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1. Summary 

1.1 Abstract 

Breast cancer is often associated with deregulated activity of two receptor tyrosine kinases 

(RTKs) from the ERBB family: EGFR and ERBB2 (HER2/Neu). Whereas the EGF receptor is 

often mutated in breast cancer, ERBB2 is up-regulated in up to 20% of invasive breast 

tumors and plays a triggering role in cell proliferation, invasion and metastasis. Patients 

overexpressing ERBB2 are treated with targeted therapies and in particular with the 

monoclonal antibody trastuzumab, which binds an extracellular domain of the receptor and 

abrogates receptor-kinase activation. However, ERBB2-positive breast cancer patients 

overexpress ERBB2 to different extent. The expression range is very wide, raising the 

question whether the tumors expressing moderate, high and very high ERBB2 levels have 

different outcome and patients carrying them can be treated as one entity or not.  

To better understand the impact of different ERBB2 levels I developed stable cell line pools 

overexpressing ERBB2 at different levels. I observed that in 3D culture as well as in matrigel-

based invasion assays, cells expressing very high ERBB2 levels showed more invasive 

properties than those expressing moderate ERBB2 levels, even in the absence of EGF. This 

was accompanied by disruption of cell polarity in 3D-grown spheroids and anchorage-

independent growth which occured only when ERBB2 expression was very high. These 

phenotypes could be at least partially explained by ERBB2-dose dependent epithelial-

mesenchymal transition (EMT), an increase in HB-EGF transcription and constitutive ERK 

and AKT signaling pathway activation at the very high ERBB2 levels. 

As recently several miRNAs have been reported to regulate EMT-related processes and 

because their expression is frequently deregulated in cancer, I also hypothesized that their 

expression would change with the ERBB2 expression level in 3D culture. To verify my 

hypothesis, I performed small RNA sequencing from stable cell line pools grown in matrigel. 

This identified several miRNAs which are ERBB2-level dependent. I focused then on the 

functional characterization of miR-301b and miR-130b whose expressions were ERBB2-

dependent in 3D, but not in 2D culture. Overexpression of these miRNAs phenocopied 

ERBB2 effects on cell invasion and proliferation as well as induction of EMT, as did 

overexpression of the related miR-301a. 
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1.2 Zusammenfassung 

Brustkrebs wird oft in Verbindung gebracht mit deregulierter Aktivität von EGFR und ERBB2 

(HER2/Neu), zwei Rezeptor-Tyrosinkinasen der ERBB Familie. Während der EGF Rezeptor bei 

Brustkrebs oft Mutationen aufweist, ist ERBB2 in bis zu 20% aller Fälle von invasiven 

Brusttumoren hochreguliert und spielt eine auslösende Rolle für Zellteilung, Zellinvasion und 

Metastasen. Patienten, die ERBB2 überexprimieren, werden mit zielgerichteten Therapien 

behandelt, insbesondere mit dem monoklonalen Antikörper Trastuzumab, welcher eine 

extrazelluläre Domäne des Rezeptors bindet und eine Aktivierung der Rezeptor-

Tyrosinkinase verhindert. 

ERBB2-positive Brustkrebs Patienten überexprimieren ERBB2 jedoch unterschiedlich stark. 

Die großen Unterschiede der Expression werfen die Fragen auf, ob die  moderate, hohe oder 

sehr hohe ERBB2-Tumorexpressionslevel zu unterschiedlichen Krankheitsverläufen führen 

und ob Patienten mit diesen Tumoren als eine Gruppe betrachtet werden können oder nicht. 

Um den Effekt verschieden starker ERBB2-Level besser zu verstehen, habe ich stabile 

Zelllinien entwickelt, welche ERBB2 in unterschiedlichem Ausmaß überexprimieren. Ich 

konnte beobachten, dass Zellen mit hohen und sehr hohen ERBB2-Leveln, sowohl in 3D-

Kulturen als auch in Matrigel-basierten Invasionstests stärkere invasive Eigenschaften 

aufwiesen, als solche mit moderaten ERBB2-Leveln, selbst wenn kein EGF vorhanden war. 

Dies wurde von Störungen der Zell-Polarität in 3D-gezüchteten Spheroiden und von 

verankerungsunabhängigem Wachstum begleitet, welches nur bei sehr hoher ERBB2-

Exprimierung auftrat. Diese Phänotypen können zumindest teilweise durch die von der 

ERBB2-Dosis abhängige epithelial-mesenchymale Transition (EMT), einem Anstieg der HB-

EGF Transkription und konstitutiver Aktivierung von ERK und AKT Signalwegen bei sehr 

hohen ERBB2-Leveln erklärt werden.  

Da vor Kurzem mehrere miRNAs gefunden wurden, die EMT-abhängige Prozesse regulieren, 

und weil deren Exprimierung häufig  bei Krebs dereguliert ist, habe ich die Hypothese 

aufgestellt, dass die Überexprimierung dieser miRNAs die ERBB2-Level in 3D-Kulturen 

verändern würde. Um meine Hypothese zu verifizieren habe ich kleine RNAs von stabilen 

Zelllinien sequenziert, welche in Matrigel gezüchtet wurden. Dadurch konnte ich mehrere 

miRNAs identifizieren, die abhänging von den ERBB2-Leveln sind. Ich habe mich dann auf die 

funktionale Charakterisierung von miR-301b und miR-130b fokussiert, wessen Expression in 
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3D-Kulturen - jedoch nicht in 2D-Kulturen - ERBB2-abhängig war. Überexprimierung dieser 

miRNAs induzierte ERBB2-gleiche phänotypische Effekte auf Zellinvasion, Zellvermehrung 

und auf die Induktion von EMT. Dies konnte auch für das verwandte miR-301a beobachtet 

werden. 
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2. Abbreviations 

°C degrees Celsius  

AGO argonaute 

AKT1 v-akt murine thymoma viral oncogene homolog 1 

APS ammonium peroxodisulphate 

AR AREG, amphiregulin 

ATP adenosine triphosphate 

a.u. arbitrary units 

BCA bicinchoninic acid 

bp base pairs 

BSA bovine serum albumin 

CDH1 E-cadherin 

CDH2 N-cadherin 

cDNA complementary DNA 

CDS coding sequence 

CISH chromogenic in situ hybridization 

cm centimeter 

CTTN cortactin 

DAPI 4′,6-Diamidino-2-phenylindole 

DAVID Database for Annotation, Visualization and Integrated Discovery 

DICER1 dicer 1, ribonuclease type III 

DMSO dimethyl sulfoxide 

DNA deoxyribonucleic acid 

dNTPs deoxyribonucleotide triphosphates 

E. coli Escherichia coli 

ECL enhanced chemiluminescence 

EGF epidermal growth factor 

EGFP enhanced green fluorescent protein 

EGFR EGF receptor 

EMT epithelial-mesenchymal transition 



 15 

ER estrogen receptor 

ERBB2 v-erb-b2 avian erythroblastic leukemia viral oncogene homolog 2 

ERBB3 v-erb-b2 avian erythroblastic leukemia viral oncogene homolog 3 

ERBB4 v-erb-b2 avian erythroblastic leukemia viral oncogene homolog 4 

ERK1 MAPK3, mitogen-activated protein kinase 3 

ERK2 MAPK1, mitogen-activated protein kinase 1 

FACS fluorescence activated cell sorting 

FAK Focal Adhesion Kinase, PTK2, protein tyrosine kinase 2 

FBS fetal bovine serum 

FISH fluorescence in situ hybridization 

FN1 Fibronectin 1 

g gram 

GM130 protein encoded by GOLGA2 (golgin A2) gene 

h hours 

HB-EGF heparin-binding EGF-like growth factor 

hluc+ firefly luciferase 

hRluc renilla luciferase 

IHC immunohistochemistry 

kbp kilobase pair 

KRT5 keratin 5, cytokeratin 5 

KRT6 keratin 6, cytokeratin 6 

l liter 

LB Medium Luria Bertani Medium 

M molar 

MEK1 MAP2K1, mitogen-activated protein kinase kinase 1 

MEK2 MAP2K2,  mitogen-activated protein kinase kinase 2 

mg milligram 

min minute 

miRNA microRNA 

ml milliliter 

mRNA messenger RNA 
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MTDH metadherin 

MUC1 mucin 1, cell surface associated 

NEAA non-essential aminoacids 

ng nanogram 

nm nanometer 

nM nanomolar 

NRG1-4 neuregulin 1-4 

nt nucleotide 

PAGE polyacrylamide gel-electrophoresis 

PBS phospahte buffered saline 

PCR polymerase chain reaction 

Pen/Strep penicillin/streptomycin 

PFA paraformaldehyd 

PI3K phosphoinositide 3-kinase 

PKA protein kinase A 

PLCG1 phospholipase gamma 1 

polyHEMA poly(2-hydroxyethyl methacrylate) 

PTEN phosphatase and tensin homolog 

qRT-PCR quantitative realtime PCR 

RHOA ras homolog family member A 

RISC RNA induced silencing complex 

RNA ribonucleic acid 

rpm revolutions per minute 

RPPA reverse phase protein array 

RTCA real time cell analyzer 

SDS sodium dodecylsulphate 

sec second 

siRNA short interfering RNA 

SISH silver in situ hybridization 

SRC sarcoma viral oncogene homolog 

SRC v-src avian sarcoma (Schmidt-Ruppin A-2) viral oncogene homolog 

http://www.ncbi.nlm.nih.gov/gene/5566
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TBS-T Tris-buffered saline-Tween 20 

TEMED tetramethylethylenediamine 

TGFα transforming growth factor, alpha 

TP53INP1 tumor protein p53 inducible nuclear protein 1 

U units 

UPL universal probe library 

UTR untranslated region 

V volt 

v/v volume/volume 

VIM vimentin 

w/v weight/volume 

WST1 Water soluble Tetrazolium salt 1, (2-(4-Iodophenyl)- 

3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, monosodium 

salt) 

ZEB1 zinc finger E-box-binding homeobox 1 

μl microliter 

μM micromolar 
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3. Introduction 

3.1 Breast cancer 

Breast cancer is the most frequently diagnosed cancer and the second leading cause of 

cancer deaths, after lung cancer, in women.1 In 2012 around 500 thousand women in 

Europe, 233 thousand women in the United States, and in total approximately 1.67 million 

breast cancer cases worldwide have been diagnosed with the disease.2,3 Out of them, one 

third is estimated to eventually die of breast cancer (522 thousand deaths in 2012). 

Currently, the ratio between breast cancer mortality and incidence varies depending on the 

world region and is much higher in less developed countries (Figure 1).3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 
Figure 1 
Breast cancer incidence and mortality rates per 100,000 people depending on the world 
region in 2012. (adapted from GLOBOCAN 2012, http://globocan.iarc.fr)3  
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While breast cancer can affect men as well and is associated with poorer survival rate in 

men compared to women, male breast cancer is rare and accounts for less than 1% of all 

breast cancer cases and less than 0.1% of cancer deaths in men.4,5  

Breast cancer is a very heterogenous disease. Half a century ago clinicians had observed 

diverse responses to breast cancer treatment in different patients without finding a good 

explanation for that phenomenon. The recognition of the impact hormone receptor 

presence in tumor samples has on hormone therapy efficiency was one of the first 

breakthroughs in the breast cancer field.6,7,8 The tumors expressing estrogen receptor 

showed “addiction” to estrogen and blockage of the estrogen receptor (ER) with the ER 

targeting drug tamoxifen has brought a significant improvement to the patients’ survival.9,10 

However, treatment of ER-negative (ER-) tumors with such drugs proved to be less effective 

and more aggressive radiation therapy and/or chemotherapy had to be administred. 

The recent emergence of new highthroughput technologies to study the molecular 

background of tumor samples has triggered a number of attempts to find common traits 

among breast cancer patients. Technologies used involve studies at DNA level – genotyping, 

sequencing; RNA level – gene expression profiling (both using either microarrays or deep 

sequencing methods), as well as at the protein level – using protein microarrays.11,12,13,14 

Today one of the most widely accepted classifications of breast cancer is founded on the 

discovery by Sorlie et. al, who reported that five main molecular subtypes of breast cancer 

can be distinguished mostly based on particular expression patterns of ~500 intrinsic 

genes.15,16 These molecular subtypes are: basal-like, HER2-overexpressing, normal breast 

tissue-like, estrogen/progesterone receptor (ER/PR) positive luminal A (good differentiation; 

low Ki67 staining) and luminal B (poor differentiation; high Ki67 staining).15,16,17 

The best prognosis is associated with the luminal A subtype, followed by normal breast-like 

and luminal B. Much more aggressive tumors belong to the basal-like subtype, consisting 

mainly of HER2-/ER-/PR- (so called triple negative; TN) breast cancers and to the HER2 

overexpressing subtype.15,16,18 Most of the patients with BRCA1 gene mutation – a heritable 

mutation increasing the risk of developing breast cancer to 50-85% in women by age 70 – 

are of the TN subtype as their tumors show striking similarities to the basal-like subtype, 

including lack of estrogen/progesterone receptor expression and HER2 overexpression.19 

It is estimated that around 15-20% of invasive primary breast cancer cases bear genomic 

amplifications of ERBB2 and/or otherwise overexpress this receptor tyrosine kinase.20,21 
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They are associated with increased resistance to standard anti-cancer therapies and with 

shorter overall survival.22,23,18 ERBB2-overexpressing tumors are, however, not 

homogeneous. If they do not express hormone receptors then they are classified into the 

ERBB2-overexpressing breast cancer subtype, if they do, then they are classified as luminal B 

and associated with relatively better overall survival (Figure 2).18 

a)              b) 

 

 

 

 

 

 

 

 

 

 

 
Figure 2 
Kaplan-Meier 5-year survival rates for combined breast cancer stages 1-3 with respect to a) 
breast cancer subtype; b) ER/PR/HER2 status. (adapted from C.A. Parise et al., 2014)18 
 

In the last years several tests have been developed to stratify breast cancer patients as well 

as to discover novel molecular signatures.12 Their aim is to assist clinicians in choosing the 

adequate personalized therapy by predicting patients’ outcome and response to particular 

treatments. The most advanced tests in the clinical setting are MammaPrint (NKI-70, based 

on a 70 genes signature)24,25,26,27, OncotypeDX (Recurrence Score, 21 genes)28 and Prosigna 

(PAM50, 50 genes)29. There are also other tests at various phases of development and with 

varying complexities, like BluePrint30,31, TargetPrint32, Molecular Grade Index (MGI)33, Breast 

Cancer Index (BCI)34,35, SCMGENE36,37, IHC438, Mammostrat39, Nottingham Prognostic Index 

Plus (NPI+)40,41, Randox Breast Cancer Array42, Genomic Grade Index (GGI)43, Basal 1444, 

Core Serum Response (CSR/wound) signature45, 14-gene metastasis score (MS-14)46, 

76-gene Veridex signature (EMC-76)47, expression signature for p53 status48, hormone 
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receptor negative/triple negative signatures IR-749 and Buck-1450 and Integrated Cytokine 

Score (ICS).51 

Although the number of tests/molecular signatures of breast cancer increases rapidly, the 

main types of treatment have remained largely unchanged. Most patients undergo 

conventional surgery, radiation therapy, chemotherapy, and/or anti-hormone therapy. 

However, the emergence and efficiency of first targeted therapy drugs in breast cancer 

treatment (inspired by development of ERBB2-directed monoclonal antibody trastuzumab) 

brings hope to overcome the need of unselective and more aggressive treatments for 

hormone negative tumors.52,53,54 

Currently, tumor specimens obtained during the surgical procedure or biopsy samples are 

routinely analyzed by in-situ hybridization (ISH) or immunohistochemistry (IHC) for 

overexpression of ERBB2 (HER2) in parallel with IHC tests for the presence of estrogen and 

progesterone receptors.55,21,56 Patients positive for estrogen receptor can be then treated 

with hormone therapy using the ER-targeted drug tamoxifen or aromatase inhibitors, like 

anastrozole, in either a neadjuvant (before surgery) or in the more commonly applied 

adjuvant (post-surgery) setting.57,58,59 Patients who are classified as ERBB2-positive can, on 

the other hand, undergo targeted therapy treatment with trastuzumab or with combination 

of trastuzumab and pertuzumab in the adjuvant setting for early breast cancer or in 

neoadjuvant setting for metastatic breast cancer.6061 In case of more advanced breast 

cancer stages lapatinib and an improved version of trastuzumab, trastuzumab emtansine (T-

DM1), are also in clinical use.62 Although the most common treatment for HER2-positivie 

patients – trastuzumab – has been shown to improve patients’ overall survival by 33% in 

early stage breast cancers and by 20% in metastatic breast cancers63,64, the de novo 

resistance rate in both groups is very high and most of the metastatic patients who show 

primary response to the treatment eventually develop resistance within one year.53,65 The 

ERBB2-overexpressing breast cancer subtype remains therefore responsible for a large 

portion of breast cancer deaths. 
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3.2 Structure and function of ERBB2 and ERBB-family receptors 

3.2.1 ERBB2 and other ERBB-family members’ structure 

ERBB2 (v-erb-b2 avian erythroblastic leukemia viral oncogene homolog; also called 

HER2/Neu) is a 185kDa member of the human epidermal growth factor receptor (HER/ERBB) 

family, along with EGFR (HER1), ERBB3 (HER3) and ERBB4 (HER4).66 ERBB family members 

are classified as receptor tyrosine kinases (RTKs) due to the presence of three characteristic 

domains in their structure: ligand-binding extracellular domain (~620 residues), a single 

alpha-helical transmembrane domain (~23 residues) and a tyrosine kinase intracellular 

domain (~260 residues) which is flanked by juxtamembrane (~40 residues) and C-terminal 

(~232 residues) regulatory elements.67,68 Two of the receptors, ERBB2 and ERBB3, are 

however not fully autonomous. ERBB2 lacks a known ligand and ERBB3 possesses only very 

weak kinase activity.69,70,71,72 For the activation of any ERBB family receptor, homo- or 

heterodimerization with another family member and the resulting transphosphorylation is 

required.71,68 This is possible when the conformation of the receptor changes into an active, 

dimerization-ready conformation upon ligand binding to its extracellular domain.73,74,75 The 

extracellular part of the receptor consists of four smaller fragments. Domains I and III (L1 

and L2) are capable of ligand binding and domains II and IV (cystein-rich domains CR1 and 

CR2) are required for receptor dimerization. In a monomeric state, domains II and IV interact 

with each other playing an autoinhibitory role. Ligand binding to domains I and III induces a 

conformational change and exposure of domains II and IV for dimerization.68 

ERBB2 is specific in this protein family. Its extracellular domain is believed to be in a 

constitutively active conformation, as revealed by crystallography studies, which makes 

ERBB2 a preferential dimerization partner for other family members.76 It is therefore often 

referred to as a coreceptor for other ERBB receptors or the “amplifier” of their signaling as it 

induces their stronger and prolonged activation once they bind their respective ligands. The 

signaling from EGFR homodimers, for example, is usually transient and receptor becomes 

quickly (within few minutes) internalized and degraded following ligand binding.77,78,79 

Heterodimerization with ERBB2 not only increases the ligand affinity and prolongs the 

duration of signaling, but also slows down the internalization of EGFR and enhances its 

recycling.80,81 In spite of this suggested coreceptor role of ERBB2, its recently revealed 

structural similarity to the Drosophila EGFR receptor, which nevertheless requires ligand (incl. 
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Spitz, Gurken, Keren, Vein) binding for its activation, raises the question if the ERBB2 also 

possesses an autoinhibitory mechanism which needs to be disrupted by ligand binding to 

activate the receptor.82,83 Although it seems that such ERBB2 ligand is yet to be identified, 

membrane-bound mucin 4 (MUC4), which contains an EGF-like domain in its structure could 

potentially play the role of an ‘unorthodox’ ligand, as it was demonstrated that it forms a 

complex with ERBB2, promotes its autocatalysis, relocates it from the lateral to the apical 

cell surface and stabilizes ERBB2-ERBB3 heterodimers.84,85,86 

3.2.2 Regulation of ERBB receptor family signaling activity 

ERBB-family signaling is one of the longest-studied protein-protein interaction networks in 

the history of molecular biology. Yet, the level of complexity of ERBB-signaling still opens 

new questions the more knowledge is accumulated. There are several factors contributing to 

this complexity. 1) There are multiple combinations of receptor dimers which can be formed 

by ERBB-family members. All possible receptor combinations have been detected in vivo – 

six different heterodimers and four homodimers.67,87 2) The number of activating ligands is 

high. Four of them bind both EGFR and ERBB4: betacellulin (BTC), epiregulin (EREG), heparin-

binding EGF (HB-EGF)88,89 and epithelial mitogen (epigen; EPGN).90 Additionally, EGFR can 

bind epidermal growth factor (EGF), amphiregulin (AREG) and transforming growth factor α 

(TGFα), whereas ERBB4 can bind all four neuregulins (NRG1-4). Known ERBB3 ligands are 

NRG1-2.90,91,92 Moreover, few EGF-like domain containing transmembrane proteins have 

been shown to directly interact with and activate ERBB receptors, including tomoregulin 

(TMEFF2; NRG5) activating ERBB4, neuroglycan C (CSPG5) activating ERBB3, and MUC4 

activating ERBB2.90,93,94,86 Around 3000 different proteins are encoded in the human genome 

that contain EGF-like domains. It is therefore very likely that more ligands will eventually be 

found to interact with ERBB-family members95, like the recently found transmembrane 

Ephrin B1 (EFNB1) which binds ERBB2 in complex with non-receptor tyrosine kinase SRC.96 3) 

On top of the sheer number of soluble ligands, also their availability is strictly regulated. 

Their transmembrane precursors’ ectodomain is shed by ADAM family metallopeptidases 

(e.g. ADAM9, ADAM10, ADAM12 and ADAM17 shed proHB-EGF) producing a soluble 

extracellular ligand and membrane-bound carboxy terminal fragment (CTF) which can be 

subsequently internalized and participate in intracellular signaling.97 4) ERBB ligands can 

have more than one splice variants. Among them the leader seems to be neuregulin 1 with 
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at least six different transcription start sites and up to 19 splice variants reported in 

ENSEMBL release 76.98,95,99 5) ERBB-receptors themselves can also be alternatively spliced 

and shed by metalloproteases. E.g. ERBB2 is known to have at least 6 alternative isoforms: 

Δ16HER2, 648-CTF, 611-CTF, 687-CTF, p100 and herstatin (Figure 3).100 Two soluble isoforms, 

p100 and herstatin function as HER2 inhibitors by binding to other full-length ERBB receptors 

and preventing them from forming functional dimers.101 

 

 

 
Figure 3 
The ERBB2 isoform. From the left:  full length p185 HER2 receptor, its Δ16HER2 (lacking exon 
16) isoform, membrane-anchored C-terminal fragment 648-CTF and 611-CTF, 

cytoplasmic/nuclear protein 687-CTF and soluble isoforms p100 and herstatin.(adapted from 

J. Wang et al., 2013) 
100 

 

Δ16HER2 lacks exon 16 and retains an oncogenic capability of the receptor.101,102 The other 3 

isoforms lack the extracellular domain and are collectively called p95HER2.103 648-CTF which 

is a cleavage product of ERBB2 by ADAM10104 and possibly a matrix metalloprotease 

(MMP)105, can function similarly to full length ERBB2. 611-CTF can increase the metastatic 

potential of the receptor, and the only non-membrane bound isoform, 687-CTF, is believed 

to be inactive in the initiation of signaling.106,101,107 However, 687-CTF is found in the nucleus, 

which does not exclude its role in intracellular signaling.106 Full length EGFR, ERBB2, ERBB3 
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and ERBB4 as well as a few of their isoforms, like e.g. mini-LEEK (EGFR isoform)108, 

ERBB380kDa
109 and 4ICD (ERBB480kDa intracellular domain)110 have also been detected in the 

nucleus, where they serve as transcription factors or coactivators.111 6) ERBB receptors can 

interact with other transmembrane and cytoplasmic proteins which can regulate their 

function. Full length ERBB2 and p95, for example, can be found in complex with a molecular 

chaperone – heat shock protein 90 (HSP90) - which stabilizes the receptor by preventing it 

from ubiquitination.112 It can also be bound by ERBB2IP (ERBB2-interacting protein; ERBIN), 

ERRFI1 (ERBB receptor feedback inhibitor 1; MIG6), CHK (Csk homologous kinase; MATK), 

PICK1 (protein interacting with PRKCA 1), IGF1R (insulin-like growth factor 1 receptor), SRC 

and IL6R (interleukin 6 receptor). ERBB2IP directs it to basolateral membrane of epithelial 

cells and inhibits the MAPK activation by ERBB2 through inhibition of RAF1 interaction with 

activated Ras.113,114 ERRFI1 and CHK are feedback inhibitors of ERBB2 mitogenic activity and 

PICK1 is believed to participate in clustering of the receptor.115,116,117,118 Interaction with 

IGF1R, also belonging to the RTK superfamily, was shown to occur in breast cancer cells 

(SKBR3) where heterotrimers ERBB2/ERBB3/IGF1R are formed and contribute significantly to 

the trastuzumab resistance.119,120 Another tyrosine kinase bound by EBB2, SRC, also affects 

trastuzumab sensitivity.121 ERBB2 can also associate with gp130 subunit of IL-6 receptor in 

prostate carcinoma cells. This interaction increases the intrinsic kinase activity of ERBB2, 

which next leads to autophosphorylation and activation of ERBB3 and MAPK pathway.122 

Each combination of two ERBB-family members with one or two ligands and possibly with 

additional interaction partners can result therefore in differential auto- and trans-

phosphorylation of their tyrosines within the intracellular domains. These can then serve as 

docking sites for multiple interacting proteins.123 Phosphorylated tyrosines of ERBB family 

receptors (altogether 89) appear to be the exclusive docking sites for Src homology domain 2 

(SH2) and phosphotyrosine binding (PTB) domain-containing proteins with 40 sites bound by 

these classes of coreceptors and the rest remaining unbound or not yet well 

characterized.123 ERBB2 has 19 tyrosine residues of which eight are recognized by at least 

four adaptor proteins. Five of them are bound by Src homology domain consensus protein 

(SHC), two by SH3 domain binding glutamate-rich protein like (SH3BGRL) and one by growth 

factor receptor-bound 2 protein (GRB2) and protein tyrosine phosphatase non-receptor type 

11 (PTPN11/PTP2C).123 
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3.2.3 ERBB2 downstream signaling 

ERBB2 is known to be involved in activation of RAS-MAPK, PI3K/AKT, PLCγ/PKC and JAK/STAT 

signaling pathways (Figure 4).124 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
Figure 4 
The EGFR/ERBB2 heterodimer signaling pathway. EGF receptor is activated by ligand 
binding, including EGF, TGF-a, heparin-binding EGF-like growth factor (HB-EGF), 
amphiregulin, betacellulin, epiregulin and epigen (not shown), followed by receptor 
dimerization. In turn, the intracellular tyrosine kinase domain becomes activated by auto- 
and transphosphorylation of the receptors on multiple tyrosine residues. This leads to 
recruitment of adaptor proteins, such as Shc, Grb-2, and activation of three main 
downstream signaling pathways: RAS-MAPK, PI3K/AKT, JAK/STAT and PLCγ/PKC. Those 
pathways induce cell proliferation and enhance cell survival as well as drive invasion, 
metastasis, and angiogenesis in breast cancer cells. (adapted from R. Saxena and A. 
Dwivedi, 2010)124 
 
 

Activation of RAS-MAPK signaling pathway 

The activation of RAS-MAPK signaling is started by recruitment of GRB2-SOS complex to the 

receptor at the plasma membrane which is facilitated by tyrosyl phosphorylated GRB2 

associated binder 1 and 2 (GAB1/2).125,126,127 GRB2 can bind either directly to ERBB2 or to 



 27 

receptor-bound phosphorylated SHC.123,128 Son of sevenless (SOS), a guanine nucleotide 

exchange factor (GEF), further activates membrane-associated GTPase superfamily of RAS by 

stimulating the release of their GDP and binding of GTP.129 GTP-bound RAS proteins activate 

the mitogen-activated protein kinase (MAPK) pathway via phosphorylation of 

serine/threonine kinase C-RAF (MAPK kinase kinase kinase; MAPKKK) at a tyrosine residue 

followed by subsequent MEK1/2 (MAP kinase kinases; MAPKK) and ERK1/2 activation (MAP 

kinases; MAPK3 and MAPK1, respectively).130,131 ERK in turns drives both: the 

phosphorylation of cytoplasmic growth-factor responsive targets and, upon translocation to 

the nucleus, also activation of several transcription factors regulating gene expression. The 

MAPK pathway is involved in cell proliferation, differentiation, survival and apopotosis.131 

 

Activation of PI3K signaling pathway 

Whereas ERBB2 can directly stimulate the MAPK pathway, it cannot bind p85, the regulatory 

subunit of PI3K, and requires either adaptor proteins GRB2/GAB1 or heterodimerization with 

ERBB3 or ERBB4 to activate PI3K/AKT signaling that further triggers cell growth, proliferation, 

regulation of metabolism, survival and inhibition of apoptosis.123,132,133 PI3K activation can be 

also independent of p85 and occur via RAS. 134 The p110 catalytic subunit of PI3K generates 

phosphatydylinositol 3,4,5-trisphosphate (PIP3) from the plasma membrane-bound 

phosphatydylinositol 4,5-bisphosphate (PIP2). This action can be reverted by the tumor 

suppressor phosphatase and tensin homolog (PTEN).135 PIP3 is then recognized by and brings 

together two important pleckstrin homology (PH) domain-containing proteins: 

phosphoinositide-dependent kinase 1 (PDK1) and AKT (protein kinase B; PKB). Membrane-

associated PDK1 then activates AKT through phosphorylation at threonine 308.136 For full 

activation of AKT, additional phosphorylation at serine 473 is required. This is accomplished 

by mammalian target of rapamycin mTOR in a complex with rapamycin-insensitive 

companion of mTOR (RICTOR).137 AKT has 3 genetic isoforms: AKT1, AKT2 and AKT3.133 AKT1 

is mostly involved in inhibition of apoptosis via inactivating of pro-apoptotic BAD and BAX, 

and phosphorylation of MDM2 resulting in binding to and degradation of pro-apoptotic 

p53.138,139,140 AKT2 and AKT3 regulate glucose homeostasis and control the growth of 

mice.141 In ERBB2 overexpressing breast cancer cells, AKT1 was reported to suppress ERBB2-

induced invasion by inhibition of ERK and epithelial-to-mesenchymal transition (EMT), but in 
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the same time to induce cell proliferation.133,142 AKT2 overexpression, on the other hand, 

was shown to induce cell invasion in vitro and metastasis in vivo.143  

 

Activation of PLCγ and JAK/STAT signaling 

Activation of PLCγ by ERBB2 takes place by its direct association with the receptor and 

tyrosine phosphorylation.144 PLCγ can then cleave phosphatidylinositol 4,5 bisphosphate 

(PIP2) to 1,4,5-trisphosphate (IP3) and diacyloglycerol (DAG). As a consequence IP3 directs 

the release of Ca2+ from the endoplasmic reticulum which, together with DAG, leads to 

activation of protein kinases C (PKCs).145 Activation of PKCs can also take place via the 

ERBB2-SRC axis, and is independent of PLCγ.146 PKCs in turn regulate proliferation, 

differentiation and apoptosis.147 STAT transcription factors 3 and 5 (signal transducers and 

activators of transcription) were shown to be phosphorylated via Janus kinases TYK2 and 

JAK3 associated with NRG1-bound ERBB2/ERBB3 heterodimers.148 STAT3 was also reported 

to be activated by ERBB2 in a SRC and JAK2-dependent manner.149 STAT3 and STAT5 

stimulate cell pro- liferation, regulate cell cycle and inhibit apoptosis.148 

Whereas EGFR undergoes endocytosis and becomes degraded shortly after activation, 

ERBB2 was shown to be endocytosis-resistant.103 First reports have suggested that ERBB2 

undergoes basal endocytosis and very rapid and efficient recycling to the plasma membrane. 

However, recent studies have shown that ERBB2 blocks its own endocytosis through 

negative regulation of clathrin-coated pits and vesicle formation.150,151 The increased 

stability of EGFR when heterodimerized with ERBB2 is also caused by blocking formation of 

endocytotic pits by ERBB2.78 The main ways of ERBB2 deactivation are therefore receptor 

dephosphorylation and/or degradation. PTPN9 and PTPN13 (protein tyrosine phosphatases, 

non-receptor types 9 and 13) were shown to dephosphorylate tyrosine residues in the 

intracellular domain of ERBB2.152,153 Further, ERBB2 degradation is proteasome-mediated 

and occurs upon receptor K48 and K63 polyubiquitination by E3 ubiquitin ligases CBL 

(negatively regulated by SPRY2154) and CHIP.155,156, 157 Also LRIG1 (leucine-rich repeats and 

immunoglobulin-like domains 1) directly interacts with ERBB2 and enhances the 

ubiquitination of the receptor.158 USP9x/FAM which coprecipitates with ERBB2 plays the 

opposite role and is responsible for its deubiquitination.155 
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3.2.4 The role of ERBB2 and other ERBB-family receptors in breast development 

In the final stages of female embryonic development, mammary epithelial cells start to 

proliferate and the mammary bud sprouts into the fat pad within the dermis. That results in 

a formation of the rudimentary ductal system consisting of 15-20 branches that stem from a 

primary duct.159 During adolescence, production of estrogen (ERα) in mammary epithelium 

controls ductal elongation and branching to fill the fat pad.160 Cell proliferation takes place at 

the end of the ducts that are enlarged and form bulbous structures referred to as terminal 

end buds (TEBs). When TEBs bifurcate, the secondary branches are formed.161 During 

adulthood, progesterone levels change repeatedly in the estrous/menstrual cycle and 

control the ductal network complexity via regulating the outgrowth of side branches. 

Progesterone plays also a role in alveoli (acini) formation during pregnancy along with 

prolactin which is required for alveologenesis and later for differentiation of mammary 

epithelial cells into milk-secreting cells (Figure 5).160 Alveoli are hollow structures organized 

in lobules with epithelial cells forming the inner acinar layer and myoepithelial cells forming 

the outside layer. Milk secretion takes place when myoepithelial cells contract in response to 

oxytocin and milk drains through the terminal ducts into the lactiferous duct and sinus.162 

 

 

 

Figure 5 
Mammary gland development consists of four main stages: rudimentary ductal system 
formation, ductal elongation/bifurcation, side branching and alveologenesis/lactogenic 
differentiation. Estrogen, progesterone and prolactin are key players regulating these 
processes. (apted from C. Brisken and B. O’Malley, 2010)160 
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Development of the mammary gland is regulated by several signaling pathways, including 

ERBB-, FGFR- (fibroblast growth factor receptor), IGFR- and WNT/β-catenin signaling.161,163 

As ERBB family-deficient mice are embryonic lethal due to severe cardiac deffects, studies of 

the ERBB receptors in breast development required either the transplantation of mammary 

buds from ERBB deficient embryos into immunodeficient mice or expressing ERBB receptors 

under control of a cardiac-specific promoter in knockout mice to overcome cardiac-specific 

lethality. Introduction of these and other methods led to the discovery that, although EGFR 

and ERBB2 are expressed throughout the whole breast development process, their levels are 

the highest in the initial stages of mammary gland morphogenesis.164 Interestingly, it was 

shown that EGFR in the fad pad, but not in the epithelium plays a critical role in supporting 

ductal growth. Whereas EGFR-deficient epithelial cells could still grow beyond rudimentary 

structures in the presence of wild-type fat pad, wild-type epithelial cells in the presence of 

EGFR defficient fat pad could not.165 ERBB2 knockout in mammary buds transplanted into 

immunodeficient but ERBB2 wild-type mice, on the other hand, indicated an important role 

of ERBB2 in the epithelium. In those transplants, terminal bud ends were severly impaired 

resulting in ductal elongation and branching defects. The lobuloalveolar structure formation 

as well as lactation were however not affected.166,167 Expression of ERBB3 and ERBB4 is 

highest in pregnancy and lactation and much lower during puberty and involution.164 

Nevertheless, ERBB3 deficiency has already an impact early in mammary gland development, 

resulting in an impairment of the ductal outgrowth that persists into adulthood and 

pregnancy. Incomplete filling of the mammary fat pad by the ductal trees was accompanied 

by a decrease in size of the terminal end buds but an increase in their number as well as the 

number of luminal spaces and ductal density.168 ERBB4 plays a role in the latest stage of 

mammary development and its knockout is associated with abberant lobuloalveolar 

development; alveoli do not differentiate properly resulting in insufficient milk secretion.169 

3.2.5 ERBB2 and other ERBB-family members in breast cancer  

ERBB-family receptors in cancer 

ERBB-family receptors and their ligands strictly control development and cell signaling. Their 

alterations either in terms of mutation, gene amplification or protein overexpression play 

therefore pivotal roles in the initiation and preservation of several tumors.67,170 Directly 

responsible for the tumorigenesis is an excessive and constitutive activation of downstream 
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signaling, including above mentioned RAS-MAPK, PI3K/AKT, PLCγ/PKC and JAK/STAT 

pathways. The disregulated signaling, as a consequence, drives uncontrollable cell 

proliferation, survival and migration/invasion.  

The EGFR is the best characterized receptor regarding the number of different oncogenic 

mutations found in human cancers. Mutations are most commonly seen in non-small cell 

lung adenocarcinomas (NSCLC) and gliomas. Amplification of the gene have been 

additionally reported in squamous NSCLCs, gliomas, esophageal, colorectal, head and neck, 

as well as in triple negative breast cancers.170,171 ERBB2 mutations are reported less often 

than EGFR mutations, but a subset of lung adenocarcinomas, breast (lobular), gastric, 

bladder and endometrial cancers have been reported to carry ERBB2 mutations. 

Amplification of the ERBB2 gene is more common and takes place in breast, ovarian, gastric 

and esophageal cancers. ERBB2 aberrations have also been reported to be found in tumors 

of colon, cervix, germ cells, head and neck, liver, pancreas, salivary duct and in glioblastomas. 

ERBB3 and ERBB4 are more often mutated than amplified and affect mainly breast and 

gastric tumors, or NSCLCs, melanomas, and medulloblastomas, respectively.170 Breast cancer 

patients overexpressing EGFR have poor prognosis and their resistance to radiotherapy is 

relatively high.172 Similarly, patients overexpressing ERBB2 are associated with 

radioresistance, worse prognosis, shorter overall survival and aggressive phenotype of 

cancer.173,174 

 

ERBB2-positive breast cancer 

The ERBB2 gene maps to chromosome 17q12, within a region which is frequently amplified 

in breast cancer (17q11-21). The minimal ERBB2 amplicon overlapping in different ERBB2-

positive breast cancer patients spans 85.92 kbp and includes the TCAP, PNMT, PERLD1, 

ERBB2, C35 (C17orf37) and GRB7 genes.175 Whereas TCAP, PNMT and PERLD1 seem to be 

amplified as “passengers” in this region and have not been shown to play a role in 

tumorigenesis, GRB7 and C35 were reported as oncogenes in breast cancer. Similar to GRB2, 

GRB7 serves as an adaptor protein for ERBB2 and its amplification contributes to ERBB2-

driven migration via interaction with focal adhesion kinase (FAK).176,177 C35, when 

overexpressed in cells grown in three-dimentional (3D) cultures induces formation of 

enlarged acinar structures and invasion into collagen matrix, which is accompanied by 

downregulation of epithelial markers E-cadherin (CDH1) and keratin-8 (KRT8).178 Apart from 
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alterations in the genetic vicinity of ERBB2, the ERBB2-enriched breast cancers are 

predominantly accompanied by tumor suppressor p53 mutations (72%) and often carry 

structural changes in the catalytic subunit alpha of PI3K (PIK3CA; 39%).14 The ERBB2-

overexpressing breast cancer subtype is, therefore, in practice not a simple single gene-

disease. The contribution of genes/mutations involved in tumor formation requires separate 

experimental studies. 

According to American Society of Clinical Oncology – College of American Pathologists 

(ASCO-CAP) guidelines regarding ERBB2 testing in breast cancer, ERBB2-positive status is 

assigned to a cancer with an evidence of either protein overexpression or gene 

amplification.21 Consequently, two methods have been developed and standardized 

throughout the last decade(s) to correctly test ERBB2 overexpression in all cases of invasive 

breast cancers (including metastatic ones) to determine the ERBB2 status from formalin-

fixed, paraffin-embedded (FFPE) tissue.179,21 In immunohistochemical assessment of ERBB2 

receptor levels, IHC scores 0 and 1+ are reffered to as ERBB2-negative, 2+ as equivocal and 

3+ as positive. The guidelines from 2007 recommended classification of invasive cancers as 

IHC3+ if >30% of invasive tumor cells strongly and uniformly stain for ERBB2.179 However, 

more recent guidelines from 2013 have changed that threshold back to the >10% that had 

also previously been the cut-off for trastuzumab treatment. This change has been 

introduced due to potential benefits of using trastuzumab in the small number of patients 

with >10% and <30% of cells staining for ERBB2.21,180 In situ hybridization (ISH) is another 

method to assess the ERBB2 status. There either a single probe measurement of ERBB2 copy 

numbers or a dual probe measurement of ERBB2/CEP17 (centromeric probe for 

chromosome 17) ratios is carried out. For single probe measurments the cut-offs are: ≥6.0 

(for positive status), ≥4.0 and <6.0 (for equivocal), <4.0 (for negative). For dual probes the 

ratio needs to be either ≥2.0 or copy number ≥6.0 to be classified as ERBB2-positive, ratio 

<2.0 and copy number ≥4.0 and <6.0 for equivocal status and ratio <2.0 and copy number 

<4.0 for negative status. Tumors considered equivocal by one of these two methods (IHC or 

ISH) require retesting with another one.21 The most commonly used FDA approved 

diagnostic test kits are immunohistochemical test - HercepTest (Dako Denmark A/S) and 

fluorescent in situ hybrydization test - PathVysion HER2 DNA Probe Kit (Abbot Molecular 

Inc.).181 Apart from four IHC and six ISH tests, one HER2/neu ELISA test (Siemens Healthcare 

Diagnostics) has also been approved by the FDA.182 
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All above mentioned tests measure total ERBB2 levels and not active (phosphorylated or 

dimer forming) receptors. This refers especially to in-situ hybridization which measures gene 

amplification and not the amount of functional receptor. Protein detection by 

immunohistochemistry is, however, not a very good method in terms of quantitative 

receptor analysis. It is rather considered a semi-quantitative method.182 Recently, however, 

more tests are being developed to address this issue. One such example is a proximity-based 

technology developed by Monogram Biosciences (VeraTag), able to measure: total receptor 

levels (EGFR, ERBB2 or ERBB3); their phosphorylated forms; EGFR-, ERBB2-, and ERBB3-

homodimers; p95HER2; as well as EGFR/ERBB2, ERBB2/ERBB3 and ERBB3/PI3K 

heterodimers.183,184,185 In these assays two antibodies are used which recognize two 

different epitopes on one receptor or two identical ones on two receptor molecules. One of 

each pair is tagged with fluorescent reporter (fluorescein) and the other one is biotinylated. 

Upon addition of a photosensitizer molecule (streptavidin-conjugated methylene blue) and 

its activation with 670 nm light, a free radical - singlet oxygen - is released and cleaves only 

Ab-fluorescein conjugates located in very close proximity. This liberates fluorescein which 

can then be quantitatively measured by capillary electrophoresis.186 Although this and other 

similar methods measuring protein levels, like e.g. proximity ligation assay (PLA)187, quantum 

dots-coupled antibodies188 or reverse phase protein arrays (RPPAs)189,190 are not yet FDA 

approved as diagnostic tests, they go one step further and raise a few important questions. 

Is clinical measurement of total ERBB2 (in combination with ER and PR) in invasive tumors 

sufficient to predict patient outcome and decide on proper treatment? Would the more 

detailed information about the activity of ERBB-family receptors in ERBB2-overexpressing 

patients bring additional improvement to their healthcare? And if so, what should a 

“perfect” quantitative test look like and how would it compare to the currently applied gene 

expression signatures? Recent studies indicate that, indeed, testing activation states of 

ERBB-family receptors could potentially bring more treatment-relevant information. In a 

subset of patients with even low or moderate amounts of ERBB2 the activated receptor 

(e.g. upon ligand overexpression) can contribute to worse disease outcome without the 

receptor being overexpressed.191,192,193 Moreover, quantitative assessments of ERBB2 levels 

suggest that a pool of patients with very high ERBB2 levels (top 13-16% percent) may be less 

sensitive to trastuzumab treatment than the majority of ERBB2-overexpressing patients for 

whom higher ERBB2 levels correlate with increased response to trastuzumab.194,195,196 
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ERBB2 levels in breast cancer 

In the past, Denis Slamon and colleagues have shown that the number of copies can vary 

greatly between patients and ~5% of breast cancer patients carry more than 20 ERBB2 gene 

copies.174 Moreover, in one of the following studies, the average ERBB2 copy number in 

ERBB2-postive patients, measured by FISH, was 14. However, the distribution varied 

between 1.5 and 40.9 copies.197 Another study pointed out that, whereas usually the 

average copy number of ERBB2 is calculated for a given tumor, different cell populations 

within the tumor may carry distinct copy numbers.198 That study reports the detection of 

highly amplified cell subpopulations in ERBB2-overexpressing tumors with at least 25 and up 

to 100 ERBB2 copies per cell.198 Importantly, established breast cancer cell lines were also 

shown to have subpopulations with varying ERBB2 copy numbers.199 

In a more recent study of ERBB2 protein levels in breast cancer patients, Joensuu and 

colleagues, using the quantitative HERmark technology, showed that the range of total 

receptor levels in their subset of tumors varied greatly by 1808-fold in all of the patients and 

by 69-fold in patients classified as both: IHC3+ and CISH-positive.200 In a related study which 

used the same technology to quantify ERBB2 at protein level in trastuzumab-treated 

patients, the authors suggested that there could additionally be a discrepancy in drug 

reponse between patients with different ERBB2 levels. In particular, they argued that 

patients with very high ERBB2 levels (top 13% of ERBB2-positive patients) could be less 

responsive to the given dosage and administration time of trastuzumab therapy (note that in 

this study the administration time was shorter than currently recommended).194 The wide 

range of receptor levels in ERBB2-overexpressing patients, hence, raises the question if and 

how the increasing ERBB2 levels affect ERBB2-positive patients’ outcome and if and how the 

molecular features of ERBB2 overexpressing cells change with the increasing ERBB2 levels. 

 

Targeted treatment of ERBB2- positive cancer 

According to an ASCO guideline from 2014, HER2-targeted treatment is recommended for all 

patients “with HER2-positive advanced breast cancer, except for those with clinical 

congestive heart failure or significantly compromised left ventricular ejection fraction”.60 

This restriction is due to an increased risk of class III or IV congestive heart failure in HER2-

treated patients with pre-existing heart injury.63 
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As a first-line treatment, currently a combination of trastuzumab, pertuzumab and taxane is 

recommended for at least 4-6 months.60 Trastuzumab is a humanized monoclonal antibody 

which binds to the extracellular domain IV of ERBB2 and prevents the activation of the 

tyrosine kinase domain (Figure 6).202 Its action is most potent in inhibiting the activation of 

ERBB2 homodimers.201  

 

 

Figure 6  
Drugs used in the treatment of ERBB2 overexpressing cancers. Trastuzumab is a monoclonal 
antibody that binds to an extracellular part of domain IV of ERBB2. Upon its binding, signal 
from the receptor cannot be transduced. Pertuzumab is also an antibody but mechanism of 
its action is different – it prevents receptor dimerization by binding to domain II of ERBB2. 
Lapatinib is a small molecule tyrosine kinase inhibitor and targets tyrosine kinase domain of 
EGFR and ERBB2 (here binding to ERBB2 is shown). Blue circle symbolizes a ligand binding to 
domains I and III of EGFR/ERBB3/ERBB4. (adapted and modified from A.S Hervent at al., 
2012)202 
 

Trastuzumab is known to upregulate cyclin-dependent kinase inhibitor - p27 and PI3K/AKT 

pathway inhibitor - PTEN, as well as to induce endocytotic degradation of ERBB2 receptor 

and antibody-dependent cellular cytotoxicity (ADCC)203. The second recommended drug, 

pertuzumab, is also a therapeutic antibody and acts through inhibiting homo- and 

heterodimerization of ERBB2 via blocking extracellular doman II.204 Resistance to these drugs 

has, however, been frequently observed with trastuzumab resistance occurring in most of 

the metastatic patients within one year of treatment. It occurs in ~15% patients treated in 

an adjuvant setting.203 Resistance to trastuzumab has been linked to PI3K mutations as well 

as the presence of IGF1R and p95HER2 or absence of PTEN.203,205 Combinatorial treatment of 

patients with trastuzumab and pertuzumab, however, has been shown to revert 

trastuzumab resistance.206 Taxanes (paclitaxel or docetaxel) are diterpenes that work as 

mitotic inhibitors by stabilizing GDP-bound tubulin in the microtubules.207 Interestingly, due 

to the inhibition of cell division, the presence of giant cells with polyploidy after use of 
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taxanes is observed. This can affect correct ERBB2 status determination in metastases and 

therefore testing ERBB2 levels before chemotherapy is suggested.208 

As a second-line treatment, ASCO guideline recommends the trastuzumab derivative T-DM1, 

a recently (February 2013) FDA approved drug.60 Before its approval lapatinib was the 

preferred second-line treatment for patients who progressed on trastuzumab or was used in 

combination with trastuzumab in first-line treatment.209,210 Lapatinib is a small-molecule 

tyrosine kinase inhibitor that binds the ATP-binding pocket of EGFR and ERBB2 protein 

kinase domains and leads to decreased activation of MAPK and PI3K signaling cascades. 

However, lapatinib as a monotherapy was often insufficient and patients progressed 

frequently.211,212 T-DM1 is a novel and very promising antibody drug conjugate that proved 

its superiority over trastuzumab plus docetaxel in direct comparison by prolonging patients’ 

progression free survival from 9.2 months to 14.2 months.213 T-DM1 consists of trastuzumab 

connected with a linker to DM1, a maytansinoid derivative, which prevents microtubule 

assembly and leads to a block of mitosis.214,215 For those patients who progressed on 

trastuzumab/pertuzumab as well as on lapatinib, T-DM1 is suggested as a third-line 

treatment.60 

ERBB2-overexpressing tumors are usually ER/PR-negative and only ~10% of luminal B breast 

cancers overexpress ERBB2.216 However, according to the new ASCO guideline, the therapy 

of those patients may include endocrine therapy as well – either alone or in combination 

with ERBB2-targeted therapy.60 

3.3 Cell migration and invasion and its role in breast cancer 

3.3.1 Cell migration and invasion in breast cancer 

Cell migration plays an important role in several natural processes, like embryonic 

development, wound healing, tissue repair, regeneration and immune response.217,218 It 

requires, however, precise control which is lost or altered when cells become tumorigenic 

due to signaling abnormalities. 219,220 In the earliest stage of breast cancer, cells show 

excessive localized growth and initate ductal carcinoma in situ (DCIS). Eventually, these cells 

gain the ability to move and to degrade the extracellular matrix proteins that form the basal 

membrane thus contributing to cancer progression into invasive ductal carcinoma 

(IDC).221,222 Moreover, to form metastases, tumor cells need to acquire the ability to 
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intravasate small blood vessels, survive in the blood stream, extravasate and to form 

colonies in distant organs.223,219 The ability of cancer cell to migrate and invade is therefore 

critical in tumor progression. 

Tumor cells can migrate individually (mesenchymal or ameboidal migration), as multicellular 

streaming, or collectively in small groups spreading from the original site of tumor growth.224 

Tumor cell migration/invasion is regulated by integrins, matrix-degrading proteins (e.g. 

matrix metalloproteinases), cell-cell adhesion molecules (e.g. E-cadherin), as well as several 

cytokines and growth factors.225 The mechanism of cell migration involves a few important 

processes and factors, namely: polarization, formation of protrusions (lamellipodia or 

filopodia), adhesion and protrusion of the cell body followed by retraction of the rear.226,225 

These processes are strictly coordinated by local and transient signaling that is initiated by 

integrins and other receptors.227,228 In migrating cells, signaling molecules are organized in 

large scaffolds which localize active kinases and phosphatases to the appropriate parts of the 

cell. They control microtubule dynamics, drive local actin polymerization, and actomyosin 

bundling and contraction, which are the actual factors responsible for cell movement.225 

Focal adhesion-associated protein kinase (FAK) serves as an important example of a locally 

activated kinase involved in cellular adhesion and spreading processes.229 

3.3.2 Signaling pathways in ERBB2-induced migration and invasion 

As mentioned before, cell migration is strictly dependent on cellular signaling pathways. In 

EGFR-driven migration, blocking of PI3K/AKT and PLCγ signaling substantially reduces the 

ability of cells to move.230 In melanoma and epithelial cell lines, simultaneous inhibition of 

the RAS-MAPK and PI3K/AKT pathways leads to almost complete loss of cell migration, as 

does the knockdown of EGFR.231,232,233 It has been shown that cells with higher levels of 

ERBB2/ERBB3 and EGFR/ERBB2 heterodimers have higher potential of activating PI3K and 

hence migration than ERBB2 homodimers.132,123 This is in line with the fact that PIP3 is one of 

the first molecules which becomes polarized in response to the exposure to chemotactic 

agents.225 EGFR/ERBB2 heterodimers induce migration also more efficiently than 

homodimers via PLCγ signaling activation.234 The RAS-MAPK pathway is, in contrary, similarly 

activated by ERBB2 homo- or heterodimers, which was confirmed in three-dimensional cell 

cultures.235 
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In the initial phase of cell migration, PI3K becomes activated by integrins at the leading edge 

of the cell, which results in local accumulation of PIP3.236 Consequently, RHO family members 

of RAS GTPases superfamily RAC1 (RAS-related C3 botulinum toxin substrate 1) and CDC42 

(cell division cycle 42), are phosphorylated and induce actin polymerization. RAC1 drives 

formation of lamellipodia, whereas CDC42 induces filopodia formation.225 In EGF-stimulated 

cells RAC1 and CDC42 were shown to synergistically induce lamellipodia and membrane 

ruffles.237 Integrin-mediated FAK signaling plays an important role in adhesion-triggered 

migration as it is activated at the retracting end of migrating cells along with PTEN that 

dephosphorylates PIP3. Phosphorylated FAK induces disassembly of adhesions by 

recruitment of SRC. SRC further phosphorylates FAK and promotes GRB2 interaction with 

FAK.229 At last, GRB2 activates RAS-MAPK signaling, including a RAS-family member present 

in higher concentration at the back of migrating cells, RHOA (RAS homolog family member A), 

which works as a RAC1 antagonist.238,239 SRC acts also at the leading edge of the cell were it 

activates cortactin which induces and stabilizes actin branching via direct actin-related 

protein 2/3 (ARP2/3) complex regulation.240,241 

A recent screening for proteins involved in migration in ERBB2-overexpressing MCF10A cells 

has revealed engagement of three major signaling nodes of networks regulating this process: 

β-catenin (CTNNB1), β1-integrin (ITGB1) and actin (ACT).233 The involvement of β-catenin in 

EGF-induced migration was confirmed by showing the ability of EGFR to activate β-catenin 

via the PI3K/AKT pathway and to further stimulate the Wnt pathway. Additionally, EGFR and 

ERBB2 can directly interact with β-catenin.242 In normal cells, β-catenin provides a 

mechanical linkage between cell-to-cell junctional (e.g. E-cadherin), and cytoskeletal 

proteins.243 Upon EGFR activation and in tumors, however, β-catenin translocates to the 

nucleus, where it forms a complex with TCF/LEF family proteins and activates transcription 

of proliferation-associated genes, like MYC (v-myc avian myelocytomatosis viral oncogene 

homolog) and CCND1 (cyclin D1). This jointly leads to epithelial-mesenchymal transition 

(EMT) of the cell.244,242 

3.3.3 Epithelial-mesenchymal transition 

EMT is a strictly regulated cellular mechanism that allows cells to gain the necessary motility 

to drive the normal developmental program. However, in cancer it can get out of control and 

contribute to the malignancies by promoting tumor cells escape from its origin, leading to 
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invasion and metastasis. While epithelial cells undergo EMT process they lose cell-cell 

adhesion, reorganize their cytoskeleton and gain the ability to move.245 This is accompanied 

by the loss of apico-basal polarity, change of shape (elongation) and gain of front-back 

polarity.246 During the process, the cells decrease their epithelial gene expression and 

increase mesenchymal, which is driven by β-catenin and mesenchymal-specific transcription 

factors including Snail (snail family zinc finger), and ZEB (zinc finger E-box binding homeobox). 

Upon transition, the expression of EMT molecular markers, E-cadherin (CDH1) and 

cytokeratins (KRTs), is reduced while the expression of N-cadherin (CDH2), vimentin (VIM) 

and fibronectin (FN1) is increased (Figure 7).246,247 Cells also often gain the ability to degrade 

the extracellular matrix (ECM), become insensitive to apoptosis and are associated with 

stem cell-like phenotype.248 ERBB2-transformed cells have been reported to bear the 

characteristic of cells that underwent EMT - at least partially induced through activation of 

STAT3 and TGFβ-Snail (transforming growth factor beta) signaling arms by ERBB2.249,250,251 

Signs of EMT were detected also in ERBB2-overexpressing metastatic breast cancer 

patients.252,253 This cell reprogramming contributes to increased trastuzumab resistance in 

HER2+ patients.254,253 

 

 

 
Figure 7  
The characteristics of epithelial, mesenchymal and metastable cell phenotypes. In the process 
of epithelial-mesenchymal transition (EMT) cell features change from left to right and in the 
reverse process, called MET, from right to left. The differentiation of cells between both end 
states is not a rapid process but a plastic one that allows existence of metastable cells 
bearing both epithelial and mesenchymal traits. (adapted from J.M. Lee et al., 2006)

247 
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3.3.4 Three-dimensional cell cultures as a model to study breast cancer 

For the last three decades researchers have studied the role of extracellular matrix (ECM) in 

gene expression regulation and cell behaviour.255 Throughout this time, it has been 

discovered that in vivo cell migration and invasion are strictly dependent on the 

microenvironment. Several three-dimensional (3D) cell and tissue models have been 

therefore developed and subsequently proved superior to 2D cell cultures in which cells are 

grown in monolayers on plastic dishes.256 In the most commonly applied 3D culture type 

cells are partially or fully embedded in ECM-like collagen gels like Matrigel, collagen I or mix 

of them. Matrigel is a solubilized basement membrane extract from the Engelbreth-Holm-

Swarm (EHS) mouse sarcoma, composed mainly of laminin, nidogen 1 (entactin 1; NID1), 

collagen IV, glycoproteins and proteoglycans (heparan suflate proteoglycans).257 Cells grown 

in 3D cultures can attach to them and activate their integrin-dependent signaling, 

resembling the situation observed in vivo.258 

In breast cancer studies, 3D model systems enable phenotypic discrimination between non-

malignant and malignant mammary cells. Whereas different breast cancer cell lines grown in 

monolayers show phenotypes hardly distinguishable from each other, their morphologies in 

laminin-rich ECM-like gels differ dramatically. Depending on a genetic context the cells can 

form either round, mass, grape-like or stellate colonies.259 Moreover, signaling pathways 

which function in parallel in breast cells cultured in 2D system (e.g. EGFR and β1-integrin) 

become coupled and bidirectional in 3D system as a result of contacting basement 

membrane-like gel.260,261,262 Thus appropriate 3D cell culture provides a more physiologically 

relevant approach to study signaling pathways ex-vivo. 

Non-malignant mammary epithelial cell line, MCF10A, is frequently used to study 

oncogenesis in breast.263,264 This cell line is of particular interest among researchers as it 

forms polarized, growth-arrested acini-like spheroids with a hollow lumen, when grown in 

3D cultures. On the contrary, malignant cells form disorganized, proliferative and non-polar 

colonies, which can invade through the matrix.265,266 Overexpression or inhibition of 

different genes in this cell line can help, thus, to identify potential oncogenes or tumor 

suppressors. 
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3.4 The role of miRNAs in breast cancer 

3.4.1 miRNAs’ biogenesis and function 

miRNAs are small, single-stranded non-coding RNAs of the average length 22 bp (17-24 bp), 

which negatively regulate gene expression at the postranscriptional level in a sequence-

specific manner.267 According to the latest miRNA database release (miRBase 21, June 2014)  

there are 1881 annotated human miRNA loci present in the human genome and 2588 

mature miRNAs encoded by them.268 Their expression is often tissue-specific. 

The first step of most miRNAs’ production is polymerase II-driven transcription from either 

intergenic or intronic miRNA-specific promoters. In case of intronic miRNAs, polymerase III 

can be alternatively involved in transcription.269,270 Original, long, often policistronic 

transcripts (e.g. microRNA cluster miR-17-92), are therefore usually capped and 

polyadenylated and can undergo splicing.269,271,272 These primary transcripts are called pri-

miRNAs and contain stem loop structures. The cleavage of them out of long transcripts by 

RNase III enzyme DROSHA, in complex with DGCR8 (DGCR8 microprocessor complex subunit), 

produces ~70 nt long miRNA precursors (pre-miRNAs).273,274 In the next step of miRNA 

maturation, exportin 5 (XPO5) binds to and transports pre-miRNAs to cytoplasm where 

further cleavage of the loop by RNase III endonuclease Dicer (DICER1) complex takes 

place.275,276 Dicer is a component of an RNA-induced silencing complex (RISC) together with 

an RNA binding protein TRBP (TARBP2; TAR (HIV-1) RNA binding protein 2) and an 

endonuclease AGO2 (argonaute RISC catalytic component 2). RISC selects the guide strand 

from the double-stranded RNA formed by Dicer cleavage and the mature miRNA helps Ago2 

to recognize and to cleave the target mRNAs (Figure 8).277,278 The choice of guide strand 

depends on the thermodynamic stability of pre-miRNA - the strand with lower stability at its 

5’ end is preserved within RISC and the passenger strand is degraded.279  

One miRNA can target hundreds of mRNAs and one mRNA can be targeted by several 

miRNAs. For the target recognition the most important is the pairing of miRNA’s “seed 

sequence” embracing nucleotides 2-7 (or 2-8) at the 5’ end of a mature miRNA with the 

target site(s) within mRNA. Additionally, at least a few nucleotides should pair within 

positions ~13-18 whereas nucleotides ~9-12 should ideally form a loop to achieve higher 

targeting efficiency.280 If the miRNA shows perfect homology to the target mRNA then 
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degradation of the transcript takes place, like in the situation described above. On the other 

hand, if the complementarity is not perfect then the inhibition of translation occurs.281,282  

 

Translation repression
Translation activation

Translation repression
Translation activation

 

 
Figure 8  
miRNAs’ biogenesis. Polymerase II transcribes the miRNA gene forming pri-miRNA, which is 
cleaved by Drosha complex into hairping loop-structured double-stranded pre-miRNA. The 
transport of pre-miRNA into cytoplasm is facilitated by exportin 5. Dicer recognizes and 
cleaves pre-miRNA removing the RNA loop. RISC complex further selects the single guide 
strand of pre-miRNA. This mature miRNA drives silencing of target mRNA either by 
translational repression or deadenylation and degradation. In certain situations miRNA can 
enhance translation. (adapted from R. Takahashi et al., 2014; slight changes introduced)283 
 

Although miRNAs are often involved in inhibition (and sometimes enhancement under 

certain conditions)284 of mRNA translation upon binding to the complementary sequences, it 

has been shown that the majority of miRNA-bound mRNAs are directed for degradation.285 

miRNAs target mRNAs mostly by binding to their 3’UTRs. The miRNA target sites have also 

been reported in 5’UTRs and in the coding sequences, however, they have been shown to 

have lower effectiveness and rather inhibit translation of mRNAs than induce their 

degradation.286 This is in part due to lower AU content in these regions, leading to more 

complex RNA secondary structures and to hampered site accessibility by miRNAs as well as 
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due to ribosome sliding along mRNA starting from 5’ end and removing of silencing 

complexes.287 Interestingly, miRNAs were also shown to be able to regulate stability of non-

coding RNAs.288 

3.4.2 miRNAs in breast cancer 

In human malignancies miRNA expression patterns are altered and specific miRNA signatures 

have been associated with particular types of cancers.289 In breast cancer, it has been shown 

that miRNAs are differentially expressed between different intrinsic subtypes, especially 

between low-proliferative luminal A and high-proliferative basal subtypes. The pattern of 

miRNA expression differs also between cancers with wild type or mutant p53 as well as 

ER-positive and ER-negative breast cancers. Other miRNAs show also specific association 

with proliferation (like e.g. miR-17-92), cell adhesion and immune response.290 In breast 

cancer certain miRNAs function as oncogenes, while others behave like tumor suppressors. 

This depends on the complex interplay of the downregulated target genes. Supposing that 

all targets of a certain miRNA were known, their combined impact on the cell behaviour 

would still be very hard to predict, and therefore functional studies involving overexpression 

of artificially synthesized miRNA mimics and/or their inhibitiors are commonly applied to 

determine miRNAs’ function. Additionally, a few bioinformatic platforms enabling biologists 

to find a potential target genes of a given miRNA or miRNA-families, based on seed sequence 

complementarity, site conservation and context score, like e.g. TargetScan, miRanda, Elmmo, 

miRWalk, Diana-microT or PITA.291,292,293294,295,296 

Well-studied miRNAs with oncogenic potential in breast cancer include: miR-10b, miR-21, 

miR-22, miR-27a/b, miR-29b, miR-17-92, miR-155, miR-204, miR-221/222, miR-373/520c and 

miR-510, while those with tumor suppressor properties are: let-7, miR-17-5p, miR-31, 

miR-34a/b/c, miR-125a/b, miR-145, 146a/b, miR-193b, miR-200, miR-205, miR-206 and 

miR-335.297,298,299,300 Out of them, only miR-34a replacement therapy (MRX34 by Mirna 

Therapeutics) reached clinical trial phase I in 2013 and its safety is currently being tested in 

healthy volunteers. If it proves safe, it will be further tested for the treatment of patients 

with liver cancers and those with liver metastasis from other cancers.299 This is the first 

miRNA-based cancer therapeutic and the second miRNA-based therapeutic ever which 

reached the clinics. The first one was an anti-miR-122 (miravirsen, Santaris Pharma) which is 

being tested for its capability of reducing Hepatitis C virus (HCV) infection - currently in 
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phase 2 clinical trial.299,301 Pioneering miRNA-based drugs, thus, seem to be promising 

alternatives to current treatments and as several miRNAs are deregulated in breast cancer, it 

is very likely that they will be considered as potential therapeutics for this disease in future. 

Similar to breast cancer signatures based on expression profiles of protein-coding genes, 

biomarker miRNAs’ expression levels can also predict patients’ outcome and response to 

specific drug treatments.302 In particular, miR-210 has been shown to predict the sensitivity 

and response to trastuzumab therapy.303 Moreover, reduced expression of miR-375 (targets 

IGF1R) and increased expressions of miR-21 and miR-221 (both target PTEN) have been 

shown to directly increase trastuzumab resistance.304,305,306 In recent years several 

researchers pointed out that circulating miRNAs (e.g. miR-19a, miR-24, miR-133a, miR-148b, 

miR-155 and miR-181b) detected in serum/plasma could be also of a great help for early 

detection of breast cancer.307,308  

The increase or decrease of miRNAs’ levels is usually controlled on transcriptional, post-

transcriptional and epigenetic level and rarely their expression is affected by genomic 

alterations (i.e. mutations).309 Although single nucleotide polymorphisms (SNPs) are rarely 

found in miRNA seed sequences, SNPs are more common in target sites (mostly in the 

3’UTRs) in mRNAs and block mRNA regulation by miRNA.310 This mechanism was shown also 

to be used by viruses. Viral v-FOS mRNA of Finkel-Biskis-Jinkins (FBJ) murine osteosarcoma 

virus, for example, carries in its 3’UTR a deletion of miR-101 binding site and single 

nucleotide change in a sequence recognized by miR-155 evading the control by these 

miRNAs.311 

Although there are a lot of miRNAs known to regulate migration and invasion, their function 

can vary in different cancers and tissues depending on the cellular context. Below a few 

examples of miRNAs involved in both ERBB signaling and migration/invasion are presented. 

3.4.3 miRNAs’ role in ERBB-regulated tumor cell migration and invasion 

A lot of evidence exists that implicate the role of miRNAs in cancer cell migration, invasion 

and metastasis. One of the best known miRNAs known to regulate ERBB2-induced migration 

is miR-21. It is highly expressed in several types of cancers and modulates tumor cell 

apoptosis, cell adhesion and motility via control of actin cytoskeleton.312,313 Interestingly, 

miR-21 expression correlates with ERBB2 upregulation in breast cancer and its induction 

occurs upon activation of ERBB2-activated MAPK pathway.314 miR-21 downregulates several 
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tumor suppressors including AKT pathway suppressor – PTEN and key matrix 

metalloproteinase inhibitors – RECK and TIMP3, contributing to invasiveness of tumor 

cells.315 

microRNAs: miR-125a/b, miR-128b and miR-146a/b, miR-205, on the other hand, play the 

opposite role and inhibit ERBB-driven migration by directly targeting EGFR (miR-128b, 

miR-146a/b), ERBB2 (miR-125a) or ERBB3 (miR-125b, miR-205).316,317,219,318,319 Moreover, 

miR-200b, miR-200c and miR-429 inhibit EGF-induced invasion by targeting PLCγ1.320 Most 

of these miRNAs target additionally other mRNAs coding for proteins involved in regulation 

of metastatic process, which renders the signal more intense.321 

Currently available high-throughput techniques like microarrays and next generation 

sequencing (NGS) enable researchers to study the changes in the whole transcriptome upon 

miRNA overexpression or inhibition. In this way, they aid determination of all direct and 

indirect effects of miRNA. However, the similar study of translation inhibition presents a big 

challenge, as the high throughput methods for protein level determination are despite big 

progress still in their infancies. In one of the successful attempts to study the effects of 

miRNAs on protein levels, a different scientific approach has been therefore adopted.322 

Instead of investigating the effect of one miRNA on all proteins, the effects of all miRNAs on 

a restricted pool of proteins involved in the indicated cellular processes (EGFR signaling and 

cell-cycle) have been studied using reverse phase protein arrays. The results show that single 

miRNAs can coordinate specific cellular actions by targeting several proteins within the same 

network. Thus, miRNAs play role of very important signaling molecules. 
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3.5 Aims of the study 

The global aim of my PhD-project has been to contribute to the understanding of female 

breast cancer overexpressing HER2 (further interchangeably referred to as ERBB2/HER2). To 

this end, I carried out two subprojects that dealt with phenotypic alterations and miRNA 

regulation, respectively: 

 

1) Determination of the influence of different ERBB2 levels on molecular features in a non-

malignant immortalized breast cell line to model the first steps of oncogenesis in normal 

breast tissue upon ERBB2 upregulation to different extents. 

To achieve this goal, I overexpressed the ERBB2 receptor to four different levels using a 

retroviral system in MCF10A cells. I further characterized the resulting stable cell line pools 

in 2D and 3D cell cultures, focusing on ERBB2-induced migration/invasion, ERBB-signaling 

activation, and epithelial-mesenchymal transition. 

 

2) Identification of miRNAs differentially regulated by ERBB2 in three-dimensional context 

that are critically associated with ERBB2 function in vitro as well as in vivo. 

The next goal of my PhD project was to find miRNAs engaged in conducting ERBB2 function 

in a system that would closely resemble the situation in vivo. I performed therefore miRNA 

and mRNA expression profiling, using next generation sequencing and microarrays, 

respectively, from the cells expressing four levels of ERBB2, which had been grown in 3D cell 

culture. Consecutively, I performed correlation studies using publically available clinical 

datasets to assess the role of differentially expressed miRNAs in breast cancer. Finally, I 

carried out a functional characterization of the most promising candidates. 
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4. Materials 

4.1 Instruments and equipment 

Name Company 

Abi Prism 7900HT Life Technologies (Applied 

Biosystems) 

Agarose gel casting chamber Peqlab Biotechnologie 

Agarose gel electrophoresis chamber Peqlab Biotechnologie 

Agilent 2100 Bioanalyzer Agilent 

Axiovert 25 light microscope with built-in camera  

Axiocam MRc  

Carl Zeiss 

Axiovert 40 CFL microscope with built-in camera  

Axiocam MRc  

Carl Zeiss 

Bacteria shaking platform GFL 

Benchtop centrifuges: Labofuge 200, Biofuge fresco Thermo Fisher Scientific Heraeus 

Cell counter CASY Casy, Innovatis 

Cell culture hood - HERAsafe Safety Cabinet KS12 Thermo Fisher Scientific Heraeus 

Cell culture incubator (37oC, 5% CO2) Binder 

Cell sorter FACSAria BD Biosciences 

Centrifuge for PCR tubes Labnet International 

Computers LG, Apple, Fujitsu Siemens 

Contact spotter Aushon BioSystems 

Electrophoresis power supply BioRad-Power-Pac-200  Bio-Rad Laboratories 

Electrophoresis power supply Consort E835 Sigma-Aldrich 

Floor centrifuges - Heraeus Multifuge 4KR, Heraeus 

Sepatech Varifuge 3.0 R 

Thermo Fisher Scientific Heraeus 

Flow Cytometer FACSCalibur BD Biosciences 

Freezer -20oC Liebherr, Bosch 

Freezer -80oC Sanyo 

Freezing container (Nalgene, Mr. Frosty) Sigma-Aldrich 

Fridge 4oC Liebherr 

http://www.labequip.com/biorad-powerpac-300-electrophoresis-power-supply.html
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High throughput sequencer HiSeq 2000 Illumina 

Horizontal roller shaker (RM5) neoLab 

Ice machine Hoshizaki  

Infinite M200 microplate reader Tecan 

Light microscope Wilovert S Hund Wetzlar 

Liquid nitrogen storage system CHRONOS Cryotherm 

LSM 510 Meta confocal microscope Carl Zeiss 

Magnetic stirring hotplate MR 3001 K Heidolph 

Microwave Panasonic 

MilliQ Biocel Water Purification System Millipore 

Mini-PROTEAN Tetra Cell Electrophoresis System Bio-Rad Laboratories 

Multichannel pipette Eppendorf 

Multistep pipette Biohit (5-100 μl) Biohit 

Multistep pipette Ripette (200 μl - 5 ml) Ritter Medical 

Nanodrop ND-1000 spectrophotometer NanoDrop Technologies 

Odyssey Infrared Imaging System Li-Cor Biosciences 

Olympus Scanning microscope Olympus 

Peltier Thermal Cycler PTC-200 MJ Research 

pH meter inoLab 

Pipetboy Integra Biosciences 

Pipettes (0.5-1000 μl) Gilson, Eppendorf 

Room 37oC Viessmann 

Room 4oC Integra 

Safety/exhaust hood Waldner 

Scale HL-200i (max. 200 g) A&D Company, Limited 

Scanner Epson 

Suction device for cell culture neoLab 

Thermomixer comfort Eppendorf 

Tissue lyser Qiagen 

Topload balance Mettler Toledo 

Trans-Blot SD semi-dry transfer cell  Bio-Rad Laboratories 
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UV imager Herolab 

UV transilluminator Renner GmbH 

Vortexes: Genie 2, Reax top neoLab, Heidolph 

Water bath TW20  Julabo  

Waving platform shaker (Polymax 1040)  Heidolph 

xCelligence Real-time cell analyzer (RTCA) Roche 

X-ray cassette Angewandte Gentechnologie 

Systeme, GmbH 

X-ray film developing machine Amersham Pharmacia 

4.2 Consumables 

Name Company 

384-well plates Life Technologies (Applied 

Biosystems) 

10 cm Ø tissue culture dishes TPP 

200 μl PCR tubes Eppendorf 

6-well plates, flat bottom, transparent Nunc, SPL Life Sciences 

96-well OptiPlates, flat bottom, white PerkinElmer 

96-well plates, flat or round bottom, transparent Greiner Bio-One 

Adhesive Optically Clear Plate Seal Thermo Scientific 

Amersham Hybond-P PVDF membrane GE Healthcare 

Amersham Hyperfilm ECL GE Healthcare 

Bacteria plating glass beads Merck Millipore 

BeadChip Sentrix arrays Human HT-12 v4 Illumina 

Cell culture flasks T25, T75, T175 Greiner Bio-One, TPP 

Cell scrapers TPP 

Cell Strainer in FACS Tubes BD Biosciences 

Combitips (different sizes) Eppendorf 

Costar ultra low attachment 6-well plates Corning B.V. 

Cryovials 1.8mL Nunc 

Culture slides, 8-well, glass bottom BD Biosciences 

FACS tubes BD Biosciences 
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Filter pipette tips (10 μl, 20 μl, 100 μl, 200 μl, 1000 μl) Starlab, Neptune 

Glass coverslips R. Langenbrinck 

Glass slides R. Langenbrinck 

Immersion oil Sigma-Aldrich (Fluka) 

Latex gloves Blossom 

Lens cleaning paper neoLab 

Matrigel invasion chambers BD Biosciences 

Microcentrifuge tubes (1,5 ml, 2 ml) Eppendorf 

nitrocellulose-coated glass slides (Oncyte Avid) Grace-Biolabs 

Parafilm Pechiney Plastic Packaging 

Powder-free nitrile gloves FreeForm SE Microflex 

PVDF membrane Immobilon-FL Merck Millipore 

Reagent reservoir 50 ml Corning 

RTCA CIM-plates Roche 

RTCA E-plates Roche 

Scalpel Faether Pfm medical 

Serological pipettes (5 ml, 10 ml, 25 ml, 50 ml) Corning 

Silicon culture inserts Ibidi 

Soft tissues Kimtech Science Kimberly-Clark Proffesional 

Tubes (15 ml, 50 ml) Greiner Bio-One, Corning 

Whatman 3 MM blotting paper GE Healthcare 

4.3 Chemicals 

Name Company 

Acetic acid Fluka 

4′,6-Diamidin-2-phenylindol (DAPI) Sigma-Aldrich 

Acrylamide/bisacrylamide 37.5:1 Roth 

Agar Fluka 

Agarose  Sigma-Aldrich 

Aminohexanoic acid Sigma-Aldrich 

Ammonium peroxodisulfate (APS) Roth 

Ampicillin Sigma-Aldrich 
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Bacto-Agar Fluka 

Bacto-Trypton Roth 

Bovine Serum albumine powder (BSA) PAA Laboratorien 

Chloroform Merck 

Dimethylsulfoxide (DMSO) Sigma-Aldrich 

Dithiothreitol (DTT) Roth 

Ethanol Sigma-Aldrich 

Ethidium bromide (EtBr) Sigma-Aldrich 

Ethylenediaminetetraacetic acid  (EDTA) Acros Organics 

Glycerol solution Sigma-Aldrich 

Glycine Gerbu 

HCl Sigma-Aldrich 

Isopropanol Sigma-Aldrich 

KCl Roth 

KH2PO4 Sigma-Aldrich 

Methanol Sigma-Aldrich 

Na2HPO4 x 2H2O Sigma-Aldrich 

Paraformaldehyde (PFA) Sigma-Aldrich 

Skimmed milk powder Roth 

SOC medium Life Technologies (Invitrogen) 

Sodium chloride (NaCl) Merck 

Sodium dodecyl sulfate (SDS)  Roth 

Sodium fluoride (NaF) Sigma-Alrich (Fluka) 

Sodium hydrogen carbonate (NaHCO3) AppliChem 

Sodium hydroxide (NaOH) Fluka 

Sodium orthovanadate (Na3VO4) Sigma-Aldrich 

TEMED Roth 

Tris-base Sigma-Aldrich 

Tris-HCl Sigma-Aldrich 

Triton X-100 AppliChem 

Tween 20 Gerbu 
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Yeast extract Gerbu 

4.4 Molecular biology reagents, kits and enzymes 

Name Company 

ABsolute qPCR ROX mix  Thermo Fisher Scientific 

Alexa Fluor® 488 phalloidin  Life Technologies (Invitrogen) 

Alexa Fluor® 647 phalloidin Life Technologies (Invitrogen) 

Ampicillin Sigma-Aldrich 

BCA protein assay kit Thermo Fisher Scientific (Pierce) 

Cell proliferation reagent WST-1 Roche 

CellTiter Glo Luminescent Cell Viability Assay Promega 

Complete Mini, EDTA free Protease Inhibitor Cocktail 

Tablets 

Roche 

Gateway LR Clonase II Enzyme Mix Life Technologies (Invitrogen) 

deoxynucleoside triphosphates (dNTPs), 10 mM New England Biolabs 

DNA loading dye (6x) Thermo Fisher Scientific 

(Fermentas) 

Dual-Luciferase Reporter Assay Promega 

Easy Prep Pro - plasmid isolation kit Biozym 

ECL Western Blotting Detection Reagents  GE Healthcare 

Fast Green FCF Sigma-Aldrich 

GeneRuler 1 kb DNA Ladder Thermo Fisher Scientific 

(Fermentas) 

GeneRuler 100 bp DNA Ladder Thermo Fisher Scientific 

(Fermentas) 

Human Total ERBB2/HER2 DuoSet IC (ELISA kit) R&D Systems 

InSolution Staurosporine, Streptomyces sp. Merck KGaA (EMD Millipore, 

Novagen) 

microRNA LNA™ PCR primer sets Exiqon 

miRCURY LNA™ Universal RT microRNA PCR, 

Polyadenylation and cDNA synthesis kit 

Exiqon 

miRNeasy Mini kit Qiagen 

http://www.biocompare.com/Product-Reviews/40350-ECL-Western-Blotting-Detection-Reagents-From-GE-Healthcare/
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M-PER (Mammalian Protein Extraction Reagent) Thermo Fisher Scientific (Pierce) 

PCR Mycoplasma Test Kit PromoCell 

PhosSTOP (Phosphatase Inhibitor Cocktail Tablets) Roche 

Phusion HF buffer (10x) Thermo Fisher Scientific 

(Finnzymes) 

Phusion Hot Start High-Fidelity DNA Polymerase Thermo Fisher Scientific 

(Finnzymes) 

Poly-hydroxyethylmethacrylate (polyHema) Sigma-Aldrich 

Ponceau S staining solution Sigma-Aldrich 

Precision Plus Protein™ Dual Color Standards Bio-Rad Laboratories 

Prolong Gold Antifade Reagent Life Technologies (Invitrogen) 

QiaAmp DNA Maxi Kit Qiagen 

QIAprep Spin Midiprep Kit Qiagen 

QuickChange site-directed mutagenesis kit Promega 

Restore Western Blot Stripping Buffer Thermo Fisher Scientific 

Restriction enzymes and their buffers New England Biolabs 

RevertAid™H Minus First Strand cDNA synthesis kit Thermo Fisher Scientific 

(Fermentas) 

RNeasy Mini Kit Qiagen 

Rockland Blocking Buffer for Fluorescent 

applications/Western Blotting 

Rockland Immunochemicals 

Roti Load (4x) Roth 

Shrimp alkaline phosphatase (SAP) Roche 

Streptavidin, Alexa Fluor 680 conjugate Life Technologies (Invitrogen) 

SYBR Green master mix, Universal RT Exiqon 

T4 DNA ligase and buffer (10x) New England Biolabs 

T-PER Thermo Fisher Scientific 

Universal Probe Library (UPL) Roche 

Wizard SV Gel and PCR Clean-Up System Promega 

http://www.finnzymes.fi/pcr/phusion_hot_start_high_fidelity_dna_polymerase.html
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4.5 Bacterial strains and media 

Subcloning Efficiency DH5α Competent Cells and Library Efficiency DB3.1 Competent Cells 

were purchased from Life Technologies (Invitrogen). DH5α was used to propagate all 

plasmids apart from gateway compatible empty vectors containing ccdB gene (e. g. pMXs-

gw-CMV-EGFP). 

 

LB medium 

10 g Tryptone 

5 g Yeast extract 

10 g NaCl 

Add dH2O till 1 l, set pH to 7 by adding NaOH, autoclave 

 

1,5% LB agar medium 

1 g Tryptone 

0.5 g Yeast extract 

1 g NaCl 

Add dH2O till 100 ml, set pH to 7 by adding NaOH, then add 1.5 g agar. After autoclaving, mix 

was cooled down to 55oC and appropriate amount of antibiotic was added (e.g. 100 mg/l 

ampicillin or kanamycin) before pouring the LB agar medium into sterile Petri dishes to 

solidify. 

4.6 Cell lines, cell culture reagents and media 

4.6.1 Cell lines 

Cell line Origin 

MCF10A (CRL-10317™) Human epithelial cell line derived from fibrocystic mammary 

tissue; ATCC (Manassas, VA, USA) 

BT474 (HTB-20™) Human breast ductal carcinoma; ATCC (Manassas, VA, USA) 

SKBR3 (HTB-30™) Human breast adenocarcinoma; ATCC (Manassas, VA, USA) 

T47D (HTB-133™) Human breast ductal carcinoma; ATCC (Manassas, VA, USA) 

UACC-812 (CRL-1897™) Human breast ductal carcinoma; ATCC (Manassas, VA, USA) 

HEK293FT Human embryonic kidney cells; Invitrogen (Carlsbad, CA, USA) 
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MDA-MB-231 (HTB-26™) Human breast adenocarcinoma; ATCC (Manassas, VA, USA) 

MCF7 (HTB-22™) Human breast adenocarcinoma; ATCC (Manassas, VA, USA) 

4.6.2 Cell culture reagents 

Name Company 

0,5% and 0,25% Trypsin-EDTA solution Life Technologies (Invitrogen) 

5-aza-2’deoxycytidine Sigma-Aldrich 

7-Aminoactinomycin D (7-AAD) staining solution BD Pharmingen 

BadStabil NeoLab 

Basement Membrane Matrix, Growth Factor Reduced BD Biosciences 

Cholera toxin from Vibrio cholerae Sigma 

DMEM/F12 medium Life Technologies (Invitrogen) 

Doxorubicin hydrochloride Sigma 

Dulbecco’s Modified Eagle Medium (DMEM) Life Technologies (Invitrogen) 

Fetal Bovine Serum (FBS), heat inactivated Life Technologies (Invitrogen) 

Geneticin Life Technologies (Invitrogen) 

Horse Serum, heat inactivated Life Technologies (Invitrogen) 

Human recombinant Epidermal Growth Factor (EGF) Sigma-Aldrich 

Hydrocortisone Sigma 

Insulin from bovine pancreas Sigma-Aldrich 

Lapatinib GlaxoSmithKline 

Leibovitz’s L-15 medium Life Technologies (Invitrogen) 

L-glutamine Life Technologies (Invitrogen) 

Lipofectamine 2000 Life Technologies (Invitrogen) 

McCoy’s 5A medium Life Technologies (Invitrogen) 

MEK1/2 inhibitor (U0126) New England Biolabs 

microRNA mimics Thermo Fisher Scientific 

(Dharmacon) 

Minimum Essential Medium (without phenol red) Life Technologies (Invitrogen) 

Non-essential aminoacids (100x) Life Technologies (Invitrogen) 

Nuclease Free Water Ambion 

OptiMEM Life Technologies (Invitrogen) 

http://en.wikipedia.org/wiki/GlaxoSmithKline
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Paclitaxel from Taxus yannanensis Sigma 

Penicillin-streptomycin (Pen-Strep) Life Technologies (Invitrogen) 

Phosphate buffered saline (PBS) Life Technologies (Invitrogen) 

PI3K inhibitor (LY294002) Calbiochem 

Polybrene Santa Cruz Biotechnology 

Poly-L-lysine solution Sigma 

Sodium pyruvate Life Technologies (Invitrogen) 

Trastuzumab/Herceptin Roche 

4.6.3 Cell culture media 

MCF10A Growth (full) Medium – DMEM/F12 supplemented with 5% horse serum, 10 ng/ml 

EGF, 0.5 μg/ml hydrocortizone, 100 ng/ml cholera toxin, 1% Pen-Strep (final conc. 50 U/ml 

penicillin, 50 μg/ml streptomycin) and 10 μg/ml insulin 

MCF10A Assay Medium - DMEM/F12 supplemented with 2% horse serum, 0.5 μg/ml 

hydrocortizone, 100 ng/ml cholera toxin, 1% Pen-Strep (final conc. 50 U/ml penicillin, 

50 μg/ml streptomycin) and 10 μg/ml insulin 

MCF10A Transfection Medium - DMEM/F12 supplemented with 5% horse serum, 10 ng/ml 

EGF, 0.5 μg/ml hydrocortizone, 100 ng/ml cholera toxin and 10 μg/ml insulin 

MCF10A Starvation Medium 1 - DMEM/F12 supplemented with 1% Pen-Strep (final conc. 

50 U/ml penicillin, 50 μg/ml streptomycin); used for signaling pathways analysis 

MCF10A Starvation Medium 2 - DMEM/F12 supplemented with 0.9% horse serum, 

0.5 μg/ml hydrocortizone, 100 ng/ml cholera toxin, 1% Pen-Strep (final conc. 50 U/ml 

penicillin, 50 μg/ml streptomycin) and 10 μg/ml insulin; used in migration/invasion assays 

MCF7 Growth Medium – MEM without phenol red supplemented with 10% FBS, 1% 

L-glutamine, 1% sodium pyruvate and 1% Pen-Strep (final conc. 50 U/ml penicillin, 50 μg/ml 

streptomycin). For tamoxifen resistant cells 5 μM 4-hydroxytamoxifen was additionally 

added. 

MCF7 Transfection Medium - MEM without phenol red supplemented with 10% FBS, 1% 

L-glutamine, 1% sodium pyruvate. 

MDA-MB-231 Growth Medium – Leibovitz’s L-15 medium supplemented with 10% FBS, 1% 

Pen-Strep (final conc. 50 U/ml penicillin, 50 μg/ml streptomycin) and freshly added 3g/l 

sodium hydrogen carbonate. 



 57 

MDA-MB-231 Transfection Medium – Leibovitz’s L-15 medium supplemented with 10% FBS 

and freshly added 3g/l sodium hydrogen carbonate. 

HEK293FT Growth Medium – DMEM high glucose medium supplemented with 10% FBS, 1% 

Pen-Strep (final conc. 50 U/ml penicillin, 50 μg/ml streptomycin) and 500 μg/ml geneticin 

HEK293FT Transfection Medium – DMEM high glucose medium supplemented with 10% FBS 

SKBR3 Growth Medium – McCoy’s 5A medium supplemented with 10% FBS, 1x non-

essential amino acids and 1% Pen-Strep (final conc. 50 U/ml penicillin, 50 μg/ml 

streptomycin) 

SKBR3 Transfection Medium – McCoy’s 5A medium supplemented with 10% FBS and 1x 

non-essential amino acids 

BT474 Growth Medium – DMEM high glucose medium supplemented with 10% FBS and 1% 

Pen-Strep (final conc. 50 U/ml penicillin, 50 μg/ml streptomycin) 

BT474 Transfection Medium – DMEM high glucose medium supplemented with 10% FBS 

4.7 Plasmids 

Name Description Origin 

pENTR223.1-ERBB2 Gateway compatible Entry 

vector containing ERBB2 cDNA 

sequence (NCBI Reference 

Sequence: NM_004448.3, CDS: 

262..4029) 

DKFZ, Genomics and Proteomics 

Core Facility 

pHIT60 gag/pol packaging plasmid Sonoeka et. al. (1995) 

pMD2.G Vsv-G envelope plasmid Didier Trono lab (Addgene) 

pMXs-gw-CMV-EGFP Gateway compatible retroviral 

vector based on pMXs-IRES-GFP, 

containing gateway cassette 

from pDEST22 and CMV 

promoter in place of IRES 

Kindly provided by Dr. Cindy 

Körner and Dr. Ulrich Tschulena 

psiCHECK2 Firefly/Renilla luciferase 

reporter vector 

Promega 
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4.8 Software and databases 

Cell Quest Pro BD Biosciences 

Microsoft Office 2010 Microsoft 

SDS Software 2.2 Life Technologies (Applied 

Biosystems) 

xCelligence RTCA Software 1.2 Roche Diagnostics 

Sigma Plot Systat Software Inc. 

GraphPad Prism 6 GraphPad Software 

Lasergene: SeqMan Pro, EditSeq, SeqBuilder DNASTAR Inc 

Adobe Photoshop CS5 Adobe Systems Inc. 

TargetScanHuman 6.2 http://www.targetscan.org/ 

miRBase http://www.mirbase.org/ 

miRanda http://www.microrna.org/ 

Adobe Illustrator CS5 Adobe Systems Inc. 

Gene Expression Omnibus: GEO22220, GEO19783 http://www.ncbi.nlm.nih.gov/geo/ 

NCBI http://www.ncbi.nlm.nih.gov/ 

Odyssey software Li-cor Biosciences 

CellProfiler http://www.cellprofiler.org/ 

Software for axiovert40 AxioVision Software (Zeiss) 

Software for axiovert25 AxioVision Software (Zeiss) 

Software for confocal microscope ZEN Software (Zeiss) 

ImageJ software http://rsb.info.nih.gov/ij/ 

BreastMark http://glados.ucd.ie/BreastMark/ 

NCI60 Cancer Cell line Microarray expression data http://dtp.nci.nih.gov/ 

i-control 1.6 software TECAN 

METABRIC dataset (gene expression profiling/miRNA 

expression profiling) 

Curtis, Shah et. al. (Nature 2012) 

TCGA miRNA sequencing dataset The Cancer Genome Atlas 

Network (Nature, 2012) 

ISMARA http://ismara.unibas.ch 

http://www.ncbi.nlm.nih.gov/
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4.9 UPL Primers 

All primers were purchased from Sigma-Aldrich. 

 

primer name UPL probe number sequence 

HB-EGF_left 55 tggggcttctcatgtttagg 

HB-EGF_right 55 catgcccaacttcactttctc 

CDH1_left 35 cccgggacaacgtttattac 

CDH1_right 35 gctggctcaagtcaaagtcc 

CDH2_left 74 ctccatgtgccggatagc 

CDH2_right 74 cgatttcaccagaagcctctac 

ZEB1_left 3 gggaggagcagtgaaagag 

ZEB1_right 3 tttcttgcccttcctttctg 

FN1_left 32 ctggccgaaaatacattgtaaa 

FN1_right 32 ccacagtcgggtcaggag 

MMP9_left 53 gaaccaatctcaccgacagg 

MMP9_right 53 gccacccgagtgtaaccata 

MMP2_left 70 ataacctggatgccgtcgt 

MMP2_right 70 aggcacccttgaagaagtagc 

ZO-1_left 66 cagagccttctgatcattcca 

ZO-1_right 66 catctctactccggagactgc  

SNAI2_left 7 tggttgcttcaaggacacat 

SNAI2_right 7 gttgcagtgagggcaagaa 

CAV1_left 42 acagcccagggaaacctc 

CAV1_right 42 ggatgggaacggtgtagaga 

GAPDH_left 60 agccacatcgctcagacac  

GAPDH_right 60 gcccaatacgaccaaatcc  

HPRT1_left 73 tgaccttgatttattttgcatacc 

HPRT1_right 73 cgagcaagacgttcagtcct 

TFRC_left 61 ttgagaaaacaatgcaaaatgtg 

TFRC_right 61 cccagttgctgtcctgatataga 
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ERBB2IP_left 75 tgattacttgatgctgaaagtgg 

ERBB2IP_right 75 ttttcaaccctcactcgaatc 

4.10 miRNA mimics 

All miRNA mimics were purchased from Thermo Fisher Scientific (Dharmacon).  

 

Name sequence Catalogue number 

Negative Control #2 Based on cel-miR-239b: 

uuguacuacacaaaaguacug 

CN-002000-01 

hsa-miR-130b cagugcaaugaugaaagggcau C-300660-05 

hsa-miR-301b cagugcaaugauauugucaaagc C-301252-01 

hsa-miR-301a-3p cagugcaauaguauugucaaagc C-300657-03 

hsa-miR-519a-3p aaagugcauccuuuuagagugu C-300835-05 

 

4.11 Antibodies 

4.11.1 Primary antibodies used for Western blotting and immunofluorescence 

Protein target Company Ordering number 

AKT BD Biosciences 610860 

pAKT (S473) Cell Signaling Technology CST_4058 

ERK Santa Cruz Biotechnology sc_94 

pERK1 (T202/Y204)/ 

pERK2 (T185/Y187) 

R&D systems AF1018 

ERBB2 [Ab-17] Thermo Fisher Scientific (NeoMarkers) MS-730-P 

pERBB2 (Y1248) Merck Millipore 06-229 

EGFR - antibody 1 Santa Cruz Biotechnology sc_03 

EGFR - antibody 2 Cell Signaling Technology CST_2646 

pEGFR (Y1068) [1H12] Cell Signaling Technology CST_2236L 

GM130 BD Biosciences 610823 

Fibronectin 1 BD Biosciences 610077 

E-cadherin Santa Cruz Biotechnology sc-21791 
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Tubulin Kind gift from Prof. Michael Boutros’ lab  not commercial 

Actin (clone C4) MP BioMedicals 691001 

 

4.11.1 Primary antibodies used for Reverse Phase Protein Arrays (RPPA) 

Protein target Company Ordering number 

Cortactin Merck Millipore 05-180 

EGFR Cell Signaling Technology CST_2646 

pERK1 (T202/Y204)/pERK2 

(T185/Y187)? 

Cell Signaling Technology CST_4370 

pbCatenin (S33/S37/T41) Cell Signaling Technology CST_9561 

profilin-1 Abcam ab124904 

Cdc42 Santa Cruz Biotechnology sc-87 

pIRS1 (S636/S639) Cell Signaling Technology CST_2388 

MTSS1 Abnova H00009788 

LAMB1 Cell Signaling Technology CST_3575-1 

AKT1/AKT2 Santa Cruz Biotechnology sc-1619-R 

ERBB2 [AB-17] Thermo Fisher Scientific (NeoMarkers) MS-730-P 

pEGFR (Y1068) Cell Signaling Technology CST_2236 

EGR1 Cell Signaling Technology CST_4154 

MTDH Cell Signaling Technology CST_9596 

FAK Cell Signaling Technology CST_3285 

pPTEN (T366/S370) Cell Signaling Technology CST_2195-1 

pRPS6 (S235/S236) Cell Signaling Technology CST_4858 

R-cadherin GeneTex Inc. GTX62825 

CAV1 Abcam ab32577 

Cyclin D1 Santa Cruz Biotechnology sc-718 

ROCK1 Cell Signaling Technology CST_4035 

Pan-Cadherin Cell Signaling Technology CST_4068 

pSRC (Y416) Cell Signaling Technology CST_2101 

IRS Cell Signaling Technology CST_3407 
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Integrin beta 1 Cell Signaling Technology CST_4706 

PTEN Cell Signaling Technology CST_9552 

pMEK (S217/S221) Sigma-Aldrich M7683 

pEGFR (Y845) Cell Signaling Technology CST_2231 

ZO-1 Cell Signaling Technology CST_8193 

bCatenin Cell Signaling Technology CST_9562 

EpCAM Cell Signaling Technology CST_2929 

ROCK2 Sigma-Aldrich HPA007459 

BAX Cell Signaling Technology CST_2772 

Integrin beta 3 Cell Signaling Technology CST_4702 

NFkB Santa Cruz Biotechnology sc-372 

pERBB2 (Y1248) Abcam ab47755 

pMEK (T286) Cell Signaling Technology CST_9127 

Actin MP BioMedicals 691001 

AKT1 BD Biosciences 610860 

pERBB2 (Y1112) Merck Millipore 04-294 

E-cadherin Cell Signaling Technology CST_4065 

RhoA Cell Signaling Technology CST_2117 

pMEK (S298) Cell Signaling Technology CST_9128 

GAPDH Santa Cruz Biotechnology sc-47724 

ERBB3 [AB-2] Thermo Fisher Scientific (NeoMarkers) MS-201-P0 

p27 BD Biosciences 610241 

N-cadherin Cell Signaling Technology CST_4061 

PI3K (p110) Cell Signaling Technology CST_4249 

MET Cell Signaling Technology CST_3148 

pEGFR (Y1173) Cell Signaling Technology CST_4407 

pSRC (Y416)_neu Cell Signaling Technology CST_2101 

PI3K (p85) Abcam ab40755 

MEK1 BD Biosciences 610122 

ERK1/ERK2 Merck Millipore 06-182 

pERBB2 (Y877) Cell Signaling Technology CST_2241 
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PKA Santa Cruz Biotechnology sc-903 

ERK1 R&D Systems AF1575 

pERBB3 (Y1197) Cell Signaling Technology CST_4561 

CDK6 Santa Cruz Biotechnology sc-177 

pERBB3 (Y1222) Cell Signaling Technology CST_4784 

pEGFR (Y1148) Cell Signaling Technology CST_4404 

pFAK (Y397) Cell Signaling Technology CST_3283 

pCortactin (Y421) Cell Signaling Technology CST_4569 

Vimentin Cell Signaling Technology CST_3932 

MUC1 Cell Signaling Technology CST_4538 

ARP2 Cell Signaling Technology CST_5614 

Cytokeratin 5/6 Dako M7237 

pCytokeratin 8 (S23) Abcam (Epitomics) 2147-1 

4.11.1 Secondary antibodies 

Antibody Company Detection system used Cat. Nr. 

goat anti rabbit IgG-HRP Santa Cruz Biotechnology Enhanced 

Luminescence (ECL) 

sc-2004 

goat anti mouse IgG-HRP Santa Cruz Biotechnology Enhanced 

Luminescence (ECL) 

sc-2055 

Alexa Fluor 647 donkey 

anti-rabbit IgG (H+L) 

Life Technologies 

(Invitrogen) 

LSM 510 Meta confocal 

microscope 

A31573 

Alexa Fluor 647 donkey 

anti-mouse IgG (H+L) 

Life Technologies 

(Invitrogen) 

LSM 510 Meta confocal 

microscope 

A21235 

Alexa680 F(ab')2 fragment 

of goat anti-rabbit IgG 

Life Technologies 

(Invitrogen) 

Odyssey Infrared 

Imaging System 

A21077 

Alexa680 F(ab')2 fragment 

of goat anti-mouse IgG 

Life Technologies 

(Invitrogen) 

Odyssey Infrared 

Imaging System 

A21059 

goat anti-rabbit IgG (H+L) 

DyLight 680 conjugated 

Thermo Fisher Scientific Odyssey Infrared 

Imaging System 

35568 

goat anti-mouse IgG (H+L) Thermo Fisher Scientific Odyssey Infrared 35518 
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DyLight 680 conjugated Imaging System 

goat anti-rabbit IgG (H+L) 

DyLight 800 conjugated 

Thermo Fisher Scientific Odyssey Infrared 

Imaging System 

35571 

goat anti-mouse IgG (H+L) 

DyLight 800 conjugated 

Thermo Fisher Scientific Odyssey Infrared 

Imaging System 

35521 

4.12 Mice 

In the experiment involving mice, 32 female mice from strain NOD.Cg-Prkdcscid 

Il2rgtm1Wjl/SzJ were used. These immunodeficient mice, commonly known as NSG (NOD 

scid gamma) mice, do not express the Prkdc gene as well as the X-linked Il2rg gene and are 

characterized by the absence of mature T cells, B cells, and natural killer (NK) cells. They are 

also deficient in multiple signaling pathways activated by cytokines. These features and 

additional limitation of innate immunity render them long-lived, susceptible to engraftment 

of human cells mouse model. NSG mice used in my work for engraftment of MCF10-derived 

cell line pools were bred in Animal Laboratory Services Core Facility at DKFZ. 

4.13 Tumor specimens from ERBB2-positive breast cancer patients 

Tumor specimens from patients diagnosed with primary invasive breast carcinoma were 

collected at the time of surgery between 2009 and 2010 at the Department of Gynecology 

and Obstetrics/National Center for Tumor Diseases, Heidelberg. None of the patients had 

received neoadjuvant therapy. Institutional Review Board approval was received as ethics 

vote no. S039/2008 and informed consent was obtained from all the patients. Tumor 

specimens were processed within 20 min after surgery. Samples were stored flash frozen at 

−80 °C until further use. Each tumor specimen contained at least 70% tumor cells and was 

classified as ERBB2 receptor positive as assessed by routine immunohistochemistry/in situ 

hybridization. 

http://en.wikipedia.org/wiki/T_cells
http://en.wikipedia.org/wiki/B_cells
http://en.wikipedia.org/wiki/Natural_killer
http://www.dkfz.de/en/forschung/zentrale_einrichtungen/CF_tierhaltung.html
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5. Methods 

5.1 Stable cell line pools production 

 ERBB2 cloning into pMXs-gw-CMV-EGFP vector 

To obtain ERBB2-carrying retroviral vector, Homo sapiens v-erb-b2 avian erythroblastic 

leukemia viral oncogene homolog 2 (ERBB2), transcript variant 1 cDNA sequence possessing 

a stop codon has been recloned in LR reaction from gateway compatible entry vector 

(pENTR223.1-ERBB2) obtained from the International ORFeome Collaboration resources at 

DKFZ core facility to the gateway compatible destination retroviral vector pMXs-gw-CMV-

EGFP. The destination vector has previously been obtained in our laboratory from pMXs-

IRES-GFP vector via replacement of multicloning site and IRES sequence with a Gateway 

cassette from pDEST22 and CMV promoter. Therefore EGFP is expressed completely 

independently of ERBB2 and serves as a positive control for transfection of packaging cells as 

well as for target cell infection (Figure 9). 

LR reaction  

The following components were mixed at room temperature in a 1.5 ml tube: entry clone 

(50-150 ng), destination vector (150 ng) and TE buffer pH 8.0 to reach 8 μl. 2 μl of LR Clonase 

II was then added and mix was briefly vortexed and incubated at 25°C for 1 h.  Later, 1 μl of 

proteinase K solution was added and mix was incubated at 37°C for 10 min to terminate the 

reaction. 

Bacteria transformation and plasmid amplification 

5 μl of LR reaction mix was added to 100 μl half-frozen competent DH5α bacteria and 

incubated 30 min on ice. After that time bacteria were incubated for 50 s in 42°C followed by 

5 min incubation on ice to cool down the bacteria after heat shock. 500 μl of SOC medium 

was then added and bacteria were incubated in 37°C for 45-60 min. They were then 

centrifuged briefly (3 min, 1000 rpm), 350 μl of medium was removed and the remaining 

medium was used to resuspend the bacteria pellet and spread evenly on LB agar plate 

containing 100 mg/l ampicilin using glass beads. After 24 hours incubation in 37°C, 5 single 

colonies were picked up and each of them was inoculated into 5 ml LB medium with 

100 μg/ml ampicilin and shaken for 20-24 hours in 37°C at 200 rpm. Plasmids were isolated 
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with Easy Prep Pro kit according to manufacturer’s instructions. DNA concentration and 

purity was then measured with Nano-Drop. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9 
Retroviral vectors used for cloning ERBB2 cDNA. a) The map of commercially available 
retroviral pMXs-IRES-GFP vector (Cell Biolabs INC.), which served as basis to obtain b) 
gateway compatible retroviral destination pMXs-gw-CMV-EGFP vector. In this vector MCS 
and IRES sequences were replaced by gateway cassette from pDEST22 and CMV promoter 
driving expression of EGFP; c) The map of retroviral destination pMXs-ERBB2-CMV-EGFP 
vector in which ERBB2 cDNA was cloned from gateway compatible pENTR223.1 vector. 
 

To check if ERBB2 cDNA was successfully cloned into destination vector, restriction digest 

was performed on each bacteria clone. For a 20 µl reaction 1 μg DNA, 0.2 μl SpeI restriction 

enzyme, 0.2 μl SbfI restriction enzyme, 2 μl NEBuffer 4, 0.2 μl  100x BSA and H2O were used. 

Restriction mix was incubated 3 h at 37 oC and then electrophoretically separated in 1% 

agarose gel at 130 V for 45-60 min. Samples for electrophoresis were prepared by mixing 

pMXs-gw-
CMV-EGFP 

7819 bp 

Backbone from pMXs-IRES-GFP vector 
(EGFP, 3’LTR, Ampr, 5’LTR, Ψ) 

Gateway 
cassette from 

pDEST22 
CMV promoter 

EGFP 

Backbone from pMXs-IRES-
GFP vector (EGFP, 3’LTR, 

Ampr, 5’LTR, Ψ) 

ERBB2 cDNA 

CMV promoter 

EGFP 

pMXs-ERBB2-
CMV-EGFP 

9819 bp 

a) b) 

c) 
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4 µl of 6x Loading Dye with 20 µl of the digested plasmids. For size control GeneRuler 1 kb 

DNA Ladder was used. The plasmids showing expected fragments sizes (1436 and 8383 bp) 

were sent to GATC company for sequencing. Plasmid with correct sequence was then 

amplified using Qiagen MidiPrep Plasmid Midi Kit according to the manufacturer’s 

instructions. 

 

50x TAE 

242 g Tris base 

57.1 ml 100% Acetic acid 

100 ml 0.5 M EDTA 

Added dH20 to 1 l, set pH to 8.0 with HCl or NaOH 

 

Agarose gel 

1 g agarose 

100 ml 1x TAE buffer 

Heated up to solve, then cooled down to ~50-60 oC, poured into gel preparation chamber 

and left to solidify in room temperature for ~45 min. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10 
Restriction analysis of plasmids obtained in LR reaction. Lanes 1 and 8: GeneRuler 1kb DNA 
ladder; Lanes 2-7: plasmids obtained in LR reaction were cut with SpeI and SbfI restriction 
enzymes and DNA fragments were separated electrophoretically in 1% agarose gel. Lane 6 – 
the plasmid which showed expected bands’ sizes and was sent for further validation by 
sequencing. 
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 Retrovirus production 

For retrovirus production I worked with duplicates. Experiments were performed in S2 

laboratory. 

On day 1 HEK293FT cells (2 million cells) were seeded in 10 cm plates in full growth medium. 

On day 2 cells were transfected as described below: 

Mix 1 was prepared by mixing 625 μl OptiMEM with 10 μl lipofectamine, vortexing and 

leaving it in room temperature for 5 minutes. 

Mix 2 was prepared by mixing 625 μl OptiMEM with: 

3.5 μg pHIT60 (gag/pol packaging vector) 

3.5 μg retroviral vector (either pMXs-gw-CMV-EGFP as control or pMXs-ERBB2-CMV-EGFP) 

800 ng pMD2.G (Vsv-G envelope vector) 

Next, mix 1 and mix 2 were combined, vortexed for 1 minute and incubated in room 

temperature. In the meantime HEK293FT cells’ medium was replaced by 2500 μl OptiMEM. 

After 20 minutes of 1250 μl of mix1+2 was added to cells. Transfection mix was removed 

from cells after 5 hours and full growth medium was added. On day 3 medium was changed 

for MCF10A full growth medium, so that virus can be excreted to the medium used later for 

infection of MCF10A cells. 

 Infection 

On day 3 early passage of MCF10A cells (500 000 cells) was seeded in 10 cm plates in full 

growth medium. On day 4, after 24 hours since medium change of HEK293FT cells the 

medium was collected to 15 ml tube and centrifuged to remove dead cells. Supernatant was 

mixed with polybrene 4 μl/ml and added to MCF10A cells. New MCF10A full growth medium 

was added to HEK293FT cells. The procedure was repeated again after 24 hours on day 5. 

After 8 hours since second infection medium of MCF10A was changed for fresh full growth 

medium. After a few passages cells were transferred from S2 to S1 laboratory and then 

collected for cell sorting. As an alternative to cell sorting (obtaining pools of cells with 

different virus integration site), part of the cells was serially diluted to single-cell suspension 

and cells were seeded on poly-L-lysine coated 96 well plates to obtain one cell per well. This 

approach allows to obtain clones of cells with the same virus integration sites. 

 Cell sorting 

Infected cells were trypsinized and after centrifugation the pellet was resuspended in 700 μl 

PBS containing 10% horse serum. Prior to cell sorting cell suspensions were pipetted through 
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cell strainer in FACS tubes to avoid cell clumps blocking the instrument. Sorting was done 

according to the level of EGFP in the cells transduced with a virus at the Imaging and 

Cytometry Core Facility in DKFZ by Mr. Klaus Hexel. Sorted cells were collected in 2 ml full 

MCF10A growth medium containing 10% horse serum and subsequently seeded in 24-well 

plates covered with poly-L-lysine. 

5.2 Cell culture 

2D cell culture 

Different cell types were cultured in appropriate growth medium (see “Materials”). Stable 

cell line pools and single clones derived from MCF10A cell line were cultured in MCF10A 

growth medium. Mycoplasm contamination tests were performed routinely in the 

laboratory using PCR Mycoplasma Test Kit. Additionally, multiplex human cell authentication 

and thorough contamination tests of the cell lines were performed at the DKFZ Core Facility. 

Cells were passaged every 3-4 days as follows: 

Medium was removed from the cells, cells were washed once with PBS and trypsinized with 

low amount of 0.05% or 0.25% trypsin in 37oC, 5% CO2 incubator for 15 minutes (for MCF10A 

and MCF10A-derived cell line pools) or 3 minutes (for other cell lines). After detachment of 

cells they were collected with larger volume of growth medium into a 15-50 ml tubes and 

centrifuged for 5 minutes at room temperature at 1200 rpm speed. Supernatant was 

removed, cell pellet thoroughly resuspended in 6-7 ml of growth medium and cells were 

counted by CASY. 4x105 cells (MCF10A) or 5x105 (other cell lines) were seeded on 10 cm 

plates. If cells were grown in bigger culture flasks (T75, T175) the amount of cells seeded was 

proportional to the plate surface. 

 

Preparation of poly L-lysine coated plates 

Poly L-lysine coated plates were used to increase cell adherence, e.g. after cell sorting. Poly 

L-lysine was diluted 1:50 with H2O to achieve working concentration of 0.1 mg/ml before 

using. Plates were covered with this solution and incubated for 1 hour in room temperature. 

After that plates were washed once with H2O and once with appropriate full growth medium 

before cell seeding.  
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Cryopreservation of cells 

To freeze cells special freezing medium was prepared. For a particular cell line growth 

medium was supplemented with 20% of either FBS or horse serum and 10% DMSO, and kept 

on ice before usage. Trypsinized cells (brought down to single-cell suspension) were 

collected to 15-50 ml tubes and counted with CASY. The desired amount of cells was then 

spinned down and supernatant was removed. Cell pellet was resuspended in appropriate 

volume of ice-cold freezing medium and suspension was aliquoted into cryovials at 1x106-

2x106 cells/ml concentrations. Cryovials were then instantly placed into -80oC freezer in 

freezing container filled with isopropanol to ensure slow cooling rate of cells (1°C/min). One 

day later cells were transferred to liquid nitrogen storage tank. 

To thaw frozen cells, a cryovial was placed in a 37°C water bath and quickly after thawing 

transferred to 10 ml growth medium-containing tube. Cells were then spinned down (5 min, 

1200 rpm), supernatant removed, cell pellet resuspended in growth medium and cell seeded 

in 10 cm plate as desribed before. One day later medium was changed to remove dead cells. 

 

3D cell culture of MCF10A-derived cell line pools in Matrigel 

8-well glass bottom chambers were covered with 40 μl/well of ice-cold liquid growth factor 

reduced matrigel and left 30 minutes to solidify in 37oC, 5% CO2 cell culture incubator. In the 

meantime cells grown in 2D culture in 10 cm Ø plastic dishes were washed 1 x 3 ml PBS, 

trypsinized with 1,5 ml 0,05% trypsin, collected with 4,5 ml of Assay Medium to a new tube, 

spinned down to remove trypsin and resuspended to single cell suspension in Assay Medium 

(containing 2% horse serum and no EGF). Cells were then counted using CASY, further 

diluted to 25000/ml using Assay Medium and cooled down on ice. In separate tubes Assay 

Mediums with addition of 2x higher concentrations of EGF or serum than desired for the 

experiment were prepared. Equal volumes of cell line/cell line pools suspension and assay 

mediums were then mixed and 2% of matrigel was added just before plating 400 μl/well 

(containing 5000 cells) on the top of matrigel in 8-well chambers. Assay Mediums containing 

desired experimental concentrations of growth factors was changed every 4 days, each time 

with addition of 2% Matrigel. Cells were grown in matrigel for 9-16 days, depending on an 

experiment. 
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5.3 Transfections 

For transfections with lipofectamine 2000 transfection reagent cells were seeded in growth 

medium. For MCF10A cell line or MCF10A-derived cell line pools 1,2x105 cells were seeded 

per well in 6-well plates, for other cell lines 2,5x105. After 24 hours medium was replaced by 

1 ml of appropriate transfection medium (see “Materials”) without antibiotics and cells were 

transfected with 500 ml transfection mix prepared in OptiMEM. Transfection mix contained 

4 ul lipofectamine and additionally one of the following: 25 nM miRNA or 20 nM siRNA. After 

6-8 hours transfection medium was replaced by growth medium. 

5.4 Direct cell counting 

Direct cell counting was performed to measure the proliferation rate of cells. Specified cell 

number was seeded in 6-well plates in triplicates. After 48 hours cells were harvested by 

trypsinization (as previously described) and cell pellet was resuspended in 1 ml medium. 

Cells were counted using CASY. Alternatively, cells were seeded on 96 well plates and 48h 

post-transfection were fixed 15 minutes with 2% PFA and incubated for 10 minutes with 

DAPI. After washing 2x with PBS, the total amount of nuclei was counted using Olympus 

microscope. 

5.5 Cell viability assay 

Based on ATP measurement (using CellTiter-Glo reagent) 

3000 (MCF10A and MCF10-derived cell line pools), 5000 (SKBR3) or 6000 (BT474) cells were 

seeded in white 96-well OptiPlates in the respective full growth medium. At least five 

biological replicates were used per condition.  If the cells were going to be transfected, the 

transfection was done 24 h after seeding. If the drug was added to the cells, then it was 

done 48 h after seeding, irrespective whether the cells were previously transfected or not. 

For this purpose 100 μl full growth medium containing desired drug concentration was 

added to the cells for 72 hours, prior to ATP measurement. The viability of cells was 

measured using the CellTiter-Glo Luminescent Cell Viability assay according to 

manufacturer’s protocol. Briefly, CellTiter-Glo Buffer was mixed with CellTiter-Glo Substrate 

prior to addition to cells to obtain CellTiter-Glo Reagent. Cells were taken out of incubator 

30 minutes prior to reagent addition to equilibrate them to room temperature. 100 μl of the 

reagent was then added per well, plates were shaken for 2 minutes and incubated for 
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10 minutes protected from light at room temperature. Following incubation luciferase 

activity was measured using Infinite M200 microplate reader. In this assay luminescent 

signal is proportional to ATP amount present in the cells as the beetle luciferin present in the 

reagent requires ATP to be transformed into oxyluciferin and produce the light as a 

byproduct. 

 

Based on NADPH measurement (using WST-1 reagent) 

Cells were seeded, transfected and treated with a respective drug similarly as described 

above. However, in place of white OptiPlates, 96-well transparent plates were used. Prior to 

NADPH measurement, 10 μl of ready-to-use tetrazolium salt solution (WST-1) was added 

directly to cells. Cells were then incubated additional 2-4 hours at 37oC, 5% CO2 to allow 

WST-1 cleavage to a soluble formazan in the presence of NAD(P)H in viable cells. The 

amount of formazan dye formed in this colorimetric reaction, which directly correlates with 

the number of metabolically active cells, was quantitated by measuring formazan 

absorbance using Infinite M200 microplate reader. 

5.6 Immunofluorescence staining and microscopy 

Staining cells in 2D culture 

For staining of MCF10A and MCF10A-derived cell line pools, 200 000 cells (or 120 000 cells if 

they were going to be transfected) were seeded on cover slips in 6-well plates (at least two 

replicates per condition). For other cell lines 250 000 cells were seeded. 48 hours after 

seeding (or after transfection) cells were fixed on cover slips by addition of 2% PFA in PBS for 

15 minutes in room temperature. Cells washed 3x with PBS were permeabilized by 

incubation in 0.2% Triton X-100 in PBS for 5 minutes. Cover slips, 3x washed in PBS, were 

then blocked in 3% BSA/PBS and subsequently incubated with primary antibody diluted 

(1:100- 1:200) in blocking solution overnight at 4oC. Next day cells were washed again and 

incubated with Alexa647-coupled secondary antibody, diluted 1:1000 in blocking solution, 

for 1 hour at room temperature. To achieve efficient antibody binding and later detection 

plates were shaken on waving platform, protected from light. If the cells were stained for 

actin filaments, cover slips were washed 3x with PBS and incubated with Alexa647-coupled 

phalloidin, diluted 1:40 in blocking solution for 30 minutes at room temperature. For DAPI 

staining cover slips were washed 3x with PBS and incubated for 10 minutes with 1:5000 
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diluted reagent in 3% BSA/PBS on waving platform. Cover slips, washed again with PBS, were 

then mounted on microscopy slides using ProLong Gold antifade reagent. Slides were kept 

overnight at room temperature in the dark to dry before proceeding with 

fluorescent/confocal microscopy. If necessary, slides were stored at 4oC. 

If the cells were not stained using antibodies, the whole procedure was performed till 

“mounting the slides” step within the same day. 

 

Staining cells in 3D culture 

Cells grown in Matrigel for 9-11 days as described in “Cell culture” section were washed 2x 

with PBS and fixed with 4% PFA for 45 minutes at room temperature prior to staining. Both 

solutions were pre-warmed to 37oC before usage. Cell were then rinsed 3x with PBS:Glycin 

solution for 10 minutes on a waving platform. This step reduces the background staining as 

glycin binds to free aldehyde groups (originating from PFA) preventing primary and 

secondary antibodies from unspecific binding to them. To permeabilize the cells 0.5% Triton 

X-100 was incubated with cells for 5-10 minutes at room temperature. They were then 

washed 3x for 10 minutes with 1x IF wash buffer. If not specified differently cell were 

washed always with the same type of buffer throughout the procedure and all aspirations 

were performed with mild suction to avoid disruption of matrigel. Fixed cells were then 

blocked with blocking solution for 1 hour 15 minutes and then additionally for 30 minutes 

with refreshed blocking solution. Primary antibody was diluted (1:100-1:200) in the blocking 

solution and incubated with cells overnight at 4oC on a very gentle rocker. Next day, cell 

culture chambers were equilibrated to room temperature and cells washed 3x 20 minutes. 

Secondary antibody, Alexa647-conjugated, was added to cell culture chambers, diluted to 

1:1000 in blocking solution, and incubated for 50-60 minutes at room temperature in the 

dark on waving platform. Washed cells were then incubated with 0.5 ng/ml DAPI in PBS for 

5-10 minutes, rinsed 2x with PBS and cell culture chambers were disassembled to obtain 

microscopy slides covered with matrigel containing stained cells. Cover slips were mounted 

on the top of the slides using ProLong Gold antifade reagent and allowed to dry overnight at 

room temperature in the dark. Confocal microscopy was performed next day. 
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Buffers and solutions 

10x PBS (pH 7.4) 

 80.1 g NaCl (final conc. 1370 mM) 

 2g KCl (final conc. 27 mM) 

 2.7 g KH2PO4 (final conc.20 mM) 

 17.8 g Na2HPO4 x 2H2O (final conc. 100 mM) 

ad 1 l dH2O, pH  adjusted to 6.8-7.2 with NaOH or 

HCl (upon dilution to 1x PBS pH increases) 

1x PBS (pH 7.4) 

8.01 g NaCl (final conc. 137 mM) 

0.2 g KCl (final conc. 2.7 mM) 

0.27 g KH2PO4 (final conc. 2 mM) 

1.78 g Na2HPO4 x 2H2O (final conc. 10 

mM) 

Ad 1 l dH2O, pH adjusted to 7.4 
 

4% Paraformaldehyde (PFA) 

4g PFA 

100 ml PBS (warmed up in a microwave) 

800 μl 1 M NaOH 

After solving pH was neutralised with 800 μl 1 M 

HCl to 7-8 

 

1x IF wash buffer (35 ml): 

35 mg BSA 

35 ml PBS 

70 μl Triton X-100 

17.5 μl Tween-20 

 

1x PBS:Glycine (10ml): 

75 mg Glycine 

10 ml PBS 

blocking solution: 

1x IF wash buffer + 10% goat serum 

 

5.7 Anchorage-independent growth assay 

Low-attachement plates 

250 000 cells/well were seeded on Costar ultra low attachment 6-well plates and kept in 

37oC, 5% CO2 for 72 hours. Microscopy pictures were then taken to capture the structures 

formed by cells. 

 

PolyHEMA assay 

For preparation of 96-well polyHEMA-covered plates, polyHEMA powder was first dissolved 

to 120 mg/ml in 95% ethanol by incubation at 37oC for 3 days on a horizontal roller shaker. 

Next 50 μl of the solution was pipetted into each well of 96-well plate and allowed to dry at 

37oC, 5% CO2 for 5-6 days. 8000 cells were then seeded per well in 100 μl of growth medium. 

After 3-4 days the pictures of cells were taken, followed by addition of 10 µl WST-1 to each 

well and incubation for additional 2-4 hours at 37oC and 5% CO2. Absorbance was then 

measured at 450 nm by Infinite M200 microplate reader. 6 biological replicates were used. 
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5.8 Migration assays 

Wound healing assay using Ibidi chambers 

In this type of migration assay, Ibidi culture inserts were used (Figure 11). 15 000 of 

MCF10A/MCF10A-derived cell line pools were seeded in two chambers of the insert. If the 

cells were going to be transfected, the transfection took place 24 hours after cell seeding. 

After reaching a homogenous monolayer, the cells were starved with “MCF10A Starvation 

Medium 2” containing 0.9% serum and devoid of EGF (for details see chapter “Materials”). 

20-24 h later insert was removed to form an empty area (“wound”) between the cells and 

the medium changed for a desired migration conditions (e.g. with the addition of EGF or 

serum). The migration ability of the cells was quantified by picture capturing of the scratch 

at different time points starting at time “0” which then can was compared to later time 

points (Figure 11). The faster a wounded area is covered by the cells, the higher is the cells’ 

migratory potential. The pictures were done using Axiovert 25 microscope, then areas not 

covered by cells were marked black using Adobe Photoshop software and quantified using 

Cellprofiler software. Three independent biological replicates were used. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
Figure 11 
Migration assay using Ibidi chambers. For the migration assay the culture insert is placed into 
a well in 6-well plate. Cells are seeded in each of the two chambers of the migration insert (a) 
and after reaching confluency the insert is removed (b), fresh culture medium is added and 
the migration process is started (c). Pictures of the scratch area are taken for different time 
points (c, d). 
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Migration assay using real time cell analyzer (RTCA) 

120 000 MCF10A/MCF10A-derived cells were seeded in 6-well plates. If the cells were going 

to be transfected, the transfection was done 24 hours after seeding. 48 hours after seeding 

cells the medium was changed for an “Assay medium” with reduced (2%) serum level and no 

EGF (for details see “Methods”). 20-24 hours later cells were harvested by trypsinization, 

counted with CASY and 55000 cells were seeded in 100 μl of “Assay medium” in the upper 

chamber of a CIM plate. The lower chamber was filled with 175 μl of “Assay medium” with 

addition of chemoattractant – either 20 ng/ml EGF or 3% of horse serum (to achieve final 

concentration 5%). The CIM plate was then placed in real time cell analyzer (RTCA) machine 

and cells were allowed to migrate for 24-48h hours depending on the experiment. The cell 

index was measured every 15 minutes. Four biological replicates were used. The CIM plate’s 

upper chamber is cover at the bottom with microporous polyethylene terephthalate (PET) 

membrane (8 μm pores) containing microfabricated gold electrode arrays on the bottom 

side. When the cells move through the membrane and touch the electrodes on the bottom 

side of the membrane, the changes in impedence are registered. Therefore the cell 

migration can be measured in real time. 

5.9 Invasion Assays 

Invasion assay using real time cell analyzer (RTCA) 

Invasion assay using RTCA was performed similarly to migration assay described above. 

However, the upper chambers of CIM plate were covered with matrigel prior to the cell 

seeding. For this purpose 50 μl of 1:40 dilution of matrigel in DMEM/F12 medium was added 

to the middle of 4 wells in CIM plate. Immediately 30 μl was then removed from each well 

and procedure continued until all the wells were covered. Plate was incubated at 37oC for 

3-4 hours before cell seeding. Covering the membrane with matrigel, which contains main 

extracellular matrix components, provides the barrier which only cells with invasive 

properties can cross. Cells were seeded in assay medium containing 2% of Matrigel. 

 

Invasion assay using matrigel invasion chambers 

Prior to the assay, cells were seeded and treated similarly as described for migration assay 

using RTCA system. Matrigel invasion chambers were rehydrated before the usage according 

to manufacturer’s instructions. For invasion assay 150 000 cells were seeded on the top of 
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matrigel-covered microporous membrane (8 μm) of the upper chamber and allowed to 

invade through matrigel towards the lower chamber containing chemoattractant (20 ng/ml 

EGF or 5% horse serum) for next 48-72 hours. Invaded cells were then trypsinized and 

counted using flow cytometry and Cell Quest Pro software. 

5.10 Cell adhesion 

Cell adhesion assay was performed using RTCA system as well. 60 000 cells were seeded in 

E-plates, which contain microfabricated gold electrode arrays on the bottom of the wells, 

and the changes in the impedance (resembled by “cell index”) were measured every 

15 minutes for 24 hours. 

5.11 Dual luciferase reporter assay using psiCHECK2 

3’UTRs of ESR1, CDKN1A (p21), CDKN2B (p15) and PTEN were cloned previously in our 

laboratory by Dr. Aoife Ward into a multiple cloning region located downstream of the 

Renilla luciferase translational stop codon in psiCHECK2 luciferase reporter vector. In this 

vector the cloned 3’UTR of a desired gene serves therefore as a regulatory sequence for 

Renilla luciferase gene expression. Additionally the psiCHECK2 vector codes for a Firefly 

luciferase, which, by its constitutive expression in transfected cells, enables normalization of 

the Renilla luciferase signal to the Firefly luciferase signal (that corresponds to the cell 

number). Both luciferases use different substrates to produce luminescence, thus their 

activity can be sequentially measured in the same cells using dual luciferase reporter assay 

system kit (Promega). 

For luciferase reporter assay 5000 MCF7 cells were seeded in white 96-well OptiPlates in the 

respective full growth medium. The cells were transfected 24 hours after seeding with 

25 nM miRNA mimics and 100 ng/ml of psiCHECK2 reporter vector. Five biological replicates 

were used per condition. 48 hours post-transfection cells were lysed and dual luciferase 

reporter assay was performed following manufacturer’s instructions and using Inifnite M200 

microplate reader for luminescence measurement. Renilla signal was double normalized: to 

firefly luciferase signal measured in the same cells and to the Renilla/Firefly ratio of cells 

transfected with the same miRNA but with an empty psiCHECK2 vector to reduce the effect 

of certain miRNA on psiCHECK2 backbone. The changes in luciferase activity upon miRNA 
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mimic overexpression are presented as fold changes compared to overexpression of control 

miRNA mimic. 

5.12 ELISA 

“Sandwich” enzyme-linked immunosorbent assay (ELISA) was used to measure ERBB2 levels 

in MCF10A-derived cell line pools and in SKBR cell line. For this purpose Human Total 

ErbB2/Her2 DuoSet IC was used, apart from streptavidin-HRP which was replaced by 

streptavidin-Alexa680. Briefly, capture antibody was diluted first with PBS to 4 μg/μl and 

100 μl of the solution was added per well to coat 96-well microplates. The plates were then 

incubated overnight at RT. Next day the antibody solution was removed and each well was 

washed 3x with 400 μl of washing buffer before addition of 300 μl blocking buffer. After 

1.5 hours of blocking the plates at room temperature the blocking buffer was removed and 

samples as well as standards were added in technical duplicates, diluted with buffer A. As 

standards ERBB2 protein serial dilutions (4 ng/ml, 2 ng/ml, 1 ng/ml, 0.5 ng/ml, 0.25 ng/ml, 

0.125 ng/ml, 0.067 ng/ml, 0 ng/ml) were used. SKBR3 protein lysate and lysates from 

MCF10A-derived cell line pools were obtained in the similar manner as previously described 

for Western Blot method. SKBR3 protein lysate was diluted to 100 μg/ml, 50 μg/ml, 10 μg/ml 

and 5 μg/ml. Protein lysates from MCF10A cell line pools were diluted to 1 μg/ml, 500 ng/ml, 

250 ng/ml and 125 ng/ml as high ERBB2 expression was expected. 100 μl of each dilution 

was applied per well and incubated at RT for 2 hours. The lysates were then removed and 

wells were washed as described before. 100 μl/well of the detection antibody diluted to 

200 ng/ml with buffer B was then incubated for 2 hours at RT with the captured protein, 

washed as before and incubated for 20 minutes with 100 μl of 1:5000 diluted in wash buffer 

streptavidin-Alexa680 solution. Plates washed 3x with 400 μl of washing buffer were then 

scanned using Odyssey Infrared Imaging System. 
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Buffer A 

20 mM Tris, pH 7.2-7.4 

137 mM NaCl 

0.05% Tween 20 (v/v) 

0.1% BSA (w/v) 

 

Buffer B 

20 mM Tris, pH 8.0 

137 mM NaCl 

10% Glycerol (v/v) 

2 mM EDTA 

Complete Mini Protease Inhibitor Cocktail 

and PhosStop tablets were added to 10 ml of 

buffer before use 

ELISA wash buffer 

0.05% Tween 20 in PBS (v/v) 

pH 7.2-7.4 

ELISA blocking buffer 

1% BSA (w/v) in PBS 

0.05% sodium azide 

pH 7.2-7.4 

 

5.13 Immunobloting (Western Blot) 

Protein isolation 

For protein isolation cells were washed once with cold PBS containing 1 mM sodium 

orthovanadate (Na3VO4) - general inhibitor for protein phosphotyrosyl phosphatases (PTPs), 

and 10 mM sodium fluoride (NaF) - general inhibitor for protein phosphoseryl and 

phosphothreonyl phosphatases (PSPs). Cells were then lysed using M-PER lysis buffer 

containing 1x Complete Mini Protease Inhibitor Cocktail, 1x PhosSTOP phosphatase inhibitor, 

1 mM Na3VO4 and 10 mM NaF. After 10 minutes incubation on ice, lysates were centrifuged 

at 13000 rpm at 4oC, pellet was removed and concentration of the protein in the 

supernatant was measured using Pierce BCA protein assay kit. Cell lysates were diluted 

further with lysis buffer to obtain desired concentrations and then denatured for 5 minutes 

at 95oC in the presence of 1x Roti-Load. 

 

Gel preparation 

Proteins were separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-

PAGE) according to their molecular weight. For this purpose different percentage  (8%, 10%) 

separating polyacrylamide gels were prepared accompanied by 4% stacking gels. 5-10 μg 

protein was loaded on the gel and separated by SDS-PAGE at 130 V for 75 minutes in the 
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1x SDS-PAGE running buffer. A prestained protein ladder (Precision Plus Protein™ Dual Color 

Standards) was used as molecular weight marker. The buffers and gels were prepared as 

follows: 

 

4x Separation gel buffer   

90.9 g Tris base (final conc. 1.5 M) 

add 500 ml dH2O, pH adjusted to 8.8 with 

concentrated HCl/NaOH 

 

4x Stacking gel buffer   

30.3 g Tris base (0.5 M) 

add 500 ml dH2O, pH adjusted to 6.8 with 

concentrated HCl/NaOH 

4% SDS-PAGE stacking gel (for 4 gels) 

6 ml ddH2O 

2.6 ml of 0.5 M 4x stacking gel buffer 

1.33 ml acrylamide/bisacrylamide 37.5:1  

100 μl 10% SDS  

200 μl 10% APS  

10 μl TEMED  

 

8% SDS-PAGE separating gel  (for 4 gels) 

9.4 ml ddH2O 

5 ml of 1.5 M 4x separation gel buffer 

5.4 ml acrylamide/bisacrylamide 37.5:1  

400 μl 10% SDS  

400 μl 10% APS  

26.8 μl TEMED 

 

10% SDS-PAGE separating gel  (for 4 gels) 

8 ml ddH2O 

5 ml of 1.5 M 4x separation gel buffer 

6.6 ml acrylamide/bisacrylamide 37.5:1  

400 μl 10% SDS  

400 μl 10% APS  

26.8 μl TEMED 

 

10% APS 

1000 mg ammonium persulfate (APS) 

dissolved in 10 ml dH20 

 

10% SDS 

10 g sodium dodecyl sulfate (SDS) dissolved 

in 100 ml dH20 at 55oC 

10x SDS-PAGE running buffer (without SDS) 

30.3 g Tris base (250 mM) 

144 g Glycine (1.92 M) 

add 1 l dH20 

 

1x SDS-PAGE running buffer 

500 ml 10x SDS-PAGE running buffer 

50 ml 10% SDS 

Add dH20 to 5 l 
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Western blotting – using Amersham Hybond-P PVDF membrane 

To transfer the protein on a membrane, a “sandwich” - containing 4 Whatman papers 

soaked with Anode buffer I, 2 Whatman papers soaked with Anode buffer II, polyvinylidene 

fluoride (Amersham Hybond-P PVDF) membrane activated with methanol and washed a few 

times with Anode buffer II, polyacrylamide gel with separated proteins and 6 Whatman 

papers soaked with Cathode buffer - was placed in the semi-dry transfer apparatus. The 

transfer was done for 75 minutes at 25 V and directly afterwards membrane was stained 

with Ponceau S solution to check the quality of transfer. If the transfer worked well, the 

membrane was washed 3x with TBST and then incubated on a waving platform for 1 hour in 

5% milk or 5% BSA in TBST depending on antibody. Blocked membrane was exposed to 

primary antibody (diluted 1:200 - 1:1000 depending on antibody) in blocking solution 

overnight at 4oC in a 50 ml falcon tube on a horizontal roller shaker. Next day membrane 

was washed 3x 15 minutes with TBST and then incubated for 1 hour at room temperature 

with respective HRP-conjugated secondary antibody (anti-mouse or anti-rabbit), diluted 

1:10000 in blocking buffer. Membrane, washed again 3x 15 minutes with TBST, was then 

covered with Enhanced Chemiluminescence (ECL) reagent and immediately exposed to X-ray 

films. Signal on X-ray films can be detected due to the horseradish peroxidase catalyzed 

oxidation of luminol present in the ECL reagent. Following oxidation, luminol is in an excited 

state and quickly goes back to the ground state by emission of light. If the membrane 

needed to be probed with another primary antibody, it was incubated for 30-45 minutes in 

Restore Western Blot Stripping Buffer on a waving platform. Membrane was then blocked 

again and followed by steps described above. 

 

Western blotting – using Millipore’s PVDF membrane Immobilon-FL 

If the blots were to be probed with DyLight 680 or DyLight 800 – conjugated secondary 

antibodies compatible with an Infrared Odyssey scanner system (LI-COR), the Immobilon-FL 

PVDF membrane was used instead of Hybond-P PVDF membrane and Rockland blocking 

buffer, diluted 1:2 with TBS was used to block the membrane and to dilute primary antibody. 

Secondary antibody was diluted in TBST. The membrane was scanned with Odyssey scanner 

at 700 and 800 nm. Using this Western blotting system allows detection of two different 

proteins on the same membrane at the same time even if their molecular weights are similar 

without the need of stripping the membrane. Thus, simultaneous detection of 
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“housekeeping gene” and protein of interest is possible in contrary to detection of protein 

with X-ray film. For some antibodies, X-ray film detection was, however, more sensitive. 

 

Anode buffer I:   

72.8 g Tris Base (final conc. 300 mM) 

400 ml methanol (final conc. 20%) 

ad 2 l dH20 
 

Washing buffer (TBST):  

0.1% Tween 20 in 1x TBS 

 

Anode buffer II:   

6 g Tris Base (final conc. 25 mM) 

400 ml methanol (final conc. 20%) 

ad 2 l dH20 

 

10x TBS 

88 g NaCl (final conc. 1,5 M) 

24 g Tris base (200 mM) 

Ad 1 l dH20, set pH to 7.6 with concentrated 

HCl 
 

Cathode buffer:   

10.4 g aminohexanoic acid (final conc. 40 

mM) 

400 ml methanol (final conc. 20%) 

ad 2 l dH2O 

1x TBS 

8.8 g NaCl (final conc. 150 mM) 

2.4 g Tris base (final conc. 20 mM) 

Ad 1 l dH20, set pH to 7.6 with concentrated 

HCl 
 

5.14 Reverse phase protein arrays (RPPA) 

Reverse phase protein arrays (RPPA) were used for detection and quantification of proteins 

as well as their phosphorylated forms in different MCF10A-derived cell line pools and five 

ERBB2-positive invasive breast cancer specimen. 

 

Protein isolation 

The protein from cell lines/cell line pools was extracted from four biological replicates in a 

similar manner described for Western Blot analysis. For protein extraction from the tumor 

specimens frozen samples were homogenized using a bead mill (TissueLyser) and tissue 

protein extraction reagent (T-PER) supplemented with 1 mM EDTA, 5 mM NaF, 2 µM 

staurosporine, PhosSTOP Phosphatase Inhibitor Cocktail, and Complete Mini Protease 

Inhibitor Cocktail. Total protein concentration was determined by BCA assay kit. 

 

Reverse Phase Protein Arrays 

The proteins of interest were detected and quantified as previously described by Dr. 

Johanna Sonntag (PhD Thesis; 2013) and Dr. Frauke Henjes (Oncogenesis; 2012)323. In brief: 
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Prior to spotting, tumor lysates were mixed with 4× SDS sample buffer (10% glycerol, 4% SDS, 

10 mM DTT, 125 mM Tris–HCl, pH 6.8) and boiled for 5 min at 95°C. Tumor lysates, lysates 

from ERBB2-overexpressing cell line pools (both with total protein concentration 2 µg/µl) 

and dilution series of ERBB2-C cell line pool serving as a control were spotted as technical 

triplicates on identical subarrays on nitrocellulose-coated glass slides (Oncyte Avid) using a 

contact spotter (Aushon BioSystems). Slides were blocked with Rockland blocking buffer for 

fluorescent applications in TBS (50%, v/v) containing 5 mM NaF and 1 mM Na3VO4 for 2 h at 

RT, prior to incubation with target-specific primary antibodies at 4°C over night. Primary 

antibodies (n = 69, for the list of antibodies used in RPPA see “Materials”) were selected to 

recognize proteins involved in migration/invasion/cytoskeleton regulation as well as the 

most important proteins and their phosphorylated forms involved in ERBB2 signaling 

regulating the above mentioned cellular processes, with a special focus on breast cancer 

biology. Only highly target-specific antibodies were used and their validation was carried out 

using previously described method in our laboratory.324 Detection of primary antibodies was 

done with Alexa Fluor 680 F(ab′)2 fragments of goat anti-mouse IgG or anti-rabbit IgG in 

1:8000 dilution. In addition, to be able to compare particular protein levels across sample set, 

representative slides were stained for total protein quantification using the protein dye Fast 

Green FCF as described before.325 Images of the slides were obtained using an excitation 

wavelength of 685 nm and at a resolution of 21 µm using the Odyssey Infrared Imaging 

System (LI-COR). Signal intensities of each individual spot were quantified using GenePixPro 

5.0 software. Data preprocessing and quality control were performed with the R-package 

RPPanalyzer.326 

5.15 Quantitative real time PCR (qRT-PCR)  

For RNA quantification qRT-PCR method was used. In this method, RNA is first reverse 

transcribed into cDNA and then real time polymerase chain reaction is performed using 

cDNA as a template. Abi Prism 7900HT Sequence Detection System was used to perform 

sequence amplification and fluorescent signal detection. 

5.15.1 qRT-PCR for protein-coding genes  

RNA isolation and reverse transcription 

150000-250000 cells were seeded in 6-well plates in biological triplicates. The cells from  
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single wells were lysed 48 hours after transfection (or after cell seeding).  RNA was isolated 

according to manufacturer’s instructions using Qiagen’s RNeasy Mini Kit or miRNeasy Mini 

Kit if also miRNA expression was going to be analyzed from the same samples. Elution was 

done with 40 µl of nuclease-free water. For reverse transcription, RevertAid™H Minus First 

Strand cDNA Synthesis Kit was used. First, 2 µl (up to 1 µg) of isolated RNA was mixed with 1 

µl of oligo dT-primer and 9 µl of water and denatured for 5 minutes at 70oC. Next, 4 µl of 

5x reaction buffer, 1 µl of RiboLock ribonuclease inhibitor (20 u/µl), 2 µl of 10 mM dNTPs mix 

and 1 µl of RevertAid™H Minus M-MuLV reverse transcriptase (200 u/µl) were added to the 

reaction and incubated as follows: 5min at 37oC, 60 min at 42oC, 10 min at 70oC and 5 min at 

4oC. 

 

Quantitative Real time PCR 

TaqMan probes from Roche’s universal probe library (UPL) were used in qRT-PCR reaction 

for protein-coding genes to enhance the specificity of amplified DNA detection. These LNA-

based probes are 8-9 nucleotides long and are labeled at the 5’ end with fluorescein (FAM) 

and at the 3’ end with a quencher dye. The probes are binding to all complementary 

sequences in the amplified material but are cleaved by Taq polymerase’s 5’-3’ exonuclease 

activity only during primer extension. Therefore released fluorescent signal directly 

corresponds to the amount of DNA accumulated during PCR reaction. 

The UPL probes were designed using Roche’s web-based ProbeFinder Assay Design Center 

(http://lifescience.roche.com/shop/CategoryDisplay?catalogId=10001&tab=&identifier=Univ

ersal+Probe+Library#tab-3). 

The reaction was performed in technical triplicates as follows: cDNA was diluted to 2ng/µl 

based on RNA concentration used for reverse transcription, then 5 µl (10 ng) of these 

solution was mixed in a single well of a 384-well plate with 5.5 µl 2x ABgene SYBR Green PCR 

Master Mix, 0.11 µl forward primer, 0.11 µl reverse primer, 0.11 µl TaqMan probe and 

0.17 µl water. Plate was then covered with optical adhesive cover and real time PCR was 

started: 

2 minutes – 50oC 

15 minutes – 95oC 

15 seconds – 95oC 

60 seconds – 60oC 
45 cycles 

http://lifescience.roche.com/shop/CategoryDisplay?catalogId=10001&tab=&identifier=Universal+Probe+Library#tab-3
http://lifescience.roche.com/shop/CategoryDisplay?catalogId=10001&tab=&identifier=Universal+Probe+Library#tab-3
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Ct (cycle threshold) values obtained were analyzed with the comparative (ΔΔCt) method. In 

this method it is assumed that the gene of interest and housekeeping genes are amplified 

with close to 100% efficiency. The fold change in a particular gene expression between the 

experimental and control sample is estimated by first calculating in both samples the 

differences between the Ct values obtained for this gene and the average of Ct values 

obtained for housekeeping genes (ΔCt) and then calculating the differences between ΔCt in 

experimental and control sample. The fold change equals then 2(-ΔΔCt). As “housekeeping” 

genes GAPDH, HPRT and TFRC or their combinations were used. For experiments involving 

miRNA-301a, miR-301b and miR-130b overexpression HPRT gene was not used as its 

expression was shown to be regulated by these miRNA. 

For the list of primers used in qRT-PCR see “Methods”.  

5.15.2 qRT-PCR for miRNAs 

RNA isolation and reverse transcription 

RNA was isolated from cells grown in single wells in 6-well plates using miRNeasy Mini Kit 

according to manufacturer’s protocol with elution volume of 40 µl. This kit allows isolation of 

total RNA with enrichment of miRNAs and RNAs shorter than 200 nucleotides. For detection 

of miR-301a, miR-301b, miR-130b the Exiqon’s Universal cDNA sythesis kit was used, which 

allows to reverse transcribe all miRNAs in one step. For the reaction 4 μl of RNA diluted with 

nuclease free water to 5 ng/μl was used and mixed with 4 μl reaction buffer, 2 μl reverse 

transcriptase enzyme and 10 μl of nuclease-free water. The reaction mix was then incubated 

for 1 hour at 42oC and then enzyme was heat-inactivated for 5 minutes at 95oC.  

 

Quantitative Real time PCR 

For real time PCR reaction to detect miRNAs the following reagents were used per well in 

384-well plates: 4 μl of cDNA diluted 1:20 in water, 5 μl Exiqon’s SYBR Green Master Mix 

Universal RT and 1 μl of Exiqon’s LNA-enhanced miRNA-specific primer mix. The PCR reaction 

program was then started: 

     10 minutes – 95oC 

     10 seconds – 95oC 

     60 seconds – 60oC 
 

45 cycles 
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The Ct values were obtained from raw data using SDS software and analyzed as described for 

protein-coding genes. As “housekeeping” genes SNORD38B and SNORD48 were used. 

5.16 Genome-wide mRNA expression profiling and miRNA sequencing 

RNA isolation 

Total RNA including miRNAs was isolated from 4 biological replicates of either 2D or 3D cell 

culture using Qiagen’s miRNeasy Mini kit according to manufacturer’s protocol. In case of 

isolation of RNA from 2D culture, cells from 1 well of 6-well plate were applied per one 

RNeasy Mini spin column and eluted with 40 μl of nuclease free water. For 3D culture cells 

from 4 wells of 8-well glass bottom culture slides were used and then during the RNA 

purification procedure the material from 4 wells was combined on the RNeasy Mini spin 

column and eluted as one biological replicate with 30 μl of nuclease free water to gather 

enough material for further steps – whole genome mRNA expression profiling and miRNA 

sequencing. The concentration and quality of RNA was checked by Genomics and Proteomics 

Core Facility of DKFZ using Nanodrop ND-1000 and Agilent 2100 Bioanalyzer, respectively. 

Three biological replicates with verified quality (half of the samples with RIN values 10, the 

rest in the range of 7.6-9.4) were then submitted for whole genome profiling (800 ng at 

80 ng/μl concentration and/or short RNA sequencing (1 μg at >100ng/μl). 

 

Whole genome profiling 

Whole genome profiling was done using Illumina’s Sentrix HumanHT-12 v4 Expression 

BeadChip human array. This array allows analysis of 31000 annotated genes with its ~47000 

probes derived mainly from the NCBI RefSeq Release 38 (November 2009). Sample labeling 

and hybridization was performed by Genomics and Proteomics Core Facility at DKFZ. mRNA 

profiling from 3D culture of four MCF10A-derived cell line pools was done using 3 technical 

replicates similarly to mRNA profiling from 2D culture of MCF10A transfected with 4 miRNA 

mimics (miR-ctrl2, miR-301a, miR-301b and miR-130b). Therefore, in both cases total 

number of 12 samples were submitted for microarray analysis. This amount of samples could 

be applied on one HumanHT-12 v4 array because one physical array consists of 12 identical 

but independent chips. The data obtained was quantile normalized using Chipster "Illumina 

– lumi” pipeline and differential gene expression between each two conditions was 

determined. 
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Whole genome short RNA sequencing 

For highthroughput sequencing of short RNAs, i.e. equal or shorter than 50 bp, Illumina 

HiSeq 2000 was used. The small RNA library was prepared for sequencing using “NEBNext® 

Multiplex Small RNA Library Prep Set” at Genomics and Proteomics Core Facility of DKFZ. In 

the course of analysis of raw sequencing results the adaptor sequences were trimmed and 

sequences mapped to mature miRNA sequences in miRBase (Release 21, June 2014). The 

differential expression analysis of miRNAs between each two cell line pools was performed 

using a DEseq program. This tool has a “normalization by variance stabilization” step built-in. 

For calculation of the miRNAs’ expression fold changes, the mean of three replicates was 

used. P-values were adjusted using Benjamini-Hochberg method to control the false 

discovery rate. Those miRNAs for which the differential expression between at least two 

different cell line pools was significant were then clustered together - the log(fold change) 

values were used - and the heatmap was made using “heatmap.2” function in R. 

5.17 miRNA target prediction 

For miRNA target prediction as the main target prediction softwares TargetScan 6.2 and 

miRanda were used. 

5.18 Analysis of patients’ data 

All datasets used were microarray datasets. For determination of the effect of ERBB2 and 

particular miRNAs on patients’ survival METABRIC validation dataset, encompassing mRNA 

and miRNA expression data from the same tumor samples for close to 1000 breast cancer 

patients was used. This dataset was also used to correlate miRNAs’ expression with ERBB2 

level, estrogen receptor and p53 status. Two additional, smaller publically available breast 

cancer patients’ datasets were obtained from NCBI GEO database (GSE19783 and GSE22220) 

and were used to correlate all miRNAs’ expression levels with ERBB2. The Cancer Genome 

Atlas (TCGA) dataset encompassing over 500 samples from breast cancer patients and 

healthy controls was used to determine the expression of miRNAs in tumors versus normal 

patients and to verify whether the particular miRNAs are expressed in vivo. All of these 

datasets consist of whole genome transcriptome and miRNA profiling, which allows to 

analyze mRNA/miRNA relations. 

 

https://www.dkfz.de/gpcf/hiseq2000.html
https://www.dkfz.de/gpcf/hiseq2000.html


 88 

Correlations of miRNAs’ expression levels with ERBB2 expression levels in GSE2220, 

GSE19783 and METABRIC datasets 

The data collected from GEO platform were processed data. GSE19783 data were 

log2-transformed and quantile normalized using R package limma. GSE2220 data were first 

print-tip loess normalized and then quantile adjusted to adjust for the differing scale of 

measurements across arrays. The correlation coefficients between levels of all miRNAs vs. 

ERBB2 mRNA for both datasets were calculated using R function “cor.test” with Pearson’s 

method which gave as an output the list of correlation values along with their respective 

p-values. The miRNAs profiled on each individual microarray were then arranged from 

highest to lowest correlation coefficient. Correlations of expression levels of individual 

miRNAs with ERBB2 expression levels in METABRIC dataset was done with Pearson method 

as well. 

 

Survival analysis using METABRIC dataset 

The METABRIC expression dataset was already pre-processed and quantile normalized using 

limma package in R. An R script was generated to extract the patients having an ERBB2 

status IHC3+ from the clinical dataset. Median/quantiles of ERBB2 expression in these subset 

of patients were calculated using R to classify the patients into two groups: with higher or 

lower ERBB2 expression than the median/quantile. Survival times of these patients were 

retrieved by using “Surv” function from survival package in R. To test the difference between 

the two survival curves, “survdiff” function from R package survival was used. The survival 

object returned a chisq value with the degree of freedom. P-value was calculated by using 

the function in R: 1-pchisq(test statistic, df). To determine effect of miRNA expression levels 

on patients’ survival, the patients were divided into two groups according to their miRNA 

expression levels and Kaplan-Meier curves were plotted (Q1-Q2 vs. Q3-Q4, or alternatively 

Q1 vs Q4). Further analyses were preformed as described above. 

 

miRNAs’ expression levels in ERBB2-positive and ERBB2-negative, ER-positive and ER-

negative, as well as p53-wild type and p53-mutated patients in METABRIC or TCGA 

datasets 

Patients in the METABRIC validation dataset (995 patients) were divided based on their 

ERBB2, ER or p53 statuses into two groups, i.e. ERBB2-positive and ERBB2-negative or 
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ER-positive and ER-negative or p53-wild type and p53-mutated. A short R-script was written 

to perform the comparison of each miRNA expression levels between the indicated two 

groups and generate p-value to test the significance of the comparison. The p-values were 

calculated using pchisq function mentioned in the previous section. Boxplot for each miRNA 

was created using “boxplot” function in R. miRNA expression levels were determined in the 

TCGA dataset in ER-positive and ER-negative patients in a similar manner. To determine 

miRNA expression levels in patients with different ERBB2 statuses, patients were divided 

according to their ERBB2-status into four groups: Null, IHC1+, IHC2+ and IHC3+. 

 

miRNAs’ expression levels in tumors vs. normal tissues in TCGA dataset 

Patients in the TCGA clinical data were separated based on their barcodes and their miRNAs’ 

expression values were retrieved from the expression dataset. The expression data were 

pre-processed and normalized prior to use from the TCGA consortium. The patients were 

divided into “Tumor” and “Normal” groups. Comparison between these two groups were 

performed using t.test. P-values for each miRNA group of normal vs. tumor were collected 

from the t.test. Boxplot for each miRNA was created using “boxplot” function in R. 

 

5.19 Mouse model  

32 female 7-week-old NSG mice, bred in the animal facility of the German Cancer Research 

Center, Heidelberg, were maintained at a 12 h light–dark cycle with unrestricted diet and 

water. Animal handling and experimentation was done in accordance with GV-Solas 

guidelines and approval by regional regulatory authorities (Regierungspräsidium Karlsruhe, 

reference number G193/10). NSG mice were used for subcutaneous injection of cells (n = 5 

mice/group). Mycoplasma-free MCF10A-ERBB2 cell line pools and MCF10A control cells 

were detached from culture dishes using trypsin/EDTA, washed twice with PBS and  

resuspended in PBS. Under isoflurane anesthesia (1–1.5 % in O2, 0.5 l/min), 5 × 106 cells 

suspended in 100 µl PBS/Matrigel (v/v) were injected subcutaneously into both flanks, each. 

Growth of subcutaneous xenografts was monitored each week. Mice were sacrificed and 

lungs were dissected and partially snap-frozen in liquid nitrogen for RNA isolation.  For 

histological and immunohistochemical analysis, lung was embedded in TissueTek OCT 

compound and frozen in isopentane that had been precooled in liquid nitrogen. 



 90 

6. Results 

6.1 Part I: Very high ERBB2 level as a sole sufficient factor required for 

invasive growth of non-tumorigenic mammary cell line in vitro 

6.1.1 Very high ERRB2 mRNA levels in ERBB2+ breast cancer patients 

correlate with worse overall survival compared to ERBB2+ patients with 

moderate ERBB2 levels 

As the previously reported studies (see chapter 3.2.5 in “Introduction”) indicated the wide 

range of the ERBB2 receptor levels either on DNA or protein level, I first wanted to 

determine if the range of ERBB2 mRNA levels detected in patients is also broad and if it is 

associated with the patients’ survival. For the analysis I used the data from the METABRIC 

study which is currently the biggest gene expression study of breast tumors and consists of 

discovery and validation datasets from 997 and 995 tumors, respectively.327 None of the 

patients involved had been treated with trastuzumab, since enrollment into the study had 

been prior to introduction/FDA approval of trastuzumab, and therefore ERBB2 levels in 

tumors should not be affected. The expression range for ERBB2 at the mRNA level was 

indeed broad in the validation set (6.37-14.46 a.u. on the log2 scale) and patients with the 

highest ERBB2 levels expressed almost 16 times higher receptor levels than the median 

(10.53 a.u.)(Figure 12a). 

A similar range of ERBB2 mRNA levels was observed in several other independent breast 

cancer datasets, e.g. GSE7390, GSE1456 or GSE3493 (data not shown).328,329,48 ERBB2 

transcript levels slightly increased with the tumor grade, however a significant difference 

was observed only between grades 1 and 3 (p=0.0255) (Figure 12b). This result suggests that 

ERBB2 mRNA measurement cannot well predict the histological grade. As expected, and 

previously reported, mRNA levels were correlated with the protein levels measured by 

immunohistochemistry (Figure 12c).330,331 The subdivision of patients according to their IHC 

status, however, was not sufficient to distinguish between better and worse survivers 

(Figure 12d). 
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Figure 12 
ERBB2 mRNA expression levels (log2 scale) in patients of METABRIC validation dataset and 
their association with tumor grade, IHC status and patients’ survival. a) ERBB2 mRNA levels 
in 995 patients. b) ERBB2 mRNA levels in 995 tumors categorized as grade 1 (n=98), grade 2 
(n=360) and grade 3 (n=447). c) ERBB2 mRNA levels in patients with immunhistochemically 
determined ERBB2 expression statuses: IHC0 (n=5), IHC1+ (n=252), IHC2+ (n=6), IHC3+ (n=58). 
d) Survival probability of patients subdivided into 3 groups based on their ERBB2 IHC statuses. 
e) Arbitrary division of patients into 6 groups based on their ERBB2 mRNA expression levels: 
group 1 (n=81, range 0-9.25 [a.u.]), group 2 (n=196, range 9.25-10 [a.u.]), group 3 (n=487, 
range 10-11.3 [a.u.]), group 4 (n=109, range 11.3-12.7 [a.u.]), group 5 (n=39, range 12.7-13.5 
[a.u.]), group 6 (n=83, range 13.5-14.5 [a.u.]). f) Survival probability of patients in groups 1-6. 

a) 

c) 

e) 

d) 

f) 

b) 
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Interestingly, when patients were arbitrarily divided into six groups based on their ERBB2 

mRNA expression patterns (Figure 12a), the survival length initially gradually increased with 

elevated ERBB2 levels until group 4 (expression range 11.3-12.7) and then suddenly 

decreased for groups 5 and 6 (Figures 12e and 12f). This suggests that patients with 

low/moderate level of ERBB2 mRNA survive better than those with very high ERBB2 and 

patients with ERBB2-negative tumors. 

Although the correlation of mRNA with IHC status was in general good, the ERBB2-positive 

patients (with IHC3+ status) showed high mRNA level variation. I wanted to see if this 

variation leads to different outcomes of ERBB2-overexpressing patients. To assess the effect 

of ERBB2 mRNA level on patients’ overall survival, the ERBB2-positive patients in either 

validation or discovery datasets of METABRIC study were first divided into two groups: 

expressing higher or lower ERBB2 mRNA levels than median (Figures 13a and 13b), or 

belonging to 25% or 75% quantile (figures 13c and 13d) and then Kaplan-Meier curves were 

plotted. The median and quantiles were calculated only for ERBB2-positive patients. 

High/very high ERBB2 mRNA levels were associated with worse overall survival than 

moderate levels in the validation dataset (p = 0.0495 and p = 0.0179 for median or quantile 

division of patients, respectively). In the discovery dataset this association was not 

significant (p = 0.377 and p = 0.214). Whereas the metaanalysis using BreastMark algorithm 

showed no significant difference in patients’ overall survival for patients with higher or lower 

mRNA levels in ERBB2 overexpressing breast cancer subtype (as classified by PAM50), the 

disease-free survival in the patients with higher ERBB2 mRNA levels was decreased, however, 

this effect did not reach statistical significance (p = 0.0569) (Figure 13e). 

Altogether, this and the previous analyses show that ERBB2 levels vary greatly in ERBB2-

overexpressing patients at DNA, mRNA and protein levels. Additionally, data obtained from 

the METABRIC study show that, within IHC3+ classified patients, further quantitative 

stratification of the patients according to their ERBB2 expression levels may have additional 

predictive value - better survival for the patients with moderate ERBB2 levels and worse 

survival for the patients with high/very high ERBB2 levels. 
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Figure 13 
Kaplan-Meier curves showing overall survival probability of only ERBB2-positive patients 
(determined by IHC3+ status), depending on their ERBB2 mRNA expression levels in validation 
dataset, n=58 (a, b), or discovery dataset, n=63 (c, d) in METABRIC study. Patients were 
divided into two groups based on their ERBB2 mRNA expression level – higher or lower than 
median (a, c) or belonging to 25% or 75% quantiles (b, d). e) Disease-free survival of patients 
with higher or lower than median ERBB2 mRNA levels in ERBB2-overexpressing breast cancer 
subtype (determined by PAM50 classification), using BreastMark algorithm.332 n= 275, 
number of events=135. 

a) b) 

c) d) 

e) 
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6.1.2 Construction of ERBB2-overexpressing cell line pools 

To investigate how different ERBB2 levels affect cellular phenotypes, I derived four stable 

cell line pools from the stably transfected MCF10A cell line expressing different levels of 

ERBB2 receptor (for details see chapter 5.1 in “Methods”). MCF10A cell line is a non-

transformed, immortalized epithelial breast cell line, which expresses low EGFR and ERBB3 

levels, and no ERBB2 or ERBB4.333 It is therefore suitable for ERBB2 overexpression studies as 

the basal level of ERBB-family signaling in this cell line is relatively low. Moreover, the 

MCF10A cell line has been shown to form hollow, acinus-like structures when grown in 3D 

cultures, resembling the formation of a duct in the normal breast. This particular feature of 

this cell line had been extensively exploited by several researchers in the past and several 

systems for growing MCF10A in 3D cultures have since been developed. 

I designed the system in such a way that all ERBB2-overexpressing stable cell line pools 

expressed, apart from the ERBB2 receptor, also the enhanced green fluorescent protein 

(EGFP) as a non-fusion protein. EGFP was encoded by the same construct that carried 

ERBB2-coding sequence and thus the integration of both genes into the MCF10A genome 

occurred simultaneously. This allowed me to separate pools of cells with different ERBB2 

levels via detection of green fluorescence during FACS sorting (Figure 14a). The choice of the 

EGFP intensity thresholds for selection of different ERBB2-overexpressing pools was 

arbitrary. A control cell line pool expressed just EGFP. The cell line pools which I obtained 

and expanded are listed below: 
 

Control cell line pool: 

MCF10A-EGFP (further called “CTRL”) 
 

ERBB2-overexpressing pools: 

MCF10A-ERBB2-EGFP-A (further called “ERBB2-A”) 

MCF10A-ERBB2-EGFP-B (further called “ERBB2-B“) 

MCF10A-ERBB2-EGFP-C (further called “ERBB2-C”) 

 

In the next step, I checked if the ERBB2 protein is indeed expressed at increasing levels in 

these pools using enzyme-linked immunosorbent assay (Figure 14b). The ERBB2 levels 

increased in the following manner: CTRL-A < ERBB2-A < ERBB2-B <= ERBB2–C and did not 

change substantially during the culturing of cells for up to at least 8 passages (data not 

EGFP level 

ERBB2 level 
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shown). ERBB2 localized to the cell membrane in case of all ERBB2-overexpressing cell line 

pools (Figure 14c). Interestingly, basal ERBB2 levels were also detectable in the cytoplasmic 

compartment of two cell line pools with higher ERBB2 levels. This could be due to the 

increased endosomal-driven receptor internalization/recycling.81 Since ERBB2-B and ERBB2-

C cell line pools had similar, but not identical ERBB2 protein levels, they were further 

considered as non-perfect biological cell line pool replicates, bearing very high ERBB2 levels. 
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Figure 14 
Construction of stable cell line pools. a) Stable pools production outline. b) ERBB2 protein 
levels in CTRL, ERBB2-A, -B and -C cell line pools were determined by ELISA and normalized to 
ERBB2 level in SKBR3 cell line. Two biological replicates were used. *p<0.05. c) ERBB2-
overexpressing cell pools were grown on glas slides for 2 days and then stained for ERBB2 as 
described in Methods (chapter 5.6). Note, that increasing intensity of EGFP corresponds to 
increasing ERBB2 protein level. CTRL cell line pool is shown as an ERBB2-negative control. 
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To assess the relative ERBB2 overexpression levels in the ERBB2-A, ERBB2-B and ERBB2-C cell 

line pools, I quantified ERBB2 protein levels with ELISA taking the well-characterized ERBB2-

overexpressing cell line SKBR3, carrying ~106 receptor molecules per cell, as a reference 

(Figure 14b).334 ERBB2-A showed ~2 fold and ERBB2-B/ERBB2-C cell line pools 5-6 fold higher 

receptor expression level than the SKBR3 cell line, which would be then estimated to a 

number of 2x106 and 5-6x106 receptor molecules per cell, respectively. SKBR3 had also 

previously been shown to carry 10-fold more ERBB2 gene copies than MCF7 (carrying two 

ERBB2 copies)335, whereas the cell line with one of the highest ERBB2 copy number, 

HCC1954, have been shown to carry ~55-80 fold more copy numbers (number depended on 

whether sequencing method or RT-PCR had been used for quantification) than control 

cells336, 337. Taking to account that ERBB2 protein levels correlate quite well with ERBB2 copy 

numbers in breast tumors (r= 0.52)338, the levels found in ERBB2-B and -C cell line pools are 

expected to be in the range found in established breast cancer cell lines.  

To relate the ERBB2 levels in constructed cell line pools to the levels detected in patients, 

the total ERBB2 protein level in each cell line pool and in 5 ERBB2-overexpressing patients 

was measured using reverse phase protein arrays (RPPA). Tumors from patients 1, 2, 3 and 5 

showed in the routine clinical ERBB2 tests the strong positive staining for ERBB2 (IHC3+) 

whereas tumor from patient 4 showed moderate (IHC2+) staining and FISH-positivity. The 

majority of breast tumor specimen staining IHC3+ express  more than 106 receptor 

molecules per cell.334 

RPPA is a method which allows relative measurement of a given protein amount across 

larger sample sets in a quantitative manner. ERBB2 levels detected in the samples were 

normalized to the total protein amounts spotted on the array (for details see “Methods”, 

chapter 5.14). To be able to compare ERBB2 levels between the samples, a serial dilution of 

protein lysates from ERBB2-C cell line pool was spotted on the protein array as well. As 

ERBB2 gave a signal that was near-linear (with the lowest dilution giving signal close to 0; 

Supplementary Figure 1), the differences between ERBB2 signal for the inspected samples 

could be understood as expression fold changes, i.e. in a sample with a signal of 6000 there 

would be 10 times more ERBB2 than with sample of signal 600. 

RPPA readout indicated ERBB2 levels in patients 2, 3 and 4 similar to those found in the CTRL 

cell line, and in patients 1 and 5 similar to those in ERBB2-A (Figure 15). The true ERBB2 

levels in the tumors examined are usually, however, substantially higher than detected by 
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RPPA, which can explain the apparent low ERBB2 levels in patients 2, 3 and 4. Given that up 

to 30% of protein lysates from patients’ samples originate from the surrounding stroma and 

that tumors were classified as ERBB2-positive if at least 30% of the cells in the invasive part 

of the tumor expressed ERBB2, the actual ERBB2 levels in the ERBB2-postitive cells could be 

in fact even up to ~5 times higher than detected (21% of protein lysate). I concluded 

therefore that ERBB2 protein levels found in all cell line pools are likely to be in the 

physiological range. 

 

***  *** ******  *** ***
 

 

Figure 15 
Comparison of ERBB2 protein levels in four MCF10A-derived cell line pools and in five 
samples from ERBB2-overexpressing breast cancer patients. For each cell line pool 
4 biological and 3 technical and for patients’ samples 3 technical replicates were used. 
Means for each technical replicate are shown as black dots, and the horizontal bars 
represent the means of all biological replicates.The y-axes shows the RPPA intensity 
measured in arbitrary units. 
 

6.1.3 Characterization of ERBB2-overexpressing cell line pools in 2D culture 

To characterize obtained CTRL and ERBB2-overexpressing cell line pools, I first examined 

cellular morphology, proliferation, viability, and signaling activation in 2D culture. I observed 

that, whereas MCF10A and CTRL cell line pool formed clearly visible cell clusters when grown 

on plastic dishes in full growth medium, all three ERBB2-overexpressing cell line pools did 

not (Figure 16a). In ERBB2-expressing pools, cell-cell connections were weaker than in CTRL 

cells, which lead to cell scattering. When the cells were grown in steady state (full growth 
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medium, containing EGF), phosphorylation of major autophosphorylation sites of ERBB2 

(Y1248)339 and EGFR (Y1068)340 was ERBB2-level dependent, which indicates co-activation of 

both receptors resulting from ERBB2 overexpression. Total EGFR receptor levels were also 

increased, confirming previously reported ERBB2 stabilization effects on EGFR (Figure 

16b).341 Cell viability, although not strongly affected, increased steadily and significantly in 

ERBB2-dependent manner as well (Figure 16c).  

a) 
 
 
 
 
 
 
 
b)             c) 
 
 
 
 
 
 
 
             d) 
 
 
 
 

 

 
 
 
Figure 16 
Characterization of stable cell line pools (2D culture). a) Morphology of cell line pools grown 
on plastic culture dishes in MCF10A full growth medium. Note that clusters of cells are 
present in normal MCF10A and CTRL but not in ERBB2-overexpressing cell line pools. b) 
Western blot analysis of cell line pools in comparison to MCF10A and SKBR3 cell lines. The 
names of cell lines and detected (phospho-) proteins are indicated. Note that protein lysates 
from all the cell lines were run on the same gel and the order of samples was rearranged 
post-detection for the figure clarity. c) Cell viability was measured 2 days after cell seeding as 
an absorbance of formazan in a colorimetric assay 2.5 hours after WST1 addition to all cell 
line pools and compared to CTRL cells. One asterisk (*) denotes a p-value of <0.05, two (**) 
denote p<0.01, and three (***) denote p<0.001, determined by a two-sided t-test. d) Direct 
cell counting analysis of cell proliferation in stable cell line pools after 4 days since equal 
number of cells were seeded. MCF10A served as a reference. 
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While the activating phosphorylation of AKT kinase at serine S473 was moderately elevated 

in ERBB2-overexpressing cell line pools, phosphorylation of ERK1 (T202/Y204) & ERK2 

(T185/Y187) was similar to CTRL. This was reflected by a lack of significant changes in cell 

proliferation in two-dimensional cell culture (Figure 16d). In comparison with the SKBR3 cell 

line, ERBB2 and EGFR activation was higher in all ERBB2-overexpressing pools, however 

pAKT and pERK1/2 levels were comparable (Figure 16b). 

Similar to proliferation, migration abilities of the ERBB2-overexpressing cells did not change 

in the absence of EGF as measured by wound-healing assay in assay medium containing 

reduced serum levels (2%) and no EGF (Figure 17a and 17b). Slight reduction in migration 

rates were even observed for the cell line pool with the highest ERBB2 level when migration 

was measured using real time cell analyzer (see “Methods”, chapter 5.8) in the same 

medium but with 5% serum used as a chemoattractant (Figure 17c). As EGF enhances the 

migration of normal MCF10A cells, depletion of EGF from the medium assured me that the 

potentially observed changes in migration rate would have been induced by ERBB2 itself and 

not by EGF-EGFR/ERBB2 axes.  

 
 
a)          b) 
 
 
 
 
 
 
 
         c) 
 
 
 
 
 
 
 
 
Figure 17 
Migration of stable cell line pools. a) Wound healing assay in MCF10A assay medium. 
Representative pictures of 6 biological replicates are shown at 0 h and 12 h time points. b) 
Quantification of area covered by migrating cells in wound healing assay (a). c) Cell 
migration index was measured using RTCA. 5% serum was used as a chemoattractant. 
4 biological replicates were used. 
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6.1.4 ERBB2 overexpression causes a dose-dependent invasive phenotype in 

cell line pools grown in 3D culture 

To determine whether the three-dimensional context is required for ERBB2-driven cell 

proliferation and invasion observed in patients and having been reported in previous studies, 

I grew the four stable cell line pools in Matrigel for 9 days with four different EGF 

concentrations: 0, 1, 5 and 20 ng/ml (see “Methods”, chapter 5.2). This concentration range 

was chosen based on the observation that growth of normal MCF10A in Matrigel is strictly 

dependent on EGF within this range and that 5 ng/ml EGF had proven to be the optimal 

growth condition for obtaining acinis with hollow lumen. While extra addition of EGF to the 

medium resulted in partially filled acini structures and slight increase in their volume, further 

EGF supplementation beyond 10 ng/ml did not have additional effect on spheroid sizes or 

lumen filling (Figure 18a). To ensure that saturation had been reached for the growth in 

Matrigel, I thus used 20 ng/ml EGF as the highest EGF concentration instead of 10 ng/ml. 

Whereas all ERBB2-cell line pools showed much higher proliferation rates in 3D culture than 

CTRL cells, ERBB2-B and -C expressing very high ERBB2 levels formed much bigger and less 

acini-like structures than the one expressing moderate ERBB2 levels (ERBB2-A) (Figure 18b). 

These phenotypes were observed even in the absence of EGF which is normally required for 

growth of MCF10A cells. Additionally, the ERBB2-A cell line pool seemed much more 

responsive to EGF concentrations than the ERBB2-B and -C pools. Quantification of the 

structure sizes at close-to-normal (5 ng/ml) EGF concentration showed that all control 

spheroids were up to 100 μm in diameter with an average of 65.7 μm. ERBB2-A structures 

were on average 92.4 μm big and 66.3% of them had a diameter of between 100 μm and 

200 μm. ERBB2-B/C structures were largest with 20% of the structures reaching sizes over 

200 μm (Figure 18c). 

To see whethere there are any additional morphological differences between cell line pools 

with different ERBB2 levels, like e.g. the presence or absence of hollow lumens within the 

structures, I observed the individual structures using confocal microscopy. As anticipated, in 

the control spheroids the expected lumens formed when cells were grown with 5 or 

20 ng/ml of EGF. Similar to normal MCF10A (Figure 18a), EGF concentrations lower than 

5 ng/ml EGF did not allow the control cells to form spheroids as cell proliferation was very 

low and the structures consisted of maximally 1-10 cells. 
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Figure 18 
The growth of stable cell line pools, seeded as a single cell suspension in three-dimensional 
culture. a) MCF10A cells were grown for 9 days in Matrigel in assay mediumwith indicated 
concentrations of EGF and then the nuclei were stained with DAPI. Scale bars represent 
50 μm. b) CTRL, ERBB2-A, -B and -C cell line pools were grown for 9 days in Matrigel in assay 
medium with indicated concentrations of EGF. Photographs were taken with a white-field 
microscope. Scale bars represent 100 μm. c) The sizes of 25-37 structures for each stable cell 
line pool were measured and the % of them falling into indicated size categories are shown. 
ERBB2-B and -C due to the smaller amount of structures were counted together.  

a) 
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In contrast, ERBB2-overexpressing cell line pools formed large multicellular clumps of cells 

that did not contain hollow lumens, irrespective of the presence or absence of EGF 

(Figure 19). Interestingly, structures formed by ERBB2-B and -C cells were not only much 

larger than those formed by ERBB2-A but also their surface was much more rough and 

irregular. As ERBB2-positive patients with very high ERBB2 levels are associated with worse 

overall survival, I hypothesized that the rough surface could be the sign of increased invasive 

properties of these cells. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 19 
Stable cell line pools overexpressing increasing ERBB2 levels (Control-A < ERBB2-A < ERBB2-B 
< ERBB2-C) were grown in 3D culture for 9 days in the assay medium containing different 
amounts of EGF: 0, 1, 5, 20 ng/ml. Pictures were made using confocal microscope. Scale bar 
represents 50 μm. 
 
The invasive properties of the cell line pools were confirmed in two independent assays. First 

I performed an invasion assay using matrigel-covered Boyden chambers which allow the 

measurement of the number of invaded cells at the chosen end time point – here 72 hours 

(Figures 20a and b). I could confirm that cell invasion was strictly ERBB2-level dependent and 

that the cell line pool expressing ERBB2 at the highest level had also the strongest invasive 
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properties (Figure 20a). Recently, it has been shown that overexpression of ERBB2 alone is 

not sufficient to trigger cell invasion and that additional presence of EGF or overexpression 

of ERBB3 is required.342, 343 Indeed, the ERBB2-A cell line pool displayed increased 

invasiveness in an EGF-dependent manner. However, the ERBB2-B and -C cells were not 

much responsive to EGF presence and intrinsicly showed higher invasion levels. 

In a second approach to study cell invasion I used a real time cell analyzer (RTCA), which 

allows the measurement of cell invasion in real time (see “Methods”, chapter 5.9). As a 

chemoattractant either EGF (Figure 20c) or serum (Figure 20d) was used. In both cases I 

could show that two cell line pools expressing higher ERBB2 levels are much more invasive in 

comparison to cell line pool expressing moderate ERBB2 levels and control. They were also 

more invasive in the presence of serum than in the presence of EGF. I speculated that, on 

the one hand, this could be due to the fact that ERBB-signaling in these cell line pools is 

constitutively activated and addition of EGF does not cause further increase in signaling. On 

the other hand, serum can activate cell invasion through other pathways and therefore show 

an additional effect on already invasive ERBB2-B and -C cell line pools. 

It is known, that ERBB2 exerts its function mostly via two signaling pathways, AKT and MAPK. 

As the cells composing the inner part of acini structures in 3D culture have reduced access to 

nutrients, like serum and EGF, I wanted to better understand what happens to these 

signaling pathways in starvation/EGF-stimulation conditions in cell line pools overexpressing 

different ERBB2 levels. To this end, I starved the cells for 24 in complete starvation medium 

(without any additives) in 2D culture and then stimulated them for 0, 15, 45, 75 and 

105 minutes with 20 ng/ml EGF. I observed that AKT and ERK phoshorylation was increased 

even in starvation conditions when the ERBB2 level was very high, however, EGF stimulation 

could still cause a slight induction of AKT phosphorylation, but not of ERK whose 

phosphorylation was saturated (Figure 21a). 

To check which of these two pathways has a stronger effect on invasive properties of cells, I 

incubated ERBB2-C cells with either U0126 or LY294002 inhibitors which block MEK and PI3K, 

respectively, in 3D culture starting from the second day on. Both inhibitors as well as 

lapatinib, which was used as a positive control blocking the tyrosine kinase domains of 

ERBB2 and EGFR, completely abrogated the growth of cells in 3D culture (Figure 21b). 
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Figure 20 
Stable cell line pools overexpressing increasing ERBB2 levels (CTRL < ERBB2-A < ERBB2-B <= 
ERBB2-C) were analyzed for their invasive potential after overnight incubation in the assay 
medium depleted of EGF and with reduced horse serum (2%). a, b) The number of invaded 
cells was measured 72 hours after seeding cells in the upper chambers. 5% horse serum (a) or 
indicated EGF concentrations (b) were used as chemoattractants. One asterisk (*) denotes a 
p-value of <0.05, two (**) denote p<0.01, determined by a two-sided t-test. c, d) Cell invasion 
was analyzed using real time cell analyzer (RTCA) for 42 hours. In the lower chambers either 
20 ng/ml EGF (c) or 5% horse serum (d) was used as a chemoattractant. 
 

At this point I concluded that ERBB2 overexpression does neither have to be accompanied 

by EGFR or ERBB3 overexpression, nor would EGF need to be present to trigger ERBB2-

dependent invasion in the non-malignant breast cancer cell line MCF10A. I could show that, 

although for moderate ERBB2 levels the previous observations hold true, very high ERBB2 

levels appear to overcome EGF-dependence and are sufficient to induce invasive properties 

of these cells. I speculated that the extent to which the MAPK and AKT pathways are 

activated plays a more critical role in driving the invasive phenotype of MCF10A cells rather 

than does the way how these pathways are activated.  
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Figure 21 
AKT and ERK activation play critical role in ERBB2-driven cell invasion. a) Western blot 
analysis of EGFR, Akt and ERK phosphorylation upon stimulation of stable cell line pools 
(CTRL-A, ERBB2-A, ERBB2-B and ERBB2-C) expressing different ERBB2 levels with 20 ng/ml 
EGF for 0, 15, 45, 75 and 105 minutes (from left to right). Before stimulation cells were 
starved overnight with the basic F12/DMEM medium containing no additives. b) ERBB2-C 
cells were grown in 3D culture for 9 days in assay medium containing 5 ng/ml EGF, in the 
presence of MEK inhibitor (U0126), PI3K inhibitor (LY294002) or EGFR/ERBB2 tyrosine kinase 
inhibitor (lapatinib). DMSO was used as a control. Scale bar represents 200 μm. 
 

6.1.5 Epithelial-mesenchymal transition is triggered by ERBB2 in dose-

dependent manner 

As mentioned before, the cell line pool expressing moderate ERBB2 levels formed structures 

in 3D culture which were characterized by smooth edges, whereas those cell line pools 

expressing very high ERBB2 levels did not. I hypothesized that cellular polarity should be 

disrupted in the latter ones. Indeed, structures formed by ERBB2-B and ERBB2-C cells in 3D 

culture showed unorganized GM130 (Golgin A2, a Golgi marker) staining, whereas in acini 

structures formed by ERBB2-A and CTRL cells the Golgi apparatus was invariably directed 

towards the lumen, similarly as in the lobules in normal breast (Figure 22a). Moreover, 

E-cadherin staining, indicative of cell-cell connections, confirmed well organized acini 

structures formed by CTRL and ERBB2-A cells and disorganized structures arising from 

ERBB2-B and ERBB2-C cells (Figure 22b). Of note, the total levels of E-cadherin appeared to 
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be unaffected by the ERBB2 expression level in the respective cell line pools. In contrast, 

levels of filamentous actin (F-actin) which is often associated with invasive phenotype of 

cancerous cells and invadopodia formation, was considerably higher in ERBB2-B and -C cells 

in comparison to CTRL and ERBB2-A. (Figure 22c). 
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Figure 22 
Stable cell line pools overexpressing different ERBB2 levels were grown in 3D culture for 9 
days in assay medium containing 5 ng/ml EGF with medium change every 3-4 days. They 
were then fixed and stained (in red) for Golgi marker GM130 (a), E-cadherin (b) or F-actin (c). 
Note the position of Golgi apparatus at the inner side of the single cell outside layer of the 
acini structures (a); the regular cell-cell connections (b); and the absence of F-actin (c) for 
CTRL and ERBB2-A but not for ERBB2-B and -C celll lines. Nuclei were stained with DAPI 
(blue); EGFP, which was used as a control when obtaining stable cell line pools, is also shown 
(green). Scale bar represents 50 μm. 
 

ERBB2 is involved in regulation of epithelial-mesenchymal transition (EMT) in mammary 

epithelial cells344,345 and increase in F-actin levels is an indication of this process.346,347 F-actin 

is also often associated with enhanced matrix degradation via metalloproteinases (MMPs) 

activity at the sites of invadopodia formation. I wanted therefore to check if the expression 

of EMT markers and MMPs could be responsible for the observed invasive phenotypes of 

ERBB2-B and -C. I could show that, in 2D culture, mRNA expression of the epithelial marker 

E-cadherin (CDH1) was downregulated, whereas mRNA expression of mesenchymal markers: 

N-cadherin (CDH2), ZEB1 and fibronectin (FN1) was upregulated in an ERBB2-dose 

dependent manner. However, higher ERBB2 levels were not associated with expression 

changes of two other markers: zonula occludens-1 (ZO-1) and SNAI2, which are epithelial 
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and mesenchymal markers, respectively. Expression of caveolin-1 (CAV1), which has been 

reported to be responsible for maintaining the hollow lumen in acini structures in normal 

breast, was also not affected (Figure 23).348 

Interestingly, when I checked if the mRNA levels of EMT markers that are indeed affected in 

2D would also change in 3D culture, only the expression level of N-cadherin was ERBB2-

dependent (Figure 24). Similarly, MMP9 and MMP2 mRNA expression levels were ERBB2-

dependent in 2D but not in 3D (Figures 23 and 24). One potential explanation for this 

observation could be the heterogeneity of the cells in 3D culture. In 2D culture the cells are 

grown in monolayers, and therefore the expression levels throughout the cell population is 

homogenous and the mRNA levels add up. However, in 3D culture the cells of the outer layer 

of acini-like structures are better exposed to nutrients and directly interact with proteins in 

Matrigel, which drive changes in gene expression levels. On the other hand, cells which 

reside in the inner parts of the structures have reduced access to growth factors (like EGF) 

and some of them undergo apoptosis. Measured gene expression levels in 3D cultures are 

therefore the resultant ensemble averages of the inner and outer cell layers. If the changes 

in expression levels happen in only one of the layers then only substantial changes in 

expression of these genes can shift the average enough to be detected by qRT-PCR. It could 

be, thus, that most of the EMT markers’ expression is restricted within the acini-like 

structures only to one of the layers and N-cadherin changes occur either in both, or the 

levels are high enough in one of the layers to be detected. 

Despite the lack of expression changes in 3D cell culture for a few EMT markes that were 

affected by ERBB2 in 2D culture, ERBB2 did induce EMT process in 3D culture. According to 

the recently proposed ways of studying EMT in 3D cell cultures, the ability of the cells to 

invade through extracellular matrix and disruption of cell polarity, which I have previously 

observed, are commonly accepted as markers of the ongoing EMT process.346  

As epithelial-mesenchymal transition is often associated with gain of anchorage independent 

growth,349 I next seeded CTRL, ERBB2-A, -B and -C cells on polyHema (poly(2-hydroxyethyl 

methacrylate))-coverd plates and measured their viability after 4 days. I observed that the 

more ERBB2 a cell line pool expressed, the more scattered and viable the cells were on the 

hydrogel surface (Figure 25a and b). 
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Figure 23 
RT-PCR (TaqMan) analysis of mRNA expression of 6 EMT markers (CDH1, CDH2, ZEB1, FN1, 
SNAI2 and ZO-1) and 2 metalloproteinases (MMP9 and MMP2) and CAV1 in 2D culture. 
Stable cell line pools overexpressing different ERBB2 levels were grown in 2D culture for 
3 days in full growth medium before RNA isolation. mRNA levels were normalized to 
combined expression levels of TFRC, GAPDH and HPRT and shown relative to control cells 
(CTRL). 2 biological and 3 technical replicates were used. Significance was measured using 
student’s t-test. *p-value<0.05, **p-value<0.01, ***p-value<0.001 
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Figure 24 
RT-PCR (TaqMan) analysis of mRNA expression in 3D culture of 4 EMT markers (CDH1, CDH2, 
ZEB1, FN1) and 2 metalloproteinases (MMP9 and MMP2), whose expression was changed in 
2D culture. Stable cell line pools overexpressing different ERBB2 levels were grown in 3D 
culture for 9 days in assay medium with 5 ng/ml EGF before RNA isolation. mRNA levels were 
normalized to combined expression levels of TFRC, GAPDH and HPRT and shown relative to 
control cells (CTRL). 2 biological and 3 technical replicates were used. Significance was 
measured using student’s t-test. *p-value<0.05, **p-value<0.01, ***p-value<0.001 
 
 
CTRL cells, which do not overexpress ERBB2, formed tightly packed structures indicating that 

these normal epithelial cells need cell-cell interactions to survive in the anchorage-

independent conditions and very easily establish cell-cell contacts. Similar phenotypes of the 

cell line pools were observed when the cells were seeded on low attachment plates 

(Figure 25c). 
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a) 
 

 
 
 
 
 
b) 
 
 
 
 
 

 

 

 

 

 

       

c) 

 

 

 

 
 
Figure 25 
High ERBB2 levels induce anchorage independent growth. a) Stable cell line pools were 
seeded on polyHema in full medium and pictures were taken using fluorescent microscope 
after 3 days. EGFP expressed by cell pools is visible in green. Scale bar represents 50 μm. b) 
Cell viability was measured 4 days after cell seeding on polyHema as an absorbance of 
formazan in a colorimetric assay 2 hours after WST1 addition to the cells. The cell viability is 
shown relative to CTRL cell line pool. **p-value<0.01, **p-value<0.001, determined by a two-
sided t-test. c) Cells were seeded on ultra low attachment plates and grown in full growth 
medium for 72 hours before the pictures were taken using white-field microscope. Scale bar 
represents 100 μm. 
 

6.1.6 ERBB2 overexpression co-activates other tyrosine kinases and regulates 

expression of cytoskeleton-modulating genes. 

To gain deeper insights into which proteins drive ERBB2-dependent invasion in MCF10A cells 

and if they are also regulated in a gradual manner (in contrary to an also possible on/off 

switch), I decided to check the expression and activation status of several migration-related 

proteins using reverse phase protein arrays (with a help of Dr. Johanna Sonntag). 
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69 antibodies recognizing signaling-related and cytoskeleton-regulating (phospho-) proteins, 

which had previously been validated in our laboratory for the use in RPPA, were incubated 

with lysates from MCF10A-derived stable cell line pools spotted on RPPA slides and then 

quantified (for the list of the antibodies used see “Materials”, chapter 4.11.1). Four 

biological replicates of cells grown in full growth medium in standard cell culture dishes were 

used. Since RPPA requires a high protein concentration I could not use protein lysates from 

cells grown in matrigel and the following RPPA results were obtained from 2D culture. 

The clustering presented in Figure 26 shows only those (phospho-) proteins for which the 

RPPA signal significantly correlated with ERBB2 expression.  

 

Figure 26 
ERBB2 overexpression correlates with its own (Y877, Y1248), EGFR (Y845, Y1068, Y1148) and 
ERBB3 (Y1222) phosphorylation status, as well as with phosphorylation of two protein 
tyrosine kinases: Src (Y416) and Fak (Y397). Expression of 69 different phospho- and non-
phospho- proteins involved in migration/invasion was investigated using reverse phase 
protein arrays (RPPA). Four independent biological replicates of each cell line pool were used. 
Cells were grown in full growth medium in 2D culture for 3 days before protein isolation. For 
the heatmap only targets with IQR > 0.5 on log2 scale were selected. 
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I could show that the gradual increase in ERBB2 levels is associated with a gradual increase 

in phosphorylation of ERBB-family receptors, i.e. EGFR (Y845, Y1068, Y1148), ERBB2 (Y877, 

Y1248), and ERBB3 (Y1222). ERBB2 levels also had a dose dependent effect on 

phosphorylation of SRC (Y416) and FAK (Y397), two other tyrosine kinases involved in 

migration/invasion regulation. ERBB2-B and ERBB2-C for which Western Blot analysis 

showed similar ERBB2 levels also presented comparable ERBB2 levels on RPPA. 

Several other proteins showed slightly weaker, but still significant ERBB2-dependency, 

including upregulation of Vimentin, Cortactin, pCortactin (Y421), N-cadherin, metadherin 

(MTDH), RhoA, pPTEN (T366/S370 – inhibitory site), PI3K (p110), PI3K (p85), ERK1/ERK2, 

PKA; and downregulation of basal marker cytokeratins 5/6 (Figure 27a and 27b).350,351 The 

expression of all above mentioned proteins/phospho-proteins was gradually changing with 

increasing ERBB2 levels (CTRL < ERBB2-A < ERBB2-B or ERBB2-C) rather than just showing 

on/off states. 

Phosphorylated ERBB2 (Y1248) levels correlated also very well with total receptor levels 

(r=0.8894, p=1.81e-138) in breast cancer patients from TCGA RPPA dataset (Figure 28a). The 

correlation coefficient was even higher when only ERBB2-positive patients were considered 

(r=0.9578, p=2.2e-16; Figure 28b). Interestingly, a few patients with high pERBB2/ERBB2 

levels were not classified as ERBB2-overexpressing based on immunohistochemistry or in 

situ hybridization performed at the time of diagnosis and, on the other hand, several 

patients with low pERBB2/ERBB2 levels were classified as ERBB2-positive. This discrepancy 

results most probably from the fact that for RPPA analysis the protein is isolated from the 

bigger portions of tumors and can include up to 30% of stromal cells, while ERBB2 receptor 

levels are detected using IHC in the invasive part of the tumor only. 

Thus, on the one hand, if 10% (or previously 30%) of cells in the invasive part stain strongly 

for ERBB2 but the rest of the tumor does not stain for ERBB2 at all, then the detected by 

RPPA ERBB2 levels can be low despite tumor’s ERBB2-positive status. On the other hand, if 

the whole tumor stains weakly for ERBB2 (ERBB2-negative status), the detected on RPPA 

ERBB2 levels can be high as the signals from individual cells add up.  
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** ** **** ** ** **  
Figure 27a 
Description under figure 27b. 
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**** ** ** **** ** **  

** *** *** *** * *** **** *  

** ** ** *** ** *  
 

Figure 27b 
Expression of 69 different phospho- and non-phospho- proteins involved in 
migration/invasion was investigated using reverse phase protein arrays (RPPA). Box plots 
indicating expression levels of those strongly correlating with ERBB2 are shown. Y-axes 
shows RPPA signal in arbitrary units. Four independent biological replicates of each cell pool 
were used (black dots). Cells were grown in full growth medium in 2D culture for 3 days 
before protein isolation. One asterisk (*) denotes a p-value of <0.05, two (**) denote p<0.01, 
and three (***) denote p<0.001, determined by a two-sided t-test and CTRL as reference. 
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a) b) 

 

 

 

 

 

 

 

Figure 28 
Correlation of ERBB2 with pERBB2 (Y1248) protein levels (log2 scale) in breast cancer patients 
from TCGA RPPA dataset.14 a) ERBB2 and pERBB2 levels are shown in all patients 
independent of ERBB2 IHC status. b) Only patients with ERBB2 IHC status 3+ are shown. r - 
Pearson correlation coefficient. Note that a few patients (red circled) with high ERBB2 and/or 
pERBB2 protein levels were not detected as ERBB2-positive by IHC staining and several 
patients with low ERBB2 and pERBB2 protein levels (red square) were classified as ERBB2-
positive. 

6.1.7 Identification of genes differentially regulated by ERBB2 in 3D culture 

To determine whether migration/invasion-regulating genes are also induced by ERBB2 in 3D 

cell culture and to identify possible novel genes deregulated by ERBB2 but not described yet 

in 2D cultures, I have performed genome-wide mRNA expression profiling using Illumina 

micorarrays (for details see “Methods” chapter 5.16). Prior to RNA isolation, MCF10A-

derived cell line pools expressing different ERBB2 levels were grown in Matrigel for 9 days in 

the MCF10A assay medium containing 5 ng/ml EGF – the optimal concentration at which 

normal MCF10A cell line forms hollow acini structures. Array hybridization, raw data analysis, 

including normalization using variance stabilization transformation algorithm (Bioconductor 

vsn package) and differential expression analysis (Bioconductor limma package) of all 

detected genes between each two cell line pools has been done by the Genomics and 

Proteomics Core Facility at DKFZ. Each three biological replicates of MCF10A-derived cell line 

pools expressing different ERBB2 levels clustered together, indicating high reproducibility of 

the experiment (Figure 29). 

43 genes (Supplementary Table 1) were identified whose expression was both significantly 

downregulated in the direct comparison of ERBB2-A vs CTRL cell line pools (arbitrary cut-off: 

fold change=0.66, Benjamini-Hochberg adjusted p-value <0.05) and significantly 

downregulated in the direct comparison of ERBB2-B vs ERBB2-A (arbitrary cut-off: fold 
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change=0.75, Benjamini-Hochberg adjusted p-value <0.05) for at least one detection probe 

on the array. On the other hand, 41 genes (Supplementary Table 2) were upregulated in 

both comparisons with arbitrary cut-offs: fold change=1.5 and fold change=1.35, respectively 

(Figure 30). 
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Figure 29 
Whole genome expression profiling of CTRL, ERBB2-A, -B and -C cell line pools was done using 
Illumina’s Sentrix HumanHT-12 v4 microarray. 3 replicates of each cell line pool were used 
and as a part of data quality check the dendrogram of quantile normalized data was plotted 
to see if the replicates cluster together. Note that ERBB2-B and -C cell line pools are more 
similar to each other than any of them to ERBB2-A and differ even more from CTRL cells. 
 
 
a)      b) 

 
 

Figure 30 
The numbers of differentialy expressed genes between ERBB2-A and CTRL as well as ERBB2-B 
and ERBB2-A in 3D cell culture are shown for: a) downregulated genes; b) upregulated genes. 
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As observed expression range of several genes was restricted only to the ERBB2 level range 

between CTRL and ERBB2-B cells, as had previously been observed for some proteins on 

RPPA, ERBB2-C was not included in this analysis (when ERBB2-C was also taken into account 

(arbitrary cut-offs: fold change=0.84 and fold change=1.1905) only keratin 16 (KRT16) and 

keratin 17 pseudogene 3 (KRT17P3; LOC650517) were negatively downregulated and 

stanniocalcin 1 (STC1) was upregulated). 

Next, I used the functional annotation tool, DAVID 6.7 (Database for Annotation, 

Visualization and Integrated Discovery)352,353, using Kyoto Encyclopedia of Genes and 

Genomes (KEGG)354 annotation category “KEGG_PATHWAY”, to perform gene annotation 

and molecular pathway enrichment analysis on the lists of 41 upregulated and 43 

downregulated genes. 

 
Table 1 
The list of KEGG pathways enriched in genes deregulated in ERBB2-level dependent manner 
in 3D culture.  Analysis were done using DAVID functional annotation tool. Note that both: 
cell cycle and oocyte meiosis pathways shared the same enriched genes. 
 

Genes downregulated 

KEGG pathway Gene symbol Gene name 

Metabolism of 
xenobiotics by 

cytochrome 
P450 

UGT1A6 
UDP glucuronosyltransferase 1 family, polypeptide A1, A3, A4, A5, A6, 
A7, A8, A9, A10 

ALDH3A1 aldehyde dehydrogenase 3 family, memberA1 

AKR1C4 
aldo-keto reductase family 1, member C4 (chlordecone reductase; 3-
alpha hydroxysteroid dehydrogenase, type I; dihydrodiol 
dehydrogenase 4) 

Cell cycle 
- - - - - - - - - - - - -  
Oocyte meiosis 

MAD2L1 MAD2 mitotic arrest deficient-like 1 (yeast) 

CDC20 cell division cycle 20 homolog (S. cerevisiae) 

CCNB2 cyclin B2 

Genes upregulated 

KEGG pathway Gene symbol Gene name 

Hematopoietic 
cell lineage 

CD14 CD14 molecule 

IL1A interleukin 1, alpha 

IL1B interleukin 1, beta 

Aminoacyl-tRNA 
biosynthesis 

CARS cysteinyl-tRNA synthetase 

GARS glycyl-tRNA synthetase 

SARS seryl-tRNA synthetase 

WARS tryptophanyl-tRNA synthetase 

YARS tyrosyl-tRNA synthetase 

Cytokine-
cytokine 
receptor 

interaction 

CCL20 chemokine (C-C motif) ligand 20 

INHBE inhibin, beta E 

IL1A interleukin 1, alpha 

IL1B interleukin 1, beta 

VEGFA vascular endothelial growth factor A 

 

 



 119 

 
The only significantly enriched pathway was the aminoacyl-tRNA biosynthesis pathway (B-H 

adjusted p-value=0.0011) with five genes being upregulated by ERBB2. Table 1 lists these 

genes as well as the genes in the pathways for which at least 3 genes were up- or 

downregulated by ERBB2. Interestingly, the third most strongly upregulated gene by ERBB2 

was an asparagine synthetase (ASNS; see Supplementary table 2), which similarly to aa-tRNA 

synthetases also plays a role in protein production. 

 

6.1.8 ERBB2 upregulates HBEGF expression 

HBEGF was one of the most significantly upregulated genes within the set of 41 genes 

upregulated by ERBB2 in 3D cell culture, having an expression fold change of 1.82 

(Benjamini-Hochberg adjusted p-value=8.54E-39) between ERBB2-A and CTRL, and with fold 

change of 1.61 (Benjamini-Hochberg adjusted p-value p=2.79E-41) between ERBB2-B and 

ERBB2-A. The upregulation was verified by RT-PCR (TaqMan). Interestingly, HBEGF 

upregulation was much stronger in 3D culture (up to 3.5 fold) than in 2D culture (max. 

1.4 fold) (Figure 31). This gene encodes an EGFR ligand and it was therefore interesting to 

see that ERBB2 overexpression induces its expression. As mentioned before, other reports 

had shown before that ERBB2 alone does not induce MCF10A cell invasion and that 

additional presence of either EGF or ERBB3 is required to this end. I observed that, even in 

the absence of EGF, cells expressing very high ERBB2 levels are invasive. The observation 

that those cells can produce another EGFR ligand - HBEGF - themselves could explain how 

they escape the requirement of EGF (or ERBB3) to induce invasion. As HBEGF is a secreted 

protein and its expression was induced mainly in 3D culture, I attempted to measure its 

levels in the supernatant of MCF10A stable cell line pools grown in Matrigel using ELISA, but 

I was not successful. This could be possibly due to not sufficient sensitivity of antibody 

recognizing HBEGF for measurement of small amounts of HBEGF. Detection of this EGFR 

ligand would thus require either large-scale 3D cell cultures or a more sensitive method that 

both are considered for the follow-up of my project. 
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 a)         b) 

 

 

 

 

 

 
 
 
Figure 31 
RT-PCR (TaqMan) analysis of mRNA expression of HB-EGF in 2D (left panel) and 3D (right 
panel) culture. Stable cell line pools overexpressing different ERBB2 levels were grown in 2D 
culture for 3 days in full growth medium or in 3D culture for 9 days in assay medium 
containing 5 ng/ml EGF before RNA isolation. The expression levels are shown relative to 
control cell line pool (CTRL). *p-value<0.05. **p-value<0.01, ***p-value<0.001, as 
determined by two-sided t-test. 
 

6.1.9 MCF10A-derived ERBB2-overexpressing cell line pools are not more 

sensitive to drug treatment than control cells  

To test whether overexpression of ERBB2 to different extents had an impact on drug 

sensitivity, MCF10A-derived cell line pools were grown in 2D culture and treated for 

72 hours with increasing concentrations of doxorubicin, paclitaxel, or trastuzumab and 

followed by measurement of cell viability. Whereas higher concentrations of doxorubicin 

and paclitaxel decreased viability of all four cell line pools, trastuzumab treatment did not 

have an effect on any (Figure 32). The lack of sensitivity to trastuzumab, ERBB2-targeting 

humanized monoclonal antibody, is in line with the fact that in the developed stable cell line 

pools ERBB2 did not induce cell proliferation, nor had a direct impact on cell viability 

(measured by ATP levels) when cells were grown in 2D culture. Thus ERBB2 blocking by 

trastuzumab in 2D culture could not revert the non-present induction and did not cause any 

further drop in ATP levels. 
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Figure 32 
Viability was measured using Cell Titer Glo assay for CTRL, ERBB2-A, ERBB2-B and ERBB2-C 
cell line pools after incubation for 72 hours with increasing concentrations of a) doxorubicin, 
b) paclitaxel or c) trastuzumab. Concentrations of these drugs are indicated in the respective 
graphs. SKBR3, which is a trastuzumab sensitive cell line, was used as control. Concentrations 
of trastuzumab used to treat it were 0, 50 and 100 nM (for other cel lines the highest 
concentration used was 200 nM). 
 

6.1.10 ERBB2-overexpressing MCF10A cell line pools do not induce tumor 

formation in vivo 

The observation that cell invasion is induced by very high ERBB2 levels in MCF10A cells but 

not by moderate ERBB2 levels and that this effect is accompanied by EMT induction and 

anchorage-independent cell growth in the very high ERBB2 expressing cell line pools 

provided well founded motivation to test whether similar phenotype can be observed also in 

vivo. For this purpose 32 NSG mice were injected subcutaneously with 5 million cells each 

(CTRL, ERBB2-A, –B, or –C) into both flanks (for details see “Materials” chapter 4.12 and 

“Methods” chapter 5.19). The mice were inspected for tumor presence every week. As 

ERBB2 overexpression has been reported to be responsible for induction of tumors with a 

delayed onset (~7-8 months) in a few other model systems355, including transgenic mice 

expressing ERBB2 under mammary specific (MMTV) promoter, the mice were kept for up to 
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9-10 months before they were sacrificed. At that time no tumors in mice have been found. 

Also no dormant cell (negative result for detection of GAPDH, HPRT, TFRC and ERBB2 on RT-

PCR) or nodules have been detected in mice lungs. This leads to the conclusion that ERBB2-

overexpression (even to a very high extent) is not sufficient to transform close to normal 

mammary epithelial cells MCF10A into tumorigenic cells, despite its clear effect observed in 

3D culture. That stresses the importance of microenvironment in the regulation of cell 

survival and proliferation which extends beyond Matrigel components. 
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6.2 Part II: ERBB2 as an important regulator of oncogenic miRNA expression 

in breast cancer 

6.2.1 miRNA sequencing and differential expression analysis reveal a subset 

of ERBB2-deregulated miRNAs 

Recently miRNAs have been shown to be involved in EMT regulation as well as trastuzumab 

resistance.356,305 ERBB2 has itself been reported to be targeted at mRNA level by several 

miRNAs and further to also regulate expression of miRNAs (see “Introduction”, chapters 

3.4.2 and 3.4.3). These studies however were all done in 2D cell culture growth conditions 

and until now there has been no study showing global miRNA changes upon ERBB2 

overexpression using a three-dimensional culturing system. Since I had seen quite many 

molecular and phenotypic differences between cells grown in 2D vs 3D (see part I), I decided 

to perform short RNA sequencing (<50 bp) using RNA isolated from 3D culture of the cell line 

pools expressing different ERBB2 levels. The same RNA samples were also submitted for 

genome-wide mRNA profiling described in chapter 6.1.7, hence the same three biological 

replicates were used (Figure 33).  

 
ERBB2-A

ERBB2-B ERBB2-C

Control-A

• miRNA sequencing

• whole genome mRNA profiling

ERBB2-A

ERBB2-B ERBB2-C

Control-A

• miRNA sequencing

• whole genome mRNA profiling

 
 
Figure 33 
CTRL, ERBB2-A, -B and –C cell line pools were grown for 9 days in Matrigel in MCF10A assay 
medium in the presence of 5 ng/ml EGF (medium change every 3-4 days). Total RNA was 
isolated with miRNeasy Kit from Qiagen and samples were prepared for miRNA sequencing 
and whole genome expression profiling as described in “Methods” chapter 5.16.  
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Raw sequencing data was processed as described in “Methods” chapter 5.16, to find 

differentially expressed miRNAs between each two MCF10A-derived stable cell line pools. 

Thirty-six miRNAs showed significant deregulation (p-value <0.01 and fold change ≤0.5 or ≥2) 

by ERBB2 in at least one of the direct comparisons between the cell line pools. In Figure 34 

the clustering of log2(fold change) values for those miRNAs is shown. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 34 
Heatmap presenting log2(fold change) values for differentially expressed (p-value <0.01, fold 
change ≤0.5 or ≥2) miRNAs between at least two different cell line pools grown in 3D culture. 
Red colour indicates decrease in miRNA expression with higher ERBB2 level of the indicated 
cell pool, green – increase (see the colour code in the upper left corner). 
 
The oncogenic miR-21-5p, which had been previously shown to be upregulated by ERBB2 

and linked to trastuzumab resistance was found among the top upregulated miRNAs.314 

Similarly, two other well studied oncogenic miRNAs in breast cancer were identified within 

this group: miR-221 and miR-210 (oncogenic miRNAs linked to trastuzumab 

resistance)306,357,303. A few other miRNAs from this group (like e.g. miR-146a-5p, miR-146b-
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5p, miR-31-5p and miR-31-3p) have also been linked to breast cancer, but their general role 

is not yet fully understood as they bear both oncogenic and tumor suppressor properties 

depending on the context or the cancer subtype studied.  

6.2.2 ERBB2-dependent miRNAs: miR-301b, miR-146a-5p and miR-210 are 

expressed at higher levels in breast tumors and associated with shorter 

overall survival 

The miRNAs which I had identified by next generation sequencing to be ERBB2-dependent 

were next checked for their expression levels in breast tumors in comparison to normal 

tissue using patient data from The Cancer Genome Atlas (TCGA) dataset. If the difference 

between tumor and normal tissue was significant (p<0.05) for a certain miRNA, the miRNA 

received the score of +1 if the expression was higher in tumors than in normal tissues or -1 if 

it was lower. Similar scoring was applied when a given miRNA was higher expressed in HER2-

positive than in HER2-negative tumors (+1) or vice versa (-1) as well as when a miRNA 

correlated negatively (+1) or positively (-1) with patient survival in the METABRIC dataset. 

These datasets contain a big number of patients and hence the use of them to obtain 

significant information was the best possible option (Table 2). Two miRNAs, that were 

differentially regulated by ERBB2 in 3D culture, were absent in TCGA dataset and eight were 

absent in METABRIC dataset. 

Three highest scoring miRNAs: miR-301b, miR-146a-5p and miR-210 were ERBB2-dependent 

in the clinical datasets in the similar manner as in the ERBB2-overexpressing cell line pools in 

3D culture (upregulated by ERBB2) and all three showed higher levels in breast tumors than 

in normal tissue. Moreover, patients with higher levels of these miRNAs showed shorter 

overall survival than those with lower miRNA levels (Table 2). Thus, since these three 

miRNAs showed association with clinical features alike ERBB2, they qualified as the most 

interesting candidates for the follow-up functional studies in relation to ERBB2 and breast 

cancer. Nevertheless, for the purpose of this thesis I decided to choose only one from the list 

and characterize it in more detail. 
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Table 2 
Differential expression of miRNA candidates in tumor vs. normal tissue (TCGA database), in 
HER2-positive and -negative tumors as well as their correlation with patients’ survival. The 
individual scores mean: “-1” if higher level of miRNA: is observed in normal tissue than in 
tumor; is observed in HER2-negative tumors; or is associated with better overall survival. “0” 
if there is no statistically significant correlation present. “1” if higher level of miRNA: is 
observed in tumor tissue than in normal; is observed in HER2-positive tumors; or is associated 
with worse overall survival. The brackets [] indicate that p-value was close to 0.05 and a 
score given was (+/-) 0.5 instead of (+/-)1. 
 

miRBase ID miRNA name 
TCGA 

(T vs N) p value 

METABRIC 
(HER2+ 

vs HER2-) p value 

METABRIC 
(survival-
median) p value 

final 
score 

MIMAT0000076 hsa-miR-21-5p  1 4,59E-26 1 2,02E-06 0 0,721 2 

MIMAT0001341 hsa-miR-424-5p  0 1,09E-01 1 8,02E-03 0 0,202 1 

MIMAT0004958 hsa-miR-301b 1 5,99E-05 1 4,04E-02 1 7,35E-03 3 

MIMAT0018976 hsa-miR-4454  N/A N/A N/A N/A N/A N/A N/A 

MIMAT0001536 hsa-miR-429 1 4,25E-12 -1 1,52E-02 0 0,371 0 

MIMAT0000449 hsa-miR-146a-5p [ 1 ] 0,054 1 4,79E-02 1 4,08E-02 2,5 

MIMAT0004568 hsa-miR-221-5p  0 0,611 0 0,594 0 0,277 0 

MIMAT0004682 hsa-miR-361-3p  0 0,407 0 0,119 0 0,173 0 

MIMAT0000089 hsa-miR-31-5p 0 0,459 0 0,724 0 0,632 0 

MIMAT0004559 hsa-miR-181c-3p  1 9,89E-03 -1 2,87E-07 -1 1,07E-02 -1 

MIMAT0004797 hsa-miR-582-3p  1 3,30E-02 0 0,425 0 2,84E-01 1 

MIMAT0004481 hsa-let-7a-3p  1 7,95E-07 -1 3,16E-05 0 2,17E-01 0 

MIMAT0000100 hsa-miR-29b-3p  1 1,58E-07 -1 2,14E-02 -1 4,21E-03 -1 

MIMAT0000090 hsa-miR-32-5p 1 1,94E-07 0 0,226 [ -1 ] 8,32E-02 0 

MIMAT0004801 hsa-miR-590-3p 1 1,13E-08 N/A N/A N/A N/A N/A 

MIMAT0000444 hsa-miR-126-5p  -1 2,24E-07 0 0,843 0 0,669 -1 

MIMAT0004927 hsa-miR-708-3p 1 1,71E-06 0 0,873 0 0,303 1 

MIMAT0000084 hsa-miR-27a-3p  1 4,25E-04 0 0,389 0 0,999 1 

MIMAT0004504 hsa-miR-31-3p  0 0,567 0 0,45 0 0,339 0 

MIMAT0000275 hsa-miR-218-5p  -1 1,00E-09 0 0,722 -1 4,37E-03 -2 

MIMAT0002809 hsa-miR-146b-5p  1 7,99E-03 1 6,95E-03 0 7,88E-01 2 

MIMAT0000267 hsa-miR-210  1 1,35E-06 1 1,73E-02 1 4,58E-02 3 

MIMAT0004976 hsa-miR-933  0 0,145 0 0,79 0 0,649 0 

MIMAT0004766 hsa-miR-146b-3p -1 5,23E-03 N/A N/A N/A N/A N/A 

MIMAT0000733 hsa-miR-379-5p  -1 4,73E-12 0 0,734 [ -1 ] 0,0557 -1,5 

MIMAT0000736 hsa-miR-381-3p -1 3,21E-18 0 0,887 [ -1 ] 0,051 -1,5 

MIMAT0000094 hsa-miR-95  0 0,385 0 0,098 -1 1,41E-03 -1 

MIMAT0004688 hsa-miR-374a-3p 1 3,48E-03 N/A N/A N/A N/A N/A 

MIMAT0017990 hsa-miR-3613-5p  1 1,79E-13 N/A N/A N/A N/A N/A 

MIMAT0004956 hsa-miR-374b-3p  1 7,17E-05 0 0,904 0 0,732 1 

MIMAT0003238 hsa-miR-573  1 4,75E-02 N/A N/A N/A N/A N/A 

MIMAT0015087 hsa-miR-514b-5p 0 0,803 0 0,11 1 4,34E-03 1 

MIMAT0005901 hsa-miR-1249 0 0,252 0 0,536 [ 1 ] 0,0721 0,5 

MIMAT0005922 hsa-miR-1268a  N/A N/A N/A N/A N/A N/A N/A 

MIMAT0004902 hsa-miR-891a  -1 5,00E-03 N/A N/A N/A N/A N/A 

MIMAT0004811 hsa-miR-33b-3p  1 1,42E-05 0 0,114 0 5,39E-01 1 

 
 

http://www.mirbase.org/cgi-bin/mature.pl?mature_acc=MIMAT0000076
http://www.mirbase.org/cgi-bin/mature.pl?mature_acc=MIMAT0001341
http://www.mirbase.org/cgi-bin/mature.pl?mature_acc=MIMAT0004958
http://www.mirbase.org/cgi-bin/mature.pl?mature_acc=MIMAT0018976
http://www.mirbase.org/cgi-bin/mature.pl?mature_acc=MIMAT0001536
http://www.mirbase.org/cgi-bin/mature.pl?mature_acc=MIMAT0004568
http://www.mirbase.org/cgi-bin/mature.pl?mature_acc=MIMAT0004682
http://www.mirbase.org/cgi-bin/mature.pl?mature_acc=MIMAT0000089
http://www.mirbase.org/cgi-bin/mature.pl?mature_acc=MIMAT0004559
http://www.mirbase.org/cgi-bin/mature.pl?mature_acc=MIMAT0004797
http://www.mirbase.org/cgi-bin/mature.pl?mature_acc=MIMAT0000090
http://www.mirbase.org/cgi-bin/mature.pl?mature_acc=MIMAT0000444
http://www.mirbase.org/cgi-bin/mature.pl?mature_acc=MIMAT0000084
http://www.mirbase.org/cgi-bin/mature.pl?mature_acc=MIMAT0004504
http://www.mirbase.org/cgi-bin/mature.pl?mature_acc=MIMAT0002809
http://www.mirbase.org/cgi-bin/mature.pl?mature_acc=MIMAT0004976
http://www.mirbase.org/cgi-bin/mature.pl?mature_acc=MIMAT0004766
http://www.mirbase.org/cgi-bin/mature.pl?mature_acc=MIMAT0000733
http://www.mirbase.org/cgi-bin/mature.pl?mature_acc=MIMAT0000736
http://www.mirbase.org/cgi-bin/mature.pl?mature_acc=MIMAT0000094
http://www.mirbase.org/cgi-bin/mature.pl?mature_acc=MIMAT0004688
http://www.mirbase.org/cgi-bin/mature.pl?mature_acc=MIMAT0017990
http://www.mirbase.org/cgi-bin/mature.pl?mature_acc=MIMAT0004956
http://www.mirbase.org/cgi-bin/mature.pl?mature_acc=MIMAT0003238
http://www.mirbase.org/cgi-bin/mature.pl?mature_acc=MIMAT0015087
http://www.mirbase.org/cgi-bin/mature.pl?mature_acc=MIMAT0005901
http://www.mirbase.org/cgi-bin/mature.pl?mature_acc=MIMAT0005922
http://www.mirbase.org/cgi-bin/mature.pl?mature_acc=MIMAT0004902
http://www.mirbase.org/cgi-bin/mature.pl?mature_acc=MIMAT0004811
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To choose the most relevant miRNA candidate out of the three miRNAs, I used two publically 

available independent patient datasets - GSE22220 and GSE19783 and correlated ERBB2 

mRNA expression with the expression of all miRNAs in those datasets (see “Methods” 

chapter 5.18). All miRNAs were first correlated with each ERBB2 probe and in this way four 

correlation lists were generated (as GSE22220 had only one probe for ERBB2 while 

GSE19783 had three). I took then top 100 miRNAs either positively or negatively correlating 

with ERBB2 from each list and looked for the overlapping miRNAs. There were 7 miRNAs 

found among first hundred positively correlating miRNAs with ERBB2 expression level in all 

four lists. These are (starting from the most positively correlating): miR-425, miR-181b, miR-

331-3p, miR-301a, miR-629*, miR-183 and miR-429. On the other hand there were only 

2 miRNAs negatively correlating with ERBB2 level: miR-483-3p and miR-328. As both these 

datasets are smaller than METABRIC only few miRNAs showed significant correlation with 

ERBB2 level in terms of p-value. Nevertheless, the above mentioned miRNAs showed the 

strongest correlations with ERBB2 from all miRNAs detected in these datasets. 

As I was interested in particular in the three miRNAs differentially regulated by ERBB2 in my 

model system and showing similarity to ERBB2 in clinical setting (Table 2), I checked the 

correlation values for miR-301b, miR-146a-5p and miR-210 with each ERBB2 probe in both 

these datasets (Table 3). Based on these values I decided not to focus on miR-146a-5p during 

my further functional studies as it was a miRNA candidate that, unlike two other miRNAs, 

was not consistently associated with ERBB2 expression across all datasets (METABRIC vs 

GSE22220 vs GSE19783). 

While both miR-210 and miR-301b seemed to be promising candidates for further 

investigation in relation to ERBB2, for miR-210 the association with breast cancer and 

trastuzumab resistance has already been documented. For miR-301b, however, no 

connection to breast cancer or ERBB2 has been established yet. Moreover, the related miR-

301a ranked as one of the top ERBB2-dependent miRNAs in GSE22220 and GSE19783 

datasets. These two miRNAs differ only in two nucleotide positions (two nucleotides are 

inverted, see Table 5) and share the same seed sequence. miR-301a (referred to also as miR-

301) has been also previously reported to affect proliferation and invasion in breast 

cancer.358 Interestingly, another miRNA, miR-130b, which belongs  to the same miRNA family 

as miR-301b and miR-301a correlated positively with ERBB2 in three out of four correlation 

lists as well (with one ERBB2 probe in GSE22220 and two probes in GSE19783), which placed 
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it just below the seven miRNAs that were best positively correlating with ERBB2 on the rank 

list. Table 4 shows correlation coefficients for miR-301b, miR-301a and miR-130b with 

respective p-values for each probe.  

 

Table 3 
Correlation coefficients and p-values for miR-301b, miR-210 and miR-146a-5p expression 
levels with ERBB2 levels for the indicated ERBB2 probes in GSE22220 and GSE19783 datasets. 
 

Dataset ERBB2 probe ID miRNA correlation p-value 

GSE22220 "0002350129" hsa-miR-301b N/A N/A 

GSE22220 "0002350129" hsa-miR-210 0,20200509 0,003433 

GSE22220 "0002350129" hsa-miR-146a-5p -0,02421192 0,728489 

GSE19783 A_23_P89249 hsa-miR-301b 0,08507969 0,395205 

GSE19783 A_23_P89249 hsa-miR-210 -0,03807148 0,704018 

GSE19783 A_23_P89249 hsa-miR-146a-5p -0,09181444 0,358727 

GSE19783 A_24_P284420 hsa-miR-301b 0,16263052 0,10244 

GSE19783 A_24_P284420 hsa-miR-210 0,07445997 0,457013 

GSE19783 A_24_P284420 hsa-miR-146a-5p 0,06214888 0,534904 

GSE19783 A_24_P933108 hsa-miR-301b 0,19045924 0,055184 

GSE19783 A_24_P933108 hsa-miR-210 0,17344868 0,081264 

GSE19783 A_24_P933108 hsa-miR-146a-5p 0,02259732 0,821639 

 
Table 4 
Correlation coefficients and p-values for miR-301a, miR-301b and miR-130b expression levels 
with ERBB2 levels for the indicated ERBB2 probes in GSE22220 and GSE19783 datasets. 
 

Dataset ERBB2 probe ID miRNA correlation p-value 

GSE22220 "0002350129" hsa-miR-301a 0,12585566 0,070081 

GSE22220 "0002350129" hsa-miR-301b N/A N/A 

GSE22220 "0002350129" hsa-miR-130b 0,13162956 0,058066 

GSE19783 A_23_P89249 hsa-miR-301a 0,18149986 0,067901 

GSE19783 A_23_P89249 hsa-miR-301b 0,08507969 0,395205 

GSE19783 A_23_P89249 hsa-miR-130b 0,03687372 0,712917 

GSE19783 A_24_P284420 hsa-miR-301a 0,16349652 0,1006 

GSE19783 A_24_P284420 hsa-miR-301b 0,16263052 0,10244 

GSE19783 A_24_P284420 hsa-miR-130b 0,15049611 0,13109 

GSE19783 A_24_P933108 hsa-miR-301a 0,23225221 0,018827 

GSE19783 A_24_P933108 hsa-miR-301b 0,19045924 0,055184 

GSE19783 A_24_P933108 hsa-miR-130b 0,2073989 0,036473 

 
The hypothesis that not a single miRNA but a few miRNAs belonging to the same miRNA 

family could be ERBB2-dependent eventually led me to choose miR-301b over miR-210 for 

further functional studies. The inclusion of miR-301a and miR-130b in my studies was a 

direct consequence of choosing miR-301b as a most prominent miRNA candidate. On the 

one hand, I wanted to directly compare the functions of miR-301b and breast cancer related 
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miR-301a in my model system. On the other hand, although miR-130b was not one of the 

top miRNAs deregulated by ERBB2, its levels steadily increased with ERBB2 expression in 3D 

cell culture as well. If it had been included in the scoring analysis presented in Table 2, 

miR-130b would have also received a high score of 2.5. Moreover, miR-130b is encoded by 

MIR130B gene located on chromosome 22, around 300 bp downstream from MIR301B gene, 

suggesting its possible co-regulation with miR-301b by ERBB2. Finally, similar to miR-301b, 

miR-130b has neither been reported to be involved in breast cancer nor has its relation to 

ERBB2 been investigated before.  

6.2.3 ERBB2-dependent miR-301b and miR-130b as well as related miR-301a 

are associate with clinico-pathological features in breast cancer 

To better understand the relation of miR-301b, miR-130b and miR-301a with ERBB2 I used 

the METABRIC study to establish direct correlation of miRNA expression with ERBB2 mRNA 

levels. Here, only miR-301a and miR-130b showed significant correlation (Figure 35a). When 

tumors were divided into ERBB2-positive and -negative based on immunohistochemistry, 

only miR-301b showed significant association with ERBB2-positivity (Figure 35b). All miRNAs, 

however, showed significant association with ERBB2 when tumors were divided according to 

their increasing ERBB2 IHC status (Figure 35c). This result was in line with my previous 

observation that miR-301b and miR-130b levels increase gradually with ERBB2 protein level 

in ERBB2-overexpressing cell line pools grown in 3D culture. 

While all three miRNAs had higher expression in breast cancer than in normal tissue in the 

TCGA patient dataset (Figure 36a), only miR-301b and miR-130b were higher expressed in 

ER-negative than in ER-positive tumors in the METABRIC dataset (Figure 36b). In contrast, in 

TCGA dataset all three miRNAs were significantly higher expressed in ER-negative tumors 

(Supplementary Figure 2). ERBB2-overexpressing breast cancers rarely (in ~10% of the cases) 

express ER receptor and thus, if most of the ERBB2-overexpressing tumors fall into 

ER-negative group, then this association could have been anticipated. Similarly, ERBB2-

enriched breast cancers are often (in ~72% of the cases) associated with p53 mutations. 

Figure 36c shows that miR-301b and miR-130b are indeed higher expressed in p53-mutated 

tumors than in those expressing wild-type p53. miR-301a, although not significantly 

associated with p53-mutated status, shows a similar trend. 
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To check whether chosen miRNAs can be linked to patients’ prognosis, Kaplan-Meier survival 

curves were drawn to find the miRNAs’ relation to disease-specific patient survival. Again, 

only high expression of miR-301b and miR-130b significantly correlated with shortened 

survival while miR-301a showed a similar trend (Figure 36d). 
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Figure 35 
Relation of miR-301a, miR-301b and miR-130b with ERBB2 in METABRIC dataset. a) 
Correlation of miRNAs’ expression level with ERBB2 mRNA level; b) miRNAs’ expression levels 
in ERBB2-negative (IHC0, 1+ and 2+) vs ERBB2–positive (IHC3+) breast tumorss; c) miRNAs’ 
expression levels in tumors with IHC0, IHC1+, IHC2+ and IHC3+ statuses. p-values are 
indicated. 
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Figure 36 
Mean expression levels of miR-301a, miR-301b and miR-130b were compared in a) normal 
tissue vs tumor in TCGA dataset; b) ER-negative vs ER-positive tumors in dataset from 
METABRIC study; c) p53-mutated and p53 wild-type tumors in dataset from METABRIC study. 
d) Kaplan-Meier curves were drawn for patients’ disease-specific survival from METABRIC 
study for patients with either low or high miRNAs’ levels (divided by quantiles - lower than Q1 
or higher than Q3). 
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6.2.4 Expression of miR-301b and miR-130b is ERBB2-dependent in 3D cell 

culture but not in 2D culture.  

Being reassured that miR-301b and miR-130b should be good candidates for further 

functional studies, I first validated their expression levels (along with miR-301a) using qRT-

PCR in MCF10A-derived ERBB2-expressing cell line pools grown in 3D culture for 9 days in 

the presence of 5 ng/ml EGF. Similar to the results obtained from next generation 

sequencing, miR-301b and miR-130b but not miR-301a levels were higher in ERBB2-

overexpressing cell pools than in control (Figures 37a, 37c and 37e). Moreover, their 

expression increased with increasing ERBB2 levels (better observed for miR-130b) and the 

maximum fold change was detected in ERBB2-C when compared to the CTRL cell pool. 

miR-301b expression fold change reached in this pool 2.08 (p-value=0.0029) compared to 

control, explaining the presence of miR-301b in the list of those miRNAs most prominently 

deregulated by ERBB2 (fold change <0.5 or >2) shown in Figure 34 and Table 2. For miR-130b 

the fold change threshold (=2) was not achieved to be listed among the top deregulated 

miRNAs, however, the upregulation was still significant (fold change=1.78, p-value=0.0394). 

While miR-301b and miR-130b levels were ERBB2-level dependent in 3D culture, they did 

not show any association with ERBB2 levels when their expression was checked in the same 

cell line pools grown in 2D culture. This observation stresses the impact the cell environment 

has on miRNA expression in the context of ERBB2 upregulation.  

Expression levels measured by qRT-PCR for all three miRNAs in RNA samples correlated well 

with the read counts obtained from sequencing data. To prove specificity of the qRT-PCR 

assays, I performed a control experiment in which I overexpressed separately either of the 

miRNA mimics - miR-301a, miR-301b or miR-130b, in normal MCF10A cells and detected all 

three miRNAs in each transfected condition using qRT-PCR. miR-301a and miR-130b 

measurement was very specific, i.e. miR-301a was detected only in miR-301a mimic 

transfected cells and miR-130b only in miR-130b mimic transfected cells (Figure 38a and 38c). 

miR-301b detection was however slightly less specific as it recognized also, yet to a much 

smaller extent, miR-301a (Figure 38b). The relative expression levels between the two 

miRNAs detected by miR-301b primer in miR-301b and miR-301a transfected cells differed 

by over 600-fold. I assumed therefore, that although the miR-301b assay was not 100% 

specific, it was still giving acceptable results. 
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Figure 37 
Relative expression levels of miR-301a (a, b), miR-301b (c, d) and miR-130b (e, f) in CTRL, 
ERBB2-A, -B and –C cell line pools grown in either 3D culture (a, c, e) or in 2D culture (b, d, f), 
measured by qRT-PCR. Expression levels are represented as fold changes with CTRL cell pool 
as a reference. 4 biological and 3 technical replicates were used for 3D culture and 3 
biological and 3 technical replicates were used for 2D culture. Statistical significance was 
tested using student’s t-test. *p-value<0.05, **p-value<0.01 
 

 

Next, I wanted to check whether miR-301a, miR-301b and miR-130b expression is 

deregulated in breast cancer cell lines expressing different ERBB2 levels. For this purpose I 

used T47D, BT474, SKBR3 and UACC-812 cell lines which express ERBB2 at various levels 

(T47D < BT474 < SKBR3 < UACC-812, based on a report by Neve et al.)333 and MCF10A cells 

as a negative control. Both miR-301b and miR-130b showed the highest expression levels in 
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the cell line expressing also the highest ERBB2 levels, UACC-812, and then gradually lower 

levels in SKBR3, BT474 and MCF10A (UACC-812 > SKBR3 > BT474 ≥ MCF10A), perfectly 

matching the levels of ERBB2 in these cell lines. That effect was not observed for miR-301a 

which showed the highest expression level in BT474 (Figure 39). For miR-301b and miR-130b, 

the T47D cell line did not follow this trend, as high expression level of miR-301b and 

moderate of miR-130b were detected there. As T47D expresses high levels of IGF1R and 

ERBB3 as well as above average expression levels of ERBB4 among other breast cancer cell 

lines, I speculate that these RTKs could activate similar signaling pathways leading to 

miR-301b induction. Another explanation could be that the RNA used for qRT-PCR was 

isolated from cell lines grown in 2D and not in 3D culture. As previously observed, the three-

dimensional context was required for miR-301b and miR-130b induction by ERBB2 in 

MCF10A-derived stable cell line pools.  
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Figure 38 
Relative expression levels of miR-301a (a), miR-301b (b) and miR-130b (c) in miR-ctrl2, miR-
301a, miR-301b and miR-130b transfected MCF10A cells, grown in 2D culture, measured by 
qRT-PCR. Expression levels are represented as fold changes with miR-ctrl2 transfected 
MCF10A cells as a reference. Note that logarithmic scale was used to better visualize miR-
301a detection by miR-301b primer. 3 biological and 3 technical replicates were used. 
Statistical significance was tested using student’s t-test. *p-value<0.05, **p-value<0.01, 
***p-value<0.001 
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Figure 39 
Relative expression levels of miR-301a, miR-301b and miR-130b in MCF10A, T47D, BT474, 
SKBR3 and UACC-812 cell lines grown in 2D culture, measured by qRT-PCR. Expression levels 
are represented as fold changes with MCF10A cell line as a reference. 3 technical replicates 
were used. 
 

In parallel to my studies on miRNAs upregulated by ERBB2, in the collaborating group of Prof. 

Dr. Yosef Yarden at the Weizmann Institute of Science, several miRNAs were identified that 

are upregulated by EGF stimulation in MCF10A cells using miRNA microarrays. In the group 

of delayed upregulated miRNAs, miR-130b was found to be induced after 120 minutes of 

MCF10A incubation with EGF (Dr. Roi Avraham/Dr. Merav Kedmi, Figure 40a). Also, 

acetylation of histone 3 at lysine residue H3K27, an active chromatin mark, was elevated at 

the promoter located proximal to sequences coding for miR-301b and miR-130b at 60, 120 

and 240 minutes time points following EGF stimulation (Dr. Yehoshua Enuka, Figure 40b). 

Since these observations suggested a link to exist between EGFR and ERBB2 in miR-301b and 

miR-130b induction, I wanted to validate this result in my system. qRT-PCR results showed, 

however, only slight elevation in the miR-130b expression level at 480 minutes after EGF 

stimulation, which was also not statistically significant (Figure 40c). 

However, apart from miR-130b also three other oncogenic miRNAs from the list of ERBB2-

dependent miRNAs presented in Table 2 were also found by colleagues at Weizmann 

Institute to be induced by EGF and classified as delayed upregulated miRNAs with ~120 

minutes induction time point. This indicates that EGFR and ERBB2 might, nevertheless, drive 

expression of the similar pool of oncogenic miRNAs. 

As mentioned before, miR-301b and miR-130b map to the same locus in the human genome, 

chr22q11.21 (chr22:22,007,270-22,007,347 and 22,007,593-22,007,674), and are likely 
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regulated by the same promoter. Around 100 transcription factor binding sites have been 

found upstream from the two genes by CHIP-seq by the ENCODE project (Figure 41).359 

Several of them bind transcription factors associated with the regulation of cell proliferation, 

survival and migration, including e.g.: MYC, YY1, RELA, EGR1, ETS1, FOS, FOSL1, JUNB, JUND, 

SP1, SP2 and ELF1. In particular, both MYC and YY1 overexpression in MCF10A had 

previously been shown to disrupt the regularity of acini structures formed by MCF10A cell 

line grown in Matrigel.360,361 As most of these factors are downstream from MAPK and PI3K 

signaling, it is possible that expression of miR-301b and miR-130b could be cooperatively 

activated by ERBB-receptors. This, however, requires further investigation. 

 

a)       b) 

 
 
 
 
 
 
 
 
c) 
 
 
 
 
 
 
 
 
 
 
 

Figure 40 
Expression levels of miR-301a (c), miR-301b (c) and miR-130b (a, c) after EGF stimulation 
detected on microarray (a) and validated using qRT-PCR (c), expressed as log(fold change) (a) 
or fold change (c) compared to 0 min time point. b) Relative H3K27 acetylation of common 
miR-301b and miR-130b promoter upon EGF treatment. Cells were starved with DMEM/F12 
medium without additives for 20-24 hours prior to stimulations with 20 ng/ml EGF. Data 
kindly provided by Dr. Roi Avraham/Dr. Merav Kedmi (a) and Dr. Yehoshua Enuka (b). 
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Figure 41 
MIR301B and MIR130B genomic neighbourhood ecompassing promoter region and miRNA 
encoding genes (chr22:22005000-22008500). The image was taken from the UCSC Genome 
Browser and shows the genomic locus of miR-301b and miR-130b, as well as an upstream 
CpG island, active H3K27 acetylation marks and transcription factor bindind sites (TFBSs). 
TFBSs were detected by CHIP-seq in the ENCODE project.359
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6.2.5 miR-301a, miR-301b and miR-130b increase cell proliferation, migration 

and invasion 

To characterize the effects of miR-301b and miR-130b on cell viability, proliferation and 

migration, the respective miRNA mimics as well as miR-301a mimic were individually 

overexpressed in MCF10A cells. Viability was measured 72 hours after cell transfection, using 

either WST1 or Cell Titer Glo assays (see “Methods” chapter 5.5), in 2D culture. In both 

assays all three miRNAs significantly increased cell viability (by 20-50%, p<0.001), though to 

different extents (Figure 42a and 42b). The effect on cell viability was also measured 48 h or 

72 h post-transfection with each of three miRNAs in two independent cell lines expressing 

little or no ERBB2 – MCF7 and MDA-MB-231.333 In MCF7 all three miRNAs significantly 

increased cell viability (Figure 42c), while in MDA-MB-231 only miR-301b and miR-130b did 

(Figure 42d). This data shows that the miRNA effects on viability are not restricted to 

MCF10A.   

a)           b) 

 

 

 

 

 

 

 

 
 

c)           d) 

 

 

 

 

 
 
 
 
 
 
 

Figure 42 
Cell viability was measured 48 hours (a, b) or 48 and 72 hours (c, d) in MCF10A (a, b), MCF7 
(c) and MDA-MB-231 (d) cell lines following miR-ctrl2, miR-301a, miR-301b and miR-130b 
transfection. Viability was measured either using CellTiterGlo assay (a, c, d) or WST1 assay 
(b), and compared to miR-ctrl2 transfected cells (shown in %). 5-6 biological replicates were 
used. Statistical significance was tested using student’s t-test for 48h (a, b) or 72h (c, d) time 
point. **p-value<0.01, ***p-value<0.001 
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Next, I investigated whether the observed changes in cell viability were also reflected by an 

induction of cell proliferation in MCF10A cells. To this end, equal numbers of cells were 

transfected with miR-ctrl2, miR-301a, miR-301b, or miR-130b, and cells were kept for 

72 hours in MCF10A assay medium (containing reduced serum levels of 2% to avoid serum 

induction of cell proliferation)362 in the presence or absence of EGF. The condition in which 

EGF is absent resembles more the situation found within the tumor mass, where growth 

factors penetrate less effectively than to its outer rim. In general, cell proliferation was 

higher in the presence of EGF. miR-301a and miR-301b increased cell proliferation 

irrespective of presence or absence of EGF, while miR-130b increased it only in the absence 

of EGF (Figure 43). miR-301a was the strongest activator of cell proliferation. The effect of 

this miRNA on cell proliferation had been previously shown by Shi and colleagues in MCF7 

and T47D cells.358 Here, I report it additionally in MCF10A cells. 
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Figure 43 
Cell proliferation in MCF10A was measured 72 hours after transfection with miR-ctrl2, 
miR-301a, miR-301b and miR-130b. Cells were incubated either in the absence or presence of 
5 ng/ml EGF in the medium containing reduced horse serum level (2%) for 48 hours prior to 
cell counting. The nuclei were stained with DAPI and then counted using Olympus scanning 
microscope. *p-value<0.05, **p-value<0.01, ***p-value<0.001 
 

As ERBB2 exerts its oncogenic properties via inducing cell proliferation and invasion, I next 

wanted to see if also miR-301b and miR-130b would affect cell migration and invasion in 

MCF10A. To this end, I performed two different types of migration assays – a wound healing 

assay and a Boyden chamber-based migration assay using the RTCA machine, as well as an 

invasion assay also using RTCA (Figure 44). In each case, after cell transfection with miRNAs, 
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cells were kept for 24 hours in assay medium (supplemented with 0.9% horse serum, no 

EGF) before the migration/invasion assay was started. 

 

a) 
 
 
 
 
 
 
 
 
b)           c) 
 
 
 
 
 
 
 
 
 
d) 
 
 
 
 
 
 
 
 
 
 
 
Figure 44 
miR-301a, miR-301b and miR-130b increase cell migration and invasion in MCF10A cells. 
a) Cells transfected with miRNA mimics were kept in assay medium (0.9% horse serum, no 
EGF) for 24 hours before cells were allowed to migrate into the wound in the presence of 5% 
serum. Pictures were made at 0 and 13 hours time points. b) Quantification of the area 
covered by migrating cells are shown compared to miR-ctrl2 transfected cells. c, d) Cells 
transfected with miRNA mimics were kept in assay medium for 24 hours before the migration 
(c) or invasion through matrigel (d) was allowed. 5% horse serum was added to lower 
chambers of the CIM plates as chemoattractant. Cell index is shown for every 2 hours. 
Significance was measured using student’s t-test at the 36 hours time point for migration 
assay (miR-301a: p= 0.0075; miR-301b: p= 0.00068; miR-130b: p = 0.0036) and 72 hours for 
invasion assay (miR-301a: p= 0.0011; miR-301b: p= 5.59E-05; miR-130b: p-value= 0.0019). 
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For analysis of the wound healing assay pictures were taken at 0h and 13h time points 

(Figure 44a). The area covered by migrating cells was then quantified, showing significant 

increase in migration for miR-301b transfected cells, but not for the other two miRNAs 

(Figure 44b). In the migration assay using RTCA, 5% serum was added as chemoattractant to 

the lower chambers of CIM plates. All three miRNAs induced increased migration rates 

towards higher serum concentration compared to the miR-ctrl2 (Figure 44c). The generally 

higher migration rates observed for miRNA-transfected cells in the RTCA assay may be due 

to the fact that cell migration measured by RTCA is induced towards the serum, and 

therefore is more directional, while there is no serum gradient in the wound-healing assay.  

For the invasion assay the membranes in CIM plate upper chambers were covered with a 

thin layer of matrigel prior to cell seeding. Like in migration assay, 5% serum was used as 

chemoattractant in the lower chamber. miR-301b and miR-130b, along with miR-301a, 

increased significantly cell invasion (Figure 44d), mimicking the effect exerted by very high 

ERBB2 levels. While the connection between miR-301b and cell invasion discovered in this 

experiment is completely novel, miR-130b had been previously shown to modulate cell 

invasion either as an inducer or suppressor in other types of cancer. Here I show that in a 

semi-normal epithelial cell line it acts as an invasion inducer. The observation that miR-301a 

is involved in cell migration and invasion is in line with a previous report that this miRNA 

regulates cell migration in MCF7 and MDA-MB-231 and cell invasion in MDA-MB-231.358 

6.2.6 miR-301a, miR-301b and miR-130b induce epithelial-mesenchymal 

transition of MCF10A cells grown in 2D cell culture 

While all three miRNAs mimicked the ERBB2 effect on cell viability, proliferation and invasion, 

I wanted to see whether they also induce epithelial-mesenchymal transition. For this 

purpose, I overexpressed each of the miRNAs in MCF10A and examined the levels of 

modulated by ERBB2 EMT markers, i.e. E-cadherin, N-cadherin, ZEB1, fibronectin, the 

metalloproteinases MMP9 and MMP2, and of HB-EGF (Figure 45), which were all 

upregulated by ERBB2-overexpression in 2D cell culture. All three miRNAs influenced 

expression of only one of the four EMT markers tested, fibronectin, whose level was 

elevated. 
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Figure 45 
RT-PCR (TaqMan) analysis of mRNA expression of four EMT markers (CDH1, CDH2, ZEB1, 
FN1), two metalloproteinases (MMP9 and MMP2) and HB-EG. MCF10A cells were 
transfected with miR-ctrl2, miR-301a, miR-301b and miR-130b and grown in 2D culture in full 
growth medium for 2 days before RNA was isolated. Y-axes represents fold changes in 
respect to miR-ctrl2 transfected cells. 3 technical replicates were used. Significance was 
measured using student’s t-test. *p-value<0.05, **p-value<0.01, ***p-value<0.001 
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E-cadherin levels were significantly (although not strongly) reduced by miR-301a and 

miR-301b but not by miR-130b which instead increased CDH1 levels. ZEB1, a negative 

regulator of E-cadherin, showed an inverse trend – its levels were slightly increased by 

miR-301a and miR-301b and decreased by miR-130b. Similar effects of miR-130b on the 

ZEB1/E-cadherin axes had been previously shown in two endometrial cancer cell lines, 

where miR-130b directly targeted ZEB1.363 Its effect on E-cadherin is however inconclusive in 

endometrial cancer as miR-130b had been reported to induce EMT (and to downregulate 

E-cadherin level) in two other endometric cancer cell lines by directly targeting DICER1 and 

to play a rather oncogenic role.364 Here I show that in MCF10A cells grown in 2D culture 

miR130b slightly increases E-cadherin mRNA levels. 

While none of three miRNAs mimicked the ERBB2 effect on N-cadherin, MMP2 and HB-EGF 

(apart from a slight induction by miR-130b), MMP9 was very potently induced by each 

miRNA with the strongest effect observed for miR-130b. miR-130b has been recently shown 

to act as a powerful oncogenic miRNA and invasion inducer in colorectal cancer and 

miR-301a in breast cancer.365,366,358 The observation that these miRNAs along with miR-301b 

are the novel, strong regulators of MMP9 further supports their oncogenic function in breast 

cancer and can explain the induction of cell invasion reported in the previous chapter. 

6.2.7 miR-301a and miR-301b target similar subsets of genes, several of which 

are also targeted by miR-130b 

To identify targets of miR-301a, miR-301b and miR-130b in a comprehensive manner the 

respective miRNA mimics along with miR-ctrl2 were overexpressed individually in the 

MCF10A cell line, in 3 biological replicates. Two days post-transfection, RNA was isolated and 

samples prepared for genome-wide mRNA profiling using microarrays (see “Methods”, 

chapter 5.16). Prior to sample submission, RNA quality was checked and miRNA 

overexpression was confirmed (Figure 46). Differential gene expression analysis between 

each of three miRNAs and miR-ctrl2 revealed 96 genes that were significantly (p<0.05) 

downregulated by at least 30% by miR-301a, 84 genes by miR-301b and 357 genes by 

miR-130b. The lists of these genes can be found in Supplementary Tables 3-5. While 

differential gene expression analysis cannot identify those miRNA targets whose expression 

is affected by translational repression and is limited to pointing out the genes whose mRNA 
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is degraded upon miRNA binding, it is currently the most feasible high throughput technique 

to find potential miRNA targets. 

 

a)         b)             c) 

   

 

 

 

 

 

 

 
 
 
 
 

Figure 46 
RT-PCR (TaqMan) analysis of miRNA expression in miR-301a, miR-301b and miR-130b 
transfected MCF10A cells grown in full growth medium in 2D culture. RNA was isolated 
2 days post-transfection. Y-axes represents fold changes in respect to miR-ctrl2 transfected 
cells. 3 biological and 3 technical replicates were used. Significance was measured using 
student’s t-test. **p-value<0.01, ***p-value<0.001 
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Figure 47 
Genes whose expression was detected to be downregulated by at least 30% by miR-301a (a), 
miR-301b (b) and miR-130b (c) using whole genome expression profiling, were overlapped 
with pools of genes predicted by TargetScan 6.2 to be direct targets of each of three 
respective miRNAs. The numbers shown indicate how many genes belong to either only 
downregulated pool of genes, only predicted pool of genes, or to both (overlap). 
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Figure 47 shows how many of these genes are predicted by a miRNA target prediction tool - 

TargetScan 6.2 - to be direct targets of the respective miRNAs. Although several other 

prediction tools have been developed up to date, TargetScan was selected here as it takes 

evolutionary conservation and the context of predicted sites into account. This tool had 

been also reported to perform very well in detection of functional sites in comparison to 

other miRNA target prediction tools.280 

 
Table 5 
The sequences and seed sequences of miR-301a, miR-301b and miR-130b (upper panel) as 
well as miR-519a (lower panel). Notice that miR-301a and miR-301b differ only by two 
nucleotides (highlighted in bold) and that the seed sequence of miR-519a is shifted by just 
one base as compared to those of miR-301a, miR-301b and miR-130b. 

 

microRNA sequence seed sequence

hsa-miR-301a cagugcaauaguauugucaaagc agugca

hsa-miR-301b cagugcaaugauauugucaaagc agugca

hsa-miR-130b cagugcaaugaugaaagggcau agugca

microRNA sequence seed sequence

hsa-miR-301a cagugcaauaguauugucaaagc agugca

hsa-miR-301b cagugcaaugauauugucaaagc agugca

hsa-miR-130b cagugcaaugaugaaagggcau agugca

hsa-miR-519a aaagugcauccuuuuagagugu aagugchsa-miR-519a aaagugcauccuuuuagagugu aagugc
 

 

Since miR-301a, miR-301b and miR-130b share the same seed sequences (Table 5) and 

showed similar effects on cell proliferation, migration and invasion, I hypothesized that 

some genes should be downregulated in common by all three miRNAs. Indeed, 53 genes 

(Supplementary Table 6) were downregulated by at least 30% (for at least one probe found 

on microarray) by each of three miRNAs and 19 of them, listed in Figure 48, were also 

predicted as direct targets by TargetScan. 

From the list of 19 genes only 9 genes were downregulated by more than 15% for at least 

one probe present on the microarray in the whole-genome mRNA profiling in very high 

ERBB2 expressing cells (ERBB2-B or ERBB2-C) compared to CTRL cells - both grown in 3D cell 

culture (Table 6). These are: C9ORF69 (chromosome 9 open reading frame 69), CDS1 (CDP-

diacylglycerol synthase 1), IMPDH1 (inosine 5'-monophosphate dehydrogenase 1), SLC44A1 

(solute carrier family 44 member 1), VPS24 (CHMP3; charged multivesicular body protein 3), 

ZAK (sterile alpha motif and leucine zipper containing kinase AZK), ZMAT3 (Wig-1; zinc finger, 

matrin-type 3), CLIP1 (CAP-GLY domain containing linker protein 1) and PMEPA1 (prostate 

transmembrane protein, androgen induced 1). However, the last two did not show the 
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ACVR1
C9orf69
CDS1
CLIP1
HPRT1
IMPDH1
MTMR9
PMEPA1
PSAP
RPS6KA2
RTCD1
SKP1
SLC44A1
STX6
TMEM9B
VPS24
VPS37A
ZAK
ZMAT3

Downregulated by
3 miRNAs and
predicted by 
TargetScan

ACVR1
C9orf69
CDS1
CLIP1
HPRT1
IMPDH1
MTMR9
PMEPA1
PSAP
RPS6KA2
RTCD1
SKP1
SLC44A1
STX6
TMEM9B
VPS24
VPS37A
ZAK
ZMAT3

Downregulated by
3 miRNAs and
predicted by 
TargetScan

decrease for the majority of the probes present on the microarray. Remarkably, in this list a 

negative regulator of EGFR trafficking and degradation was found - VPS24367,368, as well as 

two pro-apoptotic proteins – ZAK and ZMAT3. ZAK inhibits cell proliferation in lung cancer369, 

while ZMAT3 regulates apoptosis by binding to and stabilizing the 3’UTR of p53. 

 

 
 
 
 
 
 
 

 

 

 

 

 

 

 
 
Figure 48 
Venn diagram showing genes whose expression was detected to be downregulated by at 
least 30% by miR-301a (a), miR-301b (b) and miR-130b (c) using genome-wide mRNA 
expression profiling. The numbers shown indicate how many genes were downregulated by 
the respective miRNAs, each pair of two miRNAs, or all three miRNAs in common. Genes 
downregulated by at least 30% by all three miRNAs and predicted to be direct targets by 
TargetScan are listed in alphabetical order in the table. 
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Table 6 
List of genes that were: 1) downregulated by miR-301a, miR-301b and miR130b by at least 
30% for at least one probe present on the microarray as detected using whole genome mRNA 
profiling; 2) predicted as direct targets of miR-301a, miR-301b and miR130b by TargetScan; 
3) downregulated in ERBB2-B or -C cell line pools by at least 15% for at least one probe 
present on the microarray compared to CTRL pool in 3D cell culture as detected in whole 
genome mRNA profiling; Levels of downregulation are indicated; *up - upregulation 
 

 ERBB2-B vs CTRL ERBB2-C vs CTRL 

Gene 

name 

Probe 1 Probe 2 Probe 3 Probe 4 Probe 1 Probe 2 Probe 3 Probe 4 

C9ORF69 11% - - - 21% - - - 

CDS1 18% - - - 19% - - - 

IMPDH1 26% 14% 10% 7% 31% 10% 6% 14% 

SLC44A1 27% 17% - - 28% 10% - - 

VPS24 33% 25% 2% up* - 26% 19% 1% - 

ZAK 34% 18% 15% - 26% 23% 15% - 

ZMAT3 18% 13% - - 17% 28% - - 

CLIP1 23% 5% 8% up* - 14% 3% up* 9% up* - 

PMEPA1 21% 18% 4% 1% up* 28% 29% 2% 3% 

 

6.2.8 miR-301b and miR-130b target similar subset of genes as miR-519a 

As shown in Table 5, the seed sequences of miR-301b and miR-130b are shifted by just one 

nucleotide compared to miR-519a - a miRNA recently reported in our research group to 

target a network of negative cell cycle regulators: p15 (CDKN2B), PTEN and p21 (CDKN1A), as 

well as estrogen receptor 1 (ESR1), and to drive tamoxifen resistance.370 I hypothesized that 

the ERBB2-induced miRNAs could also affect expression of those genes. Hence, I transfected 

MCF7 cells with psiCheck2 reporter vectors expressing luciferase under the control of 3’UTR 

sequences from either of four genes (ESR1, p15, PTEN and p21) along with one of three 

miRNA mimics: miR-ctrl2, miR-301b or miR-130b (for details see “Methods”, chapter 5.11.1). 

MCF7 cell line was used as the transfection efficiency of MCF10A with bigger plasmids like 

psiCheck2 is very low, irrespective of the transfection reagent used. I wanted also to be able 

to directly compare results which had previously been obtained for miR-519a in MCF7 with 

those obtained for these two miRNAs. Upon overexpression of miR-301b or miR-130b the 

luciferase signal decreased significantly for three out of four genes tested: ESR1, PTEN and 

p21, with the strongest signal reduction observed for ESR1, indicating that these miRNAs 

target important cell cycle regulators in the same manner as miR-519a (Figure 49). Only the 
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p15 3’UTR was not targeted by miR-301b and miR-130b. This is in line with miRNA target 

predictions by TargetScan algorithm, which indicated ESR1, PTEN and p21, but not p15, as 

potential miR-301a/301b/130b target genes. 

a)        b) 

 

 

 

 

 

 

 
Figure 49 
ESR1, PTEN and p21 3’UTRs are targeted by miR-301b and miR-130b. miR-ctrl2 (a, b), miR-
301b (a) and miR-130b (b) were overexpressed in the MCF7 cell line along with either empty 
psiCheck2 Renilla luciferase reporter vector or the same vector containing the 3’UTR of either 
estrogen receptor 1 (ESR1), p15, PTEN or p21. The Renilla luciferase signal was double 
normalized – first to the Firefly luciferase signal (cell number normalization) and then to the 
signal obtained from cells transfected with empty vector (to exclude the effect of 3’UTR-
independent luciferase targeting by miRNA). Values are shown as % of the signal obtained 
for miR-ctrl2 transfected cells for each 3’UTR. Five biological replicates were used. 
Significance was measured using student’s t-test. *p-value<0.05, **p-value<0.01, 
***p-value<0.001 
 

However, in the data obtained from whole-genome mRNA profiling of MCF10A cell line, only 

CDKN1A was downregulated by each of the three miRNAs (by ~30% compared to control). As 

this suggested possible differences in miRNA function between normal (MCF10A) and cancer 

(MCF7) cell lines, I wanted to see whether targeting of ESR1, PTEN and p21 might also occur 

in breast cancer. To this end I correlated expression levels of miR-301b and miR-130b with 

mRNA expression levels of those genes. Since no data was available for miR-301b in the 

GSE22220 dataset, I correlated the expression levels of miR-301a, having a target spectrum 

very similar to that of miR-301b (see chapter 6.2.7) as well as of miR-130b with ESR1 

expression. Inverse correlations were observed for both miRNAs (Figure 50a and b). Both 

miRNAs were also inversely correlated with PTEN (Figure 50c and d) but not p21 mRNA 

levels. 
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c)              d) 

 

 

 

 

 

 

 

Figure 50 
Correlations of miR-301a and miR-130b expression levels with ESR1 (a) or PTEN (b) mRNA 
expression levels in tumors from GEO22220 patient dataset. Correlation coefficients and p-
values for ESR1 and PTEN are indicated in the graphs. For p21 correlations were not 
significant - probe 1: r = -0.0357, p = 0.6082; probe 2: r = 0.0680, p = 0.3292 for miR-301a; 
and probe 1: r = 0.0443, p = 0.5252; probe 2: r = 0.0783, p = 0.2611 for miR-130b. 
 
I had previously seen a weak downregulating effect of miR-519a on ERBB2IP (whole-genome 

mRNA profiling data in SKBR3 cell line, not validated) - a negative regulator of ERBB2, whose 

downregulation had been reported to be associated with trastuzumab resistance in ERBB2-

positive breast cancer and cell migration.371 While ERBB2IP is also predicted by TargetScan 

and miRanda to be a target gene of the three miRNAs, I overexpressed miR-301a, miR-301b 

and miR-130b in MCF10A cell line and checked ERBB2IP levels by qRT-PCR.372 All three 

miRNAs decreased ERBB2IP on mRNA level (Figure 51a). Moreover, ERBB2IP expression was 

also decreased in ERBB2-overexpressing stable cell line pools grown in 3D culture but not in 

2D (Figures 51b and 51c), which supports the hypothesis that ERBB2 downregulates ERBB2IP 

via upregulation of miR-301b and miR-130b as they are only induced in 3D culture. 

Consequently, knowing that ERBB2-regulated miRNAs downregulate both: ERBB2IP and 

PTEN (also very thoroughly studied in the context of trastuzumab resistance), I checked if 
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these miRNAs could induce trastuzumab resistance. To this end each of three miRNAs was 

overexpressed in trastuzumab sensitive SKBR3 cell line and 24 hours after transfection cells 

were treated with 50 nM or 200 nM trastuzumab or left untreated. 3 days later cell viability 

was measured to assess sensitivities to the drug treatment. As negative control, miR-ctrl2 

transfected cells were used. However, none of the miRNAs showed an effect on trastuzumab 

sensitivity (Figure 52) suggesting that the tested miRNAs do not directly induce trastuzumab 

resistance in SKBR3. 

 
a)       
 
 

 

 

 

 

 

 

 

b)        c) 
 

 

 

 

 

 

 

 

 

 

 
Figure 51 
RT-PCR (TaqMan) analysis of ERBB2IP mRNA expression in miR-ctrl, miR-301a, miR-301b and 
miR-130b transfected MCF10A cells (a) as well as in CTRL, ERBB2-A, ERBB2-B and ERBB2-C 
stable cell lines grown in 2D (b) or 3D (c) cell culture. Cells were grown in 2D culture for 
3 days in full growth medium and in 3D culture for 9 days in assay medium containing 5 
ng/ml EGF before RNA isolation. The expression levels are shown as fold changes relative to 
control cell pool (CTRL). 2 biological and 3 technical replicates were used. Significance was 
measured using student’s t-test. *p-value<0.05, **p-value<0.01 
 

 

 

 

 



 151 

 
Figure 52 
Trastuzumab sensitivity was measured in SKBR3 cell line. Cells were transfected with either 
miR-ctrl2, miR-301a, miR-301b or miR-130b and after 24 hours the medium was supplied 
with either 0, 50 or 200 nM of trastuzumab. Cell viability was measured 72 hours later using 
CellTiter Glo assay and is shown as % of viability measured for the cells untreated with 
trastuzumab. Significance was measured using student’s t-test. 
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7. Discussion 

Currently the type of treatment for ERBB2-positive breast cancer patients does not depend 

on whether ERBB2 is expressed at moderate, high or very high levels. As long as the tumor 

stains IHC3+ and/or is FISH-positive for ERBB2, the doctors in care of a patient will decide 

whether or not to treat the patient in adjuvant or neo-adjuvant setting with one of a few 

possible HER2-targeted therapies (described extensively in chapter 3.2.5). These can be 

administred in combination with chemotherapy, or as a monotherapy. Patients can be 

additionally or alternatively treated with ER-targeted drugs (for ER-positive tumors) and 

radiation therapy (if the tumor has metastasized). All these treatmens would usually be 

given at the set dosage for a particular drug or drug combinations, with only few exceptions, 

and the dose would not depend on ERBB2 levels found in the tumor. 

My study, however, shows that patients not treated with an anti-HER2 therapy, who express 

very high ERBB2 levels, are associated with worse prognosis than those with moderate 

ERBB2 levels. It also indicates that cellular phenotype of ERBB2-overexpressing cells strictly 

depends on the receptor level. I report that the semi-normal epithelial breast cells (MCF10A) 

ectopically expressing very high ERBB2 levels are much more invasive when grown in 3D 

culture than cells expressing moderate ERBB2 levels and ERBB2-negative cells. Furthermore, 

I show that ERBB2 has a dose-dependent effect on induction of epithelial-to-mesynchymal 

transition (EMT), activation of migration/invasion-regulating genes and miRNA expression. 

These observations lead, thus, to the question whether or not further stratification of 

ERBB2-overexpressing patients according to their ERBB2 receptor level as well as following 

studies aimed at optimization of their treatment should be considered. The development of 

a more quantitative method to detect ERBB2 overexpression in clinics, ideally being able to 

detect the presence of subpopulations of cells within a tumor with very high receptor levels 

could help answer this question. 

My study, apart from explaining ERBB2-dose dependent effects, shows that gene expression 

regulation by ERBB2 differs between 2D and 3D cell culture. In particular, I show that on one 

hand a few EMT markers are induced by ERBB2 in 2D but not in 3D environment and on the 

other hand, that two newly identified ERBB2-depenent miRNAs – miR-301b and miR-130b 

are induced by ERBB2 in 3D but not in 2D cell culture. These findings stress the importance 
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of cellular environment in regulation of gene expression. Researchers studying RNA/protein 

function in vitro still often limit their studies to 2D cell culture conditions which neglect the 

influence of three-dimensional environment on RNA/protein activity. They also rarely 

investigate the effects exerted by different levels of their molecules of interest, often 

overexpressing them at (and/or inhibiting them to) only one level. Importantly, this study 

suggests that such an approach might lead to an incomplete understanding of the function 

of a given RNA/protein. 

 

Stratification of ERBB2-positive breast cancer patients 

The current guideline of the American Society of Clinical Oncology and the College of 

American Pathologists (ASCO-CAP)21 states that for the diagnosis of ERBB2-positive breast 

cancer at least 10% of tumor cells in the invasive part of the tumor should stain 

homogenously for the ERBB2 protein (IHC staining). The cut-off had been 30% before, also 

set by ASCO-CAP179, and both METABRIC and TCGA dataset that I reanalyzed for the result 

part of this thesis are associated with this cut-off. While ERBB2-targeted therapies proved to 

be beneficial for the patients with lower ERBB2 staining (10-30% of invasive part of the 

tumor)373, little is known about the differences in patients’ responses to the drugs between 

those with tumors expressing very high ERBB2 levels in comparison to other ERBB2-positive 

tumors. According to a study published by Monogram Biosciences, the total level of detected 

ERBB2 in breast cancer by their novel quantitative VeraTag technique (described in the 

“Introduction”) varied by 1808-fold in all tumors and by 69-fold in only ERBB2-positive 

patients (defined by immunohistochemistry).200 The same group suggests that tumors with 

the highest ERBB2 levels (~13% of ERBB2-positive tumors) might be insensitive to 

trastuzumab.194 While the study itself is rather preliminary, it introduces an idea that ERBB2-

positive patients can be further stratified and should be potentially also differently treated. 

In my study I have shown that cells expressing very high ERBB2 protein levels are more 

invasive than those with moderate ERBB2 levels and that patients with tumors expressing 

very high ERBB2 mRNA levels are characterized by shorter disease-specific survival than 

those with intermediate mRNA levels. Similarly, in 2010, J. Staaf et al. showed that ERBB2-

positive patients could be also stratified according to their ERBB2 copy number into three 

groups with different time of overall survival. In that study the patients were first sorted 

according to their ERBB2 copy number and then divided into three groups: lower 15% of all 
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ERBB2-positive patients (with lowest ERBB2 copy number), intermediate (with medium copy 

number) and top 15% (with highest copy number). Such division of breast cancer patients 

could better stratify them into better and worse survivers than dividing them with cut-offs 

of: lower 25%, intermediate and top 25%.175 Recently also E. Fuchs et al. showed that high-

level amplification of ERBB2 leads to shorter time to metastasis, yet, it is associated with 

better response to trastuzumab treatment.374 Other attempts of ERBB2-positive breast 

cancer patients’ stratification included stratification into two groups by TOP2A 

(topoisomerase DNA II alpha) expression, where patients with TOP2A-positive tumors were 

better survivers than TOP2A-negative, or by LOXL2, were patients with higher LOXL2 

expression were worse survivers than those with low LOXL2 levels.175,375 

 

Detection of ERBB2 at mRNA and protein levels 

As far as the quantification of ERBB2 receptor levels is concerned, the current breast cancer 

treatment guideline indicates the need of ERBB2 testing at DNA and/or protein level to 

decide wether or not to subject a patient for ERBB2-targeted therapy. However, recently 

emerging breast cancer signatures tend to detect expression levels rather of groups of genes 

at mRNA level. In one of the studies it has been therefore investigated whether the mRNA 

expression levels of ER/PR/ERBB2 could equally well predict the patients’ outcome as 

ER/PR/ERBB2 protein levels determined by IHC. The authors state that in fact the mRNA 

levels could even better stratify the patients into better and worse survivers.330 Considering 

results presented in this thesis, this maybe partly due to better quantification of ERBB2 

receptor expression using RNA rather than poorly quantitative IHC. 

However, some of the well-established breast cancer signatures, like e.g. Mammaprint do 

not test ERBB2 mRNA expression due to its lower predictive value of recurrence risk than a 

70-gene signature.376 It could be therefore more informative to detect ERBB2 expression, 

nevertheless at the protein level but using a more quantitative method than standard IHC. 

While in breast cancer ERBB2 protein and mRNA levels correlate relatively well, it has to be 

pointed out that in other tumor types, e.g. soft tissue sarcomas, mRNA and protein levels of 

ERBB2 have inverse prognostic values with high mRNA levels being associated with better 

overall survival and higher protein levels with poorer recurrence-free survival.377 Developing 

a quantitative tool for ERBB2 protein measurement could thus serve beyond breast cancer. 
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The Reverse Phase Protein Array technology, which I also used in the course of my project, 

might be a useful technology along these lines. 

 

Induction of cell invasion by very high ERBB2 levels versus double-hit models 

In the “Results” part of this thesis I focused on the impact ERBB2 protein levels have on the 

induction of cell invasion, using stable cell line pools. While cell pools with different receptor 

levels were obtained via FACS sorting of cells infected with retroviral vectors, I decided to 

use two pools with very high ERBB2 levels (ERBB2-B and ERBB2-C) to ensure that observed 

phenotypes are not cell pool-dependent. While in most of the functional experiments the 

ERBB2-C cell pool showed slightly stronger phenotypes than ERBB2-B, in experiments 

involving RPPA and mRNA profiling this balance was reverted. That could be due to potential 

small differences in cell passage number accompanied by preferential proliferation of some 

cellular clones within both cell line pools within few passages. Nevertheless, ERBB2-B and 

ERBB2-C behaved similarly to each other and I argue that they should be considered as two 

independent very high ERBB2 expressing cell line pools, for which the statement, that ERBB2 

protein level in ERBB2-B is higher than in ERBB2-A and level in ERBB2-C is higher than in 

ERBB2-A, is correct. 

Enhanced invasion of ERBB2-B and -C cell line pools was accompanied by their grape-like 

phenotype of acini-like structures when grown in 3D cultures. This phenotype has been 

previously shown to be characteristic of cancer cell lines overexpressing ERBB2 (AU565, 

MCA-MB-361, MDA-MB-453, SKBR3 or UACC-812) in contrary to round, mass and stellate 

phenotypes in cell lines not overexpressing this RTK.259 While ERBB2 might not be the sole 

factor responsible for the grape-like phenotype in these cell lines due to a presence of 

several other accompanying mutations, my observation that ERBB2 alone is capable of 

inducing a grape-like phenotype in 3D culture in a semi-normal epithelial cell line, indicates 

that this phenotype is indeed a direct consequence of ERBB2 overexpression. 

Although my study shows that ERBB2 overexpression is a sufficient factor needed to induce 

invasion of normal epithelial MCF10A cell line, two recent reports claimed that it is required 

but does not suffice. One of them, published by Pradeep Chaluvally-Raghavan et al. 

(Oncogene, 2012) presented the requirement for at least one additional factor – namely 

epidermal growth factor (EGF) - apart from ERBB2 to transform normal epithelial MCF10A 

into an invasive cell line.342 Another study, published by Nicola Aceto et al. (Breast Cancer 
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Research, 2012) similarly showed that overexpression of ERBB2 alone was incapable of 

inducing invasion of MCF10A cells, however, when ERBB2 was overexpressed together with 

ERBB3, it triggered cell invasion and a grape-like phenotype in 3D culture.343 While both 

these studies seem at first sight contradictory to results presented in this thesis, this is not 

necessarily the case. 

Interestingly, in both reports (especially in the one by Aceto et al.) the acini-like structures 

formed by ERBB2 overexpressing MCF10A cells resemble those formed by the ERBB2-A cell 

line pool expressing just moderate ERBB2 levels. As I have shown in my study, very high 

ERBB2 levels induce constitutive activation of downstream signaling pathways – MAPK/ERK 

and PI3K/AKT. I argue therefore that while suggested by Chaluvally-Raghavan and Aceto 

double-hit models hold true for moderate ERBB2 levels, high-level overexpression of ERBB2 

overcomes the need for additional ERBB-family receptors’ overexpression or exogenous EGF 

presence for activation of MAPK and PI3K/AKT signaling. 

 

Potential contribution of ERBB2-containing homo- and heterodimers to invasiveness 

The MCF10A cell line intrinsically expresses low levels of EGFR and very basal levels of ERBB3. 

Hence, the question which remains to be investigated as a continuation of my work is 

whether the observed induction of invasion by very high ERBB2 levels is indeed mediated by 

ERBB2 homodimers, or rather by EGFR-ERBB2 or ERBB2-ERBB3 heterodimers. High levels of 

ERBB2 in ERBB2-B and -C cell line pools should in principle favour formation of ERBB2 

homodimers which have previously been shown to induce multiacinar structures lacking 

empty lumen. However, these cells did not display any invasive properties and did also not 

show anchorage independent growth (even at higher homodimer levels).378  

As ERBB2 is a preferential dimerization partner for other ERBB-family receptors, it is highly 

possible that in the ERBB2-B and ERBB2-C cell line pools characterized in this thesis ERBB2 

does not only form homodimers but also EGFR-ERBB2 heterodimers as very high ERBB2 

abundance substantially increases the probability of their formation, even without presence 

of exogenous EGF. In this thesis I show that in 3D culture very high ERBB2 levels induce 

production of another EGFR ligand, HB-EGF, and that additionally, in 2D culture, the stability 

of EGFR is ERBB2 level-dependent. Since I also detected several tyrosine residues on 

C-termini of EGFR to be phosphorylated (Y845, Y1068, Y1148) in an ERBB2 dose-dependent 
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manner, heterodimerization of EGFR and ERBB2 seem to be a likely mechanism of invasion 

induction and anchorage-independent growth in these cells. 

In fact, the researchers studying the function of artificially induced ERBB2 homodimers or 

EGFR-ERBB2 heterodimers in nontumorigenic breast epithelial cell line MCF10A suggested a 

similar mechanism. Whereas both kinds of receptor complexes were equally potent in 

activating the RAS-MAPK signaling, heterodimers much stronger induced activation of PI3K 

and phospholipase C1 (PLC1) pathways.235 When they tested the ability of hetero- and 

homodimers to promote cell invasion through extracellular matrix, only heterodimers were 

capable of doing that, although both types of complexes induced disruption of three-

dimensional acini-like structures. It was shown that invasion of MCF10A cells requires the 

activity of EGFR-ERBB2 heterodimers and stimulation of all three signaling pathways.235 In 

this study, however, again, similar to the study on ERBB2-homodimers mentioned above, the 

accurate extent to which ERBB2 receptor was overexpressed is not known as it had not been 

compared to the levels of established ERBB2-positive cell lines. This makes it more difficult 

to compare with current results. 

Whole genome expression profiling analysis of ERBB2-overexpressing cell line pools helped 

me to identify HB-EGF as one of the top upregulated genes in cell line pools higly expressing 

ERBB2 in 3D culture but not to such high extent in 2D. This finding stresses the importance 

and adds additional value to the study of F. Yotsumoto and colleagues, who recently showed 

that both EGFR and ERBB2 independently can increase secretion of HB-EGF into culture 

media by a few different breast cancer cell lines.379 

Here, I additionally show, that HB-EGF induction is even higher in the 3D context and its level 

is strictly ERBB2-dose dependent. Yotsumoto and others show also that HB-EGF is the most 

highly expressed EGFR ligand out of four measured (HB-EGF, AR, TGFa and EGF) and the 

most deregulated one between normal and malignant tissue in breast cancer patients. 

Moreover, they show that patients with high HB-EGF levels are associated with shorter 

overall survival.379 Interestingly, using BreastMark algorithm for metaanalysis of breast 

cancer patients’ data, I discovered that HB-EGF expression is also capable of stratifying 

ERBB2-positive patients (according to PAM50 classification, but not IHC status) into better 

survivers with lower HB-EGF levels and worse survivers with high HB-EGF levels (p=0.047) 

(Figure 53). 
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Figure 53 
ERBB2-positive patients can be stratified into groups of better (low HB-EGF levels) and worse 
(high HB-EGF levels) survival. Analysis was done using BreastMark algorithm 
(http://glados.ucd.ie/BreastMark/index.html).332 Median HB-EGF mRNA expression level was 
used as cut-off. Data is included for only those patients who were classified by PAM50 into 
ERBB2-positive subtype. 
 

While EGFR-ERBB2 heterodimers might play important roles in the formation of invasive 

structures in 3D cultures of stable MCF10A cell line pools, ERBB3 is present in relatively low 

amount in MCF10A cells and its levels do not change significantly upon ERBB2 

overexpression (see Figure 26).333 Despite this fact, RPPA analysis of stable cell pools showed, 

apart from increased phosphorylation of several residues on EGFR receptor, also increased 

phosphorylation of ERBB3 (Y1222). Thus, while these basal levels of ERBB3 are less likely to 

drive the observed invasive phenotype, ERBB3 might still form dimers with ERBB2. Up to 

date, ERBB2/ERBB3 dimers are considered to be the most potent with regard to strength of 

interaction, ligand-induced tyrosine phosphorylation and downstream signaling among all 

dimers formed within ERBB-family of receptors.71,380 Recently they had been also shown to 

induce expression of ZEB1, a transcription factor capable of driving an epithelial-

mesenchymal transition.381 

The absolute number of ERBB2 receptors needed to be present at breast cancer cell surface 

in order to induce cell transformation via enhanced homo- and heterodimer formation might 

be therefore difficult to specify as the levels of other ERBB-family receptors and 

corresponding growth factors may vary between individuals and affect this number.382 

However, rough estimation could be done. For example, it is known that most tumor 

samples staining IHC3+ express ERBB2 at levels ≥106 receptor molecules per cell while 

http://glados.ucd.ie/BreastMark/index.html
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normal cells, including MCF10A, express ~2x104 receptors.334 Also, breast cancer cell lines 

BT474 and SKBR3 had been shown to express ERBB2 in this range with BT474 expressing 

~5x105-1,2x106 and SKBR3 expressing ~106 receptors per cell (both classified as 

IHC3+).194,383,334 ERBB2-B and -C cell pools in my study expressed 5-6 fold higher amount of 

the receptor than SKBR3 as measured by ELISA, which would be estimated then to ~5-6x106 

receptors per cell. Yet, SKBR3 and BT474 express much higher EGFR and ERBB3 levels than 

MCF10A cells and thus ERBB2 levels required for heterodimer formation and induction of 

cell invasion might be already reached at much lower levels in direct comparison of these 

cell lines.333  

 

Dose-dependent EMT induction by ERBB2 

In this thesis I report a disruption of cell polarity in acini-like structures and an increase in 

abundance of filamentous actin in 3D cell culture of cell line pools expressing very high 

ERBB2 levels. Both enhance the ability of cells to move. In growth-arrested acini structures, 

the Golgi apparatus is oriented towards the lumen and indicates an established cell polarity. 

However, this orientation was disrupted in ERBB2-B and ERBB2-C cell pools. In a migrating 

cell, the Golgi apparatus is located proximal to the nucleus towards the direction of 

migration.225 Hence, disruption of polarity in acini may be linked to enhanced cell 

invasiveness. Previously disruption of cell polarity by ERBB2 has been shown in 3D cultures 

only in two type of cases – either in breast cancer cell lines which already bear several 

critical mutations or in normal epithelial cell lines (mainly MCF10A and HMEC) that required 

additionally a “second hit” apart from ERBB2 overexpression.250 While overexpression of 

ERBB3 or presence of EGF had an effect on downstream signal activation, other “second 

hits” - TGFβ stimulation, 14-3-3ζ and LXB1 overexpression, which all have been reported to 

enhance cell mobility and invasion of ERBB2 overexpressing cells, induced epithelial-to-

mesenchymal transition in those cells.384,385,386 Here on the contrary I show that ERBB2 can 

drive EMT process in a dose-dependent manner without further requirement for those 

factors in 3D culture. 

In the presence of EGF, the gradual regulation of E-cadherin, ZEB1, N-cadherin, fibronectin, 

MMP9 and MMP2 gene expression was, in my study, clearly ERBB2-dependent in MCF10A-

derived cell line pools grown in 2D culture. Snail 2, ZO-1 and caveolin-1 expression levels 

were not affected. E-cadherin downregulation as well as vimentin, N-cadherin and 
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fibronectin upregulation by ERBB2 had been previously reported by Jenndahl and colleagues 

(2005). However, their model system was highly artificial as overexpressed ERBB2 molecules 

contained extracellular domain from the trkA nerve growth factor receptor which allowed 

NGF-regulated ERBB2 homodimer formation.344 In my study, on the other hand, ERBB2 was 

neither mutated nor engineered but expressed as native protein.  

Interestingly, although Snail 2 transcription factor upregulation by ERBB2 had been 

previously shown in ovarian cancer cell lines387, in the semi-normal epithelial cell line system 

I did not observe its dependency on ERBB2, even at very high ERBB2 levels and additional 

EGF presence. Similarly, Jing Lu and colleagues (2009) had shown no association between 

ERBB2 and Snail 1, which is related to Snail 2, in the MCF10A cell line cultured in 2D.385 On 

the other hand, here I show that E-cadherin and ZEB1 transcription factor are inversely 

expressed suggesting that E-cadherin regulation by ERBB2 might be achieved mainly via 

ZEB1 upregulation and not via Snail transcription factors in MCF10A. Moreover, ZEB1 had 

been reported to be upregulated in ERBB2 and ERBB3-overexpressing MCF10A via the 

ERBB2/ERBB3-SHP2 axis.381 In my study ZEB1 upregulation was induced in ERBB2-dose 

dependent manner even in the absence of ERBB3 overexpression (yet in the presence of 

EGF). 

The observed increased expression of metalloproteinases MMP9 and MMP2 is in line with 

previous studies that had shown their dependence on ERBB2 in MDA-MB-435 cell line (with 

stronger MMP2 upregulation by ERBB2) and in MCF10A in the presence of EGF (with 

stronger MMP9 upregulation).388,389 Additionally MMP9 (along with MMP1) had been shown 

to be upregulated by ERBB2 in MCF7 cells in the presence of HRG.390 On top of those 

discoveries my study shows that this control appears to be strictly regulated by ERBB2 as 

expression of those two MMPs increased gradually with ERBB2 level. 

In the current literature the EMT process has been studied mostly in 2D cultures and focused 

on an analysis of expression of molecular markers, cellular phenotype (round vs elongated 

shape), character of cellular growth (tightly packed vs scattered cells), and anchorage 

independent growth abilities as well as their induction by gene expression changes 

coordinated by EMT-specific transcription factors. ERBB2-B and -C cell line pools expressing 

very high ERBB2 levels did not show the characteristics of elongated shape when grown on 

plastic dishes, indicating that even high ERBB2 expression is not capable on its own to induce 

a spindle-like shape in normal epithelial cells. The two cell pools were, however, much more 
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loosely adhering to each other and could grow on PolyHema without the need of cell-cell 

contacts or anchorage to a solid surface.  

On the other hand, in 3D cell culture - the growth condition that more closely resembles 

situation in vivo than 2D culture - EMT has in general been less thoroughly studied. Its 

induction has been associated with phenotype changes (apico-basal polarity disruption and 

invasiveness) rather than with expression of EMT-related molecular markers or transcription 

factors. My study suggests that the differences in expression of EMT markers can be large 

between 2D and 3D cell culture conditions, and that observations true in 2D might need to 

be verified in a three-dimensional culture system or in vivo. One study, which did compare 

expression of a few EMT markers upon overexpression of ERBB2 in MCF10A grown in either 

2D or 3D, reported little or no change in expression of E-cadherin, β-catenin, α-catenin, 

p120-catenin and N-cadherin at protein level in both conditions.385 In cells highly expressing 

ERBB2 grown in 3D culture, however, I report a slight decrease in E-cadherin and a very 

strong, ERBB2-dose dependent, increase in N-cadherin at the mRNA level. While E-cadherin 

deregulation had been previously reported not to be required for ERBB2-induced EMT, a 

recent report points out the critical role of N-cadherin in metastasis induction in ERBB2-

overexpressing mouse tumors via EMT and the regulation of stem/progenitor-like cell 

properties.345,391 In that study, mice overexpressing ERBB2 showed significantly fewer 

metastases than those additionally overexpressing N-cadherin. It states also that this cell 

adhesion protein is often co-expressed with ERBB2 in invasive breast carcinomas. Here I 

show that ERBB2 itself is capable of N-cadherin induction – both in 2D and in 3D cell culture 

– and that from the EMT markers tested in MCF10A-derived stable cell line pools 

overexpressing ERBB2 it was the only one showing clear ERBB2-dependency in laminin-rich 

Matrigel. 

 

Cytoskeleton rearrangement by ERBB2 

Epithelial-mesenchymal transition is a complex process in which cytoskeleton 

rearrangement plays an essential role. Here I show that two tyrosine kinases important for 

cytoskeleton regulation, namely FAK and SRC, are activated by ERBB2 in a dose-dependent 

manner in 2D culture in the presence of EGF. Interestingly, ERBB2 had been previously 

reported to be found in ERBB2-FAK-SRC-p130Cas complexes which regulate Rac1 activation 

and MMP9 secretion leading to an invasive phenotype.392 The interaction of FAK with 
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activated integrins leads to FAK autophosphorylation at tyrosine 397 and the subsequent 

recruitment of SRC, PI3K, PLCγ and GRB7 to focal adhesions and to their activation.393 This in 

turn regulates integrins’ attachment to ECM and modulates cell adhesion and the ability to 

move. FAK associated with integrins binds also ERBB2 and in this way triggers ERBB2 

clustering in close vicinity to integrins. ERBB2 can then further influence integrins’ 

function.394 Here I show that ERBB2 upregulation affects FAK phosphorylation at Y397 

without prior integrin activity and level modulation (control and ERBB2 overexpressing cells 

were grown in the same conditions and on the same type of surface). Previously it had been 

shown that treatment of ERBB2 overexpressing cells (MDA-MB-231-ERBB2 and SKBR3) with 

trastuzumab reduced FAK phosphorylation at two other tyrosine residues: Y861 - the major 

Src phosphorylation site of FAK and Y925 - which permits an SH2-mediated association with 

Grb2, but did not affect phosphorylation of Y397.395,396 In my study I show that this FAK main 

autophosphorylation site is in fact affected by ERBB2 in a level-dependent manner. This is in 

line with another study which showed that silencing of ERBB2 decreased phosphorylation of 

Y397 of FAK in an ovarian cancer cell line.397 

ERBB2 levels in MCF10A-derived cell line pools correlated very well with SRC 

phosphorylation at Y416. This is a main phosphorylation site on SRC kinase that is associated 

with catalytic activity. Once activated, SRC phosphorylates EGFR at Y845 - a site which is 

necessary for mitogenic function of the receptor and downstream signaling.398 The 

significant clustering between SRC Y416 and EGFR Y845 which I report here hence further 

confirms their relation and stresses their activation dependence on the ERBB2 level. Apart 

from Y845, ERBB2 levels correlated significantly also with phosphorylation at two other 

major EGFR autophosphorylation sites tested: Y1068 and Y1148, which recruit GRB2 and Shc 

scaffold proteins, respectively, coupling EGFR with MAP kinase signaling.399 

Beside tyrosine kinases activation, ERBB2 induced cytoskeleton rearrangement by regulating 

expression of other cytoskeleton-related proteins in a dose-dependent manner. Vimentin, 

an intermediate filament protein and EMT marker, had previously been shown to be induced 

by ERBB2 overexpression in MCF10A.389 Similarly, cortactin, a cytoskeleton-binding protein 

was reported to be phosphorylated in response to overexpression of C-terminal ERBB2 

fragment (611-CTF) and to be a critical protein involved in 611-CTF-induced cell migration.400 

The present study shows that also the full length receptor has a positive effect on both - 

total and phosphorylated form of this protein. Cortactin inhibits ligand-induced endocytosis 
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of EGFR and the present results therefore suggest that ERBB2 has a stabilization effect on 

EGFR and that this might be, at least partially, mediated by cortactin, although this has not 

been tested in my experimental system.401 

RhoA and its downstream effectors ROCK1 and ROCK2 are important regulators of stress 

fiber formation. Activation of these proteins by ERBB2 has been well documented, yet, the 

effect of ERBB2 on total RhoA protein levels has not been extensively investigated.402 As 

RhoA protein expression and activity is directly linked to cortactin’s activity, it cannot be 

excluded that the effect of ERBB2 on RhoA that I have shown in this thesis is indeed exerted 

via cortactin. However, in a study reported previously, knockdown of only cortactin reduced 

RhoA levels and cortactin overexpression did not show increases in RhoA protein levels like 

in my study.403 This could be, though, due to the different model systems and different RhoA 

basal levels in the studied cells.  

Metadherin (MTDH), a protein that is associated with tight junction complexes in polarized 

epithelial cells, was the next protein whose expression I found to be ERBB2-level 

dependent.404 Although MTDH is overexpressed in more than 40% of breast cancers, its 

relation to ERBB2 has not been well studied.404,405 One research group detected ERBB2 level 

association with metadherin levels in a proteomic approach, while another showed that 

overexpression of MTDH causes an increase in ERBB2 at the protein level.406,407 Importantly 

MTDH was also highly elevated at mRNA levels in Neu (i.e., the rat ortholog of ERBB2) 

overexpressing tumors in mice.408 My study confirms that the relation between these two 

molecules exists. Further functional analysis would be required to answer how these two 

proteins interact or regulate with each other. 

From over 30 cytoskeleton-related proteins whose levels where tested by RPPA only 

cytokeratins 5/6 were significantly downregulated by ERBB2 in a dose-dependent manner. 

The expression of these intermediate filament proteins is associated with the basal subtype 

of breast cancer comprising largely of triple negative breast cancers (ER-, PR-, ERBB2-

negative). CK5 is also used as a marker for basal cancer.409 Here I show that CK5/6 

expression is strongly and inversely correlated with ERBB2 expression in MCF10A cells that 

are negative for ER, PR and ERBB2-expression in the native state. The absence of CK5/6 in 

the ERBB2 overexpressing breast cancer subtype might be similarly regulated. 

PTEN is destabilized by phosphorylation at threonine 366 and serine 370 via glycogen 

synthase kinase 3β (GSK3β) and casein kinase 2 (CK2), respectively.410,411 Whereas both of 
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these kinases are downstream of ERBB2 in the signaling pathway the effect of ERBB2 

overexpression or the inhibition of phosphorylation at T366/S370 has not yet been shown. 

This is, thus, the first report of an ERBB2 dose-dependent upregulation of PTEN 

phosphorylation at T366/S370 residues. The observed negative regulation of PTEN by ERBB2 

was accompanied by a dose-dependent upregulation of total PI3K levels (p110 and p85) 

which both facilitate PI3K/AKT signaling. The MAP kinase signaling pathway, similar to 

PI3K/AKT, was not only activated by ERBB2, but also the total ERK1/ERK2 levels were 

dependent on ERBB2 expression. Additionally, the total level of protein kinase A (PKA) was 

affected by ERBB2 in a level-dependent manner. ERBB2, thus enhances downstream 

signaling not only by its activation but also by the increase in the abundance of signaling 

components. 

As in 2D culture I did not see the changes in cell migration upon ERBB2 overexpression, I 

speculate that the changes in expression of migration-related proteins detected using RPPA 

merely prime the cells towards an invasive phenotype which, however, only occurs and can 

be detected when ERBB2-overexpressing cells are confined to a three-dimensional 

environment. β4 integrin, for example had been shown to be critical for the onset of ERBB2-

overexpressing tumors and for invasive growth, and also β1-integrin has been documented 

to play a crucial role in the process of tumor metastasis.412,413 

 

ERBB2-dose dependent gene expression at mRNA in 3D culture 

In the three-dimensional context, ERBB2 regulated the expression of several genes in a dose-

dependent manner. I intentionally focused on identifying specifically such genes whose 

expression was dependent on different ERBB2 expression levels (i.e. their expression 

gradually increased or discreased with ERBB2 levels), while I disregarded e.g. those genes 

that were differentially expressed in the ERBB2-expressing vs. CTRL cell line pools. 

Expression and function of KRT16 as well as KRT17P3 in breast cancer or their relation with 

ERBB2 has not been yet well studied. One of two existing reports regarding KRT16 in breast 

cancer showed that its high level is associated with worse patient survival and the second 

that the use of EGFR and ERBB2 inhibitiors, but not of an EGFR inhibitor alone, decreased  

KRT16 expression in the dermis of cancer patients.414,415 This cytokeratin has been also 

implicated in induction of wound healing where it participates in reorganization of keratin 
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filaments.416 It is thus, interesting that in my study KRT16 was the most ERBB2-level 

dependent, downregulated by ERBB2 gene in MCF10A-derived cell pools in 3D cell culture. 

The two other cytokeratins, KRT14 and KRT5 (also detected to be downregulated on protein 

level) were also very strongly downregulated by ERBB2 when the gene expression 

comparison has been done between CTRL, ERBB2-A and ERBB2-B cell pools. Mutations or 

alternatively lack of expression of cytokeratins 5 and 14 are directly implicated in the 

development of an epidermolysis bullosa simplex – a disease characterized by impaired cell-

cell adhesion resulting in widespread blisters, erosions, chronic wounds, and succeptibility to 

development of squamous cell carcinoma.417 Reduction of the cell-cell attachement abilities, 

observed for the ERBB2-expressing cells in PolyHema assay, could, hence, result from the 

strong decrease of KRT14 and KRT5 expression levels in those cells detected in 3D cell 

culture. 

Stanniocalcin 1 (STC1) along with STC2 were the most prominently upregulated genes by 

ERBB2 in a dose-dependent manner. These are closely related secreted glycoproteins and 

STC1 has been recently shown to have a very strong and positive effect on tumor 

progression as well as metastasis in breast cancer.418 STC2 on the other hand has been 

shown to be capable of prediction tumor progression in gastric cancer.419 Their regulation by 

ERBB2 reported in this thesis is the first indicating that stanniocalcins might play an 

important role in ERBB2-driven breast cancer. As stanniocalcins are secreted proteins and 

can act similarly to hormones (first identified and described in bony fish)420, they seem to be 

promising therapeutic targets. 

In MCF10A-derived stable cell line pools expressing ERBB2 grown in Matrigel the most 

enriched KEGG pathways (taking into account only ERBB2-dose dependent genes) were 

“aminoacyl-tRNA biosynthesis” - the only one significantly enriched, and “cytokine-cytokine 

receptor interaction”. In “cytokine signature” induced by ERBB2 in the luminal A MCF7 cell 

line it has been previously reported that IL-6, CXCL8 (IL-8), CXCL1 and IL-1α are top 

upregulated cytokines by ERBB2.421,422 However, Vazquez-Martin et al. and Hartman et al. 

performed their studies using 2D cell cultures. In my study, on the other hand, I show the 

soluble factors that are highly upregulated by ERBB2 in the more informative three-

dimensional context. These are: IL1A, IL1B, CCL20, VEGFA and INHBE. As ERBB2 is known to 

induce cannonical NFkB signaling, the inflammatory response induced by ERBB2 could be 

NFkB-dependent.421,423 This might explain IL1A, IL1B, CCL20 and VEGF upreglation which are 

http://link.springer.com/search?facet-author=%22Alejandro+Vazquez-Martin%22
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all NFkB targets.424,425,426,423,427 It also suggests that NFkB is likely to be activated by ERBB2 

also in 3D cell culture. The way in which inhibin beta E becomes upregulated by ERBB2 

remains yet to be identified. Prolonged induction of inflammatory response had been shown 

to promote tumorigenesis by increasing tumor infiltration by immunocompetent cells. These 

cells contribute further to the acquisition of the hallmarks of cancer by the tumor, including 

tumor angiogenesis, proliferation, tissue invasion, and initiation of metastasis.223 

Aminoacyl-tRNA synthetases (AARSs) transfer specific aminoacids on the appropriate tRNAs, 

which are then further used as substrates for protein production during translation. In 

cancer, in which cell proliferation is increased, the requirement for protein production is 

higher and hence the need for enzymes involved in protein synthesis is increased. To date, 

deregulation of AARSs has been reported in a few cancers including colon and lung cancers, 

chronic myeloid leukemia and papillary thyroid carcinoma.428 In this thesis I show that ERBB2 

regulates very strongly and in a dose-dependent manner 5 aminoacyl-tRNA synthetases: 

CARS, GARS, SARS, WARS and YARS. This is one of the first two reports of ERBB2 being 

involved in AARSs regulation. 

Recently Pincini and colleagues identified 91 genes that were upregulated by p130Cas 

overexpression in ERBB2-expressing MCF10A cell grown in 3D culture. They have shown that 

p130Cas overexpression can, similarly to other genes mentioned before, function as a 

“second hit” to induce cell invasion in ERBB2-overexpressing otherwise non-invasive cells. 

Three of the identified genes induced by p130Cas were GARS, YARS and WARS.429 

Additionally, Pincini showed that ERBB2 overexpression in p130Cas-overexpressing cells 

induced expression of GARS, MARS, WARS, TARS, AARS and YARS.429 Together, my and 

Pincini’s reports identify 8 AARSs to be regulated by ERBB2 with 5 of them being regulated 

by ERBB2 in the absence of p130Cas.  

In the above mentioned study, PHGDH expression was elevated in response to increased 

p130Cas levels in ERBB2-overexpressing MCF10A cells and PHGDH and ASNS in response to 

increased ERBB2 levels in p130Cas-overexpressing MCF10A. PHGDH is involved in serine 

biosynthesis and contributes to insuline-independence triggered by ERBB2 in MCF10A cells 

(also observed in my study (data not shown)), whereas ASNS is an asparagine synthetase.430 

Interestingly, both these genes were also top genes induced in my study by ERBB2 in a dose-

dependent manner, indicating that the presence of p130Cas is dispensable for their 

induction. These two studies hence, not only show similar (yet not identical) effect of ERBB2 
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on gene expression but also present a rather cohesive picture of ERBB2 function in protein 

synthesis despite the completely different nature of ERBB2 overexpression in MCF10A cells 

(full length unmodified receptor in my study vs chimeric ERBB2 containing extracellular and 

transmembrane domain from nerve growth factor receptor – p75NGFR). 

 

Drug sensitivity of ERBB2-overexpressing cell line pools 

Although MCF10A-derived cell line pools overexpressed full length native ERBB2 receptor 

without any tag, they were not sensitive to trastuzumab in the tested conditions. 2D culture 

of those pools has been used for the drug sensitivity assays due to technical difficulties 

associated with possible cell viability readouts in 3D cultures. There, the main challenge 

would have been normalization of readouts to the cell number, as in Matrigel ERBB2-

overexpressing cell line pools had different proliferation rates, unlike in 2D culture. Currently 

new commercial assays are being developed to overcome this and other challenges related 

to 3D culture conditions. 

Pick and colleagues had shown in 2009 that in SKBR cells substantially more ERBB2/ERBB3 

and EGFR/ERBB2 heterodimers formed when grown in 2D culture compared to 3D culture 

conditions. In three-dimensional conditions the amount of heterodimers was strongly 

decreased while an increase in ERBB2 homodimers was observed.431 Trastuzumab has been 

reported in this (SKBR3) and in MCF10A cell line overexpressing ERBB2 to preferentially bind 

and inactivate ERBB2 homodimers.431,201 In MCF10A it has been shown on artificially induced 

homodimers of ERBB2 chimeras, containing full-length ERBB2 receptor fused to ligand 

binding domain of FKBP, and activated by syntetic FKBP ligand, AP1510.201 In the study 

performed in MCF10A cells overexpressing ERBB2, trastuzumab was ineffective even in 3D 

culture conditions when either heregulin or EGF were present in the medium.201 These 

observations could explain why also in my drug treatment experiment, which was limited to 

2D culture and in which EGF was present in the medium, trastuzumab did not reduce cell 

viability. Moreover, MCF10A express relatively high IGFR levels which has been reported to 

contribute to trastuzumab resistance.432 

In my study I also did not observe an effect of ERBB2 overexpression on doxorubicin or taxol 

sensitivity. This result was not anticipated as previously Yu et al. have reported a panel of 5 

ERBB2 overexpressing breast cancer cell lines which clearly showed increased Taxol and 

Taxotere resistance compared to 3 controls not expressing ERBB2.433 Yet, that study 
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compared the sensitivity to taxanes of cell lines with different genetic background, which 

cannot show the direct effect of ERBB2 on drug response. In the study reported by Pegram 

et al., on the other hand, the direct effect of ERBB2 was tested by overexpression of full 

length receptor in 4 different cell lines and comparison of drug sensitivity was done directly 

between ERBB2-overexpressing cell line and the appropriate cell line of origin. The cell lines 

developed for this study were obtained in a similar way as in my study (as cell line pools by 

FACS sorting). The results reported by Pegram and colleagues indicated no induction of 

resistance to doxorubicin or taxol treatment by ERBB2 across all four cell lines. In two out of 

four cell lines ERBB2 overexpression in fact increased taxol sensitivity.434 

The report by Ciardiello and colleagues, which is presumably the closest related to the one 

presented here, has shown increased Taxol and Taxotere resistance and increased 

Doxorubicin sensitivity in ERBB2-overexpressing MCF10A cells. This has been shown in both: 

monolayer and in soft agar growth, with stronger effects observed in cell monolayers.435 As I 

did not observe similar result, I searched for potential differences in the two experimental 

setups and found that Ciardiello et al. used additionally glutamine in the cell culture medium.  

Interestingly, in a very recent report it has been shown that Taxol increases the glutamine 

uptake and that Taxol-resistant cells metabolize glutamine at higher rate due to Taxol-

induced glutaminase upregulation.436 The potential effect of glutamine on Doxorubicin 

sensitivity, however, has not been yet well tested. 

 

Lack of tumorigenesis in mice injected with MCF10A-derived cell line pools expressing 

ERBB2 at low, medium and high levels 

In the animal experiment presented in this thesis, severely immunocompromised NSG mice 

were used. They are characterized by an impaired innate immune system, lack of mature T 

and B cells, lack of expression of several receptors for cytokines (including IL-2 receptor), and 

not functional NK cells. Hence, the main regulatory mechanisms responsible for clearing the 

injected MCF10A-derived stable cell line pools overexpressing ERBB2 observed in my study 

must have been related to the remaining immune cells which are neutrophils, monocytes as 

well as defective (although still present) dendritic cells and macrophages. 

While several research groups worked with the MCF10A cell line in two- or three-

dimensional cell cultures, only few have reported a study in vivo. One of the first reports 

showed that although MCF10A cells do not survive in immunodeficient mice, T24 HRAS 
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overexpressing MCF10A injected subcutaneously into nude/beige mice form small nodules 

which persist for at least 1 year and sporadically develop into carcinoma. Serial transplants 

of the cells derived from nodules caused a vast increase in nodule frequency from 23% (in 

first generation) to 56% (in the fourth generation). Interestingly, the lesions removed 

between 13-48 weeks after implantation were very similar.437,438 Thus this study proved that 

a single oncogene is capable of MCF10A cell line transformation.  

Another older study in which MCF10A were overexpressing ERBB2, HRAS or both, although 

performed mainly in vitro, showed that injected into nude mice transformed cells (all three 

transformants types) unlike untransformed MCF10A can halt after 48h post-injection mainly 

in lungs, indicating the possibility of these cells to colonize this organ.439 Yet, in my study I 

did not observe neither nodules’ growth nor dormant cells present in lungs even 10 months 

after NSG mice injection with any of the three ERBB2-overexpressing cell line pools. The 

initial post-injection localization of ERBB2-overexpressing MCF10A cells in lungs may, thus, 

not be sufficient for their efficient colonization. 

The most interesting in vivo experiment which is also most related to my study has been 

performed very recently (in parallel to my ongoing mice experiment) by Alajati and 

colleagues.440 They used MCF10A and MCF7 cell lines to overexpress either full length ERBB2 

or p95-ERBB2 (called further also Delta-ERBB2) lacking exon 16. p95-ERBB2 constitutes 2-9% 

of ERBB2 mRNA in breast carcinomas and causes mammary tumor growth and metastasis.106 

Alajatali et al. showed that ERBB2-overexpressing MCF10A cells orthotopically injected into 

SCID-beige mice did not form tumors - confirming my result obtained in NSG mice - whereas 

Delta-ERBB2 did. When MCF7 cells were used as a cell of origin, Delta-ERBB2 overexpressing 

cells induced tumors characterized by significantly higher volume than cells overexpressing 

full length ERBB2 receptor. Moreover, 66% of mice with MCF10A-Delta-ERBB2 tumors 

developed lung metastasis, indicating that lungs are indeed a preferable organ of metastasis 

for this type of cells. Surprisingly, Alajatali and colleagues reported that tumors induced by 

these cells are trastzuzumab sensitive.440  

Altogether my and previous reports indicate that ERBB2 alone is alone not capable of semi-

normal epithelial MCF10A cell line transformation leading to tumorigenesis in 

immunocompromised mice. My study shows that this holds true even for very high ERBB2 

levels in combination with severly immunocompromised animals. Hence, “second hit” which 

may be dispensable for induction of invasion in in-vitro cell culture conditions in the 
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presence of very high ERBB2 levels, may be still required for tumor formation and survival of 

transformed cells in vivo.  

In contrary to mice injected with ERBB2-overexpressing MCF10A cells, mice expressing Neu 

(rat’s ERBB2 homolog) under its endogenous promoter do develop mammary tumors. 

However, it has been reported that those tumors resemble in their character more ductal 

carcinoma in situ (DCIS) rather than metastatic breast cancer.441,408 ERBB2 plays, thus, a role 

in the early stage of transformation process and expression of additional factors like e.g. 

previously mentioned 14-3-3ζ protein can facilitate progression of ERBB2-expressing DCIS 

into invasive breast carcinoma.385 

 

Oncogenic potential of miRNA-301b and miR-130b induced by ERBB2 

Since 2007 the number of publications regarding the role of miRNAs in human cancers has 

been steadily increasing and since then miRNAs have been shown to regulate several 

processes involved in tumorigenesis. In breast cancer miRNAs can act either like tumor 

suppressors by targeting proteins with established oncogenic functions or like oncogenes by 

targeting tumor suppressor genes. In our research group we have shown a few examples of 

such regulations. Firstly, we have shown that miRNA-200c can play a role of a tumor 

suppressor and function as an inhibitor of migration and invasion by directly targeting 

cytoskeleton-regulating genes: FHOD1 and PPM1F, as well as by inhibition of TGFβ-induced 

stress fibers formation.442 The same miRNA has been previously reported to additionally 

suppress EMT by direct targeting of ZEB1/2. Secondly, we have shown that miR-375, another 

tumor suppressor miRNA, can sensitize tamoxifen resistant cells to tamoxifen treatment by 

partial reversion of EMT and targeting of MTDH, a resistance-associated gene.443 On the 

other hand we have shown that miR-519a can induce tamoxifen resistance by targeting 

negative regulators of cell-cycle progression (CDKN1A and RB1) as well as targeting PI3K/AKT 

signaling inhibitor – PTEN.370 Last but not least we have presented that miRNAs are capable 

of regulating intracellular signaling pathways involved in tumor progression, including NFkB 

(regulated by miR-30c-2-3p) and EGFR signaling pathways.322  

One of few existing studies that have investigated miRNA expression in three-dimensional 

cell culture is a study by Pincini and colleagues (mentioned already before)444, who identified 

40 miRNAs that were differentially expressed between ERBB2/p130Cas-overexpressing 

MCF10A cells and ERBB2-overexpressing cells. Interestingly, the levels of 6 miRNAs were also 
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ERBB2-dose dependent with the same expression trend in my study. That suggests that 

combined overexpression of ERBB2 and p130Cas as well as overexpression of very high 

ERBB2 levels are capable of induction of a common miRNA subset, namely: miR-424-5p, miR-

221-5p, miR-361-3p, miR-31-5p, miR-29b-3p (upregulated) and miR-33b-3b (downregulated). 

miR-301b and miR-130b have not been reported in that study. 

In this thesis I show that ERBB2-overexpression in MCF10A cell line regulates expression of 

36 miRNAs in a dose-dependent manner in a three-dimensional environment. Of these, 

miR-301b, miR-210 and miR-146-5p showed also higher expression in tumors compared to 

normal tissue as well as in ERBB2-positive patients compared to negative. Moreover, their 

high expression was also associated with worse clinical outcome. In my thesis I concentrated 

on functional analysis of miR-301b as well as miR-130b. The latter is likely regulated by the 

same promoter as miR-301b, it belongs to the same miRNA family and its expression level is 

also associated with patient outcome. Expression of these two miRNAs was ERBB2-

dependent when cells were grown in 3D cell culture but not when they were grown in 

monolayer. Notably, miR-301b and miR-130b have not been identified to be differentially 

expressed between ERBB2-negative and ERBB2-positive breast cancer cells in 5 published 

datasets investigating miRNA expression in relation to ERBB2.445 2 of these datasets involved 

experiments in vitro in 2D cell culture conditions which could explain the lack of these 

miRNAs’ upregulation by ERBB2 in that experimental setups.446,447 The other 3 studies 

determined miRNAs’ levels in patient specimen. However, they consisted only of 29, 93 and 

20 breast cancer samples, respectively, which may not be representative for studying ERBB2-

regulated processes including miRNA expression.448,449,450 Remarkably, in the dataset 

consisting of 93 tumor specimen only 5 were classified as ERBB2-positive. 

Scientific literature regarding miR-301b and miR-130b function in cancer is very limited with 

some reports on miR-130b contradicting one other, e.g. regarding its behaviour in EMT 

regulation in endometrial cancer.363,364 Importantly, no reports about miR-301b and miR-

130b function in breast or breast cancer have been published so far, and only one study has 

been done to find the role of a closely related miRNA, miR-301a, in breast cancer.358 Here I 

show that expression of miR-301b and miR-130b is significantly associated with ERBB2 levels 

not only in MCF10A-derived stable cell line pools grown in 3D cell culture, but also in 

patients. miR-301a, a related miRNA belonging to the same miRNA family, which has been 

reported to play a role in breast cancer proliferation and invasion, was associated with 
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ERBB2 levels in clinical data as well.358 A possible explanation for the lack of its association 

with ERBB2 detected in ERBB2-overexpressing cell line pools may be either that ERBB2 

effects exerted on miR-301a expression are not direct (which is more probable), or, 

alternatively, that probes for miR-301a found on microarrays used for detection of miRNA 

levels in patients are not specific and cross-hybridize with miR-301b (differing only by two 

nucleotides), which would lead then to an artifact. Whether or not EGF can as well induce 

expression of the two miRNAs will need to be determined in a broader panel of breast cell 

lines. Besides, transcription factors activated by ERBB2 signaling that can directly bind to and 

activate miR-301b/miR-130b promoter remain yet to be identified. 

All three miRNAs mentioned above had higher expression levels in tumor compared to 

respective normal tissues, but only miR-301b and miR-130b were expressed at higher levels 

in ER-negative or in p53-mutated tumors. This finding can be related to the fact that most of 

ERBB2-overexpressing breast cancers are ER-negative and that 72% of them bear mutations 

in TP53 gene.14 It could however also mean that p53 (WT or mutated) may have a direct 

impact on expression of these two miRNAs. This requires, thus, additional investigation. 

I have further reported here that high expression of miR-301b and miR-130b in breast 

tumors is significantly associated with worse overall survival of patients. For miR-301a this 

association was not significant but a similar trend was observed. All three miRNAs increased 

cell viability and proliferation (in the presence as well as in the absence of EGF), enhanced 

chemoattractant-induced cell migration, and induced cell invasion through Matrigel in 

MCF10A cells. Whereas miR-130b slightly enhanced E-cadherin expression, the other two 

studied miRNAs decreased its mRNA levels. Yet, all three miRNAs increased fibronectin 

expression and to a much greater extent expression of MMP9. Upregulation of MMP9 could, 

thus, be the main mechanism contributing to cell invasiveness induced by these miRNAs. 

Hence, miR-301b, miR-130b and miR-301a contribute at least partially to EMT process in 

MCF10A cell line. 

Identification of critical miRNA targets constitutes one of the biggest challenges in the 

functional characterization of a given miRNA. While all three miRNAs described in this thesis 

share the same seed sequence, miR-301a and miR-301b do have many more common target 

genes (66) than either miR-301a and miR-130b or miR-301b and miR-130b. These two 

miRNAs differ only by 2 nucleotides outside of the seed sequence and it is thus not very 

surprising that they share common targets. It is, however, very interesting to see that while 
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miR-130b has the same seed sequence and a list of predicted target genes as miR-301a and 

miR-301b, it downregulates much broader pool of genes. This finding stresses the 

importance of the miRNA sequence outside the seed region in recognition of target genes. 

Remarkably, miR-130b downregulated more than 3 times more genes by at least 30% than 

the other two miRNAs. Moreover, 70% of genes targeted by miR-301a and 77% of genes 

targeted by miR-301b were also downregulated by miR-130b by at least 30%. 

In the course of my study I identified 19 most promising target genes of the three miRNAs 

using rigorous selective criteria. These included 9 genes potentially relevant in the context of 

ERBB2-dose dependent upregulation of miRNAs in 3D cell culture. Interestingly, two of them 

have been previously implicated in apoptosis regulation (ZMAT3 and ZAK) indicating one 

other pathway how ERBB2 might affect programmed cell death. Another two genes - VPS24 

and VPS37A - have been shown to play a role in EGFR trafficking and might possibly 

contribute to stabilization of EGFR by ERBB2 observed in MCF10A-derived stable cell line 

pools and reported by others. 341,78 Regulation of both of these pathways by miR-301b, miR-

130b and miR-301a will be essential in the further development of this project. 

miR-301a has been previously presented to target FOXF2, BBC3, PTEN, and COL2A1.358 In the 

current study and in view of the similarity of seed sequence of the three miRNAs to miR-

519a, I asked if these miRNAs might target similar sets of genes. Indeed, I found that the 

3’UTRs of three direct targets of miR-519a, including the estrogen receptor, cell cycle 

inhibitor p21 and PI3K/AKT signaling suppressor PTEN were also targeted by miR-301b and 

miR-130b in a luciferase reporter assay. The strongest effect was observed on estrogen 

receptor expression, which showed also high negative correlation with miR-301a and miR-

130b in breast cancer patients. As most of the ERBB2-positive tumors are ER-negative, it 

might be possible that in those tumors ERBB2-induced miR-301b and miR-130b contribute to 

estrogen receptor downregulation. Negative correlations of these two miRNAs were 

observed for PTEN as well, yet, despite PTEN’s and ERBB2IP’s established role in 

trastuzumab resistance, their targeting by overexpression of any of three miRNAs did not 

affect trastuzumab sensitivity in SKBR3 cells.451,452  

To determine whether miRNAs: miR-301b, miR-130b and miR-301a play a critical role in 

ERBB2-driven invasion observed in 3D cell culture, or just an auxillary, the inhibition of the 

three miRNAs either each separately or in combinations in the MCF10A-derived cell line 

pools expressing very high ERBB2 level would be required. However, two technical 
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challenges need to be first overcome. Firstly, miRNA inhibitors are not very specific and 

inhibition of given miRNAs individually presents a big difficulty. Secondly, 3D cell culture 

requires stable cell line production. As MCF10A cell line can be cultured only for a few 

passages in a cell culture dish to avoid its abberant behaviour, and MCF10A-derived cell line 

pools had been already once retroviral-infected with ERBB2-overexpressing construct, 

further infection of the same cell line is not desirable. Developing of a similar ERBB2-

overexpressing system in other cell line, which can be cultured for a longer time, could be 

therefore a solution. 

The importance of miR-301b, miR-130b and miR-301a in cancer has been stressed in the 

recent paper by Hamilton and colleagues, who reported that 7 miRNA families, including 

miR-17, miR-19, miR-130, miR-93, miR-18, miR-455 and miR-210 families, co-target critical 

tumor suppressor genes via their central GUGC motif across many types of cancers. 

Significantly, from miR-130 family exactly these three miRNAs which were presented in this 

thesis were involved in tumor suppressors’ regulation.453  

In my PhD project I have identified also other miRNAs apart from miR-301b and miR-130b to 

be regulated by ERBB2. While I chose to functionally characterize these two, the other 

miRNAs from the list of 36 miRNAs might also play a role in ERBB2-driven invasion in breast 

cancer. In particular, miR-210 and miR-146-5p seem to be especially good candidates to 

study as a continuation of this project. Furthermore, miR-21 could serve as a good example 

of “false negative” miRNA, as it has been shown previously to be upregulated by ERBB2 and 

to have an established oncogenic function in different tumor types, yet was not significantly 

affecting patients’ overall survival in METABRIC validation dataset.314 Additionally, it must be 

mentioned that for a few miRNAs from the list clinical data was missing. These can be thus 

next “false negatives” as their expression in breast cancer and/or their effect on patients’ 

survival remains to be determined.  
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Conclusion 

In conclusion, I have shown that ERBB2 drives cell invasion in a dose-dependent manner by 

dose dependent: tyrosine kinases’ activation (EGFR, ERBB3, FAK and SRC), EGFR ligand HB-

EGF upregulation, EMT induction, cytoskeleton reorganization and miRNAs’ expression 

deregulation. Importantly, I have reported that further increase of ERBB2 level in cells 

overexpressing ERBB2 at moderate/high level, and as a consequence further deregulation of 

all above mentioned factors, leads to progression from noninvasive to invasive cell 

behaviour. My study has stressed also the impact of three-dimensional cell environment on 

regulation of ERBB2 function and miRNA induction. 
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Supplementary Figure 1 
ERBB2 RPPA signal intensity detected for a serial dilution of protein lysate obtained from 
ERBB2-C cell line pool, grown on plastic dish in the presence of 10 ng/ml EGF. Antibody Ab-17 
from NeoMarkes was used (MS-730-P) to detect ERBB2 on reverse phase protein array. The 
signal is expressed in arbitrary units [a.u.]. Blank – negative control. 
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Supplementary Figure 2 
Mean expression levels of miR-301a, miR-301b and miR-130b were compared in ER-negative 
vs ER-positive tumors in dataset from The Cancer Genome Atlas Network study.454 
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Supplementary Table 1 
The list of transcripts downregulated in direct comparison of ERBB2-A and control (A vs R) as 
well as in direct comparison of ERBB2-B and ERBB2-A (B vs A) for at least one probe. The 
transcripts are sorted according to the fold change ERBB2-A vs CTRL; P-val (BH) – Benjamini 
Hochberg adjusted p-value, R – reference (CTRL cell line pool) 
 

Probe ID 
Gene 
symbol Definition 

Fold 
change 
A vs R 

p-val 
(BH) 

A vs R 

Fold 
change 
B vs A 

p-val 
(BH)      

B vs A 

5870653 LOC651397 
PREDICTED: Homo sapiens misc_RNA 
(LOC651397), miscRNA. 0,13 7,32E-45 0,344 4,29E-39 

4900458 KRT14 

Homo sapiens keratin 14 (epidermolysis bullosa 
simplex, Dowling-Meara, Koebner) (KRT14), 
mRNA. 0,162 1,25E-63 0,273 5,12E-42 

7650441 FGFBP1 
Homo sapiens fibroblast growth factor binding 
protein 1 (FGFBP1), mRNA. 0,208 3,25E-39 0,612 1,18E-21 

6130441 ASPM 

Homo sapiens asp (abnormal spindle) homolog, 
microcephaly associated (Drosophila) (ASPM), 
mRNA. 0,388 7,13E-43 0,734 1,66E-10 

1500010 CDC20 
Homo sapiens cell division cycle 20 homolog (S. 
cerevisiae) (CDC20), mRNA. 0,392 3,41E-39 0,558 1,72E-46 

7570324 ID3 

Homo sapiens inhibitor of DNA binding 3, 
dominant negative helix-loop-helix protein 
(ID3), mRNA. 0,399 2,79E-29 0,622 2,34E-32 

5960168 C10ORF58 

Homo sapiens chromosome 10 open reading 
frame 58 (C10orf58), transcript variant 1, 
mRNA. 0,436 9,19E-25 0,619 7,01E-17 

1050195 KIF20A 
Homo sapiens kinesin family member 20A 
(KIF20A), mRNA. 0,451 2,62E-43 0,62 8,81E-29 

6620392 LFNG 

Homo sapiens LFNG O-fucosylpeptide 3-beta-N-
acetylglucosaminyltransferase (LFNG), 
transcript variant 1, mRNA. 0,498 1,43E-39 0,706 3,25E-09 

5310646 AKR1B10 

Homo sapiens aldo-keto reductase family 1, 
member B10 (aldose reductase) (AKR1B10), 
mRNA. 0,504 4,39E-31 0,741 9,22E-12 

5860289 KRT5 Homo sapiens keratin 5 (KRT5), mRNA. 0,515 1,9E-49 0,573 7,65E-37 

5310471 UBE2C 
Homo sapiens ubiquitin-conjugating enzyme 
E2C (UBE2C), transcript variant 6, mRNA. 0,528 2,27E-25 0,589 3,35E-24 

4260368 UBE2C 
Homo sapiens ubiquitin-conjugating enzyme 
E2C (UBE2C), transcript variant 3, mRNA. 0,533 1,38E-37 0,603 6,70E-30 

5360070 CCNB2 Homo sapiens cyclin B2 (CCNB2), mRNA. 0,536 2,1E-35 0,674 1,16E-16 

6770026 AURKB Homo sapiens aurora kinase B (AURKB), mRNA. 0,539 1,59E-19 0,712 1,36E-17 

4780187 HS.19339 Homo sapiens cDNA clone IMAGE:5263177 0,543 5,42E-28 0,732 2,10E-11 

4180324 FAM46B 
Homo sapiens family with sequence similarity 
46, member B (FAM46B), mRNA. 0,549 9,94E-29 0,678 2,83E-24 

1400673 CDCA5 
Homo sapiens cell division cycle associated 5 
(CDCA5), mRNA. 0,554 1,86E-37 0,681 4,17E-19 

7330674 KIFC1 
Homo sapiens kinesin family member C1 
(KIFC1), mRNA. 0,557 5,5E-26 0,723 1,52E-12 

3990619 TOP2A 
Homo sapiens topoisomerase (DNA) II alpha 
170kDa (TOP2A), mRNA. 0,559 4,18E-35 0,659 9,35E-25 

150543 FAM83D 
Homo sapiens family with sequence similarity 
83, member D (FAM83D), mRNA. 0,56 1,12E-33 0,69 4,52E-17 
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3450735 UGT1A6 

Homo sapiens UDP glucuronosyltransferase 1 
family, polypeptide A6 (UGT1A6), transcript 
variant 2, mRNA. 0,562 7,43E-24 0,711 1,51E-15 

7650296 DCN 
Homo sapiens decorin (DCN), transcript variant 
C, mRNA. 0,563 3,23E-28 0,72 2,18E-16 

5560369 ALDH3A1 
Homo sapiens aldehyde dehydrogenase 3 
family, memberA1 (ALDH3A1), mRNA. 0,576 1,94E-37 0,408 2,24E-62 

4060064 HMMR 

Homo sapiens hyaluronan-mediated motility 
receptor (RHAMM) (HMMR), transcript variant 
2, mRNA. 0,586 1,19E-26 0,69 1,17E-14 

2070494 PRC1 
Homo sapiens protein regulator of cytokinesis 1 
(PRC1), transcript variant 2, mRNA. 0,588 1,15E-33 0,714 1,44E-25 

1410209 SGK1 
Homo sapiens serum/glucocorticoid regulated 
kinase 1 (SGK1), transcript variant 1, mRNA. 0,589 1,53E-19 0,452 1,31E-35 

2030324 SGK1 
Homo sapiens serum/glucocorticoid regulated 
kinase 1 (SGK1), transcript variant 1, mRNA. 0,593 1,13E-28 0,455 2,50E-47 

6370703 UGT1A6 

Homo sapiens UDP glucuronosyltransferase 1 
family, polypeptide A6 (UGT1A6), transcript 
variant 1, mRNA. 0,594 4,09E-21 0,741 5,42E-11 

2120468 C10ORF58 
Homo sapiens chromosome 10 open reading 
frame 58 (C10orf58), mRNA. 0,601 3,12E-27 0,745 1,11E-14 

7050220 NMU Homo sapiens neuromedin U (NMU), mRNA. 0,605 8,62E-18 0,722 5,29E-12 

870546 MAD2L1 
Homo sapiens MAD2 mitotic arrest deficient-
like 1 (yeast) (MAD2L1), mRNA. 0,606 9,22E-24 0,739 3,30E-10 

7570326 ADRB2 
Homo sapiens adrenergic, beta-2-, receptor, 
surface (ADRB2), mRNA. 0,61 1,88E-28 0,745 2,75E-12 

4390450 SGK 
Homo sapiens serum/glucocorticoid regulated 
kinase (SGK), mRNA. 0,614 8,11E-34 0,426 4,35E-31 

6900408 EFEMP1 

Homo sapiens EGF-containing fibulin-like 
extracellular matrix protein 1 (EFEMP1), 
transcript variant 2, mRNA. 0,615 3,54E-25 0,731 1,71E-17 

3360064 PLA2G4F 
Homo sapiens phospholipase A2, group IVF 
(PLA2G4F), mRNA. 0,623 1,12E-23 0,71 3,56E-16 

4590767 SPRR1B 
Homo sapiens small proline-rich protein 1B 
(cornifin) (SPRR1B), mRNA. 0,627 2,72E-11 0,445 3,28E-22 

4560497 ETNK2 
Homo sapiens ethanolamine kinase 2 (ETNK2), 
mRNA. 0,63 2,34E-18 0,63 7,64E-14 

1470441 LOC650517 
PREDICTED: Homo sapiens hypothetical 
LOC650517 (LOC650517), mRNA. 0,639 6,35E-15 0,61 1,84E-13 

1070279 DLK2 
Homo sapiens delta-like 2 homolog 
(Drosophila) (DLK2), transcript variant 2, mRNA. 0,642 1,52E-28 0,575 5,53E-36 

4540246 KRT16 

Homo sapiens keratin 16 (focal non-
epidermolytic palmoplantar keratoderma) 
(KRT16), mRNA. 0,644 1,6E-22 0,696 5,96E-15 

5420368 ROS1 
Homo sapiens c-ros oncogene 1, receptor 
tyrosine kinase (ROS1), mRNA. 0,648 1,44E-18 0,746 1,62E-10 

4730196 TK1 
Homo sapiens thymidine kinase 1, soluble 
(TK1), mRNA. 0,649 6,61E-21 0,709 2,22E-18 

3120598 AKR1C4 

Homo sapiens aldo-keto reductase family 1, 
member C4 (chlordecone reductase; 3-alpha 
hydroxysteroid dehydrogenase, type I; 
dihydrodiol dehydrogenase 4) (AKR1C4), mRNA. 0,65 8,26E-18 0,674 1,30E-15 
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5690408 IRX3 
Homo sapiens iroquois homeobox 3 (IRX3), 
mRNA. 0,652 8,9E-24 0,595 9,33E-48 

5420474 HSPBL2 
Homo sapiens heat shock 27kDa protein-like 2 
pseudogene (HSPBL2), non-coding RNA. 0,656 2E-17 0,732 7,66E-13 

5260196 BCL7C 
Homo sapiens B-cell CLL/lymphoma 7C (BCL7C), 
mRNA. 0,659 7,64E-17 0,725 5,57E-12 

 
Supplementary Table 2 
The list of transcripts upregulated in direct comparison of ERBB2-A and control (A vs R) as 
well as in direct comparison of ERBB2-B and ERBB2-A (B vs A) for at least one probe. The 
transcripts are sorted according to the fold change ERBB2-A vs CTRL; P-val (BH) – Benjamini 
Hochberg adjusted p-value, R – reference (CTRL cell line pool) 
 

Probe ID 
Gene 
symbol 

 
Definition 

Fold 
change 
A vs R 

p-val 
(BH) 

A vs R 

Fold 
change 
B vs A 

p-val 
(BH) 

B vs A 

1170170 STC2 Homo sapiens stanniocalcin 2 (STC2), mRNA. 5,523 1,61E-42 2,373 6,44E-33 

240086 PHGDH 
Homo sapiens phosphoglycerate 
dehydrogenase (PHGDH), mRNA. 4,437 4,08E-71 1,378 7,98E-26 

1510296 ASNS 
Homo sapiens asparagine synthetase (ASNS), 
transcript variant 1, mRNA. 4,415 7,38E-63 1,652 1,03E-39 

1780446 PCK2 

Homo sapiens phosphoenolpyruvate 
carboxykinase 2 (mitochondrial) (PCK2), 
nuclear gene encoding mitochondrial protein, 
transcript variant 1, mRNA. 3,091 7,94E-47 1,578 5,77E-36 

6420168 DBNDD2 

Homo sapiens dysbindin (dystrobrevin binding 
protein 1) domain containing 2 (DBNDD2), 
transcript variant 3, mRNA. 2,958 6,92E-63 1,419 1,80E-27 

3450288 
LOC100134 
134 

PREDICTED: Homo sapiens similar to 
peroxidasin homolog (LOC100134134), mRNA. 2,86 2,76E-35 1,464 9,76E-25 

4220246 CCL20 
Homo sapiens chemokine (C-C motif) ligand 20 
(CCL20), mRNA. 2,79 1,36E-46 1,709 2,26E-33 

840685 IL1B Homo sapiens interleukin 1, beta (IL1B), mRNA. 2,703 1,19E-53 2,482 1,49E-41 

7560364 LOC729779 
PREDICTED: Homo sapiens misc_RNA 
(LOC729779), miscRNA. 2,521 1,98E-46 1,454 3,77E-14 

5960181 ASNS 
Homo sapiens asparagine synthetase (ASNS), 
transcript variant 1, mRNA. 2,501 2,78E-27 1,543 1,10E-10 

3390129 C9ORF103 
Homo sapiens chromosome 9 open reading 
frame 103 (C9orf103), mRNA. 2,289 2,42E-48 1,365 2,93E-17 

5090671 GDF15 
Homo sapiens growth differentiation factor 15 
(GDF15), mRNA. 2,134 8,48E-33 1,705 2,59E-27 

830619 DDIT3 
Homo sapiens DNA-damage-inducible 
transcript 3 (DDIT3), mRNA. 2,034 3,38E-32 1,912 6,42E-29 

1510424 S100P 
Homo sapiens S100 calcium binding protein P 
(S100P), mRNA. 2,011 4,67E-23 1,8 1,19E-34 

1980672 IL1A 
Homo sapiens interleukin 1, alpha (IL1A), 
mRNA. 2,009 4,76E-48 1,629 1,25E-19 

5290148 GPT2 
Homo sapiens glutamic pyruvate transaminase 
(alanine aminotransferase) 2 (GPT2), mRNA. 2,006 1,54E-26 1,494 4,28E-16 
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6620689 MTHFD2 

Homo sapiens methylenetetrahydrofolate 
dehydrogenase (NADP+ dependent) 2, 
methenyltetrahydrofolate cyclohydrolase 
(MTHFD2), nuclear gene encoding 
mitochondrial protein, transcript variant 2, 
mRNA. 1,966 2E-50 1,532 7,39E-16 

4830433 LARP6 

Homo sapiens La ribonucleoprotein domain 
family, member 6 (LARP6), transcript variant 1, 
mRNA. 1,828 1,06E-38 1,508 1,61E-27 

3890373 ITGB2 

Homo sapiens integrin, beta 2 (complement 
component 3 receptor 3 and 4 subunit) 
(ITGB2), mRNA. 1,821 2,19E-45 1,368 4,91E-18 

1820594 HBEGF 
Homo sapiens heparin-binding EGF-like growth 
factor (HBEGF), mRNA. 1,819 8,54E-39 1,61 2,79E-41 

3610626 ADM2 
Homo sapiens adrenomedullin 2 (ADM2), 
mRNA. 1,813 2,09E-22 1,48 7,93E-15 

6370369 CD14 
Homo sapiens CD14 molecule (CD14), 
transcript variant 2, mRNA. 1,798 6,18E-29 1,562 7,66E-21 

2510091 COL8A1 
Homo sapiens collagen, type VIII, alpha 1 
(COL8A1), transcript variant 2, mRNA. 1,758 1,12E-21 1,37 2,56E-11 

1300706 MTHFD2 

Homo sapiens methylenetetrahydrofolate 
dehydrogenase (NADP+ dependent) 2, 
methenyltetrahydrofolate cyclohydrolase 
(MTHFD2), nuclear gene encoding 
mitochondrial protein, transcript variant 1, 
mRNA. 1,742 1,9E-28 1,489 4,24E-18 

7320370 STAT4 
Homo sapiens signal transducer and activator 
of transcription 4 (STAT4), mRNA. 1,717 5,77E-16 1,442 8,89E-15 

2640224 VEGFA 
Homo sapiens vascular endothelial growth 
factor A (VEGFA), transcript variant 2, mRNA. 1,704 1,71E-18 1,461 1,76E-16 

3190608 SLC6A9 

Homo sapiens solute carrier family 6 
(neurotransmitter transporter, glycine), 
member 9 (SLC6A9), transcript variant 3, 
mRNA. 1,686 8E-33 1,428 7,12E-16 

240309 CTSB 
Homo sapiens cathepsin B (CTSB), transcript 
variant 2, mRNA. 1,677 6,46E-30 1,398 9,56E-12 

2650730 STC1 Homo sapiens stanniocalcin 1 (STC1), mRNA. 1,662 4,7E-17 1,52 6,43E-18 

5700278 GARS 
Homo sapiens glycyl-tRNA synthetase (GARS), 
mRNA. 1,642 1,27E-22 1,406 6,95E-20 

510577 TRIML2 
Homo sapiens tripartite motif family-like 2 
(TRIML2), mRNA. 1,639 1,8E-29 1,591 4,93E-35 

4860224 WARS 
Homo sapiens tryptophanyl-tRNA synthetase 
(WARS), transcript variant 1, mRNA. 1,633 5,72E-27 1,552 1,87E-21 

3800161 KRT7 Homo sapiens keratin 7 (KRT7), mRNA. 1,632 7,58E-23 1,611 6,66E-32 

60121 CTSB 
Homo sapiens cathepsin B (CTSB), transcript 
variant 1, mRNA. 1,625 6,89E-31 1,376 4,56E-18 

270615 ABCC3 
Homo sapiens ATP-binding cassette, sub-family 
C (CFTR/MRP), member 3 (ABCC3), mRNA. 1,62 2,53E-24 1,485 2,33E-30 

7000682 CARS 
Homo sapiens cysteinyl-tRNA synthetase 
(CARS), transcript variant 4, mRNA. 1,613 3,2E-26 1,541 8,80E-14 

3710068 WARS 
Homo sapiens tryptophanyl-tRNA synthetase 
(WARS), transcript variant 2, mRNA. 1,612 9,28E-24 1,637 5,21E-21 

2100762 INHBE Homo sapiens inhibin, beta E (INHBE), mRNA. 1,611 4,14E-19 1,685 9,19E-17 
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6020093 SARS 
Homo sapiens seryl-tRNA synthetase (SARS), 
mRNA. 1,598 4,22E-24 1,429 1,31E-13 

650554 
LOC100132 
240 

PREDICTED: Homo sapiens misc_RNA 
(LOC100132240), miscRNA. 1,597 1,73E-26 1,388 1,71E-15 

1690553 EPCAM 
Homo sapiens epithelial cell adhesion molecule 
(EPCAM), mRNA. 1,571 8,5E-17 1,424 5,70E-10 

4070575 TACSTD1 
Homo sapiens tumor-associated calcium signal 
transducer 1 (TACSTD1), mRNA. 1,571 3,43E-24 1,471 3,61E-23 

3520040 YARS 
Homo sapiens tyrosyl-tRNA synthetase (YARS), 
mRNA. 1,563 1,19E-27 1,364 8,89E-23 

7000369 CD14 
Homo sapiens CD14 molecule (CD14), 
transcript variant 1, mRNA. 1,557 6,74E-20 1,374 2,45E-12 

2450156 XBP1 
Homo sapiens X-box binding protein 1 (XBP1), 
transcript variant 2, mRNA. 1,55 1,23E-22 1,368 1,32E-13 

 
Supplementary Table 3 
The list of transcripts downregulated by at least 30% upon overexpression of miR-301a. 
 

Probe 
ID 

Gene 
symbol Definition 

Fold 
change 

p-value 
(BH) 

3990170 IFI27 
Homo sapiens interferon, alpha-inducible protein 27 (IFI27), 
transcript variant 2, mRNA. 0,275 1,31E-27 

7100193 RTCD1 
Homo sapiens RNA terminal phosphate cyclase domain 1 (RTCD1), 
mRNA. 0,461 2,1E-25 

6960014 MTMR9 Homo sapiens myotubularin related protein 9 (MTMR9), mRNA. 0,466 8,48E-45 

5690687 CTGF Homo sapiens connective tissue growth factor (CTGF), mRNA. 0,492 7,44E-18 

5420326 RTCD1 
Homo sapiens RNA terminal phosphate cyclase domain 1 (RTCD1), 
mRNA. 0,498 3,26E-28 

5090215 IFI6 
Homo sapiens interferon, alpha-inducible protein 6 (IFI6), 
transcript variant 3, mRNA. 0,501 4,62E-30 

10079 F3 
Homo sapiens coagulation factor III (thromboplastin, tissue 
factor) (F3), mRNA. 0,503 2,03E-17 

3120138 F3 
Homo sapiens coagulation factor III (thromboplastin, tissue 
factor) (F3), mRNA. 0,511 1,45E-18 

770408 SERPINE1 

Homo sapiens serpin peptidase inhibitor, clade E (nexin, 
plasminogen activator inhibitor type 1), member 1 (SERPINE1), 
mRNA. 0,523 2,2E-19 

1010246 IFI6 
Homo sapiens interferon, alpha-inducible protein 6 (IFI6), 
transcript variant 2, mRNA. 0,531 1,8E-20 

2650598 CYP4V2 
Homo sapiens cytochrome P450, family 4, subfamily V, 
polypeptide 2 (CYP4V2), mRNA. 0,542 4,11E-19 

3840154 SPP1 
Homo sapiens secreted phosphoprotein 1 (SPP1), transcript 
variant 1, mRNA. 0,55 5,16E-20 

5570279 HIST1H1C Homo sapiens histone cluster 1, H1c (HIST1H1C), mRNA. 0,552 7,01E-22 

3140543 ZMAT3 
Homo sapiens zinc finger, matrin type 3 (ZMAT3), transcript 
variant 2, mRNA. 0,556 2,35E-31 

3930452 CDC2L6 
Homo sapiens cell division cycle 2-like 6 (CDK8-like) (CDC2L6), 
mRNA. 0,565 3,47E-20 

3460070 SPP1 
Homo sapiens secreted phosphoprotein 1 (SPP1), transcript 
variant 2, mRNA. 0,578 4,81E-15 

3450735 UGT1A6 
Homo sapiens UDP glucuronosyltransferase 1 family, polypeptide 
A6 (UGT1A6), transcript variant 2, mRNA. 0,58 3,79E-14 

650678 TAGLN Homo sapiens transgelin (TAGLN), transcript variant 2, mRNA. 0,582 7,12E-30 
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2100196 ISG15 Homo sapiens ISG15 ubiquitin-like modifier (ISG15), mRNA. 0,585 3,34E-18 

2470600 KATNAL1 
Homo sapiens katanin p60 subunit A-like 1 (KATNAL1), transcript 
variant 2, mRNA. 0,585 9,99E-22 

7610286 HPRT1 
Homo sapiens hypoxanthine phosphoribosyltransferase 1 (Lesch-
Nyhan syndrome) (HPRT1), mRNA. 0,586 3,15E-19 

240400 PMEPA1 
Homo sapiens prostate transmembrane protein, androgen 
induced 1 (PMEPA1), transcript variant 2, mRNA. 0,587 3,72E-18 

5550431 MMD 
Homo sapiens monocyte to macrophage differentiation-
associated (MMD), mRNA. 0,588 5,69E-27 

7650333 PSAP Homo sapiens prosaposin (PSAP), transcript variant 2, mRNA. 0,589 5,67E-32 

3780095 AOX1 Homo sapiens aldehyde oxidase 1 (AOX1), mRNA. 0,594 3,63E-18 

2340626 TFB1M 
Homo sapiens transcription factor B1, mitochondrial (TFB1M), 
mRNA. 0,599 2,16E-20 

5860010 CDS1 
Homo sapiens CDP-diacylglycerol synthase (phosphatidate 
cytidylyltransferase) 1 (CDS1), mRNA. 0,604 1,05E-17 

4490010 DAAM1 
Homo sapiens dishevelled associated activator of morphogenesis 
1 (DAAM1), mRNA. 0,605 9,45E-14 

5360424 RPS6KA2 
Homo sapiens ribosomal protein S6 kinase, 90kDa, polypeptide 2 
(RPS6KA2), transcript variant 2, mRNA. 0,606 8,54E-24 

2970762 HCCS 
Homo sapiens holocytochrome c synthase (cytochrome c heme-
lyase) (HCCS), mRNA. 0,606 1,62E-14 

6400270 HPRT1 
Homo sapiens hypoxanthine phosphoribosyltransferase 1 (Lesch-
Nyhan syndrome) (HPRT1), mRNA. 0,607 4,78E-20 

6200086 PSAP Homo sapiens prosaposin (PSAP), transcript variant 1, mRNA. 0,608 5,11E-29 

2510091 COL8A1 
Homo sapiens collagen, type VIII, alpha 1 (COL8A1), transcript 
variant 2, mRNA. 0,618 7,03E-31 

4290088 MSRB3 
Homo sapiens methionine sulfoxide reductase B3 (MSRB3), 
transcript variant 1, mRNA. 0,62 1,2E-17 

4010086 OKL38 
Homo sapiens pregnancy-induced growth inhibitor (OKL38), 
transcript variant 1, mRNA. 0,623 9,59E-20 

3120431 IMPDH1 
Homo sapiens IMP (inosine monophosphate) dehydrogenase 1 
(IMPDH1), transcript variant 1, mRNA. 0,623 2,07E-36 

2760452 RPS29 
Homo sapiens ribosomal protein S29 (RPS29), transcript variant 2, 
mRNA. 0,625 1,27E-07 

2260066 CLIP1 
Homo sapiens CAP-GLY domain containing linker protein 1 
(CLIP1), transcript variant 1, mRNA. 0,625 1,69E-22 

2000546 C3orf10 
Homo sapiens chromosome 3 open reading frame 10 (C3orf10), 
mRNA. 0,63 7,54E-17 

6370703 UGT1A6 
Homo sapiens UDP glucuronosyltransferase 1 family, polypeptide 
A6 (UGT1A6), transcript variant 1, mRNA. 0,631 3,16E-16 

2940369 SKP1 
Homo sapiens S-phase kinase-associated protein 1 (SKP1), 
transcript variant 1, mRNA. 0,632 8E-25 

510577 TRIML2 Homo sapiens tripartite motif family-like 2 (TRIML2), mRNA. 0,632 1,9E-28 

2140634 VPS24 
Homo sapiens vacuolar protein sorting 24 homolog (S. cerevisiae) 
(VPS24), transcript variant 2, mRNA. 0,632 1,36E-24 

730040 LAMB3 
Homo sapiens laminin, beta 3 (LAMB3), transcript variant 1, 
mRNA. 0,635 4,14E-21 

3940088 ZBED2 Homo sapiens zinc finger, BED-type containing 2 (ZBED2), mRNA. 0,635 4,94E-19 

6400717 SFTA1P 
Homo sapiens surfactant associated 1 (pseudogene) (SFTA1P), 
non-coding RNA. 0,637 1,88E-16 

4880392 KIAA1539 Homo sapiens KIAA1539 (KIAA1539), mRNA. 0,637 1,25E-21 

5260070 HES4 
Homo sapiens hairy and enhancer of split 4 (Drosophila) (HES4), 
mRNA. 0,637 1,2E-20 
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510100 CBY1 
Homo sapiens chibby homolog 1 (Drosophila) (CBY1), transcript 
variant 1, mRNA. 0,64 2,58E-20 

5810685 THBS1 Homo sapiens thrombospondin 1 (THBS1), mRNA. 0,64 1,15E-19 

4670059 ZAK 
Homo sapiens sterile alpha motif and leucine zipper containing 
kinase AZK (ZAK), transcript variant 2, mRNA. 0,642 2,84E-21 

4290148 HIST2H2AA4 Homo sapiens histone cluster 2, H2aa4 (HIST2H2AA4), mRNA. 0,643 3,76E-15 

3140092 TRAK1 
Homo sapiens trafficking protein, kinesin binding 1 (TRAK1), 
mRNA. 0,644 1,13E-20 

380026 C1orf116 
Homo sapiens chromosome 1 open reading frame 116 (C1orf116), 
mRNA. 0,645 3,34E-17 

730491 C1orf116 
Homo sapiens chromosome 1 open reading frame 116 (C1orf116), 
transcript variant 1, mRNA. 0,645 8,19E-23 

6370133 SEC23B 
Homo sapiens Sec23 homolog B (S. cerevisiae) (SEC23B), 
transcript variant 2, mRNA. 0,646 6,64E-21 

3780053 PALLD 
Homo sapiens palladin, cytoskeletal associated protein (PALLD), 
transcript variant 2, mRNA. 0,647 1,35E-26 

3870338 IFI44L Homo sapiens interferon-induced protein 44-like (IFI44L), mRNA. 0,647 4,98E-27 

6940360 ACVR1 Homo sapiens activin A receptor, type I (ACVR1), mRNA. 0,647 9,34E-19 

270615 ABCC3 
Homo sapiens ATP-binding cassette, sub-family C (CFTR/MRP), 
member 3 (ABCC3), mRNA. 0,647 3,16E-28 

2970730 MYADM 
Homo sapiens myeloid-associated differentiation marker 
(MYADM), transcript variant 4, mRNA. 0,648 7,52E-22 

7200156 ITGB2 

Homo sapiens integrin, beta 2 (antigen CD18 (p95), lymphocyte 
function-associated antigen 1; macrophage antigen 1 (mac-1) 
beta subunit) (ITGB2), mRNA. 0,653 3,06E-23 

110161 EFR3A Homo sapiens EFR3 homolog A (S. cerevisiae) (EFR3A), mRNA. 0,653 3,22E-18 

6580091 LOC339352 PREDICTED: Homo sapiens misc_RNA (LOC339352), miscRNA. 0,653 1,16E-15 

1980209 SEC23B 
Homo sapiens Sec23 homolog B (S. cerevisiae) (SEC23B), 
transcript variant 2, mRNA. 0,654 4,19E-16 

990372 COL17A1 Homo sapiens collagen, type XVII, alpha 1 (COL17A1), mRNA. 0,655 3,87E-19 

3610129 HSD17B1 
Homo sapiens hydroxysteroid (17-beta) dehydrogenase 1 
(HSD17B1), mRNA. 0,657 3,27E-21 

1430673 SDCBP2 
Homo sapiens syndecan binding protein (syntenin) 2 (SDCBP2), 
transcript variant 2, mRNA. 0,658 2,15E-18 

2640324 SLC46A3 
Homo sapiens solute carrier family 46, member 3 (SLC46A3), 
mRNA. 0,658 8,47E-15 

4290605 SLC44A1 
Homo sapiens solute carrier family 44, member 1 (SLC44A1), 
mRNA. 0,658 5,32E-21 

3440224 YRDC 
Homo sapiens yrdC domain containing (E. coli) (YRDC), nuclear 
gene encoding mitochondrial protein, mRNA. 0,662 2,14E-23 

4050161 STX6 Homo sapiens syntaxin 6 (STX6), mRNA. 0,662 5,04E-18 

240594 ANXA3 Homo sapiens annexin A3 (ANXA3), mRNA. 0,662 1,49E-20 

6290592 LOC649821 
PREDICTED: Homo sapiens similar to 60S ribosomal protein L14 
(CAG-ISL 7), transcript variant 1 (LOC649821), mRNA. 0,663 5,11E-07 

3930605 CYR61 
Homo sapiens cysteine-rich, angiogenic inducer, 61 (CYR61), 
mRNA. 0,663 3,51E-19 

1090221 VPS37A 
Homo sapiens vacuolar protein sorting 37 homolog A (S. 
cerevisiae) (VPS37A), mRNA. 0,663 2,59E-15 

3360452 COL8A1 
Homo sapiens collagen, type VIII, alpha 1 (COL8A1), transcript 
variant 2, mRNA. 0,665 1,78E-14 

2120270 COL17A1 Homo sapiens collagen, type XVII, alpha 1 (COL17A1), mRNA. 0,666 1,05E-14 

7000086 KCTD20 
Homo sapiens potassium channel tetramerisation domain 
containing 20 (KCTD20), mRNA. 0,666 4,62E-17 
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3290458 FEZ1 
Homo sapiens fasciculation and elongation protein zeta 1 (zygin I) 
(FEZ1), transcript variant 1, mRNA. 0,666 1,45E-27 

2480487 STX6 Homo sapiens syntaxin 6 (STX6), mRNA. 0,669 2,67E-25 

4640066 VAMP3 
Homo sapiens vesicle-associated membrane protein 3 
(cellubrevin) (VAMP3), mRNA. 0,67 8,72E-15 

1510091 VPS36 
Homo sapiens vacuolar protein sorting 36 homolog (S. cerevisiae) 
(VPS36), mRNA. 0,673 5,2E-12 

5690762 FAM18B 
Homo sapiens family with sequence similarity 18, member B 
(FAM18B), mRNA. 0,675 3,85E-13 

4610433 ANGPTL4 
Homo sapiens angiopoietin-like 4 (ANGPTL4), transcript variant 1, 
mRNA. 0,675 3,05E-31 

4570091 NDUFAF3 

Homo sapiens NADH dehydrogenase (ubiquinone) 1 alpha 
subcomplex, assembly factor 3 (NDUFAF3), nuclear gene encoding 
mitochondrial protein, transcript variant 1, mRNA. 0,677 1,37E-36 

1770402 PIR 
Homo sapiens pirin (iron-binding nuclear protein) (PIR), transcript 
variant 2, mRNA. 0,677 2,99E-13 

130360 IDS 
Homo sapiens iduronate 2-sulfatase (Hunter syndrome) (IDS), 
transcript variant 1, mRNA. 0,677 1,75E-29 

1820592 HIST2H2AA3 Homo sapiens histone cluster 2, H2aa3 (HIST2H2AA3), mRNA. 0,677 4,36E-06 

830164 ZFP36L1 
Homo sapiens zinc finger protein 36, C3H type-like 1 (ZFP36L1), 
mRNA. 0,679 3,81E-08 

4010554 C13orf1 
Homo sapiens chromosome 13 open reading frame 1 (C13orf1), 
mRNA. 0,68 3,24E-14 

2480739 SKP1A 
Homo sapiens S-phase kinase-associated protein 1A (p19A) 
(SKP1A), transcript variant 1, mRNA. 0,682 8,04E-19 

2060440 MAFB 
Homo sapiens v-maf musculoaponeurotic fibrosarcoma oncogene 
homolog B (avian) (MAFB), mRNA. 0,683 2,18E-20 

5310168 HLA-B 
Homo sapiens major histocompatibility complex, class I, B (HLA-
B), mRNA. 0,684 2,28E-16 

770672 THOP1 Homo sapiens thimet oligopeptidase 1 (THOP1), mRNA. 0,685 2,08E-20 

6200332 VPS24 
Homo sapiens vacuolar protein sorting 24 homolog (S. cerevisiae) 
(VPS24), transcript variant 2, mRNA. 0,686 2,73E-14 

2640292 CTGF Homo sapiens connective tissue growth factor (CTGF), mRNA. 0,686 1,46E-06 

3170162 PRNP Homo sapiens prion protein (PRNP), transcript variant 3, mRNA. 0,686 1,32E-20 

5420025 UBE3B 
Homo sapiens ubiquitin protein ligase E3B (UBE3B), transcript 
variant 1, mRNA. 0,687 3,78E-11 

1230025 CYB5R1 Homo sapiens cytochrome b5 reductase 1 (CYB5R1), mRNA. 0,688 4,62E-17 

4070427 TTLL11 
Homo sapiens tubulin tyrosine ligase-like family, member 11 
(TTLL11), mRNA. 0,691 5,47E-12 

7160010 RNF19A 
Homo sapiens ring finger protein 19A (RNF19A), transcript variant 
2, mRNA. 0,693 2,22E-05 

6220746 GLIPR1 Homo sapiens GLI pathogenesis-related 1 (GLIPR1), mRNA. 0,694 4,99E-17 

7550608 TMEM9B 
Homo sapiens TMEM9 domain family, member B (TMEM9B), 
mRNA. 0,694 1,16E-21 

1690709 UBE3C Homo sapiens ubiquitin protein ligase E3C (UBE3C), mRNA. 0,695 2,67E-18 

5130091 DICER1 
Homo sapiens Dicer1, Dcr-1 homolog (Drosophila) (DICER1), 
transcript variant 2, mRNA. 0,696 1,11E-11 

2510220 IFI35 Homo sapiens interferon-induced protein 35 (IFI35), mRNA. 0,696 1,32E-13 

2360326 TAGLN Homo sapiens transgelin (TAGLN), transcript variant 2, mRNA. 0,697 3,11E-13 

610451 HIST2H2AA3 Homo sapiens histone cluster 2, H2aa3 (HIST2H2AA3), mRNA. 0,698 3,97E-13 

6130259 LOC402644 
PREDICTED: Homo sapiens similar to peptidylprolyl isomerase A 
isoform 1 (LOC402644), mRNA. 0,698 0,000291 

7380367 C9orf69 Homo sapiens chromosome 9 open reading frame 69 (C9orf69), 0,698 5,1E-16 



 220 

mRNA. 

5570427 GLS Homo sapiens glutaminase (GLS), mRNA. 0,699 2,5E-07 

 
Supplementary Table 4 
The list of transcripts downregulated by at least 30% upon overexpression of miR-301b. 
 

Probe 
ID 

Gene 
symbol Definition 

Fold 
change 

p-value 
(BH) 

3990170 IFI27 
Homo sapiens interferon, alpha-inducible protein 27 (IFI27), 
transcript variant 2, mRNA. 0,307 1,1E-26 

6960014 MTMR9 Homo sapiens myotubularin related protein 9 (MTMR9), mRNA. 0,462 6,66E-44 

7100193 RTCD1 
Homo sapiens RNA terminal phosphate cyclase domain 1 (RTCD1), 
mRNA. 0,478 1,14E-24 

5090215 IFI6 
Homo sapiens interferon, alpha-inducible protein 6 (IFI6), 
transcript variant 3, mRNA. 0,483 2,76E-31 

2760452 RPS29 
Homo sapiens ribosomal protein S29 (RPS29), transcript variant 2, 
mRNA. 0,52 5,44E-11 

6200086 PSAP Homo sapiens prosaposin (PSAP), transcript variant 1, mRNA. 0,525 2,21E-33 

5570279 HIST1H1C Homo sapiens histone cluster 1, H1c (HIST1H1C), mRNA. 0,527 2,84E-23 

1010246 IFI6 
Homo sapiens interferon, alpha-inducible protein 6 (IFI6), 
transcript variant 2, mRNA. 0,529 9,38E-21 

7650333 PSAP Homo sapiens prosaposin (PSAP), transcript variant 2, mRNA. 0,536 1,78E-36 

3930452 CDC2L6 
Homo sapiens cell division cycle 2-like 6 (CDK8-like) (CDC2L6), 
mRNA. 0,554 8,48E-20 

5860010 CDS1 
Homo sapiens CDP-diacylglycerol synthase (phosphatidate 
cytidylyltransferase) 1 (CDS1), mRNA. 0,555 5,86E-21 

2340626 TFB1M 
Homo sapiens transcription factor B1, mitochondrial (TFB1M), 
mRNA. 0,562 1,37E-22 

3140543 ZMAT3 
Homo sapiens zinc finger, matrin type 3 (ZMAT3), transcript 
variant 2, mRNA. 0,562 2,87E-30 

5360424 RPS6KA2 
Homo sapiens ribosomal protein S6 kinase, 90kDa, polypeptide 2 
(RPS6KA2), transcript variant 2, mRNA. 0,57 9,41E-26 

5550431 MMD 
Homo sapiens monocyte to macrophage differentiation-
associated (MMD), mRNA. 0,571 2,39E-31 

5420326 RTCD1 
Homo sapiens RNA terminal phosphate cyclase domain 1 (RTCD1), 
mRNA. 0,572 3,95E-23 

3460070 SPP1 
Homo sapiens secreted phosphoprotein 1 (SPP1), transcript 
variant 2, mRNA. 0,577 2,43E-15 

2510091 COL8A1 
Homo sapiens collagen, type VIII, alpha 1 (COL8A1), transcript 
variant 2, mRNA. 0,579 8,43E-34 

1090221 VPS37A 
Homo sapiens vacuolar protein sorting 37 homolog A (S. 
cerevisiae) (VPS37A), mRNA. 0,581 1,88E-19 

510100 CBY1 
Homo sapiens chibby homolog 1 (Drosophila) (CBY1), transcript 
variant 1, mRNA. 0,584 4,98E-23 

1820592 HIST2H2AA3 Homo sapiens histone cluster 2, H2aa3 (HIST2H2AA3), mRNA. 0,586 3,83E-09 

6400270 HPRT1 
Homo sapiens hypoxanthine phosphoribosyltransferase 1 (Lesch-
Nyhan syndrome) (HPRT1), mRNA. 0,587 3,02E-21 

2640324 SLC46A3 
Homo sapiens solute carrier family 46, member 3 (SLC46A3), 
mRNA. 0,591 1,49E-20 

3450735 UGT1A6 
Homo sapiens UDP glucuronosyltransferase 1 family, polypeptide 
A6 (UGT1A6), transcript variant 2, mRNA. 0,592 1,91E-12 

990372 COL17A1 Homo sapiens collagen, type XVII, alpha 1 (COL17A1), mRNA. 0,592 1,13E-22 
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3120431 IMPDH1 
Homo sapiens IMP (inosine monophosphate) dehydrogenase 1 
(IMPDH1), transcript variant 1, mRNA. 0,595 1,72E-39 

2260066 CLIP1 
Homo sapiens CAP-GLY domain containing linker protein 1 
(CLIP1), transcript variant 1, mRNA. 0,6 3,26E-21 

2000546 C3orf10 
Homo sapiens chromosome 3 open reading frame 10 (C3orf10), 
mRNA. 0,601 2E-18 

5570427 GLS Homo sapiens glutaminase (GLS), mRNA. 0,602 1,15E-11 

2100196 ISG15 Homo sapiens ISG15 ubiquitin-like modifier (ISG15), mRNA. 0,605 4,65E-17 

2650598 CYP4V2 
Homo sapiens cytochrome P450, family 4, subfamily V, 
polypeptide 2 (CYP4V2), mRNA. 0,606 4,13E-16 

2060440 MAFB 
Homo sapiens v-maf musculoaponeurotic fibrosarcoma oncogene 
homolog B (avian) (MAFB), mRNA. 0,606 9,29E-29 

7610286 HPRT1 
Homo sapiens hypoxanthine phosphoribosyltransferase 1 (Lesch-
Nyhan syndrome) (HPRT1), mRNA. 0,608 3,24E-18 

150474 CA12 
Homo sapiens carbonic anhydrase XII (CA12), transcript variant 1, 
mRNA. 0,612 3,21E-30 

7200156 ITGB2 

Homo sapiens integrin, beta 2 (antigen CD18 (p95), lymphocyte 
function-associated antigen 1; macrophage antigen 1 (mac-1) 
beta subunit) (ITGB2), mRNA. 0,619 4,77E-27 

3120138 F3 
Homo sapiens coagulation factor III (thromboplastin, tissue factor) 
(F3), mRNA. 0,619 5,66E-13 

770408 SERPINE1 

Homo sapiens serpin peptidase inhibitor, clade E (nexin, 
plasminogen activator inhibitor type 1), member 1 (SERPINE1), 
mRNA. 0,62 2,3E-13 

4290148 HIST2H2AA4 Homo sapiens histone cluster 2, H2aa4 (HIST2H2AA4), mRNA. 0,621 1,42E-17 

2470600 KATNAL1 
Homo sapiens katanin p60 subunit A-like 1 (KATNAL1), transcript 
variant 2, mRNA. 0,622 1,26E-18 

4290605 SLC44A1 
Homo sapiens solute carrier family 44, member 1 (SLC44A1), 
mRNA. 0,623 4,14E-23 

2120270 COL17A1 Homo sapiens collagen, type XVII, alpha 1 (COL17A1), mRNA. 0,626 1,65E-22 

3940088 ZBED2 Homo sapiens zinc finger, BED-type containing 2 (ZBED2), mRNA. 0,626 6,69E-20 

1980209 SEC23B 
Homo sapiens Sec23 homolog B (S. cerevisiae) (SEC23B), 
transcript variant 2, mRNA. 0,628 2,05E-19 

2140634 VPS24 
Homo sapiens vacuolar protein sorting 24 homolog (S. cerevisiae) 
(VPS24), transcript variant 2, mRNA. 0,63 1,72E-24 

5130091 DICER1 
Homo sapiens Dicer1, Dcr-1 homolog (Drosophila) (DICER1), 
transcript variant 2, mRNA. 0,63 3,99E-17 

4050161 STX6 Homo sapiens syntaxin 6 (STX6), mRNA. 0,63 9,38E-21 

610451 HIST2H2AA3 Homo sapiens histone cluster 2, H2aa3 (HIST2H2AA3), mRNA. 0,631 2,81E-18 

3840154 SPP1 
Homo sapiens secreted phosphoprotein 1 (SPP1), transcript 
variant 1, mRNA. 0,632 3,36E-15 

3870338 IFI44L Homo sapiens interferon-induced protein 44-like (IFI44L), mRNA. 0,634 2,25E-24 

2970762 HCCS 
Homo sapiens holocytochrome c synthase (cytochrome c heme-
lyase) (HCCS), mRNA. 0,636 5,02E-13 

6370133 SEC23B 
Homo sapiens Sec23 homolog B (S. cerevisiae) (SEC23B), 
transcript variant 2, mRNA. 0,637 1,68E-19 

2690411 GOLSYN 
Homo sapiens Golgi-localized protein (GOLSYN), transcript variant 
7, mRNA. 0,638 7,97E-22 

6330377 ATP6V0D1 
Homo sapiens ATPase, H+ transporting, lysosomal 38kDa, V0 
subunit d1 (ATP6V0D1), mRNA. 0,646 7,47E-20 

2480487 STX6 Homo sapiens syntaxin 6 (STX6), mRNA. 0,648 2,43E-25 

7380367 C9orf69 
Homo sapiens chromosome 9 open reading frame 69 (C9orf69), 
mRNA. 0,65 1,01E-19 
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3140092 TRAK1 
Homo sapiens trafficking protein, kinesin binding 1 (TRAK1), 
mRNA. 0,652 1,1E-20 

240400 PMEPA1 
Homo sapiens prostate transmembrane protein, androgen 
induced 1 (PMEPA1), transcript variant 2, mRNA. 0,652 1,01E-13 

3360452 COL8A1 
Homo sapiens collagen, type VIII, alpha 1 (COL8A1), transcript 
variant 2, mRNA. 0,657 5,16E-13 

730040 LAMB3 
Homo sapiens laminin, beta 3 (LAMB3), transcript variant 1, 
mRNA. 0,658 1,63E-19 

3890373 ITGB2 
Homo sapiens integrin, beta 2 (complement component 3 
receptor 3 and 4 subunit) (ITGB2), mRNA. 0,658 4,46E-26 

4640066 VAMP3 
Homo sapiens vesicle-associated membrane protein 3 
(cellubrevin) (VAMP3), mRNA. 0,66 1,49E-14 

6580091 LOC339352 PREDICTED: Homo sapiens misc_RNA (LOC339352), miscRNA. 0,661 4,01E-13 

6940360 ACVR1 Homo sapiens activin A receptor, type I (ACVR1), mRNA. 0,661 1,94E-15 

6100022 HIST2H2AC Homo sapiens histone cluster 2, H2ac (HIST2H2AC), mRNA. 0,661 2,25E-27 

110161 EFR3A Homo sapiens EFR3 homolog A (S. cerevisiae) (EFR3A), mRNA. 0,662 3,2E-22 

5220070 HLA-F 
Homo sapiens major histocompatibility complex, class I, F (HLA-F), 
transcript variant 1, mRNA. 0,662 1,92E-10 

770538 LYSMD2 
Homo sapiens LysM, putative peptidoglycan-binding, domain 
containing 2 (LYSMD2), mRNA. 0,664 5,69E-17 

2940369 SKP1 
Homo sapiens S-phase kinase-associated protein 1 (SKP1), 
transcript variant 1, mRNA. 0,665 1,06E-19 

4570091 NDUFAF3 

Homo sapiens NADH dehydrogenase (ubiquinone) 1 alpha 
subcomplex, assembly factor 3 (NDUFAF3), nuclear gene encoding 
mitochondrial protein, transcript variant 1, mRNA. 0,665 1,03E-33 

3610129 HSD17B1 
Homo sapiens hydroxysteroid (17-beta) dehydrogenase 1 
(HSD17B1), mRNA. 0,665 1,09E-19 

1690446 PNPLA6 
Homo sapiens patatin-like phospholipase domain containing 6 
(PNPLA6), mRNA. 0,667 1,01E-15 

6580553 ABCC5 
Homo sapiens ATP-binding cassette, sub-family C (CFTR/MRP), 
member 5 (ABCC5), transcript variant 1, mRNA. 0,667 1,8E-13 

5490626 SUMF1 Homo sapiens sulfatase modifying factor 1 (SUMF1), mRNA. 0,668 1,32E-25 

4670059 ZAK 
Homo sapiens sterile alpha motif and leucine zipper containing 
kinase AZK (ZAK), transcript variant 2, mRNA. 0,671 1,62E-18 

6200332 VPS24 
Homo sapiens vacuolar protein sorting 24 homolog (S. cerevisiae) 
(VPS24), transcript variant 2, mRNA. 0,673 6,11E-15 

270615 ABCC3 
Homo sapiens ATP-binding cassette, sub-family C (CFTR/MRP), 
member 3 (ABCC3), mRNA. 0,673 4,33E-24 

2480440 C3orf64 
Homo sapiens chromosome 3 open reading frame 64 (C3orf64), 
mRNA. 0,674 1,04E-12 

2450725 SLC3A2 

Homo sapiens solute carrier family 3 (activators of dibasic and 
neutral amino acid transport), member 2 (SLC3A2), transcript 
variant 6, mRNA. 0,675 1,73E-16 

4880392 KIAA1539 Homo sapiens KIAA1539 (KIAA1539), mRNA. 0,677 1,02E-17 

510577 TRIML2 Homo sapiens tripartite motif family-like 2 (TRIML2), mRNA. 0,678 3,83E-24 

7550608 TMEM9B 
Homo sapiens TMEM9 domain family, member B (TMEM9B), 
mRNA. 0,68 2,29E-22 

2470762 SECISBP2L Homo sapiens SECIS binding protein 2-like (SECISBP2L), mRNA. 0,68 2,43E-14 

4490010 DAAM1 
Homo sapiens dishevelled associated activator of morphogenesis 
1 (DAAM1), mRNA. 0,681 4,37E-10 

60324 OCRL 
Homo sapiens oculocerebrorenal syndrome of Lowe (OCRL), 
transcript variant a, mRNA. 0,682 3,26E-22 
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5310168 HLA-B 
Homo sapiens major histocompatibility complex, class I, B (HLA-
B), mRNA. 0,682 1,97E-12 

1430673 SDCBP2 
Homo sapiens syndecan binding protein (syntenin) 2 (SDCBP2), 
transcript variant 2, mRNA. 0,684 7,55E-17 

6250484 CFH 
Homo sapiens complement factor H (CFH), transcript variant 2, 
mRNA. 0,687 9,43E-19 

2900441 ZBTB4 
Homo sapiens zinc finger and BTB domain containing 4 (ZBTB4), 
mRNA. 0,688 5,89E-16 

6940356 PREP Homo sapiens prolyl endopeptidase (PREP), mRNA. 0,689 8,33E-12 

4010086 OKL38 
Homo sapiens pregnancy-induced growth inhibitor (OKL38), 
transcript variant 1, mRNA. 0,69 2,34E-14 

1240551 ACADVL 

Homo sapiens acyl-Coenzyme A dehydrogenase, very long chain 
(ACADVL), nuclear gene encoding mitochondrial protein, 
transcript variant 1, mRNA. 0,691 1,37E-09 

6370703 UGT1A6 
Homo sapiens UDP glucuronosyltransferase 1 family, polypeptide 
A6 (UGT1A6), transcript variant 1, mRNA. 0,692 8,51E-13 

4150193 CD47 Homo sapiens CD47 molecule (CD47), transcript variant 2, mRNA. 0,693 8,61E-12 

6250553 ITFG3 
Homo sapiens integrin alpha FG-GAP repeat containing 3 (ITFG3), 
mRNA. 0,699 2,02E-15 

3360131 NAPRT1 
Homo sapiens nicotinate phosphoribosyltransferase domain 
containing 1 (NAPRT1), mRNA. 0,7 5,25E-14 

3780053 PALLD 
Homo sapiens palladin, cytoskeletal associated protein (PALLD), 
transcript variant 2, mRNA. 0,7 2,07E-22 

4290088 MSRB3 
Homo sapiens methionine sulfoxide reductase B3 (MSRB3), 
transcript variant 1, mRNA. 0,7 2,19E-11 

 
Supplementary Table 5 
The list of transcripts downregulated by at least 30% upon overexpression of miR-130b. 
 

Probe 
ID Gene symbol Definition 

Fold 
change 

p-value 
(BH) 

510100 CBY1 
Homo sapiens chibby homolog 1 (Drosophila) (CBY1), transcript 
variant 1, mRNA. 0,346 1,03E-32 

6400270 HPRT1 
Homo sapiens hypoxanthine phosphoribosyltransferase 1 
(Lesch-Nyhan syndrome) (HPRT1), mRNA. 0,376 1,38E-32 

3990170 IFI27 
Homo sapiens interferon, alpha-inducible protein 27 (IFI27), 
transcript variant 2, mRNA. 0,398 6,34E-24 

2230161 RTN4 Homo sapiens reticulon 4 (RTN4), transcript variant 3, mRNA. 0,4 3,93E-47 

2340626 TFB1M 
Homo sapiens transcription factor B1, mitochondrial (TFB1M), 
mRNA. 0,411 9,74E-29 

780402 RTN4 Homo sapiens reticulon 4 (RTN4), transcript variant 1, mRNA. 0,424 1,63E-25 

7610286 HPRT1 
Homo sapiens hypoxanthine phosphoribosyltransferase 1 
(Lesch-Nyhan syndrome) (HPRT1), mRNA. 0,433 4,44E-29 

4180431 LOC205251 PREDICTED: Homo sapiens misc_RNA (LOC205251), miscRNA. 0,441 3,03E-28 

4670059 ZAK 
Homo sapiens sterile alpha motif and leucine zipper containing 
kinase AZK (ZAK), transcript variant 2, mRNA. 0,444 4,38E-34 

1690709 UBE3C Homo sapiens ubiquitin protein ligase E3C (UBE3C), mRNA. 0,453 6,89E-34 

3120431 IMPDH1 
Homo sapiens IMP (inosine monophosphate) dehydrogenase 1 
(IMPDH1), transcript variant 1, mRNA. 0,453 2,28E-55 

4570091 NDUFAF3 

Homo sapiens NADH dehydrogenase (ubiquinone) 1 alpha 
subcomplex, assembly factor 3 (NDUFAF3), nuclear gene 
encoding mitochondrial protein, transcript variant 1, mRNA. 0,454 2,2E-59 
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650678 TAGLN Homo sapiens transgelin (TAGLN), transcript variant 2, mRNA. 0,465 2,78E-38 

7100193 RTCD1 
Homo sapiens RNA terminal phosphate cyclase domain 1 
(RTCD1), mRNA. 0,468 3,8E-26 

6270437 FJX1 Homo sapiens four jointed box 1 (Drosophila) (FJX1), mRNA. 0,474 5,69E-45 

6960014 MTMR9 Homo sapiens myotubularin related protein 9 (MTMR9), mRNA. 0,475 1,32E-44 

3610129 HSD17B1 
Homo sapiens hydroxysteroid (17-beta) dehydrogenase 1 
(HSD17B1), mRNA. 0,475 9,39E-36 

2970025 SEPW1 Homo sapiens selenoprotein W, 1 (SEPW1), mRNA. 0,477 1E-39 

3120138 F3 
Homo sapiens coagulation factor III (thromboplastin, tissue 
factor) (F3), mRNA. 0,481 7,65E-20 

7380367 C9orf69 
Homo sapiens chromosome 9 open reading frame 69 (C9orf69), 
mRNA. 0,484 4,53E-31 

1090500 LOC645166 
PREDICTED: Homo sapiens similar to lymphocyte-specific 
protein 1 (LOC645166), mRNA. 0,491 7,31E-34 

60324 OCRL 
Homo sapiens oculocerebrorenal syndrome of Lowe (OCRL), 
transcript variant a, mRNA. 0,492 1,65E-37 

2480554 POP7 
Homo sapiens processing of precursor 7, ribonuclease P/MRP 
subunit (S. cerevisiae) (POP7), mRNA. 0,497 7,95E-39 

1230639 TRAPPC4 
Homo sapiens trafficking protein particle complex 4 (TRAPPC4), 
mRNA. 0,503 3,2E-27 

3930452 CDC2L6 
Homo sapiens cell division cycle 2-like 6 (CDK8-like) (CDC2L6), 
mRNA. 0,504 1,57E-23 

6560750 UBE3C Homo sapiens ubiquitin protein ligase E3C (UBE3C), mRNA. 0,506 1,94E-26 

2100196 ISG15 Homo sapiens ISG15 ubiquitin-like modifier (ISG15), mRNA. 0,508 2,17E-22 

5420326 RTCD1 
Homo sapiens RNA terminal phosphate cyclase domain 1 
(RTCD1), mRNA. 0,51 1,49E-27 

150474 CA12 
Homo sapiens carbonic anhydrase XII (CA12), transcript variant 
1, mRNA. 0,513 1,62E-39 

2760452 RPS29 
Homo sapiens ribosomal protein S29 (RPS29), transcript variant 
2, mRNA. 0,513 5,99E-11 

770408 SERPINE1 

Homo sapiens serpin peptidase inhibitor, clade E (nexin, 
plasminogen activator inhibitor type 1), member 1 (SERPINE1), 
mRNA. 0,515 4,32E-20 

5690687 CTGF Homo sapiens connective tissue growth factor (CTGF), mRNA. 0,515 2,93E-17 

770672 THOP1 Homo sapiens thimet oligopeptidase 1 (THOP1), mRNA. 0,516 9,42E-36 

1010246 IFI6 
Homo sapiens interferon, alpha-inducible protein 6 (IFI6), 
transcript variant 2, mRNA. 0,517 8,31E-22 

5860050 LOC388564 
PREDICTED: Homo sapiens hypothetical gene supported by 
BC052596 (LOC388564), mRNA. 0,519 8,52E-31 

5570279 HIST1H1C Homo sapiens histone cluster 1, H1c (HIST1H1C), mRNA. 0,521 2,66E-24 

3140543 ZMAT3 
Homo sapiens zinc finger, matrin type 3 (ZMAT3), transcript 
variant 2, mRNA. 0,523 4,36E-33 

5260070 HES4 
Homo sapiens hairy and enhancer of split 4 (Drosophila) (HES4), 
mRNA. 0,523 2,8E-28 

6510377 TNFRSF12A 
Homo sapiens tumor necrosis factor receptor superfamily, 
member 12A (TNFRSF12A), mRNA. 0,525 5,09E-20 

6580091 LOC339352 PREDICTED: Homo sapiens misc_RNA (LOC339352), miscRNA. 0,525 7,69E-24 

620615 NDUFA7 
Homo sapiens NADH dehydrogenase (ubiquinone) 1 alpha 
subcomplex, 7, 14.5kDa (NDUFA7), mRNA. 0,528 1,53E-35 

2000546 C3orf10 
Homo sapiens chromosome 3 open reading frame 10 (C3orf10), 
mRNA. 0,528 4,07E-22 

5090215 IFI6 
Homo sapiens interferon, alpha-inducible protein 6 (IFI6), 
transcript variant 3, mRNA. 0,53 4,42E-29 
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4610433 ANGPTL4 
Homo sapiens angiopoietin-like 4 (ANGPTL4), transcript variant 
1, mRNA. 0,532 1,54E-44 

6330377 ATP6V0D1 
Homo sapiens ATPase, H+ transporting, lysosomal 38kDa, V0 
subunit d1 (ATP6V0D1), mRNA. 0,532 9,43E-29 

6250553 ITFG3 
Homo sapiens integrin alpha FG-GAP repeat containing 3 
(ITFG3), mRNA. 0,533 9,2E-28 

2360326 TAGLN Homo sapiens transgelin (TAGLN), transcript variant 2, mRNA. 0,537 2,87E-25 

5390603 UPF2 
Homo sapiens UPF2 regulator of nonsense transcripts homolog 
(yeast) (UPF2), transcript variant 2, mRNA. 0,539 2,61E-29 

7650333 PSAP Homo sapiens prosaposin (PSAP), transcript variant 2, mRNA. 0,539 1,32E-36 

2340521 C17orf61 
Homo sapiens chromosome 17 open reading frame 61 
(C17orf61), mRNA. 0,542 6,1E-22 

2100411 CDK2AP2 
Homo sapiens cyclin-dependent kinase 2 associated protein 2 
(CDK2AP2), mRNA. 0,542 5,68E-21 

5900725 PHLDA1 
Homo sapiens pleckstrin homology-like domain, family A, 
member 1 (PHLDA1), mRNA. 0,543 1,52E-31 

7050180 SLC22A5 
Homo sapiens solute carrier family 22 (organic cation 
transporter), member 5 (SLC22A5), mRNA. 0,543 4,39E-40 

1510608   Homo sapiens cDNA clone IMAGE:5261213 0,544 5,24E-26 

6480082 ARHGAP1 
Homo sapiens Rho GTPase activating protein 1 (ARHGAP1), 
mRNA. 0,544 4,73E-33 

6450424 NME3 
Homo sapiens non-metastatic cells 3, protein expressed in 
(NME3), mRNA. 0,545 7,56E-33 

4050161 STX6 Homo sapiens syntaxin 6 (STX6), mRNA. 0,55 6,88E-28 

2480487 STX6 Homo sapiens syntaxin 6 (STX6), mRNA. 0,551 5,82E-35 

7320435 DPM3 
Homo sapiens dolichyl-phosphate mannosyltransferase 
polypeptide 3 (DPM3), transcript variant 2, mRNA. 0,551 1,17E-27 

7210484 C6orf108 
Homo sapiens chromosome 6 open reading frame 108 
(C6orf108), transcript variant 2, mRNA. 0,553 1,53E-27 

4060437 C11orf70 
Homo sapiens chromosome 11 open reading frame 70 
(C11orf70), mRNA. 0,554 5,27E-20 

770538 LYSMD2 
Homo sapiens LysM, putative peptidoglycan-binding, domain 
containing 2 (LYSMD2), mRNA. 0,555 2,49E-23 

4200181 C19orf70 
Homo sapiens chromosome 19 open reading frame 70 
(C19orf70), mRNA. 0,556 3,11E-36 

3610735 F12 
Homo sapiens coagulation factor XII (Hageman factor) (F12), 
mRNA. 0,556 8,85E-27 

6840246 CTSA Homo sapiens cathepsin A (CTSA), transcript variant 1, mRNA. 0,556 6,21E-24 

5960411 BCYRN1 
Homo sapiens brain cytoplasmic RNA 1 (non-protein coding) 
(BCYRN1), non-coding RNA. 0,557 1,47E-17 

4640066 VAMP3 
Homo sapiens vesicle-associated membrane protein 3 
(cellubrevin) (VAMP3), mRNA. 0,557 6,66E-21 

6480184 LSMD1 Homo sapiens LSM domain containing 1 (LSMD1), mRNA. 0,559 1,83E-17 

6380037 LOC100130516 
PREDICTED: Homo sapiens hypothetical protein LOC100130516 
(LOC100130516), mRNA. 0,559 8,03E-25 

3800025 C2orf28 
Homo sapiens chromosome 2 open reading frame 28 (C2orf28), 
transcript variant 2, mRNA. 0,559 5,9E-27 

2470689 SPHK1 
Homo sapiens sphingosine kinase 1 (SPHK1), transcript variant 
1, mRNA. 0,562 2,96E-23 

2850520 DPM3 
Homo sapiens dolichyl-phosphate mannosyltransferase 
polypeptide 3 (DPM3), transcript variant 1, mRNA. 0,563 2,32E-20 

2650598 CYP4V2 
Homo sapiens cytochrome P450, family 4, subfamily V, 
polypeptide 2 (CYP4V2), mRNA. 0,564 3,41E-18 
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4480224 SRPRB 
Homo sapiens signal recognition particle receptor, B subunit 
(SRPRB), mRNA. 0,564 3,85E-34 

4150309 ZNHIT1 Homo sapiens zinc finger, HIT type 1 (ZNHIT1), mRNA. 0,565 2,01E-23 

1980209 SEC23B 
Homo sapiens Sec23 homolog B (S. cerevisiae) (SEC23B), 
transcript variant 2, mRNA. 0,566 6,17E-24 

50240 NDUFA3 
Homo sapiens NADH dehydrogenase (ubiquinone) 1 alpha 
subcomplex, 3, 9kDa (NDUFA3), mRNA. 0,566 3,99E-26 

240400 PMEPA1 
Homo sapiens prostate transmembrane protein, androgen 
induced 1 (PMEPA1), transcript variant 2, mRNA. 0,567 1,48E-19 

3940088 ZBED2 
Homo sapiens zinc finger, BED-type containing 2 (ZBED2), 
mRNA. 0,567 6,54E-23 

730739 TCEAL3 
Homo sapiens transcription elongation factor A (SII)-like 3 
(TCEAL3), transcript variant 2, mRNA. 0,568 1,29E-22 

10220 ANAPC11 
Homo sapiens anaphase promoting complex subunit 11 
(ANAPC11), transcript variant 4, mRNA. 0,568 1,42E-41 

630470 C19orf33 
Homo sapiens chromosome 19 open reading frame 33 
(C19orf33), mRNA. 0,569 3,21E-24 

6200086 PSAP Homo sapiens prosaposin (PSAP), transcript variant 1, mRNA. 0,57 1,2E-32 

4010270 LOC440731 
PREDICTED: Homo sapiens hypothetical LOC440731, transcript 
variant 2 (LOC440731), mRNA. 0,57 1,3E-21 

4010554 C13orf1 
Homo sapiens chromosome 13 open reading frame 1 (C13orf1), 
mRNA. 0,57 1,57E-25 

6370044 PTRH1 
Homo sapiens peptidyl-tRNA hydrolase 1 homolog (S. 
cerevisiae) (PTRH1), mRNA. 0,572 1,54E-25 

1690446 PNPLA6 
Homo sapiens patatin-like phospholipase domain containing 6 
(PNPLA6), mRNA. 0,573 1,68E-20 

4290148 HIST2H2AA4 Homo sapiens histone cluster 2, H2aa4 (HIST2H2AA4), mRNA. 0,574 1,73E-19 

2450592 ANGPTL4 
Homo sapiens angiopoietin-like 4 (ANGPTL4), transcript variant 
3, mRNA. 0,576 9,94E-13 

5860010 CDS1 
Homo sapiens CDP-diacylglycerol synthase (phosphatidate 
cytidylyltransferase) 1 (CDS1), mRNA. 0,577 2,64E-20 

2340092 TCEB1 
Homo sapiens transcription elongation factor B (SIII), 
polypeptide 1 (15kDa, elongin C) (TCEB1), mRNA. 0,577 1,2E-30 

6370133 SEC23B 
Homo sapiens Sec23 homolog B (S. cerevisiae) (SEC23B), 
transcript variant 2, mRNA. 0,578 2,01E-24 

6290091 SNORD104 
Homo sapiens small nucleolar RNA, C/D box 104 (SNORD104), 
small nucleolar RNA. 0,579 4,54E-18 

5570110 TRIOBP 
Homo sapiens TRIO and F-actin binding protein (TRIOBP), 
transcript variant 6, mRNA. 0,579 8,65E-37 

7550608 TMEM9B 
Homo sapiens TMEM9 domain family, member B (TMEM9B), 
mRNA. 0,58 2,33E-29 

2680438 C2orf28 
Homo sapiens chromosome 2 open reading frame 28 (C2orf28), 
transcript variant 2, mRNA. 0,58 2,13E-28 

1240482 LAGE3 Homo sapiens L antigen family, member 3 (LAGE3), mRNA. 0,58 4,26E-22 

6200332 VPS24 
Homo sapiens vacuolar protein sorting 24 homolog (S. 
cerevisiae) (VPS24), transcript variant 2, mRNA. 0,581 7,3E-22 

4040343 LOC100129673 
PREDICTED: Homo sapiens similar to hCG2042915 
(LOC100129673), mRNA. 0,581 1,21E-23 

6400717 SFTA1P 
Homo sapiens surfactant associated 1 (pseudogene) (SFTA1P), 
non-coding RNA. 0,585 1,88E-19 

10079 F3 
Homo sapiens coagulation factor III (thromboplastin, tissue 
factor) (F3), mRNA. 0,586 1,78E-13 
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5220438 C20orf52 
Homo sapiens chromosome 20 open reading frame 52 
(C20orf52), mRNA. 0,586 4,36E-27 

2970762 HCCS 
Homo sapiens holocytochrome c synthase (cytochrome c heme-
lyase) (HCCS), mRNA. 0,586 4,79E-15 

5360424 RPS6KA2 
Homo sapiens ribosomal protein S6 kinase, 90kDa, polypeptide 
2 (RPS6KA2), transcript variant 2, mRNA. 0,587 1,38E-25 

3390722 NICN1 Homo sapiens nicolin 1 (NICN1), mRNA. 0,588 8,97E-31 

7510632 TAF10 
Homo sapiens TAF10 RNA polymerase II, TATA box binding 
protein (TBP)-associated factor, 30kDa (TAF10), mRNA. 0,588 5,11E-28 

2140634 VPS24 
Homo sapiens vacuolar protein sorting 24 homolog (S. 
cerevisiae) (VPS24), transcript variant 2, mRNA. 0,589 7,94E-28 

3290458 FEZ1 
Homo sapiens fasciculation and elongation protein zeta 1 (zygin 
I) (FEZ1), transcript variant 1, mRNA. 0,589 1,44E-40 

5810743 LOC387882 Homo sapiens hypothetical protein (LOC387882), mRNA. 0,589 5,19E-22 

3060563 NR2C2AP 
Homo sapiens nuclear receptor 2C2-associated protein 
(NR2C2AP), mRNA. 0,59 1,4E-18 

2470600 KATNAL1 
Homo sapiens katanin p60 subunit A-like 1 (KATNAL1), 
transcript variant 2, mRNA. 0,591 1,42E-21 

4180612   
Homo sapiens mRNA; cDNA DKFZp434C1613 (from clone 
DKFZp434C1613) 0,591 1,95E-30 

5810685 THBS1 Homo sapiens thrombospondin 1 (THBS1), mRNA. 0,591 9,35E-23 

6580121 MID1IP1 
Homo sapiens MID1 interacting protein 1 (gastrulation specific 
G12 homolog (zebrafish)) (MID1IP1), mRNA. 0,591 1,14E-28 

4540465 C11orf70 
Homo sapiens chromosome 11 open reading frame 70 
(C11orf70), mRNA. 0,593 5,23E-19 

4070427 TTLL11 
Homo sapiens tubulin tyrosine ligase-like family, member 11 
(TTLL11), mRNA. 0,595 3,05E-19 

2450246 OSBPL5 
Homo sapiens oxysterol binding protein-like 5 (OSBPL5), 
transcript variant 2, mRNA. 0,595 3,49E-29 

3140092 TRAK1 
Homo sapiens trafficking protein, kinesin binding 1 (TRAK1), 
mRNA. 0,596 3,27E-25 

6100022 HIST2H2AC Homo sapiens histone cluster 2, H2ac (HIST2H2AC), mRNA. 0,597 3,3E-24 

620538 ROMO1 
Homo sapiens reactive oxygen species modulator 1 (ROMO1), 
nuclear gene encoding mitochondrial protein, mRNA. 0,599 4,78E-23 

2900441 ZBTB4 
Homo sapiens zinc finger and BTB domain containing 4 (ZBTB4), 
mRNA. 0,599 3,23E-25 

7050189 PRPF19 
Homo sapiens PRP19/PSO4 pre-mRNA processing factor 19 
homolog (S. cerevisiae) (PRPF19), mRNA. 0,599 3,28E-18 

1820592 HIST2H2AA3 Homo sapiens histone cluster 2, H2aa3 (HIST2H2AA3), mRNA. 0,6 1,63E-08 

2190689 OSBPL5 
Homo sapiens oxysterol binding protein-like 5 (OSBPL5), 
transcript variant 1, mRNA. 0,602 2,69E-32 

2510253 C10orf35 
Homo sapiens chromosome 10 open reading frame 35 
(C10orf35), mRNA. 0,602 2,76E-27 

1740717 BOLA2 Homo sapiens bolA homolog 2 (E. coli) (BOLA2), mRNA. 0,603 7,35E-17 

2640292 CTGF Homo sapiens connective tissue growth factor (CTGF), mRNA. 0,604 1,8E-10 

4290088 MSRB3 
Homo sapiens methionine sulfoxide reductase B3 (MSRB3), 
transcript variant 1, mRNA. 0,604 2,18E-19 

1780367 C12orf44 
Homo sapiens chromosome 12 open reading frame 44 
(C12orf44), transcript variant 2, mRNA. 0,605 7,48E-22 

5130332 ZNF213 Homo sapiens zinc finger protein 213 (ZNF213), mRNA. 0,608 1,09E-20 

1110228 TMEM136 Homo sapiens transmembrane protein 136 (TMEM136), mRNA. 0,608 4,02E-27 

4050463 TMEM218 Homo sapiens transmembrane protein 218 (TMEM218), mRNA. 0,61 3,53E-15 
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5670661 MGC71993 
Homo sapiens similar to DNA segment, Chr 11, Brigham & 
Womens Genetics 0434 expressed (MGC71993), mRNA. 0,611 1,55E-27 

2470484 RNASEK Homo sapiens ribonuclease, RNase K (RNASEK), mRNA. 0,612 1,61E-14 

520255 TUBB6 Homo sapiens tubulin, beta 6 (TUBB6), mRNA. 0,613 8,61E-28 

3360452 COL8A1 
Homo sapiens collagen, type VIII, alpha 1 (COL8A1), transcript 
variant 2, mRNA. 0,613 9,19E-18 

4780072 TCEAL3 
Homo sapiens transcription elongation factor A (SII)-like 3 
(TCEAL3), transcript variant 1, mRNA. 0,614 1,71E-33 

1240360 MRPL52 

Homo sapiens mitochondrial ribosomal protein L52 (MRPL52), 
nuclear gene encoding mitochondrial protein, transcript variant 
2, mRNA. 0,614 2,4E-21 

70634 RABAC1 Homo sapiens Rab acceptor 1 (prenylated) (RABAC1), mRNA. 0,614 2,86E-17 

6940561 IFI27L2 
Homo sapiens interferon, alpha-inducible protein 27-like 2 
(IFI27L2), mRNA. 0,616 4,66E-13 

3940564 FAM131A 
Homo sapiens family with sequence similarity 131, member A 
(FAM131A), mRNA. 0,616 5,61E-17 

2750309 MRPL53 
Homo sapiens mitochondrial ribosomal protein L53 (MRPL53), 
nuclear gene encoding mitochondrial protein, mRNA. 0,617 1,81E-15 

1940274 IFI27L2 
Homo sapiens interferon, alpha-inducible protein 27-like 2 
(IFI27L2), mRNA. 0,617 3,33E-18 

6520433 ZNF789 
Homo sapiens zinc finger protein 789 (ZNF789), transcript 
variant 2, mRNA. 0,617 5,3E-15 

1710202 LOC644869 
PREDICTED: Homo sapiens hypothetical protein LOC644869 
(LOC644869), mRNA. 0,617 5,4E-13 

1340400 C6orf129 
Homo sapiens chromosome 6 open reading frame 129 
(C6orf129), mRNA. 0,618 4,99E-18 

6380187 C21orf57 
Homo sapiens chromosome 21 open reading frame 57 
(C21orf57), transcript variant 1, mRNA. 0,619 1,38E-22 

3390093 BOLA3 
Homo sapiens bolA homolog 3 (E. coli) (BOLA3), transcript 
variant 2, mRNA. 0,619 7,4E-26 

5080367 CKLF 
Homo sapiens chemokine-like factor (CKLF), transcript variant 5, 
mRNA. 0,619 2,02E-24 

7150433 TCTEX1D2 Homo sapiens Tctex1 domain containing 2 (TCTEX1D2), mRNA. 0,62 5,95E-35 

3780095 AOX1 Homo sapiens aldehyde oxidase 1 (AOX1), mRNA. 0,62 2,42E-17 

7610747 MRPL24 

Homo sapiens mitochondrial ribosomal protein L24 (MRPL24), 
nuclear gene encoding mitochondrial protein, transcript variant 
1, mRNA. 0,62 3,07E-23 

540451 LOC127295 
PREDICTED: Homo sapiens similar to 60S ribosomal protein L36 
(LOC127295), mRNA. 0,621 4,82E-22 

3120707 CUTA 
Homo sapiens cutA divalent cation tolerance homolog (E. coli) 
(CUTA), transcript variant 5, mRNA. 0,621 3,02E-17 

3940132 ITGB4 
Homo sapiens integrin, beta 4 (ITGB4), transcript variant 2, 
mRNA. 0,622 1,79E-29 

6550180 ZMAT5 
Homo sapiens zinc finger, matrin type 5 (ZMAT5), transcript 
variant 1, mRNA. 0,623 3,24E-14 

5870446 ATP5G1 

Homo sapiens ATP synthase, H+ transporting, mitochondrial F0 
complex, subunit C1 (subunit 9) (ATP5G1), nuclear gene 
encoding mitochondrial protein, transcript variant 2, mRNA. 0,623 1,25E-29 

2510091 COL8A1 
Homo sapiens collagen, type VIII, alpha 1 (COL8A1), transcript 
variant 2, mRNA. 0,623 1,45E-27 

6040292 FBXO28 Homo sapiens F-box protein 28 (FBXO28), mRNA. 0,623 1,97E-16 

4290075 SRA1 Homo sapiens steroid receptor RNA activator 1 (SRA1), mRNA. 0,624 4,72E-16 

1570092 TUBB6 PREDICTED: Homo sapiens tubulin, beta 6 (TUBB6), mRNA. 0,624 2,47E-16 
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5490626 SUMF1 Homo sapiens sulfatase modifying factor 1 (SUMF1), mRNA. 0,625 4,94E-29 

1240551 ACADVL 

Homo sapiens acyl-Coenzyme A dehydrogenase, very long chain 
(ACADVL), nuclear gene encoding mitochondrial protein, 
transcript variant 1, mRNA. 0,625 3,03E-10 

7200156 ITGB2 

Homo sapiens integrin, beta 2 (antigen CD18 (p95), lymphocyte 
function-associated antigen 1; macrophage antigen 1 (mac-1) 
beta subunit) (ITGB2), mRNA. 0,626 3,69E-27 

4200541 FAM113B 
Homo sapiens family with sequence similarity 113, member B 
(FAM113B), mRNA. 0,628 2,1E-21 

4250398 STK4 Homo sapiens serine/threonine kinase 4 (STK4), mRNA. 0,628 2,64E-25 

6660270 MRPL17 
Homo sapiens mitochondrial ribosomal protein L17 (MRPL17), 
nuclear gene encoding mitochondrial protein, mRNA. 0,628 2,57E-24 

4780040 MRPL41 
Homo sapiens mitochondrial ribosomal protein L41 (MRPL41), 
nuclear gene encoding mitochondrial protein, mRNA. 0,628 2,48E-20 

1240521 PSMG4 
Homo sapiens proteasome (prosome, macropain) assembly 
chaperone 4 (PSMG4), transcript variant 2, mRNA. 0,629 3,24E-22 

1070671 LOC100129297 
PREDICTED: Homo sapiens hypothetical protein LOC100129297 
(LOC100129297), mRNA. 0,629 4,02E-08 

4290014 FLAD1 
Homo sapiens FAD1 flavin adenine dinucleotide synthetase 
homolog (S. cerevisiae) (FLAD1), transcript variant 2, mRNA. 0,63 1,77E-41 

730040 LAMB3 
Homo sapiens laminin, beta 3 (LAMB3), transcript variant 1, 
mRNA. 0,631 8E-22 

1660703 MGC72080 
Homo sapiens MGC72080 pseudogene (MGC72080) on 
chromosome 7. 0,631 7,81E-13 

6760414 C19orf60 
Homo sapiens chromosome 19 open reading frame 60 
(C19orf60), transcript variant 2, mRNA. 0,631 4,26E-11 

5310168 HLA-B 
Homo sapiens major histocompatibility complex, class I, B (HLA-
B), mRNA. 0,632 8,99E-20 

770687 FASTK 
Homo sapiens Fas-activated serine/threonine kinase (FASTK), 
transcript variant 4, mRNA. 0,632 3,09E-23 

2060110 TDP1 
Homo sapiens tyrosyl-DNA phosphodiesterase 1 (TDP1), 
transcript variant 1, mRNA. 0,633 6,2E-18 

6060731 MAPRE1 
Homo sapiens microtubule-associated protein, RP/EB family, 
member 1 (MAPRE1), mRNA. 0,633 5,41E-19 

5050156 BCL2L2 Homo sapiens BCL2-like 2 (BCL2L2), mRNA. 0,634 1,26E-15 

2760519 CKLF 
Homo sapiens chemokine-like factor (CKLF), transcript variant 6, 
mRNA. 0,634 1,09E-16 

270196 OBFC2B 
Homo sapiens oligonucleotide/oligosaccharide-binding fold 
containing 2B (OBFC2B), mRNA. 0,634 7,28E-18 

3140021 PCBD1 

Homo sapiens pterin-4 alpha-carbinolamine 
dehydratase/dimerization cofactor of hepatocyte nuclear factor 
1 alpha (PCBD1), mRNA. 0,635 4,25E-11 

4150687 NDUFB2 

Homo sapiens NADH dehydrogenase (ubiquinone) 1 beta 
subcomplex, 2, 8kDa (NDUFB2), nuclear gene encoding 
mitochondrial protein, mRNA. 0,636 2,71E-29 

7000307 ACSL4 
Homo sapiens acyl-CoA synthetase long-chain family member 4 
(ACSL4), transcript variant 1, mRNA. 0,636 4,04E-13 

3390577 MRRF 

Homo sapiens mitochondrial ribosome recycling factor (MRRF), 
nuclear gene encoding mitochondrial protein, transcript variant 
2, mRNA. 0,636 2,04E-33 

2030044 C1orf144 
Homo sapiens chromosome 1 open reading frame 144 
(C1orf144), mRNA. 0,637 1,25E-35 
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5700309 FAHD2B 
Homo sapiens fumarylacetoacetate hydrolase domain 
containing 2B (FAHD2B), mRNA. 0,637 7,32E-11 

6220746 GLIPR1 Homo sapiens GLI pathogenesis-related 1 (GLIPR1), mRNA. 0,637 7,06E-22 

7610593 TRAPPC5 
Homo sapiens trafficking protein particle complex 5 (TRAPPC5), 
transcript variant 3, mRNA. 0,638 1,54E-17 

990372 COL17A1 Homo sapiens collagen, type XVII, alpha 1 (COL17A1), mRNA. 0,638 9,58E-21 

7560092 TMEM126A 
Homo sapiens transmembrane protein 126A (TMEM126A), 
mRNA. 0,64 7,11E-20 

1400484 LDOC1 
Homo sapiens leucine zipper, down-regulated in cancer 1 
(LDOC1), mRNA. 0,64 1,06E-18 

5050242 TCEB1 
Homo sapiens transcription elongation factor B (SIII), 
polypeptide 1 (15kDa, elongin C) (TCEB1), mRNA. 0,641 1,24E-07 

4880392 KIAA1539 Homo sapiens KIAA1539 (KIAA1539), mRNA. 0,641 4,63E-22 

7380164 STX4 Homo sapiens syntaxin 4 (STX4), mRNA. 0,642 1E-07 

2640411 UNC84B Homo sapiens unc-84 homolog B (C. elegans) (UNC84B), mRNA. 0,642 9,88E-26 

5310286 SPA17 Homo sapiens sperm autoantigenic protein 17 (SPA17), mRNA. 0,643 1,38E-16 

3190671 ATP5D 

Homo sapiens ATP synthase, H+ transporting, mitochondrial F1 
complex, delta subunit (ATP5D), nuclear gene encoding 
mitochondrial protein, transcript variant 1, mRNA. 0,644 7,47E-17 

1510521 PAFAH1B3 
Homo sapiens platelet-activating factor acetylhydrolase, 
isoform Ib, gamma subunit 29kDa (PAFAH1B3), mRNA. 0,644 1,18E-27 

7330068 SF3B5 
Homo sapiens splicing factor 3b, subunit 5, 10kDa (SF3B5), 
mRNA. 0,645 1,67E-18 

6370468 BOLA2 Homo sapiens bolA homolog 2 (E. coli) (BOLA2), mRNA. 0,645 1,17E-13 

6280167 LOC401115 
PREDICTED: Homo sapiens hypothetical gene supported by 
BC038466; BC062790 (LOC401115), mRNA. 0,645 1,74E-23 

2140369 NDUFA11 

Homo sapiens NADH dehydrogenase (ubiquinone) 1 alpha 
subcomplex, 11, 14.7kDa (NDUFA11), nuclear gene encoding 
mitochondrial protein, mRNA. 0,645 1,03E-21 

4760288 ANAPC11 
Homo sapiens anaphase promoting complex subunit 11 
(ANAPC11), transcript variant 4, mRNA. 0,646 1,63E-23 

7210544 LOC100133328 
PREDICTED: Homo sapiens misc_RNA (LOC100133328), 
miscRNA. 0,646 4,62E-18 

3390129 C9orf103 
Homo sapiens chromosome 9 open reading frame 103 
(C9orf103), mRNA. 0,646 2,62E-23 

6370500 AGRN Homo sapiens agrin (AGRN), mRNA. 0,646 6,98E-17 

1510543 DNASE1L1 
Homo sapiens deoxyribonuclease I-like 1 (DNASE1L1), transcript 
variant 4, mRNA. 0,647 2,25E-14 

1580021 TCTEX1D2 Homo sapiens Tctex1 domain containing 2 (TCTEX1D2), mRNA. 0,648 1,7E-14 

2650164 FLJ10986 
Homo sapiens hypothetical protein FLJ10986 (FLJ10986), 
mRNA. 0,648 4,25E-32 

20435 LOC729279 PREDICTED: Homo sapiens misc_RNA (LOC729279), miscRNA. 0,648 3,03E-18 

3890373 ITGB2 
Homo sapiens integrin, beta 2 (complement component 3 
receptor 3 and 4 subunit) (ITGB2), mRNA. 0,648 2,1E-28 

3710725 ATP5E 

Homo sapiens ATP synthase, H+ transporting, mitochondrial F1 
complex, epsilon subunit (ATP5E), nuclear gene encoding 
mitochondrial protein, mRNA. 0,649 1,5E-18 

6520576 BOLA3 
Homo sapiens bolA homolog 3 (E. coli) (BOLA3), transcript 
variant 1, mRNA. 0,649 3,01E-22 

7400468 AP1G2 
Homo sapiens adaptor-related protein complex 1, gamma 2 
subunit (AP1G2), mRNA. 0,65 4,65E-14 

3890427 LOC729843 
PREDICTED: Homo sapiens similar to WW domain binding 
protein 1 (LOC729843), mRNA. 0,65 1,49E-18 
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4590615 C7orf59 
Homo sapiens chromosome 7 open reading frame 59 (C7orf59), 
mRNA. 0,65 4,92E-22 

2450725 SLC3A2 

Homo sapiens solute carrier family 3 (activators of dibasic and 
neutral amino acid transport), member 2 (SLC3A2), transcript 
variant 6, mRNA. 0,65 1,22E-17 

290035 C11orf59 
Homo sapiens chromosome 11 open reading frame 59 
(C11orf59), mRNA. 0,651 2,17E-24 

5670594 NMB 
Homo sapiens neuromedin B (NMB), transcript variant 1, 
mRNA. 0,651 1,62E-15 

540240 LOC440957 Homo sapiens similar to CG32736-PA (LOC440957), mRNA. 0,651 9,53E-13 

2120270 COL17A1 Homo sapiens collagen, type XVII, alpha 1 (COL17A1), mRNA. 0,652 1,21E-19 

6940360 ACVR1 Homo sapiens activin A receptor, type I (ACVR1), mRNA. 0,652 5,48E-16 

6940377 TOMM7 

Homo sapiens translocase of outer mitochondrial membrane 7 
homolog (yeast) (TOMM7), nuclear gene encoding 
mitochondrial protein, mRNA. 0,652 1,43E-16 

2000468 SRPK2 
Homo sapiens SFRS protein kinase 2 (SRPK2), transcript variant 
2, mRNA. 0,653 8,02E-14 

4640392 MLLT6 

Homo sapiens myeloid/lymphoid or mixed-lineage leukemia 
(trithorax homolog, Drosophila); translocated to, 6 (MLLT6), 
mRNA. 0,654 8,27E-17 

2650274 C19orf60 
Homo sapiens chromosome 19 open reading frame 60 
(C19orf60), transcript variant 1, mRNA. 0,655 6,21E-16 

1240176 PPP1R13L 
Homo sapiens protein phosphatase 1, regulatory (inhibitor) 
subunit 13 like (PPP1R13L), mRNA. 0,655 9,97E-17 

6270100 LAMP1 
Homo sapiens lysosomal-associated membrane protein 1 
(LAMP1), mRNA. 0,656 5,87E-21 

150438 MID1IP1 

Homo sapiens MID1 interacting protein 1 (gastrulation specific 
G12 homolog (zebrafish)) (MID1IP1), transcript variant 1, 
mRNA. 0,657 1,57E-17 

4900273 LOC100130835 
PREDICTED: Homo sapiens misc_RNA (LOC100130835), 
miscRNA. 0,657 7,58E-14 

4290368 PSTPIP2 
Homo sapiens proline-serine-threonine phosphatase interacting 
protein 2 (PSTPIP2), mRNA. 0,659 1,95E-13 

4290605 SLC44A1 
Homo sapiens solute carrier family 44, member 1 (SLC44A1), 
mRNA. 0,659 4,01E-20 

1940743 RPL13 
Homo sapiens ribosomal protein L13 (RPL13), transcript variant 
2, mRNA. 0,659 3,61E-12 

5310411 H2AFJ 
Homo sapiens H2A histone family, member J (H2AFJ), transcript 
variant 1, mRNA. 0,659 4,88E-17 

7550307 PRKCDBP 
Homo sapiens protein kinase C, delta binding protein 
(PRKCDBP), mRNA. 0,66 4,69E-20 

1300392 FAM83H 
Homo sapiens family with sequence similarity 83, member H 
(FAM83H), mRNA. 0,66 1,43E-28 

5810201 ZNF593 Homo sapiens zinc finger protein 593 (ZNF593), mRNA. 0,66 2,2E-14 

3850026 TP53AP1 Homo sapiens TP53 activated protein 1 (TP53AP1), mRNA. 0,661 1,82E-14 

1260010 RBM39 
Homo sapiens RNA binding motif protein 39 (RBM39), 
transcript variant 1, mRNA. 0,661 7,28E-18 

1770747 TMEM160 Homo sapiens transmembrane protein 160 (TMEM160), mRNA. 0,661 2,67E-11 

3120544 METRN 
Homo sapiens meteorin, glial cell differentiation regulator 
(METRN), mRNA. 0,661 3,33E-11 

1050386 SMUG1 
Homo sapiens single-strand-selective monofunctional uracil-
DNA glycosylase 1 (SMUG1), mRNA. 0,661 2,09E-21 

670113 TPP1 Homo sapiens tripeptidyl peptidase I (TPP1), mRNA. 0,661 3,59E-12 
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6330025 EXOSC6 Homo sapiens exosome component 6 (EXOSC6), mRNA. 0,662 1,34E-17 

5080164 GEMIN6 
Homo sapiens gem (nuclear organelle) associated protein 6 
(GEMIN6), mRNA. 0,662 2,99E-20 

6110731 ITPK1 
Homo sapiens inositol 1,3,4-triphosphate 5/6 kinase (ITPK1), 
mRNA. 0,662 3,85E-16 

5260349 NGFRAP1 
Homo sapiens nerve growth factor receptor (TNFRSF16) 
associated protein 1 (NGFRAP1), transcript variant 1, mRNA. 0,663 2,19E-15 

4540241 C5orf32 
Homo sapiens chromosome 5 open reading frame 32 (C5orf32), 
mRNA. 0,663 1,02E-13 

3400133 TCEB2 

Homo sapiens transcription elongation factor B (SIII), 
polypeptide 2 (18kDa, elongin B) (TCEB2), transcript variant 1, 
mRNA. 0,664 6,4E-24 

4230243 NHP2L1 
Homo sapiens NHP2 non-histone chromosome protein 2-like 1 
(S. cerevisiae) (NHP2L1), transcript variant 2, mRNA. 0,664 1,14E-17 

270615 ABCC3 
Homo sapiens ATP-binding cassette, sub-family C (CFTR/MRP), 
member 3 (ABCC3), mRNA. 0,664 9,41E-27 

6940255 PLSCR3 Homo sapiens phospholipid scramblase 3 (PLSCR3), mRNA. 0,664 2,08E-19 

4830458 GMPPB 
Homo sapiens GDP-mannose pyrophosphorylase B (GMPPB), 
transcript variant 2, mRNA. 0,665 5,96E-10 

6280341 PTS 
Homo sapiens 6-pyruvoyltetrahydropterin synthase (PTS), 
mRNA. 0,665 1,88E-12 

3890673 NUMA1 
Homo sapiens nuclear mitotic apparatus protein 1 (NUMA1), 
mRNA. 0,666 1,88E-14 

1070025 ATPIF1 
Homo sapiens ATPase inhibitory factor 1 (ATPIF1), nuclear gene 
encoding mitochondrial protein, transcript variant 3, mRNA. 0,666 2,03E-20 

4050437 PTS 
Homo sapiens 6-pyruvoyltetrahydropterin synthase (PTS), 
mRNA. 0,666 4,6E-22 

6960332 FOSL1 Homo sapiens FOS-like antigen 1 (FOSL1), mRNA. 0,667 5,73E-14 

3400538 IGFBP7 
Homo sapiens insulin-like growth factor binding protein 7 
(IGFBP7), mRNA. 0,667 4,41E-16 

610451 HIST2H2AA3 Homo sapiens histone cluster 2, H2aa3 (HIST2H2AA3), mRNA. 0,667 2,91E-14 

5260360 LOC100131801 
PREDICTED: Homo sapiens similar to hCG2036585 
(LOC100131801), mRNA. 0,667 3,93E-14 

6420180 TJAP1 
Homo sapiens tight junction associated protein 1 (peripheral) 
(TJAP1), mRNA. 0,667 1,92E-28 

1340537 ALKBH2 
Homo sapiens alkB, alkylation repair homolog 2 (E. coli) 
(ALKBH2), mRNA. 0,668 2,18E-12 

6620360 C12orf62 
Homo sapiens chromosome 12 open reading frame 62 
(C12orf62), mRNA. 0,668 1,14E-13 

1450377 BLOC1S1 
Homo sapiens biogenesis of lysosome-related organelles 
complex-1, subunit 1 (BLOC1S1), mRNA. 0,669 4,95E-05 

4180315 CHMP4B 
Homo sapiens chromatin modifying protein 4B (CHMP4B), 
mRNA. 0,67 8,17E-20 

840014 TPMT Homo sapiens thiopurine S-methyltransferase (TPMT), mRNA. 0,67 1,16E-19 

2320367 NDUFA13 
Homo sapiens NADH dehydrogenase (ubiquinone) 1 alpha 
subcomplex, 13 (NDUFA13), mRNA. 0,67 5,36E-09 

2710129 D2HGDH 
Homo sapiens D-2-hydroxyglutarate dehydrogenase (D2HGDH), 
nuclear gene encoding mitochondrial protein, mRNA. 0,67 1,09E-19 

3120228 AP2S1 
Homo sapiens adaptor-related protein complex 2, sigma 1 
subunit (AP2S1), transcript variant AP17, mRNA. 0,671 4,74E-19 

2120286 POLE4 
Homo sapiens polymerase (DNA-directed), epsilon 4 (p12 
subunit) (POLE4), mRNA. 0,671 1,17E-15 

2360593 DDT 
Homo sapiens D-dopachrome tautomerase (DDT), transcript 
variant 1, mRNA. 0,672 2,62E-23 
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520356 FXR1 
Homo sapiens fragile X mental retardation, autosomal homolog 
1 (FXR1), transcript variant 1, mRNA. 0,672 1,07E-18 

60148 BOLA2 Homo sapiens bolA homolog 2 (E. coli) (BOLA2), mRNA. 0,673 6,09E-22 

2350333 TEX2 Homo sapiens testis expressed 2 (TEX2), mRNA. 0,673 7,66E-16 

1580327 SMARCD2 

Homo sapiens SWI/SNF related, matrix associated, actin 
dependent regulator of chromatin, subfamily d, member 2 
(SMARCD2), mRNA. 0,673 4,57E-18 

1090221 VPS37A 
Homo sapiens vacuolar protein sorting 37 homolog A (S. 
cerevisiae) (VPS37A), mRNA. 0,674 1,71E-12 

50450 TMEM179B 
Homo sapiens transmembrane protein 179B (TMEM179B), 
mRNA. 0,675 9,92E-17 

6100382 RTKN Homo sapiens rhotekin (RTKN), transcript variant 2, mRNA. 0,675 5,88E-29 

2690601 ARPC4 
Homo sapiens actin related protein 2/3 complex, subunit 4, 
20kDa (ARPC4), transcript variant 2, mRNA. 0,675 6,03E-16 

3800470 MBOAT7 
Homo sapiens membrane bound O-acyltransferase domain 
containing 7 (MBOAT7), mRNA. 0,676 7,84E-11 

7000692 MRPL52 

Homo sapiens mitochondrial ribosomal protein L52 (MRPL52), 
nuclear gene encoding mitochondrial protein, transcript variant 
6, mRNA. 0,676 1,32E-15 

1580427 THEM2 
Homo sapiens thioesterase superfamily member 2 (THEM2), 
mRNA. 0,676 6,47E-15 

1570110 MANBAL 
Homo sapiens mannosidase, beta A, lysosomal-like (MANBAL), 
transcript variant 2, mRNA. 0,676 6,29E-20 

5420301 LOC645979 
PREDICTED: Homo sapiens similar to ribosomal protein S26 
(LOC645979), mRNA. 0,676 4,63E-09 

1570746 LOC651816 

PREDICTED: Homo sapiens similar to Ubiquitin-conjugating 
enzyme E2S (Ubiquitin-conjugating enzyme E2-24 kDa) 
(Ubiquitin-protein ligase) (Ubiquitin carrier protein) (E2-EPF5) 
(LOC651816), mRNA. 0,676 4,97E-18 

3710040 SFN Homo sapiens stratifin (SFN), mRNA. 0,676 6,8E-19 

3120037 C5orf30 
Homo sapiens chromosome 5 open reading frame 30 (C5orf30), 
mRNA. 0,676 4,88E-17 

2940369 SKP1 
Homo sapiens S-phase kinase-associated protein 1 (SKP1), 
transcript variant 1, mRNA. 0,677 7,37E-20 

3800725 SPHK2 Homo sapiens sphingosine kinase 2 (SPHK2), mRNA. 0,677 3,29E-16 

1450168 UPF1 
Homo sapiens UPF1 regulator of nonsense transcripts homolog 
(yeast) (UPF1), mRNA. 0,677 1,48E-13 

5720102 C7orf55 
Homo sapiens chromosome 7 open reading frame 55 (C7orf55), 
nuclear gene encoding mitochondrial protein, mRNA. 0,678 1,07E-09 

6290328 MAFG 

Homo sapiens v-maf musculoaponeurotic fibrosarcoma 
oncogene homolog G (avian) (MAFG), transcript variant 1, 
mRNA. 0,678 1,79E-19 

4880129 TOMM7 

Homo sapiens translocase of outer mitochondrial membrane 7 
homolog (yeast) (TOMM7), nuclear gene encoding 
mitochondrial protein, mRNA. 0,678 2,1E-20 

5220070 HLA-F 
Homo sapiens major histocompatibility complex, class I, F (HLA-
F), transcript variant 1, mRNA. 0,678 6,18E-10 

270605 STRA13 
Homo sapiens stimulated by retinoic acid 13 homolog (mouse) 
(STRA13), mRNA. 0,678 2,87E-23 

2640324 SLC46A3 
Homo sapiens solute carrier family 46, member 3 (SLC46A3), 
mRNA. 0,679 8,81E-14 

1410563 C18orf25 
Homo sapiens chromosome 18 open reading frame 25 
(C18orf25), transcript variant 2, mRNA. 0,679 8,47E-16 
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2570463 LOC728492 
PREDICTED: Homo sapiens similar to small EDRK-rich factor 1A, 
telomeric, transcript variant 4 (LOC728492), mRNA. 0,679 4,59E-19 

2370167 LOC100130154 
PREDICTED: Homo sapiens similar to thymosin, beta 10 
(LOC100130154), mRNA. 0,679 1,83E-12 

4200367 C3orf54 
Homo sapiens chromosome 3 open reading frame 54 (C3orf54), 
mRNA. 0,679 8,9E-15 

7210725 MRPL55 

Homo sapiens mitochondrial ribosomal protein L55 (MRPL55), 
nuclear gene encoding mitochondrial protein, transcript variant 
5, mRNA. 0,679 3,66E-19 

990193 SF3B4 
Homo sapiens splicing factor 3b, subunit 4, 49kDa (SF3B4), 
mRNA. 0,68 6,24E-25 

2190753 C11orf17 
Homo sapiens chromosome 11 open reading frame 17 
(C11orf17), transcript variant 1, mRNA. 0,68 2,55E-11 

3890349 HIST1H4C Homo sapiens histone cluster 1, H4c (HIST1H4C), mRNA. 0,68 9,95E-21 

510577 TRIML2 Homo sapiens tripartite motif family-like 2 (TRIML2), mRNA. 0,68 4,28E-23 

6760746 MRPL55 

Homo sapiens mitochondrial ribosomal protein L55 (MRPL55), 
nuclear gene encoding mitochondrial protein, transcript variant 
1, mRNA. 0,68 4,12E-12 

240546 SCAND1 
Homo sapiens SCAN domain containing 1 (SCAND1), transcript 
variant 2, mRNA. 0,68 7,76E-11 

6220026 MAPRE3 
Homo sapiens microtubule-associated protein, RP/EB family, 
member 3 (MAPRE3), mRNA. 0,681 4,86E-15 

5560594 TXNDC17 
Homo sapiens thioredoxin domain containing 17 (TXNDC17), 
mRNA. 0,681 2,73E-25 

380242 G6PC3 
Homo sapiens glucose 6 phosphatase, catalytic, 3 (G6PC3), 
mRNA. 0,681 6,52E-10 

4900402 LOC651453 
PREDICTED: Homo sapiens similar to ribosomal protein L36 
(LOC651453), mRNA. 0,681 1,48E-06 

1780678 LOC374395 
Homo sapiens similar to RIKEN cDNA 1810059G22 
(LOC374395), mRNA. 0,681 4,22E-22 

3130291 C12orf57 
Homo sapiens chromosome 12 open reading frame 57 
(C12orf57), mRNA. 0,682 9,96E-20 

5050608 TIMM23 

Homo sapiens translocase of inner mitochondrial membrane 23 
homolog (yeast) (TIMM23), nuclear gene encoding 
mitochondrial protein, mRNA. 0,682 1,83E-13 

3120196 ALDH3A2 
Homo sapiens aldehyde dehydrogenase 3 family, member A2 
(ALDH3A2), transcript variant 1, mRNA. 0,682 5,01E-17 

6370288 C17orf68 
PREDICTED: Homo sapiens chromosome 17 open reading frame 
68 (C17orf68), mRNA. 0,683 7,42E-11 

4560088 LOC439949 
PREDICTED: Homo sapiens hypothetical gene supported by 
AY007155 (LOC439949), mRNA. 0,683 1,21E-10 

1990152 CSRP2 
Homo sapiens cysteine and glycine-rich protein 2 (CSRP2), 
mRNA. 0,683 2E-12 

4290349 LOC643949 
PREDICTED: Homo sapiens similar to 60S acidic ribosomal 
protein P2 (LOC643949), mRNA. 0,684 5,6E-10 

2750066 LOC100132499 
PREDICTED: Homo sapiens similar to mCG7602 
(LOC100132499), mRNA. 0,685 2,11E-12 

3180619 LOC643438 PREDICTED: Homo sapiens misc_RNA (LOC643438), miscRNA. 0,685 2,75E-12 

6130332 UCRC 
Homo sapiens ubiquinol-cytochrome c reductase complex (7.2 
kD) (UCRC), transcript variant 2, mRNA. 0,685 3,03E-10 

2690338 RPS21 Homo sapiens ribosomal protein S21 (RPS21), mRNA. 0,686 2,14E-19 

2320110 ATP6V0E1 
Homo sapiens ATPase, H+ transporting, lysosomal 9kDa, V0 
subunit e1 (ATP6V0E1), mRNA. 0,686 5,47E-17 
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5910474 PMS2L4 
Homo sapiens postmeiotic segregation increased 2-like 4 
pseudogene (PMS2L4), non-coding RNA. 0,686 5,23E-18 

2260066 CLIP1 
Homo sapiens CAP-GLY domain containing linker protein 1 
(CLIP1), transcript variant 1, mRNA. 0,686 2,82E-17 

6380367 BOLA2 Homo sapiens bolA homolog 2 (E. coli) (BOLA2), mRNA. 0,687 1,3E-12 

3290181 CHMP2A 
Homo sapiens chromatin modifying protein 2A (CHMP2A), 
transcript variant 1, mRNA. 0,687 6,57E-12 

1470551 SEL1L3 
Homo sapiens sel-1 suppressor of lin-12-like 3 (C. elegans) 
(SEL1L3), mRNA. 0,687 6,33E-24 

4900114 MORN2 Homo sapiens MORN repeat containing 2 (MORN2), mRNA. 0,688 5,32E-12 

1660341 FLJ39632 PREDICTED: Homo sapiens misc_RNA (FLJ39632), miscRNA. 0,688 1,28E-09 

1300719 C14orf149 
Homo sapiens chromosome 14 open reading frame 149 
(C14orf149), mRNA. 0,688 2,17E-10 

1110377 ATP5D 

Homo sapiens ATP synthase, H+ transporting, mitochondrial F1 
complex, delta subunit (ATP5D), nuclear gene encoding 
mitochondrial protein, transcript variant 1, mRNA. 0,688 4,03E-15 

5720136 RAB34 
Homo sapiens RAB34, member RAS oncogene family (RAB34), 
mRNA. 0,688 2,41E-15 

1450192 CENPM 
Homo sapiens centromere protein M (CENPM), transcript 
variant 2, mRNA. 0,688 1,16E-19 

5690543 LQK1 PREDICTED: Homo sapiens misc_RNA (LQK1), miscRNA. 0,688 2,5E-13 

4810128 PHLDA2 
Homo sapiens pleckstrin homology-like domain, family A, 
member 2 (PHLDA2), mRNA. 0,688 6,77E-19 

4560528 POP5 
Homo sapiens processing of precursor 5, ribonuclease P/MRP 
subunit (S. cerevisiae) (POP5), transcript variant 3, mRNA. 0,688 3,06E-18 

1470348 RAGE Homo sapiens renal tumor antigen (RAGE), mRNA. 0,688 4,54E-27 

6980750 PRKAA1 
Homo sapiens protein kinase, AMP-activated, alpha 1 catalytic 
subunit (PRKAA1), transcript variant 2, mRNA. 0,689 3,23E-10 

6480095 SNX27 Homo sapiens sorting nexin family member 27 (SNX27), mRNA. 0,689 1,71E-18 

6840022 MANBAL 
Homo sapiens mannosidase, beta A, lysosomal-like (MANBAL), 
transcript variant 2, mRNA. 0,689 1,86E-15 

4850300 KIAA1688 Homo sapiens KIAA1688 protein (KIAA1688), mRNA. 0,689 1,01E-13 

3170332 DPP9 Homo sapiens dipeptidyl-peptidase 9 (DPP9), mRNA. 0,689 1,52E-08 

4280093 LOC440157 
Homo sapiens hypothetical gene supported by AK096951; 
BC066547 (LOC440157), mRNA. 0,689 6,93E-13 

6480494 MGMT 
Homo sapiens O-6-methylguanine-DNA methyltransferase 
(MGMT), mRNA. 0,689 2,77E-18 

2340494 RDH11 
Homo sapiens retinol dehydrogenase 11 (all-trans/9-cis/11-cis) 
(RDH11), mRNA. 0,689 1,59E-07 

4230066 C16orf53 
Homo sapiens chromosome 16 open reading frame 53 
(C16orf53), mRNA. 0,69 1,29E-11 

6520201 NFATC2IP 
Homo sapiens nuclear factor of activated T-cells, cytoplasmic, 
calcineurin-dependent 2 interacting protein (NFATC2IP), mRNA. 0,69 5,03E-10 

3390072 LOC100133477 
PREDICTED: Homo sapiens similar to Nop10p (LOC100133477), 
mRNA. 0,69 3,35E-15 

2690561 RPLP1 
Homo sapiens ribosomal protein, large, P1 (RPLP1), transcript 
variant 1, mRNA. 0,69 8,01E-08 

4010086 OKL38 
Homo sapiens pregnancy-induced growth inhibitor (OKL38), 
transcript variant 1, mRNA. 0,69 1,35E-15 

2570100 ABCA7 
Homo sapiens ATP-binding cassette, sub-family A (ABC1), 
member 7 (ABCA7), mRNA. 0,69 8,88E-10 

2470333 TBPL1 Homo sapiens TBP-like 1 (TBPL1), mRNA. 0,691 4,86E-13 
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360626 CMIP 
Homo sapiens c-Maf-inducing protein (CMIP), transcript variant 
Tc-mip, mRNA. 0,691 8,85E-20 

1500129 DCPS Homo sapiens decapping enzyme, scavenger (DCPS), mRNA. 0,691 2,58E-10 

4490259 COX8A 
Homo sapiens cytochrome c oxidase subunit 8A (ubiquitous) 
(COX8A), mRNA. 0,692 3,2E-27 

7550722 ZMYM6 Homo sapiens zinc finger, MYM-type 6 (ZMYM6), mRNA. 0,692 6,11E-17 

150040 ZNF142 
Homo sapiens zinc finger protein 142 (ZNF142), transcript 
variant 2, mRNA. 0,692 1,74E-16 

3120139 NENF 
Homo sapiens neuron derived neurotrophic factor (NENF), 
mRNA. 0,692 2,35E-34 

6770343 ETFB 
Homo sapiens electron-transfer-flavoprotein, beta polypeptide 
(ETFB), transcript variant 2, mRNA. 0,692 1,09E-23 

1240592 C7orf47 
Homo sapiens chromosome 7 open reading frame 47 (C7orf47), 
mRNA. 0,693 8,87E-11 

5670075 PAFAH1B1 
Homo sapiens platelet-activating factor acetylhydrolase, 
isoform Ib, alpha subunit 45kDa (PAFAH1B1), mRNA. 0,693 3,74E-19 

4260484 COMMD6 
Homo sapiens COMM domain containing 6 (COMMD6), 
transcript variant 1, mRNA. 0,693 1,91E-19 

5050437 SCAND1 
Homo sapiens SCAN domain containing 1 (SCAND1), transcript 
variant 1, mRNA. 0,693 8,94E-12 

5820753 RBCK1 
Homo sapiens RanBP-type and C3HC4-type zinc finger 
containing 1 (RBCK1), transcript variant 1, mRNA. 0,693 3,84E-22 

20450 LOC729580 
PREDICTED: Homo sapiens hypothetical LOC729580 
(LOC729580), mRNA. 0,693 1,51E-06 

4920487 TCEAL4 
Homo sapiens transcription elongation factor A (SII)-like 4 
(TCEAL4), transcript variant 4, mRNA. 0,693 5,08E-17 

730576 SPRY4 Homo sapiens sprouty homolog 4 (Drosophila) (SPRY4), mRNA. 0,693 6,9E-18 

7570131 RPS18 Homo sapiens ribosomal protein S18 (RPS18), mRNA. 0,694 1,86E-15 

4120025 CHCHD8 
Homo sapiens coiled-coil-helix-coiled-coil-helix domain 
containing 8 (CHCHD8), mRNA. 0,694 6,58E-14 

830739 RPP21 
Homo sapiens ribonuclease P/MRP 21kDa subunit (RPP21), 
mRNA. 0,694 1,21E-16 

670671 TMEM134 
Homo sapiens transmembrane protein 134 (TMEM134), 
transcript variant 2, mRNA. 0,694 3,78E-09 

6380220 Magmas 

Homo sapiens mitochondria-associated protein involved in 
granulocyte-macrophage colony-stimulating factor signal 
transduction (Magmas), nuclear gene encoding mitochondrial 
protein, mRNA. 0,694 1,01E-12 

620433 C1orf122 
Homo sapiens chromosome 1 open reading frame 122 
(C1orf122), mRNA. 0,695 5,73E-14 

3310376 TIMM10 

Homo sapiens translocase of inner mitochondrial membrane 10 
homolog (yeast) (TIMM10), nuclear gene encoding 
mitochondrial protein, mRNA. 0,695 1,71E-19 

4060768 DBT 
Homo sapiens dihydrolipoamide branched chain transacylase 
E2 (DBT), nuclear gene encoding mitochondrial protein, mRNA. 0,695 7,03E-27 

6420441 LOC728416 
PREDICTED: Homo sapiens hypothetical LOC728416 
(LOC728416), mRNA. 0,696 1,44E-09 

5700451 FKBP9L Homo sapiens FK506 binding protein 9-like (FKBP9L), mRNA. 0,696 8,51E-13 

150441 TIGA1 Homo sapiens TIGA1 (TIGA1), mRNA. 0,696 1,58E-14 

6370538 WBSCR22 
Homo sapiens Williams Beuren syndrome chromosome region 
22 (WBSCR22), mRNA. 0,696 4,57E-15 

2510523 RBCK1 
Homo sapiens RanBP-type and C3HC4-type zinc finger 
containing 1 (RBCK1), transcript variant 2, mRNA. 0,696 1,26E-16 
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7610184 PNKP 
Homo sapiens polynucleotide kinase 3'-phosphatase (PNKP), 
mRNA. 0,696 2,66E-13 

1300608 SNHG9 
Homo sapiens small nucleolar RNA host gene 9 (non-protein 
coding) (SNHG9), non-coding RNA. 0,697 2,31E-11 

4670021 NPEPL1 Homo sapiens aminopeptidase-like 1 (NPEPL1), mRNA. 0,697 5,04E-19 

3390484 SERINC2 Homo sapiens serine incorporator 2 (SERINC2), mRNA. 0,697 3,29E-13 

3370136 ACAD11 
Homo sapiens acyl-Coenzyme A dehydrogenase family, member 
11 (ACAD11), mRNA. 0,697 4,2E-17 

2480739 SKP1A 
Homo sapiens S-phase kinase-associated protein 1A (p19A) 
(SKP1A), transcript variant 1, mRNA. 0,697 6,04E-17 

4050377 LOC648622 
PREDICTED: Homo sapiens similar to ribosomal protein S27 
(LOC648622), mRNA. 0,697 1,66E-17 

7150017 C6orf48 
Homo sapiens chromosome 6 open reading frame 48 (C6orf48), 
transcript variant 1, mRNA. 0,697 1,3E-11 

7000086 KCTD20 
Homo sapiens potassium channel tetramerisation domain 
containing 20 (KCTD20), mRNA. 0,697 1,82E-13 

50224 DFFA 
Homo sapiens DNA fragmentation factor, 45kDa, alpha 
polypeptide (DFFA), transcript variant 1, mRNA. 0,698 2,23E-15 

3310041 PELP1 
Homo sapiens proline, glutamic acid and leucine rich protein 1 
(PELP1), mRNA. 0,699 2,82E-15 

1470341 PLEKHB2 
Homo sapiens pleckstrin homology domain containing, family B 
(evectins) member 2 (PLEKHB2), transcript variant 2, mRNA. 0,699 1,26E-12 

7000703 POLR3K 
Homo sapiens polymerase (RNA) III (DNA directed) polypeptide 
K, 12.3 kDa (POLR3K), mRNA. 0,699 1,49E-12 

4670048 RPS26L 
Homo sapiens 40S ribosomal protein S26-like (RPS26L), non-
coding RNA. 0,699 5,83E-14 

70162 TDG Homo sapiens thymine-DNA glycosylase (TDG), mRNA. 0,699 3,75E-12 

1660220 LOC283932 
Homo sapiens hypothetical protein LOC283932 (LOC283932), 
mRNA. 0,7 1,39E-09 

3420561 RPA2 Homo sapiens replication protein A2, 32kDa (RPA2), mRNA. 0,7 8,55E-17 

 
Supplementary Table 6 
The list of transcripts downregulated by at least 30% upon overexpression of all three 
miRNAs: miR-301a, miR-301b and miR-130b (overlap of supplementary tables 1, 2 and 3). 
Notice, that for some of the transcripts more than one probe was present in the array and 
only the probes for which the downregulation was observed are listed. Those transcripts that 
had more than one probe for the same mRNA transcript variant and the downregulation was 
not observed for at least one another probe are indicated in grey. The last column indicates 
whether a certain transcript is predicted to be a direct target by TargetScan v.6.2 algorithm. 
 

Probe ID 
Gene 
symbol Definition 

Target
Scan 

270615 ABCC3 
Homo sapiens ATP-binding cassette, sub-family C (CFTR/MRP), member 3 
(ABCC3), mRNA. No 

6940360 ACVR1 Homo sapiens activin A receptor, type I (ACVR1), mRNA. Yes 

2000546 C3orf10 Homo sapiens chromosome 3 open reading frame 10 (C3orf10), mRNA. No 

7380367 C9orf69 Homo sapiens chromosome 9 open reading frame 69 (C9orf69), mRNA. Yes 

510100 CBY1 
Homo sapiens chibby homolog 1 (Drosophila) (CBY1), transcript variant 1, 
mRNA. No 

3930452 CDC2L6 Homo sapiens cell division cycle 2-like 6 (CDK8-like) (CDC2L6), mRNA. No 
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5860010 CDS1 
Homo sapiens CDP-diacylglycerol synthase (phosphatidate 
cytidylyltransferase) 1 (CDS1), mRNA. Yes 

2260066 CLIP1 
Homo sapiens CAP-GLY domain containing linker protein 1 (CLIP1), transcript 
variant 1, mRNA. Yes 

990372 COL17A1 Homo sapiens collagen, type XVII, alpha 1 (COL17A1), mRNA. No 

2120270 COL17A1 Homo sapiens collagen, type XVII, alpha 1 (COL17A1), mRNA. No 

3360452 COL8A1 
Homo sapiens collagen, type VIII, alpha 1 (COL8A1), transcript variant 2, 
mRNA. No 

2510091 COL8A1 
Homo sapiens collagen, type VIII, alpha 1 (COL8A1), transcript variant 2, 
mRNA. No 

2650598 CYP4V2 
Homo sapiens cytochrome P450, family 4, subfamily V, polypeptide 2 
(CYP4V2), mRNA. No 

3120138 F3 
Homo sapiens coagulation factor III (thromboplastin, tissue factor) (F3), 
mRNA. No 

10079 F3 
Homo sapiens coagulation factor III (thromboplastin, tissue factor) (F3), 
mRNA. No 

2970762 HCCS 
Homo sapiens holocytochrome c synthase (cytochrome c heme-lyase) 
(HCCS), mRNA. No 

5570279 HIST1H1C Homo sapiens histone cluster 1, H1c (HIST1H1C), mRNA. No 

1820592 HIST2H2AA3 Homo sapiens histone cluster 2, H2aa3 (HIST2H2AA3), mRNA. No 

610451 HIST2H2AA3 Homo sapiens histone cluster 2, H2aa3 (HIST2H2AA3), mRNA. No 

4290148 HIST2H2AA4 Homo sapiens histone cluster 2, H2aa4 (HIST2H2AA4), mRNA. No 

5310168 HLA-B Homo sapiens major histocompatibility complex, class I, B (HLA-B), mRNA. No 

6400270 HPRT1 
Homo sapiens hypoxanthine phosphoribosyltransferase 1 (Lesch-Nyhan 
syndrome) (HPRT1), mRNA. Yes 

7610286 HPRT1 
Homo sapiens hypoxanthine phosphoribosyltransferase 1 (Lesch-Nyhan 
syndrome) (HPRT1), mRNA. Yes 

3610129 HSD17B1 Homo sapiens hydroxysteroid (17-beta) dehydrogenase 1 (HSD17B1), mRNA. No 

3990170 IFI27 
Homo sapiens interferon, alpha-inducible protein 27 (IFI27), transcript 
variant 2, mRNA. No 

1010246 IFI6 
Homo sapiens interferon, alpha-inducible protein 6 (IFI6), transcript variant 
2, mRNA. No 

5090215 IFI6 
Homo sapiens interferon, alpha-inducible protein 6 (IFI6), transcript variant 
3, mRNA. No 

3120431 IMPDH1 
Homo sapiens IMP (inosine monophosphate) dehydrogenase 1 (IMPDH1), 
transcript variant 1, mRNA. Yes 

2100196 ISG15 Homo sapiens ISG15 ubiquitin-like modifier (ISG15), mRNA. No 

7200156 ITGB2 

Homo sapiens integrin, beta 2 (antigen CD18 (p95), lymphocyte function-
associated antigen 1; macrophage antigen 1 (mac-1) beta subunit) (ITGB2), 
mRNA. No 

3890373 ITGB2 
Homo sapiens integrin, beta 2 (complement component 3 receptor 3 and 4 
subunit) (ITGB2), mRNA. No 

2470600 KATNAL1 
Homo sapiens katanin p60 subunit A-like 1 (KATNAL1), transcript variant 2, 
mRNA. No 

4880392 KIAA1539 Homo sapiens KIAA1539 (KIAA1539), mRNA. No 

730040 LAMB3 Homo sapiens laminin, beta 3 (LAMB3), transcript variant 1, mRNA. No 

6580091 LOC339352 PREDICTED: Homo sapiens misc_RNA (LOC339352), miscRNA. No 

4290088 MSRB3 
Homo sapiens methionine sulfoxide reductase B3 (MSRB3), transcript 
variant 1, mRNA. No 

6960014 MTMR9 Homo sapiens myotubularin related protein 9 (MTMR9), mRNA. Yes 
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4570091 NDUFAF3 

Homo sapiens NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 
assembly factor 3 (NDUFAF3), nuclear gene encoding mitochondrial protein, 
transcript variant 1, mRNA. No 

4010086 OKL38 
Homo sapiens pregnancy-induced growth inhibitor (OKL38), transcript 
variant 1, mRNA. No 

240400 PMEPA1 
Homo sapiens prostate transmembrane protein, androgen induced 1 
(PMEPA1), transcript variant 2, mRNA. Yes 

7650333 PSAP Homo sapiens prosaposin (PSAP), transcript variant 2, mRNA. Yes 

6200086 PSAP Homo sapiens prosaposin (PSAP), transcript variant 1, mRNA. Yes 

2760452 RPS29 Homo sapiens ribosomal protein S29 (RPS29), transcript variant 2, mRNA. No 

5360424 RPS6KA2 
Homo sapiens ribosomal protein S6 kinase, 90kDa, polypeptide 2 (RPS6KA2), 
transcript variant 2, mRNA. Yes 

7100193 RTCD1 Homo sapiens RNA terminal phosphate cyclase domain 1 (RTCD1), mRNA. Yes 

5420326 RTCD1 Homo sapiens RNA terminal phosphate cyclase domain 1 (RTCD1), mRNA. Yes 

1980209 SEC23B 
Homo sapiens Sec23 homolog B (S. cerevisiae) (SEC23B), transcript variant 2, 
mRNA. No 

6370133 SEC23B 
Homo sapiens Sec23 homolog B (S. cerevisiae) (SEC23B), transcript variant 2, 
mRNA. No 

770408 SERPINE1 
Homo sapiens serpin peptidase inhibitor, clade E (nexin, plasminogen 
activator inhibitor type 1), member 1 (SERPINE1), mRNA. No 

2940369 SKP1 
Homo sapiens S-phase kinase-associated protein 1 (SKP1), transcript variant 
1, mRNA. Yes 

4290605 SLC44A1 Homo sapiens solute carrier family 44, member 1 (SLC44A1), mRNA. Yes 

2640324 SLC46A3 Homo sapiens solute carrier family 46, member 3 (SLC46A3), mRNA. No 

4050161 STX6 Homo sapiens syntaxin 6 (STX6), mRNA. Yes 

2480487 STX6 Homo sapiens syntaxin 6 (STX6), mRNA. Yes 

2340626 TFB1M Homo sapiens transcription factor B1, mitochondrial (TFB1M), mRNA. No 

7550608 TMEM9B Homo sapiens TMEM9 domain family, member B (TMEM9B), mRNA. Yes 

3140092 TRAK1 Homo sapiens trafficking protein, kinesin binding 1 (TRAK1), mRNA. No 

510577 TRIML2 Homo sapiens tripartite motif family-like 2 (TRIML2), mRNA. No 

4640066 VAMP3 
Homo sapiens vesicle-associated membrane protein 3 (cellubrevin) 
(VAMP3), mRNA. No 

6200332 VPS24 
Homo sapiens vacuolar protein sorting 24 homolog (S. cerevisiae) (VPS24), 
transcript variant 2, mRNA. Yes 

2140634 VPS24 
Homo sapiens vacuolar protein sorting 24 homolog (S. cerevisiae) (VPS24), 
transcript variant 2, mRNA. Yes 

1090221 VPS37A 
Homo sapiens vacuolar protein sorting 37 homolog A (S. cerevisiae) 
(VPS37A), mRNA. Yes 

4670059 ZAK 
Homo sapiens sterile alpha motif and leucine zipper containing kinase AZK 
(ZAK), transcript variant 2, mRNA. Yes 

3940088 ZBED2 Homo sapiens zinc finger, BED-type containing 2 (ZBED2), mRNA. No 

3140543 ZMAT3 
Homo sapiens zinc finger, matrin type 3 (ZMAT3), transcript variant 2, 
mRNA. Yes 

 


