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Summary                                                            

Summary 
 
 

The replication of the human immunodeficiency virus type 1 (HIV-1) is as 

yet not fully understood. In particular the knowledge of interactions between 

viral and host cell proteins and the understanding of complete virus-host 

protein networks are still imprecise. An integral picture of the hijacked cellular 

machinery is essential for a better comprehension of the virus. And as a 

prerequisite, new tools are needed for this purpose. 

 

To create such a novel tool, a screening platform for host cell factors was 

established in this work. The screening assay serves as a powerful method to 

gain insights into virus-host-interactions. It was specifically tailored to 

addressing the stage of assembly and release of viral particles during the 

replication cycle of HIV-1. It was designed to be suitable for both RNAi and 

chemical compound screening. The first phase of this work comprised the setup 

and optimization of the assay. It was shown, that it was robust and reliable and 

delivered reproducible results. As a subsequent step, a siRNA library targeting 

724 human kinases and accessory proteins was examined. After the evaluation 

of the complete siRNA library in a primary screen, all primary hits were 

validated in a second reconfirmation screen using different siRNAs. The 

purpose of this two-step approach was to identify and exclude false positives.  

 

In the end, 43 genes were reconfirmed to influence the assembly and 

release of HIV-1. Out of those, 39 were host dependency and 4 host restriction 

factors. Several of them had already been described in the literature to interact 

with HIV-1. However, various so far unknown host cell proteins were identified 

within this work. A subsequent combinatory pathway analysis including hits 

from other published screens identified several important signaling pathways to 

be important for HIV-1 assembly and release. The described single key proteins 

and their underlying protein networks provide a basis for the next steps toward 

understanding the virus and improving treatment in the future. 
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Zusammenfassung  

Zusammenfassung 
 

Noch immer gibt es große Lücken im Verständnis der 

Replikationsmechanik des Humanen Immundefizienz-Virus Typ 1 (HIV-1). Im 

Besonderen das Wissen um Interaktionen von HIV-1 mit Wirtszellproteinen ist 

weiterhin unvollständig, sowie das Wissen über den Aufbau der Virus-Wirt 

Proteinnetzwerke. Ein umfassendes Bild der, durch das Virus 

zweckentfremdeten, Zellmaschinerie ist essentiell, um das Virus im Ganzen zu 

verstehen.  

 

Die vorliegende Arbeit beschreibt die Etablierung einer Hochdurchsatz-

Screening Plattform als äußerst leistungsfähige Methode, um Einblicke in die 

Virus-Wirt Wechselbeziehungen zu generieren. Die Plattform ist spezifisch auf 

die Untersuchung der Partikelbildung und –freisetzung von HIV-1 

zugeschnitten. Sie wurde entwickelt, um sowohl mit RNA-

Interferenzbibliotheken, als auch mit Bibliotheken chemischer Moleküle 

verwendbar zu sein. Die erste Phase dieser Arbeit umfasste die Entwicklung und 

den Aufbau der Plattform unter Durchführung der notwendigen Qualitätstests. 

Die Ergebnisse zeigten, dass die entwickelte Plattform robust war und 

verlässliche und reproduzierbare Ergebnisse lieferte. Als erste Anwendung 

wurde eine Bibliothek von „short interfering RNAs“ (siRNAs) getestet, die 724 

humane Kinasen und verwandte Proteine abdeckte. Zunächst wurde in einem 

primären Test die komplette Bibliothek untersucht. Um die gefundenen, 

potenziellen Wirtszellfaktoren zu bestätigen und um mögliche fälschlich-

Positive auszusondern, wurden diese Treffer in einem zweiten 

Bestätigungssuchtest überprüft.  

 

Insgesamt wurden hierbei 43 Proteine bestätigt – davon 39 Abhängigkeits-    

und 4 Restriktionsfaktoren. Einige davon waren schon vorher in der Literatur in 

Bezug zu HIV-1 beschrieben, jedoch war auch ein Teil in diesem Kontext bisher 

unbekannt und stellt daher vielversprechende, neue Ziele für das Verständnis 

von der HIV-1-Replikation dar. Eine anschließend durchgeführte 

Kombinations-Netzwerk-Analyse unter Einbeziehung anderer Publikationen 

identifizierte wichtige Signalkaskaden.  Die in dieser Arbeit gewonnen 
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Erkenntnisse bilden die Basis für zukünftige Untersuchungen, um die 

spezifischen Rollen dieser Proteine und Netzwerke für die Formation und 

Freisetzung von HIV-1 aufzudecken.  
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Introduction 

1 Introduction 
 

Great advances have been made in the therapy of the human 

immunodeficiency virus type 1 (HIV-1), which is the causative agent of the 

acquired immunodeficiency syndrome (AIDS). However, it still poses an 

enormous burden for patients and health care systems worldwide. This is in 

part due to the fact that there are uncharted areas in its replication cycle - 

especially regarding its interactions with the host cells.   

 

1.1 Human immunodeficiency virus type 1 
 

1.1.1 Clinical relevance 

 
In 1983 HIV-1 was first described to be the cause of a newly emerging 

epidemic of an immunodeficiency syndrome called AIDS (1-3). According to the 

United Nations Joint Program on HIV/AIDS (UNAIDS) approximately 36.7 

million people were estimated to be living with a HIV-1 infection at the end of 

2015. Furthermore, the UNAIDS fact sheet 2016 records 1.1 million AIDS 

related deaths and approximately 2.1 million newly infected people within 2015 

alone (4, 5).  

 

HIV-1 is transmitted sexually or via contaminated blood transfusions and 

needles. After an acute infection the number of CD4+ T-cells is diminished until 

the CD8+ T-cell response sets in and controls the initial viremia. An infection 

with HIV-1 is commonly not recognized early on as only unspecific symptoms 

occur during this phase. In addition, HIV-1 is not detectable through routine 

ELISA testing during the first three to six months after infection, although 

proviral DNA can be detected by PCR. The acute phase is followed by a latency 

phase of variable duration. HIV-1 infects cells of the host immune system, 

mostly CD4+ T-cells but also macrophages and dendritic cells. In the final stage 

the viral load in the system rises while the CD4+ T-cell count drops rapidly. 

Thus, the capacity of the immune system is disrupted and other bacterial, fungal 

or viral infections, which are normally suppressed by the immune defense, can 
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now manifest and cause serious diseases. Characteristic examples are 

meningitis, pneumonia, candidiasis or Kaposi’s sarcoma (6).   

 

Although a cure for an HIV-1 infection has not yet been found, 

antiretroviral drugs are available targeting various steps of the replication cycle. 

To prevent the rise of resistance mutations, a combination anti-retroviral 

therapy (cART or HAART for Highly Active Antiretroviral Therapy) is used, in 

which several distinct drugs are administered (7-10). Available drugs are 

targeting either the entry step by impairing binding to or fusion with the cellular 

membrane, or early steps of replication through viral proteins (e.g. RT or IN). 

Another prospect of suppressing viral spread could be the inhibition of the virus 

assembly and/or  maturation (11) as done for other viruses like herpes simplex 

(12). At the point of time of the experiments described in this thesis, several 

assembly inhibitors with promising preclinical results were in the development 

pipeline, but to date none of them is commercially available (13-16). For 

example, the clinical development of Bevirimat, a betulinic acid derivative that 

interferes with the production of the HIV capsid, was stopped because of low 

efficacy in treated patients due to polymorphisms (17, 18). And just recently, 

GlaxoSmithKline announced discontinuation of the phase IIb study of the 

second generation maturation inhibitor BMS-955176 (19). Of note, the 

maturation inhibitors that failed during development targeted mutation prone 

viral proteins instead of host proteins, which might have facilitated the virus’s 

fast development of resistance to the respective drug.   

 

The occurrence of HIV-1 variants resistant to standard of care drugs poses 

an important issue for the future of antiviral therapy (20). This is based on the 

high probability of mutations and recombinations of the RNA genome of the 

virus during the error-prone step of reverse transcription (21). The pressure to 

select for evasive mutations gives rise to resistant variants. Additional therapy 

approaches, for example offering a potent block of viral assembly and/or 

maturation could broaden the arsenal and overcome mutations. As cellular 

proof-reading functions are much more reliable, host proteins are not as prone 

to mutations as viral proteins. The identification of crucial host cell factors 
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controlling or enhancing viral replication will therefore open up a new angle for 

effective antiviral treatment.  

 

The next sections outline current knowledge on the biochemical 

mechanisms of HIV-1 replication and the genes known to date to be responsible 

for virus-host-interactions.  

 

1.1.2 Genomic and structural composition of HIV-1  

 

HIV-1 belongs to the genus of lentiviruses in the family of retroviruses. Its 

single stranded and positive orientated RNA genome has the size of 

approximately 9.7 kb. Similar to all members of the retrovirus families, HIV-1 

contains three major reading frames named group specific antigen (gag), 

polymerase (pol) and envelope (env). In addition, it encodes for six accessory 

genes with regulatory and/or auxiliary functions (22).  

 

The precursor protein Gag consists of the domains MA (matrix), CA 

(capsid), SP1 (spacer peptide 1), NC (nucleocapsid), SP2 (spacer peptide 2) and 

p6 (protein domain 6). They are proteolytically cleaved during maturation by 

the viral protease (23). The pol gene encodes the viral protease (PR), the reverse 

transcriptase (RT) - harboring DNA polymerase and RNase H activities - and 

integrase (IN), which is essential for the integration into the host genome. The 

env gene encodes for the glycoprotein precursor gp160, which is cleaved by 

cellular proteases into the transmembrane anchor protein gp41 and the surface 

protein gp120 (24, 25). Essential for replication and reverse transcription of the 

genome are the flanking long-terminal repeats (LTR) which carry enhancer and 

promoter elements (Figure 1-1).  

 

The accessory proteins Vif, Vpu, Vpr, and Nef influence replication and 

pathogenicity and possess the ability to alter the response of the host cell. Tat 

and Rev are necessary for viral protein expression (26, 27).  
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Figure 1-1 HIV-1 genome. 

Schematic drawing of HIV-1’s genomic organization. The major open reading frames gag, pol 

and env are depicted in light blue, blue and dark blue squares, respectively. The proteins arising 

after proteolytic cleavage from these genes are depicted as circles and lines in the respective 

colors below. The accessory genes are shown in grey squares and the long terminal repeats 

(LTRs) in blue. Not shown are the spacer peptides 1 and 2 and the intermediate product gp160. 

Figure adapted from (28, 29).  

 

 

HIV-1 virions are enveloped by a membrane derived from the host cell 

plasma membrane with a diameter of approximately 145 nm (30) and contain 

two copies of the viral genome (Figure 1-2). Approximately ten trimers of the 

heterodimer gp120/gp41 spikes are incorporated into the membrane by the 

interaction of the cytoplasmic tail of gp41 and MA (31-34). During and directly 

after budding (see chapter 1.1.3) from the producer cell, the virion is in its 

immature form with an incomplete shell of Gag molecules beneath the 

membrane, forming a hexameric lattice (30, 35-37). The Gag molecules only 

cover approximately two third of the membrane that envelops the viral particle 

(37, 38).  

 

The released immature viral particles are not infectious. After budding, the 

immature virion rapidly undergoes maturation. This process is mediated by the 

cleavage of Gag into its elements MA, CA, NC, SP1, SP2, and p6 by the viral 

protease. Maturation results in the fully infectious mature virion. The places of 

these cleavage events are marked by arrowheads in the lower part of Figure 1-2. 

Whereas the Gag polyprotein initially forms a layer beneath the membrane 

(Figure 1-2 upper left), after maturation only MA remains at the membrane, 

while CA is rearranged into hexamer and pentamer sub-structures to form its 

characteristically cone shaped structure (Figure 1-2 upper right) (30, 39-41). 
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This shell contains the viral RNA, to which multiple copies of NC are bound, 

forming a ribonucleoprotein complex. Several additional copies of RT and IN 

are in close proximity to the NC-RNA-complex and the accessory proteins Vpr, 

Vif and Nef are incorporated in the complex as well. 

 

 

 
 

 
Figure 1-2 Immature and mature HIV-1 virions and model of Gag polypeptide. 

Upper panel: Schematic drawing of immature (left) and mature (right) HIV-1 virions. The 

light blue ring indicates the membrane with the Env trimers in purple. Located beneath the 

membrane is the incomplete Gag shell with its subunits MA (red dots), CA (green triangle and 

green dot) and NC (small blue dot). The viral RNA is depicted as a red line. During maturation 

Gag is cleaved and MA remains at the membrane, CA forms the conic capsid comprising the 

viral RNA which is bound by NC proteins. Lower panel: Structural model of Gag, derived from 

high-resolution structures and models of isolated domains. Matrix (MA, dark red), Capsid N-

terminal domain (CANTD, dark green), Capsid C-terminal domain (CACTD, light green), spacer 

peptide 1 (SP1), Nucleocapsid (NC, blue), spacer peptide 2 (SP2), Env (dark blue), viral 

membrane (light blue). Protease cleavage sites are indicated by arrowheads.  Figure adapted 

from (42). 

 
 

1.1.3 HIV-1 replication 

 

The replication cycle of HIV-1 is depicted in Figure 1-3 and is discussed in 

the subsequent sub-chapters. In short, replication involves transcription and 

translation of the viral proteins followed by assembly and budding of the newly 

assembled virion. Shortly after budding maturation takes place which renders 

immature mature 
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the HIV-1 virion fully infective. The infectious virus binds to a target cell where 

interaction with the receptor and co-receptor complex allows the virion to enter 

the cell. Following an uncoating step the reverse transcription takes place. The 

viral genome is then imported into the nucleus and integrated into the host 

genome. 

 

 

 
Figure 1-3 Replication of HIV-1. 

Schematic drawing of the HIV-1 replication cycle showing the complete replication cycle from 

transcription/mRNA export from the host nucleus via assembly, budding, and maturation until 

the newly formed viral particles bind to and infect a new target cell. Figure adapted from (42). 

 

 

Viral assembly and release 
 

In an infected cell the provirus (the genome of HIV-1) is integrated into the 

host genome and can be latent for several years with a half-life time of the latent 

reservoir of ~44 months in resting memory CD4+ T cells (43, 44). Upon cell 

activation it gets transcribed by the cellular RNA polymerase II. At first the fully 

spliced gene products Tat, Rev and Nef undergo transcription. Tat then in turn 

facilitates efficient gene expression by binding to the LTR. Rev is responsible for 

the export of incompletely spliced mRNAs from the nucleus. The Env 

glycoprotein originates from singly spliced RNA and is synthesized in the ER. It 
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is subsequently transported to the plasma membrane via the secretory pathway 

(31). 

 

The unspliced RNA is used to express the polyproteins Gag and Gag-Pol. 

All viral structural proteins are transported to the plasma membrane where the 

assembly takes place (45-47). A fraction of the unspliced viral genomes is 

carried along to the plasma membrane due to the interaction between certain 

zinc-fingers in NC and the packaging sequence (psi) in the 5’ UTR of the RNA 

(48, 49). In the cytosol, Gag in its precursor form is present as monomers and 

low-order oligomers (48, 50, 51). The major amount of Gag is localized at the 

plasma membrane (52) where it multimerizes (Figure 1-4).  

 

 

 
Figure 1-4 Gag assembly.  
Gag is present in the cytoplasm as monomers or low-order oligomers. Upon binding to the 

membrane Gag multimerizes and recruits ENV. The Gag lattice induces curvature of the 

membrane. Figure modified from (45).  

 

 

The occurrence of an active targeting mechanism to the plasma membrane 

is still debated. Some evidence can be found in the literature that endosomal 

pathways play a role in the transport of viral proteins as the adaptor complex 

AP-3 is interacting with Gag and seems to be important for release of HIV-1 

(53). Alternatively it is discussed that viral particles might assemble on and bud 

into vesicles and might be transported to the plasma membrane in some cell 
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types (54). Membrane binding is achieved by MA with its covalently linked 

N-terminal myristoyl group (55, 56) and some basic amino acids which both 

interact with phosphatidylinositol-(4,5)-bisphosphate (PI(4,5)P2) (57-59). This 

interaction is crucial for membrane binding and localization (60).  

Oligomerization of Gag and PI(4,5)P2 binding to Gag releases the myristoyl 

group resulting in increased membrane affinity (myristyl switch model (61, 62)) 

and targets Gag to lipid-raft like domains (63-68).  
 

Gag multimerizes at the membrane and thus induces a local curvature 

leading to the viral bud (35, 69, 70). This process is promoted by interactions of 

CA domains and RNA binding by NC (36, 42, 71, 72). The latter might be 

dispensable, however (73). Electron density and x-ray reconstructions revealed 

that the N-terminal domain of CA is involved in forming a hexameric structure 

while the C-terminal domain is involved in linking adjacent hexamers (35, 37, 

38, 74).  The cellular endosomal sorting complex required for transport 

(ESCRT) machinery is recruited to the bud and ultimately facilitates the scission 

of the stalk and releases the virion (75-77). This important complex and its 

function are described in more detail in chapter 1.3.  

 

Although Gag alone is sufficient for assembly and release of immature and 

non-infectious viral like particles (78) viral proteins like Env, RT, IN, PR, Vpr, 

Vif, and Nef are incorporated into the assembling viral particle. RNA binding to 

NC seems to be important for particle stability in vitro (79). Furthermore, 

several cellular proteins can be detected in viral particles (80, 81), e.g. 

Cyclophilin A (82, 83), APOBEC3G (84, 85).  Although their role during 

replication of HIV-1 was identified for some proteins, it is still unclear for their 

majority.  

 

Recent studies addressed the assembly kinetics by using fluorescently 

tagged Gag (86, 87). Gag monomers were shown to form initial oligomers in the 

cytosol prior to cell membrane binding (51). It was shown that Gag assembly at 

the cell membrane is a rapid process comprised of three distinct phases (87, 

88). After the detection of an assembly site an exponential increase in 

fluorescence was detected in phase I, taking about 8 - 9 minutes until 90 % 

completion. Phase II was defined as a relative static assembly site both in 
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fluorescence intensity and movement. In the last phase, rapid movement and a 

decline in fluorescence intensity was observed. In total the complete assembly 

process from nucleation to release takes around 25 minutes (87). 

 

During budding or directly after its completion a structural rearrangement 

of the Gag shell takes place. It is called maturation and is triggered by the 

sequential cleavage of the precursor Gag polyproteins at five positions 

(arrowheads in Figure 1-2 lower panel) into their functional counterparts by the 

viral enzyme protease (35, 89-91). It results in mature, fully infectious, viral 

particles. Maturation can be blocked by protease (PR) inhibitors, which target 

the crucial CA-SP1 region of Gag (92). 

 

Infection of a new cell: from entry to integration 
 

As a first step, the infectious HIV-1 particle binds unspecifically to the 

heparin sulfate proteoglycans (HSPG) of a target cell (93, 94). In order to infect 

this cell, the viral particle then has to pass the barrier of the plasma membrane. 

Originally it was thought that the membrane fusion occurs exclusively at the 

plasma membrane (95). Recent studies showed an alternative pathway in which 

clathrin mediated endocytosis of the bound particles and their fusion with 

endosomal membranes may play a role (96, 97). However, the significance of 

this mechanism for establishing a productive infection is currently disputed and 

seems to be cell type dependent (98-101). Regardless of the type of the 

membrane, fusion is imagined to start with binding of the viral envelope protein 

gp120 to the cellular CD4 receptor (Cluster of differentiation 4) (27). CD4 is a 55 

kDa transmembrane protein and a member of the immunoglobulin (Ig) 

superfamily. Under normal circumstances CD4 is involved in T-cell receptor 

and MHC class II function on T-cells (102, 103). Subsequently a co-receptor is 

recruited by a specific binding motif in gp120 (104) – either CXCR4 (CXC 

chemokine receptor 4) or CCR5 (CC chemokine receptor 5) according to the 

tropism of the virus.  The binding of the co-receptor to gp120 leads to major 

structural reorganization in Env, resulting in insertion of the fusion peptide of 

gp41 into the cellular membrane (105). In the next step a six-helix-bundle is 

formed, which facilitates the fusion of the viral and the cellular membrane 

(106).  
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After the lipid envelope is lost, the capsid shell is set free. This process has 

until recently been thought to fully take place in the cytosol (107). However, 

viral capsid (CA) protein was lately found in the nucleus, suggesting that 

uncoating might as well be finalized there (108-111). Different models of viral 

uncoating like immediate uncoating, biphasic uncoating or uncoating at the 

nuclear pore complex are currently under discussion (112). Regardless of the 

model it is clear that during the uncoating of the capsid shell the reverse 

transcription complex (RTC), composed of the genomic RNA and a number of 

HIV-1 encoded proteins, is formed and reverse transcription of the viral genome 

takes place.  

 

The early phase of RTC building events includes still coated HIV-1 cores, 

which can also be called pre-RTCs. The interaction of phosphorylated MA and 

Nef with microfilaments of the actin cortex results in local rearrangements of 

the actin cytoskeleton. Afterwards, pre-RTCs pass through the actin cortex at 

the plasma membrane and get into the cytosol where they interact with dynein 

to be transported along microtubules (MT) to their minus (−) ends (113). In this 

phase the cyclophilin A (CypA), which is bound to approximately 10% of CA 

molecules, protects RTCs from attack by the host restriction factor TRIM5α 

which would facilitate too rapid capsid disassembly. Furthermore, the HIV-1 

nucleocapsid protein NCp7, a highly conserved 55-amino acid protein, is 

thought to promote reverse transcription (114-116).  

 

This very early phase is followed by a subsequent phase involving uncoated 

HIV-1 RTC starting with completion of reverse transcription which results in 

double-strand cDNA. This process is likely associated with uncoating of pre-

RTCs to RTCs (113). After completion of viral cDNA synthesis the preintegration 

complex (PIC) is formed consisting of cDNA, IN, MA, Vpr and several cellular 

proteins (117-119). The PIC facilitates transfer of the cDNA into the nucleus 

through the nuclear pore and HIV-1 is therefore independent of cell division. 

The viral genome is finally integrated into the host genome by IN. Although the 

PIC makes HIV-1 independent of cell division as stated above, the virus is still 

an obligate cell parasite and relies on the exploitation of cellular enzymes, 
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transportation and signaling networks (“host cell factors”) for its own 

replication. 

 

1.2 Virus host interactions 
 

Several host cell factors are known to play an important role during 

replication of HIV-1 (120-122). The function of those cellular proteins can be 

either disadvantageous for the virus (host restriction factor, HRF) or 

advantageous (host dependency factor, HDF). A complete comprehension of the 

interplay of HIV-1, HRFs, and HDFs is required to better understand viral 

replication. 

 

Subsequently, some examples for HRFs and HDFs are introduced to show 

the bandwidth of possible interactions. Several HRFs have been described to 

counteract certain steps during replication of HIV-1. Table 1 summarizes the 

most relevant HRF proteins. Of note, HRFs are not limited to proteins in the 

table - even microRNAs play a role in inhibition of viral translation as shown for 

miR-28, miR-29a, miR-125b, miR-133b, miR-138, miR-149, miR-150, miR-223, 

and miR-382 (123). 

 

 
Table 1 List of host restriction factors 

Host 

restriction 

factor 

Proposed function 
Counter-

acted by  

IFN-

dep. 
Ref 

90K/ LGALS3BP 

Unknown, upregulated in cancer and 

HIV-1 infection; reduces infectivity of 

new viral particles 

- Yes (124, 125) 

APOBEC3  

Cytidine deaminase; causes 

hypermutations during reverse 

transcription 

Vif Yes 
(84, 85, 

126-128) 

GBP5 

TRAFAC class dynamin-like GTPase; 

interferes with Env processing and 

incorporation into new viral particles 

(Vpu 

mutations) 
Yes (129-131) 
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Host 

restriction 

factor 

Proposed function 
Counter-

acted by  

IFN-

dep. 
Ref 

IFITM 

IFN induced transmembrane 

proteins; modify membrane 

composition and properties and 

thereby reducing infectivity of viral 

particles 

- Yes (132) 

MARCH8 

Membrane-bound RING E3 

ubiquitin ligase; reduces HIV-1 

infectivity by impairment of Env 

incorporation  

- Yes (133) 

Mx2 

Member of both the dynamin family 

and the family of large GTPases; 

involved in type I interferon 

inhibition of HIV-1 probably by 

blocking nuclear import 

- Yes (134-136) 

SAMHD1 

Phosphohydrolase; may play a role in 

regulation of the innate immune 

response; impairs reverse 

transcription of HIV-1 

Vpx Yes (137-141) 

SERINC3, 

SERINC5 

Sphingolipids and 

phosphatidylserine synthesis; 

incorporated into viral particles and 

reduce their fusion capacity 

Nef No (142-146) 

SLFN11 
RNA binding protein; Reduces 

mRNA translation 
- Yes (147) 

Syntenin-1/ 
SDCBP 

Multifunctional adapter protein 

involved in diverse array of functions 

including trafficking of 

transmembrane proteins; Actin 

remodeling by Synthenin-1 interferes 

with viral cell entry 

- No (148) 

Tetherin 
Membrane glycoprotein; blocks 

release of new viruses 
Vpu Yes (149-151) 

TRIM5α 

Tripartite motif (TRIM) family 

member; species specific impairment 

of uncoating/reverse transcription 

- Yes (152-154) 
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Host 

restriction 

factor 

Proposed function 
Counter-

acted by  

IFN-

dep. 
Ref 

TRIM22 

Tripartite motif (TRIM) family 

member; E3 ubiquitin-ligase; reduces 

HIV-1 transcription 

- Yes (155, 156) 

 

 

In the course of the host-virus coevolution, several viral proteins have 

emerged to counteract or circumvent these host restrictions (157, 158). For 

example, the host proteins APOBEC3G and TRIM5α (152, 153) take part in 

innate antiviral immunity and interfere with retroviral replication. APOBEC3G 

(and other proteins of the APOBEC3 family) are cytidine deaminases, which are 

packaged into the newly formed viral particles and lead to hypermutations 

during reverse transcription in the target cells (84, 85, 126-128, 159). To 

circumvent this, the HIV-1 protein Vif recruits an ubiquitin ligase complex 

leading to APOBEC3G degradation (126). TRIM5α is a multi domain protein 

which impairs the uncoating and reverse transcription by binding to CA (152, 

153). In contrast to Vif counteracting APOBEC3 restriction, HIV-1 has no viral 

counterpart to TRIM5α. However, it was shown that Cyclophilin A protects the 

virus from TRIM5α activity in humans (154). As another example, the HIV-1 

component Vpu antagonizes a different mechanism of innate antiviral 

immunity, the retention of virus particles at the plasma membrane by 

CD317/Tetherin (149-151). Lastly, the cellular enzyme SAMHD1 was identified 

to be responsible for blocking HIV-1 infection in macrophages, monocytes, 

dendritic cells (137-141), and resting T-cells (160). This block can be overcome 

by co-expression of Vpx from HIV-2 while HIV-1 does not contain an antagonist 

of its own (137, 161), making HIV-1 infection of the respective cells inefficient. 

Activated T-cells are susceptible to HIV-1 infection despite similar expression 

levels of SAMHD1 (160), suggesting additional, yet unknown factors involved in 

HIV-1 replication in this cell type, possibly kinases like CDK1 and CDK2 (162-

165). Many of the aforementioned host restriction factors are part of the innate 

immune response and are responsive to interferons (IFNs) (166, 167). These 

IFN induced host restriction factors, their site of action during the HIV-1 

replication and their specific counterparts are depicted in Figure 1-5. 
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IFNs are a family of pro-inflammatory and immunomodulatory cytokines 

and consist of three IFN types, of which type I IFNs are the ones mainly 

involved in antiviral responses (166). For example, the type I interferon IFN 

epsilon is reported to reduce HIV-1 infectivity through several stages during its 

replication cycle (168). In addition, expression and/or activity of many anti-viral 

host cell factors are increased after HIV-1 infection of a cell in an IFN dependent 

manner. The beneficial roles of IFNs in the acute state of HIV-1 infection like 

control of infection and reduction of virus load are contrasted by several recent 

studies pointing towards viruses dysregulating IFN signaling pathways e.g. in 

chronic persistent HIV-related disease (166).  

 

 

 
Figure 1-5 Overview of IFN induced host restriction factors  
Several cellular proteins are restricting the replication cycle of HIV-1. Yellow and brown boxes 

show IFN induced host restriction factors (for more information see Table 1). Blue circles 

indicate viral accessory proteins preventing the restriction of their respective counterparts. 

Figure from (166). 

 

 

Interestingly, IFN dependence has recently been shown not to be a mutual 

feature of all HRFs. The most recently discovered Serine incorporator 5 

(SERINC5), for example, is constitutively expressed and not IFN-induced (142-

146). SERINC5 is incorporated into budding HIV-1 virions and impairs 
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subsequent virion penetration of susceptible target cells. This action is 

prevented by the HIV-1 factor Nef which excludes SERINC5 from viral particles 

by diverting it to another endosomal compartment (144).   

 

In addition to the cell-advantageous host restriction factors, some well 

characterized HDFs, whose presence is advantageous for the virus, are known to 

date and the numbers of newly described HDFs are continuously rising (169). 

Although the actual importance of some proteins for the replication of HIV-1 is 

controversially discussed, several examples are summarized in Table 2.  

 

 
Table 2 List of the host dependency factors. 

Host 

dependency 

factor  

Proposed function  Ref 

ALCAM Cell to cell transmission of HIV-1 (170) 

ALIX Interacts with p6 GAG, involved in viral budding  (171) 

aPKC Phosphorylates p6 and leads to Vpr incorporation  (172) 

CBF-beta 
Essential for Vif induced ubiquitination and degradation of 

APOBEC3G  
(173) 

CDK family Increase of viral replication by Tat interaction with CDK9 (174) 

CPSF6 Binds to HIV-1 CA and facilitates transport by TNPO3  (175-177) 

Cullin-5 
Essential for Vif induced ubiquitination and degradation of 

APOBEC3G  
(178) 

DDX3 Important for nuclear export of HIV-1 RNA splice variants (179, 180) 

DOCK2-ELMO1 Enables Nef to influence Rac regulated pathways (181) 

ERK2 / MAPK Phosphorylation of GAG (182, 183) 

ESCRT complex 
Multi protein complex essential for release of new viral 

particles from the plasma membrane 
(184-187) 

Ezrin & EHD4 Interact with Nef to affect its infectivity  (188) 

hNAP-1 Correlates with Tat-mediated viral expression  (189) 

hnRNP E1 Affects Rev expression  (190) 

hnRNP K Participates in viral RNA splicing process (191) 

HSP70 Promotes import of HIV-1 PIC into nucleus (192) 
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Host 

dependency 

factor  

Proposed function  Ref 

JNK Phosphorylation of IN, promotion of integration  (193) 

LEDGF/p75 Essential for viral integration  (194) 

LRPPRC Affects viral replication (195) 

LYRIC Interacts with MA and NC, regulates infectivity (196) 

Matrin 3 Required for nuclear export of viral RNAs  (197) 

Mortalin Affects Nef secretion  (198) 

Nucleoporins 

(Nup98, Nup153, 

Nup358),  

Facilitate nuclear import and involvement in integration 
(108, 109, 

199-201) 

pTEF-b Stimulates HIV-1 transcription together with Tat and Tar  
(202, 

203) 

RHA Promotes viral reverse transcription  
(204, 

205) 

Splicing regulator 

p32 

Associates with viral splicing inhibition induced by Tat 

acetylation  
(206) 

Staufen 1 Interacts with viral genomic DNA  
(207, 

208) 

TNPO3 

(Karyopherins) 
Transport of HIV-1 proteins  (209-213) 

TPST2, SLC35B2 Sulfonation of CCR5 increases CCR5 and Env interaction  (170) 

YB-1 Potentiates viral transactivation  (214, 215) 

 

 

Obvious examples for HDFs are the receptor CD4 and the co-receptors 

CXCR4 and CCR5 which are important for a productive infection of T-cells. 

Examples of factors, which have been discussed for many years, are the cellular 

protein Cyclophilin A (82, 83) or LEDGF (194). Cyclophilin A was shown to bind 

CA and an impaired binding led to a reduction of nuclear import and infectivity 

in some cell lines (216). In addition, Cyclophilin A was shown to be packaged 

into HIV-1 particles, although the role of this interaction is not yet identified 

(217). LEDGF was described to bind IN and to be essential for integration (194, 

218). In addition to an integrase binding domain, LEDGF contains a second 
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domain binding chromatin – revealing LEDGF’s role as an adaptor to guide IN 

to the host DNA. It was shown that by exchanging its chromatin binding domain 

(CBD) to other CBDs with specific binding sites in the host DNA, the integration 

site can be redirected artificially (219). Kinases like ERK2/MAPK (182, 183, 

220) or aPKC (172) were as well described as HDFs (see chapter 1.4). Not only 

single proteins interact and modulate the infectivity of HIV-1, but as well huge 

multi-protein complexes. One example is the endosomal sorting complex 

required for transport (ESCRT) complex, which is described in more detail in 

the following chapter.  

 

1.3 The ESCRT complex 
 

The ESCRT complex orchestrates a crucial step during the assembly and 

release of HIV-1. ESCRT’s role in the cell is the sorting of ubiquitinated 

membrane proteins into the multi-vesicular body to transport them to the 

lysosome for degradation (221, 222). In addition, the ESCRT complex plays a 

role during abscission, the scission of the mid-body at the end of cytokinesis 

(223). Many viruses including HIV-1 use this complex for their own purposes, 

namely budding and release of newly formed virions. For an extensive review of 

viruses using the ESCRT complex please refer to (184) and (187).  

 

The ESCRT complex comprises four sub-complexes ESCRT-0 to ESCRT-

III, consisting of several proteins each (Figure 1-6). The multi-step process of 

abscission starts with binding of ESCRT-I by ESCRT-0, which is then followed 

by the recruitment of ESCRT-II so that ESCRT-I interacts with ESCRT-0 and 

ESCRT-II, linking them to a chain-like structure (186). ESCRT-1 contains 

amongst other proteins the important tumor susceptibility gene 101 protein 

(TSG101). ESCRT-II then binds to and activates the ESCRT-III sub-complex, 

which initially exists in an auto inhibited state in the cytoplasm (186). In 

addition to the main complex, two more loosely connected auxiliary proteins 

play a role in the abscission process. On the one hand ALG-2 interacting protein 

X (AIP1 or ALIX) acts as an adaptor or scaffolding agent (171), while the ATPase 

VPS4 has a crucial role to facilitate the disassembly and recycling of the ESCRT 

machinery (224). 
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Figure 1-6 The ESCRT machinery.  
The ESCRT complex comprises of four complexes ESCRT-0 to ESCRT-III. ESCRT-0 is depicted 
in grey, ESCRT-I in blue including TSG101, ESCRT-II in green, and ESCRT-III in orange. The 
auxiliary proteins ALIX and Vps4 are in indicated in lilac and dark blue, respectively. Figure 
adapted from (225). 

 

 

HIV-1 requires the recruitment of the ESCRT complex to the site of its 

assembly for a successful release of the newly formed virions from the plasma 

membrane. ESCRT is indispensable for this step, as the Gag induced membrane 

curvature on its own does not suffice to facilitate release (35, 70, 226). For this 

step, the regular function of the ESCRT complex is exploited in a way that it 

abscises the neck of the newly formed buds (77, 187, 227, 228). Impairing the 

functionality of the ESCRT complex, for example by knockdown of TSG101 or 

utilizing a dominant negative VPS4 mutant, interferes with HIV-1 release (185). 

Furthermore, Gag proteins having a mutation in or lacking the entire C-terminal 

p6 domain (the so called “late domain”) lead to a diminished release of viral 

particles. Electron microscopy demonstrated the formation and accumulation of 

viral buds at the plasma membrane which show an immature or irregular 

morphology (76, 229, 230). This demonstrated that blocking the interaction of 

the virus with the ESCRT complex does not affect assembly and multimerization 

of Gag but rather the last step – the scission of the readymade bud.  

 

Within the above mentioned p6 domain of Gag a specific amino acid motif 

is important for the interaction with the ESCRT complex. A common feature of 

late domains is the presence of highly conserved motifs mediating protein-

protein interactions with host cell proteins (231), for example the facilitation of 

the scission event. Regarding HIV-1, mutation studies led to the discovery of a 

PTAP amino acid motif in the N-terminus of the Gag-derived p6 protein (232). 

Mutation of these four amino acids led to impaired release of HIV-1 while 

alterations in the residual parts of p6 had no significant effect (232). The PTAP 
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motif was shown to interact with the N-terminus of Tsg101 (185, 233, 234), the 

major part of the cellular ESCRT-1 complex (223, 235, 236) (Figure 1-7).  

 

 

 
Figure 1-7 The ESCRT machinery and its interaction with Gag. 
The PTAP motif within the p6 domain of Gag interacts with TSG101, which is a component of 
the ESCRT-I complex. By this interaction the ESCRT machinery is recruited to the site of 
budding. Figure modified from (42, 225). 

 

 

Various late domains were identified in retroviruses and the switching of 

distinct late domain motifs from one virus type to another revealed their 

exchangeability and modular character (237). The interaction partners of 

several other viruses’ late domain motifs were identified as well and some 

examples are given in Table 3.  

 

 
Table 3Viral late domain motifs. 

Virus  Late domain motif Cellular interaction partner 

HIV-1 PTAP Tsg101  

EIAV YPXL AIPa/ALIX 

HTLV-1, RSV PPXY NEDD4 

 

 

In this work, a release-impaired variant of HIV-1 is used as a control, 

which harbors a p6 domain with its PTAP motif mutated to LIRL (indicated as 

“Late(-)” throughout the work) (232, 238). The p6 protein was shown to be 
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multi-phosphorylated. At the time of this work this phosphorylation of p6 was 

thought to be important for HIV-1 release which sparked the focus on kinases. 

 

1.4 Kinases and HIV-1 
 

Some kinases were reported to be involved in p6 phosphorylation and the 

budding process: The cellular ERK-2 kinase, a member of the important MAP 

kinase family (220, 239), or the TANK-1 binding kinase (TBK) (240). However, 

to date it is known that phosphorylation of p6 is dispensable for HIV-1 

replication (241, 242), leaving the exact role of the p6 multi-phosphorylation 

unknown.  

 
Even though the phosphorylation of the p6 domain is dispensable, kinases 

and the phosphorylation of viral proteins and/or host factors still play a very 

important role in the regulation of several steps of HIV-1 replication. Until 

today several cellular kinases were identified to play a role in the replication of 

HIV-1.  

 

The nuclear import of the pre-integration complexes (PICs), for example, 

involves phosphorylation of the three viral proteins MA, Vpr and IN. MA has 

been shown to be phosphorylated by cellular serine-threonine kinases and 

kinases of the MAPK pathway (182, 183, 243, 244), some of which are even 

incorporated into virions (182). However, as viruses bearing large deletions in 

the phosphorylated N-terminal region of MA were still mostly able to replicate it 

was considered that MA was dispensable for nuclear import of HIV-1 (245, 

246). An alternative function of MA phosphorylation might be that it facilitates 

proper detachment of MA from the viral envelope, which was shown to be 

required for the formation of PICs (247).  

 

The accessory protein Vpr is phosphorylated at different sites, with 

serine 79 being of major functional importance. Phosphorylation at this site is 

responsible for induction of G2 cell cycle arrest (248, 249) and for efficient 

nuclear import (250). Protein kinase A was suggested as the responsible kinase 

for serine 79 (249).  
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As another example, the phosphorylation of the viral integrase (IN) by 

cellular c-Jun N-terminal kinase (JNK) at serine 57 is crucial for efficient HIV-1 

integration and infection (193). Phosphorylated IN binds the isomerase Pin1 

and thus increases viral protein stability. As JNK is only expressed in activated, 

but not resting, CD4+ T-lymphocytes, this phosphorylation might explain the 

cellular selectivity of HIV-1 infections (193), underlining the importance of 

kinases in the biology of HIV-1.   

 

Cellular kinases are also involved in viral transcription. For example, 

human positive transcription elongation factor b (p-TEFb) is required for 

transcription of HIV-1 (202). P-TEFb is a heterodimer composed of the cyclin-

dependent kinase 9 (CDK9) and its regulatory partner cyclin T1 (251). 

Phosphorylation by p-TEFb/CDK9 is required to release polymerase II from 

pausing, leading to the production of full-length HIV-1 transcripts (251).  Other 

members of the CDK family, namely CDK 1, -2, and -6, are responsible for 

phosphorylation of SAMHD1 (252, 253), enabling control of HIV-1 replication.   

 

In sum, inhibition of cellular kinases interacting with HIV-1 has been 

shown to affect the viral replication cycle, suggesting potential new therapeutic 

approaches (254). However, a detailed picture of the involved kinases and their 

regulation and especially those kinases with an enhancing role in assembly and 

release of HIV-1 is still missing and has yet to be elucidated. The data of 

Radestock and coworkers and the history of the p6 phosphorylation debate 

suggest inverting the direction of investigations into kinases important for 

HIV-1 replication: Instead of assuming relevance of certain phosphorylations 

and searching for the respective kinases from there, it might make more sense 

to search for kinases which cause a functional impact on viral replication in the 

first place. Therefore, a far-reaching screening approach is needed to shed light 

on the essential network of host cell kinases regulating viral release. 
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1.5 Identification of host cell factors 
 

In order to investigate cellular proteins on a broad and genome-wide scale, 

there are a few techniques suitable for a high throughput screening (HTS) 

approach. One potent tool is a loss-of-function screen using RNA interference 

(RNAi). RNAi is a post-translational gene silencing mechanism and was first 

described in C. elegans (255). Through it, single-stranded RNAs (ssRNA) with 

approximately 22 nucleotides are bound by the ribonucleoprotein complex RNA 

induced silencing complex (RISC). This complex binds and cleaves the 

complimentary mRNA (256). The short ssRNA molecules are either naturally 

derived from miRNAs expressed from the cellular genome for gene expression 

fine-tuning, or are added artificially to the system for example as siRNAs. The 

latter are ready-made 22-nucleotide RNA duplexes which can be directly 

transfected or electroporated into the target cells and directly start with 

recruiting the RISC. The process is depicted in Figure 1-8 and please see (257) 

for an in-depth review of the RNAi pathway.   

 

 

 
Figure 1-8 RNAi pathway. 
Artificial siRNAs can enter this pathway as synthetic siRNA duplexes, as short-hairpin RNAs 
(shRNA) transcribed by Pol III or as artificial pri-miRNAs (shRNA-mir). For simplicity, not all 
factors involved in miRNA biogenesis are shown. Ago2, Argonaute-2; Exp5, Exportin-5. Figure 
from (257). 
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There are two distinct ways to use RNAi for identifying host cell factors 

involved in the mechanism of interest. If applicable, specific genes can be 

chosen through educated guessing and tested with tailor-made experiments. On 

the other hand, to get a broader understanding, whole libraries of RNAi 

molecules can be tested in a medium- to high-throughput screening. Those 

genome-wide siRNA, shRNA or even miRNA screens are often used to identify 

so far unknown cellular proteins. There are two main settings of RNAi libraries 

used in today’s screening platforms. Either the RNAi reagents are distributed 

separately or several distinct RNAi against the same target gene are pooled 

together. Both approaches have different (dis-) advantages in regard to off-

target effects and technical/budget requirements. 

 

In the last years, several high-throughput siRNA screens with HIV-1 were 

published, which identified many putative host cell factors involved in HIV-1 

replication (212, 258, 259). However, they did not show a big overlap of 

identified cellular proteins.  In addition, as only two of the screens encompassed 

the assembly phase in their methodology and the other focused more on the 

early steps of an infection, only a limited number of essential cofactors for viral 

egress are known. (120, 122, 260). Thus, there is still a need for a better 

understanding of the assembly and release of HIV-1.  

 

Although providing the most comprehensive image of a virus-host 

interaction landscape, the specific setting of a genome wide screen predefines its 

usability to answer specific questions. Huge genome-wide approaches are 

challenging to yield clear and un-convoluted results and smaller approaches 

may be superior in a limited setting (261, 262). A screening assay specifically 

tailored to investigate the late phase in viral replication has not yet been 

established.  

 

 

  31      



Aim of the study 

2 Aim of the study 
 

 HIV-1 depends on cellular proteins for its replication. While much is 

known about their involvement in the steps from binding to a target cell up to 

integration and replication, there is still a substantial knowledge gap for the 

assembly and release of newly built viral particles. To shed light on these crucial 

phases during HIV-1 replication a detailed picture of the involved cellular 

factors is required. The hypothesis of this work is that a broad screening 

approach may lead to the identification of these factors.  Based on this idea, the 

aim of this thesis is the establishment of an efficient high-throughput screening 

(HTS) assay specifically tailored to address assembly and release of HIV-1.  

 

This HTS assay should be versatile to test not only libraries of siRNAs to 

determine key host cell factors involved in this phase of the viral replication, but 

as well chemical compound libraries with molecules potentially interfering with 

assembly or release of HIV-1 particles.  The establishment includes both the 

experimental setup as well as the organization of various collaboration partners 

for a joint approach e.g. on statistics or bioinformatics.  

 

Subsequent to the completion of the screening platform establishment, a 

siRNA library, targeting the complete set of human kinases, shall be 

investigated. As kinases and the phosphorylation of their target proteins may 

play a fundamental role in assembly and release of HIV-1, the screening of such 

a library may lead to the discovery of candidate kinases, so far not described in 

the context of HIV-1, or protein networks regulating this crucial phase of the 

viral replication cycle.  
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3 Materials & Methods 
 
 

3.1 Materials  
 

3.1.1 Chemicals, reagents, enzymes, and materials 

 
Table 4 Chemicals, reagents, enzymes, and materials 

Materials Supplier 

6-well- and 12-well plates, 384-well plates 
(#353962), cell culture flasks with 75 or 150 
cm2 

BD Falcon, Germany 

96-well plates Costar plates #3603 or 
#3916 (black) 

Corning Life Sciences, Netherlands 

Acrylamide  Rotiphorese Gel, Roth, Karlsruhe, Germany 

Ampicillin  Roth, Karlsruhe, Germany. 

 
Blotting paper  3 MM Chr, Whatman, Dassel, Germany 

Confocal laser scanning microscope Leica 
SP2 

Leica Microsystems GmbH, Wetzlar, Germany 

DMEM Gibco/Invitrogen, Karlsruhe, Germany 

DNA gel extraction kit  Nucleospin® Extraction II, Macherey-Nagel, 

Düren, 

Germany 

ECL Western blotting substrate Pierce, Rockford, IL,USA 

ELISA plates Maxisorb, Nunc, Wiesbaden, Germany 

Epifluorescence screening  Microscope 

Olympus ScanR 

Olympus Soft Imaging Solutions GmbH, 

Münster, Germany 

FCS Biochrom AG / seromed, Berlin, Germany 

Fibronectin Sigma-Aldrich, Steinheim, Germany 

FuGENE® 6   Roche, Basel, Switzerland 

FuGENE® HD Roche, Basel, Switzerland 

Hoechst 33258 Molecular Probes, Germany 

Igepal CA630 Sigma-Aldrich, Steinheim, Germany 

Infrared scanner Odyssey LI-COR Inc., Lincoln, NE, USA 

Kanamycin Roth, Karlsruhe, Germany 
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Materials Supplier 

LiCor blocking buffer LI-COR Inc., Lincoln, NE, USA 

Lipofectamine® 2000 Thermo Fisher, Germany 

Matrix Hydra® DT Thermo Fisher, Germany 

Multi Drop® Combi Thermo Fisher, Germany 

Nitrocellulose membrane 
Protran, Schleicher & Schüll/Whatman, 

Dassel, Germany 

Penicillin-streptomycin solution 

(10,000U/mL + 10 mg/mL) 
Invitrogen/GIBCO, Germany 

Plasmid purification kit 
NucleoBond MaxiPrep Kit, Macherey-Nagel, 

Düren, Germany 

PocketBloc Thermomixer Biozyme, Germany 

Restriction enzymes and buffers 

NEB (New England Biolabs GmbH, Frankfurt, 

Germany)  

Fermentas (Fermentas GmbH, St. Leon-Rot, 

Germany) 

SDS-PAGE electrophoresis chamber  

 
Mighty small, Hoefer, Almstetten, Germany 

Semi-Dry Blotter Fastblot B32 Whatman Biometra, Göttingen 

Size standard DNA (1kB Plus DNA Ladder) Thermo Fisher, Germany 

Size standard Protein (PageRuler™ Plus) Thermo Fisher, Germany 

Spectrophotometer DU 640 Beckman Coulter, Fullerton, CA, USA 

Tecan SAFIRE™ Thermo Fisher, Germany 

Trypsin Biochrom AG, Berlin, Germany 

Ultracentrifuge Optima XL-70 Beckman Coulter, Fullerton, CA, USA 
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3.1.2 Buffer, solutions, and reagents 

 
Table 5 Buffer, solutions, and reagents. 

Buffer Concentrations 

Acrylamide 30%  
0.15 % bisacrylamide 

30 % acrylamide 

Acrylamide for stacking gels 

(30:0.8%) 

0.8 % bisacrylamide 

30 % acrylamide 

DNA loading buffer (10x) 

50 % sucrose 

10 mM EDTA 

2 % bromphenol blue 

2 % orange G 

LB agar 
13 % agar in LB 

Medium 

LB medium 

1 % peptone 

0.5 % yeast extract 

171 mM NaCl 

PBS (10x) 

1.37 M NaCl 

27 mM KCl 

80 mM Na2HPO4 

18 mM KH2PO4 

RIPA lysis buffer 

0.1 M Tris-HCl (pH 8.0) 

0.33 M NaCl 

2 % SDS 

0.4 % deoxycholate 

1 % Triton X-100 

TAE buffer (50x) 
2 M Tris-acetate 

500 mM EDTA 

TBS 
20 mM Tris 

150 mM NaCl 

TBST (10x) 

200 mM 1M Tris 

150 mM NaCl 

0.5 % Triton-X100 

SDS-PAGE electrophoresis buffer  

25 mM Tris 

19.2 M glycine 

0.1 % SDS 
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Buffer Concentrations 

Separating gel 

17.5 % acrylamide 

375 mM Tris-HCl pH 8.8 

0.1 % SDS 

0.1 % APS 

0.0017 % TEMED 

Stacking gel 

2 % acrylamide 

125 mM Tris-HCl 

pH 6.8 

0.1 % SDS 

0.0025 % APS 

0.0025 % TEMED 

Western blot blocking buffer 5 % milkpowder in PBS or TBST 

Semi dry Western blot buffer 

20 mM Tris 

150 mM Glycine 

20 % Methanol 

Western blot transfer buffer 

48 mM Tris 

39 mM Glycine 

0.375 % SDS 

20 % Methanol 

 

3.1.3 Antibodies 

 
Table 6 Antibodies. 

Antibody Application Dilution Supplier 

Mouse anti Actin WB 1:2500 Santa Cruz 

Mouse anti PAPSS1 WB 1:250 Abcam 

Rabbit anti ERK2 WB 1:1000 Santa Cruz 

Rabbit anti HIV CA WB 1:5000 Kräusslich lab 

Rabbit anti HIV MA WB 1:5000 Kräusslich lab 

Rabbit anti MAP2K3 WB/IF 1:500 / 1:150 Abcam 

Rabbit anti MAP3K14 WB/IF 1:250 Abcam 

Sheep anti-HIV CA WB/IF 1:5000 Kräusslich lab 
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3.1.4 Plasmids 

 
Table 7 Plasmids. 

Plasmid Description Reference 

pNL4-3 Proviral infectious plasmid (263)  

pCHIV Non-infectious subviral plasmid (264)  

pCHIV.late(-) Non-infectious subviral plasmid; PTAPLIRL (232, 238) 

pCHIVeYFP 
Non-infectious subviral plasmid harboring the eyfp 

gene within the gag ORF  
(238, 264) 

pCHIVeYFP.late(-) 
Non-infectious subviral plasmid; PTAPLIRL; eyfp 

gene within the gag ORF 

(232, 238) 

 

 
 

3.1.5 Cell lines 

 
Table 8 Cell lines. 

Name Description Reference 

293T 
Human embryonic kidney fibroblast,  

Transduced with SV40 large T antigen  
(265)  

HeLa human cervix carcinoma (266)  

HeLaP4 HeLa stably expressing CD4  (267)  

SupT1/CCR5 
Human Non Hodgkin's T cell lymphoma, stably expressing 

CCR5  
R. Doms 

MT-4 
Human T cells isolated from a patient with adult T cell 

leukemia, HTLV-I transformed  
(268)  

 

3.1.6 siRNAs 

 

In the primary screen, the Silencer® Human Kinase siRNA Library V3 

(AM80010V3) from Ambion was used. It contains three distinct siRNAs per 

target gene. For sequences and more information about the human kinase 

siRNA library see 12.1  Appendix 1: Primary screen kinase library. Three 

independent Silencer® Select siRNAs from Ambion were used for each of the 

identified primary hits in the reconfirmation screen (12.2  Appendix 2: 
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Reconfirmation screen library). In addition, the following siRNAs were used for 

controls experiments: 

 
Table 9 siRNAs. 

Name Gene Name Sequence Reference 

siTSG101 Tumor susceptibility gene 101 CCUCCAGUCUUCUCUCGUCTT (185) 

 

 
   

Name Gene Name siRNA ID Supplier 

siVPS4A 
Vacuolar protein sorting 4A 

(yeast) 
SI00760767 

QIAGEN GmbH 

- Germany 

siVPS4B 
Vacuolar protein sorting 4B 

(yeast) 
SI00760809 

QIAGEN GmbH 

- Germany 

siEAP20 
Vacuolar protein sorting 25 

homolog (S. cerevisiae) 
SI00631295 

QIAGEN GmbH 

- Germany 

siALIX 
Programmed cell death 6 

interacting protein (AIP1/ALIX) 
SI02655345 

QIAGEN GmbH 

- Germany 

 
 

3.2 Methods 

3.2.1 (Quantitative) Western Blot 
 
 

Cell lysates for western blot experiments were generated by incubating the 

cell with RIPA lysis buffer. The homogenate was transferred to a tube and 

denaturized at 95 °C for 5 min. Samples were then loaded onto SDS-

Polyacrylamide Gel Electrophoresis (SDS-PAGE) gels and were run at ~200 V 

for approximately one hour. Afterwards, proteins were transferred from the gels 

to nitrocellulose membranes in a semi-dry blotting machine (Fastblot B32, 

Whatman Biometra, Gottingen, Germany) at 400 V, 240 mA, and 10 W. The 

resulting membranes were blocked with 5% milk powder in TBST to reduce 

unspecific binding of the antibodies and washed with TBST. Incubation of the 

primary antibody was conducted over night at 4 °C. Subsequently, the 

membranes were washed with TBST for three times. The membranes were then 

incubated with the secondary antibodies were diluted in LiCor blocking buffer 

(LI-COR Inc., Lincoln, NE, USA) at room temperature for one hour. After 

washing the membranes for two times with TBST and one time with PBS, the 
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membranes were scanned with the Infrared scanner Odyssey (LI-COR Inc., 

Lincoln, NE, USA) and images were analyzed using the standard Odyssey Aerius 

v 2.1 analysis software. 

 

3.2.2 Transformation of bacteria and DNA amplification 

 
For plasmid DNA amplification, 100 ng plasmid DNA were added to 

chemically competent bacteria (DH5α or Stable II E.coli). Following an 

incubation period on ice for 10 minutes, the bacteria underwent a heat shock at 

42 °C for 45 seconds. 450 µL LB medium were added and incubated for 1 hour 

at 37 °C before they were transferred to LB Agar plates containing the respective 

antibiotic. The plates were incubated at 37 °C over night. At the following day, 

single colonies were added to 1.5 mL or 200 mL LB medium for mini or maxi 

preparations, respectively. The bacteria were then incubated under the 

appropriate antibiotic selection pressure at 37 °C over night. Plasmid DNA was 

purified using the NucleoBondR miniprep or maxiprep kits (Macherey-Nagel, 

Duren, Germany) according to the description of the supplier. Concentration 

and purity of the resulting DNA was checked with an UV spectrophotometer 

(Spectrophotometer DU 640, Beckman Coulter, Fullerton, CA, USA). 

 

3.2.3 DNA digestion and ligation 

 
DNA was digested using restriction enzymes and their respective buffers 

from NEB (New England Biolabs GmbH, Frankfurt, Germany) or Fermentas 

(Fermentas GmbH, St. Leon-Rot, Germany). The restriction enzyme was 

incubated together with its appropriate buffer and 1 μg of the purified plasmid 

DNA at the temperature recommended by the manufacturer for approximately 

one hour. Gel electrophoresis was performed subsequently, to check the sizes of 

the restriction products. The individual DNA bands were compared to a 

molecular mass standard ladder (1 kb Plus DNA ladder, Invitrogen Ltd., Paisley, 

UK).  
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3.2.4 DNA amplification by polymerase chain reaction (PCR) 

 
For amplification of DNA, a standard PCR was used. 40 ng of purified 

plasmid DNA served as a template and were mixed with forward and reverse 

primers (40 pmol each), 250 μM desoxy nucleotide triphospates (dNTPs), and 

the proofreading polymerase Pfu or the standard Taq polymerase with the 

respective buffer. The standard PCR settings were: Denaturation (94°C for 5 

min); Short denaturation cycles (20-30x, 94°C); Annealing (48°C for 45 

seconds); Synthesis (72°C for 1 min/kb template length).    

 

3.2.5 Cell culture 

 
Cells were routinely cultivated and grown in flasks (75 or 150 cm2, BD 

Falcon, Germany) or multi well plates of different formats (6-well or 12-well 

plates, BD Falcon, Germany; 96-well plates Costar plates #3603 or #3916, 

Corning Life Sciences, Netherlands). Cells were kept in DMEM medium 

containing 10 % fetal calf serum (FCS, Biochrom AG / Seromed, Berlin, 

Germany) and Penicillin-streptomycin solution (10,000U/mL + 10 mg/mL, 

Invitrogen/GIBCO, Germany) in a 5 % CO2 atmosphere at 37 °C. For passaging, 

cells were washed with PBS and harvested by trypsin incubation for 5 minutes. 

After counting, the required number of cells was distributed to other flasks or 

multi-well plates.  

 

3.2.6 Transfection of cells 

 

Cells were seeded approximately one day prior to transfection with one of 

the different methods. 

3.2.6.1 Calcium phosphate precipitation method 

DNA was diluted in H2O and mixed with 1/10 2.5 M CaCl2. This mixture 

was then slowly pipetted to the same volume of 2x HeBS buffer while vortexing, 

incubated for 30 min at RT and then slowly added to the cells. Medium change 

was performed app. 6 h post transfection. 
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3.2.6.2 FuGENE® 6, FuGENE® HD, Lipofectamine® 2000 

These commercially available transfection reagents were used according to 

the respective manufacturer’s instructions. FuGENE® 6 and FuGENE® HD 

were acquired from Roche, Basel, Switzerland. Lipofectamine® 2000 was 

supplied by Thermo Fisher, Germany. 

 

3.2.7 Screening assay 
 

The screening procedure was partly published previously in Hermle et al., 

BMC Biotechnology, 2010 (238). All 96- or 384-well plates were prepared for 

reverse transfection in advance of the conduct of the actual screening. This step 

was based on and done with the support of our collaboration partners (269, 

270). The transfection mixture contained OptiMEM (with 0.4 M sucrose), the 

respective siRNA, Lipofectamine® 2000, gelatin and fibronectin.  

 

On the day of the experimental start, cells were harvested and a stock cell 

suspension was prepared in a sufficient volume to be distributed to all plates of 

the screen at the same time to avoid unequal cell numbers. Then, 15,000 293T 

cells/96 well or 2,500 cells/384-well were seeded in 100 µl / 25 µl cell culture 

medium using the automated Multi Drop® Combi Reagent Dispenser (Thermo 

Fisher). After 30 hours, the transfection mixture of pCHIVeYFP:pCHIV (1:1 

ratio) was prepared using FuGENE® 6 as a transfection reagent. Per 96-well 

plate, 960 μl of DMEM without FCS was mixed with 38.4 μl FuGENE® 6 

(Roche). Following 5 min incubation at room temperature, 19.2 μg of total 

plasmid DNA were added and the mixture was incubated for further 15 min at 

room temperature. Subsequently, 9.6 ml of the cell suspension were added and 

mixed. The supernatant were removed and 100 μl of the transfection mixture 

were added per well onto 96-well plates (Corning COSTAR #3603) or 25 μl per 

well onto 384-well plates (BD FALCON 353962, BD Biosciences) using an 

automated reagent dispenser (MultiDrop® Combi). This resulted in a total 

amount of 100 ng proviral plasmid DNA per 96-well or 25 ng per 384-well. 

 

Supernatants (~87.5 µl/96-well or ~20 µl/384-well) were collected 42 

hours post transfection using the Matrix Hydra® DT automated liquid handling 
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platform (Thermo Fisher) and transferred to separate 96-well plates (Corning 

COSTAR #3916) or 384-well plate. The residual supernatant over the cells was 

aspirated and 100 µl/96-well or 25 µl/384-well of the lysis buffer (PBS/0.5% 

Igepal) were added to each well to generate cell lysate suspensions. All plates 

were frozen at -20 °C and thawn at room temperature prior to measurement. 

Fluorescence intensities of the cell lysate plates and the supernatant plates were 

subsequently measured with the Tecan SAFIRE™ (Thermo Fisher).  

 

The raw fluorescence signal intensities were exported to Microsoft EXCEL. 

For initial experiments, the ratio of supernatant intensity versus the total 

intensity from supernatant plus cell lysates is calculated (SN/(SN+CL), 

indicated as SN/Total). For the siRNA primary and reconfirmation screen, 

statistical analysis was performed by the collaboration partners Johanna Mazur 

and Lars Kaderali (Viroquant Research Group Modeling, BioQuant, University 

of Heidelberg, Germany). The analysis for the release screen was done in R 

(Version 2.8.0, R Development Core Team, http://www.R-project.org) and was 

based on their previously published analysis process for evaluation of 

microscopy based siRNA screens (Bioconductor packages RNAither (271) and 

cellHTS  (272). Briefly, raw signal intensities of the cell lysates and the 

supernatant were normalized by locally weighted scatterplot smoothing 

(LOWESS). Then all wells with the lowest 5 % of signal intensity in the cell 

lysate were discarded to exclude potential cytotoxic siRNAs followed by z-score 

normalization in relation to the median of all wells for the primary screen and 

the non-silencing control siRNAs on each plate for the reconfirmation screen. 

The resulting z-score was a measure to rank the results in dependence of the 

individual standard deviations. In addition p-values were calculated to test for 

statistical significance.  
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4 Results 
 

 

The results section of this thesis is subdivided into four parts. It starts with 

a description of the assay’s setup, including the optimization in regard to 

reliability and robustness. The second part covers the primary screen of the 

siRNA library. The identified primary hits were then re-tested in the so called 

reconfirmation screen, which is shown in the third part. The fourth part 

contains results of the bioinformatic analysis of the identified host cell factors.  

 

The crucial step during the screening is the detection of released particles 

outside the cells. This assay has to be robust, reproducible, and has to be 

applicable for high-throughput approaches. The method covering all of these 

requirements is a fluorescence based assay. It offers a mixture of high 

sensitivity, reliability, reproducibility, and relatively low work-demand (e.g. 

compared to conducting ELISAs on a HTS scale) and is therefore ideal as a HTS 

detection method. Our group previously described a non-infectious clone of 

HIV-1 (pCHIV) harboring an eGFP (264, 273) or eYFP within gag (238). The 

construct lacks the LTRs and protein expression is driven by a CMV promoter 

leading to a normal expression of all viral proteins apart from Nef (Figure 4-1).  

 

 

 
Figure 4-1 Genome of pCHIVeYFP. 
Schematic drawing of the genomic organization of pCHIVeYFP. The major open reading frames 

gag, pol and env are depicted in light blue, blue and dark blue, respectively. Below them are the 

products shown after proteolytic cleavage. The eYFP is inserted between MA and CA within gag 

and depicted in yellow. The accessory proteins are shown in grey. Figure adapted from (28, 29). 
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Wild type budding kinetics, maturation and appearance were proven using 

transfections of an equimolar ratio of pCHIVeYFP with the parent pCHIV plasmid 

lacking the reporter insert. The need to apply equimolar mixtures of labelled 

and unlabeled plasmids stems from previously published studies from our 

department in which it was shown that only labelled plasmid led to Gag 

assembly at the plasma membrane and only the equimolar mixtures yielded 

wild-type like budding (273). The viral particles, which result from the 

transfection of this mixture, are able to bind and enter new target cells but do 

not lead to a productive infection due to the lack of the LTRs. Approximately 50 

% of all Gag molecules of the newly formed viral particles carry a fluorescent 

protein, which allow detection and quantification directly in the supernatant 

(273). Current monochromator-based microplate detection systems allow a 

rapid, reliable, and economic quantification of the fluorescence intensity and 

are therefore suitable for high throughput screening. A previously described 

variant of pCHIV is used as a positive control, which harbors a p6 domain with 

its PTAP motif mutated to LIRL (indicated as pCHIV.late(-) or 

pCHIVeYFP.late(-), respectively) (232, 238). This late domain defective variant 

leads to a strongly impaired release of viral particles.  It was shown previously 

by the group of Barbara Müller that the fluorescence measurement yields 

comparable results as a standard ELISA detection of HIV-1 CA Figure 4-2 (238). 

 

 

 
Figure 4-2 Release of pCHIVeYFP measured by fluorescence and ELISA. 
Comparison of the fluorescence detection of the YFP signal (left) and quantification of HIV CA 
by an ELISA (right). Filled circles (●) indicate the equimolar mixture of pCHIVeYFP:pCHIV; open 
circles (o) the mixture of pCHIVeYFP.late(-):pCHIV.late(-) constructs; filled triangles (▲) show 
peYFP:pCHIV mixtures and open triangles (△)  peYFP/empty vector. Experiments performed 
by Barbara Müller, Maria Anders and Anke-Mareil Heuser. Figure taken from (238). 
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These published findings show that the pCHIVeYFP approach offers a 

simple and direct quantification of released particles. Therefore, the 

fluorescence detection method was chosen as the read-out for the hereby 

described siRNA screening platform analyzing HIV-1 assembly and release.  

 

Briefly, the assay is based on the quantification of eYFP fluorescence 

intensity in cell lysates and supernatant of pCHIVeYFP transfected cells. A 

microplate reader yields raw fluorescence intensity from the supernatant and 

the cell lysates from multi-well plates. Raw fluorescence intensities are not easy 

to be directly compared, as depend on cell numbers, cell viability, or other 

variable factors. Any unspecific effect on general cell viability would cause 

reduced fluorescence in the supernatant and would yield a false-positive hit. To 

avoid this, the supernatant fluorescence is always normalized to the total 

combined fluorescence of supernatants plus cell lysates. This is indicated as 

“SN/Total” throughout all experiments.  

  

For the siRNA libraries the already established method of “reverse 

transfection” from our collaboration group of Dr. Holger Erfle (BioQuant, 

University of Heidelberg, Germany) was applied. In brief, siRNAs, the 

transfection reagent, and fibronectin are mixed and added to a well of a 96-well 

plate. The plates are dried and can be prepared in advance. The cells are then 

added on top of the coated well and are directly transfected (269, 270).  

 

4.1 Setup of the screening assay 
 

Several steps have to be optimized in order to establish a screening assay 

suitable to screen siRNA libraries in a medium/high throughput approach. First 

of all the cell seeding procedure has to be optimized using automated 

procedures. This is followed by fine tuning of the transfection efficiency to 

ensure optimal transfection rates. Sample collection and detection of the eYFP 

signal are the next two steps in data creation followed by two steps dealing with 

quality control – namely the assay stability and robustness and the efficacy of 

control siRNAs. The last point deals with the establishment of the statistical 

analysis of the raw data (conducted by external collaborators) and the 
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bioinformatic evaluation. Please note, the order of the steps is chosen for 

comprehensibility and many steps were conducted in parallel. Figure 4-3 shows 

a schematic overview of the seven individual stages of this process. The 

complete assay was established for the usage of both 96- and 384-well plates. 

This allows the conduct of low-to-medium high-throughput (96-well) up to 

high-throughput screening approaches. The screen of the kinase library was 

conducted in the 96-well plate format. Therefore, the establishment of the 384-

well format is not described in the similar high grade of detail. 

 

 
Figure 4-3 Schematic process of the screening platform 
The flowchart shows the individual steps of the screening platform from optimization of cell 
seeding until the bioinformatic analysis. Each step had to be established specifically for the HIV-
1 screening platform. The sole exception was the statistical analysis, which was conducted by 
external collaborators (indicated by an asterisk). 

 

 

Seeding optimization 
 

 
 

 

At first, the seeding of cells had to be adapted for medium/high 

throughput screening. For large sets of multi-well plates a homogenous and 

reproducible preparation of cell suspensions and the even distribution on single 

wells is an important step. Manual distribution of the cell suspension is error 

prone and therefore automated dispensers have to be utilized to ensure equal 

and rapid dispersion to all multi-well plates. Thereby it is crucial to seed as 

many cells as possible to facilitate efficient reverse transfection later on. 

However, the density has to be that low to have a confluent cell layer at the end 

of the whole assay to ensure that the cell viability is not impaired, e.g. due to 

space limitations and overgrowing. In addition, the variation between the wells 

has to be low.  
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The establishment started with experiments on different protocols to 

prepare the cell suspension for different automated cell dispensers (cell 

numbers, volumes, seeding speed, and centrifugation post seeding). Cell growth 

and density was monitored by widefield microscopy. Based on these results, a 

Multi Drop® Combi Reagent Dispenser (Thermo Fisher) and 293T cells were 

chosen for the screening assay. Other cell lines (e.g. HeLa or HeLa-P4 cells) 

were compared as well but did overall not yield acceptable results (data not 

shown).  

 

Determination of the optimal procedure included as well testing different 

cell densities of 293T cells (30,000, 15,000, 7,500, and 2,500 cells/well). All 

wells were transfected with an equimolar ratio of pCHIVeYFP:pCHIV (indicated 

as “WT”, wild type), a 1:1 ratio of the late domain deficient pCHIVeYFP.late(-): 

pCHIV.late(-) (indicated as “Late (-)”), or peYFP at 30 hours post seeding. For 

each cell density 8 wells were used on a 96-well plate. Figure 4-4 shows example 

photomontages of 3x3 individual images for the different cell densities. They 

were acquired using an automated Olympus ScanR microscope and montaged 

using the program ImageJ. Centrifugation after seeding had no influence on cell 

densities and was therefore not used for the screening assay (data not shown). 

The wells with 30,000 cells/well were over fluent and cell debris was visible at 

the time point of harvest. The wells with 15,000 cell per well showed an even 

and 80-90 % confluent cell layer with no cell debris. Fewer cell numbers yielded 

too low confluency (Figure 4-4).  
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Figure 4-4 Examples of cell densities 
Different cell numbers of 293T cells were seeded into the wells of 96-well plates (30,000, 
15,000, 7,500 and 2,500 cells/well). Shown are montages of 3x3 individual pictures of the same 
well (YFP channel = ~529 nm).   

 

 

At 44 hours post transfection (74 hours after seeding), the supernatants 

and cell lysates were harvested and the fluorescence intensity quantified. Figure 

4-5 shows one example of three independent experiments. Normalized 

fluorescence intensity of supernatant versus total fluorescence for 15,000 

cells/well gave the best ratio between wildtype and late(-) of ~8 fold, the best 

statistical significance of p < 0.001 (unpaired t-test, GraphPad Prism 6.05), and 

the lowest variability. Wells with 30,000 cells/well resulted in the highest net 

fluorescence intensity. However, microscopic inspection of the wells revealed 

overgrown wells which resulted in cell death. Damaged cells led to shedding of 

cytoplasm content which was reflected by relatively high results for the Late(-). 

Wells with lower cell numbers yielded smaller fold differences and cell density 

in wells with 2,500 cells/well was too low which resulted in greater variance.  
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Based on those results, the density of 15,000 293T cells per 96-well was 

used for the screen. For the 384-well format, 2,500 cells/well in 25 µl medium 

were determined to be optimal. 

 
 

 
Figure 4-5 Optimal cell seeding conditions were established with 15,000 cells/well 
Different cell numbers of 293T cells were seeded into the wells of 96-well plates (30,000, 
15,000, 7,500, and 2,500 cells/well). For each cell density one column (8 wells) of the 96-well 
plate was used. 30 hours post seeding, the wells were transfected either with a 1:1 mixture of 
pCHIVeYFP:pCHIV (indicated as “WT”, wild type), a 1:1 ratio of the late domain deficient 
pCHIVeYFP.late(-): pCHIV.late(-) (indicated as “Late (-)”), or peYFP. Depicted are the normalized 
fluorescence intensities, calculated by division of supernatant intensity by total intensity in 
lysate and supernatant (mean ± standard deviation). The experiment was performed in 
triplicates and one representative graph is shown. Statistical analysis (unpaired t-test, GraphPad 
Prism 6.05) of Late(-) value compared to the respective WT result: ***= p<0.001; **= p<0.01; 
*= p<0.05. 

 

 

Transfection efficiency 
 

 
 

 

Transfection efficiency has to be optimized. This prevents skewed results 

by using the optimal amounts of plasmid DNA and the transfection reagent. 

This is important to avoid not transfected cells or over-transfected wells leading 

to cytotoxicity. 15,000 293T cells were seeded per well. 30 hours later, the 1:1 

mixtures of pCHIVeYFP:pCHIV (indicated as “WT”) or the late domain deficient 

pCHIVeYFP.late(-):pCHIV.late(-) (indicated as “Late(-)”) were transfected with 

different total plasmid amounts (200, 100, 50, 25, 12.5, 6.25 ng plasmid 
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DNA/well). Eight wells per condition were tested and the complete experiment 

was conducted in triplicates (only one representative experiment is shown in 

Figure 4-6).  

 

All wells were visually inspected using a fluorescence microscope for cell 

viability, cell numbers, and transfection efficiency (proportion of YFP positive 

cells). Wells transfected with 200 ng plasmid DNA showed high cytotoxicity. 

The 100 ng/well showed no visible cytotoxicity, an almost 100 % transfection 

efficiency based on presence of fluorescent cells, and a low variability of 

fluorescence intensities between single wells. The transfection efficiency 

decreased in correlation with lower amounts of plasmid DNA. In addition, lower 

plasmid DNA amounts led to increased variability. The relative release of WT 

was comparable for all settings, however with lower amounts of proviral 

plasmid DNA the WT:late(-) ratio decreased strongly from ~8 fold at 100 

ng/well to only ~2.5 fold at 6.25 ng/well (Figure 4-6).  

 

 

 
Figure 4-6 Best signal ratio of WT vs.-Late(-) control achieved with 100 ng proviral 
plasmid/well 
293T cells in a 96-well plate were transfected with different amounts of proviral plasmid DNA. 
Either a 1:1 mixture of pCHIVeYFP:pCHIV (indicated as “WT) or a 1:1 mixture of the late 
domain deficient pCHIVeYFP.late(-): pCHIV.late(-)(indicated as “Late(-). Depicted are the 
normalized fluorescence intensities (SN/total, mean ± standard deviation). Relative release 
efficiency was comparable for WT between the different conditions. However, variability 
increased with lower plasmid amounts and the ratio of WT:late(-) diminished from ~8 fold for 
100 ng/well to ~2.5 fold for 6.25 ng/well.  
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As it resulted in the optimal efficiency with no cytotoxicity and a good 

signal to control ratio of ~8 flog, 100 ng/well total proviral plasmid DNA were 

used for the screening assay.  For the 384-well format, 25 ng/well in 25 µl 

medium were determined to be optimal. 

 

 

Time point of sample collection 
 

 
 

 

The next step was the determination of the appropriate sample collection 

time point after transfection. From previous experiments from our and Barbara 

Müller’s group, it was known that first viral particles from the pcHIV plasmid 

are released ~24 hours post transfection. It was published that 33-36 hours post 

transfection would yield good results and a broad signal:control ratio (238). 

Shorter duration did not lead to sufficient production and release of viral 

particles, while more than 48 hours led to a decreased ratio of WT:late(-) 

presumably due to unspecific shedding of cellular content e.g. due to cell 

damage and death (238). In addition, very long time points are generally not 

suitable, as the starting cell density would have to be too low to yield good initial 

transfection rates with the siRNAs.  

 

In order to optimize the signal intensity and the time point of sample 

collection for this specific assay, several time points around the published 

window of 33-36 hours post transfection were tested: namely 32, 38, and 44 

hours. For this experiment, 15,000 293T cells were seeded per well. 30 hours 

after seeding the cells were transfected with “WT” or “Late(-)”. Eight wells per 

conditions were tested. Cell lysates and supernatants were harvested after 32, 

38, or 44 hours post transfection. Figure 4-7 shows the normalized fluorescence 

intensity (SN/total) as mean ± standard deviation.  

 

In contrast to the published harvest time point of 33-36 hours post 

transfection, 44 hours yielded best results in this format. Both the relative 
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release (~0.35) as well as the WT:Late(-) ratio or 8 fold was best for this time 

point. As discussed above, later time points > 44 hours did result in decreasing 

WT : Late(-) ratios as expected (results not shown). From these experiments, 44 

hours were determined as optimal duration from transfection to sample 

collection for the screening assay.   

 

 

 
Figure 4-7 Harvest time of 44 hours yielded the best WT:Late (-) ratio 
293T cells in a 96-well plate were transfected with different amounts of proviral plasmid DNA. 
Either a 1:1 mixture of pCHIVeYFP:pCHIV (indicated as “WT) or a 1:1 mixture of the late 
domain deficient pCHIVeYFP.late(-): pCHIV.late(-)(indicated as “Late(-). Supernatant and cell 
lysates were harvested at 32, 38 or 44 hours post transfection. Depicted is the normalized 
fluorescence intensity, calculated by division of supernatant intensity (SN) by total intensity in 
lysate and supernatant (total). Values are given as mean ± standard deviation. Relative release 
efficiency and the WT:Late(-) ratio was best for the 44 hour time point.  

 

 

Signal detection 
 

 
 

 

To ensure the best measurement of the peYFP signal in the collected cell 

lysates and supernatants, four different plate reader systems were tested: Tecan 

SAFIRE™, Tecan INFINITE™, Thermo VARIOSCAN™, and Mithras LB940.  

 

For this experiment, 293T cells were seeded and transfected with “WT”, 

“Late(-)”, or peYFP with three wells per condition. The same samples were 

52 



Results 

measured with the four indicated plate readers and are depicted as mean ± 

standard deviation of the normalized fluorescence intensity in Figure 4-8.  

 

 

 
Figure 4-8 Comparison of different plate readers. 
293T cells in a 96-well plate were transfected either a 1:1 mixture of pCHIVeYFP:pCHIV 
(indicated as “WT), a 1:1 mixture of the late domain deficient pCHIVeYFP.late(-): pCHIV.late(-) 
(indicated as “Late(-)”) or peYFP. Supernatant and cell lysates were harvested at 44 hours post 
transfection. The same samples were measured with a TECAN SAFIRE™, TECAN INFINITE™, 
Thermo VARIOSCAN™, MITHRAS LB940. Depicted is the normalized fluorescence intensity, 
calculated by division of supernatant intensity by total intensity in lysate and supernatant (mean 
± standard deviation). 

 

 

The Tecan SAFIRE™ yielded the lowest relative release of the WT group 

(~0.4 vs. ~0.6). However, the Late(-) results were much higher for the other 

three devices, which diminishes the WT:Late(-) Signal:Control ratio. Albeit 

using the identical samples, all four plate reader gave out different values and 

especially the difference for the Late(-) group is remarkable. One option could 

be different sensitivities and the resulting different signal to noise ratios of the 

four devices. In order to test this hypothesis, the mean of the three WT values 

were divided by the mean of the 18 non transfected background wells for each of 

the devices. The signal to noise ratio differed greatly between all of the four 

devices as shown in Table 10. The Tecan SAFIRE™ excelled in this regard with a 

ratio of >40 fold while the MITHRAS LB940 yielded only a poor ratio of two 

fold.  
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Table 10 Signal to noise ratio of the different devices 
Device Signal:Background ratio 

Tecan SAFIRE™ 41 

Tecan INFINITE™ 15 

Thermo Varioscan™ 16 

MITHRAS LB940 2 

 

 

Not only the signal-to-background ratio is crucial for a successful assay. In 

addition, the width of the signal window between WT and the positive control 

Late(-) is of importance.  

 

Table 11 lists the WT:Late(-) ratios for all four devices.  The Tecan 

SAFIRE™ excelled here as well with a ratio of ~7 fold while all the other devices 

only had ratios of 2-3 fold.  This is presumably caused by the much higher 

sensitivity of the Tecan SAFIRE™. 

 

 
Table 11 Ratio of WT to Late(-) values 

Device WT:Late(-) ratio 

Tecan SAFIRE™ 7 

Tecan INFINITE™ < 2 

Thermo Varioscan™ 3 

MITHRAS LB940 2 

 

 

Another important factor for the conduct of the complete screen was the 

duration of the measurement of one single plate. The time spans for one 

measurement are listed in Table 12. In this category the MITHRAS LB940 was 

best with less than 1 minute per plate while the Tecan SAFIRE™ took more than 

30 minutes per plate. In this time the SAFIRE™ measured each well 4 times to 

yield more robust values while the MITHRAS LB940 measured only a single 

time. These results correlate inversely with the sensitivity of the devices.  
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Table 12 Time to measure one 96-well plate 
Device Time [minutes] 

Tecan SAFIRE™ > 30 

Tecan INFINITE™ 12 

Thermo Varioscan™ 8 

MITHRAS LB940 < 1 

 

 

Although being the slowest of the test devices, the Tecan SAFIRE™ 

resulted in the most robust data with the best signal:noise and WT:Late(-) 

ratios, and the lowest variability. Because of these results, the SAFIRE™ was 

used for the screening assay. 

 

 

Assay stability 
 

 
 

 

Another important part of the assay establishment is the testing for 

stability and robustness. Only with reproducible procedures, reliable results can 

be generated from a medium/high throughput screen. This means that results 

must be reproducible and constant between different replicates and that the 

results have to be constant regardless of the placing within the same plate. 

Especially the latter, the intra-plate variability, is crucial to ensure equal results 

throughout the plates in order to not falsely identify “hits” just based on their 

location on the plate. As the screening assay was established for 96- and for 

384-well plates, both these points were addressed for both plate formats to 

demonstrate their usability. 

 

For the 96-well format, 293T cells in 90 wells per plate were transfected 

with “WT”. Two wells per plate remained untransfected, two wells received the 

“Late(-)”, and two wells were transfected with peYFP. Fluorescence intensities 

were measures and normalized by dividing the supernatant intensity by the 
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total. Figure 4-9 shows the mean and standard deviation of the three replicates 

to illustrate the variation within a plate. The results show no statistical 

differences between single wells and low variability between the same wells on 

different plates. This indicates an equal measurement throughout the same 

plate and low inter- and intra-plate variability. 

 

 

 
Figure 4-9 No significant differences detectable throughout a 96-well plate. 
Three 96-well plates were transfected with a 1:1 mixture of pCHIVeYFP:pCHIV (indicated as 
“WT”, grey columns), the 1:1 mixture of the late domain deficient pCHIVeYFP.late(-): 
pCHIV.late(-) (indicated as “Late(-), white columns), or peYFP (black columns). The 
fluorescence intensity of both the cell lysates and the supernatants were measured. Depicted are 
the mean normalized fluorescence intensities of all 96 wells, calculated by division of 
supernatant intensity by total intensity in lysate and supernatant. (mean ± standard deviation). 
No statistical differences between any wells were detected.  

 

 

For the 384-well format, 2,500 293T cells were seeded per well on three 

plates. 30 hours post seeding, 138 wells per plate were transfected with 25 ng of 

total plasmid DNA of a 1:1 mixture of pCHIVeYFP:pCHIV (indicated as “WT). 

92 wells per plate received the 1:1 mixture of the late domain deficient 

pCHIVeYFP.late(-): pCHIV.late(-) (indicated as “Late(-)), and 138 wells were 

transfected with peYFP. 16 wells remained untransfected. Cell lysates and 

supernatants were collected at 44 hours post transfection and analyzed with the 

Tecan SAFIRE™ plate reader, as established previously. Fluorescence 
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intensities were normalized by dividing the supernatant intensity by the total. 

Figure 4-10 shows the mean and standard deviation of the three replicates to 

illustrate the variation within a plate. The results show no statistical differences 

between single wells and low variability between the same wells on different 

plates. This indicates an equal measurement throughout the same plate and low 

inter- and intra-plate variability. However, the 384-well plates yield a higher 

variance compared to the 96-well plates. 

 

 

 
Figure 4-10 No significant differences detectable throughout a 384-well plate. 
Three 384-well plates were transfected with a 1:1 mixture of pCHIVeYFP:pCHIV (indicated as 
“WT”, grey columns), the 1:1 mixture of the late domain deficient pCHIVeYFP.late(-): 
pCHIV.late(-) (indicated as “Late(-), white columns), or peYFP (black columns). The 
fluorescence intensity of both the cell lysates and the supernatants were measured. Depicted is 
the normalized fluorescence intensity, calculated by division of supernatant intensity by total 
intensity in lysate and supernatant (mean ± standard deviation). No statistical differences 
between any wells were detected.  

 

 

For a better comparison of the two plate formats, Figure 4-11 depicts the 

overall means for the 96- and the 384-well plates. Both formats were applicable 

for screening approaches. 96-well plates yielded in average a superior WT : 

Late(-) ratio of ~8 compared to a ratio of ~4 for the 384-well plates. In addition, 

the variances in the 96-well plates were smaller. On the other side, 384-well 

plates have the advantage to be used in high-throughput screens for e.g. genome 

wide screens. In order to compensate for the smaller signal window and the 

higher variance, more replicates have to be used for the 384-well plates. 
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Figure 4-11 Low inter- and intra-plate variance 
Depicted are the mean normalized fluorescence intensities of three 96-well and three 384-well 
plates (mean ± standard deviation). No statistical differences between any wells were detected.  

 

 

A second experiment was conducted to address the question of the 

variability between replicates on a broader scale. It was conducted in 

collaboration with the group of Barbara Müller while applying the hereby 

described screening assay for testing a library of small chemical molecules to 

identify novel lead candidates for inhibition of HIV-1 assembly and release 

(results not shown). Control wells from 88 96-well plates from this compound 

screen were used for this comparison. Two wells per plate were transfected with 

a 1:1 mixture of pCHIVeYFP:pCHIV (indicated as “WT”) and two wells per plate 

with the 1:1 mixture of the late domain deficient pCHIVeYFP.late(-): pCHIV.late(-

) (indicated as “Late(-)”).  Figure 4-12 shows the mean and standard deviation 

of the normalized eYFP fluorescence from all wells over the 176 wells. The low 

error bars indicate a very low inter-plate variability. In summary, the assay 

shows neither intra- nor inter-plate variability and is therefore suitable for mid- 

to high-throughput screening.  
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Figure 4-12 Very low inter-plate variability between 88 different 96-well plates. 
For each of 88 different 96-well plates two wells were transfected with a 1:1 mixture of 
pCHIVeYFP:pCHIV (indicated as “WT”) and two with a 1:1 ratio of pCHIVeYFP.late(-): 
pCHIV.late(-) (indicated as “Late (-)”) established in the previous experiments (total n = 176). 
The fluorescence intensity of both the cell lysates and the supernatants were measured. 
Depicted is the normalized fluorescence intensity, calculated by division of supernatant intensity 
by total intensity in lysate and supernatant (mean ± standard deviation). Figure from (238) and 
experiment conducted together with Barbara Müller, Maria Anders and Anke-Mareil Heuser. 

 

 

Efficacy of controls 
 

 
 

 

In parallel to addressing the technical questions, it is of similar importance 

to test appropriate controls to demonstrate the applicability of the assay. 

Preparation of the siRNA test plates and the complete library was performed in 

collaboration with the ViroQuant-CellNetworks RNAi Screening Facility headed 

by Dr. Holger Erfle and was based on their previously published method (269, 

270).  

 

At first, a siRNA targeting TSG101 (185) was tested. TSG101 is an 

important part of the cellular ESCRT complex required for the budding of HIV-1 

particles. The wells of 96-well plates were pre-coated with the reverse 

transfection mixture including either a non-silencing control siRNA or a siRNA 

targeting TSG101 (indicated as “non-silencing control” and “siTSG101”). 15,000 

293T cells/well were seeded into 96-well plates. 6, 18, and 36 hours post siRNA 

transfection, 96-wells were transfected with 100 ng of total plasmid DNA of a 1:1 
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mixture of pCHIVeYFP:pCHIV (indicated as “WT”) or with the 1:1 mixture of the 

late domain deficient pCHIVeYFP.late(-): pCHIV.late(-) (indicated as “Late(-)”) 

with eight wells each. Cell lysates and supernatants were collected at 44 hours 

post transfection and were analyzed with the Tecan SAFIRE™ platereader. In 

addition, cell lysates from an identical set of plates were collected to perform 

Western-Blot analysis of TSG101 protein expression after 24 and 48 hours post 

siRNA transfection. The results show that the reverse transfection with a siRNA 

targeting TSG101 significantly impairs the release of the newly formed viral 

particles (Figure 4-13). However, the relative release of the siTSG101 treated 

wells was higher than the results with the Late(-) construct. In addition it shows 

that TSG101 required a short incubation time to achieve an optimal knockdown 

(18 hours plus 44 hours = 62 hours). Western Blot analysis using an anti-

TSG101 antibody shows the knockdown on protein level. Longer incubation led 

to marked cell toxicity (widefield microscopy, not shown) and increased 

fluorescence signals in the supernatant (Figure 4-13).   

 

 

 
Figure 4-13 A siRNA against TSG101 is a suitable control to impair the release of 
viral particles by specific protein knockdown.  
The wells of a 96-well plate were coated with the reverse transfection mix including a non-
silencing control siRNA or a siRNA targeting TSG101 (siTSG101). 293T cells were transfected 
with 100 ng/well of proviral plasmid DNA. Either a 1:1 mixture of pCHIVeYFP:pCHIV 
(indicated as “WT) or a 1:1 mixture of the late domain deficient pCHIVeYFP.late(-): 
pCHIV.late(-) (indicated as “Late(-)). Supernatant and cell lysates were harvested at 44 hours 
post transfection.  At 44 hours post transfection the cell lysates and supernatants were harvested 
and the fluorescence intensity was measured. Left: Normalized fluorescence intensity, 
calculated by division of supernatant intensity by total intensity in lysate and supernatant (mean 
± standard deviation, n = 3). Right: Anti-TSG101 western blot of the cell lysates. Statistical 
analysis (one-sided ANOVA with Dunnett's multiple comparisons post-test, GraphPad Prism 
6.05) compared to the respective WT result: ****= p<0.0001, ***= p<0.001, **= p<0.01, *= 
p<0.05, ns= not significant. 
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As a second positive control, siRNAs targeting the subunits A and B of the 

ATPase VPS4 were tested. As TSG101, VPS4 is involved in the ESCRT complex. 

The wells of 96-well plates were pre-coated with the reverse transfection 

mixture including either a non-silencing control siRNA or a siRNA mixture 

targeting VPS4A and VPS4B (indicated as “non-silencing control” and 

“siVPS4A/B”). Two different amounts of the siVPS4 A and B were tested (0.5 ng 

+ 0.5 ng or 1 ng + 1 ng per 96-well, Qiagen Flexitube SI00760767 + 

SI00760802). 15,000 293T cells/well were seeded in the 96-well plates. 6, 18, 

and 36 hours post transfection, the wells were transfected with 100 ng of total 

plasmid of a 1:1 mixture of pCHIVeYFP:pCHIV (indicated as “WT) or with the 1:1 

mixture of the late domain deficient pCHIVeYFP.late(-): pCHIV.late(-) (indicated 

as “Late(-)”) with eight wells each. Cell lysates and supernatants were collected 

at 44 hours post transfection and were analyzed with the Tecan SAFIRE™ 

platereader. No effect on HIV-1 release was detectable at the earliest knockdown 

duration (6 hours) and only a slight reduction at 18 hours. The knockdown of 

VPS4A/B led to a ~50% decreased release of viral particles at the latest time 

points (Figure 4-14).  

 

The results of this part show that knockdown of known host dependency 

factors indeed lead to a strong reduction of released viral particles using the 

eYFP readout. Protein turnover rates depend the time and duration of a 

knockdown. This can be seen as TSG101 showed highest efficacy at the shortest 

knockdown time point while the VPS4A/B knockdown only caused some 

reduction of release efficiency at the latest time point. Although the effect of 

siTSG101 was almost as pronounced as the effect of the Late(-) variant, it could 

not be used as a positive control in the kinase screen as it was not included in 

the pre-designed library.  
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Figure 4-14 Knockdown of VPS4 leads to an impairment of HIV-1 viral particle 
release at 36 hours.  
The wells of a 96-well plate were coated with the reverse transfection mix including a non-
silencing control siRNA or a siRNA targeting VPS4 subunits A and B (siVPS4 A/B). 293T cells 
were seeded with 15,000 cells per well. The wells were transfected with 100 ng DNA/well at 6, 
18, or 36 hours after seeding either with a 1:1 mixture of pCHIVeYFP:pCHIV (indicated as “WT”) 
or a 1:1 ratio of pCHIVeYFP.late(-): pCHIV.late(-) (indicated as “Late (-)”) with n = 3. At 44 hours 
post transfection the cell lysates and supernatants were harvested and the fluorescence intensity 
was measured. The graph shows the normalized fluorescence intensity, calculated by division of 
supernatant intensity by total intensity in lysate and supernatant (mean ± standard deviation). 
Statistical analysis (one-sided ANOVA with Dunnett's multiple comparisons post-test, 
GraphPad Prism 6.05) compared to the respective WT result: ****= p<0.0001, ***= p<0.001, 
**= p<0.01, *= p<0.05, ns= not significant. 
 

 

 

Statistical & bioinformatical analysis 
 

 
 

 

Raw data were exported from the plate reader into Microsoft EXCEL 

format. For single experiments, the raw values were analyzed manually. As 

discussed above, the raw eYFP fluorescence intensities were normalized to 

remove bias by e.g. cell numbers. For this, the intensities of the supernatant 

were divided by the sum of the supernatant and cell lysate fluorescence 

intensities using Microsoft Excel. Results for which this type of analysis was 

used are indicated by SN/total. For statistical analyses, GraphPad Prism 

(version 6.05) was used to calculate statistical significance values by using either 
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a t-test for comparison of two groups or a one-sided ANOVA with Dunnett's 

multiple comparisons post-test for multi-group experiments.  

 

Manual analyses were not possible for the primary and reconfirmation 

screens. The Excel files were therefore transferred to the Viroquant Research 

Group Modeling lead by Dr. Lars Kaderali for statistical analysis and hit list 

generation (271, 274). The calculations were conducted by Johanna Mazur using 

R version 2.8.0 with a custom-tailored analysis workflow based on cellHTS and 

the Bioconductor package RNAither (271). As a first step the wells with the 

lowest 5 % of signal intensity in the cell lysate were discarded in order to 

exclude potential cytotoxic siRNAs. Then, instead of the manual normalization 

of the supernatant intensity divided by the total intensity, the locally weighted 

scatterplot smoothing (LOWESS) method (275) was applied for normalization 

of the raw eYFP fluorescence intensities. LOWESS is a very flexible non-

parametric regression method which applies a low degree polynomial fit per 

data point. It is the most suitable method for normalization of complex non-

linear data sets. This was followed by z-score normalization and p-value 

calculation. The resulting z-score is a measure to rank the results for each 

siRNA in the library in dependence of the individual standard deviation and 

allows comparing the results of different plates. The formula to calculate the z-

score in the primary and reconfirmation screens are given below. With the 

assumption that the majority of siRNA have no effect of HIV-1 release, the z-

scores were calculated in relation to the median of all wells in the primary 

screen. As this assumption is not true anymore in the reconfirmation screen, the 

z-scores were here calculated in relation to the non-silencing control siRNAs on 

each plate:  

 

z-score calculation: 

(plate)deviation  standard  theofMedian 
(plate)intensity Median  - (well)intensity  Normalized  :screenPrimary  

 

siRNAs) silencing-(nondeviation  standard  theofMedian 
siRNAs) silencing-(nonintensity Median  - (well)intensity  Normalized :screention Reconfirma
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After receiving the hit lists, threshold criteria were defined together with 

the biostatisticians. For stringent hit definition two thresholds were defined for 

the results of the primary and the reconfirmation screen. Based on the 

experience with other siRNA screens and according to the range of z-scores 

resulting from this kinase screen, a cut-off threshold of z-score ± 2 was chosen. 

A second threshold of p-value ≤ 0.05 was applied additionally in order to take 

the reproducibility and variance of the different replicates into account. 

 

After the definition of the final set of hits after the analysis of the 

reconfirmation screen, biostatistical pathway analyses were performed with 

publicly available tools.  

Enriched biological properties, for example Gene Ontology (GO) terms, were 

identified to determine enriched functional-related gene groups and networks. 

Two open source dataset tools for large-scale datasets were used according to 

the description on the respective websites:  

 

 Database for Annotation, Visualization and Integrated Discovery (DAVID 

v6.8, http://david.abcc.ncifcrf.gov/, (276-279)) 

 Kyoto Encyclopedia of Genes and Genomes (KEGG,       

http://www.genome.jp/kegg/mapper.html, (280-282)) 

 

 

4.2 Primary siRNA screen 
 

After successful establishment of the screening assay, a siRNA library was 

tested to identify host cell factors involved in the replication and release of HIV-

1. The library comprised siRNAs against 724 human proteins including mainly 

all known kinases and some auxiliary proteins interacting with those kinases. 

The library was a custom-made library manufactured by Ambion and designed 

by the group of Dr. Holger Erfle (BioQuant, University of Heidelberg, 

Germany). All gene symbols, RefSeq identification numbers and siRNA IDs are 

listed in chapter 12.1 Appendix 1. Three different siRNAs directed against each 

of the targets were included in the siRNA library. The siRNAs were randomly 

distributed onto 28 different 96-well plates plus one control plate. The complete 
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set of plates was screened in triplicates – which led to a total sum of 87 different 

96-well plates. All 96-well plates were prepared in advance by coating of the 

siRNA libraries. In brief, siRNAs, the transfection reagent, and fibronectin were 

mixed and added to a well of a 96-well plate prior to drying in a miVac Modular 

Concentrator (Wolf Laboratories) (269, 270). All stock solutions (e.g. cell 

suspensions or transfection mixtures) were prepared in ample quantity for the 

complete set of 87 plates to ensure even and homogenous distribution.  

 

All steps from cell seeding, transfection, sample collection and analysis 

were performed in parallel at the same time for the complete screening library 

as described above. On the day of the experimental start, cells were harvested 

and a stock cell suspension was prepared in a sufficient volume to be distributed 

to all plates of the screen at the same time. Then, 15,000 293T cells/96-well 

were seeded in 100 µl cell culture medium using the automated Multi Drop® 

Combi Reagent Dispenser (Thermo Fisher). After 30 hours, the supernatant was 

removed from the plates and 100 µl/96-well of the pCHIVeYFP:pCHIV 

transfection mixture was added to each well using again the Multi Drop® 

Combi.  

 

In addition, three additional 96-well plates were used as controls. The 

reason was to monitor whether the time point of plate treatment would have an 

influence on the results. For this, the first control plate was treated as the very 

first plate at cell seeding and distribution of the transfection mixture. The 

second was treated (seeding and transfection) after the first 42 of the 84 plates 

of the complete library and the third control plate as the very last plate of the 

screen. For the three control plates, both the bulk preparations of the cell 

suspension and the pCHIVeYFP:pCHIV (indicated as “WT”) transfection mixture 

was used as for the other 84 plates of the library. A second quality check to be 

addressed by the three control plates was to test the WT:Late(-) ratio under 

medium-throughput screening conditions. Therefore each of the three control 

plates contained wells transfected with pCHIVeYFP.late(-): pCHIV.late(-) 

(indicated as “Late(-)”) as control. Three wells for each the WT and the Late(-) 

were used per control plate.  
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Approximately 42 hours post transfection, the supernatants were 

harvested using the Matrix Hydra® DT automated liquid handling platform 

(Thermo Fisher) and transferred to separate 96-well plates. The residual 

supernatant over the cells was discarded and 100 µl/96-well lysis buffer were 

added to generate cell lysate suspensions. All plates were then frozen at -20 °C 

until measurement. Figure 4-15 shows all 174 96-well plates (87 plates 

supernatant + 87 plates cell lysates).  

 

 

 
Figure 4-15 Image of the 174 96-well plates 
The complete screen comprised of 87 96-well plates containing the harvested supernatant and 
another 87 96-well plates with the cell lysates. All plates were frozen at -20 °C and batch-wise 
thawn for measurement in the Tecan SAFIRE™ platereader.  

 

 

Fluorescence intensities of the cell lysate supernatant plates were 

subsequently measured with the Tecan SAFIRE™ (Thermo Fisher). Resulting 

raw fluorescence signal intensities were automatically exported to Microsoft 

Excel. The analysis for the control plates were conducted manually in Microsoft 

Excel and the normalized fluorescence intensities (SN/total) for each of the 

three are shown in Figure 4-16. The comparison of the WT intensity to the 

Late(-) results yielded a signal-to-control ratio of ~8 fold with very small 

standard deviations. This was consistent with the results from the establishment 

phase. As the plates were transfected at the beginning, mid and end of the 

library, the comparable results from these three plates indicate that the 

distribution of the bulk cell suspension and transfection mixture was 

homogenous and did not cause any time-dependent gradient  of the results.  
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Figure 4-16 Quality controls confirmed validity and low variation of the primary 
screen. 
293T cells were seeded into three 96-well control plates with 15,000 cells per well. The wells 
were transfected with 100 ng DNA/well at 30 hours after seeding either with a 1:1 mixture of 
pCHIVeYFP:pCHIV (indicated as “WT”, wild type) or a 1:1 ratio of pCHIVeYFP.late(-): pCHIV.late(-
) (indicated as “Late (-)”) with n = 3. At 44 hours post transfection the cell lysates and 
supernatants were harvested and the fluorescence intensity was measured. All results were 
comparable and showed very small standard deviation. Depicted is the normalized fluorescence 
intensity, calculated by division of supernatant intensity by total intensity in lysate and 
supernatant (mean ± standard deviation).  

 

 

The raw data were then transferred to the group of Dr. Lars Kaderali for 

statistical analysis as described above. Figure 4-17 shows the raw eYFP 

intensities of the cell lysates (left) and the supernatants (right) for each of the 

three replicates. For each replicate, the 28 different plates are depicted as box 

plots. The black line indicates the median intensity of all wells of the 28 96-well 

plates per replicate. The median intensities and distributions/variations of the 

intensities of three replicates (size of box and whiskers with only a few outliers) 

were equal, indicating a very homogenous distribution over all plates of the 

screen.    
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Figure 4-17 Comparable distribution of raw eYFP intensities between the different 
replicates of the screen. 
Depicted in this graph are box plots of the raw eYFP intensities of cell lysates (left) and 
supernatants (right). The box plots include the raw intensity values for all wells of the 28 96-
well plates per replicate. The black bar indicates the median, the box the first and third 
quartiles, the whiskers indicate the 1.5 inter quartile range and the open dots show single 
outliers. Both the median intensity and the variability (box and whiskers) are equal in the 
different replicates, indicating a high homogeneity. Figure created by Johanna Mazur and Lars 
Kaderali using R during the process of statistical analysis of my experimental results. 

 

 

After sample measurement the raw data underwent statistical data 

analysis and normalization as discussed above. In short, the 5% wells with 

lowest cell lysate intensity were removed to exclude potential cytotoxic effects, 

followed by normalization of the raw eYFP fluorescence intensities over all 

plates and the calculation of z-score and p-values for ranking and hit definition. 

From the results, all siRNAs were defined as a hit when they a) had a z-score of 

> +2 or< -2 and b) had a p-value < 0.05 to take the reproducibility between the 

replicates into account. Figure 4-18 depicts the distribution of the z-scores over 

all siRNAs in the screen. The red and the green vertical lines indicate the 

threshold of z-score ≤ -2 (red) or z-score ≥ +2 (green), respectively. Z-scores of 

≤ -2 indicate a reduced release of viral particles and were defined as potential 

host dependency factors (HDF). At the other end of the distribution curve, all 

siRNAs with a z-score of ≥ +2 were defined as potential host restriction factors 

(HRF). The statistical analyses of the raw values were performed by Johanna 

Mazur and Lars Kaderali to generate the z-scores, which are shown in Figure 

4-18 and Table 13 List of the 50 potential host dependency factors.Table 13 to 

Table 16. 
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Figure 4-18 Distribution of all z-scores 
Shown is the distribution of all z-scores for all individual sample of the kinase screen. Values 
below or equal to a z-score ≤-2 were defined as potential host dependency factors (left side, red 
arrow). Potential host restriction factors were above the threshold of a z-score ≥ 2 (right side, 
green arrow). In addition to the z-score criterion all hits have to comply with the additional 
threshold of p-value ≤ 0.05. 

 

 

Table 13 lists all 50 potential HDFs with at least one of the three siRNAs 

fulfilling the aforementioned thresholds. The table lists the gene symbol, the 

RefSeq ID, the full gene name, the maximum z-score and the number of siRNAs 

reaching the threshold criteria. Only those siRNA were counted as a hit when 

they had a p-value below 0.05. The majority of those potential HDFs scored 

with one of the three individual siRNAs. Out of the 50, only three genes scored 

as hits with 2 of the three individual siRNAs and none with all three. Those 

three hits were Nemo-like kinase (NLK), Cyclin-dependent kinase 7 (CDK7) and 

PAS domain containing serine/threonine kinase (PASK). 

 

 
Table 13 List of the 50 potential host dependency factors. 
Hit definition threshold: Minimum one siRNA yielding a z-score ≤ -2 (sorted by z-score). All hits 
comply with the second threshold of p < 0.05. Indicated in grey are the hits with more than one 
siRNA fulfilling the threshold.  

Gene 
Symbol RefSeq ID Full gene name 

 
Max. 
z-score 

No. of 
siRNAs 
out of 3 > 
threshold 

KSR2 NM_173598 Kinase suppressor of ras 2 -8.456 1/3 

PRKG2 NM_006259 Protein kinase, cGMP-dependent, 
type II -4.387 1/3 

ITPKA NM_002220 Inositol 1,4,5-trisphosphate 3-
kinase A -4.064 1/3 
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Gene 
Symbol RefSeq ID Full gene name 

 
Max. 
z-score 

No. of 
siRNAs 
out of 3 > 
threshold 

PLXNA3 NM_017514 Plexin A3 -3.993 1/3 

NLK NM_016231 Nemo-like kinase -3.703 2/3 

PAPSS1 NM_005443 3'-phosphoadenosine                          
5'-phosphosulfate synthase 1 -3.469 1/3 

PRPS1 NM_002764 Phosphoribosyl pyrophosphate 
synthetase 1 -3.350 1/3 

PLXNC1 NM_005761 Plexin C1 -3.325 1/3 

EPHA10 NM_001004338 EPH receptor A10 -3.325 1/3 

PAPSS2 NM_001015880 3'-phosphoadenosine 5'-
phosphosulfate synthase 2 -3.111 1/3 

AKAP8L NM_014371 A kinase (PRKA) anchor protein 
8-like -2.952 1/3 

CDK6 NM_001259 Cyclin-dependent kinase 6 -2.870 1/3 

CDK7 NM_001799 Cyclin-dependent kinase 7 -2.846 2/3 

GLYCTK NM_145262 Glycerate kinase -2.770 1/3 

MAP4K2 NM_004579 Mitogen-activated protein kinase 
kinase kinase kinase 2 -2.728 1/3 

FES NM_002005 Feline sarcoma oncogene -2.707 1/3 

MAP2K3 NM_002756 Mitogen-activated protein kinase 
kinase 3 -2.696 1/3 

RPS6KA2 NM_001006932 Ribosomal protein S6 kinase, 
90kDa, polypeptide 2 -2.660 1/3 

MAP3K14 NM_003954 Mitogen-activated protein kinase 
kinase kinase 14 -2.613 1/3 

PXK NM_017771 PX domain containing 
serine/threonine kinase -2.583 1/3 

NME1 NM_000269 NME/NM23 nucleoside 
diphosphate kinase 1 -2.580 1/3 

NRGN NM_006176 Neurogranin (protein kinase C 
substrate, RC3) -2.504 1/3 

STK32B NM_018401 Serine/threonine kinase 32B -2.503 1/3 

AKAP7 NM_004842 A kinase (PRKA) anchor protein 7 -2.421 1/3 

MAST4 NM_198828 
Microtubule associated 
serine/threonine kinase family 
member 4 

-2.404 1/3 

CDK10 NM_052987 Cyclin-dependent kinase 10 -2.390 1/3 
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Gene 
Symbol RefSeq ID Full gene name 

 
Max. 
z-score 

No. of 
siRNAs 
out of 3 > 
threshold 

SPHK1 NM_021972 Sphingosine kinase 1 -2.375 1/3 

SPHK2 NM_020126 Sphingosine kinase 2 -2.350 1/3 

IRAK4 NM_016123 Interleukin-1 receptor-associated 
kinase 4 -2.325 1/3 

SLK NM_014720 STE20-like kinase (yeast) -2.320 1/3 

RPS6KB1 NM_003161 Ribosomal protein S6 kinase, 
70kDa, polypeptide 1 -2.312 1/3 

PTK6 NM_005975 PTK6 protein tyrosine kinase 6 -2.288 1/3 

PASK NM_015148 PAS domain containing 
serine/threonine kinase -2.254 2/3 

HKDC1 NM_025130 Hexokinase domain containing 1 -2.207 1/3 

UCK2 NM_012474 Uridine-cytidine kinase 2 -2.207 1/3 

RIPK3 NM_006871 Receptor-interacting serine-
threonine kinase 3 -2.202 1/3 

CDKL1 NM_004196 Cyclin-dependent kinase-like 1 
(CDC2-related kinase) -2.133 1/3 

PIK3CG NM_002649 Phosphoinositide-3-kinase, 
catalytic, gamma polypeptide -2.126 1/3 

PLXNA2 NM_025179 Plexin A2 -2.125 1/3 

BRAF NM_004333 V-raf murine sarcoma viral 
oncogene homolog B1 -2.116 1/3 

EPHB4 NM_004444 EPH receptor B4 -2.104 1/3 

FRK NM_002031 Fyn-related kinase -2.100 1/3 

DCAKD NM_024819 Dephospho-CoA kinase domain 
containing -2.099 1/3 

IGF1R NM_000875 Insulin-like growth factor 1 
receptor -2.080 1/3 

ALPK3 NM_020778 Alpha-kinase 3 -2.078 1/3 

FGFR2 NM_000141 

Fibroblast growth factor receptor 
2 (bacteria-expressed kinase, 
keratinocyte growth factor 
receptor, craniofacial dysostosis 1, 
Crouzon syndrome, Pfeiffer 
syndrome, Jackson-Weiss 
syndrome) 

-2.064 1/3 

PIM1 NM_002648 Pim-1 oncogene -2.055 1/3 

  71      



Results 

Gene 
Symbol RefSeq ID Full gene name 

 
Max. 
z-score 

No. of 
siRNAs 
out of 3 > 
threshold 

SGK269 XM_370878 NKF3 kinase family member -2.046 1/3 

ROR1 NM_001083592 Receptor tyrosine kinase-like 
orphan receptor 1 -2.008 1/3 

NAGK NM_017567 N-acetylglucosamine kinase -2.003 1/3 

 

 

26 potential HRFs fulfilled with at least one of the three siRNAs the 

threshold of z-score > +2 and p-value < 0.05. Similar to the table above, Table 

14 lists the gene symbol, the RefSeq ID, the full gene name, the maximum 

z-score and the number of siRNAs reaching the threshold criteria for each of 

those 26 genes.  Similar to the HDFs, the majority of the potential HRFs scored 

with only one of the three individual siRNAs. Out of the 26, only one gene 

scored as hit with 2 of the three individual siRNAs and none with all three. This 

hit was C-src tyrosine kinase (CSK). 

 

 
Table 14 List of the 26 potential host restriction factors. 
Hit definition threshold: Minimum one siRNA yielding a z-score > +2 (sorted by z-score). All 
hits comply with the second threshold of p < 0.05. Indicated in grey are the hits with more than 
one siRNA fulfilling the threshold.  

Gene 
Symbol RefSeq ID Full gene name 

 
Max. 
z-score 

No. of 
siRNAs 
out of 3 > 
threshold 

MAPK3 NM_001040056 Mitogen-activated protein kinase 
3 3.210 1/3 

SYK NM_003177 Spleen tyrosine kinase 3.110 1/3 

NRK NM_198465 Nik related kinase 3.088 1/3 

GSK3B NM_002093 Glycogen synthase kinase 3 beta 3.078 1/3 

TAF1L NM_153809 
TAF1 RNA polymerase II, TATA 
box binding protein (TBP)-
associated factor, 210kDa-like 

3.042 1/3 

MAP4K4 NM_004834 Mitogen-activated protein kinase 
kinase kinase kinase 4 2.984 1/3 

GAK NM_005255 Cyclin G associated kinase 2.958 1/3 

PSKH1 NM_006742 Protein serine kinase H1 2.810 1/3 
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Gene 
Symbol RefSeq ID Full gene name 

 
Max. 
z-score 

No. of 
siRNAs 
out of 3 > 
threshold 

CSK NM_004383 C-src tyrosine kinase 2.727 2/3 

SNF1LK2 NM_015191 SNF1-like kinase 2 2.631 1/3 

LIMK1 NM_002314 LIM domain kinase 1 2.604 1/3 

BLK NM_001715 B lymphoid tyrosine kinase 2.530 1/3 

DGKH NM_152910 Diacylglycerol kinase, eta 2.374 1/3 

FGFR4 NM_002011 Fibroblast growth factor receptor 
4 2.330 1/3 

GRK4 NM_001004056 G protein-coupled receptor kinase 
4 2.328 1/3 

AURKAIP
1 NM_017900 Aurora kinase A interacting 

protein 1 2.304 1/3 

MAP4K1 NM_001042600 Mitogen-activated protein kinase 
kinase kinase kinase 1 2.274 1/3 

STK16 NM_001008910 Serine/threonine kinase 16 2.215 1/3 

ACVR2A NM_001616 Activin A receptor, type IIA 2.172 1/3 

IPMK NM_152230 Inositol polyphosphate 
multikinase 2.150 1/3 

CD2 NM_001767 CD2 molecule 2.149 1/3 

CDK4 NM_000075 Cyclin-dependent kinase 4 2.128 1/3 

ILK NM_001014794 Integrin-linked kinase 2.109 1/3 

RBKS NM_022128 Ribokinase 2.099 1/3 

PLK2 NM_006622 Polo-like kinase 2 (Drosophila) 2.093 1/3 

BRSK2 NM_003957 BR serine/threonine kinase 2 2.015 1/3 

 

 

4.3 Reconfirmation screen 
 

Having the risk of false-positive hits arising from any screening approach 

in mind, a subsequent reconfirmation screen was performed. For this all 76 

primary hits (50 potential host dependency factors and 26 potential host 

restriction factors) listed above were tested again for re-validation. For each of 
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the hits, three new siRNAs were ordered from Ambion which were distinct from 

the siRNAs used in the primary screen. This was to exclude potential off-target 

effects caused if a siRNAs used in the primary screen would have been bound to 

an unspecific off-target gene. While the siRNAs in the primary screen library 

were normal Ambion Silencer® siRNAs, chemically modified Silencer® Select 

siRNAs (Ambion) were used in the reconfirmation screen.  

 

The three siRNAs per hit gene were distributed onto 5 different 96-well 

plates as described above. As only a small fraction of siRNAs were tested in this 

screen, several improvements in regard to statistical power and quality could be 

included which were not possible for the big screen. To improve the quality, no 

siRNAs were used on the edge wells in order to avoid potential edge effects on 

cell growth. To increase the robustness of the reconfirmation screen, each of the 

96-well plates was tested with five replicates (compared to the three replicates 

in the primary screen). The complete experimental procedure was similar to the 

primary screen. The only difference was in the statistical analysis: For the 

primary screen LOWESS normalization the median fluorescence intensity was 

used. This was possible under the assumption that the majority of siRNAs in the 

library would have no effect on HIV-1 release. This assumption is, however, by 

definition not true for the reconfirmation screen. Therefore each plate contained 

9x the non-silencing siRNA randomly distributed and the results were 

normalized to the median result of these control siRNAs. After measurement of 

the raw fluorescence intensities and statistical analyses, the similar thresholds 

were used as criteria for hit definition for the reconfirmation screen as for the 

primary screen (z-score ≤ -2 or z-score ≥ +2, p-value < 0.05). From the 

complete set of 76 primary hits, 43 were reconfirmed which equals a 

reconfirmation rate of ~57%. Interestingly, the reconfirmation rate was not 

equal for host dependency or restriction factors.  

 

Out of the 50 primary HDFs, 39 were validated. This equaled a 

reconfirmation rate of approximately ~78%. Of note, all three HDFs from the 

primary screen with more than one siRNA fulfilling the hit criterion were 

reconfirmed in this second screen. The reconfirmed HDF with the highest z-

score was Sphingosine kinase 1 (SPHK1) with a z-score of -8.024.  Out of the 43 

74 



Results 

reconfirmed hits, 15 were reconfirmed with two of the three individual siRNAs 

and one gene even with all three siRNAs (3'-phosphoadenosine 5'-

phosphosulfate synthase 1, PAPSS1). These 16 hits and the three hits from the 

primary screen were categorized as “Strong HDFs”. The “Strong HDF” with the 

highest z-score of -7.910 was Neurogranin (NRGN).  Table 15 lists the 39 

confirmed host dependency factors sorted by their maximum z-score. In 

addition, the table indicates the gene symbol, the RefSeq ID, the full gene name, 

and the number of individual siRNAs from the three siRNAs used in the 

primary and the three from the reconfirmation screen which reached the 

threshold.  

 

 
Table 15 List of the 39 reconfirmed host dependency factors. 
Hit definition threshold: Minimum one siRNA yielding a z-score > +2 (sorted by z-score). All 
hits comply with the second threshold of p < 0.05. “Strong HDFs” are indicated in grey.  

Gene 
Symbol RefSeq ID Full gene name 

Max. 
z-score 

(primary) 

Max. z-score 
(reconfirm.) 

no. siRNA 
primary + 
reconfirm. 

above 
threshold 

SPHK1 NM_021972 Sphingosine kinase 1 -2.375 -8.024 1/3 + 1/3 

NRGN NM_006176 Neurogranin (protein 
kinase C substrate, RC3) -2.504 -7.910 1/3 + 2/3 

PLXNA2 NM_025179 Plexin A2 -2.125 -7.067 1/3 + 1/3 

MAP3K14 NM_003954 Mitogen-activated protein 
kinase kinase kinase 14 -2.613 -6.539 1/3 + 2/3 

PAPSS1 NM_005443 3'-phosphoadenosine 5'-
phosphosulfate synthase 1 -3.469 -5.492 1/3 + 3/3 

GLYCTK NM_145262 Glycerate kinase -2.770 -4.611 1/3 + 2/3 

PLXNC1 NM_005761 Plexin C1 -3.325 -4.544 1/3 + 1/3 

UCK2 NM_012474 Uridine-cytidine kinase 2 -2.207 -4.141 1/3 + 2/3 

NME1 NM_000269 NME/NM23 nucleoside 
diphosphate kinase 1 -2.580 -3.988 1/3 + 1/3 

PIK3CG NM_002649 
Phosphoinositide-3-
kinase, catalytic, gamma 
polypeptide 

-2.126 -3.892 1/3 + 1/3 

CDK10 NM_052987 Cyclin-dependent kinase 
10 -2.390 -3.863 1/3 + 2/3 

AKAP7 NM_004842 A kinase (PRKA) anchor 
protein 7 -2.421 -3.815 1/3 + 1/3 

PXK NM_017771 PX domain containing 
serine/threonine kinase -2.583 -3.801 1/3 + 1/3 
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Gene 
Symbol RefSeq ID Full gene name 

Max. 
z-score 

(primary) 

Max. z-score 
(reconfirm.) 

no. siRNA 
primary + 
reconfirm. 

above 
threshold 

ITPKA NM_002220 Inositol 1,4,5-
trisphosphate 3-kinase A -4.064 -3.761 1/3 + 1/3 

RPS6KA2 NM_001006932 
Ribosomal protein S6 
kinase, 90kDa, 
polypeptide 2 

-2.660 -3.673 1/3 + 1/3 

FRK NM_002031 Fyn-related kinase -2.100 -3.612 1/3 + 2/3 

CDK7 NM_001799 Cyclin-dependent kinase 7 -2.846 -3.563 2/3 + 1/3 

KSR2 NM_173598 Kinase suppressor of ras 2 -8.456 -3.559 1/3 + 1/3 

MAP2K3 NM_002756 Mitogen-activated protein 
kinase kinase 3 -2.696 -3.441 1/3 + 1/3 

PASK NM_015148 PAS domain containing 
serine/threonine kinase -2.254 -3.405 2/3 + 1/3 

STK32B NM_018401 Serine/threonine kinase 
32B -2.503 -3.391 1/3 + 2/3 

FGFR2 NM_000141 

Fibroblast growth factor 
receptor 2 (bacteria-
expressed kinase, 
keratinocyte growth factor 
receptor, craniofacial 
dysostosis 1, Crouzon 
syndrome, Pfeiffer 
syndrome, Jackson-Weiss 
syndrome) 

-2.064 -3.381 1/3 + 2/3 

IRAK4 NM_016123 Interleukin-1 receptor-
associated kinase 4 -2.325 -3.010 1/3 + 2/3 

NLK NM_016231 Nemo-like kinase -3.703 -2.998 2/3 + 1/3 

BRAF NM_004333 V-raf murine sarcoma 
viral oncogene homolog B1 -2.116 -2.892 1/3 + 1/3 

PRKG2 NM_006259 Protein kinase, cGMP-
dependent, type II -4.387 -2.837 1/3 + 2/3 

IGF1R NM_000875 Insulin-like growth factor 
1 receptor -2.080 -2.791 1/3 + 2/3 

FES NM_002005 Feline sarcoma oncogene -2.707 -2.676 1/3 + 1/3 

MAP4K2 NM_004579 
Mitogen-activated protein 
kinase kinase kinase 
kinase 2 

-2.728 -2.617 1/3 + 2/3 

RPS6KB1 NM_003161 
Ribosomal protein S6 
kinase, 70kDa, 
polypeptide 1 

-2.312 -2.606 1/3 + 2/3 

SPHK2 NM_020126 Sphingosine kinase 2 -2.350 -2.554 1/3 + 1/3 

DCAKD NM_024819 Dephospho-CoA kinase 
domain containing -2.099 -2.524 1/3 + 1/3 

CDKL1 NM_004196 
Cyclin-dependent kinase-
like 1 (CDC2-related 
kinase) 

-2.133 -2.407 1/3 + 2/3 

PIM1 NM_002648 Pim-1 oncogene -2.055 -2.317 1/3 + 1/3 
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Gene 
Symbol RefSeq ID Full gene name 

Max. 
z-score 

(primary) 

Max. z-score 
(reconfirm.) 

no. siRNA 
primary + 
reconfirm. 

above 
threshold 

NAGK NM_017567 N-acetylglucosamine 
kinase -2.003 -2.277 1/3 + 1/3 

ALPK3 NM_020778 Alpha-kinase 3 -2.078 -2.252 1/3 + 1/3 

HKDC1 NM_025130 Hexokinase domain 
containing 1 -2.207 -2.131 1/3 + 2/3 

MAST4 NM_198828 
Microtubule associated 
serine/threonine kinase 
family member 4 

-2.404 -2.049 1/3 + 1/3 

SGK269 XM_370878 NKF3 kinase family 
member -2.046 -2.015 1/3 + 1/3 

 

 

From the 26 potential HRFs, only 4 could be validated. This equals a 

reconfirmation rate of approximately 15%. Of note, the HRF from the primary 

screen with more than one siRNA fulfilling the hit criterion (CSK) was 

reconfirmed in this second screen. In addition, it was the hit with the top z-score 

of +4.936 in the reconfirmation screen. Out of the 26 reconfirmed HRFs, none 

scored with more than one of the siRNAs. Therefore only CSK was defined as 

“Strong HRF” based on the two scoring siRNAs from the primary screen. Table 

16 lists the four confirmed host dependency factors sorted by their maximum z-

score. In addition, the table indicates the gene symbol, the RefSeq ID, the full 

gene name, and the number of individual siRNAs from the three siRNAs used in 

the primary and the three from the reconfirmation screen which reached the 

threshold. 

 

 
Table 16 List of the 4 reconfirmed host restriction factors. 
Hit definition threshold: Minimum one siRNA yielding a z-score > +2 (sorted by z-score). All 
hits comply with the second threshold of p < 0.05. “Strong HDFs” are indicated in grey.  

Gene 
Symbol Ref Seq ID Full gene name 

Max. 
z-score 
(primary) 

Max. z-score 
(reconfirm.) 

no. siRNA 
primary + 
reconfirm. 
above 
threshold 

CSK NM_004383 C-src tyrosine kinase 2.727 4.936 2/3 + 1/3 

TAF1L NM_153809 

TAF1 RNA polymerase II, 
TATA box binding protein 
(TBP)-associated factor, 
210kDa-like 

3.042 3.185 1/3 + 1/3 
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Gene 
Symbol Ref Seq ID Full gene name 

Max. 
z-score 
(primary) 

Max. z-score 
(reconfirm.) 

no. siRNA 
primary + 
reconfirm. 
above 
threshold 

SNF1LK2 NM_015191 SNF1-like kinase 2 2.631 2.362 1/3 + 1/3 

CD2 NM_001767 CD2 molecule 2.149 2.111 1/3 + 1/3 

 

 

4.4 Exemplary single hit characterization 

 

The next step was to follow up on individual genes in order to validate the 

results from the screening assay. A detailed characterization of the role, 

relevance and function of each of the hits for HIV-1 assembly and release will be 

elucidated by future studies. However, as a proof for their relevance, a single hit 

was chosen for initial follow-up experiments.  

 

The bioinformatic analysis indicated the MAPK pathway as the top 

enriched pathway in the set of reconfirmed hits. Included in this pathway is 

Mitogen-activated protein kinase kinase kinase 14 (MAP3K14), one of the 

strongest hits of our screen. Furthermore, MAP3K14 was identified in the siRNA 

screen by Zhou et al. as a hit in their part addressing the late stages of HIV-1 

replication (283). See chapter 5.3 for further information regarding overlap with 

other RNAi screens. MAP3K14 is the crucial activator of the alternative NFkB 

activation pathway and is therefore also called NFkB inducing kinase (NIK) 

(284). Additional literature studies revealed that HIV-1 Tat enhances MAP3K14 

activity (285) and that MAP3K14 expression is increased after RSV infection 

(286). Paul Bieniasz’s group showed, that MAP3K14 influences the replication 

of several human viruses in response to type I interferon (287, 288). In silico 

sequence analyses for protein interaction motifs using the open source tool 

“Eukaryotic Linear Motif resource for functional sites in proteins” (ELM) (289, 

290) predicted binding sites in HIV-1 p6 for TRAF proteins, which are 

important activators of MAP3K14. Because of these reasons, MAP3K14 was 

chosen as an ideal example for follow-up studies at the time of the experiments.  
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The screen was based on bulk readout of fluorescence intensities in 96-

well plates. As a first step towards the follow-up characterization of single hit 

proteins, the effect was re-assessed in a different format. For this purpose, 293T 

cells were seeded into 12-well plates. The plates were incubated for ~7 hours in 

order to let the cells settle down and attach to the wells prior to transfection 

with the siRNAs: either a non-silencing control (nsc) siRNA or the top siRNA 

against MAP3K14 from the reconfirmation screen (siM3K14). Similar to the 

screening conditions, 30 hours post siRNA transfection, the wells were 

transfected with the 1:1 mixtures of WT or Late(-) proviral plasmid DNAs. After 

44 hours, supernatants and cell lysates were harvested and fluorescence 

intensities of the samples were measured. The experiment confirmed that 

siM3K14 reduced the relative release of Gag significantly in a different format 

and setting compared to the screening assay (Figure 4-19).  

 

 

 
Figure 4-19 siRNA against MAP3K14 reduced release in 12-well format 
(fluorescence) 
The graph shows the normalized fluorescence intensity, calculated by division of supernatant 
intensity by total intensity in lysate and supernatant (mean ± standard deviation) with n=3. 
Statistical analysis (one-sided ANOVA with Dunnett's multiple comparisons post-test, 
GraphPad Prism 6.05) compared to the WT/nsc result: ****= p<0.0001, ***= p<0.001. 

 

 

As a next step a different readout was chosen to address the effect 

independently of fluorescence. For this purpose, the release efficiency was 

measured using direct quantitation of HIV-1 CA. For this experiment, the same 

conditions were applied as above just using only the unlabeled WT and Late(-) 
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proviral plasmid DNAs. Figure 4-20 shows the results of the quantitative 

western blot with signals of supernatant normalized to total signal. Release 

efficiency was reduced by the siRNA targeting MAP3K14 by ~50%. This was 

comparable to the effect using eYFP fluorescence readout. 

 

 

   
Figure 4-20 siRNA against MAP3K14 reduced release in 12-well format (Western 
Blot)  
The graph shows the normalized p24 values obtained by quantitative Western Blot 
measurement of the intensities of the single bands using the LICOR Odyssey. Normalized values 
were calculated by division of supernatant intensity by total intensity in lysate and supernatant.  

 

 

Choudhary et al. showed that MAP3K14 expression was increased after 

RSV infection (286). In order to address the question if HIV-1 infection leads to 

a similar MAP3K14 increase, the expression was addressed by 

immunofluorescence of cells transfected with pcHIV. For this purpose, 293T 

cells were seeded in 6-well plates containing glass coverslips. 24 hours later, the 

cells were transfected with pcHIV proviral plasmid DNA. 36 hours later, cells 

were fixed and stained with antibodies against HIV-1 capsid (sheep anti p24, 

Kräusslich lab) and MAP3K14 (rabbit anti MAP3K14, Abcam). Nuclei were 

stained 4´,6-Diamidin-2-phenylindol (Dapi) in addition. Figure 4-21 shows 

increased MAP3K14 signal intensities in p24-positive cells.  
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Figure 4-21 MAP3K14 expression is increased in p24 positive cells  
293T cells were fixed and stained with Dapi 1:2000, sheep αp24 1:500, rabbit αMAP3K14 1:150. 
Capsid positive cells show an increased signal of MAP3K14.  

 

 

The exemplary follow-up of MAP3K14 shows clearly, that the results of the 

screen can be transferred to and confirmed by other experimental settings. 

Furthermore, Khan et al. showed that knockdown of TRAF proteins indeed 

caused a reduction of HIV-1 Gag release into the supernatant of macrophages in 

the meantime (291). The established screening assay yielded a list of novel host 

cell factors. Each of these hits has to be addressed by specific experiments in the 

future in order to fully understand their respective roles in HIV-1 assembly and 

release. For this purpose, the impact of the hereby identified proteins has to be 

confirmed for example in more relevant primary cells or by using specific 

inhibitors. 

 

 

4.5 Bioinformatical analysis  
 

To focus on single proteins is one aspect of the interpretation of the 

results. On the other side, cellular kinases are interlinked in big multi-step 

processes which orchestrate the different networks and signaling pathways in 

the cell. This screening assay identified 43 host cell factors (39 HDFs and 4 

HRFs) to be important for HIV-1 assembly and release. In order to understand 

the underlying processes, bioinformatical analyses were conducted. Parts of our 

previously described analysis roadmap were used for this bioinformatical 

analysis (292). 
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All hits were tested using the “Database for Annotation, Visualization and 

Integrated Discovery (DAVID, v6.7, 2015, http://david.abcc.ncifcrf.gov/) (276-

279). This set of algorithms was designed to generate functional annotations to 

gene sets in order to detect enriched groups or clusters of genes. As a 

background dataset, the complete list of genes included in the primary siRNA 

library was used in order to detect specifically enriched pathways and functional 

annotations from the set of kinases.  

 

As a first step, potential gene clustering was analyzed. The given data set of 

the 43 reconfirmed hits is hereby analyzed for certain keywords regarding the 

gene function. Mostly several generic kinase-specific enriched terms (e.g. 

phosphotransferase, ATP binding,…) were detected. In addition, the term 

“TNF/Stress related signaling” was found to be enriched. The results are listed 

in Table 17 stating the category, the term, the number of genes in the respective 

group, the p-value, and the fold enrichment.  

 

 
Table 17 DAVID gene clustering analysis of reconfirmed hits versus the complete 
kinase library as background 

Category Term 
Genes 
in 
group  

p-value Fold 
enrichment 

SP_PIR_KEYWORDS ATP 11 0.052 1.6 

SP_PIR-KEYWORDS Phosphotransferase 12 0.072 1.5 

GOTERM_MF_FAT Adenyl nucleotide binding 27 0.076 1.1 

GOTERM_MF_FAT Purine nucleoside binding 27 0.076 1.1 

GOTERM_MF_FAT Nucleoside binding 27 0.076 1.1 

GOTERM_MF_FAT ATP binding 27 0.076 1.1 

GOTERM_MF_FAT Adenyl ribonucleoside 
binding 27 0.076 1.1 

BIOCARTA TNF/Stress related 
signaling 3 0.078 3.6 

GOTERM_MF_FAT Purine nucleotide binding 27 0.08 1.1 

UP_SEQ_FEATURE Nucleotide phosphate-
binding region:ATP 23 0.093 1.1 
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As gene cluster categories are rather generic and too unspecific for pinning 

down crucial pathways, a functional annotation analysis was conducted 

subsequently. This analysis was based on gene ontology (GO) terms, which 

groups and identifies genes according to their networks and their functions in 

specific biological processes.  This analysis gave hints to functions which were 

shared by several of the identified hits. Categories involved in regulation of 

apoptosis, cell death as well as cell metabolism were especially enriched – each 

with 7 hits per category. Table 18 lists the results from the functional annotation 

analysis including the category, the term, the number of genes in the respective 

group, and the p-value.  

 

 
Table 18 DAVID functional annotation analysis of reconfirmed hits versus the 
complete kinase library as background 

Category Term 
Genes 
in 
group  

p-value 

GOTERM_MF_FAT Negative regulation of apoptosis 7 0.025 

GOTERM_MF_FAT Negative regulation of cell death 7 0.028 

GOTERM_MF_FAT Negative regulation of programmed cell death 7 0.028 

GOTERM_MF_FAT Regulation of transcription, DNA-dependent 5 0.035 

GOTERM_MF_FAT Regulation of RNA metabolic process 5 0.047 

SP_PIR-
KEYWORDS Transcription 4 0.06 

SP_PIR-
KEYWORDS Transcription regulation 4 0.06 

GOTERM_MF_FAT Regulation of cell proliferation 8 0.063 

GOTERM_MF_FAT Transcription 4 0.073 

 

 

In addition to the DAVID database tool, the Kyoto Encyclopedia of Genes 

and Genomes (KEGG) Mapper v2.5 (http://www.genome.jp/ 

kegg/mapper.html, Copyright 1995-2015 Kanehisa Laboratories) was applied to 

the 43 validated hits as well. KEGG Mapper clusters proteins in well-defined 

signaling pathways. In comparison to the GO terms, the KEGG networks are 
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much more detailed and specific. It is especially suited to address interactions of 

proteins on the level of specific signaling pathways. Similar to the DAVID 

database tool, KEGG mapper revealed clusters or pathways related to both cell 

proliferation and cellular maintenance. In total, 10 pathways were identified 

with at least 4 of the reconfirmed hits.  The highest numbers of genes were 

found in the MAP kinase signaling pathway (7 hits), followed by the RAP1 (5 

hits) and mTOR pathways (4 hits). Table 19 lists all identified signaling 

pathways listing all identified genes.  

 

 
Table 19 KEGG Mapper signaling pathway analysis of the reconfirmed hits.  
Listed are pathways with 4 or more identified genes.  

KEGG term Number 
of Genes 

MAPK signaling pathway 
 FGFR2; fibroblast growth factor receptor 2 
 NLK; nemo-like kinase 
 MAP2K3; mitogen-activated protein kinase kinase 3  
 MAP4K2; mitogen-activated protein kinase kinase kinase kinase 2  
 RPS6KA2; ribosomal protein S6 kinase, 90kDa, polypeptide 2  
 BRAF; B-Raf proto-oncogene, serine/threonine kinase  
 MAP3K14; mitogen-activated protein kinase kinase kinase 14  

7 

RAP1 signaling pathway 
 FGFR2; fibroblast growth factor receptor 2 
 IGF1R; insulin-like growth factor 1 receptor 
 PIK3CG; phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit γ 
 MAP2K3; mitogen-activated protein kinase kinase 3 
 BRAF; B-Raf proto-oncogene, serine/threonine kinase  

5 

mTOR signaling pathway 
 PIK3CG; phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit γ 
 RPS6KA2; ribosomal protein S6 kinase, 90kDa, polypeptide 2  
 RPS6KB1; ribosomal protein S6 kinase, 70kDa, polypeptide 1  
 BRAF; B-Raf proto-oncogene, serine/threonine kinase 

4 

Insulin signaling pathway 
 PIK3CG; phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit γ 
 RPS6KB1; ribosomal protein S6 kinase, 70kDa, polypeptide 1  
 BRAF; B-Raf proto-oncogene, serine/threonine kinase 
 HKDC1; hexokinase domain containing 1 

4 

PI3K-Akt signaling pathway 
 FGFR2; fibroblast growth factor receptor 2 
 IGF1R; insulin-like growth factor 1 receptor 
 PIK3CG; phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit γ 
 RPS6KB1; ribosomal protein S6 kinase, 70kDa, polypeptide 1 

4 

HIF-1 signaling pathway 
 IGF1R; insulin-like growth factor 1 receptor 
 PIK3CG; phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit γ 
 RPS6KB1; ribosomal protein S6 kinase, 70kDa, polypeptide 1  
 hsa:80201 HKDC1; hexokinase domain containing 1 

4 
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KEGG term Number 
of Genes 

RAS signaling pathway  
 FGFR2; fibroblast growth factor receptor 2 
 KSR2; kinase suppressor of ras 2 
 IGF1R; insulin-like growth factor 1 receptor  
 PIK3CG; phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit γ 

4 

Fc gamma R-mediated phagocytosis 
 IGF1R; insulin-like growth factor 1 receptor 
 NLK; nemo-like kinase 
 PIK3CG; phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit 

gamma  
 BRAF; B-Raf proto-oncogene, serine/threonine kinase 

4 

FoxO signaling pathway 
 IGF1R; insulin-like growth factor 1 receptor 
 NLK; nemo-like kinase 
 PIK3CG; phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit γ 
 BRAF; B-Raf proto-oncogene, serine/threonine kinase 

4 

Neurotrophin signaling pathway 
 IRAK4; interleukin-1 receptor-associated kinase 4 
 PIK3CG; phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit  
 RPS6KA2; ribosomal protein S6 kinase, 90kDa, polypeptide 2 
 BRAF; B-Raf proto-oncogene, serine/threonine kinase 

4 

 

 

The KEGG pathway database contains in addition maps for all the 

described pathways. For all 10 enriched pathways, the respective map was 

adapted to indicate the genes which were validated in the reconfirmation 

screen. As an example, Figure 4-22 shows the map of the MAPK signaling 

pathway, showing the seven hits highlighted in pink color. Interestingly, the 7 

hits identified are not in direct interaction with each other but from different 

parts of the MAPK signaling pathway. The maps of the other pathways are 

included in the appendix 3. All maps were generated using KEGG Mapper and 

all hit genes are indicated in red.  
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Figure 4-22 KEGG pathway map of the MAPK signaling pathway. 
The map shows the MAPK signaling pathway based on the KEGG database. The seven hits, 
falling into this network, are indicated in red. Figure created using KEGG Mapper v2.5. 

 

 

The results from the bioinformatical analysis offer a promising starting 

point to understand the specific role and importance of the identified host cell 

factors. Several screens were performed at the point of time of this work. Each 

was conducted in distinct technical settings with only a limited overlap of single 

proteins (discussed in chapter 5.3). However, comparing the identified signaling 

networks leads to the realization that the underlying pathways of the respective 

hits overlap to a much greater extent than the mere protein level. This indicates 

the importance of combinatory pathway analyses for screening approaches 

which are elucidated in more depth in chapter 5.4 in the following discussion. 
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5 Discussion 
 
 

Having novel tools available to illuminate the virus host interactions is 

essential for a better understanding of HIV-1 replication. In recent years, 

screening platforms using RNAi emerged as a powerful tool to address that 

interaction (260).  

 

5.1 Establishment of the screening assay 
 

In this work, a novel screening assay was successfully established to 

address the interplay between cellular proteins and the assembly and release of 

new viral particles. The platform is versatile and requires only a limited set of 

manual steps supported by automated liquid handling machines, which allow its 

application for high throughput screening. It is tailored for a use of 96-well 

plates but 384-well plates can be used as well. It was shown, that the platform is 

robust, easy to use, and yields stable and reproducible results and signal-to-

background ratios. The assay was tailored to screening medium to large sets of 

reverse transfected siRNAs. However, it is as well suitable for other screening 

approaches, such as testing of chemical compounds. Figure 5-1 gives an 

overview of the assay from the beginning with pre-spotted multi-well plates to 

the statistical and bioinformatical analysis. 

 

 

 
Figure 5-1 Overview of the established screening assay  
The complete siRNA screening assay covers all steps from preparation of the siRNAs, conduct of 
the actual assay to the statistical and bioinformatical analysis of the results.  
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There are several options to detect and quantify HIV-1 release, as 

discussed below. Current automatic microscopy techniques offer a lot of 

possibilities for high content screening. Another, microscope based, siRNA 

screening assay was established in our group simultaneously (274). However, 

microscopy excels at observations of cells but the newly formed viral particles 

are released into the supernatant, which makes a microscopic readout 

unsuitable. An in-house ELISA to detect the HIV-1 capsid protein (p24), for 

example, would have given the sufficient sensitivity and specificity to measure 

viral particle release. However, it lacks the technical feasibility to run many 

samples in a very concise time frame, which is indispensable for a HTS format. 

Previous siRNA screens used reporter enzymes such as luciferase (258, 293) or 

β-galactosidase (283), which were responsive to HIV-1 transcription. These 

readouts give a strong signal and a good signal-to-background ratio. But these 

reporter enzymes are not incorporated into the viral particles and can therefore 

hardly be applied to directly measuring released viruses. Methods exist to 

directly quantify released viral particles as well. One of them would be to 

harvest the supernatant containing the newly released viruses and to measure 

the reverse transcriptase activity (294). However, this type of assay is costly 

which makes it more suitable for smaller sets of target proteins. A second option 

would be to apply the supernatant to new cells and thereby allowing a second 

round of infection during which a reporter gene is expressed in the new target 

cell (212, 283). However, this poses a disadvantage, as it only yields an indirect 

indication of release efficiency, as signals could be shrouded by release 

independent effects between entry and translation in the reporter cell. In 

contrast to these limitations of the various aforementioned methods, the 

previously published viral construct pcHIVeYFP harboring an fluorescently 

labeled Gag (238) is uniquely suitable for this specific purpose. The readout is a 

unique feature of this platform, enabling the direct quantification of released 

virus like particles. The assay consequently requires only a few handling steps, 

no costly reagents and offers a high signal-to-noise ratio.  

 

The technique of reverse transfection offers a great flexibility for genome 

wide siRNA screening, as the plates, which contain the siRNAs and the 

transfection reagent, can be prepared and stored (269, 270). This reduces the 
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workload on the actual day of conducting the screen, which is especially 

advantageous for the screening of large libraries. The standardized production 

process ensures high quality and reproducible transfection results. Protocols for 

both 96-well and 384-well plates are available from our collaborator Holger 

Erfle (BioQuant, University of Heidelberg, Germany). Both parts of the 

screening of human kinases (primary and reconfirmation screen) used three 

different siRNAs per target gene each (in total six), which is crucial for 

excluding off-target effects. In addition, it is important not to place siRNAs 

against the same target into adjacent wells of the same multi-well plate. This 

could cause artifacts such as edge-well effects or other technical inhomogeneity.  

 

For this assay, 293T cells were chosen, as they resulted in the optimal 

signal strength and lowest variance. However, cell lines like 293T cells or even 

T-cell lines do not fully represent all aspects of cell types relevant for HIV-1 

infections in vivo, e.g. primary T-cells. However, 293T cells are routinely used 

by many labs for HIV particle production. But of course, all hits from this initial 

screening assay will have to be separately evaluated in other assays, including 

primary T-cells.  

 

The results of the establishment phase showed, that the screen yielded a 

very low variability within a plate and between different plates (Figure 4-9).  In 

general, the variance in the 96-well plate format is much lower compared to the 

384-well plates.  In addition, the signal ratio between “WT” and “Late(-)” is 

bigger (~8 fold vs. ~4 fold, Figure 4-11). However, the 384-well format is 

nevertheless applicable for high-throughput screens in the future.  

 

The relevance of the established assay’s results was proven by testing 

siRNAs against known dependency factors. Especially a knockdown of TSG101 

resulted in a strong decrease of the fluorescence intensity in the supernatant 

(Figure 4-13). Although not as strong as TSG101, siRNAs targeting VPS4 showed 

a statistical significant effect as well (Figure 4-14). Interestingly, the knockdown 

times for both targets to generate an optimal result differed greatly. While for 

TSG101 shorter knockdown durations gave better results, VPS4 needed a longer 

time period. Knockdown durations can be optimized for single targets. 
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However, a general limitation of high throughput RNAi screens per se is, that a 

routine and comprehensive parallel examination of the knockdown efficacy (e.g. 

by RT-qPCR or quantitative Western Blotting) is not feasible with time and 

budget restraints. Therefore it is not guaranteed that the siRNA transfection 

indeed led to reduction of the protein expression in the cell. Furthermore, as 

proteins differ in their respective turn-over times it is not possible to silence 

every gene equally efficiently. Regardless of the limitations, RNAi screening 

assays are a very powerful tool to identify host cell factors. 

 

In comparison to other published HIV-1 screens (212, 258, 283), the 

hereby described platform is the first of its kind especially tailored to investigate 

the steps between transcription and viral egress. Altogether, this screening 

platform offers a novel, stable and valuable addition to the existing approaches.  

 

5.2 Focus on the cellular conductors: Results from the 
kinase screen 

 
 

After successful establishment of the screening assay, a siRNA library 

targeting 724 human kinases and accessory proteins were tested. Hits from the 

primary screen were re-tested in the reconfirmation screen. For this, siRNAs 

which were distinct from the ones used in the primary screen were used. The 

screening of a kinase library revealed 43 validated hits. These include 39 HDFs 

(Table 15) and four HRFs (Table 16). Out of those, 19 HDFs and 1 HRF were 

defined as “Strong HDF” or “Strong HRF”, respectively.  Table 20 gives a 

summary of the results from the primary and the reconfirmation screen.  

 

 
Table 20 Summary of the results of the primary and reconfirmation screen 

Screen No. of genes tested HDF HRF 

Primary 724 50 26 

Reconfirmation 76 39 4 
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Interestingly, the screening assay yielded more HDFs than HRFs. This 

may hint to the fact that late stages of HIV-1 replication do not face similar tight 

restrictions as early stages, e.g. uncoating and reverse transcription being 

counteracted by TRIM5a or APOBEC3G. Alternatively, the possibility exists that 

this bias may be due to technical specificities of the detection method. 

 

Kinases of different pathways regulating growth, proliferation, 

differentiation, and survival of cells were suggested to play a role during the late 

phase of HIV-1 replication as shown in the results section 4.5 and discussed in 

section 5.4. In general, it makes sense for a virus to stimulate growth and 

survival of the infected cell to ensure consistent infection and survival of the 

virus itself. And it makes even more sense for the virus not to rely on a single 

pathway, but to make sure via the use of redundant signal modulation that the 

cell will rather survive and proliferate than undergo apoptosis or necrosis.  

 

In the following section, the results are discussed in the context of the 

current literature, in order to distinguish truly novel kinases arising from this 

work in contrast to previously described kinases from the literature. Of note, by 

the normalization of the supernatant signal to the total signal, any influence on 

cell numbers and translation or transcription should be removed from the set. 

The fact that some of the host cell factors below are described to be involved in 

gene transcription is intriguing on the first glance. One possible explanation 

would be that this host cell factor for example influences the transcription of a 

specific release relevant cellular protein. Alternatively this host cell factor may 

also have a separate function independent on its known role during e.g. 

transcription. The exact relevance and mode of action has to be determined in 

future studies. 

 

5.2.1 Host dependency factors 
 

The following proteins were identified in the primary screen and then 

validated during the reconfirmation screen. Host dependency factors elicit a 

positive effect on HIV-1 and a knockdown of these proteins leads to a 

diminished assembly and release of viral particles. 
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 Sphingosine kinase 1 and sphingosine kinase 2 (SPHK1, SPHK2) 

Sphingosine kinases phosphorylate sphingosine to the lipid mediator 

sphingosine-1-phosphat (295). Sphingosine kinase 1 (SPHK1) is located at the 

plasma membrane, while SPHK2 is located in the endoplasmic reticulum, the 

nucleus and mitochondria (296).  SPHK1 and S1P play a role in cell signaling, 

cell survival, and (pro-inflammatory) immunomodulation (296). Infections may 

lead to either increased (human cytomegalovirus, respiratory syncytial virus) or 

reduced (bovine viral diarrhea virus, dengue virus) SPHK1 activity (297). A 

recent microarray of human B cells reported upregulation of SPHK1 by the HIV-

1 gp120 protein when interacting with the integrin α4β7 (298).  In our study, 

silencing of SPHK1 led to the strongest impairment of virus release of the 

complete siRNA set, further corroborating the relevance of the enzyme for 

HIV-1 life cycle. In addition, targeting SPHK2 led to an impaired release of 

HIV-1 as well, albeit in a lesser extent compared to SPHK1. To date, the effect of 

modulation of the SPHK1/S1P axis before or after HIV-1 infection was only 

tested in preclinical studies with the S1P analog Fingolimod (FTY720) in 

macaques without benefits regarding virus permission or lymphocyte trafficking 

(299, 300). However, the modulation of SPHK1 is an emerging field and future 

studies might be required to discover the point of vantage for SPHK1/S1P axis 

modulation in HIV-1 infection. Of note, recent studies showed that inhibition of 

SPHK2, the intracellular sphingosine kinase, can lead to tumor regression (301, 

302). The effect of SPHK1 on HIV-1 associated tumors like Kaposi’s sarcoma 

remains to be determined.  

 

 Neurogranin (NRGN) 

The protein neurogranin is not a kinase itself, it participates in the protein 

kinase C signaling pathway and regulates the availability of the second 

messenger calmodulin (303). Calmodulin is involved in the modulation of 

inflammatory signals. In peripheral blood mononuclear cells (PBMCs) of HIV-1 

patients, neurogranin mRNA was shown to be downregulated in response to 

virus replication (304). This seems at first glance to be at odds with our results, 

however, it might indicate that, although neurogranin plays a role in HIV-1 

replication and release, the virus leads to a downregulation of neurogranin and 

thus a modulation of inflammation at a later stage.   
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 Plexin A2, Plexin C1 

The kinase siRNA library used in this study was predesigned by our 

collaboration partners and contained additional non-kinase proteins. Two of 

these proteins, plexin A2 and plexin C1, belong to the family of plexins, namely 

transmembrane receptors for semaphorins. Viral semaphorins were shown to 

modulate the immune response by binding to plexins such as Plexin A2 or 

Plexin C1 (305). A role of plexins in HIV-1 infections has not yet been described.  

 

 Mitogen-activated protein kinase kinase kinase 14 (MAP3K14) 

MAP3K14 stimulates NFkB activity and is therefore also called NFkB 

inducing kinase (NIK) (284). The effect of silencing of this MAP kinase for HIV 

replication was already shown in another siRNA screen by Zhou et al. (283) and 

HIV Tat was revealed as the HIV component that enhances the activity of this 

kinase (285). In addition, Paul Bieniasz’s group showed, that MAP3K14 

influences the replication of several human viruses in response to type I 

interferon (287). Interestingly, the HIV p6 domain contains a motif, which has 

been predicted to be able to bind TRAF proteins which activate MAP3K14 (in 

silico sequence analysis with Eukaryotic Linear Motif, ELM, http://elm.eu.org/, 

(289, 290)). In the meantime, Khan et al. showed that knockdown of TRAF 

proteins indeed caused a reduction of HIV-1 Gag release into the supernatant of 

macrophages (291).  

 

 3'-phosphoadenosine 5'-phosphosulfate synthase 1 (PAPSS1) 

PAPSS1 is a bifunctional enzyme involved in the production of 3'-

phosphoadenylylsulfate (PAPS), the co-factor of sulfotransferases. The kinase 

part transfers a phosphate group from ATP to adenosine 5'-phosphosulfate 

(APS) yielding PAPS. Sulfotransferases catalyze the sulfonation of endogenous 

substrates like lipids, peptides or hormones as well as xenobiotics (306). HIV-1 

transcription in different cell types was reported to be dependent on this 

sulfonation (306) and sulfonation inhibitors can block HIV-1 transcription 

initiation (307). As discussed at the beginning of this section, effects on 

transcription were excluded due to normalization of the HIV-1 related 

fluorescence in the supernatant to the total HIV-1 related fluorescence. This 

may be due to PAPSS1 controlling the transcription of an important release 
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factor or to an additional function other than direct modulation of HIV-1 

transcription. PAPSS1 was the only target for which three different siRNAs 

showed effects above the threshold in the reconfirmation screen. This makes it a 

very promising candidate for future investigations. 

 

 Glycerate kinase (GLYCTK) 

The kinase catalyzes the phosphorylation of (R)-glycerate and may be 

involved in serine degradation and fructose metabolism (308). An interaction 

with HIV-1 or any other virus has not yet been described.  

 

 Uridine-cytidine kinase 2 (UCK2) 

This enzyme catalyzes the phosphorylation of uridine and cytidine (309, 

310). An interaction with HIV has not yet been described.  

 

 NME/NM23 nucleoside diphosphate kinase 1 (NME1) 

Reduced mRNA transcript levels of NME1 were first identified in highly 

metastatic cells (311). It is therefore assumed to be a metastasis suppressor. An 

interaction with HIV-1 has not yet been described. 

 

 Phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit 

gamma (PIK3CG) 

The PIK3CG is a catalytic subunit of PI3K, which phosphorylates 

phosphatidylinositol-4,5-bisphosphate to Phosphatidylinositol-(3,4,5)-

trisphosphate (PI3P). Amongst other, PI3K is involved in AKT and mTOR 

signaling (312). PI3K activity is modulated by different components of HIV and 

plays a role in the HIV-1 modulation of the inflammatory response (313, 314), 

for example via expression of the cytokine CCL5 (315, 316) and downregulation 

of MHC-I (317, 318). PI3K also plays a role in replication of HIV-1, as inhibitors 

of PI3K showed a strong reduction of HIV-1 production in human PBMCs (319). 

The gp120 and the Tat proteins are responsible for PI3K induced virus 

replication and survival of the host cell (320, 321). The Nef protein “hides” the 

infected cell from the immune system by blocking the transport of MHC class I 

molecules to the cell surface in a PI 3-kinase-dependent way (322).  
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 Cyclin-dependent kinase 10 (CDK10) 

Cyclin-dependent kinases are essential for cell cycle progression (323). All 

CDKs depend on specific cyclins to be active, which is cyclin M in case of CDK10 

(324).  An interaction of CDK10 and HIV-1 has not yet been described. 

 

 A kinase (PRKA) anchor protein 7 (AKAP7) 

The A-kinase anchoring proteins are a group of functionally related 

proteins that bind to a regulatory subunit of cAMP-dependent protein kinase A 

(PKA) and target the enzyme to specific subcellular compartments depending 

on their targeting motifs (325). No direct interactions of AKAP7 and HIV-1 have 

been described. Interestingly, association of PKA to the virus is required as a 

cofactor for optimal reverse transcription of HIV-1 (326). Jiang et al. (293) 

described PRKACB, a subunit of PKA, to be involved in the replication of HIV-1. 

Our results are the first to indicate that AKAP7 might play a role in the release 

of HIV-1, while the specific role of the cAMP-dependent protein kinase A (PKA) 

enzyme remains to be determined. 

  

 PX domain containing serine/threonine kinase (PXK) 

PXK contains a phox (PX) domain and is involved in the trafficking of 

cellular receptors like the epidermal growth factor receptor and the B-cell 

receptor (327, 328).  It may be associated with susceptibility to systemic lupus 

erythematosus (328), but an interaction with HIV-1 has not yet been described. 

 

 Inositol 1,4,5-trisphosphate 3-kinase A (ITPKA) 

ITPKA is responsible for regulating the levels of a large number of inositol 

polyphosphates that are important in cellular signaling (329-331). Direct 

interaction of ITPKA with neither HIV nor other viruses has yet been described.  

 

 Ribosomal protein S6 kinase, 90 kDa, polypeptide 2 (RPS6KA2) 

The ribosomal protein S6 kinase, 90 kDa, polypeptide 2 (RPS6KA2) is a 

member of the RSK family of kinases. In human peripheral blood monocytes, 

the RSK2 was overexpressed on the mRNA level after HIV-1 infection (332). It 

is recruited and activated by Tat (333) and is reciprocally important for Tat 

function. 
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 Fyn-related kinase (FRK) 

The Fyn-related kinase (FRK) is a nuclear tyrosine kinase that regulates 

cell survival, differentiation and proliferation (334). Direct interactions with 

HIV-1 have not yet been described. 

 

 Cyclin-dependent kinase 7 (CDK7) 

This enzyme interacts with cyclin H and MAT1, which results in a complex 

responsible for the activating of other CDKs (CDK activating kinase (CAK)) and 

regulation of the cell cycle (335). To achieve hyperphosphorylation of C-

terminal domain (CTD) repeats of RNA polymerase II (Pol II), a prerequisite for 

transcriptional elongation of HIV-1, Tat binds directly to CDK7 (336, 337). Of 

note, in this study virus release and not direct effects on transcription were 

tested as described for PAPSS1, this could indicate an additional role of CDK7 in 

a later step of HIV-1 infection.   

 

 Kinase suppressor of ras 2 (KSR2) 

KSR2 is involved in cell proliferation and differentiation (338, 339) and 

has been suggested as a marker for immortalized cells (338). Interactions with 

HIV-1 have not yet been described.  

 

 Mitogen-activated protein kinase kinase 3 (MAP2K3) 

The mitogen-activated protein kinase kinase 3 phosphorylates and thus 

activates MAPK14/p38-MAPK which is linked to inflammation, cell cycle, cell 

death, development, cell differentiation, senescence and tumorigenesis in 

specific cell types (340). HIV-1 Tat associates with the respective kinase 

promoter and thus leads to increased gene expression of MAP2K3 (341).  

 

 PAS domain containing serine/threonine kinase (PASK) 

PASK is a nutrient responsive kinase regulating energy balance of the cell 

(342-344) as well as cell proliferation and survival (345). Interactions with HIV-

1 have not yet been described, however, energy metabolism is essential for cell 

viability and virus replication, and thus it makes sense that HIV-1 could 

intervene here as well.  
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 Serine/threonine kinase 32B (STK32B) 

The function of STK32B is not known and therefore no deduction is 

possible regarding its relevance for HIV-1. 

 

 Fibroblast growth factor receptor 2 (FGFR2) 

The transmembrane fibroblast growth factor receptor 2 (FGFR2) consists 

of a cytosolic tyrosine kinase domain, which transduces the signals of different 

fibroblast growth factors (FGFs) to the MAPK cascade. HIV-1 Tat synergizes 

with the FGFR-2 ligand FGF-2 to prevent apoptosis (346), but although the 

basic domain of HIV-1 Tat was already identified as an essential component for 

this interaction (347), the exact mechanism remains to be elucidated. Both 

HIV-1 Tat and FGF-2 compete for the secreted Fibroblast Growth Factor 

Binding Protein-1 (FGFBP1) a protein that potentiates the effect of FGFs in 

target cells (348). Pre-treatment of endothelial cells with FGF2 protects cells 

from HIV-1 toxicity (349), maybe by competing for the same receptor. It may be 

hypothesized that HIV-1 Tat might use the FGFR-2 in a FGFBP1-dependent 

manner, leading to activation of the MAPK pathway and increased cell 

proliferation. 

 

 Interleukin-1 receptor-associated kinase 4 (IRAK4) 

IRAK4 is involved in signaling innate immune responses from Toll-like or 

T-cell receptors (350). HIV-1 infection is associated with an increased risk of 

bacterial infections, and indeed HIV-1 was reported to downregulate IRAK4 

expression, leading to impaired TLR signaling (351), hindering the appropriate 

immune response. In our study, HIV-1 release was reduced after silencing of 

IRAK4, indicating that the virus first might use the kinase IRAK4 for release 

and afterwards or even thereby disturbs its function to suppress the innate 

immune response.  

 
 
 Nemo-like kinase (NLK) 

The nemo-like kinase (NLK) is an atypical member of the MAPK pathway 

(352). Similar to other MAP kinases, its predominant role is in cell proliferation 

and differentiation via the WnT signaling pathway (353). Interactions of neither 

HIV-1 nor other viruses with NLK have yet been described.  
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 B-Raf proto-oncogene, serine/threonine kinase  

B-Raf is a member of the Raf kinase family, which consists of A-Raf, B-Raf 

and C-Raf (Raf-1). These kinases transduce growth signals via the MAPK/ERK 

signaling pathway leading to cell division and differentiation. Interactions of 

HIV-1 with C-Raf have been reported (354-358), while the role of B-Raf in HIV-

1 life cycle remains to be determined. 

 

 Protein kinase, cGMP-dependent, type II (PRKG2) 

PRKG2 alias CGKII inhibits renin secretion, chloride/water secretion in 

the small intestine, the resetting of the clock during early night, and 

endochondral bone growth (359). An interaction with HIV-1 has not yet been 

described.  

 

 Insulin-like growth factor 1 receptor (IGF1R) 

Activation of the transmembrane receptor IGF-1R results in proliferation 

or muscle cell growth. The endogenous IGF-1R ligand IGF-1 is reduced in HIV-1 

patients due to growth hormone resistance (360) and the IGF-1 receptor was 

shown in vitro to be upregulated after exposure to gp120 in neurons (361). This 

upregulation might suggest compensation for low IGF-1 levels, however, 

recently it was reported that low IGF-1 plasma and CSF levels might rather be 

due to treatment with antiviral drugs and not the virus itself (362, 363). The 

increased IGF-1R levels in HIV-exposed neurons might as well simply aim at 

cell proliferation facilitating virus replication as consistent with the impaired 

HIV-1 release after silencing of IGF-1R in this study.  

 

 Feline sarcoma oncogene (FES) 

FES has tyrosine-specific protein kinase activity required for maintenance 

of cellular transformation (364, 365). In AIDS patients, cases of lymphomas had 

HIV-1 integration upstream from the c-fes proto-oncogene (366), indicating a 

direct contribution of the virus to HIV-1 associated lymphomas. In our study, 

HIV-1 expression was impaired after silencing of FES, adding a potential new 

HIV-1 interaction to this oncogene.  
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 Mitogen-activated protein kinase kinase kinase kinase 2 

(MAP4K2) 

MAP4K2 may be a regulator of NFκB signaling and thus contributing to 

cancer development (367). It might as well be required to transduce signals 

from TGFβ receptor to p38 (368). No interactions with HIV-1 have yet been 

described for this underexplored MAP Kinase. However, in a recent shRNA 

screen with HIV-1, MAP4K2 was identified as a host cell factor influencing the 

replication of the virus (294). 

 

 Ribosomal protein S6 kinase, 70kDa, polypeptide 1 (RPS6KB1) 

This enzyme is a member of the ribosomal S6 kinase family of 

serine/threonine kinases promoting protein synthesis, cell growth, and cell 

proliferation (369). It was recently suggested as a potential biomarker or even 

potential target for treatment of diffuse large B-cell lymphoma (DLBCL) in 

patients positive for HIV-1 (370), because RPS6KB1 was more frequently 

detected in common variants of DLBCL associated with HIV infection. The 

results of our study indicate that RPS6KB1 might be required for HIV-1 release, 

corroborating the hypothesis that this kinase might be a potential target for 

future therapies.  

 

 Sphingosine kinase 2 (SPHK2) 

For a description of SPHK2, please see the paragraph on SPHK1.  

 

 Dephospho-CoA kinase containing domain (DCAKD) 

The function of DCAKD is not known and therefore not deduction is 

possible regarding its relevance for HIV-1. 

 

 Cyclin-dependent kinase-like 1 (CDC2-related kinase) (CDKL1) 

CDKL1 is overexpressed in malignant tumors (371) and plays a role in cell 

cycle regulation (372): Knockdown of CDKL1 in melanoma cells led to arrest of 

the cells in G1 phase (372). An interaction with HIV or any other virus has not 

yet been described.  
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 Pim-1 oncogene (PIM1) 

Pim kinases are implicated in the regulation of apoptosis, metabolism, and 

the cell cycle (373).  PIM-1 was reported to act as a key switch involved in HIV-1 

latency control (374). The authors conclude that PIM-1 activity is required for 

HIV-1 reactivation in both T cell lines and primary CD4 T cells. This is in line 

with the results of our study and might indicate that HIV-1 replication is 

dependent on PIM-1 in the special situation of virus reactivation.   

 

 N-acetylglucosamine kinase (NAGK) 

NAGK is involved in posttranslational modification of amino sugars. Its 

metabolic pathway yields UDP-acetylglucosamine (UDP-GlcNAc), a substrate 

for O-GlcNAc transferase (OGT), which modifies cytosolic and nuclear proteins 

associated with regulatory functions ranging from transcription, translation, cell 

signaling, and stress response to carbohydrate metabolism (375, 376). 

Overexpression of OGT, however, seems to rather inhibit the activity of the 

HIV-1 LTR promoter (377). This discrepancy to our study might either point 

towards a direct interaction of HIV-1 with NAGK and/or the resulting UDP-

GlcNAc or it might be based on experimental differences, because in our 

experiment a CMV promoter was used instead of a LTR promoter. However, 

both results link viral replication and release to the glucose metabolism of the 

host cell and the establishment of metabolic treatment might provide a 

beneficial addition to conventional HIV-1 therapies in the future.  

 

 Alpha-kinase 3 (ALPK3) 

Alpha-kinases were first described in the mid-nineties (378). ALPK3 plays 

a critical role in cardiomyocyte differentiation (379) and knock-out of ALPK3 

leads to nonprogressive cardiomyopathy (380). Interactions with HIV-1 or any 

other virus has not yet been described.  

 

 Hexokinase domain containing 1 (HKDC1) 

Reduced expression of this putative hexokinase is associated with altered 

glucose homeostasis (381). HIV-1 Tat downregulates the HKDC1 expression in 

U-937 macrophages (382). This indicates a subsequent change in the glucose 

metabolism of these cells.  In our study, HKDC1 was required for HIV-1 release. 
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These results again link viral replication to the glucose metabolism of the host 

cell as already described for NAGK.  

 

 Microtubule associated serine/threonine kinase family member 4 

(MAST4) 

MAST kinases are expressed throughout the body (383, 384). Their 

expression in brain might imply an involvement in neurological function (384), 

and a role in breast cancer was suggested was well (385), however, their actual 

substrates or biological function have not yet been identified. An interaction 

with HIV-1 or other viruses has not yet been reported.  

 

 NKF3 kinase family member (SGK269) 

Phosphorylation of SGK269 or Pseudopodium-enriched atypical kinase 1 

(PEAK1) plays a role in cell migration and proliferation (386, 387). An 

interaction of this recently described kinase with HIV-1 has not yet been 

described.  

 
 

5.2.2 Host restriction factors 
 

The following proteins were identified in the primary screen and then 

validated during the reconfirmation screen. The knockdown of these proteins 

leads to an increased release of viral particles. 

 

 C-src tyrosine kinase (CSK) 

CSK is involved in cell growth, differentiation, migration, and immune 

response. CSK phosphorylates and thus negatively regulates the family of src 

kinases (388), which themselves have been shown to play a role in HIV-1 

infections (389). A recent study revealed that high c-src activity is the cellular 

response of infected cells trying to slow the viral transcription (389). Here, our 

results showed an increase of HIV-1 release after CSK silencing, indicating an 

additional interaction of CSK and HIV-1 other than c-src mediated transcription 

control of the virus.  
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 TAF1 RNA polymerase II, TATA box binding protein (TBP)-

associated factor, 210kDa-like (TAF1L) 

TAF1L protein can bind directly to the TATA-binding protein which is 

required for transcription of protein-encoding genes (390). An interaction with 

HIV has not yet been described.  

 

 SNF1-like kinase 2 (SNF1LK2, SIK2) 

SIK2 is part of a cellular complex essential for glucose homeostasis (391) 

and thus takes part in energy metabolism of the cell. An interaction with HIV-1 

has not yet been described.  

 

 CD2 molecule (CD2) 

CD2 is a cell surface molecule expressed on T-cells and natural killer cells 

and plays a role in the activation of these cells. CD2 activates and induces latent 

HIV-1 replication in resting CD4+ T cells (392) and increases HIV-1 production 

in vivo (393). High CD2 expression also occurs in latently infected resting 

memory CD4+ T cells (394). Our current findings propose an additional role of 

CD2 in HIV-1 release.  

 

5.3 Individual hits in the context of current literature  
 

One way to pick hits for further more detailed investigations of their 

specific roles could be to focus on the most impressive effects detected in this 

work. Obvious candidates for this  approach would be SPHK1, which caused the 

strongest reduction of HIV-1 particle release after knockdown. Multiple hits, the 

so called “strong” HDFs and HRFs like MAP3K14 or PAPSS1, scored with 

several of the used siRNAs, making the result more robust and trustworthy. 

PAPPS1 was the only hit to be identified with all three distinct siRNAs reaching 

the threshold of the reconfirmation screen. This unambiguous result makes 

PAPSS1 a very promising target. The results of this work hint to a potential dual 

role as inhibition of PAPSS1 related sulfotransferases has already been shown to 

directly inhibit HIV-1 transcription (306) and this screen revealed another, not 

transcription related, mechanism. Maybe PAPSS1 regulates an important 

release factor? The clinical relevance of this finding and the potential use of 
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PAPSS1 antagonists will have to be determined in future studies. On the other 

hand, reconfirmed “strong” host cell factors not yet described in the HIV-1 

context may offer exciting new fields of research. Examples for these candidates 

may be Glycerate kinase (GLYCKT) or Fyn-related kinase (FRK).  

 

Follow-up testing of the identified hits are crucial to determine the real 

relevance and roles of the confirmed hits. MAP3K14 was chosen as an example 

for depicting the necessary next steps (section 4.4). At first, the transfer of the 

assay to bigger well format was successful and release efficacy reduction was 

comparable between the eYFP fluorescence measurement and a quantitative 

Western Blot measureing HIV-1 CA (Figure 4-19 and Figure 4-20). Also it 

should be addressed if the presence of HIV-1 in the cell has an influence on hit 

protein expression. Expression of MAP3K14 was indeed increased in HIV-1 

capsid positive cells by fluorescence microscopy (Figure 4-21). These initial 

experients show clearly that findings from the screening setting can successfully 

be transferred. Further experiments should encompass additional assays. For 

example, the siRNA’s knockdown efficacy has to be checked by quantitative 

Western Blot and quantitative realtime PCR. As stated above, only one 

knockdown time was tested during the screen. Although scoring under the assay 

conditions, a different knockdown duration might yield optimal results for some 

of the hits. This has to be evaluated in future experiments. The screening assay 

is based on 293T cells due to ease of handling and high transfection efficiencies. 

However, for subsequent experiments, the role of the host cell factors have to be 

addressed in more relevant T-cell lines or primary T-cells e.g. using shRNAs. 

Further experiments might include the investigation of direct protein-protein 

interactions between the hits and HIV-1 proteins. Further options would be 

combinatory knockdowns of hits within the same pathway to identify synergies.  

 

In addition, it is important to examine the results of the screen in the 

context of other published results. This is important to assess the quality of the 

findings and to determine possible candidates for follow-up studies. Several 

identified proteins were already described before to have an interaction with 

HIV-1. For example, 16 of the identified host cell factors were already included 

in the NCBI HIV-1 interaction database. Table 25 in the appendix lists all 
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currently described interactions from this database with the hits from our 

screen and the respective publications (by their Pubmed identification number). 

The current version of the NCBI HIV-1 interaction database can be found at 

http://www.ncbi.nlm.nih.gov/genome/viruses/retroviruses/hiv-1/interactions/ 

browse/. All of these interactions were mentioned in the individual discussion of 

each of the proteins above.  

 

This indicates a certain robustness and sensitivity of our current screening 

method, however, there were also candidates described in the literature for 

HIV-1 interaction that tested negative in our screen. ERK2, for example, was 

described to regulate viral assembly and release via phosphorylation of the p6 

domain of Gag (220). At the time of this work it was intriguing that ERK2 did 

not score as a hit in this screen. However, in the meantime it was shown that 

that p6 phosphorylation is dispensable for HIV-1 (241, 242). Therefore it is not 

so surprising anymore that ERK2 was not identified. Other kinases which were 

described in the context of HIV-1 release were LIM domain kinase 1 (LIMK1) 

and its activator Rho kinase 1 (ROCK1) (395), lymphocyte-specific protein 

tyrosine kinase (LCK) (396), or Interleukin 2 inducible T-cell kinase (ITK) 

(397). It was shown that inhibition of these kinases reduced HIV-1 assembly 

and/or release. All of these kinases were included in the siRNA library of the 

primary screen but none fulfilled the threshold criteria except for LIMK1 which 

then was not reconfirmed in the second screen. This may be due to the fact that 

the chosen knockdown time in this assay was not suitable for the protein 

turnover times of these kinases. They might score as hits at different time 

points. As stated above, a screening assay is only able to yield a snap-shot and 

cannot give a full picture.  

 

In addition it is crucial to compare the results with other published RNAi 

screens. True hits should also be positive with more than one screening method. 

In the last years, several screenings were conducted using RNAi to identify 

cellular proteins important for HIV-1 replication. Three of them used siRNAs in 

either 293T or HeLa cells (212, 258, 283) and four other screens relied on the 

usage of shRNA library transduced cells (293, 294, 398, 399). Overall the 

overlap rate between the published screens is surprisingly low (120, 260), albeit 
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each identified a huge number of proteins. This may be due to different settings 

of the individual screening approaches. All screens differ in cell lines, RNAi 

libraries, duration of knockdown, reporter assays, HIV-1 types, and other 

important factors such as statistical analysis and hit definition. For a more 

detailed reviews of the difference of four of the mentioned HIV-1 screens please 

see the publications from Bushman (120) and Hirsch (400).  

 

The results of this work as well show only a small overlap with the 

previously published screens. Only one overlap with each of Brass et al. (212), 

Zhou et al. (283), Jiang et al. (293), and Wen et al. (294); two overlaps with 

Yeung et al. (398); and no overlap with König et al. (258) or Rato et al. (399).  

Table 21 lists the overlap with the aforementioned screens.   

 

 
Table 21 Overlaps between the results of this work and published RNAi screens. 

Overlap with Gene 
symbol Ref Seq ID Full gene name 

 

Brass et al. (212) ITPKA NM_002220 Inositol 1,4,5-trisphosphate 3-kinase A 

Zhou et al. (283) MAP3K14 NM_003954 Mitogen-activated protein kinase kinase 
kinase 14 

Jiang et al. 
(293) HKDC1 NM_025130 Hexokinase domain containing 1 

Wen et al. (294) MAP4K2 NM_004579 Mitogen-activated protein kinase kinase 
kinase kinase 2 

Yeung et al. 
(398) PIK3CG NM_002649 Phosphoinositide-3-kinase, catalytic, gamma 

polypeptide 

Yeung et al. 
(398) IRAK4 NM_016123 Interleukin-1 receptor-associated kinase 4 

 

 

Interestingly some primary hits, which could not be validated during the 

reconfirmation screen showed up in the results of the other published screens as 

well. For example, BLK were identified by Jiang et al. (293) and LIMK1 was 

even the strongest hit in Wen et al. (294). 

 

On the first thought is seems to be astonishing to have such a low rate of 

similar hits resulting from all of these screening approaches. But as mentioned 

before, all of the screens differ in many details from each other and some 
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publications only conducted primary screens without any reconfirmation tests. 

As each of the screens reveals a shrouded view on a specific situation, it appears 

to be of much higher relevance to leave the level of individual proteins and move 

to their connecting pathways and networks. 

 

5.4 The broader picture: Signaling pathways 
 

Looking more closely on the relation of the identified proteins appears to 

be a better option to enhance the significance of the picture. Although the 

results of this work and the other publications differed greatly on the level of 

single proteins, it is interesting to note that similar pathways were identified in 

each case. Table 19 lists the enriched pathways from this work. The highest 

ranking pathways were the MAP kinase pathway, the RAP1 pathway, and the 

mTOR pathway. 

 

One striking example for the benefit of combinatory network analyses is 

the mechanistic Target of Rapamycin (mTOR) pathway. It is very complex and 

regulates several important functions in the cell – for example proliferation, 

survival, metabolism, growth, stress response, and cytoskeletal organization 

(312). Taking into account the closely related PI3K/AKT pathway, six different 

proteins were identified in this work, which are involved in this pathway. These 

include proteins from the beginning of the signaling cascade like growth factor 

receptors (FGFR2 and IGF1R), over intermediate regulators as PI3K and BRAF 

up to effectors downstream of the mTOR complex such as RPS6KA2 and 

RPS6KB1. In addition, the other screens reported many other parts of the 

mTOR pathway including the central regulator AKT (212, 283). A complete list 

is given in Table 22.  

 

 
Table 22 Identified members of the mTOR/PI3K/AKT pathway. 

Gene 
symbol Gene name Hit in 

AKT AKT serine/threonine kinase 1 (212, 283) 

AMPK 5' AMP-activated protein kinase (283) 
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Gene 
symbol Gene name Hit in 

ARF6 ADP ribosylation factor 6 (294) 

BRAF V-raf murine sarcoma viral oncogene homolog B1 Hermle 

FGFR2 

Fibroblast growth factor receptor 2 (bacteria-expressed kinase, 
keratinocyte growth factor receptor, craniofacial dysostosis 1, 
Crouzon syndrome, Pfeiffer syndrome, Jackson-Weiss 
syndrome) 

Hermle 

FOXO3 Forkhead box O3 (398) 

IGF1R Insulin-like growth factor 1 receptor Hermle 

IKBKB Inhibitor of kappa light polypeptide gene enhancer in B-cells, 
kinase beta (258) 

NFKB1 Nuclear factor kappa B subunit 1 (398) 

NRAS Neuroblastoma RAS viral oncogene homolog (398) 

PI3K Phosphoinositide-3-kinase Hermle, 
(258, 398) 

PPP2R1A Protein phosphatase 2 scaffold subunit Alpha (258) 

PPP2R5E Protein phosphatase 2 regulatory subunit B'epsilon (258) 

PTEN Phosphatase and tensin homolog (398) 

RPS6KA2 Ribosomal protein S6 kinase, 90kDa, polypeptide 2 Hermle 

RPS6KB1 Ribosomal protein S6 kinase, 70kDa, polypeptide 1 Hermle 

RRAS2 Related RAS viral (r-ras) oncogene homolog 2 (398) 

SGK1 Serum/glucocorticoid regulated kinase 1 (399) 

SHC1 SHC adaptor protein 1 (258) 

YWHAB Tyrosine 3-monooxygenase/tryptophan 5-monooxygenase 
activation protein beta (258) 

 

 

The identification of so many members of the PI3K/AKT/mTOR pathway 

makes it a very interesting candidate for follow-up studies. And indeed, recent 

publications added indications of an important role of this pathway for the 

replication of various viruses including HIV-1 (401).  As an example for the 

interplay of factors found to be involved in the PI3K/AKT/mTOR pathway, one 

noticeable signaling cluster is discussed in more detail. A group of the 
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components listed above represents the majority of a signaling cascade, which 

leads to the inhibition of FOXO transcription suppressors. FOXO inhibition 

leads to increased expression of several genes involved in cell survival, enhanced 

proliferation, and improved stress responses (402). PI3K activates AKT and 

SGK1 (and potentially activates mTOR complex 2 (mTORC2)). Active SGK1 

translocates into the nucleus and phosphorylates the transcription factor 

FoxO3, which in turn is excluded from the nucleus and is inactivated by 

additional phosphorylation by AKT. With FoxO3 inactive and removed from the 

nucleus, transcription of several genes is no longer blocked (403, 404). From 

this network, PI3K and SGK1 were identified in this work. Other screens 

identified PI3K, AKT, SGK1, and FoxO3. In addition, other upstream regulators 

of PI3K and mTORC2 were identified both in this work and other screens. An 

overview of the FoxO3 signaling network and its identified members are 

depicted in Figure 5-2. This hypothesis describes a signaling cascade, which 

potentially could influence HIV-1 expression in infected cells. Its role has to be 

elucidated in the future. 

 

 
Figure 5-2: Potential Foxo3 signaling cascade regulating proliferation. 
The map shows the described signaling cascade regulating FoxO3 and its role in protein 
expression, proliferation, and stress response. Blue circles indicate proteins, which were 
identified in RNAi screens (this work and other publications) to be involved in HIV-1 
replication. Open circles indicate HIV-1 independent proteins. Lines with an arrowhead indicate 
activation by phosphorylation, while lines with a blunt end mark inhibitory phosphorylations. 
The dashed line shows the assumed activation of mTORC2 by PI3K, which is currently debated. 
Based on (403).  
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Several hypotheses can be based on the identified signaling networks. An 

alternative role of the PI3K/AKT/mTOR especially during assembly and release 

of HIV-1 may be its involvement in the organization of the cytoskeleton and 

actin remodeling (405). It was shown, that PI3K, AKT and mTOR are involved 

in actin polymerization and cell migration (406). This is consistent to the fact 

that LIMK1, a very important activator of actin polymerization, was identified 

by Wen et al. (294, 395). As described above, LIMK1 was a primary hit in this 

work as well, but missed the threshold in the reconfirmation screen. 

Cytoskeleton organization was linked to HIV-1 assembly in the past, as actin 

filaments were detected in close proximity of and directing towards budding 

sites by cryo-EM (407). However, recent investigations by the group of Barbara 

Müller showed no effect of drugs, which either stabilize or destabilize actin 

filaments, on assembly efficiency (408).  A different process regulated by the 

mTOR pathway is autophagy, which was shown to be important for HIV-1, 

although not for assembly and release (409, 410). In addition, novel mTOR 

kinase inhibitors (TOR-KIs) were reported to inhibit replication of HIV-1 in 

humanized mice (411). All these facts combined, the PI3K/AKT/mTOR pathway 

appears to be a very prominent pathway involved in (but apparently not limited 

to) assembly and release of HIV-1 and more work has to be conducted in the 

future to unravel its details.  

 

5.5 Conclusion 
 

Multiple host cell factors were identified by this work. An involvement 

with HIV-1 assembly and release was already discussed for some of them in the 

literature but novel factors were described as well. The latter represent new 

targets for future investigations. Especially interesting hits represent SPHK1, 

which caused the strongest reduction of HIV 1 particle release after knockdown, 

or other “strong” host cell factors like MAP3K14 and PAPSS1. Although the 

overlap among several published screens is limited on a protein level, similar 

pathways were mutually identified, such as the MAPK or the PI3K/AKT 

pathways. This shows that the detection of individual hits is directly coupled to 

technical details such as cells type, knockdown conditions, or the readout and 

can barely be compared. Therefore, the focus should lie to a greater degree on 
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these main pathways, without neglecting the key proteins. My confirmed host 

cell factors in view of the published literature and the here applied combinatory 

pathway identification approach including hits from other screens will be a 

basis for follow-up studies. In this way, the next step can be taken to unravel the 

mechanisms of how HIV-1 utilizes these pathways to facilitate its assembly and 

release.  
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12 Appendix 

12.1  Appendix 1: Primary screen kinase library 
(Ambion) 

 
Table 23 List of all genes targeted by the kinase library. 

Gene Symbol RefSeq ID 
 

Gene Symbol RefSeq ID 
 

Gene Symbol RefSeq ID 

AAK1 NM_014911  GNE NM_005476  PDGFRB NM_002609 
ABL1 NM_007313  GOSR1 NM_004871  PDGFRL NM_006207 
ABL2 NM_007314  GRIP2 XM_042936  PDK1 NM_002610 
ACK1 NM_005781  GRK1 NM_002929  PDK2 NM_002611 
ACVR1 NM_001105  GRK4 NM_001004056  PDK3 NM_005391 
ACVR1B NM_020328  GRK5 NM_005308  PDK4 NM_002612 
ACVR1C NM_145259  GRK6 NM_001004106  PDPK1 NM_002613 
ACVR2 NM_001616  GRK7 NM_139209  PDXK NM_003681 
ACVR2B NM_001106  GSG2 NM_031965  PFKL NM_002626 
ACVRL1 NM_000020  GSK3A NM_019884  PFKM NM_000289 
ADCK2 NM_052853  GSK3B NM_002093  PFKP NM_002627 
ADCK4 NM_024876  GUK1 NM_000858  PFTK1 NM_012395 
ADCK5 NM_174922  HAK NM_052947  PGK1 NM_000291 
ADK NM_001123  HCK NM_002110  PGK2 NM_138733 
ADRBK1 NM_001619  HCV_138 -  PHKG1 NM_006213 
ADRBK2 NM_005160  HCV_321 -  PHKG2 NM_000294 
AIP1 NM_012301  HGS NM_004712  PI4K2B NM_018323 
AK1 NM_000476  HIPK1 NM_198269  PI4KII NM_018425 
AK2 NM_172199  HIPK2 NM_022740  PIK3AP1 NM_152309 
AK3 NM_203464  HIPK3 NM_005734  PIK3C2A NM_002645 
AK3L1 NM_016282  HIPK4 NM_144685  PIK3C2B NM_002646 
AK5 NM_012093  HK1 NM_033497  PIK3C2G NM_004570 
AK7 NM_152327  HK2 NM_000189  PIK3C3 NM_002647 
AKAP12 NM_144497  HK3 NM_002115  PIK3CA NM_006218 
AKAP2 NM_001004065  HRI NM_014413  PIK3CB NM_006219 
AKAP28 NM_178813  HSMDPKIN NM_017525  PIK3CD NM_005026 
AKAP7 NM_016377  HUNK NM_014586  PIK3CG NM_002649 
AKAP8 NM_005858  ICK NM_016513  PIK3R3 NM_003629 
AKAP8L NM_014371  IGF1R NM_000875  PIK3R4 NM_014602 
AKIP NM_017900  IHPK1 NM_001006115  PIK4CA NM_002650 
AKT1 NM_005163  IHPK2 NM_001005909  PIK4CB NM_002651 
AKT2 NM_001626  IHPK3 NM_054111  PIM1 NM_002648 
AKT3 NM_181690  IKBKB NM_001556  PIM2 NM_006875 
ALDH18A1 NM_002860  IKBKE NM_014002  PIM3 NM_001001852 
ALK NM_004304  IKBKG NM_003639  PINK1 NM_032409 
ALS2CR2 NM_018571  ILK NM_004517  PIP5K1A NM_003557 
ALS2CR7 NM_139158  INCENP NM_020238  PIP5K1B NM_001031687 
AMHR2 NM_020547  INSR NM_000208  PIP5K1C NM_012398 
ANKK1 NM_178510  INSRR NM_014215  PIP5K2A NM_005028 
ARAF1 NM_001654  IPMK NM_152230  PIP5K2B NM_138687 
ARK5 NM_014840  IRAK1 NM_001025242  PIP5K2C NM_024779 
ASB10 NM_080871  IRAK2 NM_001570  PIP5KL1 NM_173492 
ATM NM_000051  IRAK3 NM_007199  PKLR NM_000298 
ATR NM_001184  IRAK4 NM_016123  PKM2 NM_182471 
AURKB NM_004217  ITGB1BP3 NM_014446  PKMYT1 NM_182687 
AURKC NM_001015878  ITK NM_005546  PKN1 NM_002741 
AXL NM_001699  ITPK1 NM_014216  PKN2 NM_006256 
BAIAP1 NM_001033057  ITPKA NM_002220  PKN3 NM_013355 
BCKDK NM_005881  ITPKB NM_002221  PLK1 NM_005030 
BLK NM_001715  ITPKC NM_025194  PLK2 NM_006622 
BMP2K NM_198892  JAK1 NM_002227  PLK3 NM_004073 
BMP2KL XM_293293  JAK2 NM_004972  PLK4 NM_014264 
BMPR1A NM_004329  JAK3 NM_000215  PLXNA1 NM_032242 
BMPR1B NM_001203  JIK NM_016281  PLXNA2 NM_025179 
BMPR2 NM_033346  KDR NM_002253  PLXNA3 NM_017514 
BMX NM_001721  KHK NM_006488  PLXNA4A XM_379927 
BRAF NM_004333  KIAA0431 NM_015251  PLXNB1 NM_002673 
BTK NM_000061  KIAA0551 NM_015028  PLXNB2 NM_012401 
BUB1 NM_004336  KIAA0999 NM_025164  PLXNB3 NM_005393 
BUB1B NM_001211  KIAA1361 NM_020791  PLXNC1 NM_005761 
C14orf20 NM_174944  KIAA1639 XM_290923  PLXND1 NM_015103 
C19orf35 NM_198532  KIAA1765 XM_047355  PMVK NM_006556 
C21orf7 NM_020152  KIAA1804 NM_032435  PNCK NM_198452 
C9orf12 NM_022755  KIAA1811 NM_032430  PNKP NM_007254 
C9orf95 NM_017881  KIAA2002 XM_370878  PRKAA1 NM_006251 
C9orf96 NM_153710  KIS NM_144624  PRKAA2 NM_006252 
C9orf98 NM_152572  KIT NM_000222  PRKACA NM_002730 
CALM1 NM_006888  KSR2 NM_173598  PRKACB NM_207578 
CALM2 NM_001743  LAK NM_025144  PRKACG NM_002732 
CALM3 NM_005184  LATS1 NM_004690  PRKCA NM_002737 
CAMK1 NM_003656  LATS2 NM_014572  PRKCABP NM_012407 
CAMK1D NM_020397  LCK NM_005356  PRKCB1 NM_212535 
CAMK1G NM_020439  LEDGF/p75 -  PRKCBP1 NM_183048 
CAMK2A NM_171825  LIMK1 NM_016735  PRKCD NM_006254 
CAMK2B NM_172083  LIMK2 NM_005569  PRKCDBP NM_145040 
CAMK2D NM_172128  LMTK2 NM_014916  PRKCE NM_005400 
CAMK2G NM_172171  LMTK3 XM_055866  PRKCG NM_002739 
CAMK4 NM_001744  LOC149420 NM_152835  PRKCH NM_006255 
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CaMKIINalpha NM_018584  LOC283846 NM_199284  PRKCI NM_002740 
CAMKK1 NM_032294  LOC340156 NM_001012418  PRKCM NM_002742 
CAMKK2 NM_153499  LOC340371 NM_178564  PRKCN NM_005813 
CARKL NM_013276  LOC375328 NM_199347  PRKCQ NM_006257 
CASK NM_003688  LOC388221 XM_370939  PRKCSH NM_001001329 
CCRK NM_178432  LOC389599 XM_372002  PRKCZ NM_002744 
CD2 NM_001767  LOC390777 XM_372663  PRKD2 NM_016457 
CD4 -  LOC390877 XM_372705  PRKDC NM_006904 
CDC2 NM_001786  LOC390975 XM_372749  PRKG1 NM_006258 
CDC2L2 NM_033534  LOC391295 XM_497791  PRKG2 NM_006259 
CDC2L5 NM_003718  LOC391533 XM_497921  PRKR NM_002759 
CDC42BPA NM_014826  LOC392226 XM_498286  PRKWNK1 NM_018979 
CDC42BPB NM_006035  LOC392265 XM_498294  PRKWNK2 NM_006648 
CDC42SE2 NM_020240  LOC392347 XM_373298  PRKWNK3 NM_020922 
CDC7 NM_003503  LOC400301 XM_375150  PRKWNK4 NM_032387 
CDK10 NM_003674  LOC440332 XM_496112  PRKX NM_005044 
CDK11 NM_015076  LOC440345 XM_496125  PRKXP1 XM_497470 
CDK2 NM_001798  LOC440451 XM_496234  PRKY NM_002760 
CDK3 NM_001258  LOC441047 XM_496720  PRPF4B NM_003913 
CDK4 NM_052984  LOC441708 XM_497433  PRPS1 NM_002764 
CDK5 NM_004935  LOC441777 XM_497521  PRPS1L1 NM_175886 
CDK6 NM_001259  LOC441787 XM_497532  PRPS2 NM_002765 
CDK7 NM_001799  LOC442075 XM_496630  PRPSAP1 NM_002766 
CDK8 NM_001260  LOC442141 XM_498022  PRPSAP2 NM_002767 
CDK9 NM_001261  LOC91807 NM_182493  PSKH1 NM_006742 
CDKL1 NM_004196  LRRK1 NM_024652  PSKH2 NM_033126 
CDKL2 NM_003948  LRRK2 NM_198578  PTK2 NM_153831 
CDKL3 NM_016508  LTK NM_206961  PTK2B NM_173176 
CDKL4 NM_001009565  LY6G5B NM_021221  PTK6 NM_005975 
CDKL5 NM_003159  LYK5 NM_153335  PTK7 NM_152883 
CERK NM_182661  LYN NM_002350  PTK9 NM_198974 
CHEK1 NM_001274  MADD NM_003682  PTK9L NM_007284 
CHEK2 NM_145862  MAGI1 NM_173515  PXK NM_017771 
CHKA NM_001277  MAGI-3 NM_020965  RAB1A NM_004161 
CHKB NM_152253  MAK NM_005906  RAB6A NM_002869 
CHUK NM_001278  MAP2K1 NM_002755  RAF1 NM_002880 
CIB1 NM_006384  MAP2K1IP1 NM_021970  RAGE NM_014226 
CIB4 NM_001029881  MAP2K2 NM_030662  RBKS NM_022128 
CIT NM_007174  MAP2K3 NM_002756  RET NM_020630 
CKB NM_001823  MAP2K4 NM_003010  RFK NM_018339 
CKI-alpha -  MAP2K5 NM_145162  RIOK1 NM_031480 
CKI-delta -  MAP2K6 NM_002758  RIOK2 NM_018343 
CKM NM_001824  MAP2K7 NM_145185  RIOK3 NM_145906 
CKMT1 NM_020990  MAP3K1 XM_042066  RIPK1 NM_003804 
CKMT2 NM_001825  MAP3K10 NM_002446  RIPK2 NM_003821 
CLK1 NM_001024646  MAP3K11 NM_002419  RIPK3 NM_006871 
CLK2 NM_001291  MAP3K12 NM_006301  RIPK4 NM_020639 
CLK3 NM_001292  MAP3K13 NM_004721  RIPK5 NM_199462 
CLK4 NM_020666  MAP3K14 NM_003954  RNASEL NM_021133 
CNKSR1 NM_006314  MAP3K2 NM_006609  ROCK1 NM_005406 
COASY NM_025233  MAP3K3 NM_203351  ROCK2 NM_004850 
COL4A3BP NM_031361  MAP3K4 NM_006724  ROR1 NM_005012 
COPB NM_016451  MAP3K5 NM_005923  ROR2 NM_004560 
CRIM1 NM_016441  MAP3K6 NM_004672  ROS1 NM_002944 
CRK7 NM_016507  MAP3K7 NM_145332  RP26 NM_001030312 
CSF1R NM_005211  MAP3K7IP2 NM_015093  RPS6KA1 NM_001006665 
CSK NM_004383  MAP3K8 NM_005204  RPS6KA2 NM_001006932 
CSNK1A1 NM_001892  MAP3K9 NM_033141  RPS6KA3 NM_004586 
CSNK1A1L NM_145203  MAP4K1 NM_007181  RPS6KA4 NM_001006944 
CSNK1D NM_139062  MAP4K2 NM_004579  RPS6KA5 NM_004755 
CSNK1E NM_001894  MAP4K3 NM_003618  RPS6KA6 NM_014496 
CSNK1G1 NM_022048  MAP4K4 NM_145686  RPS6KB1 NM_003161 
CSNK1G2 NM_001319  MAP4K5 NM_006575  RPS6KB2 NM_001007071 
CSNK1G3 NM_004384  MAPK1 NM_138957  RPS6KL1 NM_031464 
CSNK2A1 NM_177560  MAPK10 NM_138981  RYK NM_002958 
CSNK2A2 NM_001896  MAPK11 NM_138993  SBK1 NM_001024401 
CXCR4 -  MAPK12 NM_002969  SCAP1 NM_003726 
DAPK1 NM_004938  MAPK13 NM_002754  SCGB2A1 NM_002407 
DAPK2 NM_014326  MAPK14 NM_139013  Scrambled - 
DAPK3 NM_001348  MAPK3 NM_002746  SCYL1 NM_020680 
DCAMKL1 NM_004734  MAPK4 NM_002747  SGK NM_005627 
DCK NM_000788  MAPK6 NM_002748  SGK2 NM_016276 
DDR1 NM_001954  MAPK7 NM_139032  SGKL NM_013257 
DDR2 NM_001014796  MAPK8 NM_139049  SH3BP4 NM_014521 
DGKA NM_201444  MAPK9 NM_139068  SIK2 NM_015191 
DGKB NM_145695  MAPKAPK2 NM_032960  SKP2 NM_032637 
DGKD NM_152879  MAPKAPK3 NM_004635  SLAMF6 NM_052931 
DGKE NM_003647  MAPKAPK5 NM_139078  SLK NM_014720 
DGKG NM_001346  MARK1 NM_018650  SMG1 NM_014006 
DGKH NM_152910  MARK2 NM_017490  SNARK NM_030952 
DGKI NM_004717  MARK3 NM_002376  SNF1LK NM_173354 
DGKK NM_001013742  MARK4 NM_031417  SNRK NM_017719 
DGKQ NM_001347  MAST1 NM_014975  SNX16 NM_152837 
DGKZ NM_003646  MAST2 NM_015112  SPHK1 NM_021972 
DGUOK NM_001929  MAST3 XM_038150  SPHK2 NM_020126 
DKFZp434B1231 NM_178275  MAST4 XM_291141  SRC NM_005417 
DKFZP434C131 NM_015518  MASTL NM_032844  SRMS NM_080823 
DKFZp434C1418 NM_173655  MATK NM_139354  SRPK1 NM_003137 
DKFZp434G0625 NM_181775  MELK NM_014791  SRPK2 NM_182692 
DKFZP586B1621 NM_015533  MERTK NM_006343  SSTK NM_032037 
DKFZp761P0423 XM_291277  MET NM_000245  STK10 NM_005990 
DMPK NM_004409  MFHAS1 NM_004225  STK11 NM_000455 
DNAJC6 NM_014787  MGC40579 NM_152776  STK11IP NM_052902 
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DOK1 NM_001381  MGC42105 NM_153361  STK16 NM_001008910 
DTYMK NM_012145  MGC45428 NM_152619  STK17A NM_004760 
DV-E -  MGC4796 NM_032017  STK17B NM_004226 
DV-NS3 -  MGC8407 NM_024046  STK19 NM_004197 
DV-NS5 -  MIDORI NM_020778  STK22B NM_053006 
DYRK1A NM_130438  MINK NM_170663  STK22C NM_052841 
DYRK1B NM_006484  MKNK1 NM_003684  STK22D NM_032028 
DYRK2 NM_003583  MKNK2 NM_017572  STK23 NM_014370 
DYRK3 NM_003582  MOS NM_005372  STK24 NM_001032296 
DYRK4 NM_003845  MPP1 NM_002436  STK25 NM_006374 
EEF2K NM_013302  MPP2 NM_005374  STK29 NM_003957 
EGFR NM_201284  MPP3 NM_001932  STK3 NM_006281 
EIF2AK3 NM_004836  MPP4 NM_033066  STK32A NM_145001 
EIF2AK4 NM_001013703  MPP5 NM_022474  STK32B NM_018401 
Emerin -  MPP6 NM_016447  STK32C NM_173575 
EPHA1 NM_005232  MPP7 NM_173496  STK33 NM_030906 
EPHA2 NM_004431  MRC2 NM_006039  STK35 NM_080836 
EPHA3 NM_182644  MST1R NM_002447  STK36 NM_015690 
EPHA4 NM_004438  MST4 NM_016542  STK38 NM_007271 
EPHA5 NM_004439  MUSK NM_005592  STK38L NM_015000 
EPHA7 NM_004440  MVK NM_000431  STK39 NM_013233 
EPHA8 NM_020526  MYLK NM_053031  STK4 NM_006282 
EPHB1 NM_004441  MYLK2 NM_033118  STK6 NM_198433 
EPHB2 NM_017449  NAGK NM_017567  STYK1 NM_018423 
EPHB3 NM_004443  NEK1 NM_012224  SYK NM_003177 
EPHB4 NM_004444  NEK11 NM_145910  T3JAM NM_025228 
EPHB6 NM_004445  NEK2 NM_002497  TAF1 NM_004606 
ERBB2 NM_004448  NEK3 NM_002498  TAF1L NM_153809 
ERBB3 NM_001982  NEK4 NM_003157  TAO1 NM_016151 
ERBB4 NM_005235  NEK5 NM_199289  TBK1 NM_013254 
ERK8 NM_139021  NEK6 NM_014397  TEC NM_003215 
ERN1 NM_001433  NEK7 NM_133494  TEK NM_000459 
ERN2 NM_033266  NEK8 NM_178170  TESK1 NM_006285 
ETNK1 NM_018638  NEK9 NM_033116  TESK2 NM_007170 
ETNK2 NM_018208  NIPA NM_016478  TEX14 NM_031272 
FASTK NM_025096  NLK NM_016231  TGFBR1 NM_004612 
FER NM_005246  NME1 NM_000269  TGFBR2 NM_001024847 
FES NM_002005  NME2 NM_001018137  TIE NM_005424 
FGFR1 NM_023108  NME3 NM_002513  TK1 NM_003258 
FGFR2 NM_023031  NME4 NM_005009  TK2 NM_004614 
FGFR3 NM_000142  NME5 NM_003551  TLK1 NM_012290 
FGFR4 NM_002011  NME6 NM_005793  TLK2 NM_006852 
FGFRL1 NM_021923  NME7 NM_197972  TNK1 NM_003985 
FGR NM_005248  NRBP NM_013392  TNNI3K NM_015978 
FLJ10074 NM_017988  NRGN NM_006176  TOPK NM_018492 
FLJ10842 NM_018238  NRK NM_198465  TPK1 NM_022445 
FLJ10986 NM_018291  NTRK1 NM_001012331  TRIB1 NM_025195 
FLJ12476 NM_001031715  NTRK2 NM_001018065  TRIB2 NM_021643 
FLJ13052 NM_023018  NTRK3 NM_002530  TRIB3 NM_021158 
FLJ16518 NM_001001671  NYD-SP25 NM_033516  Trim5alpha - 
FLJ20574 NM_017886  OSR1 NM_005109  TRRAP NM_003496 
FLJ22761 NM_025130  OSRF NM_012382  TSKS NM_021733 
FLJ22955 NM_024819  p24 -  TTBK1 NM_032538 
FLJ23074 NM_001018046  p53 -  TTK NM_003318 
FLJ25006 NM_144610  PACE-1 NM_181093  TXK NM_003328 
FLJ32685 NM_152534  PACSIN1 NM_020804  TXNDC3 NM_016616 
FLJ33655 NM_173641  PACSIN2 NM_007229  TXNDC6 NM_178130 
FLJ34389 NM_152649  PACSIN3 NM_016223  TYK2 NM_003331 
FLJ37794 NM_173588  PAK1 NM_002576  TYRO3 NM_006293 
FLT1 NM_002019  PAK2 NM_002577  UCK1 NM_031432 
FLT3 NM_004119  PAK3 NM_002578  UCK2 NM_012474 
FLT4 NM_002020  PAK4 NM_001014833  UCKL1 NM_017859 
FN3K NM_022158  PAK6 NM_020168  ULK1 NM_003565 
FN3KRP NM_024619  PAK7 NM_177990  ULK2 NM_014683 
FRAP1 NM_004958  PANK1 NM_138316  UMP-CMPK NM_016308 
FRK NM_002031  PANK2 NM_153638  VRK1 NM_003384 
FUK NM_145059  PANK3 NM_024594  VRK2 NM_006296 
FYN NM_153048  PANK4 NM_018216  VRK3 NM_016440 
GAK NM_005255  PAPSS1 NM_005443  WEE1 NM_003390 
GALK1 NM_000154  PAPSS2 NM_004670  XM_290793 NM_014238 
GALK2 NM_001001556  PASK NM_015148  XYLB NM_005108 
GCK NM_033507  PCM1 NM_006197  YES1 NM_005433 
GCKR NM_001486  PCTK1 NM_006201  ZAK NM_133646 
GK NM_000167  PCTK2 NM_002595  ZAP70 NM_207519 
GK2 NM_033214  PCTK3 NM_002596    
GLYCTK NM_145262  PDGFRA NM_006206    
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Table 24 List of all genes targeted by the reconfirmation screen library. 

Gene 
Symbol 

RefSeq 
ID 

Full Gene 
Name 

Gene 
ID 

Ambion 
siRNA 

ID 
Sense siRNA Sequence Antisense siRNA Sequence Z-score 

ACVR2A NM_0016
16 

activin A 
receptor, type 
IIA 

92 s980 GCCCAGUUGCUUAACGAAUtt AUUCGUUAAGCAACUGGGCtt -2.73300511 

ACVR2A NM_0016
16 

activin A 
receptor, type 
IIA 

92 s981 GGAUGAUAUCAACUGCUAUtt AUAGCAGUUGAUAUCAUCCag -3.70856555 

ACVR2A NM_0016
16 

activin A 
receptor, type 
IIA 

92 s982 CAGACUUUCUUAAGGCUAAtt UUAGCCUUAAGAAAGUCUGat 0.157403425 

AKAP7 NM_0048
42 

A kinase 
(PRKA) anchor 
protein 7 

9465 s18135 AACUAGUAAGGCUCAGUAAtt UUACUGAGCCUUACUAGUUca 0.418438436 

AKAP7 NM_0048
42 

A kinase 
(PRKA) anchor 
protein 7 

9465 s225138 AGUGCUAAGUUUAAAAUAAtt UUAUUUUAAACUUAGCACUtg -3.81524755 

AKAP7 NM_0048
42 

A kinase 
(PRKA) anchor 
protein 7 

9465 s225139 CCGAAGCAGCUGAUCAGAAtt UUCUGAUCAGCUGCUUCGGtt -0.31091666 

AKAP8L NM_0143
71 

A kinase 
(PRKA) anchor 
protein 8-like 

26993 s25667 GGAACACUUUAAGUACGUAtt UACGUACUUAAAGUGUUCCtt -1.39975422 

AKAP8L NM_0143
71 

A kinase 
(PRKA) anchor 
protein 8-like 

26993 s25668 CCAUGGAUCACAACCGGAAtt UUCCGGUUGUGAUCCAUGGtc -1.4377644 

AKAP8L NM_0143
71 

A kinase 
(PRKA) anchor 
protein 8-like 

26993 s25669 CAGUCGACAUACUCGGAUAtt UAUCCGAGUAUGUCGACUGca 1.570650326 

ALPK3 NM_0207
78 alpha-kinase 3 57538 s33259 GACUAGGCCUUUCAACAGAtt UCUGUUGAAAGGCCUAGUCgg -2.25198529 

ALPK3 NM_0207
78 alpha-kinase 3 57538 s33260 GGUACAAGGAUGAUACGGAtt UCCGUAUCAUCCUUGUACCag -1.7383512 

ALPK3 NM_0207
78 alpha-kinase 3 57538 s33261 CCAUGGAUAUGGAAACCCAtt UGGGUUUCCAUAUCCAUGGgt -1.77638445 

AURKAIP1 NM_0179
00 

aurora kinase A 
interacting 
protein 1 

54998 s195269 AGAUCAAGUUCGAGAAAGAtt UCUUUCUCGAACUUGAUCUgc -1.95451317 

AURKAIP1 NM_0179
00 

aurora kinase A 
interacting 
protein 1 

54998 s29953 GCAGAUCAAGUUCGAGAAAtt UUUCUCGAACUUGAUCUGCtt -0.43108357 

AURKAIP1 NM_0179
00 

aurora kinase A 
interacting 
protein 1 

54998 s29954 CCACCGCAAUCCUACCAGUtt ACUGGUAGGAUUGCGGUGGag -2.10077712 

BLK NM_0017
15 

B lymphoid 
tyrosine kinase 640 s1994 GCUCCUUUCUUAUCAGAGAtt UCUCUGAUAAGAAAGGAGCcg 0.530277633 

BLK NM_0017
15 

B lymphoid 
tyrosine kinase 640 s1995 UCUACGCAGUGGUCACCAAtt UUGGUGACCACUGCGUAGAgt -0.44898079 

BLK NM_0017
15 

B lymphoid 
tyrosine kinase 640 s1996 UGAUGGAAGUUGUCACUUAt

t UAAGUGACAACUUCCAUCAgg -0.9561952 

BRAF NM_0043
33 

v-raf murine 
sarcoma viral 
oncogene 
homolog B1 

673 s2080 CAGAGGAUUUUAGUCUAUAt
t UAUAGACUAAAAUCCUCUGtt -1.39602365 

BRAF NM_0043
33 

v-raf murine 
sarcoma viral 
oncogene 
homolog B1 

673 s2081 GCAUAAUCCACCAUCAAUAtt UAUUGAUGGUGGAUUAUGCtc -0.57195702 

BRAF NM_0043
33 

v-raf murine 
sarcoma viral 
oncogene 
homolog B1 

673 s2082 CAGUUGUCUGGAUCCAUUUt
t AAAUGGAUCCAGACAACUGtt -2.89227483 

BRSK2 NM_0039
57 

BR 
serine/threonin
e kinase 2 

9024 s17197 CGGAAAGAAAGGUACCCGAtt UCGGGUACCUUUCUUUCCGgt -0.3725711 

BRSK2 NM_0039
57 

BR 
serine/threonin
e kinase 2 

9024 s17198 GCACUUGUCAGACACCACUtt AGUGGUGUCUGACAAGUGCtg -0.20152294 

BRSK2 NM_0039
57 

BR 
serine/threonin
e kinase 2 

9024 s17199 AGAAUGAGCCCGAACCAGAtt UCUGGUUCGGGCUCAUUCUtg -0.35589065 

CD2 NM_0017
67 CD2 molecule 914 s225090 GAGAGGGUCUCAAAACCAAtt UUGGUUUUGAGACCCUCUCtt 2.111036276 
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CD2 NM_0017
67 CD2 molecule 914 s225091 GCACUGCUCGUUUUCUAUAtt UAUAGAAAACGAGCAGUGCca -0.54939342 

CD2 NM_0017
67 CD2 molecule 914 s2565 GGACAUCUAUCUCAUCAUUtt AAUGAUGAGAUAGAUGUCCag -0.5586411 

CDK10 NM_0529
87 

cyclin-
dependent 
kinase 10 

8558 s262 GUUUCCAACUUGCUCAUGAtt UCAUGAGCAAGUUGGAAACct -2.19817594 

CDK10 NM_0529
87 

cyclin-
dependent 
kinase 10 

8558 s263 GGCCUAUGGUGUCCCAGUAtt UACUGGGACACCAUAGGCCcg -3.86335008 

CDK10 NM_0529
87 

cyclin-
dependent 
kinase 10 

8558 s264 AGAUCGACUUGAUCGUGCAtt UGCACGAUCAAGUCGAUCUgg 0.935507477 

CDK4 NM_000
075 

cyclin-
dependent 
kinase 4 

1019 s2822 UGCUGACUUUUAACCCACAtt UGUGGGUUAAAAGUCAGCAtt -1.65740479 

CDK4 NM_000
075 

cyclin-
dependent 
kinase 4 

1019 s2823 GGCUUUUGAGCAUCCCAAUtt AUUGGGAUGCUCAAAAGCCtc -0.09868773 

CDK4 NM_000
075 

cyclin-
dependent 
kinase 4 

1019 s2824 CACCCGUGGUUGUUACACUtt AGUGUAACAACCACGGGUGta 1.916087317 

CDK6 NM_0012
59 

cyclin-
dependent 
kinase 6 

1021 s51 GUUUGUAACAGAUAUCGAUt
t AUCGAUAUCUGUUACAAACtt 1.093543646 

CDK6 NM_0012
59 

cyclin-
dependent 
kinase 6 

1021 s52 GGAUAUGAUGUUUCAGCUUt
t AAGCUGAAACAUCAUAUCCtt -1.13512646 

CDK6 NM_0012
59 

cyclin-
dependent 
kinase 6 

1021 s53 GCAGAAAUGUUUCGUAGAAtt UUCUACGAAACAUUUCUGCaa -0.6869506 

CDK7 NM_0017
99 

cyclin-
dependent 
kinase 7 

1022 s2828 CAACAUUGGAUCCUACAUAtt UAUGUAGGAUCCAAUGUUGat -0.79226092 

CDK7 NM_0017
99 

cyclin-
dependent 
kinase 7 

1022 s2829 CCUUAAAGGAGCAAUCAAAtt UUUGAUUGCUCCUUUAAGGtt -0.164398 

CDK7 NM_0017
99 

cyclin-
dependent 
kinase 7 

1022 s2830 GGACAUAGAUCAGAAGCUAtt UAGCUUCUGAUCUAUGUCCaa -3.56290634 

CDKL1 NM_0041
96 

cyclin-
dependent 
kinase-like 1 
(CDC2-related 
kinase) 

8814 s16804 GUACUUCAGUGGAGUGAAAtt UUUCACUCCACUGAAGUACtg -0.29432686 

CDKL1 NM_0041
96 

cyclin-
dependent 
kinase-like 1 
(CDC2-related 
kinase) 

8814 s16805 GGACCGAGUGACUACUAUAtt UAUAGUAGUCACUCGGUCCag -2.40689095 

CDKL1 NM_0041
96 

cyclin-
dependent 
kinase-like 1 
(CDC2-related 
kinase) 

8814 s16806 CGAAUGCUCAAGCAACUCAtt UGAGUUGCUUGAGCAUUCGga -2.10035665 

CSK NM_0043
83 

c-src tyrosine 
kinase 1445 s223346 ACAAUUUCGUGCAUCGAGAtt UCUCGAUGCACGAAAUUGUtg 0.281948305 

CSK NM_0043
83 

c-src tyrosine 
kinase 1445 s3613 CGAUUACCGAGGGAACAAAtt UUUGUUCCCUCGGUAAUCGcc -1.84391909 

CSK NM_0043
83 

c-src tyrosine 
kinase 1445 s3614 CGCGCCUCAUUAAACCAAAtt UUUGGUUUAAUGAGGCGCGta 4.936097316 

DCAKD NM_0248
19 

dephospho-
CoA kinase 
domain 
containing 

79877 s36551 AGCACACCGUGGUAGUAUAtt UAUACUACCACGGUGUGCUtc 0.09974558 

DCAKD NM_0248
19 

dephospho-
CoA kinase 
domain 
containing 

79877 s36552 GUACAGUAAUUAGCCGAAAtt UUUCGGCUAAUUACUGUACtg -0.38220487 

DCAKD NM_0248
19 

dephospho-
CoA kinase 
domain 
containing 

79877 s36553 ACCGCUACGUGAUUCUGGAtt UCCAGAAUCACGUAGCGGUat -2.52388272 

DGKH NM_1529
10 

diacylglycerol 
kinase, eta 160851 s46227 GGAGUAUAAUGACAUAUGAtt UCAUAUGUCAUUAUACUCCac -2.23512579 

DGKH NM_1529
10 

diacylglycerol 
kinase, eta 160851 s46228 GGAUUGGAUUAGAUGCAAAtt UUUGCAUCUAAUCCAAUCCca -1.74788994 

DGKH NM_1529
10 

diacylglycerol 
kinase, eta 160851 s46229 GGAGUUCGAUUAUCAACAAtt UUGUUGAUAAUCGAACUCCca -0.83951009 

EPHA10 NM_0010
04338 

EPH receptor 
A10 284656 s200587 GCAGGAUAAUAAAAACUUGtt CAAGUUUUUAUUAUCCUGCac -0.66307715 
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EPHA10 NM_1736
41 

EPH receptor 
A10 284656 s200588 GCAUCUUCGUGGAACUGCAtt UGCAGUUCCACGAAGAUGCgc -1.38698414 

EPHA10 NM_0010
04338 

EPH receptor 
A10 284656 s200589 CCAAGGAACUGGAUGCGAAtt UUCGCAUCCAGUUCCUUGGcg -0.47513084 

EPHB4 NM_0044
44 

EPH receptor 
B4 2050 s243 GGACAAACACGGACAGUAUtt AUACUGUCCGUGUUUGUCCga 0.210799592 

EPHB4 NM_0044
44 

EPH receptor 
B4 2050 s244 GCAGAGCAAUGGGAGAGAAtt UUCUCUCCCAUUGCUCUGCtt -1.45727549 

EPHB4 NM_0044
44 

EPH receptor 
B4 2050 s245 GCUGCUGCCUUCAUAUUGAtt UCAAUAUGAAGGCAGCAGCtg -1.46266266 

ERBB3 NM_0010
05915 

v-erb-b2 
erythroblastic 
leukemia viral 
oncogene 
homolog 3 
(avian) 

2065 s4778 CAGUGGAUUCGAGAAGUGAtt UCACUUCUCGAAUCCACUGca -1.64049237 

ERBB3 NM_0010
05915 

v-erb-b2 
erythroblastic 
leukemia viral 
oncogene 
homolog 3 
(avian) 

2065 s4779 UCGUCAUGUUGAACUAUAAtt UUAUAGUUCAACAUGACGAag -4.35611139 

ERBB3 NM_0010
05915 

v-erb-b2 
erythroblastic 
leukemia viral 
oncogene 
homolog 3 
(avian) 

2065 s4780 GAAUGAAUUCUCUACUCUAtt UAGAGUAGAGAAUUCAUUCat 1.435105765 

FES NM_0020
05 

feline sarcoma 
oncogene 2242 s5112 CCACGCUGGAGAUCCUUAAtt UUAAGGAUCUCCAGCGUGGgt -0.69818285 

FES NM_0020
05 

feline sarcoma 
oncogene 2242 s5113 CCUCAGCAAUCAGCAGACAtt UGUCUGCUGAUUGCUGAGGtt -2.67613108 

FES NM_0020
05 

feline sarcoma 
oncogene 2242 s5114 AGUGGGUGCUGAACCAUGAtt UCAUGGUUCAGCACCCACUtg -2.24959041 

FGFR2 NM_0001
41 

fibroblast 
growth factor 
receptor 2  

2263 s5173 GGAGUACUCCUAUGACAUUtt AAUGUCAUAGGAGUACUCCat 1.17449117 

FGFR2 NM_0001
41 

fibroblast 
growth factor 
receptor 2  

2263 s5174 GUAGGACUGUAGACAGUGAtt UCACUGUCUACAGUCCUACtg -3.18462741 

FGFR2 NM_0001
41 

fibroblast 
growth factor 
receptor 2 

2263 s5175 GAACAGUAUUCACCUAGUUtt AACUAGGUGAAUACUGUUCga -3.38086396 

FGFR4 NM_0020
11 

fibroblast 
growth factor 
receptor 4 

2264 s223533 UCAAGAUGCUCAAAGACAAtt UUGUCUUUGAGCAUCUUGAcg -1.11417248 

FGFR4 NM_0020
11 

fibroblast 
growth factor 
receptor 4 

2264 s5176 CAUUGACUACUAUAAGAAAtt UUUCUUAUAGUAGUCAAUGtg -2.25209678 

FGFR4 NM_0020
11 

fibroblast 
growth factor 
receptor 4 

2264 s5178 ACACCUGCCUGGUAGAGAAtt UUCUCUACCAGGCAGGUGUat -0.21674311 

FRK NM_0020
31 

fyn-related 
kinase 2444 s5363 GCAACUACAAGGCUAUAUUtt AAUAUAGCCUUGUAGUUGCtg -3.27402184 

FRK NM_0020
31 

fyn-related 
kinase 2444 s5364 CCAUUUGAUUUGUCGUAUAt

t UAUACGACAAAUCAAAUGGag -0.22508165 

FRK NM_0020
31 

fyn-related 
kinase 2444 s5365 GCAGACAAGUCAACCGUGAtt UCACGGUUGACUUGUCUGCct -3.61201873 

GAK NM_0052
55 

cyclin G 
associated 
kinase 

2580 s5527 GUCCGUCGCUAAUUAUGCAtt UGCAUAAUUAGCGACGGACtg -2.69483594 

GAK NM_0052
55 

cyclin G 
associated 
kinase 

2580 s5528 CACCAGAAAUCAUAGACUUtt AAGUCUAUGAUUUCUGGUGtt -1.81880586 

GAK NM_0052
55 

cyclin G 
associated 
kinase 

2580 s5529 CGAGGAAUACAACACCAAUtt AUUGGUGUUGUAUUCCUCGtg -2.77921267 

GLYCTK NM_1452
62 glycerate kinase 132158 s43670 GGAUGACAGGUACCAAUGUtt ACAUUGGUACCUGUCAUCCct -4.61141529 

GLYCTK NM_1452
62 glycerate kinase 132158 s43671 GCCCACAAUGACUCACAUAtt UAUGUGAGUCAUUGUGGGCta -3.37966716 

GLYCTK NM_1452
62 glycerate kinase 132158 s43672 ACAUAGCCGUGUCCAGGUAtt UACCUGGACACGGCUAUGUgg -0.4452919 
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GRK4 NM_0010
04056 

G protein-
coupled 
receptor kinase 
4 

2868 s6084 GGACUGUCAAUCUUAGAUAtt UAUCUAAGAUUGACAGUCCac -1.88692667 

GRK4 NM_0010
04056 

G protein-
coupled 
receptor kinase 
4 

2868 s6085 GAGUUGGAACAGUCGGCUAtt UAGCCGACUGUUCCAACUCtt 0.05572894 

GRK4 NM_0010
04056 

G protein-
coupled 
receptor kinase 
4 

2868 s6086 GAAUCAAGAAUGAUACCGAtt UCGGUAUCAUUCUUGAUUCtt -0.26950322 

GSK3B NM_0020
93 

glycogen 
synthase kinase 
3 beta 

2932 s6239 CUCAAGAACUGUCAAGUAAtt UUACUUGACAGUUCUUGAGtg -1.50710918 

GSK3B NM_0020
93 

glycogen 
synthase kinase 
3 beta 

2932 s6240 CGAGAGCUCCAGAUCAUGAtt UCAUGAUCUGGAGCUCUCGat -3.81397019 

GSK3B NM_0020
93 

glycogen 
synthase kinase 
3 beta 

2932 s6241 GCUAGAUCACUGUAACAUAtt UAUGUUACAGUGAUCUAGCtt -1.53526973 

HKDC1 NM_0251
30 

hexokinase 
domain 
containing 1 

80201 s37044 GGAGCUCUUUGAUCACAUUtt AAUGUGAUCAAAGAGCUCCtc -2.05782072 

HKDC1 NM_0251
30 

hexokinase 
domain 
containing 1 

80201 s37045 GUGCGAAUGUACAACAAGAtt UCUUGUUGUACAUUCGCACtg 1.379561321 

HKDC1 NM_0251
30 

hexokinase 
domain 
containing 1 

80201 s37046 CCCUCACUUUUCUAGAAUAtt UAUUCUAGAAAAGUGAGGGtg -2.13134621 

IGF1R NM_000
875 

insulin-like 
growth factor 1 
receptor 

3480 s223917 CGUCUUCCAUAGAAAGAGAtt UCUCUUUCUAUGGAAGACGta -2.79148155 

IGF1R NM_000
875 

insulin-like 
growth factor 1 
receptor 

3480 s223918 GAAGAAUCGCAUCAUCAUAtt UAUGAUGAUGCGAUUCUUCga -2.32157228 

IGF1R NM_000
875 

insulin-like 
growth factor 1 
receptor 

3480 s223919 GAAUCCCAAUGGAUUGAUUtt AAUCAAUCCAUUGGGAUUCtc -0.28334771 

ILK NM_0010
14794 

integrin-linked 
kinase 3611 s7404 GCCGUAGUGUAAUGAUUGAt

t UCAAUCAUUACACUACGGCta -2.75918875 

ILK NM_0010
14794 

integrin-linked 
kinase 3611 s7405 CGACCCAAAUUUGACAUGAtt UCAUGUCAAAUUUGGGUCGct -2.06260796 

ILK NM_0010
14794 

integrin-linked 
kinase 3611 s7406 GAAUCACUCUGGAGAGCUAtt UAGCUCUCCAGAGUGAUUCtc -1.70913408 

IPMK NM_1522
30 

inositol 
polyphosphate 
multikinase 

253430 s48411 CCAAACGAUUUAUACCUAAtt UUAGGUAUAAAUCGUUUGGtg -2.0982205 

IPMK NM_1522
30 

inositol 
polyphosphate 
multikinase 

253430 s48412 CAGCUUAAUUUUUACGCAAtt UUGCGUAAAAAUUAAGCUGct -2.55355925 

IPMK NM_1522
30 

inositol 
polyphosphate 
multikinase 

253430 s48413 GCAUUACGGAAGAAGCUUAtt UAAGCUUCUUCCGUAAUGCtg -1.84394487 

IRAK4 NM_0161
23 

interleukin-1 
receptor-
associated 
kinase 4 

51135 s27527 GGUUGACAUUACUACUGAAtt UUCAGUAGUAAUGUCAACCat -2.24908088 

IRAK4 NM_0161
23 

interleukin-1 
receptor-
associated 
kinase 4 

51135 s27528 GCCUAAUGGUUCAUUGCUAtt UAGCAAUGAACCAUUAGGCat 0.012825897 

IRAK4 NM_0161
23 

interleukin-1 
receptor-
associated 
kinase 4 

51135 s27529 GGUGUGGUUUUACUAGAAAt
t UUUCUAGUAAAACCACACCaa -3.01037423 

ITPKA NM_0022
20 

inositol 1,4,5-
trisphosphate 
3-kinase A 

3706 s7625 GAAGGACAUGUACAAGAAAtt UUUCUUGUACAUGUCCUUCcg -3.76057724 

ITPKA NM_0022
20 

inositol 1,4,5-
trisphosphate 
3-kinase A 

3706 s7626 GGACUUACCUAGAGGAGGAtt UCCUCCUCUAGGUAAGUCCtg -0.38656832 

ITPKA NM_0022
20 

inositol 1,4,5-
trisphosphate 
3-kinase A 

3706 s7627 CGAGGACGUGGGUCAGAAAtt UUUCUGACCCACGUCCUCGcc -1.96698587 

KSR2 NM_1735
98 

kinase 
suppressor of 
ras 2 

283455 s49244 CGAAAACUGAUACACUUGAtt UCAAGUGUAUCAGUUUUCGgg 0.150613393 

KSR2 NM_1735
98 

kinase 
suppressor of 
ras 2 

283455 s49245 GCAUCCCACUACUACAAAUtt AUUUGUAGUAGUGGGAUGCtg -3.55889714 
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KSR2 NM_1735
98 

kinase 
suppressor of 
ras 2 

283455 s49246 CAGGCAGAUUGCUCAAGAAtt UUCUUGAGCAAUCUGCCUGgt 1.188541147 

LIMK1 NM_0023
14 

LIM domain 
kinase 1 3984 s8188 GCAUGACCCUCACGAUACAtt UGUAUCGUGAGGGUCAUGCtc -3.6170902 

LIMK1 NM_0023
14 

LIM domain 
kinase 1 3984 s8189 CCUCACGUGUGGGACCUUUtt AAAGGUCCCACACGUGAGGca -2.74048765 

LIMK1 NM_0023
14 

LIM domain 
kinase 1 3984 s8190 GCAUGAGCCCAGAUGUGAAtt UUCACAUCUGGGCUCAUGCag -1.11277666 

LOC731914 XM_0011
31241 

hypothetical 
protein 
LOC731914 

731914 s61460 GAAUAACCAAUGCAGAGAAtt UUCUCUGCAUUGGUUAUUCta -2.10839829 

MAP2K3 NM_0027
56 

mitogen-
activated 
protein kinase 
kinase 3 

5606 s11173 GGUCGACUGUUUCUACACUtt AGUGUAGAAACAGUCGACCgt -0.93270745 

MAP2K3 NM_0027
56 

mitogen-
activated 
protein kinase 
kinase 3 

5606 s11174 ACAGAAACUUUGAGGUGGAtt UCCACCUCAAAGUUUCUGUct -3.44139616 

MAP2K3 NM_0027
56 

mitogen-
activated 
protein kinase 
kinase 3 

5606 s11175 CCCGGACCUUCAUCACCAUtt AUGGUGAUGAAGGUCCGGGag -1.83271687 

MAP3K14 NM_0039
54 

mitogen-
activated 
protein kinase 
kinase kinase 
14 

9020 s17186 GUCCAAAUACAGUCUCUUAtt UAAGAGACUGUAUUUGGACtt -2.87396925 

MAP3K14 NM_0039
54 

mitogen-
activated 
protein kinase 
kinase kinase 
14 

9020 s17187 GGAUUGACCUCACCCAGAAtt UUCUGGGUGAGGUCAAUCCtg -6.53870706 

MAP3K14 NM_0039
54 

mitogen-
activated 
protein kinase 
kinase kinase 
14 

9020 s17188 GGAUUAUGAGUACCGAGAAtt UUCUCGGUACUCAUAAUCCac -1.59496375 

MAP4K1 NM_0010
42600 

mitogen-
activated 
protein kinase 
kinase kinase 
kinase 1 

11184 s22080 GGGACAUCAAGGGAGCUAAtt UUAGCUCCCUUGAUGUCCCtg -4.83883586 

MAP4K1 NM_0010
42600 

mitogen-
activated 
protein kinase 
kinase kinase 
kinase 1 

11184 s22082 GCUCAGUCAUCAACUGGUAtt UACCAGUUGAUGACUGAGCat -8.65459049 

MAP4K1 NM_0010
42600 

mitogen-
activated 
protein kinase 
kinase kinase 
kinase 1 

11184 s223205 CAAGAUCCAGGACACCAAAtt UUUGGUGUCCUGGAUCUUGgt -1.05307597 

MAP4K2 NM_0045
79 

mitogen-
activated 
protein kinase 
kinase kinase 
kinase 2 

5871 s11687 CCAAGAUUCCUGACACCAAtt UUGGUGUCAGGAAUCUUGGtg 2.210484059 

MAP4K2 NM_0045
79 

mitogen-
activated 
protein kinase 
kinase kinase 
kinase 2 

5871 s11688 CCUAUGACAUGUUUCCAGAtt UCUGGAAACAUGUCAUAGGtc -2.61744 

MAP4K2 NM_0045
79 

mitogen-
activated 
protein kinase 
kinase kinase 
kinase 2 

5871 s11689 GCAGCUACCUCAGGAAUGAtt UCAUUCCUGAGGUAGCUGCca -2.52282258 

MAP4K4 NM_0048
34 

mitogen-
activated 
protein kinase 
kinase kinase 
kinase 4 

9448 s18095 CCUAUGGACAAGUCUAUAAtt UUAUAGACUUGUCCAUAGGtg -0.40119442 

MAP4K4 NM_0048
34 

mitogen-
activated 
protein kinase 
kinase kinase 
kinase 4 

9448 s18096 CGGCUAGAAGAGCAACAAAtt UUUGUUGCUCUUCUAGCCGtc 0.145233521 

MAP4K4 NM_0048
34 

mitogen-
activated 
protein kinase 
kinase kinase 
kinase 4 

9448 s18097 CGAAGACGAUUUCAACAAAtt UUUGUUGAAAUCGUCUUCGgt -0.33933447 

MAPK3 NM_0010
40056 

mitogen-
activated 
protein kinase 
3 

5595 s11140 GGAUCAGCUCAACCACAUUtt AAUGUGGUUGAGCUGAUCCag -2.79715075 
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MAPK3 NM_0010
40056 

mitogen-
activated 
protein kinase 
3 

5595 s11141 GGACCGGAUGUUAACCUUUtt AAAGGUUAACAUCCGGUCCag -5.05574453 

MAPK3 NM_0010
40056 

mitogen-
activated 
protein kinase 
3 

5595 s11142 GACCUGAAUUGUAUCAUCAtt UGAUGAUACAAUUCAGGUCct -4.02594643 

MAST4 NM_1988
28 

microtubule 
associated 
serine/threonin
e kinase family 
member 4 

375449 s51708 GAAGUUUGAUAGAUUCCCAtt UGGGAAUCUAUCAAACUUCct -1.72817562 

MAST4 NM_1988
28 

microtubule 
associated 
serine/threonin
e kinase family 
member 4 

375449 s51709 CGAGGAGCUUGACCACAUAtt UAUGUGGUCAAGCUCCUCGtc -2.04915713 

MAST4 NM_1988
28 

microtubule 
associated 
serine/threonin
e kinase family 
member 4 

375449 s51710 GGCCCUGGAAAAUCACUGAtt UCAGUGAUUUUCCAGGGCCag -0.49925156 

NAGK NM_0175
67 

N-
acetylglucosami
ne kinase 

55577 s31007 GGCUAGGGAUACUCACUCAtt UGAGUGAGUAUCCCUAGCCga -2.27703979 

NAGK NM_0175
67 

N-
acetylglucosami
ne kinase 

55577 s31008 GCUACUUAAUCACCACCGAtt UCGGUGGUGAUUAAGUAGCtt 1.096946297 

NAGK NM_0175
67 

N-
acetylglucosami
ne kinase 

55577 s31009 GAUCGGCUAGGGAUACUCAtt UGAGUAUCCCUAGCCGAUCtg -1.34768554 

NLK NM_0162
31 

nemo-like 
kinase 51701 s28543 CCAGAAAUCCUGAUGGGCAtt UGCCCAUCAGGAUUUCUGGag -2.99836453 

NLK NM_0162
31 

nemo-like 
kinase 51701 s28544 GGUGUUGUCUGGUCAGUAAt

t UUACUGACCAGACAACACCaa -1.5718544 

NLK NM_0162
31 

nemo-like 
kinase 51701 s28545 CCAAAAGAAUAUCCGCUAAtt UUAGCGGAUAUUCUUUUGGat 0.174938031 

NME1 NM_0002
69 

non-metastatic 
cells 1, protein 
(NM23A) 
expressed in 

4830 s224120 CCAGCAUAGGAUUCAUUGAtt UCAAUGAAUCCUAUGCUGGga -1.04313976 

NME1 NM_0002
69 

NME/NM23 
nucleoside 
diphosphate 
kinase 1 

4830 s224121 GGAAAUCUAGUUAUUUACAtt UGUAAAUAACUAGAUUUCCta -0.66070655 

NME1 NM_0002
69 

NME/NM23 
nucleoside 
diphosphate 
kinase 1 

4830 s9590 CUGAGGAACUGGUAGAUUAtt UAAUCUACCAGUUCCUCAGgg -3.98750233 

NRGN NM_0061
76 

neurogranin 
(protein kinase 
C substrate, 
RC3) 

4900 s224138 UGCUCUGACCGGAAGAGAAtt UUCUCUUCCGGUCAGAGCAag -7.90994574 

NRGN NM_0061
76 

neurogranin 
(protein kinase 
C substrate, 
RC3) 

4900 s9723 CACACUCACUUAAAGAAAAtt UUUUCUUUAAGUGAGUGUGct -0.41008579 

NRGN NM_0061
76 

neurogranin 
(protein kinase 
C substrate, 
RC3) 

4900 s9724 GCCGGACGACGACAUUCUAtt UAGAAUGUCGUCGUCCGGCtt -2.27692255 

NRK NM_1984
65 

Nik related 
kinase 203447 s47517 CUUAUACGCUGGAUUCGUAtt UACGAAUCCAGCGUAUAAGat -0.07511407 

NRK NM_1984
65 

Nik related 
kinase 203447 s47518 GGAGUUCGCAAAAUCGUCAtt UGACGAUUUUGCGAACUCCtt -1.14727431 

NRK NM_1984
65 

Nik related 
kinase 203447 s47519 CUGUAUACUUGACAAACGAtt UCGUUUGUCAAGUAUACAGgg -3.06969038 

PAPSS1 NM_0054
43 

3'-
phosphoadenos
ine 5'-
phosphosulfate 
synthase 1 

9061 s17282 GGAUCGAUUCUGAAUAUGAtt UCAUAUUCAGAAUCGAUCCca -5.49237051 

PAPSS1 NM_0054
43 

3'-
phosphoadenos
ine 5'-
phosphosulfate 
synthase 1 

9061 s17283 GCAUCGCAGAAGUUGCUAAtt UUAGCAACUUCUGCGAUGCgt -3.61204507 
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PAPSS1 NM_0054
43 

3'-
phosphoadenos
ine 5'-
phosphosulfate 
synthase 1 

9061 s17284 GGCUUAGUGUGCAUCACAAtt UUGUGAUGCACACUAAGCCag -3.8865677 

PAPSS2 NM_0010
15880 

3'-
phosphoadenos
ine 5'-
phosphosulfate 
synthase 2 

9060 s17279 GGGUAGCUAUCUUACGAGAtt UCUCGUAAGAUAGCUACCCtc -1.67413236 

PAPSS2 NM_0010
15880 

3'-
phosphoadenos
ine 5'-
phosphosulfate 
synthase 2 

9060 s17280 CAUUCGCAAAGGAUCGUGAtt UCACGAUCCUUUGCGAAUGga 0.638272518 

PAPSS2 NM_0010
15880 

3'-
phosphoadenos
ine 5'-
phosphosulfate 
synthase 2 

9060 s17281 CCACCAAUGUAGUCUAUCAtt UGAUAGACUACAUUGGUGGat -1.63067477 

PASK NM_0151
48 

PAS domain 
containing 
serine/threonin
e kinase 

23178 s23211 GAAUCUUGCUGACUAUACAtt UGUAUAGUCAGCAAGAUUCac -3.40515466 

PASK NM_0151
48 

PAS domain 
containing 
serine/threonin
e kinase 

23178 s23212 CCUGGUUGCUAACGACAAAtt UUUGUCGUUAGCAACCAGGat -0.74375964 

PASK NM_0151
48 

PAS domain 
containing 
serine/threonin
e kinase 

23178 s23213 GCCUAGACCUCUUCGCUUUtt AAAGCGAAGAGGUCUAGGCcg -0.53418841 

PFTK2 NM_1391
58 

PFTAIRE 
protein kinase 
2 

65061 s35180 GAGUCCCAUUUACAGCUAUtt AUAGCUGUAAAUGGGACUCct -3.37022586 

PFTK2 NM_1391
58 

PFTAIRE 
protein kinase 
2 

65061 s35181 GCUCUUAUGCGACAGUUUAtt UAAACUGUCGCAUAAGAGCct -2.70560461 

PFTK2 NM_1391
58 

PFTAIRE 
protein kinase 
2 

65061 s35182 CCUGAAACCUCAGAACUUAtt UAAGUUCUGAGGUUUCAGGtc -8.11626326 

PIK3CG NM_0026
49 

phosphoinositi
de-3-kinase, 
catalytic, 
gamma 
polypeptide 

5294 s10532 GCUUUAGAGUUCCAUAUGAtt UCAUAUGGAACUCUAAAGCtt 0.04345312 

PIK3CG NM_0026
49 

phosphoinositi
de-3-kinase, 
catalytic, 
gamma 
polypeptide 

5294 s10533 GCUGCACGACUUUACCCAAtt UUGGGUAAAGUCGUGCAGCat -3.89243546 

PIK3CG NM_0026
49 

phosphoinositi
de-3-kinase, 
catalytic, 
gamma 
polypeptide 

5294 s10534 GUAAUCGAGAUGUUACAAAtt UUUGUAACAUCUCGAUUACtt -0.12603174 

PIM1 NM_0026
48 pim-1 oncogene 5292 s10526 ACAUCCUUAUCGACCUCAAtt UUGAGGUCGAUAAGGAUGUtt -2.31710326 

PIM1 NM_0026
48 pim-1 oncogene 5292 s10527 CCGUCUACACGGACUUCGAtt UCGAAGUCCGUGUAGACGGtg -0.47406254 

PIM1 NM_0026
48 pim-1 oncogene 5292 s10528 CCUUCGAAGAAAUCCAGAAtt UUCUGGAUUUCUUCGAAGGtt 0.159971941 

PLK2 NM_0066
22 

polo-like kinase 
2 (Drosophila) 10769 s64 GCUAGUAUGUUGUCCAAAAtt UUUUGGACAACAUACUAGCaa -2.67846486 

PLK2 NM_0066
22 

polo-like kinase 
2 (Drosophila) 10769 s65 GGUUGAUUACUCUAACAAAtt UUUGUUAGAGUAAUCAACCca -5.79636429 

PLK2 NM_0066
22 

polo-like kinase 
2 (Drosophila) 10769 s66 CUACUUCGAGGACAAAGAAtt UUCUUUGUCCUCGAAGUAGtg -0.70834094 

PLXNA2 NM_0251
79 plexin A2 5362 s10699 GGCACUAUGGUGACCAUUAtt UAAUGGUCACCAUAGUGCCtc -7.06665261 

PLXNA2 NM_0251
79 plexin A2 5362 s10700 GGAUCGCCCAUCAUUCUGAtt UCAGAAUGAUGGGCGAUCCtg 0.40679624

3 

PLXNA2 NM_0251
79 plexin A2 5362 s10701 GGGAAGAUAUUUGUCAGCAtt UGCUGACAAAUAUCUUCCCtg 2.683179691 

PLXNA3 NM_0175
14 plexin A3 55558 s224372 GAGCUGUAUUUCUAUGUCAt

t UGACAUAGAAAUACAGCUCgt -1.56357873 

PLXNA3 NM_0175
14 plexin A3 55558 s30977 CAGUGAACCGAGUCUUUAAtt UUAAAGACUCGGUUCACUGcg -0.17803423 
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PLXNA3 NM_0175
14 plexin A3 55558 s30979 CAUCAUCAAUGGAAGCACUtt AGUGCUUCCAUUGAUGAUGct 0.05822704

8 

PLXNC1 NM_0057
61 plexin C1 10154 s19775 CCACUAUAAAAGUCUUUAAtt UUAAAGACUUUUAUAGUGGat -1.94673018 

PLXNC1 NM_0057
61 plexin C1 10154 s19776 GGGCAUCGAACAUCACAAUtt AUUGUGAUGUUCGAUGCCCgg 0.073539825 

PLXNC1 NM_0057
61 plexin C1 10154 s19777 GGAGAAUUCGUGUUGCAAAtt UUUGCAACACGAAUUCUCCtc -4.54430511 

PRKG2 NM_0062
59 

protein kinase, 
cGMP-
dependent, type 
II 

5593 s11134 GCUAUGAAGUGUAUAAGGAtt UCCUUAUACACUUCAUAGCaa -2.83705674 

PRKG2 NM_0062
59 

protein kinase, 
cGMP-
dependent, type 
II 

5593 s11135 GCCUGGUUAUAGAUCGAGAtt UCUCGAUCUAUAACCAGGCat 0.664397714 

PRKG2 NM_0062
59 

protein kinase, 
cGMP-
dependent, type 
II 

5593 s11136 GAGAUUACAUCAUUAGAGAtt UCUCUAAUGAUGUAAUCUCct -2.71827223 

PRPS1 NM_0027
64 

phosphoribosyl 
pyrophosphate 
synthetase 1 

5631 s11233 GCACUAUUGUCUCACCUGAtt UCAGGUGAGACAAUAGUGCag -1.49676735 

PRPS1 NM_0027
64 

phosphoribosyl 
pyrophosphate 
synthetase 1 

5631 s11235 GACUUUGCCUUGAUUCACAtt UGUGAAUCAAGGCAAAGUCca 1.735552175 

PRPS1 NM_0027
64 

phosphoribosyl 
pyrophosphate 
synthetase 1 

5631 s224421 AGGCAGUAGUAGUCACCAAtt UUGGUGACUACUACUGCCUca 0.326178948 

PSKH1 NM_0067
42 

protein serine 
kinase H1 5681 s11324 ACCGAGACCUCAAACCUGAtt UCAGGUUUGAGGUCUCGGUgt -0.26944883 

PSKH1 NM_0067
42 

protein serine 
kinase H1 5681 s11325 GCACUAAGAGUGACGUGUAtt UACACGUCACUCUUAGUGCca 0.83238745 

PSKH1 NM_0067
42 

protein serine 
kinase H1 5681 s11326 GGUGAUGACUGCUUGAUGAt

t UCAUCAAGCAGUCAUCACCct -3.72342369 

PTK6 NM_0059
75 

PTK6 protein 
tyrosine kinase 
6 

5753 s11487 CAUCCAUGGUUAAGUCAUAtt UAUGACUUAACCAUGGAUGaa 1.80420224 

PTK6 NM_0059
75 

PTK6 protein 
tyrosine kinase 
6 

5753 s11488 GGUUUUGACUCACCUGAAAtt UUUCAGGUGAGUCAAAACCaa -0.76476776 

PTK6 NM_0059
75 

PTK6 protein 
tyrosine kinase 
6 

5753 s11489 CCGCGACUCUGAUGAGAAAtt UUUCUCAUCAGAGUCGCGGag -0.90175548 

PXK NM_0177
71 

PX domain 
containing 
serine/threonin
e kinase 

54899 s29710 CGGAAUAUAUUAUUCGAGUt
t ACUCGAAUAAUAUAUUCCGtg -1.5744343 

PXK NM_0177
71 

PX domain 
containing 
serine/threonin
e kinase 

54899 s29711 GGAUCUGAUCUACAAGGCAtt UGCCUUGUAGAUCAGAUCCtt 1.163692223 

PXK NM_0177
71 

PX domain 
containing 
serine/threonin
e kinase 

54899 s29712 GACAUAGGUUGGAGAAUAAtt UUAUUCUCCAACCUAUGUCtt -3.80122921 

RBKS NM_0221
28 ribokinase 64080 s34394 GAAUUUACAUAUCAGACUAtt UAGUCUGAUAUGUAAAUUCtg -4.5071576 

RBKS NM_0221
28 ribokinase 64080 s34395 GGUGGUAAUCAUUACCUUAtt UAAGGUAAUGAUUACCACCtg 0.48222634

3 

RBKS NM_0221
28 ribokinase 64080 s34396 GAUUGCUAUUAGUCCCAAAtt UUUGGGACUAAUAGCAAUCaa -1.17818663 

RIPK3 NM_0068
71 

receptor-
interacting 
serine-
threonine 
kinase 3 

11035 s21740 GGCAAGUCUGGAUAACGAAtt UUCGUUAUCCAGACUUGCCat -0.96548289 

RIPK3 NM_0068
71 

receptor-
interacting 
serine-
threonine 
kinase 3 

11035 s21741 GAACUGUUUGUUAACGUAAt
t UUACGUUAACAAACAGUUCtg 0.538533505 

RIPK3 NM_0068
71 

receptor-
interacting 
serine-
threonine 
kinase 3 

11035 s21742 GGAGAACCAUAGAAAACCAtt UGGUUUUCUAUGGUUCUCCta -1.01402074 
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Gene 
Symbol 

RefSeq 
ID 

Full Gene 
Name 

Gene 
ID 

Ambion 
siRNA 

ID 
Sense siRNA Sequence Antisense siRNA Sequence Z-score 

ROR1 NM_0010
83592 

receptor 
tyrosine kinase-
like orphan 
receptor 1 

4919 s9755 GUACUGCGAUGAAACUUCAtt UGAAGUUUCAUCGCAGUACgg 0.197976281 

ROR1 NM_0010
83592 

receptor 
tyrosine kinase-
like orphan 
receptor 1 

4919 s9756 GGAUGAAAACUUUAAGUCUtt AGACUUAAAGUUUUCAUCCaa 1.550257095 

ROR1 NM_0010
83592 

receptor 
tyrosine kinase-
like orphan 
receptor 1 

4919 s9757 CCGUCUAUAUGGAGUCUUUt
t AAAGACUCCAUAUAGACGGtg 2.391194414 

RPS6KA2 NM_0010
06932 

ribosomal 
protein S6 
kinase, 90kDa, 
polypeptide 2 

6196 s12276 CGAUAUCUGACGCAGCUAAtt UUAGCUGCGUCAGAUAUCGag 2.259012425 

RPS6KA2 NM_0010
06932 

ribosomal 
protein S6 
kinase, 90kDa, 
polypeptide 2 

6196 s12277 CGAGCUCUCUUCAAACGGAtt UCCGUUUGAAGAGAGCUCGca -1.89003944 

RPS6KA2 NM_0010
06932 

ribosomal 
protein S6 
kinase, 90kDa, 
polypeptide 2 

6196 s12278 GAGUAUGCCGUGAAGAUCAtt UGAUCUUCACGGCAUACUCgg -3.67254772 

RPS6KA4 NM_0010
06944 

ribosomal 
protein S6 
kinase, 90kDa, 
polypeptide 4 

8986 s17138 CCUCCAUUCUCUUUGACCAtt UGGUCAAAGAGAAUGGAGGgt 1.988825974 

RPS6KA4 NM_0010
06944 

ribosomal 
protein S6 
kinase, 90kDa, 
polypeptide 4 

8986 s17139 GCACUUCAGCGAGUCGGAAtt UUCCGACUCGCUGAAGUGCcg -3.14152089 

RPS6KA4 NM_0010
06944 

ribosomal 
protein S6 
kinase, 90kDa, 
polypeptide 4 

8986 s17140 UCAUUUACCGAGACCUGAAtt UUCAGGUCUCGGUAAAUGAtg 1.190876116 

RPS6KB1 NM_0031
61 

ribosomal 
protein S6 
kinase, 70kDa, 
polypeptide 1 

6198 s12282 CAUGGAACAUUGUGAGAAAtt UUUCUCACAAUGUUCCAUGcc -1.64403391 

RPS6KB1 NM_0031
61 

ribosomal 
protein S6 
kinase, 70kDa, 
polypeptide 1 

6198 s12283 GGUUUUUCAAGUACGAAAAtt UUUUCGUACUUGAAAAACCtt -2.13559989 

RPS6KB1 NM_0031
61 

ribosomal 
protein S6 
kinase, 70kDa, 
polypeptide 1 

6198 s12284 GGACUAUGCAAAGAAUCUAtt UAGAUUCUUUGCAUAGUCCaa -2.60647388 

SGK269 XM_3708
78 

NKF3 kinase 
family member 79834 s36441 CAUUGUCUCCUGUUCGAUUt

t AAUCGAACAGGAGACAAUGtg 0.924951648 

SGK269 XM_3708
78 

NKF3 kinase 
family member 79834 s36443 GCAUGAUAGGUGGGAUAAAtt UUUAUCCCACCUAUCAUGCaa -2.01471094 

SLK NM_0147
20 

STE20-like 
kinase (yeast) 9748 s18812 GGAAAUUGAGAAUCUAGAAtt UUCUAGAUUCUCAAUUUCCtg -2.25386571 

SLK NM_0147
20 

STE20-like 
kinase (yeast) 9748 s18813 GAUCGAUAUCUUUACAAGAtt UCUUGUAAAGAUAUCGAUCca 0.56000763

2 

SLK NM_0147
20 

STE20-like 
kinase (yeast) 9748 s18814 GCAGAAACAGACUAUCGAAtt UUCGAUAGUCUGUUUCUGCtg -0.15897564 

SNF1LK2 NM_0151
91 

SNF1-like 
kinase 2 23235 s23355 CCAUAGCCCAAAUCAAGGAtt UCCUUGAUUUGGGCUAUGGtt 2.361630407 

SNF1LK2 NM_0151
91 

SNF1-like 
kinase 2 23235 s23356 GGAAGAUUGUGCACCGUGAtt UCACGGUGCACAAUCUUCCga -1.97456601 

SNF1LK2 NM_0151
91 

SNF1-like 
kinase 2 23235 s23357 GAAGGAUGUUGGUCCUAGAt

t UCUAGGACCAACAUCCUUCgg 0.116645576 

SPHK1 NM_0219
72 

sphingosine 
kinase 1 8877 s16957 AACUACUUCUGGAUGGUCAtt UGACCAUCCAGAAGUAGUUtg -8.0236657 

SPHK1 NM_0219
72 

sphingosine 
kinase 1 8877 s16958 GGAAGAGUGGGUUCCAAGAtt UCUUGGAACCCACUCUUCCta 2.343972585 

SPHK1 NM_0219
72 

sphingosine 
kinase 1 8877 s16959 UCACGCUGAUGCUCACUGAtt UCAGUGAGCAUCAGCGUGAag -1.81824975 

SPHK2 NM_0201
26 

sphingosine 
kinase 2 56848 s32283 CCCUCACCCUUACAUCGCAtt UGCGAUGUAAGGGUGAGGGca -0.44826073 

SPHK2 NM_0201
26 

sphingosine 
kinase 2 56848 s32284 CGGCCUACUUCUGCAUCUAtt UAGAUGCAGAAGUAGGCCGct -2.55359907 

SPHK2 NM_0201
26 

sphingosine 
kinase 2 56848 s32285 CAAGGCAGCUCUACACUCAtt UGAGUGUAGAGCUGCCUUGgg 1.828391289 

STK16 NM_0010
08910 

serine/threonin
e kinase 16 8576 s16337 AUAUAUUGCUUGGAGAUGAt

t UCAUCUCCAAGCAAUAUAUtg -5.8898735 
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Gene 
Symbol 

RefSeq 
ID 

Full Gene 
Name 

Gene 
ID 

Ambion 
siRNA 

ID 
Sense siRNA Sequence Antisense siRNA Sequence Z-score 

STK16 NM_0010
08910 

serine/threonin
e kinase 16 8576 s16338 CCAACUCAGCAUCCCACAAtt UUGUGGGAUGCUGAGUUGGtt -0.01183599 

STK16 NM_0010
08910 

serine/threonin
e kinase 16 8576 s16339 GGUACGCUGUGGAAUGAGAtt UCUCAUUCCACAGCGUACCtc -3.04285898 

STK32B NM_0184
01 

serine/threonin
e kinase 32B 55351 s30804 AGAUGAUUCUAGAAUCCAAtt UUGGAUUCUAGAAUCAUCUct -3.39114677 

STK32B NM_0184
01 

serine/threonin
e kinase 32B 55351 s30805 ACAUAGCGACGGUAGUGAAtt UUCACUACCGUCGCUAUGUtg -0.79711601 

STK32B NM_0184
01 

serine/threonin
e kinase 32B 55351 s30806 CAUUACAGACUUCAACAUAtt UAUGUUGAAGUCUGUAAUGtg -2.06882053 

SYK NM_0031
77 

spleen tyrosine 
kinase 6850 s13679 GGAUAAGAACAUCAUAGAAtt UUCUAUGAUGUUCUUAUCCtt -3.44984136 

SYK NM_0031
77 

spleen tyrosine 
kinase 6850 s13680 CGCUCUUAAAGAUGAGUUAtt UAACUCAUCUUUAAGAGCGgg -1.23978621 

SYK NM_0031
77 

spleen tyrosine 
kinase 6850 s13681 GCACUAUCGCAUCGACAAAtt UUUGUCGAUGCGAUAGUGCag 0.02994693

6 

TAF1L NM_1538
09 

TAF1 RNA 
polymerase II, 
TATA box 
binding protein 
(TBP)-
associated 
factor, 210kDa-
like 

138474 s44115 CACUGUUCAUUGUGACUAUtt AUAGUCACAAUGAACAGUGgt 3.184645079 

TAF1L NM_1538
09 

TAF1 RNA 
polymerase II, 
TATA box 
binding protein 
(TBP)-
associated 
factor, 210kDa-
like 

138474 s44116 CCGUGAAAAUGUGCGUAAAtt UUUACGCACAUUUUCACGGag 0.951053759 

TAF1L NM_1538
09 

TAF1 RNA 
polymerase II, 
TATA box 
binding protein 
(TBP)-
associated 
factor, 210kDa-
like 

138474 s44117 CAGUGUAUCUUCAUAAGAUtt AUCUUAUGAAGAUACACUGga -3.86782375 

UCK2 NM_0124
74 

uridine-
cytidine kinase 
2 

7371 s14669 AGCUUCUACCGUGUCCUUAtt UAAGGACACGGUAGAAGCUat -3.92192338 

UCK2 NM_0124
74 

uridine-
cytidine kinase 
2 

7371 s14670 GAUUUUAUCUCAGUACAUUt
t AAUGUACUGAGAUAAAAUCtg -4.14093842 

UCK2 NM_0124
74 

uridine-
cytidine kinase 
2 

7371 s14671 GUACGAGACCUGUUCCAGAtt UCUGGAACAGGUCUCGUACct 1.593472577 
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12.3  Appendix 3: KEGG protein pathway maps 
 
 

 
Figure 12-1 KEGG pathway map of the RAP1 signaling pathway. 
The map shows the RAP1 signaling pathway based on the KEGG database. The four hits, falling 
into this network, are indicated in pink. Figure created using KEGG Mapper v2.5. 

 

 
Figure 12-2 KEGG pathway map of the mTOR signaling pathway. 
The map shows the mTOR signaling pathway based on the KEGG database. The four hits, falling 
into this network, are indicated in pink. Figure created using KEGG Mapper v2.5. 
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Figure 12-3 KEGG pathway map of the insulin signaling pathway. 
The map shows the insulin signaling pathway based on the KEGG database. The four hits, falling 
into this network, are indicated in pink. Figure created using KEGG Mapper v2.5. 

 

 
Figure 12-4 KEGG pathway map of the PI3K-Akt signaling pathway. 
The map shows the PI3K-Akt signaling pathway based on the KEGG database. The four hits, 
falling into this network, are indicated in pink. Figure created using KEGG Mapper v2.5. 
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Figure 12-5 KEGG pathway map of the HIF-1 signaling pathway. 
The map shows the HIF-1 signaling pathway based on the KEGG database. The four hits, falling 
into this network, are indicated in pink. Figure created using KEGG Mapper v2.5. 

 

 

 
Figure 12-6 KEGG pathway map of the Ras signaling pathway. 
The map shows the Ras signaling pathway based on the KEGG database. The four hits, falling 
into this network, are indicated in pink. Figure created using KEGG Mapper v2.5. 
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Figure 12-7 KEGG pathway map of the Fc gamma R-mediated phagocytosis 
pathway. 
The map shows the Fc gamma R-mediated phagocytosis pathway based on the KEGG database. 
The four hits, falling into this network, are indicated in pink. Figure created using KEGG 
Mapper v2.5. 

 

 

 
Figure 12-8 KEGG pathway map of the FOX0 signaling pathway. 
The map shows the FOX0 signaling pathway based on the KEGG database. The four hits, falling 
into this network, are indicated in pink. Figure created using KEGG Mapper v2.5. 
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Figure 12-9 KEGG pathway map of the Neurotrophin signaling pathway. 
The map shows the Neurotrophin signaling pathway based on the KEGG database. The four 
hits, falling into this network, are indicated in pink. Figure created using KEGG Mapper v2.5.  
 
 

12.4  Appendix 4: NCBI HIV-1 interaction database 
 
 
Table 25 Overlap between the results of this work and the NCBI HIV-1 interaction 
database. 

HIV-1 protein Interaction Screen 
Hit 

Pubmed ID 

Envelope surface 
glycoprotein gp120 

inhibited by CD2 7589092  

Envelope surface 
glycoprotein gp120 

interacts with CD2 9475352 

Envelope 
transmembrane 
glycoprotein gp41 

inhibits CD2 1832084 

capsid interacts with CD2 1385321, 2111780, 7517794, 
8809126, 9743208, 10722370 

capsid interacts with CD2 7517794 

capsid interacts with CD2 8809126, 9743208 

nucleocapsid downregulates CD2 18051367 
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HIV-1 protein Interaction Screen 
Hit 

Pubmed ID 

Tat binds CDK7 8628270, 8934526, 9184228, 
9334327, 9765201 

Tat binds CDK7 9311822, 10639311, 12049628, 
19732026 

Tat interacts with CDK7 12049628, 19732026 

Tat interacts with CDK7 8849451, 8934526, 9054383, 
9121429, 19732026, 23827503, 
24565118 

Tat interacts with CDK7 9651670, 10066804, 10082552, 
10866664, 14569024 

Tat requires CDK7 8934526, 9184228, 9334327 

Tat stimulates CDK7 8934526, 9184228, 9311822, 
9334327, 9570510, 9651670, 
10438593, 10866664, 14569024, 
19732026 

Tat synergizes with CDK7 8934526, 19732026 

Vpr enhanced by CDK7 12379213 

Vpr inhibited by CDK7 12379213 

Envelope surface 
glycoprotein gp120 

activates CSK 21562048 

Tat activates CSK 9621077 

Envelope surface 
glycoprotein gp120 

upregulates IGF1R 15103018 

HIV-1 virus replication enhanced by 
expression of 
human gene 

ITPKA 18187620 

HIV-1 virus replication enhanced by 
expression of 
human gene 

NME1 19266025 

Tat upregulates PIM1 23898208 

Envelope surface 
glycoprotein gp120 

activates PIK3CG 12551992, 12960231, 20041213 

Envelope surface 
glycoprotein gp120 

activates PIK3CG 18453587 

Envelope surface 
glycoprotein gp120 

activates PIK3CG 23251686 

Envelope surface 
glycoprotein gp120 

inhibited by PIK3CG 20818790 

Envelope surface 
glycoprotein gp120 

mediated by PIK3CG 16081599 

Envelope surface 
glycoprotein gp120 

modulated by PIK3CG 16524887 

Envelope surface 
glycoprotein gp120 

regulated by PIK3CG 15689238 

Envelope surface 
glycoprotein gp120 

relocalizes PIK3CG 18453587 
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HIV-1 protein Interaction Screen 
Hit 

Pubmed ID 

Envelope surface 
glycoprotein gp160, 
precursor 

activates PIK3CG 9341793 

Envelope surface 
glycoprotein gp160, 
precursor 

inhibits PIK3CG 9808187 

Nef activates PIK3CG 25104021 

Nef complexes with PIK3CG 18854243 

Nef downregulates PIK3CG 8636073, 9247029, 10208934 

Nef interacts with PIK3CG 11289809, 12526811, 12584329, 
17632570, 20702582, 23215766 

Nef upregulates PIK3CG 10985305 

Tat activates PIK3CG 17157319 

Tat activates PIK3CG 20019835 

Tat activates PIK3CG 21029719 

Tat activates PIK3CG 21765914 

Tat activates PIK3CG 8798481, 9394803, 9708406, 
11156964, 11994280, 17157319 

Tat induces 
phosphorylation 
of 

PIK3CG 23301033 

Tat inhibited by PIK3CG 12077252 

Tat interacts with PIK3CG 11154208 

Tat interacts with PIK3CG 14602571 

Tat interacts with PIK3CG 23077641 

Tat interacts with PIK3CG 9446795 

Tat regulated by PIK3CG 24073214 

HIV-1 virus replication enhanced by 
expression of 
human gene 

PIK3CG 19460752 

Tat activates MAP2K3 24742347 

Tat interacts with MAP2K3 23535064 

Envelope 
transmembrane 
glycoprotein gp41 

activates RPS6KB1 10089566, 10807185 

Tat inhibits RPS6KB1 20433920 

nucleocapsid upregulates UCK2 18051367 

Tat downregulates CDK10 22632162 

Envelope surface 
glycoprotein gp120 

upregulates SPHK1 24162774 

Tat enhances MAP3K14 11511100 
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HIV-1 protein Interaction Screen 
Hit 

Pubmed ID 

HIV-1 virus replication enhanced by 
expression of 
human gene 

MAP3K14 18976975 

Vpu binds NLK 23047923 

Tat Downregulates HKDC1 22632162 
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