plan, [new streets]1 were cut this way

and that through Pali’s land, and high-rise buildings sprang up along

the sides of [these roadways]1.

To determine that these roadways is coreferent with new streets, we need to know

that (at least in some contexts) roadways and streets are synonymous. Obtaining

this information is difficult. For example, WordNet (Fellbaum, 1998), a standard,

manually-compiled lexical database for English, does not contain the information that

the nouns are in a lexical relation. In general, WordNet’s coverage is too low. Dis-

tributional or embedding methods (such as Mikolov et al. (2013)), which extract

co-occurrence information from large corpora, have higher coverage, but we are not

aware of any successful application on top of a supervised state-of-the-art coreference

resolution system.

11Appears in document wsj_2452 of the OntoNotes 5.0 corpus.
12The example appears in document wsj_2452 of the OntoNotes 5.0 corpus.
13The example appears in document ectb_1050 of the OntoNotes 5.0 corpus.
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Pronouns. Pronouns are words that substitute for noun phrases and nouns. In this

thesis, we only consider the personal pronouns I, you, we, he, she, it, they, and the

demonstrative pronouns this and that, including all inflected forms14.

Most pronouns are used to refer to entities already introduced into a discourse (from

Table 2.1 we can see that only 4% of all pronouns are first in their respective coref-

erence chains). They are the prime devices for anaphoric reference. For instance,

returning to Example (7), it is natural to refer to BRUNO by the pronoun he in the

second sentence, repeating the name Bruno makes reading more difficult.

The third-person pronouns he, she, it and they are primarily employed for anaphoric

reference. The remaining personal pronouns, I, you and we, often are used deictically:

the referent of the pronoun depends on contextual information, in this case the person

who utters a phrase containing the pronoun. Consider the following example:

(16) A: How are [you]1?

B: [I]1’m fine, and [you]2?

A and B engage in a conversation. The first you and the I refer to B, while the second

you refers to A. Without the contextual information that A utters the first sentence, and

that B utters the second sentence, we cannot determine the referents of the pronouns.

If we have a close look at the numbers in Table 2.1, we can see that many oc-

currences of you, we and it are not in any coreference chain. These pronouns can

be divided into generic and expletive usages. Example (17) provides an instance of a

generic you, while Example (18) provides an instance of an expletive it.

(17) You never know!

(18) It is raining.

In Example (17), the pronoun you refers to people in general (all personal pronouns

permit this usage). In Example (18), it does not refer to a specific entity, it just fills the

subject slot of the sentence and does not have any meaning. Hence, models for coref-

erence resolution have to identify expletive use of pronouns in order to not attempt

the resolution of these pronouns.

14We consider only these pronouns because they are the most frequent pronouns, and several other
important subclasses of pronouns — such as relative pronouns — are not annotated for coreference
in the OntoNotes 5.0 corpus, on which our experiments are run.
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Finally, let us consider the demonstrative pronouns this and that. While their pri-

mary use is deictic, they can also be used anaphorically (Huddleston and Pullum,

2002, p. 1504f.). As we can see from Table 2.1, roughly half of all occurrences are

used anaphorically and are therefore in coreference chains. In contrast to the other

noun phrases and pronouns we considered so far, demonstratives frequently refer back

to verb phrases, clauses or sentences (Quirk et al., 1991, p. 375). The OntoNotes an-

notation guidelines only permit noun phrases and verbs as mentions. Hence, if a

demonstrative pronoun has a clause headed by a verb phrase as an antecedent, only

the head of the verb phrase is annotated, as in the following example15.

(19) He said [the state court]1 [relied]2 on the Florida Constitution to draft

[its]1 decision, excluding state lawmakers and [that]2 violated the U.S.

Constitution.

Here, that refers back to the fact that the state court relied on the Florida Constitu-

tion to draft its decision, and therefore that is annotated to be coreferent with relied.

Since we only consider coreference resolution of noun phrases in this thesis, we do

not attempt to solve such coreference relations.

In general, the resolution of the third-person gendered pronouns he and she works

well with accuracy over 80% (Stoyanov et al., 2009b): there is low ambiguity, and

gender identification works well for English. The other pronouns pose a greater chal-

lenge. Approaches that perform the resolution of it restricted to a specific dataset,

such as technical manuals, obtain a good performance (Lappin and Leass, 1994), but

the performance does not generalize to corpora containing diverse genres (Stoyanov

et al., 2009b).

2.1.2.4 Discussion

We discussed the interactions between the processing of coreference relations and the

linguistic context and properties of mentions. We mainly focused on the handling

of different mention types when processing coreference relations, but also discussed

issues with regard to anaphoricity and the distinction between anaphoric reference

and coreference. The insights we obtained will play a fundamental role when devis-

ing adequate error representations in our error analysis framework (Chapter 4) and

when devising and analyzing adequate approaches to coreference resolution and their

representation (Chapters 6 and 8).
15Appears in document abc_0040 of the OntoNotes 5.0 corpus.
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2 Coreference Resolution

2.2 Graph-based Representations

We now build graph-based representations of coreference equivalence classes. These

will be the basis for both the machine learning framework as well as the error analysis

framework presented in this thesis.

The aim of coreference resolution algorithms is to predict coreference chains of

the mentions in the input document d. Formally, the reference data is equivalence

classes of the mentions Md according to the coreference relation, while the output is

equivalence classes of the system output mentions Md,S according to the sameEntityS

relation. These equivalence classes can be represented as graphs over the respective

node sets. Since the relations are symmetric, they can be represented by an undirected

graph, where two nodes are connected if and only if they are in the same equivalence

class. We instead opt to model the relations using a directed graph.

Definition 9. A directed graph is a tuple G = (V,A) where V is a set and A ⊆ V × V .

Employing a directed graph has the advantage that we can conveniently represent

order, which will make the presentation of various algorithms clearer.

Definition 10. Let d be a document, Md = {m1, . . . ,mn}. A graph G = (Md, A) repre-
sents the coreference relation over Md if

A = {(mj,mi) | j > i and coreferent(mj,mi)} ⊆Md ×Md. (2.1)

We write Gd for this graph. Analogously, we write GS
d for the graph that represents the

sameEntityS relation over Md,S.

m1

m2m4

m3

m5

Figure 2.1: The graph Gd for a document d with mentions Md = {m1, . . . ,m5}, and
equivalence classes {m1,m2,m4} and {m3,m5}

.

Figure 2.1 shows such a graph for document d with mentions Md = {m1, . . . ,m5},
where the equivalence classes are {m1,m2,m4} and {m3,m5}.
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In these graphs, coreference chains correspond to connected components, and they

model implicitly that a mention has no antecedent: a mention has no antecedent if it

does not have any outgoing edges. However, previous work on coreference resolution

found it useful to use a representation of equivalence classes which only employs one

connected component and models having an antecedent explicitly (Chang et al., 2012;

Durrett and Klein, 2013; Fernandes et al., 2014). Hence, we present an alternative

representation which uses dummy mentions to make the graph weakly connected. To

do so, for each node with outdegree 0, we add an edge from this node to a dummy

mention m0. Hence, in the graph that results from this procedure, the first mention of

each coreference chain has an edge to the dummy mention m0.

Definition 11. Let d be a document,Md = {m1, . . . ,mn}. We setM0
d = {m0,m1, . . . ,mn}

with m0 /∈Md and m0 < m for all m ∈Md.

A graph G = (M0
d , A) represents the coreference relation over Md if

A = {(mj,mi) | j > i and coreferent(mj,mi)} ∪ T0 ⊆M0
d ×Md (2.2)

where
T0 = {(mj,m0) | there is no i < j such that coreferent(mj,mi)} . (2.3)

We write Td for this graph. Analogously, we write T Sd for the corresponding graph that
represents the sameEntityS relation.

m0

m1

m2m4

m3

m5

Figure 2.2: The graph Td for a document d with mentions Md = {m1, . . . ,m5}, and
equivalence classes {m1,m2,m4} and {m3,m5}

.

Figure 2.2 shows such a graph for the example in Figure 2.1.
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2.3 Modeling Issues

Machine learning approaches to coreference resolution take as input a document d.

The goal is to output the equivalence classes of mentions in Md with respect to the

coreference relation by predicting equivalence classes over extracted mentions in Md,S

with respect to the sameEntityS relation. Typically, the set of mentionsMd,S is obtained

by a rule- or learning-based approach prior to (and independent from) the coreference

resolution step. In this thesis, we assume that we have obtained Md,S by such a pro-

cedure. The problem is then modeled as a prediction task: given the pair (d,Md,S),

output the graph GS
d or an equivalent representation.

As we saw in Section 2.1, predicting edges in this graph requires incorporating

lexical, grammatical, discourse, context and world knowledge. Furthermore, non-

trivial subtasks like anaphoricity detection or classification of expletive it have to be

solved to correctly predict coreference chains. This multitude of tasks to be solved

poses challenges for the feature designer and for the machine learning algorithm,

which has to consolidate different knowledge sources and various subtasks.

Furthermore, the task is also challenging from a modeling perspective: In principal,

because coreference decisions in document influence each other, we would like to

train a model that predicts equivalence classes using as much information about the

relations between decisions as possible. Ideally, we would like to be able to score,

predict and compare different segmentations into equivalence classes directly, as this

ability enables us to employ a global perspective. Hence, if we assume the graph-

based representation, the machine learning approaches should learn a scoring function

for graphs, and then output the highest-scoring graph that encodes the equivalence

classes.

However, this approach is not feasible: the number graphs in the search space is

exponential in the size of the mentions Md,S. Therefore, machine learning approaches

to coreference resolution have to resort to approximations. For instance, they obtain

scores for graphs as the sum of scores for edges, and choose edges greedily. While this

simplification makes the problem accessible for machine learning approaches, there is

a loss of information, since they can only investigate relations for pairs of mentions.
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2.4 Evaluation Metrics

2.4 Evaluation Metrics

For assessing the performance of models and for defining learning objectives for ma-

chine learning approaches, it is essential to have a method to evaluate the quality of a

predicted set of equivalence classes. In the following, we discuss evaluation metrics for

coreference resolution based on the graph-based representation described in Section

2.2.

In general, all evaluation metrics operate on the document level. For a document

d, they take the equivalence classes of the coreference relation and the sameEntityS

relation as input. They then output a set of numbers evaluating the quality of the

sameEntityS equivalence classes compared to the coreference equivalence classes.

m1

m2m4

m9

m3

m5

m6

m7m8

m1

m2m4

m9

m3

m5

Figure 2.3: Example reference annotation (top) and system output (bottom) for coref-
erence resolution evaluation.
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2.4.1 Recall, Precision and F-Measure

All evaluation metrics for coreference resolution we consider in this thesis report per-

formance in terms of recall, precision and F-measure. These terms originated in in-

formation retrieval, where recall measures the fraction of relevant items that were

retrieved, while precision measures the fraction of retrieved items that are relevant.

The F-measure combines precision and recall into a single metric by

Fα =
(α2 + 1)PR

α2P +R
, (2.4)

where P is precision, R is recall, and α > 0 is a parameter for controlling the re-

call/precision trade off. All the metrics considered in this thesis set α = 1.

Transferring recall and precision to the evaluation of coreference resolution, recall

should roughly correspond to the fraction of coreference information for reference

entities that was identified correctly, while precision should roughly correspond to the

fraction of coreference information that was correct in system entities.

Scoring is not a trivial task, since reference and system entities are complex objects,

which can also partially match. We also want to reward when a reference entity was

partially identified, or when a system entity partially corresponds to a reference entity.

In the following we discuss the most popular metrics for coreference resolution, and

describe how they tackle this problem. We explain the calculation of all metrics by

applying the metrics to the example shown in Figure 2.3.

2.4.2 The MUC Score

The sixth Message Understanding Conference (MUC-6, 1995) introduced a corefer-

ence resolution task, which was subsequently repeated (MUC-7, 1998). Prior to these

evaluation campaigns, work on reference resolution mainly considered anaphora res-
olution (the prediction of individual antecedents for mentions) and evaluated perfor-

mance by counting individual links. In the coreference resolution task, where individ-

ual links are either not annotated or not of interest, we need to find a more abstract

representation and evaluation metric.

Hence, Vilain et al. (1995) propose the MUC score, a scoring scheme that is suitable

for evaluating the coreference resolution task. Their key idea is to abstract away from

specific links by studying how the system output partitions Gd, and how the reference

annotation partitions GS
d . The larger the number of components in these partitions is,
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the worse the output should score.

m1

m2m4

m9

m3

m5

m6

m7m8

not in partition

r1 = 2/3 r2 = 1/1 r3 = 0/2

Figure 2.4: A calculation of the MUC recall score for the example in Figure 2.3. Recall
is (2 + 1 + 0)/(3 + 1 + 2) = 1/2.

In particular, for each connected component g ofGd (corresponding to one reference

entity), consider the partition g′, which is the subgraph of g that only contains edges

that can also be found in the system output GS
d . Let t be a spanning tree of g such that

t is also a spanning tree of each component in the partition. Recall g is the fraction

of edges of t that are in the partition. To extend this measure to a whole document,

the metric first sums over all spanning trees before computing the fraction. Figure 2.4

shows an example. For computing precision, the roles of Gd and GS
d are switched.

2.4.3 The B3 Algorithm

For scoring, the MUC score only considers the fraction of spanning tree edges that can

not be found in the partition. In particular, the score is agnostic to the size of the

individual subgraphs in the partition. Bagga and Baldwin (1998) argue that this does

not adequately assess the quality of the output: conflating two large reference entities

should be punished more than conflating two small reference entities.

Hence, the B3 algorithm considers for every mention m ∈Md the overlap of the ref-

erence and system entities which contain m. In terms of the graph based framework,

we again start with the connected components g of Gd, and compute the partitioned

graph g′. Unlike the MUC score, which is a link-based metric, the B3 algorithm is a

mention-based metric. Hence, for each mention m which is a node in g, it computes
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the number of nodes in the connected component of g′ that m belongs to. This number

is then divided by the number of nodes in g.

Since each fraction for each mention is a number between 0 and 1, we extend this

measure to the whole document by computing the sum over all fractions and dividing

the result by the number of mentions. Figure 2.5 shows an example.

m1

m2m4

m9

m3

m5

m6

m7m8

1/4

3/4

3/4

3/4

2/2

2/2

0/3

0/3

0/3

Figure 2.5: A calculation of the B3 recall score for the example in Figure 2.3. Recall
is the sum over all node scores divided by the number of mentions, which
yields (18/4)/9 = 1/2.

For computing precision, we switch the roles of Gd and GS
d .

2.4.4 Constrained Entity-Aligned F-Measure

Luo (2005) notes that both the MUC score and the B3 algorithm rely on intersections
of entities: for example, to compute recall, the metrics first compute the partition of

a reference entity according to all system entities. Hence, entities can be used more

than once in the computation of the metric. Luo attributes unintuitive results of the

MUC score and the B3 metric to this fact, and proposes to rely on a bijection between

reference and system entities. In Luo’s framework, we are given a similarity metric φ,

which computes a real-valued similarity score of two entities. For a document d, we

then choose an optimal bijection between the connected components in Gd and GS
d

according to φ. For computing recall, this number is divided by the self-similarity of

Gd. For computing precision, it is divided by the self-similarity of GS
d .

This parametrized framework gives rise to a class of metrics, which Luo calls Con-
strained Entity-Aligned F-Measure (CEAF). In his paper, Luo propose four similarity

scores, where two are practical for scoring coreference resolution approaches. φ3 com-

putes the number of common mentions, where φ4 computes the mention F1-measure.
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m1

m2m4

m9

m3

m5

m6

m7m8

m1

m2m4

m9

m3

m5

6/7

4/5

Figure 2.6: A calculation of the CEAFe score for the example in Figure 2.3. Numbers
on the dashed edges are the values of the similarity function φ4(Ki, Rj) =
2 |Ki ∩Rj| /(|Ki|+ |Rj|). To obtain recall, we divide (6/7+4/5) by the self-
similarity of the reference entities according to φ4, which results in recall
(6/7 + 4/5)/3 = 0.55.

Following terminology from the CoNLL shared tasks on coreference resolution (Prad-

han et al., 2011, 2012), we call the former CEAFm and the latter CEAFe. Figure 2.6

shows an example of the calculation of recall according to the CEAFe metric.

2.4.5 BLANC

Denis and Baldridge (2009) point out that, since the CEAF measures rely on bijections,

correctly identified links can be ignored during scoring. Moreover, as Recasens and

Hovy (2011) observe, on corpora where entities containing only one mention (called

singletons) are explicitly annotated, B3 and CEAF scores tend to be very high, which

makes distinguishing between systems more difficult, since all scores are in a similar,

high range.
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m1

m2m4

m9

m3

m5

m6

m7m8

Figure 2.7: A calculation of the BLANC recall score for the example in Figure 2.3.
Reference annotation and system output have four edges in common (col-
ored black in the figure). The reference annotation contains 10 coreference
edges, out of which 4 appear in the system output. Implicitly, the reference
annotation contains 26 non-coreference links, out of which 24 appear in
the system output (these are not displayed for readability reasons). Hence,
recall is (4/10 + 24/26)/2 = 0.66.

Therefore, Recasens and Hovy (2011) (subsequently refined by Luo et al. (2014))

propose a new evaluation metric called BLANC (short for BiLateral Assessment of

Noun-Phrase Coreference). The main idea behind BLANC is to score all non-coreference
links in addition to all coreference links.

First, both are scored separately. We first discuss the case of scoring the coreference

links, which correspond to edges in Gd (true links) and GS
d (predicted links). We

compute precision and recall for these links: recall is

Rc =

∣∣edges(GS
d ) ∩ edges(Gd)

∣∣
|edges(Gd)|

, (2.5)

while precision is

Pc =

∣∣edges(GS
d ) ∩ edges(Gd)

∣∣
|edges(GS

d )|
. (2.6)

Additionally, we compute an F1 score Fc for the coreference links.

Analogously, we compute precision Pn, recall Rn and F1 score Fn for the non-

coreference links, by replacing the graphs with their complement in the equations

above. In order to balance the contribution of coreference links and non-coreference

links, final precision, recall and F1 score are obtained by averaging, i.e. recall is set to

(Rc + Rn)/2, precision is set to (Pc + Pn)/2 and F1 score is set to (Fc + Fn)/2. Figure
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2.7 shows an example for computing recall according to BLANC.

2.4.6 Issues in Evaluation

The descriptions of B3 and the CEAF metrics are underspecified with regard to situa-

tions when mentions of reference and system entities do not match (Pradhan et al.,

2014). This underspecification motivated various researchers to adapt the metrics to

these situations (Stoyanov et al., 2009b; Cai and Strube, 2010b; Rahman and Ng,

2011a). However, Pradhan et al. (2014) show that the original definitions of the met-

rics already can handle these cases, and that the proposed modifications can lead to

unintuitive results.

In contrast, BLANC was devised to only handle the case where mentions in reference

and system output match (Recasens and Hovy, 2011, p. 499f.). Luo et al. (2014) show

how BLANC can be extended to the case where the mentions do not necessarily match.

Pradhan et al. (2014) release an open-source implementation16 of a scoring pro-

gram that implements the original definitions of the MUC score, the B3 algorithm, and

CEAFm as well as CEAFe. Furthermore, it includes an implementation of the adapted

version of BLANC as described in Luo et al. (2014).

16Available for download at http://conll.github.io/reference-coreference-scorers/.
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3 Related Work

Since coreference resolution is a fundamental task for natural language understand-

ing, it has received widespread attention. In this thesis, we provide frameworks for

representing learning-based approaches to coreference resolution and for coreference

resolution error analysis.

Accordingly, we first survey and discuss machine learning approaches to coreference

resolution (Section 3.1). We then consider work on representation frameworks for

coreference resolution (Section 3.2). Finally, we review work on error analysis and

related fields for coreference resolution (Section 3.3).

3.1 Machine Learning Approaches to Coreference

Resolution

In this section we review work on supervised machine learning approaches to coref-

erence resolution, from simple binary classification models (Connolly et al., 1994;

McCarthy and Lehnert, 1995; Aone and Bennett, 1996; Soon et al., 2001) to recently

proposed structured prediction models (Chang et al., 2013; Fernandes et al., 2014;

Clark and Manning, 2015).

In this thesis, we do not consider unsupervised machine learning approaches. While

unsupervised coreference resolution is an active area of research (Cardie and Wagstaff,

1999; Haghighi and Klein, 2007; Ng, 2008; Poon and Domingos, 2008; Haghighi and

Klein, 2010; Kobdani et al., 2011; Moosavi and Strube, 2014), supervised models

constitute the state of the art and are responsible for the main innovations.

3.1.1 A Historical Overview

In order to identify trends and breakthroughs in research, we first give a brief historical

overview of machine learning for coreference resolution.
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Early approaches to anaphora and coreference resolution were rule-based (Hobbs,

1976; Lappin and Leass, 1994). Until the mid nineties, no sufficiently large data set an-

notated with coreference information was available. This absence of data made learn-

ing models from data, evaluation, and comparing approaches difficult. However, there

is some work on pairwise models for coreference resolution, mainly based on decision

trees (Connolly et al., 1994; McCarthy and Lehnert, 1995; Aone and Bennett, 1996).

These approaches obtained competitive performance, but rule-based approaches were

still prevalent.

Supervised models gained more attention after a coreference resolution task was

introduced in the sixth edition of the Message Understanding Conference (MUC), an

evaluation campaign organized by the Defense Advanced Research Projects Agency

(MUC-6, 1995). The task again was evaluated in the seventh edition (MUC-7, 1998).

The data sets were small (30 documents for training, and 30 for evaluation), but for

the first time a standard data set and a standard evaluation metric were available.

While the entries to the evaluation campaign still were rule-based, Soon et al.

(1999) and Soon et al. (2001) present a pairwise system which obtains competitive

performance with a set of twelve simple features. In particular, it extracts all mention

pairs from a text and classifies them using a decision tree into coreferent and not coref-
erent. To consolidate the decisions, the system takes the closest mention deemed as

coreferent as the antecedent, which is called closest-first clustering. To align training

instance creation with closest-first clustering, it employs heuristics to discard mention

pairs during training.

The success of their simple system spurred research on machine learning for coref-

erence resolution and established their approach as the de facto standard for a decade.

Therefore, much subsequent research concentrated on retaining the structure of

the model and improving its components: the feature set, the learning algorithm,

and the clustering algorithm for obtaining the coreference chains from the pairwise

predictions.

Research was further spurred with the advent of another dataset, provided by the

Automatic Content Extraction (ACE) program (NIST, 2003). Data sets for coreference

resolution were released in 2002, 2003, 2004 and 2005. The ACE data sets were much

larger than the MUC data sets and covered more genres. However, the annotation of

coreference relations was restricted to a small set of entity types.

While the focus of research was on improving and analyzing mention pair mod-

els, few researchers worked on entity-based models, either by making use of features
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that entail more than two mentions, or by considering interactions between mention

pairs during learning and inference. First steps in this direction were taken by Mc-

Callum and Wellner (2003) and Luo et al. (2004). Culotta et al. (2007) achieved

state-of-the-art performance, but were soon outperformed by a feature-rich mention

pair model (Bengtson and Roth, 2008). Another development in coreference resolu-

tion modeling was ranking, which models the antecedent competition explicitly (De-

nis and Baldridge, 2008). Rahman and Ng (2011a) combine entity-based approaches

and ranking by proposing a cluster-ranking model, which outperforms a mention pair

model, a ranking model, and an entity-based model.

While large data sets were now available thanks to the ACE program, evaluating

and comparing approaches was complicated: there was no reference implementation

of evaluation metrics, no agreement on which data set to evaluate on, and the exper-

imental settings (as the amount of manually annotated linguistic information used)

often differed.

A third evaluation campaign, the CoNLL shared tasks on coreference resolution

(Pradhan et al., 2011, 2012), finally established a standard for experimental settings,

including a reference implementation of the most popular evaluation metrics (Pradhan

et al., 2014).

In the CoNLL-2011 shared task, most participants employed a mention pair model

in the spirit of Soon et al. (2001). However, the shared task was won by a rule-based

system (Lee et al., 2011). The CoNLL-2012 shared task was won by a structured

prediction approach, which modeled coreference resolution as predicting antecedent
trees, which are trees consisting of anaphor-antecedent pairs (Fernandes et al., 2012).

The success of this model increased the interest in structured prediction models

for coreference resolution, and the next years saw many ranking and antecedent tree

models improving the state of the art in coreference resolution (Durrett and Klein,

2013; Chang et al., 2013; Björkelund and Kuhn, 2014; Wiseman et al., 2015).

Competitive entity-based models were devised by modeling coreference resolution

explicitly as a search problem (Daumé III and Marcu, 2005a; Stoyanov and Eisner,

2012; Ma et al., 2014; Clark and Manning, 2015): coreference chains are built by

executing a sequence of actions.

To sum up, research on coreference resolution has shifted from simple mention

pair models to more complex approaches based on structured prediction. While these

approaches are the most successful and widely-used approaches, entity-based models

with learning and inference via search also gained a lot of attention recently.
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3.1.2 Specific Models

In the overview we identified several main modeling approaches to supervised coref-

erence resolution: mention pair models, ranking models, antecedent trees and entity-

based models. We now discuss each of these categories in detail.

3.1.2.1 Mention Pair

Mention pair models have been the dominant machine learning models for coreference

resolution from Soon et al. (2001) until the CoNLL shared tasks (Pradhan et al., 2011,

2012), after which structured approaches gained more attention.

Soon et al. (2001) model coreference resolution as a binary classification task for

pairs of mentions. When predicting coreference chains for a document, they extract

each pair of mentions (mj,mi) and classify it as either coreferent or non-coreferent, us-

ing a decision tree (Quinlan, 1993). To do so, they rely on twelve simple features, con-

sisting of distance, string matching and mention type features (for example whether

the anaphor is a pronoun). Their model needs a clustering step after classification,

since it is there are many options to construct coreference chains from coreference

decisions. Furthermore, the classification decisions can be contradicting.

Consider the following example:

(20) [Obama]1 met with [Bush]2. [He]1 talked to [him]2 for several hours.

Obama Bush he him
−

+

+

+

+

−

Figure 3.1: Contradicting classification decisions in the mention pair model.

Figure 3.1 shows classification decisions for the four mentions Obama, Bush, he and

him. There are several contradicting decisions. For example, he is determined to be

coreferent with both Obama and Bush, while Obama and Bush are determined to be
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not coreferent. Even when ignoring the contradictions, there are several options for

extracting coreference chains from the classification decisions: should we choose only

one antecedent for a mention or all antecedents? If we only choose one antecedent,

then which?

Soon et al. (2001) perform closest-first clustering to obtain the coreference chains:

they choose the closest antecedent which was classified as coreferent by the model.

In the example displayed in Figure 3.1, this clustering would choose Bush as the an-

tecedent for he. Observe that the clustering does not resolve contradictions: when

performing closest-first clustering, he and him are in the same coreference chain, al-

though the model predicts that they are not coreferent.

Another issue of mention pair models is the distribution of training instances. In

order to learn a mention pair model, we have to provide training data in terms of

mention pairs, which are labeled as either coreferent or non-coreferent. When provid-

ing all pairs that appear in the training data, mentions may have multiple antecedents,

hence the training data may not align with the clustering method that is used. More-

over, when considering all pairs, the distribution of instances is skewed, since the vast

majority of pairs are not coreferent (see for example Ng and Cardie (2002)). Hence,

Soon et al. (2001) employ a heuristic to change the distribution of pairs in the training

data. They learn only from mentions mj that have at least one antecedent. Let the

closest such antecedent be mi. They then consider all pairs (mj,mk) with i ≤ k < j

as instances: (mj,mi) is a positive instance (the mentions are coreferent), while the

remaining instances are negative.

From this discussion we can identify four parameters of the mention pair model, if

we regard the underlying structure as fixed: the machine learning classifier, the feature

set, the clustering algorithm, and the resampling of the training data. In the following

we describe research on the mention pair model for each of these parameters.

Machine Learning Classifier. While Soon et al. (2001) used a decision tree, other

research employed the perceptron (Bengtson and Roth, 2008; Stoyanov et al., 2009a),

support vector machines (Rahman and Ng, 2011a), maximum entropy (Versley et al.,

2008) or memory-based learning (Hoste, 2005).

Only few research systematically compares differences between these learning mod-

els. Rahman and Ng (2011a) compare maximum entropy and support vector ma-

chines, noting that differences in performance depend on the set of features used

(Rahman and Ng, 2011a, p. 500).
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Feature Set. The small feature set described in Soon et al. (2001) was substantially

extended by Ng and Cardie (2002), who introduced 41 additional features. These

additional features included more fine-grained mention type comparisons, grammat-

ical constraints and substring match features. Subsequent research further extended

this feature set. In particular, the availability of larger data sets than the MUC data

used by Soon et al. (2001) and Ng and Cardie (2002) rendered the inclusion of lexical
features feasible (Luo et al., 2004; Bengtson and Roth, 2008; Rahman and Ng, 2011a;

Björkelund and Nugues, 2011).

Another import thread of research is the inclusion of world knowledge in corefer-

ence resolution models. Consider the following example. To correctly resolve the US
president to Barack Obama, it would be helpful to provide the knowledge that Barack

Obama is the President of the United States.

(21) Yesterday, Francois Hollande met with Barack Obama. The US presi-

dent demanded further talks about the delicate matter.

Some of these relations can be found in WordNet (Fellbaum, 1998). Knowledge

bases constructed from Wikipedia or similar resources, such as YAGO (Hoffart et al.,

2011), Freebase (Bollacker et al., 2008) or WikiNet (Nastase et al., 2010) are less

precise, but have higher coverage. Another option is to mine such information auto-

matically from large unstructured datasets.

Ponzetto and Strube (2006) create a taxonomy from Wikipedia by making use of the

category network (see also Strube and Ponzetto (2006)). They devise features based

on semantic relatedness in this taxonomy. Rahman and Ng (2011b) devise features

based on YAGO to tackle cases such as presented in Example (21), and complement

these features with co-occurrence information mined from large data sets. Bansal and

Klein (2012) use only unstructured text data, devising co-occurrence features from

web data. All authors evaluate the usefulness of their features on the ACE data1,

and observe statistically significant improvements compared to mention pair baselines

without the features.

Clustering Algorithm. The majority of work on coreference resolution has focused

on improving the clustering algorithm to obtain coreference chains from the classifier’s

pairwise predictions. While Soon et al. (2001) always take the closest mention clas-

sified as coreferent as the antecedent, Ng and Cardie (2002) take the highest-scoring
1Rahman and Ng (2011b) also evaluate on OntoNotes.
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mention classified as coreferent as the antecedent. This method is known as best-first
clustering. Both of these approaches are greedy: they take a locally optimal deci-

sion and do not model any relation between decisions. Another approach that does

not model relations between decisions is aggressive-merge clustering, which takes the

transitive closure over all coreference decisions (Stoyanov et al., 2009b; Denis and

Baldridge, 2009). All three of these clustering approaches have been used in various

implementations, but there are few systematic comparisons. Ng and Cardie (2002)

show that best-first clustering outperforms closest-first clustering on the MUC data,

while Rahman and Ng (2011a) observe the reverse effect on ACE data. Denis and

Baldridge (2009) compare closest-first and aggressive-merge clustering, noting that

aggressive-merge improves result for the MUC metric, while closest-first gives better

results for B3 and CEAFm. Stoyanov et al. (2009b) analyze the output of an resolver

on MUC and ACE data, noting that for trial runs results for closest-first, best-first and

aggressive-merge were comparable (Stoyanov et al., 2009b, footnote p. 658).

The clustering schemes mentioned above cannot account for dependencies between

clustering decisions, such as contradictions as expressed in Figure 3.1. This spurred

research on more complex clustering schemes which take such dependencies into ac-

count.

Luo et al. (2004) train a mention pair model and construct tree that represents

all possible coreference chains: each node in the nth level of the tree represents a

clustering of the first n mentions of the document, children of a node in the nth level

are obtained by the antecedent decisions for the (n + 1)th mention in the document.

Luo et al. (2004) present an algorithm for computing optimal clusterings in the tree,

which is made computationally feasible by pruning.

Nicolae and Nicolae (2006) construct a graph from the output of a pairwise classi-

fier, where nodes are the mentions, and edges are labeled with the confidence of the

classifier. They do not include pronouns in this graph. An optimal partitioning of the

mentions into entities is then obtained by a variant of the MinCut algorithm (Stoer

and Wagner, 1997). Sapena et al. (2013) learn a decision tree from mention pairs,

and construct a graph where edge weights are derived from weights of rules expressed

in the decision tree. The weight of an edge is the precision of the corresponding rule.

Clusters are obtained by relaxation labeling (Hummel and Zucker, 1983).

Klenner (2007) as well as Finkel and Manning (2008) employ integer linear pro-

gramming to enforce a clustering which respects the transitivity induced by the output

of a pairwise classifier.
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Clustering during Learning. All the approaches discussed so far only apply the clus-

tering during inference on unseen data, not during learning. When incorporating the

clustering algorithm during learning, the model does not consider each pair in isola-

tion anymore, since decisions influence each other.

Research in this direction was pioneered by McCallum and Wellner (2003), who de-

vised a graphical model where finding the optimal assignment of mentions to entities

corresponds to graph partitioning. Chang et al. (2011) incorporate aggressive-merge

clustering during learning via integer linear programming. Song et al. (2012) per-

form best-first clustering and a clustering which respects transitivity via Markov Logic

Networks (Richardson and Domingos, 2006), an expressive formalism that combines

first-order logic and Markov networks.

Training Data Resampling. Mention pair models need to cope with an unbalanced

distribution of the training data labels. This is an issue since the training examples may

not align with the clustering algorithm used, and the vast majority of mention pairs

are not coreferent. Such skewed distributions pose problems for machine learning

algorithms (He and Garcia, 2009). Hence, Soon et al. (2001) apply a heuristic to

rebalance the distribution of the training data: they learn only from mentions mj that

have an antecedent. The pair of the mention mj and its closest antecedent mi serves as

a positive instance, while all pairs (mj,mk) with i < k < j serve as negative instances.

This heuristic was subsequently employed by the majority of work relying on the

mention pair model (see, among others, Ng and Cardie (2002), Ponzetto and Strube

(2006), Yang and Su (2007), Rahman and Ng (2009), and most entries to the CoNLL-

2011 shared task (Pradhan et al., 2011)). Researchers often slightly modified the

heuristic. Ng and Cardie (2002), for example, select the closest non-pronominal an-

tecedent for a pronominal anaphor as the positive instance for the anaphor.

Bengtson and Roth (2008) learn their mention pair model from the closest an-

tecedent and all preceding non-antecedents for a mention (excluding pronominal an-

tecedents for non-pronominal mentions), while Stoyanov et al. (2009b) learn from all

mention pairs.

A few studies compare different approaches for training data resampling. Hoste

(2005) studies the effect of randomly downsampling negative instances on MUC data

and the Dutch KNACK-2002 corpus (Hoste and De Pauw, 2006), varying the down-

sampling ratio. She investigates the decision tree learner Ripper (Cohen, 1995) and

the memory-based learner TiMBL (Daelemans et al., 2004). According to her results,
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downsampling is harmful for TiMBL but beneficial for Ripper. Recasens and Hovy

(2009) and Zhekova (2011) perform similar studies for more languages, but only

consider TiMBL. The results obtained by them are in line with the findings of Hoste

(2005). It is worth noting that these authors only considered random downsampling

and did not compare with the heuristic of Soon et al. (2001).

3.1.2.2 Ranking

The mention pair model suffers from several weaknesses. As we have identified, the

output of mention pair models can contain contradicting predictions, which results

in the need for additional clustering algorithms to handle these contradictions. This

clustering is also not modeled during learning. Furthermore, by considering each

pair individually during training, the mention pair approach is not able to model any

relation or competition between different candidate antecedents for a mention.

A first step to overcoming these deficiencies was the twin-candidate model by Yang

et al. (2003). In their model, for each anaphor mj, for each each pair of candidate

antecedents (mi,mk) they predict whether mi or mk is a better antecedent for mj. The

mention that wins most of these comparisons gets assigned as the antecedent for mj.

For training the model, pairs of candidate antecedents are extracted where one the

mentions is coreferent with the anaphor, while the other is not coreferent with the

anaphor. This approach considers all pairs of candidate antecedents during inference.

However, it only considers two candidate antecedents for each individual prediction.

To consider all antecedents, the approach employs a complex tournament scheme,

which is also not modeled during training.

To further improve on the twin-candidate model, Denis and Baldridge (2008) pro-

pose a ranking approach to coreference resolution: for a given mention mj, they con-

sider the preceding mentions m1 to mj−1 and compute scores for all pairs (mj,mi) with

1 ≤ i ≤ j − 1. The mention mi of the highest-scoring pair (mj,mi) is then selecting as

the antecedent of mj. While this inference method resembles the best-first clustering

used in mention pair models, the crucial difference is that a similar antecedent se-

lection is also modeled during training: Denis and Baldridge (2008) learn parameter

vectors such that the closest correct antecedent has a higher score compared to all

other antecedents2.

Again, we can identify parameters of the ranking approach: in contrast to the men-

2The set of considered antecedents is pruned according to various heuristics.
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tion pair model, there exist slight structural variants for ranking models. Hence, the

underlying structure is one parameter. Other parameters are the machine learning

classifier to learn weights and compute scores, the feature set and the selection and

handling of training data samples. Let us investigate how Denis and Baldridge (2008)

and subsequent work on ranking models handled these parameters.

Structure Variants. All ranking models operate on slight variants of the same un-

derlying structure: a mention mj and the list of its candidate antecedents m1 to mj−1.

Denis and Baldridge (2008) work on this structure, and enforce that every mention

considered by their ranking model must be resolved to some antecedent. However,

most mentions are not anaphoric. To handle these mentions, Denis and Baldridge

(2008) first apply an anaphoricity classifier to determine whether the mention under

consideration is anaphoric or not. If the mention is deemed to be non-anaphoric, it is

not considered by the ranking model and left unresolved. Rahman and Ng (2011a)

employ the same strategy.

Chang et al. (2012) introduce a dummy mention m0, which they add to the list

of candidate antecedents for each mention. If m0 is chosen as the antecedent, the

mention in focus is considered as non-anaphoric. Therefore, Chang et al. (2012) do

not need an additional anaphoricity classifier.

Machine Learning Classifier. Similar to the mention pair model, ranking models

were devised using many different machine learning classifiers. Denis and Baldridge

(2008) employ a maximum entropy classifier, while Rahman and Ng (2011a) use sup-

port vector machines. Chang et al. (2012) train their ranker via an averaged percep-

tron, while Durrett and Klein (2013) employ AdaGrad (Duchi et al., 2011), a variant

of stochastic gradient descent.

Feature Set. Many mention ranking models use features devised for mention pair

models such as Ng and Cardie (2002) and Bengtson and Roth (2008). Durrett and

Klein (2013) show that a mention ranking model can perform very well when mainly

relying on lexical features and a linguistically motivated heuristic for devising feature

conjunctions. Wiseman et al. (2015) automatically learn feature combinations via

neural networks, which yields improvements over the heuristic combination scheme

from Durrett and Klein (2013).
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Chang et al. (2012) do not compute any features when considering a pair which

includes the dummy mention. Therefore every pair that contains the dummy men-

tion receives the score 0. In contrast, Durrett and Klein (2013) introduce a feature

antecedent=NEW, which is triggered when the antecedent is the dummy mention, and

conjoin this feature with features of the anaphor.

Selection and Handling of Training Data Samples. Similar to the mention pair

model, some mention ranking approaches filter the training data. Denis and Baldridge

(2008) learn only from anaphoric mentions, and choose the closest correct antecedent

as the reference antecedent for pronouns, while they choose the closest non-pronominal

antecedent as the reference antecedent for non-pronominal mentions. Work that uses

dummy mentions, such as Chang et al. (2012) and Durrett and Klein (2013), considers

all mentions to resolve, but usually makes use of cost functions to guide learning. These

cost functions allow to inject knowledge of the severity of different errors. Chang et al.

(2012) use a simple 0-1 loss. Durrett and Klein (2013) devise a cost function that dis-

tinguishes between three types of errors, which are weighted differently:

• a wrong link error happens when two non-coreferent non-dummy mentions are

assigned to the same entity;

• a false new error happens when a mention gets the dummy mention as an-

tecedent, but is anaphoric;

• a false anaphoric error happens when a mention gets a non-dummy mention as

antecedent, but is not anaphoric.

Another difference between various instances of the ranking approach is the choice

of reference antecedents during training. Denis and Baldridge (2008) choose the an-

tecedents according to a heuristic: for each mention, the closest correct antecedent of

a specific mention type is regarded as the reference antecedent. Hence, models fol-

lowing Denis and Baldridge (2008) (such as Rahman and Ng (2011a)) employ fixed
antecedents.

These fixed antecedents do not necessarily provide the best instances for training.

For instance, a common noun antecedent for a proper name anaphor may be hard to

resolve. While we could devise further rules to choose other antecedents for these

cases, this approach would necessitate a large amount of engineering, and it is fur-

thermore language-, corpus- and genre-specific. An alternative is to learn what the
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best correct antecedent for a mention is. This is the approach taken by Chang et al.

(2012) and Durrett and Klein (2013): learning works in an online fashion. At each

step, when considering a mention mj, the approach chooses the highest-scoring cor-

rect antecedent under the current model. This antecedent then serves as the reference

antecedent.

3.1.2.3 Antecedent Trees

Antecedent trees gained a lot of attention after Fernandes et al. (2012), who employed

an model based on this structure, won the CoNLL-2012 shared task on multilingual

coreference resolution (Pradhan et al., 2012). The structure was initially proposed

by Yu and Joachims (2009). Antecedent trees extend the ranking approach by pro-

viding a document-level perspective: while the ranking approach considers only one

anaphor-antecedent pair at each inference and training step, antecedent trees encode

all anaphor-antecedent decisions for the whole document. The goal is to predict a tree

with the dummy mention as root, and where each edge is an anaphor-antecedent pair

(if no dummy mention is used, a spanning forest is predicted instead). The structure

is a tree because each mention is restricted to have only one antecedent (which can be

the dummy mention).

It is worth noting that some approaches devised as ranking perform learning via a

variant of stochastic gradient descent, and perform parameter updates after consid-

ering document-size mini-batches. Since these mini-batches contain antecedent deci-

sions for the whole document, the approaches predict antecedent trees during learning

(Durrett and Klein, 2013; Wiseman et al., 2015).

Analogously to the ranking models, we can distinguish between the following pa-

rameters for antecedent trees: the exact underlying structure, the machine learning

classifier to learn weights and compute scores, the feature set and the selection and

handling of training data samples.

Structure Variants. Yu and Joachims (2009), who originally proposed the approach,

do not employ dummy mentions. Therefore, their output does not consist of a tree,

but of a set of trees, where each tree corresponds to one entity. Moreover, their graph

is undirected. In practice, however, this makes no difference, since edges always rep-

resent anaphor-antecedent decisions.

Fernandes et al. (2012, 2014) employ dummy mentions. The dummy mention is the
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root of the tree, edges are directed and are from antecedent to anaphor. Each subtree

of the root node corresponds to an entity. All remaining antecedent tree approaches we

are aware of build upon the representation of Fernandes et al. (2012, 2014) (Chang

et al. (2013); Björkelund and Kuhn (2014); Lassalle and Denis (2015)).

Machine Learning Classifier. The most popular machine learning approach is the

latent structured perceptron (Collins, 2002; Sun et al., 2009) or a variant thereof. It is

employed by Fernandes et al. (2014), Björkelund and Kuhn (2014) and Lassalle and

Denis (2015). Yu and Joachims (2009) use latent structural support vector machines;

Chang et al. (2013) employ a variant of stochastic gradient descent.

Feature Set. Antecedent tree approaches use a rich feature set (including lexical fea-

tures), heavily relying on feature combinations. Most approaches do not compute any

features when the antecedent is the dummy mention. The exception is Lassalle and

Denis (2015), who devise features for anaphoricity detecion which they apply when

the antecedent is the dummy mention. They report improvements when evaluating

only on mentions that can be found in the reference annotation.

Chang et al. (2013) and Lassalle and Denis (2015) apply must-link and cannot-link

constraints, such as enforcing the model to build an edge between two identical proper

nouns. Lassalle and Denis (2015) apply them also during learning, Chang et al. (2013)

only during inference. Chang et al. (2013) observe improvements, Lassalle and Denis

(2015), however, observe a decrease in performance.

In most models, the feature function is required to factor with respect to the edges

in the graph, which restricts the models to features over pairs of mentions. Björkelund

and Kuhn (2014) also allow non-local features, that apply to more than one mention,

such as the sequence of mention types in an entity. They perform learning and infer-

ence using left-to-right decoding (in document order) via beam search.

Selection and Handling of Training Data. Approaches based on antecedent trees

do not employ any resampling, but use cost functions to guide learning.

To compute the loss for a document, Yu and Joachims (2009) reward edges linking

coreferent mentions by 1, and penalize linking two non-coreferent edges by -13. The

3These values, as well as the values for the remaining cost functions discussed, are later scaled by a
parameter which was optimized on development data or by cross-validation.
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resulting value is subtracted from the number of reference mentions and entities in

the desired output.

Fernandes et al. (2014) use a simpler cost function: edges between two non-coref-

erent mentions have cost 1, erroneous links to the dummy mention have cost 1.5,

Björkelund and Kuhn (2014) use the same cost function. Chang et al. (2013) and

Lassalle and Denis (2015) penalize all wrong links with cost 1.

3.1.2.4 Entity-based Approaches

All the models discussed so far (with the exception of Björkelund and Kuhn (2014))

make all decisions based on scores between pairs of mentions. Hence, they are unable

to exploit features that apply to more than two mentions.

However, such features may be helpful for coreference resolution. For example

(inspired by an example discussed by McCallum and Wellner (2003)), consider a doc-

ument that includes the mentions Barack Obama, Obama and she, where only the first

two are coreferent. If she is very close to Obama, likely she will erroneously be resolved

to Obama. If we add a cluster-level gender agreement feature, this error could have

been prevented.

While sophisticated clustering algorithms for the mention pair model can handle

such cases, incorporating cluster-level features gives more expressiveness. The first

such entity-based model was introduced by Luo et al. (2004) who devise an mention-
entity model, which decides to which partially constructed entity an anaphor should be

attached. Culotta et al. (2007) develop a more expressive model which can incorpo-

rate features between pairs of entities. Following the literature (Lee et al., 2013; Clark

and Manning, 2015), we call such models entity-centric.

In the following, we discuss entity-based approaches, again according to four dimen-

sions: the structure, the machine learning classifier, the feature set and the selection

and handling of training data.

Structure Variants. Mention-entity models (Luo et al., 2004; Daumé III and Marcu,

2005a; Daumé III, 2006; Yang et al., 2008; Rahman and Ng, 2011a; Webster and Cur-

ran, 2014; Ma et al., 2014) go through the document in a left-to-right fashion, and

decide for each mention to which partially constructed entity it should be attached.

Hence, they can harness information about the mention in focus and any partially

constructed entity so far. Most mention-entity models consider each pair of mention
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3.1 Machine Learning Approaches to Coreference Resolution

and partial entity in isolation during training: they either constitute a positive instance

or not. Rahman and Ng (2011a) propose a cluster-ranking model, which also models

the search for the best partially constructed entity during search, by performing a rank-

ing over these entities. Similarly, inspired by shift-reduce parsing (Aho and Johnson,

1974), Webster and Curran (2014) search for the best partially constructed entity on

a stack.

Entity-centric models (Culotta et al., 2007; Stoyanov and Eisner, 2012; Clark and

Manning, 2015; Wiseman et al., 2016; Clark and Manning, 2016) instead construct the

entities via merge operations for pairs of partially constructed entities. This enables the

approaches to take into account information about both entities, which makes these

approaches more expressive than the mention-entity models.

Machine Learning Classifier. Luo et al. (2004), Yang et al. (2008) and Rahman

and Ng (2011a) regard the problem as a classification task (or ranking in the case of

cluster-ranking). Hence, predictions are performed by a standard classification model,

such as maximum entropy or support vector machines. Daumé III and Marcu (2005a),

Daumé III (2006), Webster and Curran (2014) and Ma et al. (2014) regard construct-

ing entities in the mention-entity model as a search problem. Daumé III and Marcu

(2005a), Daumé III (2006) and Webster and Curran (2014) learn parameters using

a variant of the perceptron, Ma et al. (2014) split the problem into learning how to

prune and score actions during search, both pruning and scoring are considered as

rank learning.

Similar to Daumé III and Marcu (2005a), Daumé III (2006) and Webster and Curran

(2014), all entity-centric approaches model the task as a search over merge operations.

Learning therefore consists in finding parameters for determining good merge oper-

ations. To learn these parameters, the approaches mimic test-time prediction during

learning. To update parameters, they employ imitation learning: updates are based on

comparison to actions which are examples of good merge operations.

Feature Set. Most mention-entity models extend features from the mention pair

model to the entity-level via logical predicates. For example, let us consider the pair-

wise head match feature. Luo et al. (2004) trigger the entity-based version of this

feature if there is an head match between the mention in focus and any mention in

the partially constructed entity under consideration. Distance features are extended

by taking the minimum distance between the mention in focus and any mention in the
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entity.

In their entity-centric approach, Culotta et al. (2007) use an additional set of logical

predicates, by triggering features when the pairwise feature holds for none, all, or

the majority of pairs obtained by pairing the mention in focus and the mentions in

the entity. They also include cluster size and the output scores of a pairwise model

as features. Clark and Manning (2015) devise more features based on the output of

pairwise models, such as the average probability of coreference between mentions in

two clusters. Wiseman et al. (2016) and Clark and Manning (2016) learn feature

representations of entities automatically via neural networks.

Selection and Handling of Training Data. The entity-centric approaches and the

search-based mention-entity approaches learn from the training data by constructing

clusters from scratch. In each step, the predicted merging decision is compared with

a good merging decision. For example, Stoyanov and Eisner (2012) consider as good

merging decisions all decisions that lead to an increase of the evaluation metric they

optimize for.

In contrast, Luo et al. (2004) in their mention-entity model represent coreference

decisions using a Bell tree: the ith level of the tree contains as nodes all possible par-

titions of the first i mentions in the document into clusters. There is an edge between

a node on the ith level and the (i + 1)th level if the clustering on the (i + 1)th level

extends the clustering from the ith level. Hence, a node-edge pair represents an as-

signment of a mention to a partially constructed entity. Luo et al. (2004) take each

such assignment on the path through the tree which only includes clusters consistent

with the reference annotation as positive examples, and all assignments emitting from

nodes on this path as negative examples. Yang et al. (2008) adopt the standard train-

ing strategy for the mention pair model to their mention-entity model: the positive

examples are the same as is Luo et al. (2004). Negative examples are constructed by

pairing the mention mj in focus with the entity of each of mj ’s preceding mentions

until the first correct antecedent of mj is encountered. For their cluster-ranking ap-

proach, Rahman and Ng (2011a) pair a mention with each of the preceding partial

entities.
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3.1.3 Discussion

Coreference resolution has been tackled by a wealth of machine learning approaches,

from binary classification to incremental structured prediction. In this thesis, we ex-

tend previous work from two perspectives: first, we provide a machine learning frame-

work that allows for a unified representation of approaches to coreference resolution.

We show how the approaches discussion in this chapter fit into the framework and

perform a large-scale evaluation and analysis. Second, we devise new variants of the

approaches in the framework.

When devising the framework, we rely on the observations by Chang et al. (2012)

and Fernandes et al. (2012, 2014) that coreference resolution can be modeled as pre-

dicting latent antecedents or latent antecedent trees. We note that also other ap-

proaches can be regarded as predicting such latent structures, which therefore leads

to a general framework for coreference resolution. We also draw on the repeated suc-

cessful use in coreference resolution of learning to search (Daumé III, 2006; Clark and

Manning, 2015, inter alia) and of variants of the perceptron algorithm for learning

parameters (Bengtson and Roth, 2008; Stoyanov and Eisner, 2012; Fernandes et al.,

2014; Björkelund and Kuhn, 2014, inter alia).

3.2 Representation Frameworks for Coreference

Resolution

Only few research on coreference resolution explicitly devises frameworks to compare

individual approaches. Most work compares the proposed approach to a simple men-

tion pair baseline modeled after Soon et al. (2001) or Ng and Cardie (2002) and/or

compares to state-of-the-art systems from the recent literature, but without any deep

analysis (Cai and Strube, 2010a; Durrett and Klein, 2013, inter alia).

Rahman and Ng (2011a) propose an entity ranking model (called cluster ranking
by the authors), which, for each anaphor, ranks the preceding partial entities. To put

their approach into context, they also implement a mention pair model, a mention

ranking model and an entity mention model. They extensively discuss the differences

in the learning objectives for pair classification and ranking models: the former output

a class value for each pair, while the latter output a rank for each pair. They then

provide an evaluation and comparison of the different approaches on the ACE 2005
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data (Walker et al., 2006) by varying

• the feature set (non-lexical, lexical and combined),

• the machine learning classifier (support vector machines and maximum entropy),

and

• the incorporation of anaphoricity determination (joint vs. pipelined).

They find that their entity ranking model with the combined feature set, based on sup-

port vector machines and joint anaphoricity determination performs best. However,

the mention ranking model also performs competitively.

The work presented in this thesis differs from Rahman and Ng (2011a) in several

fundamental points. First, while Rahman and Ng (2011a) do not develop a common

representation for different approaches, we propose a graph-based framework for uni-

formly representing approaches to coreference resolution. Second, Rahman and Ng

(2011a) perform a quantitative evaluation and comparison of the approaches in terms

of B3 and CEAF scores. We complement such a quantitative approach with a qualitative

analysis based on the error analysis method described in Chapter 4.

3.3 Error Analysis and Related Topics

Methods for error analysis are useful to identify weaknesses of an approach, as well

as to compare the output of different approaches qualitatively. Therefore, a lot of

work on coreference resolution complements the reporting of the metric scores by an

analysis of the errors made.

This analysis can be performed across various dimensions. Some researchers also

evaluate only on subsets of the corpus (Ng and Cardie, 2002; Stoyanov et al., 2009b;

Chang et al., 2013), for example on all pairs of proper nouns. This gives an estimate

of the performance when dealing only with specific phenomena. In other work, the

authors choose a random set of errors which they then analyze in detail (Soon et al.,

2001; Lee et al., 2013). However, only few work explicitly deals with error analysis

for coreference resolution. In this section, we discuss these proposals.
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3.3.1 Error Analysis

While the analysis methods mentioned above can provide valuable insights, they have

several deficiencies: even a fine-grained computation of metrics for different error

classes can only provide a limited view on the individual errors. Closely analyzing

a random subset of errors can provide information about individual errors, but the

representativeness is unclear. Besides our own proposal, which we describe in detail

in Chapter 4, we are aware of two other proposed frameworks for error analysis in

coreference resolution.

Uryupina (Uryupina, 2007, 2008) devises a state-of-the-art mention pair model with

closest-first clustering and performs an in-depth error analysis of this model. To do so,

she extracts all recall and precision errors made by the system on the MUC-7 test data,

which consists of 20 documents. For recall errors, she takes the “intuitively easiest”

link missed by the system to analyze as a recall error (Uryupina, 2007, p. 196). For

precision errors, she considers all erroneous pairwise links returned by the system.

Her in-depth analysis of these errors shows that few require deep knowledge which

can not be provided by a corpus-based algorithms. The majority, however, could be

resolved by such an algorithm. She sketches directions for further work, such as in-

vestigating more global resolution strategies than the clustering of pairs employed by

her model.

Similarly to Uryupina (2007, 2008) our error analysis framework is based on links
between mentions. In Uryupina’s framework, she does not give a formal criterion for

extracting missing links for recall errors, which makes a large-scale analysis difficult.

In contrast, we give a formal framework where different notions of errors can be mod-

eled via spanning tree algorithms. We will present spanning tree algorithms that aim

to model the “easiness” of links. Our framework also can extract links for non-pairwise

systems, a case which Uryupina (2007, 2008) does not consider. Furthermore, while

Uryupina (2007, 2008) only analyzes one system, we use our error analysis method

to compare multiple systems in detail.

Kummerfeld and Klein (2013) devise a formal framework for error analysis and ap-

ply the framework to analyze and compare a large number of different approaches.

Their method is based on extracting errors from transformations of system entities to

reference entities. They define a set of valid transformation operations, for example

altering the span of a mention, introducing a mention, or merging two entities. A

transformation or a sequence of transformations then corresponds to errors. For ex-
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ample, an altering of a span corresponds to a span error, while introducing a mention

followed by a merge operation involving this mention corresponds to a missing men-
tion error. They apply their method to analyze the errors of several publicly available

systems and of the task participants on the CoNLL-2011 test data.

In their analysis, they first compare the errors of all the systems, noting that “there is

considerable variability in the distribution of errors, and the best systems are not best

across all error types” (Kummerfeld and Klein, 2013, p. 274). Moreover, no system

was able to address recall-related errors effectively. They then average the errors over

the ten best-performing systems and consider the most frequent errors of each error

type. Here, no error type is particularly outstanding.

In contrast to Kummerfeld and Klein (2013), who use a transformation-based ap-

proach, the error analysis framework we propose is link-based: each error made by

the system is represented as a spurious or missing link. This mirrors the paradigm be-

hind approaches to coreference resolution, even entity-centric approaches mainly rely

on links between pairs of mentions (Stoyanov and Eisner, 2012; Clark and Manning,

2015). Moreover, the way we apply our analysis framework in this thesis is different

from the the way Kummerfeld and Klein (2013) apply their analysis framework: in

Chapter 6, we will employ our analysis framework to analyze differences and com-

mon errors between individual approaches. Kummerfeld and Klein (2013), however,

apply their method to aggregate errors over top performing system. Hence, they do

not analyze differences between systems in detail. The analyses provided in this work

and by Kummerfeld and Klein (2013) complement each other.

3.3.2 Evaluation Metrics

For coreference resolution error analysis, we are interested in extracting recall and pre-

cision errors, which are then subject to further analysis. In contrast, coreference res-

olution evaluation metrics quantify recall and precision errors. This is a fundamental

difference, since evaluation metrics do not provide any means to extract errors. Hence,

error analysis methods complement insights that can be obtained via evaluation met-

rics. However, since both error analysis and evaluation metrics deal with errors, they

are closely related. We discuss differences and similarities of our error analysis frame-

work compared to evaluation metrics after giving the details of our analysis framework

in Section 4.5.
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In this chapter we motivate and devise a method for extracting errors of a coreference

resolution system compared to a reference corpus. We first motivate the need for error

analysis methods (Section 4.1) and formulate desiderata for such methods (Section

4.2). We then present a generic algorithm for coreference resolution error extrac-

tion based on spanning trees (Section 4.3) and discuss several spanning tree variants

for extracting recall and precision errors (Section 4.4). We conclude the chapter by

analyzing the relation of the proposed method to coreference resolution evaluation

metrics (Section 4.5).

4.1 Why Error Analysis?

Coreference resolution is a fundamental task in natural language processing, with

applications in fields such as summarization (Steinberger et al., 2007), machine trans-

lation (Hardmeier et al., 2013) and question answering (Morton, 2000). Applying

coreference resolution to such real-world tasks requires end-to-end coreference resolu-
tion, which does not assume any manually annotated linguistic information (as for

example named entity classes or mention spans) as input. State-of-the-art approaches

to end-to-end coreference resolution achieve a performance in the mid fifties to low

seventies, depending on the evaluation metric used (Clark and Manning, 2015; Wise-

man et al., 2015). Hence, to facilitate system development, and to better understand

challenges in coreference resolution, we need methods for error analysis.

For some tasks designing an error analysis method is comparatively easy. For exam-

ple, in a sequence labeling task we can take all the elements of the sequence which

got assigned an incorrect label. However, coreference resolution is a set-based prob-

lem: the expected output as well as the reference annotation consists of a mapping of
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mentions to entity identifiers, which can equivalently be regarded as an assignment of

mentions to sets. This makes even the question of what an error is difficult to answer.

Given two mappings esystem and ereference of mentions to entity identifiers, where esystem

is the system output and ereference is the reference annotation, what should be the errors

if the mappings do not match?

To investigate this further, let us consider as a simple example a document with men-

tions m1, m2, m3, m4 and m5. Assume that the reference annotation is {m1,m2,m5}
and {m3,m4} , while the system output consists of the sets {m1,m2,m3} and {m4,m5}.
It is not clear how to measure the difference between the two set assignments: on the

one hand, one could argue that m3 and m5 belong to the “wrong” sets in the system

output, on the other hand one could take the position that instead the assignments of

m3 and m4 to the sets are erroneous. Moreover, even if we would agree on how to

measure the difference, it is still unclear how we can make this information useful for

developing coreference resolution systems. Just stating that the mismatch is caused

by m3 and m5 belonging to the wrong sets will not help a developer of a coreference

resolution system, since better understanding the cause of the error will require too

much manual intervention, rendering a large-scale analysis impossible. We therefore

need specialized methods for error analysis that address these problems.

4.2 Desiderata

The previous section described why we need error analysis methods for coreference

resolution. Furthermore, by an analysis of the problem we arrived at a few desiderata

a method for coreference resolution error analysis should have. It should be able to

• cope with the set-based nature of the task by only requiring sets describing the

system output and the reference annotation as inputs;

• represent errors such that a system developer or researcher can directly work

with these errors to improve the system or obtain insights;

• allow for different notions of errors, depending on the underlying task (for ex-

ample research on challenges in coreference resolution, or improving a system

for a particular task).

In the following, we describe each of these desiderata in more detail.
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Coping with the Set-based Nature. Coreference resolution systems output sets of

mentions, and the reference annotation also consists of sets of mention. While most

systems output anaphor-antecedent pairs and some corpora have explicit links an-

notated (for example the MUC corpora (Chinchor and Sundheim, 2003; Chinchor,

2001)), an error analysis method should work for the general case where just the sets

are provided. However, it should be able to account for special cases where link-based

information is available.

When dealing with the general set-based case, the method should be based on a

formally well-founded algorithm for extracting errors from the differences between

sets in the system output and in the reference annotation.

Useful Error Representation. Given system output and reference annotations for

a corpus, the error analysis method outputs a set of errors. Many different error

representations are conceivable. For example, building on the set-based nature of

coreference resolution, we could represent entities in the reference annotation and

the system output as sets, and represent errors as set operations. This is the approach

taken by Kummerfeld and Klein (2013). One example of an error in their framework

is divided entity. Such an error happens if a set of coreferent mentions in the reference

annotation can be obtained by merging two sets from the system output.

When a user wants to improve a system with respect to the errors made by the

system, the user still needs to analyze the set-based errors further in order to know

where to improve the system. The difficulty of analyzing increases the larger the sets

under consideration are. Furthermore, virtually all systems do not operate in a set-

based environment. This is obvious for mention pair, ranking and antecedent tree

models, but also holds for many entity-centric approaches: even these rely mainly

on pairwise links between mentions (Stoyanov and Eisner, 2012; Clark and Manning,

2015).

This paradigm suggests a link-based representation: each error, either recall or pre-

cision, is represented as a link between two mentions. Such a representation enables

the developer or researcher to directly know where to improve the system, and also

aligns with the pairwise link paradigm behind approaches to coreference resolution.

Flexibility in Notion of Error. Different tasks necessitate different notions of er-

rors. In general, we may consider any antecedent of a pronoun as equally important.

Tuggener (2014) argues that for machine translation, nominal antecedents of pro-
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nouns are more important than pronoun antecedents when nouns have grammatical

gender, since this information helps translation.

Hence, the error analysis method should be able to accommodate for different no-

tions of errors, depending on the task the user or researcher is interested in.

4.3 A Spanning Tree Algorithm for Error Extraction

We now develop a framework for error analysis that accounts for the desiderata pre-

sented in the previous section. We will motivate and explain the framework with help

of the following running example:

(22) After the discussion, [Obama]1 confirmed [he]1 will return. Then [the

president]1 and [his]1 bodyguards left.

The only non-singleton entity in this example is the BARACK OBAMA entity, and

it is referred to by the mentions {Obama, he, the president, his}. Now suppose a

coreference resolution system outputs the entities {Obama, he} and {the president,
his} (if not equipped with world knowledge, this is the output to be expected from

most systems). Intuitively, the system made a recall error: not all mentions which are

coreferent according to the reference annotation are coreferent in the system output.

The question that remains is what to extract as a recall error.

4.3.1 Entity Representation

In order to cope with the set-based nature of the task, as well as to be able to rely on a

link-based notion of errors, we build our error analysis framework upon the directed

graph representation of entities presented in Section 2.2. In particular, we employ the

representation without dummy mentions. While dummy mentions are useful when

devising approaches to coreference resolution, they are neither part of the reference

annotation nor of the system output. Recall that in this entity representation, each

entity is represented as a directed graph that is complete if we ignore the directions.

In the following, we mainly discuss how to extract recall errors. For extracting

precision errors we switch the roles of reference and system entities.

Figures 4.1 and 4.2 show the graph representations of the BARACK OBAMA entity and

of the system output. We augmented the system output with some spurious mentions
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Obama he the president his

Figure 4.1: Graph representation Gd of the document d from Example (22). Dotted
edges are candidates for errors with respect to the system output repre-
sented in Figure 4.2, subentities with respect to this output are the graphs
containing {Obama, he} and {the president, his}. The blue edges constitute
a spanning tree.

Obama he

she

the president his

it it

Figure 4.2: Graph representation GS
d of an example system output for the document d

from Example (22). We added some spurious mentions.

and links, in order to be able to show how our algorithm copes with this spurious

information.

To obtain candidates for errors, we first consider all links from the representation

Gd of the reference annotation which are not in the representation GS
d of the system

output. These edges are marked dotted in Figure 4.1. All of these links were missed by

the system, since otherwise, via transitive closure, it would have identified the whole

entity correctly.

Another perspective is that we are studying the partition P S
d of the reference anno-

tation Gd with respect to the system output graph GS
d . This partition is the subgraph

of Gd that contains only edges that are also in GS
d . In the example displayed in Figure

4.1, the partition is the graph consisting of the solid edges. From this perspective,

edges in Gd that are not in the partition are candidates for errors. We call the con-

nected components of the subgraph subentities. These correspond to correctly resolved

partial entities.
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In our example, there are four candidates for errors: the links (his, he), (his, Obama),

(the president, he) and (the president, Obama). In principle, we could extract all of

these four links as errors, since resolving either of these links would result in a cor-

rectly identified entity. However, this inflates the number of errors. Note that it is

sufficient to predict only one of these four links to obtain the correct entity by transi-

tive closure. We therefore opt to choose a representative link from the list of candidate

errors. If we choose a suitable criterion for representativeness, the errors extracted

this way will give an accurate representation of the errors made by a system.

Which link to extract depends on the use case. Let us consider an example. Assume

that the user prefers to extract errors with non-pronominal anaphors, which leaves the

user with two candidates for errors: (the president, he) and (the president, Obama). In

the candidate (the president, he), the mentions are close, but the error is composed

of a non-pronominal anaphor and a pronoun antecedent. Such pairs are considered

unreliable, some approaches even do not learn from or perform inference over these

pairs (Ng and Cardie, 2002; Bengtson and Roth, 2008). The candidate (the president,
Obama) is in some sense easier: since Barack Obama is a (US) president, information

which is helpful in resolving the error can be mined from large corpora or found in

knowledge bases such as Freebase (Bollacker et al., 2008). However, the distance

between the mentions is larger than in the other error candidate. Hence, we can

choose between two errors, and according to the task or the researcher’s interest in

the data, one error may be more suitable than the other. This corresponds to our third

desideratum, flexibility in the notion of error.

4.3.2 Spanning Trees

Our aim now is to devise a method that extracts representative errors, where the

measure of representativeness can be provided by the user. We propose a spanning
tree algorithm for error extraction. This is motivated by the observation that it is

sufficient for a coreference resolution approach to predict a spanning tree of the entity

representation graph. The entity then can be inferred by transitive closure. Because of

this, it is also sufficient to extract only one of the candidate errors displayed in Figure

4.1 as an error: if this error was resolved, we would have predicted the entity correctly.

Therefore, to extract errors, we choose a spanning tree for each entity represented

in Gd, and take all edges from the spanning tree that are not in the system output

representation GS
d as errors.
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Before explaining the algorithm in more detail, we define the spanning tree of a

directed graph.

Definition 12. Let G = (V,A) be a directed graph and let u ∈ V . A subgraph T is a
spanning tree of G with root u if T is acyclic and every node other than u has out-degree
1, while u has out-degree 0.

Since in our entity representationGd edges point only in one direction, all subgraphs

of Gd are acyclic. The spanning tree of each entity in Gd should be rooted in the first

mention of the entity. Hence, if an entity in Gd contains the mentions {mi1 , . . . ,min}
(i1 < . . . < in), the spanning tree should be rooted in mi1. For example, in Figure 4.1,

the blue edges constitute a spanning tree of the entity representation graph. The blue

dotted edge is a recall error: it is part of the spanning tree of the reference entity, but

it cannot be found in the system output (Figure 4.2).

This suggests that we should construct spanning trees for each reference entity, and

then extract those links as errors that do not appear in the system output.

Hence, we assume that we have algorithms Trecall and Tprecision for spanning tree

construction at our disposal. Trecall takes two inputs: a connected component r of the

reference annotation Gd, and the system output GS
d . It then outputs a spanning tree

of r. We also provide Trecall with the system output GS
d in order to be able to devise

spanning tree algorithm for reference entities that can take the system output into

account. Analogously, Tprecision gets as input a connected component s of GS
d and the

reference annotation Gd. It outputs a spanning tree of s.

Algorithm 4.1 summarizes the whole method of error extraction.

4.4 Spanning Tree Variants

Our extraction algorithm is parametrized by spanning tree algorithms for reference

and system entities, which are employed to extract recall and precision errors. Differ-

ent spanning tree algorithms lead to different notions of an error. It is therefore crucial

that we devise spanning tree algorithms which lead to useful notions of an error for

coreference resolution researchers and system developers.

In this section, we present such algorithms. We discuss spanning tree algorithms

for reference entities, which are used to extract recall errors, and spanning tree algo-

rithms for system entities, which are used to extract precision errors. There are two

options for presenting the algorithms. The first option is to devise weighting scheme
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Algorithm 4.1. Error extraction from a corpus.
Input: A set of documents D, a coreference resolution system S, spanning tree algo-

rithms Trecall and Tprecision

1: function EXTRACTERRORS(D, S, Trecall, Tprecision)
2: Set recall_errors = [ ]
3: Set precision_errors = [ ]
4: for d ∈ D do
5: Let Gd be the representation of the reference annotation and GS

d the
6: representation of the system output
7: for each connected component r ∈ Gd do
8: Compute a spanning tree tr = Trecall(r,G

S
d )

9: Add all edges in tr not in GS
d to recall_errors

10: for each connected component s ∈ GS
d do

11: Compute a spanning tree ts = Tprecision(s,Gd)
12: Add all edges in ts not in Gd to precision_errors
Output: Sets recall_errors and precision_errors of errors

for reference and system entity graphs based on notions of representativeness. We

then can apply a standard algorithm for computing spanning trees such as Kruskal’s

algorithm (Kruskal, 1956) or Prim’s algorithm (Prim, 1957). The second option is to

devise an algorithm that chooses edges directly (based on representativeness). We opt

for the second option, since choosing edges directly will facilitate the representation of

the linguistic intuition behind the spanning tree algorithms. However, all algorithms

we present can be transformed into weighting schemes, which then can serve as input

to a standard spanning tree algorithm.

4.4.1 Spanning Tree Algorithms for Reference Entities

In most corpora in which coreference is annotated, the annotation consists of a map-

ping of mentions to entity identifiers: all mentions with the same entity identifier a

coreferent. Only few corpora, such as MUC (Chinchor and Sundheim, 2003; Chinchor,

2001) also annotate links between mentions. Hence, in the general case, we have no

information about the internal structure of the entity. Computing spanning trees of

reference entities yields an internal structure. Intuitively, the spanning tree should

consists of “easy” links: our approach missed those links, but, compared to other links,

it would require the least effort to modify the system to correctly predict the link. Fur-

thermore, the links should be interpretable and meaningful to humans for subsequent
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analysis.

We are only interested in reference entity spanning trees such that the spanning tree

restricted to each subentity also constitutes a spanning tree rooted in the first mention

of the subentity1.

m1 m2 m3 m4

m5

First subentity Second subentity

Figure 4.3: A spanning tree for a reference entity with two subentities. In our ap-
proach, this spanning tree is not valid for a reference entity.

The graph depicted in Figure 4.3 illustrates this issue. Suppose a reference entity

consisting of the mentions {m1, . . . ,m5} is partitioned into two subentities containing

the mentions {m1,m2} and {m3,m4,m5} respectively. If we take the spanning tree

shown in Figure 4.3, we would extract two errors: (m3,m1) and (m5,m2). However,

since {m3,m4,m5} is in the system output, m5 was already resolved correctly to some

antecedent, and we do not want to extract an error with m5 as anaphor. To avoid

extracting such an error, we first choose an arbitrary spanning tree for each subentity,

rooted in the first mention of the subentity. Since the subentities also appear in the

system output, all edges of each subentity’s spanning tree are also in the system output.

Therefore, we can choose any spanning tree for each subentity. We then choose the

remaining edges of the spanning tree for the entity representation graph according to

the spanning tree algorithm at hand.

In the following, we present three algorithms for spanning tree construction for

reference entities. When provided with a reference entity r and the system output

representation GS
d , they first construct an arbitrary spanning tree for each subentity

induced by GS
d (rooted in the first mention of the subentity), for example by adding

1We enforce this requirement only for reference entity spanning trees, not for system entity spanning
trees (see the discussion in Section 4.4.2).

59



4 A Method for Link-based Error Analysis

an edge from each node in the subentity to the first mention of the subentity.

Choosing Spanning Trees by Distance. We first aim to devise a spanning tree al-

gorithm that uses a criterion that is as simple as possible for extracting “easy” links.

We opt to employ mention distance as a simple criterion for extracting “easy” links:

the distance between two mentions can be computed without any information about

their linguistic properties, and distance has successfully been used as a feature in many

coreference resolution approaches, which induces that it can serve as a criterion for

easiness.

Hence, if there are multiple candidate antecedents for an anaphor, we choose the

closest one. Formally, we first construct arbitrary spanning trees for each subentity.

Then, for each mention mj (j > 1) which is the first mention of some subentity, we

select the closest preceding mention mi in the reference annotation. The edge (mj,mi)

is then added as an edge of the spanning tree.

Choosing Spanning Trees by Accessibility. A closer look reveals that distance is

mainly a good proxy for easiness for pronouns. Mention distance or variants of this

distance have been successfully used as a main criterion in various pronoun resolu-

tion approaches (Hobbs, 1976; Lappin and Leass, 1994; Lee et al., 2013). In these

approaches, distance is used as the main feature when deciding on an antecedent of

a mention (after discarding antecedents which are incompatible, for example with

respect to number, gender or semantic class).

However, using distance as a proxy for easiness is less helpful for common noun and

proper name anaphors. Consider the following example taken from the OntoNotes 5.0

corpus2 (Weischedel et al., 2013):

(23) [Investcorp, New York]1, said [it]1 and the management of [Sports &

Recreation Inc.]2 bought the operator of [the 10-store Sports Unlim-

ited chain]3 for some $40 million.

[The investment bank]1 becomes majority shareholder in [Sports &

Recreation, a 10-year-old sporting goods retailer]2, said Oliver E. Richard-

son, a member of [Investcorp’s]1 management committee and a direc-

tor of [the chain]3.

2Document wsj_2422.
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Let us consider the reference entity INVESTCORP, which is referred to by the men-

tions Investcorp, New York, it, the investment bank and Investcorp’s.

One of our best-performing systems which we will present in Chapters 6 and 8,

based on a mention ranking architecture, does not recognize the whole entity, but

outputs {Investcorp, it} and does not assign the investment bank and Investcorp’s to any

coreference chain. Applying the error extraction algorithm based on spanning trees

defined by distance, we would extract the two errors (the investment bank, it) and

(Investcorp’s, the investment bank).

The errors are not very helpful: (the investment bank, it) consists of a non-pronominal

anaphor and a pronoun antecedent. This type of link is considered unreliable (see the

discussion in Section 4.3.1). In (Investcorp’s, the investment bank) the mention are in

an ISA relation, but it would be more helpful to provide the user with the error (In-
vestcorp’s, Investcorp, New York), since based on that error, the user can just analyze

and improve the alias feature in his or her coreference resolution system. Hence, we

need a more meaningful definition of an easy link than just according to distance. Our

brief analysis showed that mention types and (partial) string matches provide clues

for easiness.

We devise a criterion for easiness inspired by accessibility theory (Ariel, 1988), a the-

ory that links choice of referring expressions to the mental representation of the enti-

ties these expressions are used to refer to. According to accessibility theory, referring

expressions can be broadly divided into low, mid and high accessibility markers. More

accessible entities are referred to by higher accessibility markers. In particular, “Low

Accessibility marked entities are often those stored in long-term memory, while High

Accessibility marked entities are normally those held in short-term memory” (Ariel,

1988, p. 80). Proper names and definite descriptions are low accessibility markers,

while pronouns are high accessibility markers. Regarding the relation between re-

ferring expressions and their antecedent, Ariel states that “most High Accessibility

markers refer to unmarked, contextually salient entities (especially discourse topics)”

and that “Low Accessibility markers refer to more marked, less accessible antecedents”

(Ariel, 1988, p. 82f.). Accessibility theory suggests a criterion for easiness based on

this relation: if a high accessibility marker is used, choose a very accessible antecedent

(such as the closest one). If a low accessibility marker is used, choose an antecedent

which itself is expressed by a low accessibility marker.

Let us return to our INVESTCORP example (Example (23)). Figure 4.4 visualizes all

candidate errors as non-solid edges. Consider the anaphor the investment bank. Ac-
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Investcorp, New York it the investment bank Investcorp’s

Figure 4.4: Visualization of candidate errors for the INVESTCORP example.

cording to the spanning tree algorithm based on distance, (the investment bank, it)
would be extracted as an error. According to accessibility theory, the link (the invest-
ment bank, Investcorp, New York) is much easier: the investment bank is a definite

description, and therefore a low accessibility marker. It refers to a less accessible an-

tecedent, such as Investcorp, New York. This also is in line with our intuition: (the
investment bank, it) is unreliable, since it is potentially a candidate antecedent for

many different anaphors. (the investment bank, Investcorp, New York), however, con-

stitutes a well-defined ISA relation, which can be queried from knowledge bases or

large corpora.

Algorithm 4.2 presents our spanning tree algorithm based on accessibility theory.

It operationalizes the criterion that low accessibility markers necessitate antecedents

expressed by low accessibility markers, and that high accessibility markers are used

when the antecedent is very accessible. Given a reference entity r and the system

output GS
d , we first construct arbitrary spanning trees for the subentities induced by

GS
d , rooted in the first mention of the subentities. We choose the remaining edges

of the spanning tree based on a notion inspired by accessibility theory. To do so, we

iterate through all mentions which have an out-degree of 0 in the partially constructed

spanning tree. For pronouns – high accessibility markers – we choose the closest

preceding mention in r and add this as an edge. For the remaining mentions, which

are all low accessibility markers, we first look for preceding mentions with string or

head match. If we could not find such mentions, we choose the antecedent which is

marked with the lowest accessibility (since the low accessibility marked anaphor refers

to a less accessible antecedent).

For our example, this algorithm chooses edges such that the errors (the investment
bank, Investcorp, New York) and (Investcorp’s, Investcorp, New York) are extracted.
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Algorithm 4.2. Spanning tree construction based on accessibility.
Input: Graph representation r of a reference entity, graph representationGS

d of system
output

1: function ACCESSIBILITYSPANNINGTREE(r,GS
d )

2: Let t be an empty graph
3: for each subentity ri of r induced by GS

d do
4: Construct a spanning tree ti for ri, rooted in the first mention of ri
5: Add the edges of ti to t
6: for each mention mj with out-degree 0 in t do
7: if mj is a pronoun then
8: Add (mj,mi) to t, where mi is the closest preceding mention in r
9: else if there is a preceding mention in r with a full string match then

10: Add (mj,mi) to t, where mi is the closest such mention
11: else if there is a preceding mention in r with a head string match then
12: Add (mj,mi) to t, where mi is the closest such mention
13: else if there is a preceding proper name mention in r then
14: Add (mj,mi) to t, where mi is the closest such mention
15: else if there is a preceding common noun mention in r then
16: Add (mj,mi) to t, where mi is the closest such mention
17: else
18: Add (mj,mi) to t, where mi is the closest preceding mention in r
Output: A spanning tree t of r
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Choosing Spanning Trees by Pairwise Scores. The spanning tree algorithms we

have considered so far were based on linguistic intuition. We used this linguistic intu-

ition to devise heuristics for extracting spanning trees.

An alternative is to consider a data-driven approach: can we learn from training

data what constitutes an easy link? Let us revisit our definition of easiness from the

beginning of this section: a link is easy if, compared to other candidate links, it would

require the least effort to modify our system to correctly predict the link.

As we saw in Chapter 3, most coreference resolution approaches are based on scor-

ing links between mentions. They typically assign a score s(mj,mi) to each pair

(mj,mi) of mentions. This induces a ranked list of candidate antecedents for each

anaphor mj: for two candidate antecedents mi and mk we have mi >score mk if

s(mj,mi) > s(mj,mk). This suggests a spanning tree algorithm for reference entities:

first construct arbitrary spanning trees rooted in the first mention for the subentities.

Then, for each mention mj with out-degree 0, choose the edge (mj,mi) such that

s(mj,mi) > s(mj,mk) for all preceding mk 6= mi. Hence, for each mention mj which is

first in its subentity, the edge (mj,mi) in the spanning tree received a higher score than

the alternatives for the same anaphor. If we interpret the pairwise scores as confidence

values, the system deems it more likely that the pair (mj,mi) is coreferent, compared

to the alternative antecedents from the reference entity.

4.4.2 Spanning Tree Algorithms for System Entities

We now consider spanning tree algorithms for system entities. Intuitively, the spanning

tree for a system entity should consist of the most reliable links between mentions in

the entity. Let us call such links “reliable”.

When computing spanning trees for reference entities, we did not allow outgoing

edges from mentions that are not first in their respective subentity (see Figure 4.3).

The rationale was that subentities of reference entities correspond to correctly resolved

partial entities, therefore mentions that are not the first mention in their subentity

have already been resolved to a correct antecedent. For system entities, subentities

correspond to parts of a system entity that contain only coreferent mentions. Any

mention in such a subentity may be responsible that a wrong link was induced which

merged two subentities. Therefore, we do not put any restrictions on spanning tree

construction for system entities.

Typically, coreference resolution systems do not just output the mapping of men-
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tions to entities, but do also output the structure of the found coreference chains,

which we can harness for spanning tree constructions. Hence, for system entities, we

consider two classes of spanning tree algorithms: the first class deals with the general

case, where no additional structure is available. The second class takes into account

additional structural information provided by the system output.

Applying a Reference Entity Spanning Tree Algorithm. When computing spanning

trees for reference entities, we are interested in “easy” links. For system entities, we

are interested in “reliable” links.

We can apply the algorithms for extracting “easy” links to construct spanning trees

for system entities. Hence, this leads to criteria for importance based on distance,

accessibility and pairwise scores. We have designed the heuristic-based spanning tree

algorithms to yield links meaningful to and interpretable by humans. Based on the

assumption that distance or accessibility are crucial factors in anaphoric reference,

the system entity spanning trees obtained by these algorithms consist of “reliable”

links. The data-driven approach based on pairwise scores also can be used to construct

spanning trees consisting of “reliable” links: if a link receives a high score by the

system, it is deemed a reliable link by the system.

Regarding the differences between the individual approaches, the observations from

the previous section on reference entity spanning trees apply.

Choosing Spanning Trees Based on Pairwise Output. As we have already dis-

cussed, the vast majority of approaches to coreference resolution are based on scoring

pairwise links between mentions. The approaches then consolidate these pairwise

scores to construct coreference chains.

For many approaches such as mention pair with best- or closest-first clustering (Soon

et al., 2001; Ng and Cardie, 2002), mention ranking (Denis and Baldridge, 2008) and

antecedent trees (Fernandes et al., 2014), the links which are chosen in the consolida-

tion step already constitute spanning trees of system entities. This holds even for some

mention-entity models: each anaphor gets assigned to at most one preceding cluster,

and the decision is often guided by the relationship of the anaphor to one particular

mention in the preceding cluster (e.g. Webster and Curran, 2014).

Hence, for approaches that already output spanning trees of the system entities, we

can just take these spanning trees for error extraction. For approaches that output

a set of pairwise links that do not constitute a spanning tree (for example by listing
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all anaphor-antecedent pairs recognized by the system), we need to switch back to

the adapted reference entity spanning tree algorithms, which are applied to the graph

induced by the set of links in the output. For the approaches which do not even output

links, we also switch back to the adapted algorithms, as described above.

4.5 Relation to Evaluation Metrics

The analysis framework we just presented extracts errors which are then subject to

further (human) analysis. Coreference resolution evaluation metrics, on the other

hand, quantify the errors made by a system, and use the errors to derive the precision

and recall of the system. In this section, we investigate the relationship of our analysis

framework to evaluation metrics in detail.

Following Chen and Ng (2013) we distinguish between linguistically agnostic met-
rics and linguistically aware metrics. Linguistically agnostic metrics do not employ

linguistic information, while linguistically aware metrics take linguistic information

into account during scoring.

4.5.1 Linguistically Agnostic Metrics

All the evaluation metrics discussed in Section 2.4 (MUC, B3, CEAFe, CEAFm and

BLANC) are linguistically agnostic, since they do not differ between different men-

tion or entity types when evaluating. B3 and the variants of CEAF are not founded on

a link-based structure, but take a set-based perspective. Hence, they do not provide

means to extract link-based errors. We leave determining whether the framework of

these metrics exhibits a useful notion of errors to future work. Like our framework,

MUC and BLANC are link-based. We now discuss differences and similarities of the

proposed error analysis method compared to MUC and BLANC.

4.5.1.1 MUC

Our framework is based on the same entity representation as the MUC metric. Recall

the definition of MUC (Section 2.4.2): for computing recall, iterate through every

connected component (i.e. entity) g in the reference entity representation graph3. For

each entity, partition the graph with respect to the system output. Then compute

3For computing precision, switch the roles of reference and system entities.
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any spanning tree t of g with the following property: t restricted to each connected

component in the partition is also a spanning tree of the connected component. Then

recall error re for g is the fraction of edges of t that are not in the partition. Recall is

1− re. To extend recall error and recall to the whole document, the sum is computed

over all spanning trees before computing the fraction.

Now compare this algorithm with our error extraction algorithm based on spanning

trees: the only difference is that we compute a particular spanning tree of g, while

MUC just takes an arbitrary spanning tree (both constrained such that they are also

spanning trees for the connected components of the partition). Since MUC aims to

quantify errors, while the analysis framework aims to extract errors for qualitative

analysis, also the output differs. However, both rely on the edges E = {e1, . . . , em}
which are in the spanning tree but not in the partition. The analysis framework outputs

E directly, while MUC condenses this information into 1− |E| /|t|.
Hence, our analysis framework can be understood as an adaption of the MUC metric

for error extraction. We achieve this by replacing the generic spanning tree algorithm

with tailored spanning tree algorithms, which lead to different notions of errors.

Several shortcomings of the MUC score have been identified by Bagga and Baldwin

(1998): First, the MUC score does not take the correct identification of singleton

mentions into account4. These lead to entities consisting of a single mention, which

cannot be represented by spanning trees. Second, the score does not consider the size

of subentities when scoring coreference chains. To see why this may lead to unintuitive

results, consider the following example, which is a slight variation of the example

discussed by Bagga and Baldwin (1998). Assume that a document contains three

reference entities, e1 = {m1,m2,m3,m4}, e2 = {m5,m6} and e3 = {m7,m8,m9,m10}.
One system SA puts e1 and e2 into the same system entity, another system SB puts e1
and e3 into the same system entity. Bagga and Baldwin (1998) argue that SA should

obtain a higher score that SB, since it conflated a large entity and a small entity, while

SB conflated two large entities. However, since the MUC score only considers spanning

trees, both outputs receive the same score: a recall of 1 and a precision of 7/8.

Both of these issues concern scoring and are not valid for our error extraction al-

gorithm: First, if the corpus is annotated with singleton mentions, we still extract all

errors involving singleton mentions, since the disability to reward identification of sin-

gleton mentions does not affect error extraction. Second, we aim to extract errors, and

4Singleton mentions are mentions that refer to some entity, but do not corefer with any other mention
in the document.
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therefore do not encode precision/recall of a system output into a single number. The

system outputs from the examples above lead to different errors. If the user wishes to

favor severe errors for extraction, the user can devise a new spanning tree algorithm

which takes the size of the subentities into account.

4.5.1.2 BLANC

As our framework, BLANC is link-based. In particular, BLANC considers all links be-

tween coreferent mentions, and between non-coreferent mentions. These sets are

constructed for the reference annotation and for the annotation induced by system

output. This enables a classification of links into true positives, false positives, true

negatives and false negatives. Based on this, recall, precision and F1 score for corefer-

ent mentions and non-coreferent mentions are computed, and then averaged.

The main difference between the scoring method of BLANC and the extraction

method of our framework is that BLANC does not rely on spanning trees to repre-

sent entities, but chooses all links between mentions to represent entities (similar to

our graph-based entity representation detailed in Section 2.2). Since BLANC relies on

an error classification in terms of true/false positives and negatives, this suggests that

this classification can be used for error extraction. False positives are precision errors,

while false negatives are recall errors.

However, we argue that errors extracted this way are not useful. If for example a

reference entity is split into two by a system, all inter-entity links between the mentions

in the subentities would be extracted as recall errors. This results in a large number of

errors, which are difficult to process for the user. We therefore believe that adapting

BLANC’s scoring method does not result in a useful error extraction algorithm.

4.5.2 Linguistically Aware Metrics

Recent work on evaluation metrics takes linguistic information into account. Chen and

Ng (2013) devise a unified graph-based representation for different existing evalua-

tion metrics, and inject linguistic knowledge by weighting specific links in this graph.

Tuggener (2014) proposes new metrics, which are tailored for particular applications

such as summarization. To do so, he redefines the notion of a correct link depend-

ing on the task in focus. Both of these works only consider scoring, but weight or

distinguish links in the reference and system entities, which in principle allows for

error extraction. However, the authors do not attempt to extract errors, and it is not
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clear whether any errors extracted that way could be useful for analysis and system

development.
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5 A Machine Learning Framework for
Coreference Resolution

In this chapter we present a machine learning framework for coreference resolution.

Our framework is based on the observation that many machine learning approaches

to coreference resolution can be characterized by the latent structures they operate on.

Hence, we develop a machine learning framework that explicitly models these latent

structures, building upon the graph-based representation for coreference which we

devised in Section 2.2.

We first revisit our discussion of coreference resolution approaches from Chapter 3

and note that we can understand the approaches as predicting structures not observed

in the data (Section 5.1). Motivated by this insight, we describe a general machine

learning setting for structured prediction with latent variables (Section 5.2). Next, we

tailor this setting to the special case of coreference resolution (Section 5.3). Our frame-

work can handle arbitrarily complex structures. Complex structures may necessitate

complex or approximate inference methods. We therefore discuss how such methods

are incorporated in the framework (Section 5.4). To train models in the framework,

we present a structured perceptron with latent variables and cost-augmented inference

(Section 5.5).

5.1 Underlying Structures

In Section 3.1, we discussed machine learning approaches for coreference resolution,

ranging from simple mention pair models to sophisticated entity-centric approaches.

In our discussion, we characterized each approach across different dimensions: the

structure the approach operates on, the machine learning method used, the feature

set used, and how the approach selects and handles training data.

From this perspective, the structure that underlies the approach is most defining for
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the approach: Researchers devise more sophisticated structures to obtain a more ad-

equate or better-performing model for coreference resolution. The remaining dimen-

sions are chosen in concordance: the machine learning classifier should be suitable for

the structure; the features make use of the structures; and the selection and handling

of training data is typically optimized to give optimal performance with respect to the

new structure obtained (Ng and Cardie, 2002).

Hence, since the underlying structures are most defining for approaches to corefer-

ence resolution, let us have a closer look at the role of these structures for predicting

coreference relations.

From a formal perspective, the task of coreference resolution is to predict the equiv-

alence classes of the coreference relation in one document. In particular, the expected

output of a coreference resolution approach is a segmentation of the mentions into

equivalence classes. This segmentation can be represented by a mapping of mentions

to entity identifiers, or by graphs as described in Section 2.2. However, as we have ob-

served in Section 2.3, this output is too complex to be predicted directly. Approaches

have to resort to simplifications or approximations, from which the final output is

derived in a postprocessing step. The different structures employed by different ap-

proaches correspond to different ways of simplifying or approximating the prediction

problem of equivalence classes.

To understand this better, we discuss three structures in detail: mention pair mod-

els (Soon et al., 2001), mention ranking models (Denis and Baldridge, 2008) and

mention-entity models (Yang et al., 2008). Mention pair models approximate the pre-

diction by performing binary classification of mention pairs. They first create a list

of mention pairs, and then handle each pair in isolation and label it as coreferent or

non-coreferent. Ranking models, on the other hand, construct pairs consisting of the

anaphor in focus mj and the list of all candidate antecedents, {m0, . . . ,mj−1}. The

approach then chooses the antecedent of mj from the list. Similarly, mention-entity

models rely on pairs consisting of the anaphor mj and the list of partially constructed

entities so far, say {{m0} , {m1,m3} , {m4} , {m2,m5, . . . ,mj−1}}. They decide to which

partial entity mj should be added, or whether it should start a new entity.

These structures have in common that they are not annotated in the data. To be

able to cope with the complex prediction problem for coreference resolution, the ap-

proaches introduce auxiliary structures, from which the equivalence classes are ex-

tracted during postprocessing. Hence, in terms of machine learning, we can under-

stand approaches to coreference resolution as performing latent structured prediction.
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This yields a unified perspective on machine learning approaches to coreference reso-

lution. Such a perspective enables us to highlight structural differences and similari-

ties, and also establishes a setting to systematically analyze and compare approaches

in terms of the structures they employ. Furthermore, we can define new approaches

and transfer design decisions between different approaches.

In the remainder of this chapter, motivated by the observations above, we present

a machine learning framework that models coreference resolution as prediction of

latent structures. Our framework generalizes previous work on latent antecedents and

trees for coreference resolution (Yu and Joachims, 2009; Chang et al., 2012; Fernandes

et al., 2014). We use the mention ranking model with latent antecedents (Chang et al.,

2012) as a running example.

5.2 General Setting

Formally, coreference resolution is a prediction task: Given a document, we want to

predict the coreference chains over mentions in that document. From a machine learn-

ing perspective, the goal is to learn a function

f : X → Y , (5.1)

where X is the input space and Y is the output space. In our case, X consists of

documents and Y consists of the documents enriched with coreference annotations.

We have seen that coreference resolution approaches actually predict latent structures

from which the coreference chains are induced. Hence Y factors into a latent output
space H and an observed output space Z:

f : X → H×Z. (5.2)

For coreference resolution, H contains the latent structures which are used to infer

coreference relations, while Z contains the coreference relations. Given x ∈ X , we

write Hx and Zx for the output spaces only encoding structures built upon x. For

instance, in the mention ranking model with latent antecedents (Chang et al., 2012),

Hx contains all possible antecedent decisions for each mention in a document x ∈ X .

73



5 A Machine Learning Framework for Coreference Resolution

To model the prediction, we assume that there is a function

F : X ×H×Z → R (5.3)

that scores triples consisting of an input, the latent output and the observed output.

For an input x ∈ X , we obtain the prediction by computing the maximum scoring

output, i.e. we define

f(x) = argmax
(h,z)∈Hx×Zx

F (x, h, z). (5.4)

We consider only linear models. Such models represent a triple (x, h, z) ∈ X ×Hx×Zx
using a feature function

φ : X ×H×Z → Rd (5.5)

for some d ∈ N. φ projected to one particular dimension is called a feature. φ is

used to jointly describe the input, the output and the latent structure. For example,

many approaches – such as the ranking model – rely on evaluating candidate anaphor-

antecedent pairs. With the feature function φ, we can describe the linguistic properties

of anaphor and antecedent, and the relation between the mentions. Typical features

are the mention types of anaphor and antecedent, or whether there is a string match1.

To score (x, h, z), we compute the scalar product of the feature representation with

some parameter vector θ ∈ Rd, which is learned from data (see Section 5.5). That is,

the scoring function is

F (x, h, z) = 〈θ, φ(x, h, z)〉, (5.6)

and therefore

f(x) = argmax
(h,z)∈Hx×Zx

〈θ, φ(x, h, z)〉. (5.7)

We write fθ instead of f to emphasize the parametrization of the prediction function

with respect to θ ∈ Rd.

5.3 Modeling Coreference Resolution

Any instantiation of the generic framework discussed above needs to define the input

space X , the latent output space H and the observed output space Z. In this section,

we introduce an instantiation that employs graphs to express the latent structures.
1To convert these categorical and boolean features into real-valued features, we add one binary feature

(with value either 0 or 1) for each value of the feature.
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Under mild constraints, which we discuss, this representation allows for efficient in-

ference to solve Equation 5.7.

5.3.1 The Input Space X

The task of coreference resolution is to map documents to documents annotated with

coreference chains. Hence, X contains representations of documents. We do not make

this representation explicit. Instead, we make the simplifying assumption that we

have access to all linguistic information which may be needed for feature extraction. In

particular, we assume that system mentions were already extracted. Using the notation

established in Chapter 2, we write Mx = {m1, . . . ,mn} for the system mentions in

x ∈ X 2.

One issue for automatic coreference resolution is anaphoricity determination (see

for instance Ng (2004)). A mention m ∈ Mx either does have an antecedent or is

not anaphoric. In order to model anaphoricity determination, we introduce a dummy
mention m0 and write M0

x = {m0} ∪ Mx. If m0 is determined to be the antecedent

of a mention m, this is equivalent to making the prediction that m does not have any

antecedent (see also Section 2.2).

5.3.2 The Latent Output Space H

Given a document x ∈ X , the latent output space Hx includes all structures over

the mentions in x that guide the approach to predict the coreference chains. Since

different approaches employ different latent structures, the latent output space differs

per approach. As we have developed a graph-based view on coreference in Chapter

2.2, which was also the basis of our error analysis framework, we will employ a graph-

based representation of these latent structures as well.

As a starting point, we consider labeled subgraphs of the graph representation with

dummy mentions. Recall that in these graphs, each equivalence class of mentions

corresponds to a fully connected component, adhering to directionality constraints.

The first mention in each component is connected to the dummy mention m0. The

subgraphs model pairwise relations between mentions, have a notion of directional-

ity, which is useful for expressing anaphor-antecedent relations, and can incorporate

additional information via edge labels.

2We describe our algorithm for mention detection in detail in Section 8.1.2
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5 A Machine Learning Framework for Coreference Resolution

However, such graphs are not expressive enough for our purposes. As we saw in

discussion of entity-centric models, some of these approaches build coreference chains

by predicting that sets of mentions, say {m1,m3,m4} and {m2,m5}, are coreferent.

Hence, we need a formalism that is expressive enough to model such relations. We

employ a generalization of directed graphs, directed hypergraphs.

Definition 13. A directed hypergraph H is a tuple H = (V,A) where V is some set of
nodes and

A ⊆ {(X, Y ) | X, Y ⊆ V,X ∩ Y = ∅} . (5.8)

Hyperedges a ∈ A consist of two (possibly empty) sets, a tail X and a head Y .

Directed graphs are a special case of directed hypergraphs: A directed graph is a

directed hypergraph where the tail and head of each edge have cardinality one.

m1 m3 m4 m2 m5

Y X

Figure 5.1: A hyperedge (X, Y ) that signals that two sets of mentions are coreferent.
X = {m2,m5} is the tail of the hyperedge, Y = {m1,m3,m4} is the head
of the hyperedge.

Since hypergraphs can model relations between sets of mentions, they are expressive

enough to also account for approaches that predict that sets of mentions are coreferent.

Figure 5.1 shows an hyperedge that connects two sets of mentions, modeling that these

sets are coreferent.

Directed hypergraphs serve as our representation for latent structures. Formally,

a valid latent structure for a document x ∈ X is any (labeled) directed hypergraph

G = (V,A, LA) with the following properties:

• the set of nodes are the mentions (including the dummy mention), V =M0
x ,

• the edges are a subset of all hyperedges where the dummy mention cannot ap-

pear in the tail,

A ⊆
{
(X, Y ) | X ⊆Mx, Y ⊆M0

x , X ∩ Y = ∅
}
. (5.9)

• LA : A → L is a function that assigns to each edge a ∈ A a label from a set of

labels L.
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When considering the case of directed graphs, the edges correspond to anaphor-

antecedent decisions. Otherwise, they correspond to coreference relations between

sets of mentions.

We denote the set of all directed hypergraphs that adhere to the definition above as

G. Depending on the approach in focus, we will consider different classes of labeled

directed (hyper)graphs. For the mention ranking model, for example, the latent struc-

ture encodes the antecedent decision for each anaphor. Each mention should have

exactly one antecedent (where the dummy mention is a valid antecedent). Therefore

we consider all graphs h = G = (V,A, LA) ∈ G which satisfy (i) for all mj ∈ V (j > 0),

there exists exactly one i < j such that (mj,mi) ∈ A and (ii) LA(a) = None for each

a ∈ A (the mention ranking model does not employ any labels). The set of graphs

h ∈ G that satisfy these two requirements constitute the set of latent structures H for

the mention ranking approach.

m0 m1 m2 m3

Figure 5.2: An example latent structure for the mention ranking approach, encoding
a particular set of anaphor-antecedent decisions. All edges have the None
label, which is not shown in this figure.

Figure 5.2 shows an example graph. In Chapter 6 we will consider many more

structures and we will also see how edge labels are useful for modeling approaches.

5.3.3 The Observed Output Space Z

While the latent structures encode the coreference relations between mentions, they

are not in the format to match with the annotations in the corpora. In these anno-

tations, each mention is mapped to an entity identifier. We model this mapping via

functions from mentions to integers. Let x ∈ X be some document. The observed

output space Zx for x consists of all functions

z : Mx → N. (5.10)
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Two mentions mi,mj ∈ Mx are considered coreferent if and only if z(mi) = z(mj).

Hence, Zx represents all possible coreference chains over the mentions in x.3

5.3.4 Relating H and Z

Typically, we obtain the output z by aggregating the decisions encoded in the pre-

dicted latent structure h. For example, in the mention ranking model, we take the

transitive closure over all antecedent decisions expressed in the latent structure, ig-

noring the dummy mention m0 (since these edges do not signal coreference, but non-

anaphoricity). In the example shown in Figure 5.2, this procedure outputs the entities

{m1,m3} and {m2}.
Formally, this can be expressed via a function

obtain_coreference : H → Z

that maps the latent structures to the corresponding coreference information. If z and

h encode the same coreference information, that is if z = obtain_coreference(h),

we call h and z consistent4. When listing pairs of latent structures and coreference

information, as in (h, z) ∈ H × Z, we slightly abuse notation to avoid complicated

terminology and always assume that h and z are consistent.

5.3.5 Feature Factorization

In order to make this framework usable, we must take care that the maximization

problem to obtain the best-scoring structures in Equation 5.7 is feasible. However,

for many structures, the size of the search space Hx is exponential in the number of

mentions |Mx| appearing in the document x.

To efficiently find the maximum scoring structure, many approaches are based only

on directed graphs, not hypergraphs, and assume that the feature function φ factors

with respect to the edges of the directed graph. As we will see, the combination of

such a factorization with directed graph structures makes the maximization problem

3Since the correctness does not depend on the integer values of the entity identifiers, we consider two
functions z, z′ ∈ Zx as equal if it holds that z(mi) = z(mj) if and only if z′(mi) = z′(mj).

4We will often consider substructures h′ of h that only encode coreference information for a subset of
all mentions in the input document. We call z and h′ consistent if z and obtain_coreference(h′)
agree on this subset of mentions.
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feasible. Furthermore, since the latent structure already encodes all coreferential in-

formation, these approaches also assume that the feature function is independent from

z.

Formally, we have

φ(x, h, z) =
∑
a∈A

φ(x, a) (5.11)

for (x, h, z) ∈ X ×Hx ×Zx and h = (V,A, LA).

Entity-based models do not adhere to this feature factorization: The features em-

ployed by these models access richer information about the latent structures h.

5.3.6 Substructures

The graph representation for latent structures which we introduced represents the

coreference information on the document level: The graph encodes the coreference de-

cisions for the whole document. However, some approaches split the prediction into

several subproblems for each document. For instance, the mention ranking model con-

siders each anaphor in isolation, and the mention pair model considers the coreference

decision between each pair as an individual problem.

To account for this in our framework, we introduce the notion of substructures.
To define these, we assume that each approach we consider also has a substructure-
inducing function

sub : X → {N | N ⊆ 2G} (5.12)

that assigns to each document x ∈ X a set of substructure spaces Hx,1, . . . ,Hx,m. Typ-

ically, hi ∈ Hx,i is a latent structure h ∈ Hx restricted to a subset of the mentions

appearing in x.

With these substructures, the maximization problem in Equation 5.7 factors into m

subproblems (as defined by the number of substructure spaces). The ith problem is

fi(x) = argmax
(hi,z)∈Hx,i×Zx

〈θ, φ(x, hi, z)〉. (5.13)

To obtain a structure ĥ ∈ Hx from the predicted substructures ĥ1, . . . , ĥm, where

ĥi = (Vi, Ai, LAi
), we take the union over all substructures, that is we set V = ∪mi=1Vi,

A = ∪mi=1Ai and LA(a) = LAi
(a) if a ∈ Ai. We assume that sub is designed such that

there are no contradictions in the output of the individual substructure predictions.

Figure 5.3 displays substructures for the mention ranking problem. The antecedent
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h1 ∈ Hx,1

m0 m1

h2 ∈ Hx,2

m0 m1 m2

h3 ∈ Hx,3

m0 m1 m2 m3

m0 m1 m2 m3

Figure 5.3: Substructures for the mention ranking approach.

decision for each anaphor is modeled as an individual problem, which corresponds to

substructures h1, h2 and h3. To obtain the latent structure h for the whole document,

we take the union over all nodes and edges.

5.4 Inference

In this section we consider the maximization problems described by Equations 5.7 and

5.13 in more detail. To solve these maximization problems, we need to find the overall

highest-scoring structure among a set of structures (according to a linear model). The

set may be too large to explicitly enumerate all structures. Therefore, it is not trivial

to obtain a solution to Equations 5.7 and 5.13.

We now discuss various classes of inference algorithms in general. We discuss spe-

cific algorithms for the latent structures considered in this thesis in Chapter 6.
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5.4.1 Greedy Inference

For a large class of structures including the mention-pair model (Soon et al., 2001),

mention ranking (Durrett et al., 2013) and antecedent trees (Fernandes et al., 2014),

the maximization problems can be solved by greedy inference: We break the maximiza-

tion problems down into individual, independent steps and make a locally optimal

decision at each step. By design, aggregating all locally optimal decisions will lead to

an overall optimal decision.

5.4.2 Incremental Inference

Not all approaches are based on latent structures where optimal solutions can be com-

puted by greedy inference. Consider, for example, entity-based models. These com-

pute features over sets of mentions (also called partial entities) that are assumed to be

coreferent. Hence, when deciding whether to attach a mention mj to a partial entity

{mi1 , . . . ,mik}, this decision depends on all decisions for mentions that are already in

some partial entity. Therefore, decisions are not independent and we cannot apply

greedy inference.

An important subclass of inference methods suitable for such complex inference

problems are incremental inference methods (Collins and Roark, 2004; Daumé III and

Marcu, 2005b; Daumé III et al., 2009; Ross et al., 2011; Doppa et al., 2014; Daumé III

et al., 2014; Chang et al., 2015). Since we will use such methods frequently to obtain

approximately optimal substructures in Chapter 6, we explain them in more detail in

the following.

5.4.2.1 Issues with Non-incremental Inference

So far, we have assumed that inference consists in solving Equation 5.7,

fθ(x) = argmax
(h,z)∈Hx×Zx

〈θ, φ(x, h, z)〉

in just one step: We have to provide an algorithm that gets as input the parameter

vector θ and the document x, and then outputs the highest-scoring latent structure.

However, this can be infeasible if there are strong dependencies in the structure. Con-

sider again the mention-entity model. In order to obtain an exact solution to Equation

5.7, we would have to enumerate and score all assignments of mentions to entities in
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a document. Since the number of such assignments is exponential in the number of

mentions in a document, solving the equation is infeasible.

5.4.2.2 Intuition

An option to tackle complex inference problems is to consider inference as an incre-
mental task. Instead of enumerating all latent structures, the structures are constructed

incrementally in steps t = 1, 2, . . .. Each intermediate structure only models corefer-

ence relations for a subset of mentions. At a step t, the inference algorithm can access

the structure constructed in step t− 1, which allows to take already established coref-

erence relations into account.

Mention-entity models (e.g. Yang et al., 2008; Webster and Curran, 2014) typically

follow this approach. The latent structure obtained in step t − 1 describes the partial

entities for the mentions m1 to mt−1. In the next step t, we want to determine to which

partial entity (if any) mt belongs. Each attachment to a partial entity results in a latent

structure, which then can serve as input for the next step.

5.4.2.3 Formalization

In order to describe incremental inference, we first need some new terminology. Given

a set of latent structures H for some approach, let subgraphs(H) denote the set of all

subgraphs of the graphs in H. Since the graphs in H encode coreference information

for whole documents, the graphs in subgraphs(H) encode partial coreference infor-

mation.

Approaches based on incremental inference have as parameter a function

Generate : subgraphs(H)→ 2subgraphs(H)×Z (5.14)

that, given some directed labeled hypergraph corresponding to a partial latent struc-

ture at a time step t, outputs the set of candidate latent structures (together with the

coreference relations encoded by them) for the next time step.

Incremental inference then operates as follows: starting from a dummy initial latent

structure, iteratively apply the Generate function and choose the highest-scoring latent

structure in the search space at each time step. Algorithm 5.1 formalizes this approach

and Figure 5.4 shows a snapshot of the incremental inference procedure for a mention-

entity model.
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Algorithm 5.1. General incremental inference.
Input: A document x ∈ X , a function Generate

1: function INCREMENTALINFERENCE(x, Generate)
2: Set h0 to a dummy latent structure
3: Set t = 0
4: while Generate(ht) 6= (∅, ∅) do
5: Set (ht+1, zt+1) = argmax(h,z)∈Generate(ht)〈θ, φ(x, h, z)〉
6: Set t = t+ 1

Output: The final latent structure ht

m0 m1 m2 m3 m4

Partial latent structure after time t = 3

Figure 5.4: Incremental inference for a mention-entity approach. Each dashed edge
induces a different latent structure. All these latent structures form the
search space for the time step t = 4.

5.4.2.4 Incremental Inference as an Approximation Algorithm

Note that the output of Algorithm 5.1,

fθ(x) = INCREMENTALINFERENCE(x, Generate), (5.15)

does not necessarily constitute an exact solution to Equation 5.7,

fθ(x) = argmax
(h,z)∈Hx×Zx

〈θ, φ(x, h, z)〉,

since the incremental inference procedure may apply state transitions that are lo-

cally optimal, but globally suboptimal.

To understand why, consider again the mention-entity model. Assume we are pro-

cessing a mention m5, the partial entities are {m1,m2} and {m3,m4}. Attaching m5

to {m1,m2} results in a higher-scoring latent structure, therefore m5 is attached to
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Step 5

m1 m2

m3 m4

m5

5

1

Step 6

m1 m2 m5

m3 m4

m6

1

-1

Alternative Step 6

m1 m2

m3 m4 m5

m6

3

10

Figure 5.5: Globally suboptimal decisions during incremental inference. In step 5, at-
taching m5 to {m1,m2} yields the highest-scoring structure. Because of
this decision, the partial entity {m3,m4,m5} is not in the search space for
step 6. However, attaching m6 to this partial entity would have led to the
highest score.

{m1,m2}. Next, m6 is processed and has access to the partial entities {m1,m2,m5}
and {m3,m4}. Now it can happen that attaching m6 to the partial entity {m3,m4,m5}
would result in the highest score. However, m6 does not have access to this partial

entity, since the attachment of m5 to {m3,m4} was deemed suboptimal in the previous

step. This example is visualized in Figure 5.5.

Hence, in order to guarantee optimality, we would need to consider all possible par-

tial latent structures that can be constructed at each time step. Since the number of

partial latent structures may be exponential in the number of mentions, this approach

is not practical. The problem of globally suboptimal decisions is most severe when

using greedy search as described in Algorithm 5.1. There exist approaches for refining

search that try to avoid globally suboptimal decisions while ensuring reasonable time

complexity and memory requirements, such as beam search. To do so, beam search

keeps only the most promising solutions at each time step. However, compared to

greedy search, beam search significantly increases running time and complicates pa-
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rameter estimation (Bisani, 1987; Huang et al., 2012). We instead employ greedy

search, as described in Algorithm 5.1, and use parameter estimation methods with

strong performance guarantees (Chang et al., 2015).

5.4.2.5 Non-Incremental Inference as a Special Case

Non-incremental inference is a degenerated case of incremental inference. To see

why, set Generate(h0) = (Hx,Zx) and Generate(h) = (∅, ∅) for h 6= h0. Then the

while-loop in Algorithm 5.1 only gets executed once, and Algorithm 5.1 outputs h =

argmax(h,z)∈Generate(h0)〈θ, φ(x, h, z)〉. Since Generate(h0) = (Hx,Zx), the output is the

same as for non-incremental inference.

5.5 Parameter Estimation

Parameter estimation or learning means using some data to determine a parameter θ

such that the predictor fθ yields good performance on that data. We can broadly dis-

tinguish between supervised learning, where the data is annotated with the informa-

tion we aim to learn (in our case coreference relations), and unsupervised learning, in

which the data is not annotated with this information. In this thesis we only consider

supervised learning, as it is the more popular paradigm when estimating parameters

for coreference resolution approaches and also yields superior performance.

To learn the parameter vector, we have a training set

D =
{
(x(i), z(i)) | i = 1, . . . , k

}
⊆ X × Z (5.16)

at our disposal. D contains pairs (x(i), z(i)) which consist of a document x(i) and the

corresponding coreference annotation z(i). Note that the latent structures are not part

of this training set: they are auxiliary structures, not annotated in the data and can

differ per approach.

We now give perceptron-like algorithms that estimate a parameter vector θ ∈ Rd.

We build upon a perceptron learning algorithm (Rosenblatt, 1958; Collins, 2002) – it

is simple and fast, enables plug-and-play for different structures (providing respective

decoders), can include task-specific cost functions via cost-augmented inference and

has shown good performance for coreference resolution (Bengtson and Roth, 2008;

Chang et al., 2012; Stoyanov and Eisner, 2012; Webster and Curran, 2014; Fernandes
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et al., 2014). Furthermore, the perceptron can be extended to learn parameters in an

incremental inference setting (Collins and Roark, 2004; Daumé III and Marcu, 2005b;

Daumé III et al., 2014).

We first discuss a perceptron learning algorithm for the non-incremental case. We

then give a learning algorithm for the incremental case and show that the non-incre-

mental learning algorithm is a special case of the incremental learning algorithm.

5.5.1 Perceptron Learning: Non-incremental Case

Perceptron-like algorithms work by making a model prediction, and comparing this

prediction with the expected output, as annotated in the training data. If the predic-

tion was erroneous, components of the parameter vector are updated: components

corresponding to features of the expected output are increased, while components

corresponding to features of the prediction are decreased.

For the setting we discuss in this thesis, we need to employ some adaptations to the

standard perceptron algorithm for structured prediction (Collins, 2002).

5.5.1.1 Coping with Latent Variables

In a setting with latent variables, we want to compare the latent prediction with some

reference expected latent output. As such output is not available, since it is not part of

the training data, latent perceptron algorithms compare the latent prediction with the

highest-scoring latent prediction that is consistent with the reference annotation (Sun

et al., 2009). We denote these predictions as ĥcons.

To define ĥcons formally, we first introduce the latent output space restricted to struc-

tures encoding the reference annotations, which is

Hx,z = {h ∈ Hx |h and z are consistent} ⊆ Hx (5.17)

Then,

ĥcons = argmax
h∈Hx,z

〈θ, φ(x, h, z)〉. (5.18)

Departing from previous work, we allow to constrain the space Hx,z. By doing so,

we are able to account for the fact that some coreference approaches do not compare

to the best prediction consistent with the reference annotation, but compare to a fixed

structure which does not depend on the current parameter vector θ. For example, some
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mention ranking models always compare to the closest correct antecedent (Denis and

Baldridge, 2008).

Constraining the latent space is modeled by a function

constrain : 2H → 2H. (5.19)

This function maps Hx,z to constrain(Hx,z) ⊆ Hx,z. We mostly consider functions

such that |constrain(Hx,z)| = 1: The latent output space is constrained to just one

structure, against which we compare for training.

5.5.1.2 Cost-augmented Inference

As in previous work on the perceptron for coreference resolution (Chang et al., 2012;

Fernandes et al., 2014), we employ cost-augmented inference (Crammer et al., 2006).

Hence, when computing the model prediction for a training instance (x, z), we do

not select the best-scoring output according to Equation 5.7. Instead, we solve the

cost-augmented problem

fθ(x) = argmax
(h′,z′)∈Hx×Zx

〈θ, φ(x, h′, z′)〉+ c(x, h′, z), (5.20)

where

c : X ×H×Z → R≥0 (5.21)

is a cost function that measures the cost of predicting h′. c has the property that

c(x, h′, z) = 0 if and only if h′ is consistent with z . Predictions computed via Equation

5.20 maximize the sum of (i) 〈θ, φ(x, h′, z′)〉 and (ii) c(x, h′, z). Hence, ideally, they

score well under the current model (according to (i)) and have high cost (according

to (ii)). Since predictions that have high cost are highly incorrect, solving the cost-

augmented problem pushes the learning algorithm towards predicting high-scoring

incorrect solutions, which leads to more aggressive updates of the parameter vector.

5.5.1.3 Formal Description of the Algorithm

Algorithm 5.2 shows a more formal description of our perceptron learning algorithm.

It employs parameter vector averaging to avoid overfitting (Freund and Shapire, 1999;
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Algorithm 5.2. Structured latent perceptron with cost-augmented inference.
Input: A training set D, functions sub and constrain, a cost function c, the number

of epochs n
1: function PERCEPTRON(D, sub, constrain, c, n)
2: Set counter = 0
3: Set θ = (0, . . . , 0) ∈ Rd

4: for epoch = 1, . . . , n do
5: for (x, z) ∈ D do
6: for each substructure space Hx,i ∈ sub(x) do
7: (ĥ, ẑ) = argmax

(h′,z′)∈Hx,i×Zx

〈θ, φ(x, h′, z′)〉+ c(x, h′, z)

8: ĥcons = argmax
h′ ∈ constrain(Hx,z,i)

〈θ, φ(x, h′, z)〉

9: if ĥ is not consistent with z then
10: Set θ = θ + φ(x, ĥcons, z)− φ(x, ĥ, ẑ)
11: Set θsum = θsum + θ
12: Set counter = counter+ 1

13: Set θ = θsum/counter

Output: A parameter vector θ

Collins, 2002)5.

5.5.2 Perceptron Learning: Incremental Case

In order to extend the perceptron learning algorithm to the incremental case, we em-

ploy imitation learning by making use of the learning to search paradigm (Daumé III

et al., 2014). In our notation, the goal of learning in this paradigm is to estimate a

parameter vector θ such that the transition function

t : subgraphs(H)→ subgraphs(H) (5.22)

induced by

t(h) = argmax
(h′,z′)∈Generate(h)

〈θ, φ(x, h′, z′)〉 (5.23)

performs well. Hence, we learn how to perform the search that underlies the incre-

mental inference procedure. We choose the learning to search paradigm for many of

the same reasons we employ the perceptron learning algorithm: it is simple to imple-

5We also employ shuffling by choosing a random unprocessed substructure space at each step. How-
ever, this is not displayed for readability.
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ment, comparatively fast, works with arbitrary complex structures and it is devised

to handle task-specific cost functions (Daumé III et al., 2014). Furthermore, learning

to search has been successfully applied to coreference resolution (Daumé III, 2006;

Ma et al., 2014; Clark and Manning, 2015, 2016). Learning to search requires an

underlying cost-sensitive classification algorithm. For this algorithm, we employ the

perceptron method presented in the previous section. As we will show, the learn-

ing to search algorithm with perceptron learning generalizes the perceptron learning

algorithm presented in the previous section.

5.5.2.1 Learning to Search

In order to learn a parameter vector θ such that the induced transition function works

well, learning to search algorithms first apply a roll-in transition function: given an

input (x, z) ∈ X × Z, they run a transition function in to completion, starting from

a dummy latent structure h0. This yields a sequence S = {h0, . . . , hn} of latent struc-

tures, where hi+1 = in(hi). hn is a latent structure for the whole document. There are

many options for in. For example, we could use the transitioning function induced

by the learned parameter vector (Equation 5.23), or a reference transitioning function

that incrementally builds structures that are consistent with the reference annotation.

For every hi ∈ S, i > 0, learning to search algorithms then consider alternatives

(h′, z′) ∈ Alternatives(hi) ⊆ Generate(hi−1). (5.24)

for the time step i. We consider structures in Alternatives(hi), which is a subset of

Generate(hi−1), because we want to impose constraints on the alternatives considered

for hi. For example, if hi was obtained by adding an edge (m,n) to the partial structure

hi−1, we may only want to consider alternatives h′ that differ from hi by choosing a

different antecedent for m, and not by choosing an antecedent for a different mention.

By comparing the alternatives in Alternatives(hi), we can learn what constitutes

a good decision during incremental inference. To do so, each alternative (h′, z′) ∈
Alternatives(hi) has an associated cost c(h′) ∈ R≥0. To associate a cost, a roll-
out transition function out is run to completion for each partial latent structure in

Alternatives. This yields latent structures h′out = out(. . . (out(h′)) . . .). For a fixed

(h′, z′) ∈ Alternatives(hi), we then set the cost of h′ to the difference of the cost of
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h′out and the lowest-cost alternative, that is

c(h′) = c(x, h′out, z)− min
(h′′,z′′)∈Alternatives(hi)

c(x, h′′out, z). (5.25)

As for in, there are many options for the transitioning function out.

For every i ∈ {1, . . . , n}, the obtained cost-sensitive examples

{
(h′, c(h′)) | (h′, z′) ∈ Alternatives(hi)

}
(5.26)

now serve as input for the cost-augmented perceptron learning algorithm discussed

in the previous section. In particular, we compute the highest-scoring cost-augmented

partial structure, (
ĥ, ẑ
)
= argmax

(h′,z′)∈Alternatives(hi)
〈θ, φ(x, h′, z′)〉+ c(h′), (5.27)

and the highest-scoring partial structure with minimal cost,(
ĥmin, ẑmin

)
= argmax

(h′,z′)∈Alternatives(hi),
c(h′)= min

(h′′,z′′)∈Alternatives(hi)
c(h′′)

〈θ, φ(x, h′, z′)〉, (5.28)

and then perform the perceptron update θ = θ+φ(x, ĥmin, ẑmin)−φ(x, ĥ, ẑ). We need to

resort to structures with minimal cost instead of structures that are consistent with the

reference annotation, since, depending on the choice of the roll-in transition function

in, no partial latent structure considered during a time step may be consistent with

the reference annotation.

Figure 5.6 visualizes one step during learning to search for a tree-based mention-

entity model.

5.5.2.2 Avoiding Roll-outs

We will now analyze conditions under which we can obtain the highest-scoring la-

tent structures ĥ and ĥmin without running the roll-out transitioning function out to

completion. If we can avoid roll-outs, learning will be much faster.

If the cost function c factors over the edges of the latent structure, we have for
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(h′, z′) ∈ Alternatives(hi)

c(h′) = c(x, ĥ, z) =
∑
e∈ĥ

c(x, e, z) =
∑
e∈h′

c(x, e, z) +
∑

e∈ĥ,e/∈h′

c(x, e, z) (5.29)

where ĥ = out(. . . (out(h′)) . . .) and the sums are over edges in the latent structures.

We define

s(h′, out) =
∑

e∈ĥ,e/∈h′,ĥ=out(...(out(h′))...)

c(x, e, z), (5.30)

which is the sum of costs of edges that are not in h′.

We can avoid roll-outs if

s(h′, out) = s(h′′, out) for all h′, h′′ ∈ Alternatives(hi), (5.31)

because then the cost only depends on the latent structure which serves as input to

the roll-out. We will discuss edge-factorizing cost functions that fulfill the condition

expressed in Equation 5.31 in our discussion of latent structures for coreference reso-

lution in Chapter 6.

5.5.2.3 Formal Description of the Algorithm

Algorithm 5.3 shows a formal description of our learning to search algorithm with per-

ceptron learning. The presented algorithm is a generic learning to search algorithm

as presented in Daumé III et al. (2014). Instantiations of the algorithm are obtained

by choosing transition functions in and out. Depending on the choice of transition

functions, the instantiations correspond to novel learning to search algorithms or to

approaches from the literature such as Searn (Daumé III et al., 2009), DAgger (Ross

et al., 2011) or LOLS (Chang et al., 2015). Variants of learning to search algorithms

have been applied to learn parameters for incremental entity-centric coreference res-

olution systems (Daumé III, 2006; Ma et al., 2014; Clark and Manning, 2015, 2016).

We go beyond previous work by integrating a generic learning to search algorithm in a

machine learning framework for coreference resolution, and by applying the algorithm

to a great variety of approaches based on various structures.
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Algorithm 5.3. Learning to search with perceptron learning.
Input: A training set D, functions sub and constrain, a cost function c, the number of

epochs n, the functions Generate and Alternatives, transition functions in and
out

1: function LEARNINGTOSEARCH(D, sub, constrain, c, n, Generate, Alternatives,
in, out)

2: Set counter = 0
3: Set θ = (0, . . . , 0) ∈ Rd

4: for epoch = 1, . . . , n do
5: for (x, z) ∈ D do
6: for each substructure space Hx,i ∈ sub(x) do
7: Set update = (0, . . . , 0) ∈ Rd

8: Set h0 to a dummy latent structure
9: Set S = (h0)

10: Set t = 0
11: while Generate(ht) 6= (∅, ∅) do
12: Append ht+1 = in(ht) to S
13: Set t = t+ 1

14: for t = 1, . . . , |S| do
15: Using out, compute {(h′, c(h′)) | (h′, z′) ∈ Alternatives(ht)}
16: Set

(
ĥ, ẑ
)
= argmax

(h′,z′)∈Alternatives(ht)

〈θ, φ(x, h′, z′)〉+ c(h′)

17: Set
(
ĥmin, ẑmin

)
= argmax

(h′,z′)∈Alternatives(ht),
c(h′)= min

(h′′,z′′)∈Alternatives(ht)
c(h′′)

〈θ, φ(x, h′, z′)〉

18: if ĥ is not consistent with z then
19: Set update = update+ φ(x, ĥmin, ẑmin)− φ(x, ĥ, ẑ)
20: Set θ = θ + update

21: Set θsum = θsum + θ
22: Set counter = counter+ 1

23: Set θ = θsum/counter

Output: A parameter vector θ
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5.5.2.4 Non-incremental Perceptron Learning as a Special Case

Note that Algorithm 5.3 reduces to Algorithm 5.2 for non-incremental inference. Let

(x, z) be a training instance. For non-incremental inference, we set

Generate(h0) = (Hx,Zx) (5.32)

and

Generate(h) = (∅, ∅) for h 6= h0 ∈ Hx. (5.33)

Furthermore, we set Alternatives(h) = (Hx,Zx) for all h ∈ Hx.

Therefore S = (h0, h1) with h1 = in(h0) for some transitioning function in. Hence,

the for loop in Line 14 of Algorithm 5.3 only considers t = 1, and we have(
ĥ, ẑ
)
= argmax

(h′,z′)∈Alternatives(h1)
〈θ, φ(x, h′, z′)〉+ c(h′) (5.34)

= argmax
(h′,z′)∈Hx×Zx

〈θ, φ(x, h′, z′)〉+ c(h′) (5.35)

and (
ĥmin, ẑmin

)
= argmax

(h′,z′)∈Alternatives(h1),
c(h′)= min

(h′′,z′′)∈Alternatives(h1)
c(h′′)

〈θ, φ(x, h′, z′)〉 (5.36)

= argmax
(h′,z′)∈Hx×Zx,
c(h′)= min

h′′∈Hx
c(h′′)

〈θ, φ(x, h′, z′)〉 (5.37)

Now by the definition of c in Equation 5.25,

c(h′) = c(x, h′out, z)− min
(h′′,z′′)∈Alternatives(h1)

c(x, h′′out, z) (5.38)

= c(x, h′, z)− min
(h′′,z′′)∈Hx×Zx

c(x, h′′, z) (5.39)

(5.40)

By definition of cost functions, c(x, h, z) ≥ 0 and c(x, h, z) = 0 if and only if h is

consistent with z. Therefore, for any structure h′ that is consistent with the reference

annotation, c(h′) is minimal with c(h′) = 0. For all other structures, c(h′) = c(x, h′, z).
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It follows that (
ĥ, ẑ
)
= argmax

(h′,z′)∈Hx

〈θ, φ(x, h′, z′)〉+ c(x, h′, z) (5.41)

and (
ĥmin, ẑmin

)
= argmax

(h′,z′)∈Hx×Zx,
c(h′′)=0

〈θ, φ(x, h′, z′)〉 (5.42)

= argmax
h′∈Hx,z

〈θ, φ(x, h′, z)〉. (5.43)

Therefore, the update in Line 20 of Algorithm 5.3 corresponds to the standard percep-

tron update in Algorithm 5.2.
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m0 m1 m2 m3

m0 m1 m2 m3 m4 . . . mn

c(x, haout, z) = 12→ c(ha) = 9

m0 m1 m2 m3 m4 . . . mn

c(x, hbout, z) = 3→ c(hb) = 0

m0 m1 m2 m3 m4 . . . mn

c(x, hcout, z) = 5→ c(hc) = 2

Figure 5.6: One step during learning to search for a mention-entity approach. The
solid edges in the graph in the center were obtained by running the roll-in
transitioning function until time step t = 3. Dashed edges induce alterna-
tives (h′, z′) ∈ Alternatives(h3). For each alternative, we run the roll-out
transitioning function to completion, and compute a cost for the complete
structure. The cost associated to each alternative is then computed by sub-
tracting the minimum cost over all alternatives. In the case displayed here,
the weights would be updated by increasing weights of features of hb and
decreasing weights of features of ha.
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In this chapter we discuss specific approaches to coreference resolution in detail and

show how these can be expressed in the framework presented in Chapter 5. We discuss

models proposed in the literature and devise novel model variants. We compare the

models purely in terms of the structures they operate on. An extensive experimental

evaluation and analysis is performed in Chapter 8.

We start the chapter with a general discussion of the approaches we consider (Sec-

tion 6.1). We discuss three classes of approaches, depending on the structure they

operate on: mention pair models, mention ranking models and antecedent trees, and

entity-based models (Sections 6.2 to 6.4).

6.1 General Remarks

In Section 5.1 we observed that approaches to coreference resolution can be un-

derstood as predictors of latent structures between mentions. The machine learning

framework presented in Chapter 5 draws upon and formalizes this observation. The

framework enables us to give a uniform representation of approaches to coreference

resolution. In particular, an approach to coreference resolution is defined by

• the space H of latent structures,

• the function sub for generating substructures,

• the function constrain for constraining the latent space of structures consistent

with the reference annotation,

• the cost function c employed by the approach,
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• the algorithm for obtaining high-scoring latent structures, also called the decoder,
and

• the procedure obtain_coreference for obtaining coreference information z from

predicted latent structures h.

For models that rely on complex latent structures with strong dependencies between

the decisions encoded in the structure, we will employ incremental inference. For such

models, we additionally need to describe the functions Generate and Alternatives

that output candidate latent structures.

We now describe mention pair models (Soon et al., 2001; Ng and Cardie, 2002),

mention ranking models and antecedent trees (Denis and Baldridge, 2008; Chang

et al., 2012; Fernandes et al., 2014), and entity-based models (Luo et al., 2004; Yang

et al., 2008; Stoyanov and Eisner, 2012) in terms of these parameters, highlighting dif-

ferences and similarities between the approaches. We discuss variants of these models

proposed in the literature, as well as novel variants.

6.2 Mention Pair Models

Mention pair models label each pair of mentions as coreferent or non-coreferent. Typ-

ically, such models do not enforce consistency of these individual decisions, which

necessitates a clustering step to obtain coreference chains from the individual pair

predictions.

6.2.1 A General Mention Pair Model

Most mention pair models share the same latent structure, but can differ in the remain-

ing parameters, such as pruning of latent structures during training or the algorithm

to obtain coreference information from latent structures. Different choices of these

parameters correspond to different models from the literature, but can also lead to

novel variants.

6.2.1.1 Parameters

We now go through each of the parameters discussed in Section 6.1, discussing their

relationship to each other and discussing the models they lead to.
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m0 m1 m2 m3
−

+

−

−

+

+

Figure 6.1: Graph-based representation of mention pair models. The dashed box
shows one substructure of the structure.

Space H of latent structures. Most mention pair models label pairs of mentions in-

dividually as coreferent or non-coreferent. Hence, in terms of latent structures, they

are based on directed labeled graphs that contain an edge between each pair of men-

tions. The label either denotes coreference or non-coreference. More formally, they

are based on latent structures of the form h = (M0
x , A, LA), where the set of edges

contains each pair, that is

A =
{
(mj,mi) | mj,mi ∈M0

x , j > i
}
. (6.1)

Coreference decisions are represented by edge labels for this graph. Each edge receives

either the label “+” (coreferent) or “−” (not coreferent). Hence, LA is a mapping

LA : A→ {+,−} . (6.2)

Note that the edges of the graph are fixed: two graphs inHx only differ with respect to

their edge labels. Figure 6.1 shows an example graph for a document x with mentions

Mx = {m1,m2,m3}.
Typically, mention pair models do not employ dummy mentions, but model detec-

tion of anaphoricity implicitly: if for some j > 0 none of the edges (mj,mj−1), . . . ,

(mj,m1) receives the label “+”, mj is deemed as non-anaphoric. Some approaches

also employ an anaphoricity classifier in a preprocessing step. However, in this thesis

we are interested in how we can model properties of the coreference resolution task

structurally. We will not investigate anaphoricity classifiers further.

Most mention pair models employ heuristics to change the distribution of pairs in

the training data, either to align training data creation with the clustering method
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used or to cope with the fact that the non-coreferent pairs in A vastly outnumber

the coreferent pairs (Soon et al., 2001; Ng and Cardie, 2002; Björkelund and Farkas,

2012). The most popular heuristic is proposed by Soon et al. (2001): let mj be a

mention. If mj has no antecedent, disregard all pairs (mj,mi) with i < j. Otherwise,

let mk be the closest antecedent. Disregard all pairs (mj,mi) with i < k. In our

framework, such a heuristic corresponds to pruning the graphs during training.

Substructure-generating function sub. Most mention pair models model the coref-

erence decision for each pair as an individual prediction: each edge receives a label

without depending on the label of any other edge. This suggests that each edge in the

graph should correspond to one substructure. Formally, let A be the edge set of the

mention pair model. We have

sub(x) = {Hx,a | a ∈ A} (6.3)

where Hx,a is Hx restricted to the edge a. That is, Hx,a only contains two graphs. Both

graphs contain only the edge a. One graph labels this edge with “+”, the other graph

labels this edge with “−”. In Figure 6.1, the dashed box shows one such substructure

s ∈ Hx,(m3,m2) ∈ sub(x).

By modifying this substructure-generating function we can devise new variants of

the mention pair model. For instance, by considering the graph for the whole docu-

ment as a substructure, we consider all coreference relations in the document simul-

taneously. This makes a difference when learning parameters, since the parameter

vector is not updated after each pair, but after each document.

Substructure-constraining function constrain. For mention pair models, there is

exactly one latent structure that is consistent with the reference annotation. This is the

latent structure h with the correct edge labeling: “+” for all edges that connect coref-

erent mentions, “−” for all edges that connect non-coreferent mentions. Therefore we

cannot restrict the latent space of structures consistent with the reference annotation.

Cost function c. For mention pair models, the structured prediction task reduces to

binary classification of mention pairs. For such classification tasks, using cost func-

tions corresponds to resampling the training data under different distributions than

the original distribution (Elkan, 2001; Geibel and Wysotzk, 2003).
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As discussed above, most mention pair models employ heuristics to change the dis-

tribution of pairs in the training data. We are not aware of any work that uses cost

functions for mention pair models.

Decoder. The decoder outputs the highest-scoring substructure under the current

parameter vector. For computing the scores, mention pair models assume that the

feature function factors according to the edges in the structure and that there are

no dependencies between edge labels. Then, the highest-scoring substructure can be

computed by greedy inference, where for each edge the label is chosen that leads to

the highest score for the edge.

Obtaining coreference information from latent structures. The predicted latent

structure is a graph such as the one displayed in Figure 6.1. Mention pairs connected

by an edge with label “+” are deemed as coreferent by the model, while pairs con-

nected by an edge with label “−” are deemed as not coreferent. Consequently, we

need to coordinate these decisions to obtain the coreference chains, and there are

many options for coordinating the decisions.

m1 m2 m3 m4
− + +

−

+

−

Figure 6.2: A more complex mention pair example.

Consider the example displayed in Figure 6.2 (we left out the dummy mention m0

for readability). According to the prediction, m4 is coreferent with m1 as well as

with m3, but non-coreferent with m2. However, the predictions deems m3 and m1 as

non-coreferent and m3 and m2 as coreferent. How can we handle this contradicting

information?

This corresponds to the clustering problem for mention pair models discussed in

Section 3.1. A range of solutions has been proposed, from simple greedy schemes to
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complex clustering approaches incorporating transitivity. Most of the methods rely on

the scores of the edges according to the model, that is

score(mj,mi, `) = 〈θ, φ(x, (mj,mi, `), z)〉 ∈ R, (6.4)

where ` ∈ {+,−}. We therefore assume that we have access to these scores when

we want to obtain coreference information from predicted latent structures. Popular

methods include:

• Closest-first (Soon et al., 2001): for a mention mj, let mi be the closest preceding

mention such that LA(mj,mi) = +. Build the transitive closure over all such

pairs (mj,mi).

• Best-first (Ng and Cardie, 2002): for a mention mj, let mi be the highest-scoring

preceding mention labeled coreferent, i.e.

mi = argmax
mk s.t. LA(mj ,mk)=+

score(mj,mk,+). (6.5)

Build the transitive closure over all such pairs (mj,mi).

• Aggressive Merge (McCarthy and Lehnert, 1995): Perform the transitive closure

for all pairs (mj,mi) that are labeled as coreferent.

Researchers found it beneficial to align the method with the resampling heuristic for

creating training data (Ng and Cardie, 2002, p. 106f.). For instance, when employing

Aggressive Merge, we should not apply any resampling. If we, however, employ Closest
First, we should learn only from the closest correct antecedent of each mention. We

will examine this experimentally.

There are many more choices for coordinating the decisions, most notably graph-

based approaches (Nicolae and Nicolae, 2006; Cai and Strube, 2010a; Sapena et al.,

2013) and approaches relying on combinatorial optimization (Klenner, 2007; Finkel

and Manning, 2008), but we do not discuss these further, since the above mentioned

methods are the most popular. All methods for coordinating the decision can be con-

sidered as implementations of the obtain_coreference function to extract coreference

information from latent structures.
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6.2.1.2 Discussion

Mention pair models constitute an attractive starting point for developing approaches

to coreference resolution. They find a simple model for the task by reducing the prob-

lem to binary classification of mention pairs. In our framework, the implementation

of such models is straightforward by relying on labeled graphs with edges between all

pairs of mentions.

Mention pair models pay a price for reducing the problem to a simple setting: due

to the complexity of the task, the reduction necessitates a post-processing clustering

step.

Some mention pair models enforce that the decisions made by the model are con-

sistent with each other, both during learning and prediction (Chang et al., 2011; Song

et al., 2012). To model this in our framework, we need to modify the set of valid latent

structures such that these are not able to represent contradicting information.

To do so, we require LA to satisfy

LA(mj,mi) = + and LA(mi,mk) = + implies LA(mj,mk) = + (6.6)

for any i, j, k ∈ {1, . . . , n}. Hence, the edge labeling is always transitive with respect to

coreference, and therefore there can not be any contradictions. However, finding op-

timal structures in this setting requires solving a complex combinatorial optimization

problem.

Mention ranking and antecedent tree models, which we consider in the next section,

instead enforce consistency by modeling single-antecedent constraints structurally via

considering an edge set A different from mention pair models. As we will see, this will

lead to a simpler modeling approach which still permits greedy inference.

6.3 Mention Ranking and Antecedent Trees

Mention ranking and antecedent tree models cast coreference resolution as a rank-
ing problem: given an anaphor mj, they consider the list of candidate antecedents

m0, . . . ,mj−1. The idea is to learn a parameter vector that enables to pick a correct

antecedent mi from this list. In other words, there exists a correct antecedent that is

ranked higher than any incorrect antecedent. Since every mention gets assigned to

only one antecedent, there is no need for a complex obtain_coreference method.

103



6 Structures for Coreference Resolution

Coreference chains are obtained by transitive closure over all anaphor-antecedent de-

cisions.

In this section, we discuss several approaches that built upon this idea. In order to

be able to do efficient inference, the models assume that both the features and the

cost-functions are edge-factored: there are no features or cost function computations

that consider more than one edge. When extending the scope of the feature or the

cost functions, the resulting models are mention-entity or entity-entity models, which

we will discuss in the next section.

6.3.1 Mention Ranking

Mention ranking models stay closest to the idea just described: for each anaphor,

pick the highest-ranked antecedent, where higher scores for anaphor-antecedent pairs

correspond to higher ranks of the antecedent.

6.3.1.1 Parameters

Space H of latent structures. The latent structure underlying the mention ranking

model represents the antecedent decisions for each anaphor in the document. This can

be modeled as an unlabeled tree, where each mention node (except for the dummy

mention m0) has exactly one outgoing edge. Formally, ranking models are based on

latent structures of the form h = (M0
x , A, LA), where A is a subset of all mention pairs,

A ⊆ {(mj,mi) | j > i}, that satisfies that each node has exactly one outgoing edge:

for all j > 0, there exists exactly one i < j s.t. (mj,mi) ∈ A. (6.7)

The graph models the antecedent decisions via the structure, and does not need any

edge labels, therefore LA(mj,mi) = None for all (mj,mi) ∈ A.

Figure 6.3 shows an example graph for a document with mentionsMx = {m1,m2,m3}.
According to this graph, m1 and m2 have as antecedents the dummy mention — they

are not anaphoric — and m3 has m1 as antecedent.

Note that the edges have a different semantics than the edges in the representa-

tion of the mention pair model. While for mention pair models labeled edges signal

coreference or non-coreference, edges now signal that the connected mentions are

in an anaphor-antecedent relation. The absence of an edge does not entail that the

mentions are not coreferent.
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m0 m1 m2 m3

Figure 6.3: Graph-based representation of the mention ranking approach. A substruc-
ture is highlighted in blue.

Early approaches to mention ranking did not explicitly make use of dummy men-

tions (Denis and Baldridge, 2008). Since by construction mention ranking approaches

find an antecedent for every anaphor, models without dummy mentions need to apply

an anaphoricity classifier beforehand. For mentions that are deemed non-anaphoric

by the classifier, the ranking model will not attempt to determine an antecedent. In

this thesis, we will only consider ranking models with dummy mentions, since dummy

mentions provide a way to structurally model anaphoricity detection.

Early approaches also applied similar heuristics as mention pair models to change

the distribution of the training data. Equivalently to mention pair models, we can

model these by pruning the graphs during training.

Substructure-generating function sub. The distinctive feature of the mention rank-

ing approach (compared to antecedent trees) is that it models the antecedent decision

for each anaphor individually. Hence, the jth generated substructure space by sub con-

sists of all graphs in Hx that model the antecedent decision for mj: h = (V,A, LA) ∈
Hx,j if and only if

• V = {m0, . . . ,mj},

• there exists exactly one mi, i < j, such that A = {(mj,mi)}, and

• LA(mj,mi) = None for this (mj,mi).

In particular, each substructure consists of a graph that has only one edge. In Figure

6.3, such a substructure is highlighted in blue.

As we will see in the next subsection, extending the substructure to the whole docu-

ment leads to antecedent trees (Fernandes et al., 2014). Hence, antecedent trees can

be regarded as an extension of the mention ranking approach to the document level.
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Substructure-constraining function constrain. In general, given a document x ∈
X , there exist many latent structures for the mention ranking model that are con-

sistent with the reference annotation. For example, consider a document with men-

tions m1, . . . ,m5. Suppose that m2, m3 and m5 are coreferent. When determining an

antecedent for m5, there are two latent substructures consistent with the reference

annotation. One substructure contains the link (m5,m3), the other contains the link

(m5,m2).

m0 m1 m2 m3 m4 m5

Figure 6.4: Latent substructures consistent with the reference annotation for the men-
tion ranking model. If m5 is coreferent with m3 and m2, both dashed edges
are valid choices for a latent structure consistent with the reference anno-
tation.

Figure 6.4 visualizes both substructures. When not constraining the substructures,

the decoder will choose the highest-scoring substructure consistent with the refer-

ence annotation, which may be the substructure containing the edge (m5,m2). How-

ever, some implementations of the mention ranking model, for instance Denis and

Baldridge (2008), do not consider the highest-scoring antecedent when updating their

model, but always consider the closest antecedent. In the example this would corre-

spond to taking the substructure which has (m5,m3) as the edge. To model this in our

framework, we constrain the set of valid latent structures consistent with the reference

annotation to structures containing only links to the closest antecedent

Formally, we define the function constrain as follows. constrain(H) is the set of all

latent structures in H such that the edges are only between a mention and its closest

correct antecedent.

Cost function c. Cost functions for mention ranking models measure the quality

of the prediction by reviewing properties of the predicted edge. The simplest cost

functions check whether the predicted edge contains coreferent mentions or not, and

assigns a cost λ > 0 if the mentions are not coreferent (Chang et al., 2012). More

sophisticated cost functions provide a finer distinction of the error made. Durrett and

Klein (2013), for example, distinguish between three types of error, where each type
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has a different cost: a wrong link error predicts that two non-coreferent mentions are

coreferent, a false new error predicts that an anaphoric mention is non-anaphoric, and

a false anaphoric error predicts that a non-anaphoric mention is anaphoric. In Chapter

8 we will evaluate the contribution of a similar cost function experimentally.

Decoder. The mention ranking model relies on a simple structure: the predicted sub-

structure contains only one edge, which signals an anaphor-antecedent relationship for

the anaphor in focus. The decoder works in a greedy way: given a substructure space

Hx,j, score all edges (mj,mi) for i = {0, . . . , j − 1}. Choose the highest-scoring edge,

breaking ties by favoring mentions closer to mj. For cost-augmented inference dur-

ing training, add the cost to the score of each pair. For predicting the highest-scoring

latent substructure consistent with the reference annotation, restrict the edge set to

pairs (mj,mi) such that mj and mi are coreferent, or, if mj is non-anaphoric, mi is the

dummy mention m0.

Obtaining coreference information from latent structures. The predicted latent

structure for the whole document represents all anaphor-antecedent decisions for the

document. Hence, to obtain coreference information, we perform the transitive clo-

sure over the anaphor-antecedent pairs represented in the structure. We do ignore

all pairs (mj,m0), i.e. where the antecedent is the dummy mention, since having the

dummy mention as antecedent corresponds to the prediction that the mention is non-

anaphoric.

6.3.1.2 Discussion

The mention ranking approach models anaphor-antecedent decisions structurally, by

predicting a graph that contains all anaphor-antecedent decisions for a document. The

approach considers each anaphor individually.

By employing a structural representation for anaphor-antecedent decisions, the un-

derlying structure, as well as the decoder and the obtain_coreference function are

very simple. Since we take the highest-scoring edge (mj,mi) when predicting a latent

substructure for the mention mj, the mention ranking model can also be understood

as a way to integrate best-first clustering during training.
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6.3.2 Antecedent Trees

Antecedent trees, originally proposed by Yu and Joachims (2009), gained popularity

after the antecedent-tree-based approach of Fernandes et al. (2014) won the CoNLL-

2012 shared task on coreference resolution (Pradhan et al., 2012; Fernandes et al.,

2012). In contrast to mention ranking models, which consider each anaphor in isola-

tion, antecedent tree models predict the antecedents for all mentions in a document

simultaneously. While antecedent tree models can be obtained by a simple modifica-

tion of mention ranking models, we nevertheless discuss them in detail due to their

popularity.

6.3.2.1 Parameters

Space H of latent structures. Antecedent trees are based on the same latent struc-

ture as the mention ranking approach: a graph that encodes all anaphor-antecedent

decisions, such as the one displayed in Figure 6.3.

Substructure-generating function sub. Antecedent trees differ from the mention

ranking approach only with respect to the factorization into substructures. While the

mention ranking approach considers each anaphor in isolation, and therefore consider

per-anaphor substructures, the antecedent tree approach considers the whole docu-

ment at once. Therefore we have

sub(x) = {H} . (6.8)

Substructure-constraining function constrain. For the constrain function, the

same discussion as for mention ranking models applies here.

Cost function c. Remember that we assume that the cost function factors over the

edges in the tree (we study more advanced cost functions for entity-based models).

Hence, to obtain cost functions for antecedent trees, we extend cost functions for the

mention ranking model. Let c be a cost function for the mention ranking model. To

extend c to antecedent trees, we factor the tree into substructures, as in the mention

ranking model, and compute the cost according to c for each substructure. To obtain

the cost for the whole tree, we compute the sum over the costs for the substructures.
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All existing implementations use such cost functions (Yu and Joachims, 2009; Fernan-

des et al., 2014; Björkelund and Kuhn, 2014).

Decoder. Due to the edge factorization of the features and the costs the highest-

scoring tree can be obtained by greedy inference: for each mention mj, j > 0, add the

highest-scoring outgoing edge (mj,mi) to the tree.

Obtaining coreference information from latent structures. Since the mention rank-

ing model and antecedent trees share the same latent structure, we obtain coreference

information from antecedent trees with the same method as for the mention ranking

model.

6.3.2.2 Discussion

Antecedent trees are a simple extension of mention ranking models. In particular, they

share the same latent structure, the only difference is the factorization into substruc-

tures. Therefore, if the cost function and the features factor according to the edges in

the tree, antecedent trees have the same expressive power as mention ranking models.

6.3.3 Beyond Trees

Mention ranking models and antecedent trees rely on a tree as a latent structure, which

encodes all anaphor-antecedent decision in a document. This can also be understood

as accounting for the best-first clustering approach in the structure.

Therefore, other structures correspond to other clustering schemes. In this subsec-

tion, we study in detail the approach when we replace trees with general directed

graphs as the latent structure.

6.3.3.1 Parameters

SpaceH of latent structures. The underlying latent structure now encodes all coref-

erence relations from a mention to all preceding mentions. A mention either has the

dummy mention as antecedent or has one or more non-dummy antecedents. Hence,

latent structures have the form h = (M0
x , A, LA) with

A ⊆ {(mj,mi) | j > i} (6.9)
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such that

(mj,m0) ∈ A implies (mj,mi) /∈ A for all i < j (6.10)

and LA((mj,mi)) = None for all (mj,mi) ∈ A.

m0 m1 m2 m3

Figure 6.5: Graph-based representation of the approaches relying on general directed
graphs instead of trees.

Figure 6.5 shows an example graph for a document with mentionsMx = {m1,m2,m3}.
In this example graph, m3 has two antecedents: m1 and m2.

Hybrid approaches are also possible. For instance, we could allow all preceding

coreferent mentions for non-pronominal mentions and only consider a single antecedent

for pronouns.

Substructure-generating function sub. Similar to the distinction between the men-

tion ranking approach and antecedents trees, natural definitions of sub are either to

consider the induced substructures for each anaphor mj, or to consider the whole

document at once.

Substructure-constraining function constrain. When we do not constrain the struc-

ture consistent with the reference annotation, we learn from all correct coreference

links to all preceding mentions.

With constraining the structure we can add some linguistic intuitions to the ap-

proach. For instance, we could impose distance restrictions or disregard links with

specific mention types (such as proper name anaphor and pronoun antecedent).

Cost function c. Instead of just one edge for each anaphor, which represents an

anaphor-antecedent relation, the graph-based approaches can predict more than one

edge. Hence, we can obtain cost functions by extending cost functions devised for
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mention ranking models to more than one edge, analogously to the extension to an-

tecedent trees.

Decoder. Since we assume that the cost function and the features factor over the

edges of the graph, we can obtain the highest-scoring graph by adding all edges with a

positive score. If for an anaphor mj the highest-scoring edge is (mj,m0), we only add

this edge. If for an anaphor mj no edge has a positive score, we add (mj,m0).

Obtaining coreference information from latent structures. In the graph-based

models, two mentions are coreferent when there is an edge between the mentions.

Therefore, to obtain coreference information, we take the transitive closure over all

mention pairs which are connected by an edge (ignoring the dummy mention).

6.3.3.2 Discussion

Tree-based models such as mention ranking or antecedent trees rely on anaphor-an-

tecedent relations and the single antecedent constraint: every mention has exactly one

antecedent (which can be the dummy mention). Graph-based representations allow

multiple antecedents for each mention, and therefore are based on the assumption

that every mention has at least one antecedent. This assumption may be more rea-

sonable than the single antecedent constraint for specific mentions which often lack

strong anaphor-antecedent relations, such as for instance proper names (see the dis-

cussion in Section 2.1.2.2). Graph-based models can be understood as accounting for

aggressive-merge clustering in the structure.

Furthermore, hybrid models are conceivable. For example, these may allow exactly

one antecedent for pronouns, but multiple antecedents for proper names and common

nouns.

6.4 Entity-based Models

Entity-based models (Luo et al., 2004; Rahman and Ng, 2011a; Björkelund and Kuhn,

2014; Clark and Manning, 2015, inter alia) leverage information about previous coref-

erence predictions in a document. To do so, they incrementally construct coreference

chains, which allows them to access the partial entities constructed so far. This enables
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the use of entity-level features that examine properties of entities, such as the distribu-

tion of mention types or the structure of coreference chains (we describe the features

used in our experiments in detail in Chapter 7).

Entity-based models can differ with respect to the latent structure they use, the

exact algorithm employed for incrementally building structures and the factorization

and scope of features and cost functions. Different instantiations of these parameters

lead to different entity-based models. In this section, we describe two different la-

tent structures on which approaches from the literature are built: trees/graphs and

hypergraphs.

6.4.1 Tree and Graph Models

We first discuss entity-based models built on antecedent trees or graphs. By construct-

ing these trees and graphs incrementally, decisions in later stages of inference can rely

on previous anaphor-antecedent decisions. These entity-based models, which became

very popular recently (Stoyanov and Eisner, 2012; Björkelund and Kuhn, 2014; Clark

and Manning, 2015), retain anaphor-antecedent information between individual men-

tions while being able to employ entity-level information.

6.4.1.1 Parameters

Space H of latent structures. The latent structure these models are based on is the

same as the structures discussed in Section 6.3, i.e. antecedent trees or antecedent

graphs. While the structures are the same, the difference is that entity-based meth-

ods construct the structures incrementally, which allows them to access information

about partial entities. In order to access detailed information about the incremental

construction, we label each edge in the latent structure with the time step when it was

added to the graph, that is

LA((mj,mi)) = t (6.11)

if and only if the edge (mj,mi) was added to the graph in time step t.

Note that entity-based models with trees/graphs as the underlying structure do not

model partial entities explicitly: the latent structures are constructed by successively

applying anaphor-antecedent decisions for pairs of mentions. Entity-based informa-

tion can be injected into the models by devising entity-based features that examine

properties of the tree/graph beyond the edge in focus. Another option to employ
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entity-based information is via the cost function, as we will describe later.

Candidate-generating functions Generate and Alternatives. In entity-based mod-

els there are strong dependencies between individual coreference decisions. Therefore

these models use incremental inference and learning to search. We have to specify the

candidate-generating functions Generate and Alternatives. These functions receive

as input a partial latent structure h ∈ subgraphs(H). Generate outputs all latent struc-

tures to be considered in the next step of incremental inference, while Alternatives

outputs alternative latent structures for the current time step during learning to search

(see Section 5.5.2)1.

The Generate function. Let us first consider the Generate function. We describe a

general function. As we will show later, different constraints on this general function

will lead to different inference schemes for entity-based models.

m0

m1 m3

m2 m5

m4 m6 m7 m8

m9 m10

1

7

4

2

6 5

3

Figure 6.6: A partial latent structure for an entity-based model with trees as underlying
structure. The partial latent structure is a forest, i.e. a graph where each
connected component is a tree. Each tree corresponds to a partial entity.
Edge labels denote the time step in which the edge was added to the tree.
The mentions m4,m9 and m10 are unattached.

Partial latent structures are antecedent trees (respectively graphs) for subsets of

1In addition to the structures, these functions also output the coreference relations encoded by the
structures. For convenience, we drop this output when describing the functions in this chapter.
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mentions. Figure 6.6 shows one such partial latent structure for a tree-based model.

Given a structure h = (M0
x , A, LA), candidate latent structures for the next time step

are obtained by different antecedent choices for unattached mentions (i.e. mentions

with no outgoing edge). Formally, we define for tree-based models

Generate(h) =
{
h′ = (M0

x , Aj,i, LAj,i
) | mj is unattached, i ∈ {0, . . . , j − 1}

}
(6.12)

with

Aj,i = A ∪ {(mj,mi)} (6.13)

and

LAj,i
(a) =

LA(a) a ∈ A,

maxa′∈A LA(a
′) + 1 a = (mj,mi).

(6.14)

For graph-based models, we consider an arbitrary number of antecedents, therefore

in this case

Generate(h) = {h′ = (M0
x , A ∪ E,LA∪E) | mj is unattached,

E = {(mj,m0)} or E ⊆ 2{(mj ,mi)|0<i<j}} (6.15)

where 2{(mj ,mi)|0<i<j} is the set of all outgoing edges from mj pointing back to non-

dummy mentions, and LA∪E is defined analogously to the tree case.

Note that different latent structures can express the same partial entity. If a par-

tial entity before processing mj contains the mentions mi1 to mik , then all attach-

ments (mj,mi) with i ∈ {i1, . . . , ik} lead to the partial entity consisting of mentions

{mi1 , . . . ,mik ,mj}. However, the internal structure is different.

The Alternatives function. Alternatives outputs alternative latent structures

for the current step during learning to search. The latent structure in the current time

step t was obtained by choosing the highest-scoring h ∈ Generate(ht−1). Compared

to ht−1, h contains additional edges (mj,mi1), . . . , (mj,mik) with k ≥ 1. Each of these

edges is labeled with the current time step t. Alternatives considers alternative

attachments of the mention mj – this is in contrast to the Generate function, which

additionally chooses the mention to be attached.

Hence, let mj be the source of a highest-labeled edge in h. We set Alternatives(h)
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to the subset

Alternatives(h) ⊆ Generate(ht−1) (6.16)

such that the graphs in Alternatives(h) only add attachments from mj. ht−1 can be

obtained from h by removing all edges with the highest label.

Inference Schemes. By definition of the incremental inference procedure, we pick

the highest-scoring latent structure h ∈ Generate(ht−1) in time step t of the inference

procedure for one document. For the Generate function as discussed above, the latent

structure h is adding the highest-scoring (i.e. most confident) anaphor-antecedent de-

cision (mj,mi) to the graph, where the search space is over all antecedent decisions

for unattached mentions. This inference paradigm is also known as easy-first inference
(Goldberg and Elhadad, 2010; Stoyanov and Eisner, 2012), since decisions which are

considered easy/reliable/confident by the model are preferred. However, easy-first

models face a very large search space, which leads to high computational complex-

ity. To cope with the large search space, models from the literature restrict the search

space, following one of two options.

The first option is to consider the first unattached mention (with respect to doc-

ument order) instead of any unattached mention when generating candidate latent

structures (Björkelund and Kuhn, 2014; Webster and Curran, 2014). Hence, such

models attach mentions in document order. They do not perform easy-first inference,

but left-to-right inference. In the second option, easy-first inference is retained, but the

size of the search space is limited by employing heuristics or thresholds (Stoyanov and

Eisner, 2012; Clark and Manning, 2015). For example, Stoyanov and Eisner (2012)

only consider proper name antecedents for proper name mentions. Similar restrictions

apply to other mention types.

In our framework, all of these restrictions can be represented as considering re-

stricted versions of the Generate function as defined above. That is, we consider

functions Generaterestr with

Generaterestr(h) ⊆ Generate(h) (6.17)

for all h ∈ H. We evaluate different restrictions when performing the experiments for

entity-based models in Section 8.4.
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Substructure-generating function sub. The incremental inference procedure just

described aims to find an approximately optimal solution for the whole document. We

therefore have no factorization into substructures.

Substructure-constraining function constrain. We are not aware of any approaches

that constrain structures consistent with the reference annotation.

Cost function c. Models based on trees or graphs can use cost functions from the

non-incremental approaches based on these structures without any modification. Note

that these cost functions are edge-factored.

Cost functions that are not edge-factored can be obtained from coreference reso-

lution evaluation metrics such as as MUC (Vilain et al., 1995) and B3 (Bagga and

Baldwin, 1998). Such cost functions can be applied as follows: given a partial la-

tent structure h′ ∈ Generate(h), roll out to obtain a latent structure for the whole

document, obtain coreference information from this latent structure and compute a

coreference resolution evaluation metric score s. The cost for the latent structure is

then set to λ(1− s) for some λ > 0. Via using such a cost function, entity-based infor-

mation can be incorporated into a model without using any entity-specific features or

graph representations.

Decoder. The decoder computes the highest-scoring partial latent structure in the

search space. The score of a partial latent structure can be obtained by summing the

scores of all edges in the structure. When scoring the edges, we have to distinguish

between two sets of features (see Chapter 7): local features, which only consider a

pair of mentions, and non-local features, which consider a pair and additionally its

context in the structure. The non-local features can be further divided into features

that consider the context of both mentions in the pair (mj,mi), and into features that

only consider the context of the antecedent mj. If non-local features only examine the

context of the antecedent, the model is commonly called an entity-mention or mention-
entity model (Yang et al., 2008). Models that examine both contexts are sometimes

dubbed entity-centric (Clark and Manning, 2015). We call such models entity-entity
models.

Since the search space is very large, it is prohibitively expensive to score all edges

of all structures in the search space. However, a structure h ∈ Generate(ht) differs

from ht by adding one or more edges to the graph represented by ht. Entity-based
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approaches assume that the score of h can be obtained by adding the score of the

newly added edges to the score of ht. For doing this efficiently, the models assume

that the score of an edge is unaffected by later coreference decisions.

Hence, for all h ∈ Generate(ht), the decoder scores the edges with the highest label,

and adds this score to the cached score of ht to obtain a score for h. It then selects the

highest-scoring partial latent structure in the search space.

Obtaining coreference information from latent structures. The predicted latent

structure is a tree or graph representing anaphor-antecedent decisions. Therefore

coreference information can be obtained by transitive closure over all edges in the

tree/graph (ignoring the dummy mention).

6.4.1.2 Discussion

Entity-based models built on trees or graphs are attractive because they allow the

inclusion of entity-level features, while still modeling structure in terms of anaphor-

antecedent decisions. Varying the scope of the features leads either to mention-entity

or entity-entity models.

6.4.2 Hypergraph Models

Most entity-based approaches to coreference resolution do not model anaphor-an-

tecedent relations as do the ranking and tree models. Instead, they treat the incre-

mentally built partial entities as atomic units (Luo et al., 2004; Culotta et al., 2007;

Yang et al., 2008; Ma et al., 2014). Scores of mention-entity or entity-entity pairs only

depend on features over all mentions in the partial entities, such as the existence of a

head match, or the minimum distance between the partial entities. In particular, such

models employ an explicit representation of partial entities. In our framework, these

models can be expressed via hypergraphs.

6.4.2.1 Parameters

Space H of latent structures. In an explicit representation, partial entities are rep-

resented as sets of mentions, and coreference decisions are represented as hyperedges
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that connect these sets. This is modeled by setting the set of valid edges to

A = {(X, Y ) | X ⊆Mx, Y ⊆Mx, X ∩ Y = ∅,∃m ∈ X,n ∈ Y s.t. m > n}

∪ {(X, {m0}) | X ⊆Mx}
(6.18)

Most of our features rely on anaphor-antecedent relations (see Chapter 7). Hence,

these features only have a value when there exists a mention n ∈ Y that precedes a

mention m ∈ X. We therefore defined A such that any pair (X, Y ) ∈ A fulfills this

relation.

Most hypergraph-based models from the literature are mention-entity models: they

do not consider pairs of partial entities, but attach single mentions to preceding partial

entities. In our representation, this is modeled by cardinality constraints on the hyper-

edges (X, Y ) ∈ A: to only allow attachments of mentions, we require that |X| = 1.

Again, we label each edge in the latent structure with the time step when it was

added to the graph.

m0

m1 m3

m2

m4 m5 m6 m7

1

3

2

4

5 6 7

Figure 6.7: Hypergraph-based mention-entity model. The entities displayed are
{m1,m3}, {m2} and {m4,m5,m6,m7} The graph was constructed via
mention-entity attachments m1, m2 and m4 to {m0}, m3 to {m1}, m5 to
{m4}, m6 to {m4,m5} and m7 to {m4,m5,m6}.

Figure 6.7 shows an example hypergraph of a mention-entity model that encodes

coreference decisions for a document with mentions Mx = {m1, . . . ,m7}.

Candidate-generating functions Generate and Alternatives. We only consider

the Generate function. The Alternatives function can be obtained as described in
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Section 6.4.1. The discussion of inference schemes from that section also applies to

hypergraph models.

For hypergraph models, the Generate function obtains candidate latent structures

by attaching partial entities to preceding partial entities. Formally, if h = (M0
x , A, LA),

we set

Generate(h) = {h′ = (M0
x , AX,Y , LAX,Y

) | X ⊆Mx, Y ⊆Mx or Y = {m0},

X ∩ Y = ∅,∃(m,n) ∈ X × Y s.t. m > n, @Z s.t. (X,Z) ∈ A} (6.19)

with

AX,Y = A ∪ {(X, Y )} (6.20)

and

LAX,Y
(a) =

LA(a) a ∈ A,

maxa′∈A LA(a
′) + 1 a = (X, Y ).

(6.21)

In the definition of Generate(h), the condition @Z s.t. (X,Z) ∈ A ensures that the

partial entity represented by X is not already attached.

Substructure-generating function sub. The incremental inference procedure just

described aims to find an approximately optimal solution for the whole document. We

therefore have no factorization into substructures.

Substructure-constraining function constrain. We are not aware of any entity-

based approaches relying on hypergraphs that constrain structures consistent with the

reference annotation.

Cost function c. Analogously to tree/graph models, hypergraph models can use cost

functions induced from coreference resolution evaluation metrics.

To obtain edge-factoring cost functions for hypergraph models, cost functions for

ranking models can be adapted. We discuss two options. In the first option, we simply

aggregate all costs between mention pairs induced by the pair of partial entities. Given

a mention-ranking cost function crank, we set

caggr(x, (X, Y ), z) =
∑

m∈X,n∈Y,m>n

crank(x, (m,n), z). (6.22)
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This cost function is sensitive to the size of the partial entities. We also devise a variant

that does not account for size of the partial entities. To do so, we take the maximum

over all costs for induced mention pairs:

cmax(x, (X, Y ), z) = max
m∈X,n∈Y,m>n

crank(x, (m,n), z). (6.23)

To ensure that the cost functions only depend on the latent structure at the current

time step, as required to avoid roll-outs, we set caggr ≡ cmax ≡ 0 for all edges except

the one added in the current time step. Hence, it is sufficient to evaluate the cost for

the edge added in the current time step. While learning with such cost functions is

computationally efficient, the costs considered are only local: the effect of the decision

on later decisions is not modeled.

Decoder. For all models, we assume that the features are defined over hyperedges.

With this assumption, the decoder works analogously to the decoder of entity-based

models relying on trees or graphs, which we described in the previous section.

Obtaining coreference information from latent structures. The output of the in-

cremental inference procedure is a directed hypergraph such as the graph displayed in

Figure 6.7. In this graph, two mentions (excluding the dummy mention) are deemed

coreferent if they are in the same component after removing the dummy mention.

Therefore, to obtain coreference information, we first remove the dummy mention

and then assign two mentions to the same entity if they are in the same component.

6.4.2.2 Discussion

Entity-based hypergraph models regard coreference resolution as merging partial en-

tities that exhibit no internal structure. This yields a model that is able to reason over

sets of mentions, but is unable to express anaphor-antecedent relations or to compute

features over individual mention pairs.

Many of the hypergraph-based approaches from the literature do not use learning

to search during training, but rely on binary classification (Luo et al., 2004; Culotta

et al., 2007; Yang et al., 2008). In our framework, this can be modeled by consider-

ing an edge-labeled variant of the hypergraph structures, analogously to the mention

pair model. During training, the aim is to learn to predict correct labels for hyper-

edges. During test time, latent structures are built incrementally by greedily choosing
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the highest-scoring hyperedge labeled with coreferent. Structurally, these models are

very similar to mention pair models. Furthermore, in preliminary analysis we found

that these models also suffer from the same weaknesses as mention pair models. We

therefore do not consider these classification-based models further in this thesis.
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In this chapter we present the features employed by the approaches we will discuss in

the next chapter. After giving an overview (Section 7.1), we discuss the various classes

of features we use. We start with mention and mention pair features (Section 7.2),

which are shared by all approaches. We then discuss features that are only applicable

to entity-based models (Section 7.3). We conclude the chapter by presenting our

feature combination scheme (Section 7.4).

7.1 Overview

If applicable, we employ the same set of mention and mention pair features in all

models discussed in thesis. Our feature set consists of features commonly used in

previous work (Bengtson and Roth, 2008; Durrett and Klein, 2013; Fernandes et al.,

2014; Björkelund and Kuhn, 2014). Models such as mention-entity models have more

representational power than models based solely on mention pairs. To make use of

this gained representational power we devise features unique to these models.

Many of our features rely on the mention types of the constituting mentions, which

we assign based on the part-of-speech tag of the mention’s head. They are obtained

by the following algorithm:

• if the head token has a named entity tag or if its part-of-speech tag starts with

NNP, return Proper Name,

• if the part-of-speech tag starts with PRP, return Pronoun,

• if the part-of-speech tag starts with DT, return Demonstrative Pronoun,

• if the part-of-speech tag starts with VB, return Verb,

• otherwise, return Miscellaneous.
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We follow previous work (Fernandes et al., 2014; Chang et al., 2012, 2013) and

do not compute any features when the antecedent is the dummy mention m0. Hence,

anaphoricity determination is only modeled via the structure.

7.2 Local Features

Local features are features that only consider relations between two mentions in the

latent structure. Hence, they operate on pairs (m,n) of mentions, where n precedes

m. We call m the anaphor and n the (candidate) antecedent.

Type Features

Mention Features

Lexical & Surface Head, first/last/preceding/following token, length
Knowledge Head NE class, gender, number, semantic class
Grammatical Fine-grained mention type
Syntactic Dependency relation of head, governor, ancestry

Pairwise Features

String Similarity String match, head match, alias, tokens contained, head con-
tained, modifier

Distance Sentence distance, token distance
Miscellaneous Embedded, same speaker

Table 7.1: Local features used in the models discussed in this thesis.

Table 7.1 shows an overview of the features. We distinguish between mention fea-
tures and pairwise features.

7.2.1 Mention Features

Mention features examine the property of one mention. When extracting the features

for a pair (m,n) of anaphorm and candidate antecedent n, all of the following features

are extracted for both m and n.
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7.2.1.1 Lexical and Surface Features

We first consider lexical features and features that can be obtained without any lin-

guistic analysis. They are commonly used in current data-driven coreference resolu-

tion systems (Björkelund and Nugues, 2011; Durrett and Klein, 2013; Fernandes et al.,

2014).

Head. Return the lowercased head of a mention. For a phrase, the head is the “cen-

tral element which is distributionally equivalent to the phrase as a whole” (Chrystal,

2008, p. 225). For example, the head of the man is man and the head of a quite inter-
esting development is development. With this feature, the model can learn associations

from the training data. We describe how we extract heads in Section 8.1.

First/last/preceding/following token. Return the lowercased first, last, preceding

and following tokens of a mention. Similar to the head feature, these tokens provide

information to learn associations.

Length. Return the length of a mention in tokens. The length of a mention is corre-

lated with information status, long mentions are less likely to have antecedents (Ariel,

1990).

7.2.1.2 Knowledge Features

Features from this category include named entity, gender, number and semantic class

information. Extracting these features for anaphor and candidate antecedent allows to

measure agreement of these values, which is especially helpful for pronoun resolution

(Lappin and Leass, 1994).

Head NE class. If the mention is a proper name, return the named entity class (ac-

cording to the data) of the last token of the mention’s head. Otherwise, the value of

this feature is None.

Gender. Return the gender of the mention, either Male, Female, Neutral, Plural or

Unknown. For determining the gender of pronouns, we use a look up in a list. For

proper names, we assign gender Neutral to non-person proper names. For person

proper names, we first look for cue words such as Mr.. For common nouns and for
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the remaining proper names we rely on a look up to the number and gender data of

Bergsma and Lin (2006). We first look up the whole string of the mention. If this was

not found in the data, we look up the whole head. If this was not found, we iteratively

look up all upper case tokens of the head until one token is found in the data. If this

was also not successful, we assign the value Unknown.

Number. Return the number of the mention, either Singular, Plural or Unknown. We

assign number based on the part-of-speech tag of the mention’s head.

Semantic Class. Return the semantic class of the mention, either Person, Object,
Numeric or Unknown. For proper names, we map the named entity classes to the

semantic classes. For common nouns we employ a WordNet (Fellbaum, 1998) lookup.

7.2.1.3 Grammatical Features

We only employ one grammatical feature, fine-grained mention type. This feature is

important for our feature conjunction scheme, see Section 7.4.

Fine-Grained Mention Type. Return the fine-grained type of a mention. For proper

names, we do not employ fine-grained types: each proper name has the feature value

Proper Name. For common nouns, we distinguish between definite common nouns and

other common nouns (Definite and Non-Definite respectively). For personal pronouns,

we map each pronoun to its canonical form. For example, the feature value for a

mention him is he. Demonstrative pronouns have the feature value Demonstrative. All

other mentions receive the value Miscellaneous.

7.2.1.4 Syntactic Features

Syntactic features allow to capture the syntactic context of the mentions in their re-

spective sentences. They also capture information about grammatical roles. Such

information, as for example parallelism of grammatical roles, is considered helpful for

pronoun resolution (Lappin and Leass, 1994).

Dependency Relation of Head. Return the dependency relation of the head to its

governor. To obtain this relation, we convert all phrase structure parse trees shipped
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with the data into Stanford dependencies (de Marneffe et al., 2006)1.

Governor. Return the governor of the head.

Ancestry. Return the ancestry of the head as defined by Durrett and Klein (2013).

Ancestry is defined as the part of speech tags of the tokens up to the grandparent in

the dependency tree, concatenated with the direction taken in the tree (left or right).

7.2.2 Pairwise Features

Pairwise features examine relations between the mentions in a pair.

7.2.2.1 String Similarity Features

Features based on string similarity are of utmost importance for proper names and

common nouns, since for such mentions string similarity is a strong indicator for coref-

erence (e.g. Soon et al. (2001), see also Section 2.1).

String Match. Return whether the lowercased surface strings of anaphor and an-

tecedent match completely.

Head Match. Return whether the lowercased head strings of anaphor and antecedent

match completely.

Alias. Return whether anaphor and antecedent are in an alias relation. This feature

is only triggered if both mentions are proper names of the same type (either Person,

Organization or Location) and have different heads. Depending on the type, different

heuristics for assessing whether an alias relation between the two mention holds are

employed. For organizations and locations, we check for abbreviations and whether

one mention starts with the other. For persons, we run various name matching checks.

Tokens contained. Return whether all tokens of one mention are contained in the

other mention (ignoring case).

1To convert we use PyStanfordDependencies, available at https://github.com/dmcc/
PyStanfordDependencies. We use version 0.2.0.
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Head contained. Return whether all head tokens of one mention are contained in

the other mention’s head (ignoring case).

Modifier. Return whether all pre- and post-modifiers of the anaphor are contained

in the antecedent. We ignore case and discard all determiners, prepositions and apos-

trophe s. This features captures that mentions tend to be non-coreferent when they

convey different information in the modifiers (Cai et al., 2011).

7.2.2.2 Distance Features

Features that measure the distance between two mentions are considered useful for

pronoun resolution, since personal pronouns tend to refer to antecedents that are not

too far away (Mitkov, 2002, p. 17f.).

Sentence Distance. Return the distance between anaphor and antecedent in sen-

tences, capped at 5.

Token Distance. Return the distance between anaphor and antecedent in tokens,

capped at 10.

7.2.2.3 Miscellaneous Features

Lastly, we consider features that do not fit into the categories above.

Embedded. Return whether one of the mentions embeds the other mention. This

often rules out rules out coreference. Consider the following example:

(24) [[His]1 friend]2 is nice.

The mentions His and His friend cannot be coreferent2.

Same Speaker. Return whether anaphor and antecedent have the same speaker.

This feature relies on the speaker annotation in the OntoNotes corpus we evaluate

on (Weischedel et al., 2013). With this feature, we can resolve coreference of first and

second person pronouns in conversations, as mentioned in Section 2.1:

2This feature approximates the i-within-i constraint (Chomsky, 1981).
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(25) A: How are [you]1?

B: [I]1’m fine, and you?

We can only resolve the coreference reliably if we know that you and I have different

speakers.

7.3 Entity-based Features

Entity-based features differ from local features by their scope. While local features

operate on pairs of mentions, entity-based features also take previous coreference de-

cisions into account. For convenience, we define most entity-based features on hy-

peredges (X, Y ), where X and Y are sets of mentions. If the latent structure of the

approach in focus does not rely on hypergraphs, we obtain the sets X and Y by ex-

tracting the partial entity information encoded in the latent structure.

Some features examine relations between the sets X and Y , while other features

only apply to one set of mentions. For the latter case, the features are extracted for

both X and Y .

7.3.1 Features Adapted from Local Features

Following previous work on entity-based coreference resolution approaches (Luo et al.,

2004; Yang et al., 2008; Rahman and Ng, 2011a), we induce many entity-based fea-

tures from local features. Let us first discuss mention features. In Order to extend these

to entity-based features, we extract the mention features for the pair (m,n) ∈ X × Y
that minimizes the mention distance3.

For the pairwise features, we employ two strategies. All pairwise features except

for the distance features are binary. We apply logical predicates to these features. For

a feature fname, we create four binary features fname-ALL, fname-MAJ, fname-SOME,

fname-NONE. fname-ALL holds for a pair (X, Y ) if fname holds for all pairs (m,n) ∈
X × Y ; fname-MAJ holds if the feature holds for the majority of pairs; fname-SOME

holds if the feature holds for some, but not for the majority of pairs; fname-NONE holds

if the feature is not true for any pair.

3We also experimented with other extraction schemes such as extracting features for all pairs (m,n) ∈
X × Y , but the scheme described here gave best performance in preliminary experiments.
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Distance features require a different handling. Following previous work (Yang et al.,

2008), we handle distance features analogously to mention features: we compute the

distance features for the pair (m,n) ∈ X × Y that minimizes the mention distance.

Following previous work (e.g. Webster and Curran (2014)), we also introduce the

following feature that aggregates multiple mention features:

Agreement. Return whether all, the majority, some or none of the induced men-

tion pairs agree in number, gender and semantic class. Two mentions agree in num-

ber/gender/semantic class if the corresponding value is Unknown for one mention, or

if the values match.

7.3.2 Entity-based Features not Regarding the Structure

We now discuss features of hyperedges (X, Y ) that go beyond aggregation of local

features. We first discuss features that do not examine any structure of of X or Y

(such as anaphor-antecedent relations). In this thesis, we want to keep the feature

selection for different models simple and therefore only use structure-ignorant features

that yielded consistent improvements in the literature. The only such feature is cluster
size, which was used in most work on entity-centric models (Culotta et al., 2007;

Björkelund and Kuhn, 2014; Webster and Curran, 2014; Clark and Manning, 2015,

inter alia).

Cluster Size. Return the binned size of the partial entities (in number of mentions).

The bins we use are 1, 2, 3, 4, 5, 6–10, 11–15, 16–20 and 21+.

7.3.3 Structural Entity-based Features

We experimented with a range of structural features, such as the in-degree of nodes,

path lengths in antecedent trees and graphs, and existence of sibling nodes (whether

there exists a mention that has the same antecedent as the mention in focus). However,

we found none of these features to be effective in preliminary experiments. Only the

antecedent has antecedent feature gave slight improvements. We therefore only use

this feature in our experiments. In contrast to the other entity-based features, this

feature is defined by the context of a pair of mentions in the latent structure. It is only

applicable to tree/graph-based models.
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Antecedent has Antecedent. Return whether the antecedent has a preceding node

mi in the tree/graph that is not the dummy mention m0. Additionally return the fine-

grained mention type of the closest such mention.

7.3.4 Discussion

We only use a small set of entity-based features that go beyond the aggregation of

local features. Hence, we cannot expect large performance gains from the additional

features. However, by only using these few features we can avoid complex feature

selection and can still analyze the contribution of features that have proven to be

well-working in the literature.

7.4 Feature Combinations

Our framework bases learning and prediction on a linear model. Since these models

can not capture interactions between features, we have to provide the model with

feature combinations to obtain competitive performance.

We employ two stages of feature combinations. In the first stage, we go through

each mention feature, and concatenate the feature value of the anaphor with the fea-

ture value of the antecedent. For example, consider the pair of mentions (him, the
president). For the head feature, we will extract three features:

• the head of the anaphor, headanaphor(him, the president) = him,

• the head of the candidate antecedent,

headantecedent(him, the president) = president,

• the concatenation of the heads, headconcat(him, the president) = him+president

This enables the machine learning models to access further relational information

between anaphor and antecedent.

In the second stage, we follow Durrett and Klein (2013) and concatenate each fea-

ture with all fine-grained mention type features. In the (him, the president) example, we

would add concatenations of all features with each of the following three fine-grained

mention type features:
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• the fine-grained mention type of the anaphor,

fine_typeanaphor(him, the president) = he,

• the fine-grained mention type of the candidate antecedent,

fine_typeantecedent(him, the president) = Definite,

• the concatenation of the mention types,

fine_typeconcat(him, the president) = he+Definite

This has the effect of learning type-specific weights at a fine-grained level. We ex-

tend the combination scheme to features of hyperedges (X, Y ) by concatenating the

fine-grained mention types of the first mention of X and the last mention of Y with

the feature.
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In Chapter 6 we demonstrated how approaches to coreference resolution can be ex-

pressed in our framework. By expressing the approaches according to a uniform repre-

sentation, we were able to transparently analyze differences and similarities between

the approaches in terms of their structure. Furthermore, we carved out parameters of

each approach which we discussed in detail. We now complement this structural anal-

ysis by a quantitative and qualitative analysis on a benchmark corpus. For doing so,

we will mainly employ the error analysis framework which we presented in Chapter 4.

We start by describing the experimental setup, including data sets, mention detec-

tion and evaluation (Section 8.1). We then evaluate, analyze and compare implemen-

tations of approaches based on different latent structures. We focus on an in-depth

analysis of various mention pair models and ranking architectures (Sections 8.2 and

8.3), as even these fundamental coreference resolution approaches are not well un-

derstood. We additionally evaluate and analyze selected entity-based models (Section

8.4). We conclude our evaluation of the models by discussing their performance on

unseen test data (Section 8.5). Finally, we give a summary of the analysis presented

in this chapter (Section 8.6).

8.1 Experimental Setup

Before analyzing the approaches, we describe the experimental setup. This includes

the data set, preprocessing, the feature set and the evaluation parameters.

8.1.1 Data Sets

We conduct all experiments and evaluation on the English portion of the CoNLL-2012

shared task data test (Pradhan et al., 2012), which is a subset of the OntoNotes 5.0 cor-

pus (Weischedel et al., 2013). This data set is the standard for evaluating approaches
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to English noun phrase coreference resolution (see, e.g., Björkelund and Kuhn, 2014;

Durrett and Klein, 2013; Clark and Manning, 2015).

Set Documents Mentions Links Entities

Training 2,802 155,560 120,417 35,134
Development 343 19,156 14,610 4,546
Test 348 19,764 15,232 4,532

Table 8.1: Statistics about the CoNLL-2012 English shared task data set.

In this data set, all forms of coreference are annotated. In addition to noun phrase

coreference, also event coreference is annotated. In this thesis, we do not attempt to

solve any coreference relations involving event coreference.

Documents in the data set stem from seven genres, which are broadcast conver-

sations, broadcast news, magazine texts, news wire, pivot texts, telephone conversa-

tions and web logs. The data set has a predefined training/development/test split, to

which we adhere in all experiments. Table 8.1 summarizes the number of documents,

mentions, links and entities in the data set. Note that according to the OntoNotes

annotation guidelines singleton mentions – expressions which have a referent, but no

coreferring mention – are not annotated.

8.1.2 Mention Detection

We employ a rule-based mention extractor, who extracts mentions from the parse and

named entity annotation layers. The mention extractor was originally implemented

by Samuel Broscheit (Martschat et al., 2012) and modeled after the mention extractor

described in Lee et al. (2011). A refined reimplementation was conducted by the

author of this thesis.

The OntoNotes coreference annotation guidelines for English state that “All noun

phrases with distinct headwords are extracted [...] Whenever head-sharing NPs are

nested, the largest logical span is used in co-reference” (Weischedel et al., 2013, Co-

reference Guidelines for English OntoNotes, p. 3). Hence, we first extract all noun

phrases and all named entity chunks. We then extract heads via a modified version of

the head rules presented in Collins (1999). If the head token has a named entity tag

or if its part-of-speech tag starts with NNP, we recognize the mention as a proper name
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and employ a heuristic to extract a more meaningful head. The head for a proper noun

starts at the first token tagged as a noun until a punctuation, preposition or subclause

is encountered. Coordinations have the CC tagged token as head.

Finally, we run the following set of filters:

1. If two mentions have the same head, discard the mention with the smaller span.

2. If the head of one mention is embedded in the head of another mention, discard

the mention with the embedded head.

3. Discard any mention which is embedded in an apposition.

4. Discard all mentions whose head has the part-of-speech tag JJ.

5. Discard all mentions with surface form “mm”, “hmm”, “ahem”, “um”, “US” or

“U.S.”.

6. Discard all mentions whose head is a proper name of type Quantity, Cardinal,
Ordinal, Money or Percent.

7. Discard any “it” which appears in the context it * * that or it * * * that (such as

it is known that).

8. Discard any “you” which appears in the context you know.

The first five filters filter mentions which are never annotated as coreferent accord-

ing to the annotation guidelines1. The sixth filter discards proper names where the

resolution is very unreliable. Finally, filters seven and eight are heuristics for recogniz-

ing pleonastic “it” and “you”.

8.1.3 Features

If not noted otherwise, all models employ the same feature set consisting of all local

features described in Sections 7.2. The features are combined using the scheme de-

scribed in Section 7.4. Entity-based models additionally employ entity-based features.

We describe how we use these features in the corresponding sections.

1Per the annotation guidelines, nationality acronyms as pre-modifiers are not eligible for coreference
(Weischedel et al., 2013, Co-reference Guidelines for English OntoNotes, p. 8).
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8.1.4 Evaluation

We now describe parameters for evaluation. These include evaluation metrics, error

analysis and hyperparameter optimization.

8.1.4.1 Evaluation Metrics

We score the output of each model with version v8.01 of the CoNLL scorer (Pradhan

et al., 2014; Luo et al., 2014)2. The scorer outputs recall, precision and F1 scores for

MUC, B3, CEAFm, CEAFe and BLANC (for details on these metrics, see Section 2.4).

In the CoNLL shared tasks on coreference resolution (Pradhan et al., 2011, 2012),

the average of MUC, B3 and CEAFe F1 score was adopted as the official evaluation met-

ric for ranking the participants. This method of evaluation was subsequently adopted

by many researchers (Durrett and Klein, 2013; Chang et al., 2013; Björkelund and

Kuhn, 2014, inter alia). We follow this common practice and employ the average of

MUC, B3 and CEAFe F1 score (also referred to as the CoNLL score) as our main metric

for comparison.

We refrain from testing statistical significance of the differences in evaluation met-

rics on development data, since the models were tuned and analyzed on this data.

When testing for statistical significance of the differences in evaluation metrics on test

data, we employ an approximate randomization test (Noreen, 1989)3.

8.1.4.2 Error Analysis

One aim of the research presented in this chapter is to compare approaches to coref-

erence resolution based on the errors they make. By doing so, we can identify similar-

ities and differences between approaches, as well as assess strengths and weaknesses

of individual approaches. We then can connect these properties of the models to the

structures and parameters they rely on.

Spanning Tree Algorithms. We perform the analysis based on the error analysis

framework presented in Chapter 4. In this framework, we can choose between various

algorithms for spanning tree computation, where each algorithm leads to a different

notion of an error.
2Available for download at http://conll.github.io/reference-coreference-scorers/.
3The implementation we use is available at http://smartschat.de/software.
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We will extract spanning trees for precision errors based on the pairwise output of

the approaches (if available), while we will extract spanning trees for recall errors

based on pairwise scores (if available). We employ this spanning tree algorithm for

precision errors since the pairwise output provides a natural interpretation as a span-

ning tree for system output. If the pairwise output of the approach does not constitute

a spanning tree, we fall back to the spanning tree algorithm based on pairwise scores.

If there are no pairwise scores available, we fall back to computing spanning trees

based on accessibility. On the other hand, we employ the score-based algorithm for

recall errors, since it will create spanning trees that consist of links that are considered

“easier” than other links by the system under consideration. If there are no pairwise

scores available, we fall back to computing spanning trees based on accessibility.

Putting the Error Numbers into Context. In order to put the error counts into

context, we compare the numbers with upper bounds and with resolved links.
Let us first discuss the upper bounds. We want to bound the number of recall errors

by the maximum amount of recall errors the system can make, and the number of

precision errors by the maximum amount of precision errors the system can make. For

both recall and precision errors, an upper bound for the number of errors is the number

of edges in the respective spanning trees. Both of these numbers have an intuitive

interpretation: The number of edges in reference spanning trees corresponds to the

number of recall errors made by a coreference system that puts each mention into its

own coreference chain. The number of edges in system spanning trees corresponds

to the number of precision errors the system would make if every attempted anaphor-

antecedent decision was incorrect. Observe that the upper bound for recall errors

is the same for each system, while the upper bound for precision errors depends on

the output of the system. For example, if a mention ranking system makes 12,000

anaphor-antecedent predictions, the upper bound for precision errors is 12,000. If it

only makes 11,000 anaphor-antecedent predictions, the upper bound is 11,000.

For the resolved links, we take each edge from the respective spanning tree. When

considering recall errors, we check whether the mentions are in the same system entity.

When considering precision errors, we check whether the mentions are coreferent

according to the reference annotation.

Error Categorization. To understand the errors made by a system, we will compare

the distribution of the errors and of the resolved links according to various linguistic
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criteria. Each error in our framework is represented by a link (mj,mi) between two

mentions, where mj appears after mi. We call mj the error anaphor and mi the error
antecedent. When there is no danger of ambiguity in context, we just call mj the

anaphor and mi the antecedent. From the discussion of the linguistics of coreference

in Section 2.1 we saw that different classes of anaphors (for instance proper names

and pronouns) differ in how they should be treated: they exhibit different behavior

in terms of reference, appear in different contexts and require different knowledge

sources to establish the coreference relations. Similar observations hold for different

classes of antecedents.

Hence, we categorize the errors with respect to the types of anaphor and antecedent.

Since we observed that proper name/common noun coreference and pronoun corefer-

ence behave differently, we distinguish between links where the anaphor is a personal

pronoun, where both mentions are proper names or common nouns, and all remaining

cases. Errors where the anaphor is a personal pronoun are further distinguished by the

canonical form of the pronoun (I, you, we, he, she, it and they). When presenting the

numbers, to avoid clutter, we summarize numbers for first/second person pronouns,

third person gendered pronouns and third person ungendered pronouns. Name/noun

errors are further distinguished by the types of the mentions (Both name, Mixed and

Both noun). We do not further distinguish the remaining errors. We call the category

containing all remaining errors Misc.

8.1.4.3 Hyperparameter Optimization

The performance of the approaches which we will compare depends on various hyper-

parameters, such as the exact form of the cost function and the number of iterations

the model is trained. To allow for a fair comparison, it is important that we run each

approach with its optimal set of hyperparameters.

To obtain these optimal hyperparameters, we perform a grid search for optimal pa-

rameters by training on the training data and evaluating on the development data.

The configuration which led to the highest CoNLL score is then fixed for future experi-

ments. The only hyperparameter handled differently is the number of iterations of the

perceptron algorithm: for each model, we train the model for 50 iterations, and pick

the iteration whose model yielded the highest result on the development data.
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8.2 Mention Pair Models

We now evaluate all structures discussed in Chapter 6, beginning with the mention

pair model (Soon et al., 2001). As we have discussed in Chapter 6, there are many

variants of the mention pair model. While the structure they are based on is shared

by most approaches, there are substantial differences between individual implemen-

tations. We now discuss and analyze these differences by varying parameters of the

mention pair model, including the handling of the training data, the method to obtain

coreference information from the predicted latent structures, and the factorization into

substructures.

8.2.1 A Vanilla Mention Pair Model

We want to start our evaluation and analysis with an implementation that makes as

few modeling assumptions as possible. In particular, we will not use any heuristics for

changing the distribution of the training data. Furthermore, following models from the

literature, we consider each edge of the latent structure (which is a pair of mentions)

as a substructure.

The only remaining parameter is the function to obtain coreference information

from the latent structure. Since we learn from all mention pairs in the data, in partic-

ular from all coreferent pairs, we opt to employ aggressive merge clustering, since it is

the clustering algorithm that aligns best with the latent structures considered during

training.

We dub the resulting model the vanilla mention pair model. This simple model will

be our baseline and will serve as a starting point for further analysis.

8.2.1.1 Results

The model only has one hyperparameter, which is the number of perceptron iterations.

We optimized this parameter according to the procedure described in Section 8.1.4.3.

Table 8.2 displays the result of the model on CoNLL’12 English development data.

To put the results into context, we compare with nn_coref, the state-of-the-art neural

network system by Wiseman et al. (2015)4 and with Stanford Sieve (Lee et al., 2013),

4Available for download at https://github.com/swiseman/nn_coref. During writing of this thesis,
nn_coref was the best-performing coreference resolution system. Subsequently, the state-of-the-art
has been improved by Wiseman et al. (2016) and Clark and Manning (2016). The performance of
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MUC B3 CEAFe

Model R P F1 R P F1 R P F1 Avg. F1

nn_coref 69.82 75.91 72.74 57.89 66.21 61.77 56.74 60.65 58.63 64.38
Stanford Sieve 65.91 64.09 64.99 58.66 50.91 54.51 48.58 54.27 51.27 56.92

Vanilla pair 65.77 76.90 70.90 55.19 53.78 54.48 36.09 64.07 46.17 57.18

Table 8.2: Results of the vanilla mention pair model on CoNLL’12 English development
data, compared with nn_coref (Wiseman et al., 2015) and Stanford Sieve
(Lee et al., 2013).

the recent version of the system that won the CoNLL-2011 shared task on coreference

resolution (Pradhan et al., 2011; Lee et al., 2011)5. Stanford Sieve is among the most

widely-used coreference resolution systems. While there is a gap of more than 7 points

average F1 to the state-of-the-art system, our model performs favorably compared to

Stanford Sieve.

8.2.1.2 Error Analysis

To better understand strengths and weaknesses of the vanilla mention pair model, we

perform an error analysis on the output of the model, as described in Section 8.1.4.2.

For determining the coreference chains, the model outputs all pairs that it considers

coreferent, therefore the output does not necessarily constitute a spanning tree. We

therefore employ the spanning tree algorithm based on pairwise scores to compute

precision errors.

Recall Precision

Model Errors Max % of Max Errors Max % of Max

Vanilla Pair 5,000 14,609 34% 3,803 12,495 30%

Table 8.3: Overview of recall and precision errors of the vanilla pair model.

Table 8.3 summarizes all recall and precision errors made by the vanilla mention pair

Clark and Manning (2016) in terms of average F1 is 66.01 on development data and 65.29 on test
data.

5Available for download at http://stanfordnlp.github.io/CoreNLP/. We use version 3.6.0 and
run the included deterministic coreference resolution system.
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model. The upper bounds are in the columns titled Max. Both for recall and precision,

the model makes roughly one third of the maximum errors. We now investigate both

recall and precision errors in detail.

Recall Errors. The top of Figure 8.1 gives an overview of the recall errors, cate-

gorized by the mention type of the participating mentions. The figure compares the

resolved links (in blue) with the errors (in the remaining colors). The errors are further

divided into6

• errors due to not resolving a mention at all (red);

• errors due to choosing a wrong antecedent for a mention (gray);

• errors that are due to mention extraction: at least one of the two mentions in the

pair was not extracted by the mention extractor, therefore we can not successfully

resolve the link (orange).

As we can see from the figure, for proper name pairs, first and second person pro-

nouns, and gendered third person pronouns there are many more resolved links than

errors. For the other categories, there are as many or more errors than links. Especially

the Mixed and Misc categories have only few resolved links, which indicates that pairs

from these categories are particularly difficult to resolve.

The impact of mention detection is more pronounced in the non-pronominal errors.

Here the errors are mainly due to preprocessing errors or due to annotation incon-

sistencies. The high number of mention detection errors in the Misc category can be

explained by the fact that we do not extract any verb phrases as mentions, since we do

not attempt to resolve event coreference. However, there are roughly 200 verb phrases

annotated as mentions in the data.

For the remaining errors, which we can potentially resolve without changing the

mention detection, almost all errors can be attributed to not attempting to resolve

the mention at all. We hypothesize that this is due to the resolution strategy of the

vanilla mention pair model: since it follows an aggressive merge approach, a mention

can have many antecedents, which renders it less likely that we miss a link between

two mentions that belong to the same coreference chain. We will investigate this

6This division and the division of precision errors are similar to the classes used by Durrett and Klein
(2013) in their cost function for a mention ranking model.
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Figure 8.1: Recall errors and resolved links (top) and precision errors and resolved
links (bottom) of the vanilla mention pair model on CoNLL-2012 English
development data.
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hypothesis when we compare aggressive merge with other clustering schemes in the

next subsection.

Qualitatively, for most name/noun recall errors there is string similarity. For in-

stance, for the proper name pair errors where both mentions were identified by the

mention detection, there is token overlap (ignoring determiners) in 79% of the cases

(but only in 10% the strings match completely). Similar numbers hold for the common

noun pair errors.

Precision Errors. The bottom of Figure 8.1 gives an overview of all categorized pre-

cision errors. Again, resolved links (in blue) are compared with errors (in different

colors). For precision errors, we divide the errors into

• errors due to choosing an antecedent for a non-anaphoric mention (red);

• errors due to choosing a wrong antecedent for an anaphoric mention7 (gray).

Recall that the vanilla mention pair model uses aggressive merge clustering, and

therefore a mention can receive multiple antecedents. Therefore, although a mention

has a wrong antecedent among its antecedents, it can also have a correct antecedent

among its antecedents. If this is the case, there is no recall error for this mention.

For all categories except Mixed and Misc there are more resolved links than er-

rors. Most pronoun resolution errors are caused by choosing wrong antecedents for

anaphoric pronouns. For name/noun errors, the picture is reversed. The low number

of False Anaphoric errors for he/she can be explained by the fact that of all occurrences

of these pronouns in the corpus, 98% are anaphoric. For it/they, the model seems to

learn a cautious approach: although 37% of all occurrences of it are non-anaphoric

(roughly 600 cases), there are only comparatively few errors due to choosing an an-

tecedent for such mentions.

Qualitatively, many precision errors exhibit string similarity. Table 8.4 shows for

each category the proportion of precisions errors where the heads match. The numbers

are particularly high for name/noun errors, but also for almost one third of pronoun

resolution precision errors the heads match.
7These do not correspond exactly to the similar error class for recall errors, since a correct antecedent

may not be in the set of extracted mentions. Therefore, the error counts as a mention extraction
error when computing recall errors. For precision errors, we do not perform a further division of
this error class into errors due to mention extraction and not due to mention extraction, since we
want to examine the factors that lead the approaches to choosing erroneous antecedents. We do not
aim to analyze the impact of mention detection in detail.
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Both name Mixed Both noun I/you/we he/she it/they Misc

% matching heads 72% 20% 94% 50% 32% 34% 3%

Table 8.4: Proportion of precision errors with matching heads.

8.2.1.3 Discussion

The vanilla mention pair model is easy to describe and implement. While not being

state-of-the-art, the performance is higher than the performance of the recent version

of Stanford Sieve (Lee et al., 2013). An error analysis reveals that the main sources

of errors are mention extraction errors and issues with anaphoricity detection (Unre-
solved and False Anaphoric errors). Choosing wrong antecedents for mentions has a

substantial effect mainly for pronouns.

8.2.2 Variations in the obtain_coreference Function

We will now consider how more sophisticated variants of the mention pair model

tackle the issues of the vanilla mention pair model. As we saw in the chapter about

related work (Chapter 3), a large portion of the work on the mention pair model

was concerned with improving the algorithm to obtain coreference chains from the

classification output of the mention pair model. In our framework, these algorithms

correspond to instantiations of the obtain_coreference method.

We consider the two instantiations beyond Aggressive Merge described in Section

6.2.1: Closest First and Best First.

8.2.2.1 Results

Table 8.5 shows the results of the mention pair model with different instantiations

of the obtain_coreference function as discussed above. Both clustering methods,

closest first and best first, improve in average F1 over the vanilla pair baseline, which

employs aggressive merge clustering. However, the vanilla pair model is the best-

performing model according to the MUC metric. The gains over the vanilla pair model

are due to improved precision for MUC and B3, and improved recall for CEAFe. Best-

first clustering performs slightly better (around 0.3 points average F1) than closest-first

clustering.
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MUC B3 CEAFe

Model R P F1 R P F1 R P F1 Avg. F1

Vanilla pair 65.77 76.90 70.90 55.19 53.78 54.48 36.09 64.07 46.17 57.18

Closest First 61.19 78.36 68.72 45.88 67.19 54.53 42.57 59.79 49.73 57.66
Best First 61.47 78.27 68.86 47.62 66.95 55.65 41.47 61.05 49.39 57.97

Table 8.5: Results of mention pair variants with different obtain_coreference instan-
tiations. Highest values for each column are marked bold.

8.2.2.2 Error Analysis

Recall Precision

Model Errors Max % of Max Errors Max % of Max

Vanilla Pair 5,000 14,609 34% 3,803 12,495 30%

Closest First 5,668 14,609 39% 2,936 11,410 26%
Best First 5,628 14,609 39% 3,016 11,474 26%

Table 8.6: Overview of recall and precision errors of mention pair models with differ-
ent obtain_coreference instantiations.

Since the models using closest-first clustering and best-first clustering output span-

ning trees of system entities, we employ the spanning tree algorithm based on system

output for extracting precision errors. For extracting recall errors, we employ the

spanning tree algorithm based on pairwise scores. Unless noted otherwise, we will

from now on employ these spanning tree algorithms for all analyses conducted in this

chapter.

Table 8.6 and Figure 8.2 summarize all recall and precision errors of the model

variants and compare the numbers with the errors made by the vanilla pair model.

We can see a substantial reduction in precision errors, while recall errors increase. We

now compare the errors in detail.

Closest First vs. Vanilla Pair. For recall errors, we observe substantial differences

for the categories I/you/we and he/she. Compared to the vanilla pair baseline, there is

an increase in the number of recall errors (in particular Wrong Antecedent errors) and
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Figure 8.2: Recall errors and resolved links (top) and precision errors and resolved
links (bottom) of the mention pair variants on CoNLL-2012 English devel-
opment data. Left bar: vanilla mention pair model; middle bar: model
employing closest-first clustering; right bar: model employing best-first
clustering.
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decrease in the number of resolved links for for these categories. Similar differences

for most other categories are less pronounced, but also visible. Regarding precision

errors, for most categories there is a slight increase in resolved links and a reduction

of errors. For the Both name and Both noun categories, resolved links as well as errors

decrease.

The vanilla pair model obtains coreference chains by computing the transitive clo-

sure over all mention pairs that received a “+” label. The closest-first model only

considers one “+”-labeled pair for each anaphor, which is the pair with the closest

antecedent such that the label is “+”. The vanilla pair model, employing aggres-

sive merge clustering, selects many antecedents for mentions, including many wrong

antecedents. This leads to many Wrong Antecedent precision errors and, since this

method assigns many non-anaphoric mentions to coreference chains, also to many

False Anaphoric errors for these mentions. Especially for pronoun resolution, the more

cautious closest-first approach leads to a reduction in such errors.

Best First vs. Closest First. For recall errors, there are only slight differences. In

general, the trends observed when switching from vanilla pair to closest first continue.

One exception is the Both name category, where the number of resolved links slightly

increases when applying best-first clustering. The differences are more pronounced

for precision errors. Replacing closest-first clustering with best-first clustering usually

yields a reduction in resolved links and an increase in errors. In particular, the number

of Wrong Antecedent errors increases for pronoun resolution. For Both name, however,

resolved links increase substantially. For Misc, there are less resolved links but also less

errors.

While closest-first clustering selects the closest antecedent classified as coreferent,

best-first clusterings selects the highest-scoring antecedent classified as coreferent8.

For pronoun resolution, closest-first clustering yields better results. Hence, at least

for the set of distance features we employ, the mention pair model is not able to

learn parameters which accurately take distance into account when deciding between

high-scoring candidate antecedents for pronouns. Best-first clustering changes the dis-

tribution of the output for non-pronominal anaphors. For proper names, for example,

proper name antecedents tend to score higher, even though they might be farther

away than candidate antecedents which have other mention types. This increases the

number of resolved links in the Both name category, and decreases errors and resolved
8Where the score of an antecedent is the score of the corresponding pair.
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links for the Mixed and Misc categories.

8.2.2.3 Discussion

Using closest-first or best-first clustering as the obtain_coreference function instead

of aggressive-merge leads to improved performance, mainly due to a reduction in pre-

cision errors. In particular, the clustering algorithms that only choose one antecedent

make less Wrong Antecedent precision errors for pronoun resolution. Compared to

closest-first clustering, best-first clustering leads to decreased performance regarding

pronoun resolution, but improves the resolution of proper names.

8.2.3 Resampling Heuristics

Soon et al. (2001) resample the training data to obtain training instances that align

with their clustering approach: for each anaphoric mention mj, they only retain the

closest preceding coreferent mention mi and discard all mentions appearing before

mi. Besides aligning with the clustering approach, this procedure has also the effect

of improving the balancing of the number of positive and negative training instances.

We now evaluate and analyze the contribution of such resampling schemes. In

particular, we consider

• the scheme by Soon et al. (2001): for a mention mj, let mi, i > 0, be the

closest preceding mention such that the edge (mj,mi) has label “+”. If no such

mention exists, discard all edges (mj,mk) with k < j. Otherwise, discard all

edges (mj,mk) with k < i;

• a modified Soon et al. (2001) scheme. The scheme described above is very

restrictive: each mention is required to have an antecedent and the model learns

only from anaphoric mentions. We relax this requirement slightly and consider

all mentions as sources for edges that are in some coreference chain (the Soon

et al. (2001) scheme does not consider the first mention in the chain). The

first mention in a chain is not anaphoric, hence the model also learns from non-

anaphoric mentions. Formally, for a mention mj, let mi be the closest preceding

mention such that the edge (mj,mi) has label “+”. If i = 0 and mj has no

incoming edge with label “+”9, discard all edges (mj,mk) with k < j. Otherwise,

discard all edges (mj,mk) with k < i;
9This is equivalent to mj being in no coreference chain.
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We also experimented with further variants, such as inducing negative examples by

all preceding non-coreferent mentions mi of a mention mj, but we could not observe

improved performance with these variants. We do not discuss these variants further in

this thesis.

8.2.3.1 Results

MUC B3 CEAFe

Model R P F1 R P F1 R P F1 Avg. F1

Vanilla pair
All pairs 65.77 76.90 70.90 55.19 53.78 54.48 36.09 64.07 46.17 57.18
Soon 79.42 47.14 59.16 73.86 20.20 31.73 26.24 36.49 30.53 40.47
Mod. Soon 71.66 69.52 70.57 62.56 49.54 55.29 45.89 55.63 50.30 58.72

Closest first
All pairs 61.19 78.36 68.72 45.88 67.19 54.53 42.57 59.79 49.73 57.66
Soon 73.23 50.19 59.56 62.62 35.90 45.64 48.24 40.48 44.02 49.74
Mod. Soon 68.13 71.34 69.70 54.50 61.45 57.77 54.85 54.27 54.56 60.68

Best first
All pairs 61.47 78.27 68.86 47.62 66.95 55.65 41.47 61.05 49.39 57.97
Soon 71.95 49.31 58.52 62.19 35.22 44.97 44.57 39.38 41.82 48.44
Mod. Soon 66.87 72.38 69.52 53.86 63.30 58.20 53.01 54.93 53.95 60.56

Table 8.7: Results of mention pair models with different resampling variants. Highest
values for each column are marked bold.

Table 8.7 shows the results of the mention pair model with different variants for

resampling and for the obtain_coreference function. Employing the resampling

scheme as described by Soon et al. (2001) leads to a large increase in recall, but

an even larger drop in precision for all obtain_coreference variants.

Employing our modified scheme, however, leads to increases for all metrics and

obtain_coreference variants. While the scheme was developed to align with closest-

first clustering, we can also observe an increase for aggressive-merge clustering (in

the vanilla pair model) and for best-first clustering. Nevertheless, the increase is most

pronounced for closest-first clustering.
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8.2.3.2 Error Analysis

We analyze the impact of the resampling scheme exemplarily for the variant that em-

ploys closest-first clustering.

Recall Precision

Model Errors Max % of Max Errors Max % of Max

All pairs 5,668 14,609 39% 2,936 11,410 26%
Soon 3,910 14,609 28% 11,471 21,316 54%
Mod. Soon 4,654 14,609 32% 4,494 13,954 32%

Table 8.8: Overview of recall and precision errors of mention pair models employing
closest-first clustering and different resampling variants.

Table 8.8 gives an overview of the recall and precision errors made by the the model

using closest-first clustering and different resampling methods. Using resampling

heuristics leads to a decrease in recall errors but an increase in precision errors. Most

notably, when using the original Soon et al. (2001) scheme, the number of anaphor-

antecedent decisions almost doubles and the number of precision errors increases by

a factor of four. Figure 8.3 compares the errors in detail.

Soon vs. All Pairs. Across all categories, there is a decrease in recall errors when

employing the Soon et al. (2001) resampling scheme, in particular for common noun

pairs and third-person ungendered pronouns. The majority of the reduced errors can

be attributed to the successful resolution of mentions that were unresolved in the orig-

inal model. The reduction in recall errors is accompanied by an increase in precision

errors. In general, there are more errors due to resolving non-anaphoric mentions.

The differences are most striking for the Mixed, Both noun and Misc categories, and to

a lesser extent for the it/they category.

Let us now analyze these errors further. For over 94% of the False Anaphoric preci-

sion errors made by the model using the Soon et al. (2001) resampling scheme, there

is a head match between the mentions. Arguably, since the model learns only from

pairs (mj,mi) where mj is anaphoric, string matching will provide a strong clue for

coreference. Learning from all pairs avoids many of these wrong assignments, at the

expense of lower recall.

The high number of precision errors for the Mixed, Both noun and Misc categories
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Figure 8.3: Recall errors and resolved links (top) and precision errors and resolved
links (bottom) of the mention pair variants with closest-first clustering and
different resampling schemes on CoNLL-2012 English development data.
Left bar: no resampling; middle bar: Soon et al. (2001) resampling; right
bar: modified Soon resampling.
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when employing the Soon resampling scheme can be explained similarly. Most men-

tions in these categories are not anaphoric. However, the model learns from data that

suggests that every mention is anaphoric. Hence it finds antecedents for many of the

non-anaphoric mentions in these categories.

Modified Soon vs. Soon. When switching from Soon et al. (2001) resampling to

the modified Soon resampling scheme, there is an increase in recall errors due to

more Unresolved errors. However, the number of recall errors is still much lower than

the number of recall errors of the model that does not use resampling. There is a

substantial reduction in precision errors. The differences can be explained by the fact

that the modified Soon resampling scheme also considers mentions mj that are first in

their respective entities as sources of edges (mj,mi) when constructing graphs during

training. Hence, the parameters are not solely learned from pairs (mj,mi) where mj

is anaphoric. This different resampling scheme leads to fewer False Anaphoric and

slightly more Unresolved errors, since the model also considers mentions that do not

have an antecedent. However, since the majority of mentions mj in the edges (mj,mi)

are anaphoric, the system still is biased towards predicting mentions as anaphoric.

8.2.3.3 Discussion

Both resampling schemes improve recall and lower precision for all obtain_coreference

variants and all evaluation metrics. However, the drop in precision for the original

Soon et al. (2001) resampling scheme compared to no resampling is too severe, which

results in decreased overall performance. Employing the modified Soon et al. (2001)

scheme improves overall performance.

From the error analysis we saw that the differences can mainly be attributed to

differences in anaphoricity determination. Since the models using resampling schemes

are mainly exposed to pairs (mj,mi) where mj is anaphoric during training, they tend

to propose more mentions as anaphoric by resolving them to an antecedent, which

results in less recall errors but more precision errors. By design of the resampling

scheme, this effect is much more severe for the Soon resampling scheme than for the

modified Soon resampling scheme.
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8.2 Mention Pair Models

8.2.4 Substructures

Mention pair models from the literature consider each edge in the graph as an individ-

ual instance to learn from and to predict. In our framework, this paradigm corresponds

to considering each edge of the latent structure as a substructure. We now study the

effect of this factorization on the performance of mention pair models by investigating

two other factorizations into substructures. Let h = (M0
x , A, LA) be a latent structure

for the mention pair model.

In the first variant, Per Anaphor, all mention pairs that share the same anaphor are

considered as a substructure. Formally, this variant has the graphs

hj = ({m0, . . . ,mj} , Aj, LAj
) (8.1)

with Aj = {(mj,mi) | j > i} and LAj
(a) = LA(a) as substructures. In the second vari-

ant, Per document, there is no factorization: all mention pairs for the whole document

are considered.

We build both variants upon our best-performing mention pair model, which is the

model employing the modified Soon scheme and closest-first clustering.

8.2.4.1 Results

MUC B3 CEAFe

Model R P F1 R P F1 R P F1 Avg. F1

Baseline 68.13 71.34 69.70 54.50 61.45 57.77 54.85 54.27 54.56 60.68

Per Anaphor 66.96 72.17 69.47 53.04 63.46 57.78 55.04 53.60 54.31 60.52
Per Document 63.44 76.30 69.28 48.57 68.67 56.90 50.04 55.64 52.69 59.62

Table 8.9: Results of mention pair models with substructure factorization variants. The
baseline considers each pair as a substructure and employs closest-first clus-
tering and the modified Soon resampling scheme. Highest values for each
column are marked bold.

Table 8.9 shows the results. Regarding the graph induced by each anaphor as a sub-

structure leads to higher precision for MUC and B3, but lowers recall. For CEAFe we

observe the reverse effect. Overall, performance is slightly decreased. Regarding the
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whole graph for each document as a substructure leads to a substantial increase in pre-

cision and a substantial drop in recall. Compared to the baseline, overall performance

decreases by roughly 1 point.

8.2.4.2 Error Analysis

Recall Precision

Model Errors Max % of Max Errors Max % of Max

Baseline 4,654 14,609 32% 4,494 13,954 32%
Per Anaphor 4,825 14,609 33% 4,207 13,556 31%
Per Document 5,340 14,609 37% 3,192 12,147 26%

Table 8.10: Overview of recall and precision errors when different substructure factor-
izations are employed.

Table 8.10 and Figure 8.4 summarize all errors made by the substructure factoriza-

tion variants. As we can see, employing a factorization different from the baseline

leads to less anaphor-antecedent decisions, reduces precision errors and increases re-

call errors. The effect is much more pronounced when employing a per document

factorization. The most affected categories are Mixed, Both noun and Misc. In particu-

lar, False Anaphoric precision errors are reduced.

The analyzed models differ only with respect to the substructure factorization. Since

all models use the same decoder which labels edges with the highest-scoring label, the

factorization only affects training. Considering larger substructures delays updates

of the parameter vector to the point when all edges that form the substructure are

labeled. Judging from the distribution of errors, this strategy leads to a more cautious

anaphoricity detection: we observe a decrease of False Anaphoric precision errors but

an increase of Unresolved recall errors.

8.2.4.3 Discussion

Varying the factorization into substructures only affects training of the mention pair

models. It mostly affects anaphoricity detection, leading to a more cautious approach

with lower overall performance.
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Figure 8.4: Recall errors and resolved links (top) and precision errors and resolved
links (bottom) of mention pair models with closest-first clustering, modi-
fied Soon resampling and different substructure factorizations on CoNLL-
2012 English development data. Left bar: factorization into edges; middle
bar: factorization into graphs induced per anaphor; right bar: no factor-
ization.
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8.2.5 Summary

Mention pair approaches model coreference resolution as binary classification of men-

tion pairs. This perspective necessitates a clustering step during post-processing. We

found that clustering strategies that choose at most one antecedent for each mention

yield the best performance. Further performance boosts can be achieved by resam-

pling the training data, in particular by using a novel resampling scheme based on the

approach of Soon et al. (2001). While single-antecedent clustering schemes improve

antecedent selection, the choice of the resampling scheme mainly affects anaphoricity

detection. Using other substructures than mention pairs did not result in improved

performance.

8.3 Mention Ranking and Antecedent Trees

The mention pair model is conceptually simple: pairs of mentions are labeled as either

coreferent or non-coreferent. However, to obtain competitive performance, we need

to apply heuristic resampling schemes and clustering algorithms.

Mention ranking (Denis and Baldridge, 2008; Chang et al., 2012) and antecedent

tree (Fernandes et al., 2014) models, which we discussed in Section 6.3, are based

on more sophisticated structures. As we will see, using these structures enables us to

obtain competitive performance without using any resampling techniques or clustering

algorithms.

8.3.1 A Simple Ranking Approach

To compare mention ranking with mention pair models, we first consider an instance

of the mention ranking approach that is conceptually as similar as possible to a well-

performing mention pair model. In particular, we want to expose the ranking model to

the same data as the corresponding mention pair model. This will allow us to investi-

gate the effect of switching from a mention pair architecture to a ranking architecture.

However, we have to keep in mind that the data selection was optimized for a mention

pair architecture.

The decoder for the mention ranking model always selects the highest-scoring edge

for a substructure, which resembles best-first clustering. We therefore choose the men-

tion pair model with the modified Soon resampling scheme and best-first clustering to
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8.3 Mention Ranking and Antecedent Trees

compare to.

The general mention ranking model discussed in Section 6.3 has the following de-

grees of freedom:

• pruning of graphs during training,

• the substructure-constraining function constrain, and

• the cost function c.

When using the modified Soon resampling scheme, the mention pair model learns

only from mentions that are in coreference chains. Furthermore, during training it

only considers antecedents up to the closest correct antecedent. When applying this

to the mention ranking model, note that the mention ranking model by construction

always decides on an antecedent for a mention. This is in contrast to the mention pair

model, which may label all pairs for one anaphor as non-coreferent.

For the ranking model, we therefore apply the modified Soon resampling scheme

to training as follows: we prune all substructures where the mention to compute the

antecedent for is not in any coreference chain. For any retained substructure, let mj be

the mention to compute the antecedent for. Let mi be the closest antecedent of mj. We

prune all edges (mj,mk) with k < i and k 6= 0. We retain the edge (mj,m0) since this

enables the model to decide whether a mention is anaphoric or not. In contrast to the

mention pair model, the mention ranking model can not decide on this implicitly. The

resulting model is very similar to the architecture proposed by Denis and Baldridge

(2008), except that Denis and Baldridge (2008) employ the original Soon resampling

scheme and use an anaphoricity classifier during preprocessing.

We also consider a second variant, All Antecedents, which allows the ranking model

to consider all antecedents for a mention, which is closer to the setting when the model

has to predict antecedents on unseen data10. For this variant, we prune all substruc-

tures where the mention to compute the antecedent for is not in any coreference chain,

but do not prune any edges in the retained substructures. To enforce the model to only

learn from the closest antecedent of a mention, we apply the substructure-constraining

function constrain described in Section 6.3.1.

Since both variants change the distribution of instances in the training data, we do

not use any cost function.

10Applying this resampling scheme to the mention pair model did not result in improved performance.
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8.3.1.1 Results

MUC B3 CEAFe

Model R P F1 R P F1 R P F1 Avg. F1

Best first
Mod. Soon 66.87 72.38 69.52 53.86 63.30 58.20 53.01 54.93 53.95 60.56

Ranking
Mod. Soon 72.16 63.39 67.50 62.07 48.36 54.37 51.68 51.21 51.45 57.77
All antec. 70.88 69.10 69.98 59.72 58.72 59.22 57.62 54.16 55.84 61.68

Table 8.11: Results of a simple mention ranking approach. Highest values for each
column are marked bold.

Table 8.11 compares the variants just described with the mention pair model using

the modified Soon resampling scheme and best-first clustering. This mention pair

model is the variant of the mention pair model from the literature that is conceptually

closest to the ranking model.

Adapting the modified Soon scheme from the pair model to ranking leads to a dif-

ferent precision/recall trade-off. While the mention pair model has much higher pre-

cision than recall, for the ranking model the reverse holds. Since the drop in precision

is more severe than the increase in recall, overall performance is lower.

When allowing the ranking model to learn from all antecedents of non-pruned men-

tions, precision and recall are much more balanced (with the exception of CEAFe,

where recall improves substantially). Overall, this variant of the ranking model per-

forms more than 1 point average F1 better than the mention pair counterpart, and also

almost 1 point average F1 better than the best-performing mention pair model (see

Table 8.7).

8.3.1.2 Error Analysis

The error numbers in Table 8.12 confirm the findings obtained by an analysis of the re-

sults of the evaluation metrics. Using the resampling schemes within a ranking model

instead of a mention pair model results in improved recall, but decreases precision.

Again, as we can see from Figure 8.5, most of the differences can be attributed to

differences with regard to the Unresolved and False Anaphoric errors. There are fewer

Unresolved recall errors, but more False Anaphoric precision errors.
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Figure 8.5: Recall errors and resolved links (top) and precision errors and resolved
links (bottom) of the simple mention ranking approach on CoNLL-2012 En-
glish development data. Left bar: mention pair model with best-first clus-
tering and modified soon resampling; middle bar: simple ranking model
with modified Soon resampling; right bar: simple ranking model with all
antecedents resampling.
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Recall Precision

Model Errors Max % of Max Errors Max % of Max

Best first 4,839 14,609 33% 4,087 13,497 30%
Ranking

Mod. Soon 4,065 14,609 28% 6,645 16,631 40%
All antec. 4,252 14,609 29% 4,992 14,987 33%

Table 8.12: Overview of recall and precision errors of the simple mention ranking ap-
proach.

There are only minor differences with regard to Wrong Antecedent errors. They

slightly increase when using the ranking approach instead of the mention pair model.

This is noteworthy since mention ranking approaches were devised to find better an-

tecedents for anaphoric mentions (Denis and Baldridge, 2008).

Ranking vs. Mention Pair. The error distribution suggests that the ranking model

mainly differs from the mention pair model with regard to the handling of anaphoric-

ity. Since the models only differ in the structure they operate on, the difference in the

output can be traced back to differences in the structures. Hence, let us go through

the structural differences of the models in detail.

When deciding on an antecedent of a mention mj, the prediction of the ranking

model consists of one pair (mj,mk). The pair consisting of the mention mj and its

closest correct antecedent serves as the reference pair when updating the parameter

vector (see Section 5.5). Hence, the model learns to predict correct antecedents for

mentions. The mention pair model, on the other hand, goes through all pairs (mj,mk),

and predicts a label, either “+” (coreferent) or “−” (not coreferent) for each pair.

The reference annotation for updating the parameter vector is the correct label for

each pair. Therefore the model learns to predict correct labels for mention pairs. In

particular, when the mention pair model erroneously predicts that a pair (mj,mk) is

coreferent, but instead the pair (mj,mi) is coreferent, the model learns that it should

predict that (mj,mk) is non-coreferent. It only learns to predict that a pair is coreferent

when mislabeling the coreferent pair (mj,mi). This increases the likelihood that the

model predicts that a pair is not coreferent, leading to more Unresolved errors. The

mention ranking model, however, learns that mi is a better antecedent for mj than mk,

and will therefore be less biased towards predicting non-anaphoricity. This is achieved
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by the structure the mention ranking model is based on.

All Antecedents vs. Modified Soon Resampling. Compared to the mention pair

model, employing the modified Soon resampling scheme for the ranking model leads

to a substantial increase of False Anaphoric precision errors, particularly for the Mixed
and Misc categories. The increase is much weaker when using the all antecedents
scheme, which supplies all candidate antecedents for anaphors considered by the mod-

ified Soon resampling scheme. Let us compare the approaches in detail.

For the mention ranking model employing the modified Soon resampling scheme,

only one correct antecedent (the closest antecedent) is in the set of candidate an-

tecedents. If the model does not predict this antecedent, the prediction is considered

as erroneous. Only regarding the closest antecedent as correct can force the model

to learn from difficult pairs. Consider, for instance, a coreference chain consisting

of the mentions Moses, he and Moses. When employing the modified Soon resam-

pling scheme, the model has to predict that Moses has he as antecedent. The other

antecedent Moses, where a string match suffices to establish coreference, is not even

among the candidate antecedents. This pushes the model towards making anaphor-

antecedent decisions for pairs which are difficult to resolve correctly by the model.

For the all antecedents variant, all correct antecedents are among the candidate an-

tecedents. Some of these antecedents may be easier to resolve than the closest an-

tecedent (such as Moses in the example above). If the ranking model resolves the

anaphor in focus to one of these antecedents, the decision is not incorrect, therefore

no update of the parameter vector is conducted. Hence, the model is not forced to

assign the closest antecedent as antecedent during training. As we can see from the

results and the error analysis, following this strategy increases precision substantially.

8.3.1.3 Discussion

We devised a simple mention ranking approach that conceptually stays close to a well-

performing mention pair variant. Adapting the modified Soon resampling scheme

results in higher recall and lower precision. We could attribute these differences in

results to differences in the structures employed by the approaches. Allowing the

ranking model to consider all antecedents of a mention during training results in an

improved model, which outperforms all mention pair variants.
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8.3.2 Mention Ranking Variants

In the previous section we adapted resampling schemes developed for the mention

pair model to mention ranking approaches. However, mention ranking approaches

as discussed in Section 6.3 are designed to consider all candidate antecedents of all

mentions, therefore not relying on any resampling of the training data.

Hence, we now consider models where we do not apply any pruning to the graphs

during training. We consider three variants of such models, which are inspired from

the literature.

We first consider a model that does not prune the graphs during training, but still

constrains the latent structures consistent with the reference annotation during train-

ing. As the models in the last section, it always compares to the closest correct an-

tecedent during training. For this variant, we do not use any cost function, since we

are interested in the performance of such an architecture when no cost function is

employed. Let us dub the model No cost. Since it learns from closest antecedents, it is

similar to the model proposed by Denis and Baldridge (2008).

The next variant is the same model except that it employs a cost function. After

preliminary experiments, we decided on the cost function used by Fernandes et al.

(2014) and Björkelund and Kuhn (2014), which has the form

crank(x, (mj,mi), z) =


λ1 i = 0 and mj is anaphoric,

λ2 i > 0 and the mentions are not coreferent,

0 otherwise.

(8.2)

where λ1, λ2 ∈ R>0. We call the model Cost.

Finally, we drop any constraints on the antecedents to learn from during training,

which leads to the model described by Chang et al. (2012). While the models above

always compare the prediction to the pair consisting of the mention in focus and the

closest correct antecedent during training, the model without constraints compares the

prediction to the pair consisting of the mention in focus and the highest-scoring correct

antecedent according to the current parameter vector. Since such antecedents are

called latent antecedents in the literature (Chang et al., 2012; Fernandes et al., 2014),

we dub the model Latent. It employ the same cost function as the Cost model.
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8.3.2.1 Results

MUC B3 CEAFe

Model R P F1 R P F1 R P F1 Avg. F1

Resampling 70.88 69.10 69.98 59.72 58.72 59.22 57.62 54.16 55.84 61.68

No cost 63.01 81.69 71.15 49.10 74.09 59.06 50.46 61.09 55.27 61.83
Cost 69.53 76.05 72.64 58.02 64.00 60.86 54.44 62.23 58.08 63.86
Latent 69.47 76.22 72.69 58.04 65.10 61.51 55.40 61.90 58.47 64.22

Table 8.13: Results of ranking models with and without cost functions and constraints
on structures during training. Highest values for each column are marked
bold.

The results of the models are compared in Table 8.13. All mention ranking variants

that consider all mentions outperform the ranking model that uses the best-performing

resampling scheme described in the previous section. The No cost model has very high

precision. The precision/recall trade-offs are better for Cost and Latent. The Latent
model improves over Cost mainly due to higher B3 precision and higher CEAFe recall.

8.3.2.2 Error Analysis

Recall Precision

Model Errors Max % of Max Errors Max % of Max

Resampling 4,252 14,609 29% 4,992 14,987 33%
No Cost 5,402 14,609 37% 2,301 11,270 20%
Cost 4,450 14,609 30% 3,528 13,357 26%
Latent 4,459 14,609 31% 3,535 13,315 27%

Table 8.14: Overview of recall and precision errors of ranking models.

Table 8.14 and Figure 8.6 give details on the recall and precision errors of the dif-

ferent models.

No Cost vs. Resampling. The difference between the No Cost and Resampling model

is that the former does not apply any pruning during training, while the latter only
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Figure 8.6: Recall errors and resolved links (top) and precision errors and resolved
links (bottom) of ranking variants on CoNLL-2012 English development
data. First bar: simple ranking model with all antecedents resampling;
second bar: ranking model using closest antecedents during training and
no cost function; third bar: ranking model using closest antecedents and
a cost function; fourth bar: ranking model using latent antecedents and a
cost function.
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considers mentions as potential anaphors that are in some coreference chain. Hence,

the No Cost model considers more non-anaphoric mentions. During learning, this

guides the model towards proposing that a mention is not coreferent, which leads to

more Unresolved recall errors but less False Anaphoric precision errors. However, the

reduction in precision errors is accompanied by a reduction in resolved links.

Cost vs. No Cost. Employing the cost function described by Equation 8.2 results in

less recall errors, but more precision errors. For recall, the Cost model has a similar

error profile as the Resampling model. For precision, the model partly retains the

False Anaphoric error reduction of the No Cost model (for example in the Both noun
category), but has almost as many resolved links as the Resampling model. Due to the

large number of non-anaphoric mentions, No Cost is biased towards determining that

mentions are not anaphoric. By using a cost function with appropriate parameters,

this bias is mitigated. To summarize, we can attribute the improved performance of

the Cost model to better anaphoricity detection by using the cost function.

Latent vs. Cost. The Latent model differs from the Cost model by considering the

highest-scoring correct antecedent instead of the closest correct antecedent when up-

dating during training. For most categories, this change only has a minor effect on

performance. The exception is the Misc category for precision errors. Most of the er-

rors in this category correspond to links which are considered difficult or unreliable,

such as links between a proper name anaphor and a pronoun antecedent (Bengtson

and Roth, 2008). By employing highest-scoring instead of closest antecedents during

training, the model can avoid learning from these pairs.

8.3.2.3 Discussion

Not pruning the graphs during training improves performance for mention ranking

models (we observed the reverse effect for mention pair models because of the im-

balanced sample space). Using a suitable cost function improves the precision/recall-

trade-off mainly due to improved anaphoricity detection. Employing latent instead of

closest antecedents during training improves the resolution of pairs deemed difficult.

In our analysis, we could only attribute minor improvements to better antecedent

selection for anaphoric mentions. However, since we work on automatically extracted

mentions, most mentions we consider are not anaphoric. There may be more sub-
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stantial improvements in antecedent selection when considering gold mentions, i.e.

mentions that are in some coreference chain. We leave an investigation of this setting

to future work.

8.3.3 Antecedent Trees

As we saw in Section 6.3, antecedent trees (Fernandes et al., 2014) and mention

ranking architectures (Denis and Baldridge, 2008; Chang et al., 2012) are based on

the same latent structure. They differ only with respect to the factorization of the

latent structure into substructures. While ranking approaches consider the subgraph

induced by each anaphor as a substructure, antecedent tree approaches consider the

whole document at once.

We obtain an antecedent tree model by dropping the factorization into per-anaphor

substructures from the Latent mention ranking model discussed above. We dub the

model Tree.

8.3.3.1 Results

MUC B3 CEAFe

Model R P F1 R P F1 R P F1 Avg. F1

Latent 69.47 76.22 72.69 58.04 65.10 61.51 55.40 61.90 58.47 64.22

Tree 68.93 76.89 72.70 57.35 65.93 61.34 55.38 62.10 58.55 64.20

Table 8.15: Results of an antecedent tree model. Highest values for each column are
marked bold.

Table 8.15 compares the results of the Tree model with Latent, the mention ranking

model using latent antecedents. The models differ only with respect to the factor-

ization into substructures. Not factorizing into substructures improves precision and

decreases recall. This is consistent with the corresponding experiments for mention

pair models (Section 8.2.4).
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8.3.3.2 Error Analysis

As shown in Table 8.16 and Figure 8.7, differences in error distributions when chang-

ing the substructure factorization are similar to the differences when changing the

substructure factorization for mention pair models (Section 8.2.4). However, the dif-

ferences are less pronounced. For most categories, there are more recall errors and

fewer precision errors and correctly resolved links.

Recall Precision

Model Errors Max % of Max Errors Max % of Max

Latent 4,459 14,609 31% 3,535 13,315 27%
Tree 4,537 14,609 31% 3,408 13,098 26%

Table 8.16: Overview of recall and precision errors for antecedent trees.

8.3.3.3 Discussion

Varying the factorization into substructures has only a minor effect on overall perfor-

mance. Employing a per-document factorization in the mention ranking model, which

leads to antecedent trees, improves precision and decreases recall. Analogously to our

observations when discussing substructure factorizations for the mention pair model,

a per-document factorization ensures slightly more cautious anaphoricity detection.

8.3.4 Graphs

We now consider models that can assign multiple antecedents to mentions. As we have

discussed in Section 6.3, such models can be obtained by replacing the trees by general

graphs in the latent structures of the mention ranking and antecedent tree approaches.

To our knowledge, such models have not been considered before in the literature.

Hence, we take the Latent and Tree models described before and replace the latent

structure by graphs. The remaining parameters of the models stay the same. Since

the models differ only in the factorization into substructures, we name the two models

Graph (Anaphor) and Graph (Document).
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Figure 8.7: Recall errors and resolved links (top) and precision errors and resolved
links (bottom) of an antecedent tree model on CoNLL-2012 English devel-
opment data. Left bar: ranking model with latent antecedents; right bar:
antecedent tree model.
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MUC B3 CEAFe

Model R P F1 R P F1 R P F1 Avg. F1

Latent 69.47 76.22 72.69 58.04 65.10 61.51 55.40 61.90 58.47 64.22
Tree 68.93 76.89 72.70 57.35 65.93 61.34 55.38 62.10 58.55 64.20

Graph (Anaph.) 70.26 73.58 71.88 60.46 57.43 58.90 48.99 61.25 54.44 61.74
Graph (Doc.) 55.42 80.27 65.57 42.12 65.87 51.39 31.61 61.27 41.70 52.89

Table 8.17: Results of models based on graphs that are not necessarily trees. Highest
values for each column are marked bold.

8.3.4.1 Results

Table 8.17 compares the results of the graph-based models to their tree-based counter-

parts. Switching to graphs as structures increases MUC and B3 recall for the anaphor-

based factorization, and increases MUC precision for the document-wide factorization.

Performance according to all other metrics decreases. The drop in performance for the

graph-based model with document factorization is especially severe, the performance

drops by more than 11 point average F1 compared to the antecedent tree model.

8.3.4.2 Error Analysis

Recall Precision

Model Errors Max % of Max Errors Max % of Max

Latent 4,459 14,609 31% 3,535 13,315 27%
Tree 4,537 14,609 31% 3,408 13,098 26%
Graph (Anaph.) 4,343 14,609 30% 4,368 13,952 31%
Graph (Doc.) 6,511 14,609 45% 2,487 10,088 25%

Table 8.18: Overview of recall and precision errors for tree- and graph-based models.

Table 8.18 and Figure 8.8 show the errors made by the graph-based models and

their tree-based counterparts. For Graph (Anaphor), we can observe a slight decrease

in recall errors and a large increase in precision errors. For Graph (Document), recall

errors increase substantially while precision errors decrease substantially.
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Figure 8.8: Recall errors and resolved links (top) and precision errors and resolved
links (bottom) of graph-based models and their tree-based counterparts
on CoNLL-2012 English development data. First bar: ranking model with
latent antecedents; second bar: antecedent tree model; third bar: graph-
based ranking model; fourth bar: document-wide graph-based model.
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8.3 Mention Ranking and Antecedent Trees

Graph (Anaphor) vs. Latent. When comparing Latent and its graph counterpart

Graph (Anaphor), we see that the graph-based model slightly improves recall for

I/you/we, Both noun and Mixed. Recall errors for the other categories are unchanged

or increased. In particular, we observe more he/she errors where the mention is left

unresolved. We can observe an increase of precision errors across all categories. Fur-

thermore, for most categories resolved links decrease.

Hence, allowing multiple antecedents for a mention has a slight positive effect on

recall, in particular for first- and second-person pronouns. This can be explained by

the fact that the data contains broadcast and telephone conversations, in which such

pronouns often participate in long coreference chains only consisting of these pro-

nouns. If one mentions gets assigned a wrong antecedent, the chain is broken. Allow-

ing multiple antecedents facilitates avoiding such broken chains. In contrast, recall

decreases for categories for which there are strong relationships between anaphors

and a single antecedent, such as third-person pronouns. Furthermore, discarding the

single-antecedent constraint substantially lowers precision. Since the model has more

opportunities for choosing wrong antecedents, this was expected.

Graph (Document) vs. Tree and Graph (Anaphor). For the difference between

Graph (Document) and Tree we can observe a substantial increase in Unresolved re-

call errors, which is accompanied by a reduction in resolved links and precision er-

rors. The only exception is the I/you/we category, where there is a slight reduction

in recall errors. Compared to Graph (Anaphor), the only difference between the mod-

els is the substructure factorization. As we have already seen for the mention pair

and tree-based models, a more coarse substructure factorization leads to a more cau-

tious anaphoricity determination. This effect is amplified when allowing multiple an-

tecedents. Except for the recall error reduction for I/you/we, this effect also negates

the differences we observed when switching from single to multiple antecedents for

the model using anaphor-based substructures.

8.3.4.3 Discussion

Graph-based models that drop the single-antecedent constraint improve recall slightly

for a few categories, but lead to huge decreases in precision or to a very cautious

anaphoricity determination. These observations confirm the reasonability of the single-

antecedent constraint.
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8.3.5 Summary

Compared to mention pair models, mention ranking models and antecedent trees are

based on a structure that directly encodes antecedent decisions. When supplied with

a suitable cost function and a suitable search space for antecedents, mention ranking

models substantially outperform mention pair models due to better anaphoricity de-

termination. Latent antecedents improve performance for unreliable pairs. Dropping

the substructure factorization did not result in better performance due to too cau-

tious predictions. We also investigated the use of general graphs instead of trees, but

observed severe performance drops.

8.4 Entity-based Models

The antecedent tree model takes a document-wide perspective on coreference resolu-

tion by predicting antecedents for all mentions simultaneously. However, the model

does not take any interactions between coreference decisions into account. In order to

model such interactions, entity-based approaches (Luo et al., 2004; Yang et al., 2008;

Stoyanov and Eisner, 2012; Webster and Curran, 2014; Clark and Manning, 2015, in-

ter alia) perform coreference resolution incrementally and access previous decisions

via the structure or via suitable features.

As we have shown in Section 6.4, the gained expressiveness of entity-based mod-

els leads to a larger parameter space: they can accommodate more advanced cost

functions and features, have variety in the inference schemes and have as additional

parameters roll-in and roll-out functions (see Section 5.5). A detailed experimental

comparison of these parameters is out of scope for this thesis. We therefore evaluate

some selected entity-based models that employ cost functions adapted from the rank-

ing models and only few additional features. This allows us to evaluate and analyze

the effect of different ways of adding entity-based information to ranking models. We

leave an analysis of the full parameter space of entity-based models to future work.

8.4.1 Assumptions

We first describe assumptions we make for all entity-based models we implement in

this thesis.
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8.4 Entity-based Models

8.4.1.1 Cost Functions

From the description of structures in Chapter 6 we saw that various cost functions

for learning to search for entity-centric models can be devised, ranging from simple

edge-factoring cost functions to functions based on coreference resolution evaluation

metrics. However, we will only consider cost functions adapted from mention ranking

models. This has three reasons: First, the ranking-based cost functions are edge-

factored and only depend on the structure of the current time step. This allows us to

avoid roll-outs, which greatly increases efficiency (Section 5.5.2.2). Second, cost func-

tions adapted from ranking models have been shown to work well for entity-based

models (Björkelund and Kuhn, 2014; Webster and Curran, 2014). Third, while ad-

vanced cost functions can be obtained from coreference resolution evaluation metrics,

there are several issues: optimizing for the MUC metric can lead to degenerate solu-

tions, and optimizing for the CEAF metrics is not computationally feasible (Stoyanov

and Eisner, 2012). A comprehensive treatment of cost functions induced from evalua-

tion metrics requires an analysis of these issues.

Hence, in this thesis, we only employ cost functions adapted from the cost function

crank for ranking models. We discuss limitations of such local cost functions when

analyzing the results. We leave an analysis of more advanced cost functions to future

work.

Due to the complexity of the entity-based models, training the models is too expen-

sive to optimize hyperparameters by grid search11. We therefore do not optimize the

cost function hyperparameters for the entity-based models, but instead take the op-

timal corresponding hyperparameters as determined for the mention ranking model

with latent antecedents12.

8.4.1.2 Transitioning Functions

Other parameters of learning to search approaches are the roll-in transitioning func-

tion in, which generates structures considered in learning to search step-by-step, and

the roll-out transitioning function out, which is used for completing deviations of the

structures generated by in. For the roll-in transitioning function in, we follow con-

siderations in previous work (Webster and Curran, 2014) and compare two roll-in

11Training the entity-entity models on CoNLL-2012 training data, for example, takes several days.
12We ran experiments using the hyperparameters for the antecedent tree model, but this yielded con-

sistently lower results.
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transitioning functions:

• inpred always chooses the highest-scoring latent structure according to the cur-

rently learned parameter vector at each step:

inpred(h) = argmax
(h′,z′)∈Generate(h)

〈θ, φ(x, h′, z′)〉. (8.3)

We call inpred learned roll-in, since the latent structures chosen by this transition-

ing function only depend on the learned parameter vector;

• inref always chooses the highest-scoring latent structure that has minimal cost:

inref(h) = argmax
(h′,z′)∈Generate(h),

c(h′)= min
(h′′,z′′)∈Generate(h)

c(h′′)

〈θ, φ(x, h′, z′)〉. (8.4)

At each step, inref makes the optimal decision, in the sense that it is the decision

with lowest cost. Therefore, we call inref reference roll-in or gold roll-in.

When using inref as the roll-in transitioning function, the learning algorithm learns

only from latent structures that have minimal cost. However, this cost information is

not available during testing. Therefore, using inpred exposes the learning algorithm to

structures that are more similar to structures that will be encountered during predic-

tion on unseen data.

We only use cost functions with the following property: given any fixed roll-out

function, the cost only depends on the structure in the current time step. We therefore

do not have to define any roll-out transitioning functions.

8.4.2 Tree-based Mention-Entity Models

In the literature, entity-based models are usually subdivided into mention-entity mod-

els, which model coreference resolution as attaching mentions to partial entities, and

entity-centric or entity-entity models, which instead model coreference resolution as

merging pairs of partial entities.

Since we want to analyze models in order of increasing complexity and expressive-

ness, we start our analysis of entity-based models with a mention-entity model. In

particular, we consider a tree-based mention-entity model, as it relies on the same
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8.4 Entity-based Models

structure as mention ranking models and antecedent trees13. We saw in Section 6.4.1

that such entity-based models permit various inference schemes. We first consider

left-to-right inference, as it is computationally the most simple inference scheme. Fur-

thermore, left-to-right inference is the dominant inference scheme for mention-entity

models (Luo et al., 2004; Björkelund and Kuhn, 2014; Webster and Curran, 2014).

The tree-based mention-entity model with left-to-right inference can be obtained from

the general entity-based model relying on trees by using the appropriate Generate and

Alternatives functions as described in Section 6.4.1.

Additionally to the local features described in Section 7.2, the models use the cluster
size and antecedent has antecedent features described in Section 7.3. We use both

learned roll-in and gold roll-in. We evaluate the models with the same cost function

as for antecedent trees: the cost of a tree is obtained by summing the cost of all edges

with respect to crank. Since the cost function does not depend on any previous or

following coreference decision, the cost of a partial latent structure only depends on

the current time step.

8.4.2.1 Results

MUC B3 CEAFe

Model R P F1 R P F1 R P F1 Avg. F1

Tree 68.93 76.89 72.70 57.35 65.93 61.34 55.38 62.10 58.55 64.20

Learned roll-in 68.24 77.25 72.47 56.02 67.45 61.21 55.16 61.45 58.13 63.94
Gold roll-in 68.30 78.22 72.92 56.82 67.37 61.64 52.99 65.80 58.70 64.42

+agr. 68.09 78.28 72.83 56.69 67.51 61.63 52.81 65.70 58.55 64.34
No strct. feat. 68.28 78.21 72.91 56.90 67.32 61.67 52.95 65.59 58.59 64.39

Table 8.19: Results of variations of tree-based mention-entity models. Highest values
for each column are marked bold.

Table 8.19 compares variants of tree-based mention-entity models. We see that

extending antecedent trees with entity-based features does not result in improved per-

formance when using learned roll-in. When using gold roll-in, the entity-based infor-

mation helps, performance increases by roughly 0.2 points average F1, mainly due to

improved precision.

13Due to their low performance, we do not further consider models that are based on general graphs.
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We also test the effect of features. The tree-based mention-entity model uses all

mention and pairwise features also used by the non-entity-based models, and addi-

tionally uses features that describe properties of partial entities. However, the features

for partial entities are not induced from mention or pairwise features. In preliminary

experiments, we confirmed results that features induced from local features do not

improve performance when used on top of the local feature set (Björkelund and Kuhn,

2014; Clark and Manning, 2015). In the line marked “+agr.”, we exemplarily evaluate

the contribution of the agreement feature. As we can see, using this feature on top of

the model does not lead to improved performance, the pairwise links already seem to

capture the necessary information. Lastly, we consider the impact of the structural fea-

tures. The line marked “No strct. feat.” shows the performance of the model when the

structural feature antecedent has antecedent is removed. As we can see, the structural

feature only has an insignificant impact on performance.

8.4.2.2 Error Analysis

Recall Precision

Model Errors Max % of Max Errors Max % of Max

Tree 4,537 14,609 31% 3,408 13,098 26%

Learned roll-in 4,638 14,609 32% 3,284 12,907 25%
Gold roll-in 4,630 14,609 32% 3,124 12,756 24%

Table 8.20: Overview of recall and precision errors for tree-based mention-entity mod-
els.

In Table 8.20 and Figure 8.9 we show the errors of tree-based mention-entity models

with learned and gold roll-in. We compare the errors with errors of an antecedent tree

model which uses the same mention and pairwise features. We do not include the

feature variants of the model with gold roll-in in the comparison, since the difference

in performance was marginal.

From the figure we can see that the most obvious difference is a reduction in pre-

cision errors, in particular False Anaphoric errors, for the tree-based mention entity

model with gold roll-in. This reduction is accompanied by a slight increase in Unre-
solved recall errors.
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Figure 8.9: Recall errors and resolved links (top) and precision errors and resolved
links (bottom) of tree-based mention-entity models on CoNLL-2012 En-
glish development data. Left bar: antecedent tree model; middle bar:
tree-based mention-entity model with learned roll-in; right bar: tree-based
mention-entity model with gold roll-in.
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This suggests that the entity-level features we employ in the model – the size of

the cluster and whether the candidate antecedent has an antecedent – are helpful

for determining anaphoricity. However, there is no significant use of this features for

Wrong Antecedent errors. The model that employs learned roll-in shows similar trends,

but the differences are less pronounced.

8.4.2.3 Discussion

Tree-based mention-entity model are able to augment the modeling of anaphor-an-

tecedent relations with entity-based information. Adding features that describe prop-

erties and structure of partial entities improves performance with respect to anaphoric-

ity when using gold roll-ins. These results suggest that we should further explore

entity-based features that aim to improve choosing the correct antecedent.

Following much previous work (Webster and Curran, 2014; Björkelund and Kuhn,

2014), the cost function we used for tree-based mention-entity models evaluates only

individual edges. We suspect that this property is responsible for the low performance

of the model when using learned roll-ins. When using learned roll-ins, it may hap-

pen during training that none of the preceding partial entities only contains coreferent

mentions. However, the local cost function cannot distinguish between different par-

tial entities, since it only considers anaphor-antecedent pairs. More advanced cost

functions, such as measures induced from coreference resolution evaluation metrics

(as used by Stoyanov and Eisner (2012) and Clark and Manning (2015)) do not have

this problem and may improve performance.

8.4.3 Tree-based Mention-Entity Easy-first Models

Left-to-right inference is the simplest and most restrictive inference scheme for entity-

based models. We now study the effect of switching to easy-first inference. During

easy-first inference, we do not process the first unattached mention, but allow to con-

sider any unattached mention. In our framework, this is modeled by dropping the

corresponding constraints for the Generate and Alternatives functions. To the best

of our knowledge, mention-entity models with easy-first inference were not studied

before.

As we have described in Section 6.4.1, easy-first mention-entity models have a very

large search space that must be restricted in order to perform efficient learning and

inference. We restrict the search space by applying a simple heuristic. Note that, given
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a parameter vector θ and a document x, we can compute the local features that only

describe a pair of mentions and the weights of these features a priori. In contrast, we

cannot compute entity-based features a priori, since these depend on the coreference

decisions for x. We therefore use the scores of the pairs to restrict the search space:

given a mention mj, consider only the k highest-scoring antecedents mi according to

the scoring function (mj,mi) 7→ 〈θ, φ(x, (mj,mi), z)〉. We experimented with k = 1, 5,

10, 15, ... and found that setting k larger as 20 led to prohibitively long running times.

We therefore set k to 20.

8.4.3.1 Results

MUC B3 CEAFe

Model R P F1 R P F1 R P F1 Avg. F1

Left-to-right
Lrnd. roll-in 68.24 77.25 72.47 56.02 67.45 61.21 55.16 61.45 58.13 63.94
Gold roll-in 68.30 78.22 72.92 56.82 67.37 61.64 52.99 65.80 58.70 64.42

Easy-first
Lrnd. roll-in 68.24 77.07 72.39 55.93 67.25 61.07 55.22 61.80 58.33 63.93
Gold roll-in 68.71 77.41 72.80 57.01 66.54 61.41 54.30 64.06 58.78 64.33

Table 8.21: Results of variations of tree-based easy-first mention-entity models. High-
est values for each column are marked bold.

In Table 8.21 we compare tree-based easy-first inference models with their left-to-

right inference counterparts. Compared to the corresponding left-to-right model, easy-

first inference performs slightly worse with both learned and gold roll-ins, mainly due

to lower precision.

8.4.3.2 Error Analysis

Table 8.22 and Figure 8.10 compare errors for tree-based mention-entity models with

left-to-right and easy-first inference. There are only small differences between the

models when employing the same roll-in function. Compared to the other variants,

the mention-entity model with left-to-right inference and gold roll-ins makes fewer

precision errors for I/you/we and it/they. The easy-first model with gold roll-in shows

slightly improved recall for the same categories. The models with easy-first inference
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Figure 8.10: Recall errors and resolved links (top) and precision errors and resolved
links (bottom) of tree-based mention-entity models with different in-
ference schemes on CoNLL-2012 English development data. First bar:
left-to-right inference with learned roll-in; second bar: left-to-right infer-
ence with gold roll-in; third bar: easy-first inference with learned roll-in;
fourth bar: easy-first inference with gold roll-in.
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Recall Precision

Model Errors Max % of Max Errors Max % of Max

Left-to-right
Learned roll-in 4,638 14,609 32% 3,284 12,907 25%
Gold roll-in 4,630 14,609 32% 3,124 12,756 24%

Easy-first
Learned roll-in 4,638 14,609 32% 3,303 12,936 26%
Gold roll-in 4,570 14,609 31% 3,315 12,968 26%

Table 8.22: Overview of recall and precision errors for tree-based mention-entity mod-
els with left-to-right and easy-first inference.

are devised to make more reliable decisions first. The error profile does not indicate

that the models achieve this.

8.4.3.3 Discussion

With the exception of better recall for first- and second-person pronouns and third-

person ungendered pronouns, we could not observe improved performance when us-

ing easy-first inference. However, our models are constrained by heuristics for restrict-

ing the search space and by the cost function employed. As the cost function assigns

costs based on individual anaphor-antecedent decisions, it only has a very local notion

of “easiness” or “reliability” of a coreference decision. For the reasons mentioned in

Section 8.4.1, we leave a detailed investigation of global cost functions to future work.

8.4.4 Tree-based Entity-Entity Models

We now consider entity-entity models that are based on a tree structure. While

mention-entity models approach coreference resolution by attaching mentions to par-

tial entities, entity-entity models (Culotta et al., 2007; Stoyanov and Eisner, 2012;

Clark and Manning, 2015) instead consider pairs of partial entities at each step. We

can obtain tree-based entity-entity models from tree-based easy-first mention-entity

models by extending the scope of the features to pairs of partial entities instead of

pairs of a mention and a partial entity. The remaining parameters such as the cost

function or the heuristic to restrict the search space remain the same.
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8.4.4.1 Results

MUC B3 CEAFe

Model R P F1 R P F1 R P F1 Avg. F1

Easy-first
Lrnd. roll-in 68.24 77.07 72.39 55.93 67.25 61.07 55.22 61.80 58.33 63.93
Gold roll-in 68.71 77.41 72.80 57.01 66.54 61.41 54.30 64.06 58.78 64.33

Entity-entity
Lrnd. roll-in 68.44 77.35 72.62 56.62 67.87 61.74 55.01 62.37 58.46 64.27
Gold roll-in 69.14 77.23 72.96 57.23 66.06 61.32 53.03 65.12 58.45 64.24

Table 8.23: Results of entity-entity models. Highest values for each column are marked
bold.

In Table 8.23 we compare the tree-based entity-entity model with its mention-entity

variant. Using the entity-entity model when learning with learned roll-in performs

roughly 0.3 average F1 better than the mention-entity model. The entity-entity model

with gold roll-in performs slightly worse than its mention-entity counterpart.

8.4.4.2 Error Analysis

Recall Precision

Model Errors Max % of Max Errors Max % of Max

Mention-entity
Learned roll-in 4,638 14,609 32% 3,303 12,936 26%
Gold roll-in 4,570 14,609 31% 3,315 12,968 26%

Entity-entity
Learned roll-in 4,609 14,609 32% 3,278 12,927 25%
Gold roll-in 4,507 14,609 31% 3,393 13,079 26%

Table 8.24: Overview of recall and precision errors for entity-entity models.

In Table 8.24 and Figure 8.11, the errors of the model variants are summarized and

compared to errors of the tree-based mention-entity model with easy-first inference.

We can only observe minor differences between the error profiles when considering

the same roll-in function.
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Figure 8.11: Recall errors and resolved links (top) and precision errors and resolved
links (bottom) of tree-based entity-entity models on CoNLL-2012 English
development data. First bar: mention-entity model with easy-first infer-
ence and learned roll-in; second bar: mention-entity model with easy-first
inference and gold roll-in; third bar: entity-entity model with learned
roll-in; fourth bar: entity-entity model with gold roll-in.

183



8 Experiments and Analysis

8.4.4.3 Discussion

The entity-entity model performs similarly to the mention-entity model with easy-

first inference. With gold roll-in the performance is slightly worse, while there is an

improvement when using learned roll-ins. This indicates that the entity-entity model

may be able to leverage information about predicted coreference chains, but we could

not observe any substantial differences in the error profiles.

The performance of the entity-entity models is still below the performance of the

left-to-right mention-entity model with gold roll-in and is only slightly better than the

performance of the latent ranking model. As was the case with mention-entity models,

this may partly be caused by the cost function, which only evaluates the local quality

of a coreference decision14. Again, for the reasons mentioned in Section 8.4.1, we

leave a detailed investigation of global cost functions to future work.

8.4.5 Hypergraph Mention-Entity Models

We finally consider entity-based models that are based on a hypergraph representation

(Section 6.4.2). These models are unable to access information about the internal

structure of partial entities, such as anaphor-antecedent decisions. As mention-entity

models with left-to-right inference performed best for the tree structure, we only con-

sider the corresponding model for hypergraphs. The model can be obtained by con-

sidering appropriate Generate and Alternatives functions, as described in Section

6.4.2.

Hypergraph-based mention-entity models cannot use the local features described

in Section 7.2 directly, since these rely on mention pairs (m,n), whereas hypergraph-

based mention-entity models score hyperedges, which are pairs consisting of a mention

and a partial entity. As described in Section 7.3.1, we induce hyperedge features

from local features by either evaluating the closest mention or by applying logical

predicates. Besides the adapted local features, we also use the cluster size feature

described in Section 7.3.2. We cannot use the structural features (Section 7.3.3), since

hypergraph-based mention-entity models do not model structure in the partial entities.

Hypergraph-based models admit variation regarding the cost function. Since we

only consider edge-factoring cost functions, we evaluate three variants, where two are

14Clark and Manning (2015, 2016) report improvements of an entity-entity architecture over a ranking
architecture. However, they use different features, cost functions and heuristics for restraining the
search space. In this thesis, we deliberately kept these parameters very simple.
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induced from mention-ranking cost functions as described in Section 6.4.2:

• the first variant, No cost, does not utilize any cost function;

• the second variant, Hyper cost, computes the cost of an hyperedge ({mj} , X) by

aggregating the ranking cost function via

caggr(x, ({mj}, X), z) =
∑
mi∈X

crank(x, (mj,mi), z); (8.5)

• the third variant, Pair cost, computes the cost of an hyperedge ({mj} , X) by

applying the ranking cost function crank described by Equation 8.2 as follows:

cmax(x, ({mj}, X), z) = max
mi∈X

crank(x, (mj,mi), z). (8.6)

To ensure that the cost function only depends on the latent structure at the current

time step, we set caggr ≡ cmax ≡ 0 for all edges except the one added in the current

time step.

Finally, recall that we extended mention features and distance features to entity-

level features by applying them to the pair (mj,mi) consisting of the mention in focus

and the closest mention in the preceding partial entity (Section 7.3)15. When training

with learned roll-ins, we can not ensure that (mj,mi) consists of coreferent mentions

for the minimum-cost highest-scoring hyperedge. Hence, in order to learn reasonable

weights for the mention features and distance features, we train the hypergraph-based

models only with gold roll-ins.

8.4.5.1 Results

Table 8.25 shows the results of the hypergraph models with different cost functions.

The numbers are compared with the results of the tree-based mention-entity model

using left-to-right inference. The No cost variant has highest precision, Pair cost im-

proves mainly in recall. Hyper cost has the lowest performance. The best hypergraph

model, Pair cost, performs better than the mention pair models, but is roughly 1 point

average F1 worse than the best ranking-based approach.

15Other variants of applying the features resulted in lower performance.
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MUC B3 CEAFe

Model R P F1 R P F1 R P F1 Avg. F1

Left-to-right 68.30 78.22 72.92 56.82 67.37 61.64 52.99 65.80 58.70 64.42
(Tree)

No cost 62.36 81.40 70.62 49.36 71.83 58.51 46.79 66.78 55.02 61.38
Hyper cost 63.24 77.28 69.56 47.57 70.97 56.96 53.76 58.92 56.22 60.91
Pair cost 66.84 78.17 72.06 54.73 67.25 60.35 50.74 65.81 57.30 63.24

Table 8.25: Results of hypergraph-based mention-entity models with and without cost
functions. All models use gold roll-in. Highest values for each column are
marked bold.

8.4.5.2 Error Analysis

Recall Precision

Model Errors Max % of Max Errors Max % of Max

Left-to-right 4,630 14,609 32% 3,124 12,756 24%

No cost 5,497 14,609 38% 2,523 11,193 23%
Hyper cost 5,369 14,609 37% 3,030 11,956 25%
Pair cost 4,843 14,609 33% 3,258 12,492 26%

Table 8.26: Overview of recall and precision errors for hypergraph-based mention-
entity models.

The errors of the different configurations of the hypergraph-based models are sum-

marized in Table 8.26 and Figure 8.12. Recall and precision errors are extracted by

spanning tree algorithms based on accessibility, since the hypergraph approaches nei-

ther output pairwise scores nor provide output spanning trees. Hence, when compar-

ing errors for individual categories between hypergraph-based models and the tree-

based model, we have to keep in mind that we use different notions of an error. Nev-

ertheless, we can still compare total error numbers and we can get an assessment of

the distribution of errors.

Let us first consider the numbers displayed in Table 8.26 in detail. Analogously

to the mention ranking model, the No cost variant makes fewer precision errors than

the other variants, at the expense of many recall errors. The cost function employed
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Figure 8.12: Recall errors and resolved links (top) and precision errors and resolved
links (bottom) of hypergraph-based mention-entity models on CoNLL-
2012 English development data. First bar: antecedent tree model; second
bar: hypergraph model without a cost function; third bar: hypergraph
model with Hyper cost; fourth bar: hypergraph model with Pair cost.
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by the Hyper cost model, which is sensitive to the cluster size, also leads to cautious

predictions. For Pair cost, the size of the partial entity does not matter, and the number

of predictions is more similar to the tree-based model.

We now compare the errors for individual categories as displayed in Figure 8.12.

Compared to the mention-entity model based on trees, Unresolved recall errors are

increased for all categories except for Misc. For precision, the hypergraph models have

less resolved links, slightly less False Anaphoric errors and, for most categories, more

Wrong Antecedent errors. For both recall and precision errors, the effects are least

pronounced for Pair cost. The error profile of this variant is similar to the mention-

entity model based on trees.

For the No cost and Hyper cost variants, the increase in Unresolved and the decrease

in False Anaphoric errors can be explained by the cautious predictions taken by the

models due to the cost function used (or the absence of a cost function). The model

using Pair cost makes a similar number of predictions as the antecedent tree model.

However, the number of Wrong Antecedent errors is increased (as for the other hy-

pergraph variants). In contrast to the models considered so far in this chapter, the

hypergraph-based models do not have access to individual anaphor-antecedent rela-

tions. Following the literature (e.g. Rahman and Ng, 2011a), the majority of features

for the hypergraph models where induced by features devised for mention pairs. Our

analysis suggests that using such features leads to a decrease in performance, in par-

ticular due to worse antecedent selection.

8.4.5.3 Discussion

Hypergraph-based mention-entity models can aggregate information about the rela-

tion of a mention and all mentions in a preceding partial entity. However, fundamen-

tally different from the models we considered so far in this thesis, hypergraph-based

models cannot access information about individual anaphor-antecedent decisions. At

least with the standard feature set considered in the literature, not being able to har-

ness this information leads to a decrease in performance.

8.4.6 Summary

We considered two variants of entity-based models: mention-entity models and entity-

entity models. Mention-entity models differ from ranking and antecedent tree models
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by incorporating entity-based information when attaching a mention. In our evalu-

ation and analysis, we only considered few features and local cost functions. A left-

to-right tree-based mention-entity model improved slightly when using entity-based

information. Learning from noisy partial entities, as obtained by learned roll-in, em-

ploying easy-first inference or leveraging information about pairs of entities did not

improve performance further. We suspect that this is caused mainly by the narrow

scope of the cost functions we employ. We found that hypergraph-based models based

on a standard feature set cannot improve performance, which we attribute to the diffi-

culty of predicting coreference relations by aggregating mention and pairwise features.

8.5 Evaluation on Test Data

We now conclude our experiments by evaluating the models on test data. To do so,

we train the models with optimal hyperparameters (as determined on development

data) on the concatenation of training and development data. We compute statistical

significance of differences in MUC, B3 and CEAFe F1 score using an approximate ran-

domization test (Noreen, 1989). We say that a difference is statistically significant if

the p-value of the corresponding test is below 0.05.

MUC B3 CEAFe

Model R P F1 R P F1 R P F1 Avg. F1

nn_coref 69.31 76.23 72.60 55.83 66.07 60.52 54.88 59.41 57.05 63.39
Stanford Sieve 64.26 65.19 64.72 49.09 56.84 52.68 52.54 46.55 49.73 55.59

Table 8.27: Results of nn_coref (Wiseman et al., 2015) and Stanford Sieve (Lee et al.,
2013) on CoNLL-2012 English test data.

Table 8.27 shows the performance of the state-of-the-art system nn_coref (Wiseman

et al., 2015) and of the widely used Stanford Sieve (Lee et al., 2013) on CoNLL-2012

test data. Compared to the results on development data (Table 8.2), the overall per-

formance drops by roughly 1 point average F1.
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8.5.1 Results

Table 8.28 shows the results of selected models on CoNLL-2012 test data16. Similar to

StanfordSieve and nn_coref, most models drop by roughly 1 point F1 score. The re-

sults confirm the trends we observed on development data. In particular, the mention

ranking models with latent antecedents performs very well. It is only outperformed by

the tree-based mention-entity model with left-to-right inference.

MUC B3 CEAFe

Model R P F1 R P F1 R P F1 Av. F1

Vanilla pair
All pairs 66.43 77.06 71.35 54.77 51.52 53.09 34.48 61.22 44.12 56.19

Best first
All pairs 62.81 78.65 69.84∗† 47.32 64.56 54.61∗† 41.11 59.41 48.59∗† 57.68
Mod. Soon 67.16 71.63 69.32† 52.30 60.40 56.06∗† 50.61 51.20 50.90∗† 58.76

Ranking
All antec. 71.61 68.55 70.05∗ 58.60 56.74 57.65∗ 56.23 51.70 53.87∗ 60.52
No cost 62.91 81.23 70.91 46.89 72.96 57.09 48.67 58.99 53.34 60.45
Cost 69.62 76.26 72.79∗† 56.10 63.43 59.54∗† 51.97 59.61 55.53∗† 62.62
Latent 69.48 76.47 72.81† 55.81 65.25 60.16∗† 53.39 60.16 56.58∗† 63.18

Antec. Tree 68.63 77.27 72.69† 54.83 66.38 60.05† 52.63 60.05 56.10∗† 62.95

Mention-Ent.
Tree17 68.28 78.42 73.00 55.14 66.73 60.38 50.47 64.54 56.64∗† 63.34

Table 8.28: Results of models on CoNLL-2012 English test data. Highest values for
each column are marked bold. ∗ indicates significants differences in F1

score compared to the preceding model in the table; † indicates signifi-
cant differences compared to each model’s baseline, which is defined as
Vanilla pair: All pairs for the mention pair models, Ranking: No cost for the
ranking/tree models, and Antec. Tree for the entity-based model.

Regarding the statistical significance of the differences in F1 scores, we compare each

model with the model that is immediately preceding in the table, since the models are

in order of increasing complexity. Furthermore, we defined for each model a baseline

to which we compare additionally.

We find that switching from aggressive-merge clustering to best-first clustering yields

16Results for all models on test data can be found in Appendix A.
17Using gold roll-in and left-to-right inference.
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significantly improved performance according to all metrics. Employing the Modified
Soon scheme instead of learning all pairs improves performance significantly for all

metrics expect for MUC. The switch from the mention pair model to ranking again

yields significantly improved performance according to all metrics. Learning from all

mentions in the ranking model (as in the No cost model) leads to no significants im-

provements over learning from instances obtained by the All antecedents resampling

scheme. Using a cost function and employing latent antecedents improves perfor-

mance significantly according to most metrics. With the exception of the CEAFe met-

ric, there are no significant differences when using antecedent trees instead of mention

ranking or when extending the tree-based model with entity-based information.

8.5.2 Discussion

On development data, we explained differences in the output of models using a de-

tailed error analysis, and by relating the errors to the modeling assumptions of the

individual models and to the differences in structures and remaining parameters be-

tween the models. The evaluation metric results on test data confirm the trends we

observed on development data. Significant effects on differences in F1 score were ob-

tained by varying parameters of the mention pair models, switching from the mention

pair model to the ranking model, by introducing a cost function to the ranking model,

and by switching from closest antecedents during learning to latent antecedents. The

remaining changes affected the results, but the effects we analyzed in this chapter

seem to be too small to lead to a statistically significant difference according to most

metrics.

8.5.3 Comparison with the State-of-the-Art

In Table 8.29, we compare the best-performing models with the state-of-the-art system

nn_coref of Wiseman et al. (2015). The models perform similarly to nn_coref, the

difference in results is not statistically significant.

8.6 Summary

In this chapter, we evaluated many structures for coreference resolution, ranging from

simple mention pair variants to complex entity-based models. In our analysis, we
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MUC B3 CEAFe

Model R P F1 R P F1 R P F1 Avg. F1

nn_coref 69.31 76.23 72.60 55.83 66.07 60.52 54.88 59.41 57.05 63.39

Latent 69.48 76.47 72.81 55.81 65.25 60.16 53.39 60.16 56.58 63.18
Mention-Ent.18 68.28 78.42 73.00 55.14 66.73 60.38 50.47 64.54 56.64 63.34

Table 8.29: Comparison with the state-of-the-art system nn_coref (Wiseman et al.,
2015) on CoNLL-2012 English test data.

concentrated on a detailed comparison of mention pair models and mention ranking

models. The mention pair model views coreference resolution as a labeling of pairs

of mentions. While this modeling is conceptually simple, it necessitates the use of re-

sampling schemes and clustering during post-processing. The mention ranking model

improves on the mention pair model by a more adequate modeling of the task. We

could attribute most improvements to improved detection of anaphoricity. This may

partly be due to our experimental setting: since we work on automatically extracted

mentions, most mentions are not anaphoric. Therefore, detection of anaphoricity plays

a particularly important role.

The mention ranking model is based on a simple structure and yields very good

performance. Therefore, the mention ranking model constitutes a simple, efficient

and well-performing baseline.

We could observe further improvements when enriching a variant of a mention rank-

ing model – the antecedent tree model – with entity-based information. However,

there were no further improvements when we used more sophisticated inference vari-

ants than left-to-right inference. For simplicity and comparison purposes we only used

a small entity-based feature set and simple cost functions and heuristics for restrain-

ing the search space. Future work should investigate more advanced features, cost

functions and heuristics.

18Tree-based, using gold roll-in and left-to-right inference.
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The aim of the research presented in this thesis was to give a treatment of computa-

tional coreference resolution that accounts for the structure inherent to the task. In

this regard, we identified three major research questions: Is there a unified structured
representation for approaches to coreference resolution? How can we devise an error
analysis method that accounts for the structural complexity of the task and employs a

useful notion of an error? How do approaches to coreference resolution differ quali-
tatively and to what extent can we attribute these differences to the representations?

In this chapter, we revisit the research questions and summarize our contributions to-

wards answering the questions (Section 9.1). Furthermore, we discuss some avenues

for future work (Section 9.2).

9.1 Contributions

In this thesis, we considered three main research questions. We now discuss how the

research presented in this thesis contributes to answering these research questions.

A Unified Representation for Approaches to Coreference Resolution. We observed

that approaches to coreference resolution can be understood as predictors of latent
structures, which are structures that encode coreference information but are not an-

notated in the data. We formalized this observation by devising a machine learning

framework for coreference resolution. In this framework, a unified representation

of approaches to coreference resolution is obtained by casting coreference resolution

as latent structured prediction. For representing the structures, we employed labeled

directed hypergraphs. In our framework, parameters are estimated by using the per-

ceptron algorithm and the learning to search paradigm.

In order to demonstrate the comprehensiveness of our framework we expressed all

influential classes of machine learning approaches to coreference resolution in the
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framework. In particular, we showed how mention pair models, mention ranking

models, antecedent trees, mention-entity models and entity-entity models can be rep-

resented. We discussed variants from the literature as well as novel variants. We

carved out differences in the representation and in modeling assumptions.

Appropriate Error Analysis. In order to derive an error analysis method for corefer-

ence resolution, we first discussed desiderata for such a method: it must cope with the

set-based nature of the coreference resolution task, the error representation should

be useful and the method should be flexible with respect to the notion of an error.

We proposed an error analysis framework that fulfills the desiderata. In this frame-

work, reference and system entities are represented as graphs. Errors are extracted by

computing spanning trees of these graphs, which are then compared to partitions of

the graphs. In this framework, different notions of an error can be modeled by using

different spanning tree algorithms. We discussed various linguistically motivated and

data-driven spanning tree algorithms for extracting recall and precision errors.

In-depth Analysis of Qualitative Differences. We made use of the proposed ma-

chine learning framework and the error analysis method to perform a large-scale in-

depth analysis of coreference resolution approaches on CoNLL-2012 data. We devised

an error categorization tailored to our comparison setting and discussed implemen-

tations of coreference resolution approaches in order of increasing complexity and

expressiveness. In our analysis, we compared approaches according to the structure

they are based on and according to a variety of parameters, including cost functions,

training data resampling and pruning, and substructure factorization.

We assessed the impact and contribution of variations in the structure and in the

parameters. In particular, we found that a mention ranking architecture performs very

well when using a suitable cost function. Using the error analysis method and in-

sights obtained from the representation of the approach in our framework we could

attribute the improvements to the more adequate structure used by the mention rank-

ing approach. The structure used allows for an improved modeling of anaphoricity

and for slightly better antecedent selection. We could observe further improvements

for a tree-based mention-entity model with left-to-right inference.
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9.2 Future Work

Based on the research presented in this thesis, several avenues for future work exist,

both within coreference resolution and within other natural language processing tasks.

We discuss three possible extension of the work presented in this thesis.

Improving Entity-centric Approaches. While we showed how to express entity-

centric approaches in our framework, the performance of most of the implemented

models was not satisfactory. For simplicity and efficiency, we only considered a small

set of entity-based features and employed only local, edge-factoring cost functions that

do not require roll-outs during learning to search. We believe that entity-centric mod-

els can benefit from employing more sophisticated features and cost functions. Some

work on coreference resolution uses more sophisticated cost functions (Stoyanov and

Eisner, 2012; Ma et al., 2014; Clark and Manning, 2015), but does not compare to

simpler cost functions. Future work should evaluate the contribution of adding more

advanced features and cost functions to the entity-centric models in our framework.

Furthermore, in order to perform efficient inference, we had to heuristically con-

strain the search space of models that have complicated inference schemes. As this

may negatively affect performance, future work should investigate more efficient im-

plementations and more appropriate methods to constrain the search space.

Knowledge for Coreference Resolution. As we have discussed in the introduction,

two main challenges for coreference resolution are the variation in knowledge sources

required to resolve coreference and the inherent structural complexity of the task.

While we only considered the second challenge in this thesis, the methods and insights

presented here are also applicable to work on the first challenge.

As a starting point for such work, the error analysis methods can again be applied

to the models presented in this thesis. However, for work on the first challenge, the

analysis should be performed with a different focus: How can the errors be traced

back to missing or erroneous knowledge? How do the models differ in handling the

knowledge which is already provided to the models? Based on such an analysis, one

can quantify and assess the contribution of the features and the potential contribution

of knowledge sources that are not yet included, such as knowledge bases like YAGO

(Hoffart et al., 2011). Then, relying on the error analysis method and the unified

representation, knowledge can be added to the model, and impact, contributions and
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problems of the additional knowledge can be analyzed in detail across a wide variety

of different models.

Analysis and Representation Frameworks for Other Tasks. The analysis of ap-

propriate error analysis methods and underlying structures can be extended to other

natural language processing tasks that lack these methods and/or a unified represen-

tation. As an example we discuss entity linking, the task of mapping named entities to

the corresponding entries in a knowledge base (Shen et al., 2015).

By definition of the task, the output of entity linking approaches can be represented

as a graph, where the nodes consist of entity mentions and knowledge base entries.

There is an edge between two mentions if they are mapped to the same entry, and

there is an edge between a mention and an entry if the mention is mapped to the

entry. This representation can be the basis for investigating two research questions.

First, it can be investigated whether a useful notion of error can be extracted from

this representation. If this is possible, the notion should be compared to existing

work on error analysis for entity linking (Heinzerling and Strube, 2015). Methods

for error analysis for entity linking will help practitioners and researchers to improve

their system, and they deepen the understanding of the task. Second, one can perform

an extensive literature review and analysis to determine how different approaches

to entity linking tackle the prediction of this structure. This can lead to a uniform

representation, as in coreference resolution, or – if the representation is not uniform –

will allow for a clean analysis of the differences between entity linking approaches. As

in our work on coreference resolution, the newly devised error analysis methods can

be employed to determine qualitative differences between individual approaches.
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A Additional Results on Test Data

In this appendix, we present results for all models discussed in Chapter 8 on CoNLL-

2012 test data.

A.1 Mention Pair Models

Tables A.1 and A.2 show the results of different mention pair resampling and substruc-

ture factorization variants on CoNLL-2012 test data.

MUC B3 CEAFe

Model R P F1 R P F1 R P F1 Avg. F1

Vanilla pair
All pairs 66.43 77.06 71.35 54.77 51.52 53.09 34.48 61.22 44.12 56.19
Soon 80.24 47.82 59.93 74.17 18.99 30.25 25.54 33.51 28.99 39.72
Mod. Soon 72.78 68.93 70.80 62.67 46.40 52.32 43.06 51.88 47.06 57.06

Closest first
All pairs 62.24 78.26 69.34 45.07 64.38 53.02 41.49 57.89 48.34 56.90
Soon 73.71 50.63 60.02 61.72 35.40 44.99 47.37 38.06 42.21 49.07
Mod. Soon 68.38 70.44 69.40 52.74 58.65 55.54 52.56 50.70 51.61 58.85

Best first
All pairs 62.81 78.65 69.84 47.32 64.56 54.61 41.11 59.41 48.59 57.68
Soon 72.87 50.05 59.34 61.50 34.71 44.37 44.50 37.36 40.62 48.11
Mod. Soon 67.16 71.63 69.32 52.30 60.40 56.06 50.61 51.20 50.90 58.76

Table A.1: Results of mention pair models with different resampling variants and
obtain_coreference instantiations on CoNLL-2012 English test data. High-
est values for each column are marked bold.
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MUC B3 CEAFe

Model R P F1 R P F1 R P F1 Avg. F1

Baseline 68.38 70.44 69.40 52.74 58.65 55.54 52.56 50.70 51.61 58.85

Per Anaphor 67.41 71.29 69.30 50.99 60.51 55.35 52.78 50.75 51.75 58.80
Per Document 66.01 74.13 69.83 49.75 63.74 55.88 50.30 53.23 51.73 59.15

Table A.2: Results of mention pair models with substructure factorization variants on
CoNLL-2012 English test data. The baseline considers each pair as a sub-
structure and employs closest-first clustering and the modified Soon resam-
pling scheme. Highest values for each column are marked bold.

A.2 Mention Ranking and Antecedent Trees

Table A.3 shows results of ranking variants on CoNLL-2012 test data. In addition to

the results presented in Section 8.5, the results of mention ranking with the modified

Soon resampling scheme and the results of the graph-based models are shown.

MUC B3 CEAFe

Model R P F1 R P F1 R P F1 Avg. F1

Best first
Mod. Soon 67.16 71.63 69.32 52.30 60.40 56.06 50.61 51.20 50.90 58.76

Ranking
Mod. Soon 73.16 63.41 67.94 62.08 48.11 52.92 50.05 49.05 49.55 56.80
All antec. 71.61 68.55 70.05 58.60 56.74 57.65 56.23 51.70 53.87 60.52
No cost 62.91 81.23 70.91 46.89 72.96 57.09 48.67 58.99 53.34 60.45
Cost 69.62 76.26 72.79 56.10 63.43 59.54 51.97 59.61 55.53 62.62
Latent 69.48 76.47 72.81 55.81 65.25 60.16 53.39 60.16 56.58 63.18

Antec. Tree 68.63 77.27 72.69 54.83 66.38 60.05 52.63 60.05 56.10 62.95
Graph (Anaph.) 70.94 73.78 72.34 59.85 54.24 56.91 46.34 59.35 52.04 60.43
Graph (Doc) 59.89 80.32 68.62 45.36 64.07 53.11 35.20 60.03 44.38 55.37

Table A.3: Results of ranking variants on CoNLL-2012 English test data. Highest values
for each column are marked bold.
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A.3 Entity-based Models

Table A.4 shows results of entity-based models on CoNLL-2012 test data. In Section

8.5, we only reported results for the tree-based mention-entity model with left-to-right

inference.

MUC B3 CEAFe

Model R P F1 R P F1 R P F1 Avg. F1

Antec. Tree 68.63 77.27 72.69 54.83 66.38 60.05 52.63 60.05 56.10 62.95

Mention-Entity (Tree, left-to-right)
Lrnd. roll-in 68.27 77.40 72.55 54.18 67.36 60.06 53.03 59.47 56.07 62.89
Gold roll-in 68.28 78.42 73.00 55.14 66.73 60.38 50.47 64.54 56.64 63.34

Mention-Entity (Tree, easy-first)
Lrnd. roll-in 68.43 77.49 72.68 54.06 67.15 59.90 52.91 60.32 56.37 62.98
Gold roll-in 68.69 77.68 72.91 55.16 66.77 60.41 51.56 62.23 56.40 63.24

Entity-Entity (Tree)
Lrnd. roll-in 68.27 77.31 72.51 54.14 66.72 59.77 52.47 60.45 56.18 62.82
Gold roll-in 68.94 77.41 72.93 55.69 65.05 60.01 50.39 64.06 56.41 63.12

Mention-Entity (Hypergraph, left-to-right)
No cost 63.50 81.41 71.35 48.96 70.27 57.71 45.44 65.72 53.73 60.93
Hyper cost 63.76 77.57 69.99 46.47 70.50 56.02 52.06 57.83 54.79 60.27
Pair cost 67.09 78.12 72.19 52.94 65.45 58.53 48.62 64.66 55.50 62.07

Table A.4: Results of entity-based models on CoNLL-2012 test data. Highest values for
each column are marked bold.
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