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Abstract 

 

The UK has the largest installed capacity of offshore wind and this is set to increase 

significantly in future years. The difficulty in conducting maintenance offshore leads to 

increased operation and maintenance costs compared to onshore but with better 

condition monitoring and preventative maintenance strategies these costs could be 

reduced. In this paper an on-line condition monitoring system is created that is capable 

of diagnosing machine component conditions based on an array of sensor readings. It 

then informs the operator of actions required. This simplifies the role of the operator 

and the actions required can be optimised within the program to minimise costs. The 

program has been applied to a gearbox oil testbed to demonstrate its operational 

suitability. In addition a method for determining the most cost effective maintenance 

strategy is examined. This method uses a Dynamic Bayesian Network to simulate the 

degradation of wind turbine components, effectively acting as a prognostics tool, and 

calculates the cost of various preventative maintenance strategies compared to purely 

corrective maintenance actions. These methods are shown to reduce the cost of 

operating wind turbines in the offshore environment. 

  
 

1. Introduction 
 

The UK Government has agreed to a legally binding target for renewable energy 

consumption of 15% by 2020
 (1)

. To achieve this target the UK has set world leading 

targets for the installation of offshore wind power generation capacity. The UK already 

has the largest installed capacity of offshore wind with a predicted 18GW by 2020 and 

prospects of up to 40GW by 2030 
(2)

. The deployment of large scale arrays of offshore 

wind turbines, particularly for the UK Round 3 sites, is extremely challenging.  

 

Critical to meeting government targets for 2020, the UK wind industry is planning very 

large offshore wind farms, some at considerable distance from shore and in deeper 

water. Round 3 sites are in the range from 13km to 195km from shore compared with 

12km for the most distant existing offshore wind farms.  There is an urgent need to 
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ensure that offshore wind turbine availability is underpinned by appropriate asset 

operation and management supported by next generation condition monitoring. 

 

Current levelised cost of energy for offshore wind is ~£140-170/MWh. The industry 

aims to reduce this to £100/MWh through a variety of approaches: reduced manufacture 

and installation costs (economies of scale), increased output (increased availability) and 

reduced operating costs 
(3)

. This paper focusses on condition monitoring to reduce the 

levelised cost of energy, as this has previously been shown to be economically 

beneficial for wind turbines 
(4)

. 

 

If condition monitoring can predict failures, and specific details about the failure mode 

can be obtained, this facilitates planning of preventative maintenance that can avoid 

expensive corrective actions. However, false alarms would lead to additional costs, so it 

is important that the system be both reliable and robust. One method to achieve this is to 

use multiple sensor readings and combine them to determine the likely condition of 

different components.  

 

In this paper a Bayesian Belief Network (BBN) is used for diagnostics to determine the 

condition of machine components. A case study involving a wind turbine gearbox is 

used to demonstrate the approach in Section 3.2. This involves on-line real-time 

condition monitoring of the gearbox with a traffic light system to prompt the operator to 

act as required. LabVIEW 
(5)

 was used to develop this and a gearbox oil test bed was 

used for demonstration purposes. A method for system prognostics is also described in 

this paper, expanding on the case study of the wind turbine gearbox and the Bayesian 

Network framework.  

 

Dynamic Bayesian Networks (DBNs) are an extension of Bayesian Networks that 

allows prognostics – the prediction of the future machine condition – to take place 
(6)

. 

As well as predicting failures and identifying failure modes, this paper proposes that 

DBNs can be used to assess the economic incentive for maintenance. GeNIe 
(7)

, a 

software tool capable of simulating Dynamic Bayesian Networks, is used as a proof of 

concept tool to verify this. 

 

The statistical basis behind BNNs, DBNs and data fusion is given in Section 2. The 

programme developed for condition monitoring and its application to a wind turbine 

gearbox are described in Section 3. Section 4 describes the use of Dynamic Bayesian 

Networks for prognostics and their use in determining suitable maintenance strategies, 

again the wind turbine gearbox is used as a case study. A Discussion and Conclusion are 

at the end of the paper. 

 

2. Theory 
 

This section gives a brief introduction to Dynamic Bayesian Networks. More detailed 

information can be found in 
(8)

 and 
(9)

. 
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2.1 Bayesian Belief Networks 

 

BBNs are graphical models, based on Bayes‟ Rule which show the probabilistic 

relationships between a set of variables 
(10,11,12)

. BBNs are a tool for reasoning under 

uncertainty. They are often used in maintenance modelling for analysing new evidence 

which describe the state of the system. There are applications of BBNs in medical 

diagnosis, cardiovascular risk assessment, genetic modelling and many other fields 
(6,13,14)

.  

 

Bayesian networks have become popular as a framework for reasoning under 

uncertainty since they were introduced in the mid-1980s 
(15)

. BBNs are comprised by 

nodes that represent the variables of the model and arcs that represent assertions of 

conditional independence. BBNs can be used to assess the probability of failure of a 

system and identify the most probable cause of failure.  

 

 

 
Figure 1. BBN of an observation O, and a variable X 

 

A simple fictitious example of a BBN is shown in Figure 1 for illustrative purposes. 

Note that the BBN does not represent any conditional independence assertions. This 

BBN can be used to represent the dependence between the state of the system and some 

indicator of its condition. The system contains observation O, and variable X; the state 

of X can only be observed through O. To quantify the model, one needs to determine the 

probability of X being in a given state P(X), and the probability of an observation O, 

given the state of variable X, P(O|X). 

 

2.2 Dynamic Bayesian Networks 

 

DBNs can be used to model a system over a finite number of discrete time slices. A 

DBN is formed by interconnecting BBNs over time slices, in doing this it can model the 

evolution of a system over time. When a system is of an order n, it means that the state 

of the observation at time t, Ot, is influenced by the variable states Xt, Xt-1, ...,Xt-n. This 

is the case if the variable is part of a process, like machine degradation for example. A 

DBN can be seen as a Hidden Markov Model where the hidden state is comprised of a 

set of variables with a given (in)dependency structure.  

 

DBNs are capable of recognising transient sensor failures 
(16)

. For example if Ot and Ot-2 

have observed a High state and Ot-1 has shown a Low state, the DBN can be 

programmed to reason that this series of observations is very unlikely and that it is more 

likely that there has been a sensor failure. It would therefore decide what state variable 

X is in effectively ignoring the second observation (Ot-1).  
 

As DBNs are temporal models, they can be used in basic inference tasks 
(16)

: 

 Filtering or Monitoring – using historical observations O, to predict the state of the 
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variable X, in the present (P(Xt|O1:t)).  

 Prediction – using historical observations to predict the state of the variable at a 

defined point in the future k (P(Xt:k|O1:t)).  

 Smoothing or Hindsight – using present and past evidence to get an accurate 

definition of the state of a variable at a point in the past u (P(Xu|O1:t)) when 0 ≤ u ≤ 

t.  

 Most Likely Explanation – The likely sequence of states which have generated a 

sequence of observations (argmaxx1:t (P(X1:t|O1:t)).  

Filtering, Smoothing and Most Likely Explanation have the potential to be used in 

diagnosis, while Prediction may be used in prognosis 
(17)

.  

 

2.3 Data Fusion 

 

BBNs have been shown to be a useful tool for evidence combination 
(18)

. Here we look 

at a specific case of combining data from different sensors using Bayes‟ rule 
(10)

. Data 

fusion is performed via the determination of the posterior distributions given the states 

of the sensor variables. Within a BBN, this updating is performed by taking advantage 

of the (in)dependence structure between variables. Thus, BBNs allow for the 

propagation of evidence within the model structure to update the belief on the state of 

the system. 

 

The assumption of conditional independence – i.e. given the state of the system the 

information obtained from one sensor is independent of the information obtained from 

another sensor – often holds true. In which case the probability of a system being in 

state A given sensor readings Qi is: 

 

 ( |     
     

 (    (  |  

 (    (  |    ( ̅   (  | ̅ 
…………………….(2) 

 

When conditional independence cannot be guaranteed or does not hold true, for 

example with sensor readings of viscosity and temperature of gearbox oil to determine 

the gearbox condition, alternative methods such as joint probability distributions for the 

sensors may be used. 

 

3. Diagnostics 
 

Diagnostics determine the current health status of the system. Bayesian Belief Networks 

have been successfully used on system diagnosis in the past 
(18)

. Here we demonstrate 

on a gearbox oil testbed a flexible program capable of sensor fusion. 

 

3.1 Implementation 
 

The program developed takes real-time sensor readings and from these make an analysis 

of the likely condition of the component being monitored. This allows an operator to 

understand quickly the actions required rather than being presented with many, 

sometimes conflicting, sensor outputs.  

 

As a proof-of-concept design one machine component is considered, with the number of 

sensors limited to three. However, the ability to add more sensors and additional 
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components is important as each system will vary, and the program allows this to be 

done due to its modular design.  

 

The condition of the component being monitored is classified in one of three states, 

following a traffic light system: Green, Amber, Red. This allows the operator to decide 

quickly whether action is required. 

 

The component condition is recorded continuously and the time-series plotted 

graphically so that the operator can see if the likely component condition is changing. 

Suggested actions are displayed to the operator and these are based on a cost analysis 

using a DBN of various scenarios. Current actions are restricted to “perform 

maintenance” and “shutdown the machine” but these are just exemplars.  

 

In addition to monitoring the likely component condition the program created is capable 

of detecting erroneous sensor readings. The erroneous readings are calculated by 

comparing the sensor‟s prediction of the likely component condition with that of the 

average prediction. A large root mean square error from the average is considered 

unlikely and a signal warns the operator that the sensor should be checked. With more 

sensors, this method becomes increasingly reliable. With only a few sensors it is unclear 

which, if any, is at fault.  

 

If the component enters a state in which action is required all relevant data leading up to 

that time is saved and from then on streamed to file until the component returns to a 

normal operating state. This allows detailed analysis of the data at a later date to better 

understand the development of faults and can be used to retrain the probability density 

functions (PDFs) if required. 

 

3.2 Case study 
 

The LabVIEW model developed was applied to a wind turbine gearbox to assess its use 

on a practical level. It was decided to monitor the condition of the gearbox through an 

analysis of its oil as this provides a good indicator of component conditions 
(19)

. Sensor 

readings were taken of oil temperature, iron content and viscosity.  

 

3.2.1 Asset state 

A traffic light system was adopted to allow a user to quickly identify machine condition 

and react quickly. Green depicts normal operation, Amber indicates maintenance is 

required, and Red suggests a failure is imminent. Each of these states are represented as 

a skewed Gaussian PDF. For the purposes of this test, the PDF parameters during 

normal operation and following oil degradation were derived from Original Equipment 

Manufacturer best practice and the IS0 4406 standard 
(20)

. 

 

3.2.2 Observations 

A major indicator of gearbox condition is the gearbox lubricant 
(18)

. Lubrication and oil 

is applied across the gearbox to different components to ensure optimum performance. 

Lubrication reduces friction, and in contact machinery friction degrades efficiency.  

 

In the gearbox there is a great deal of contact between components. When these 
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components wear down, particles are liberated and become suspended in the lubrication 
(21)

. These particles can be analysed by monitoring the electromagnetic properties of the 

oil 
(22)

. Gearbox lubricants are designed to contain additives that ensure the gearbox 

operates efficiently 
(23)

. A change in chemical composition, due to liberated particles, 

would therefore adversely affect the performance of the gearbox. By monitoring the 

gearbox oil‟s iron content and temperature, the state of certain gearbox components can 

be determined and these replaced as required. 

3.2.2.1 Iron 

The compositions of gearbox components vary from component to component 
(19)

. Iron 

is an element which commonly features in gearbox components, it can therefore be 

inferred that an increase in ferrous particles is due to increased wear of a gearbox 

component. Condition monitoring sensors can observe iron particles in the lubricant by 

using Electromagnetic Detection (EMD). An inductive coil measures the change in 

magnetic flux as the oil flows through the sensor. Metals have a higher conductivity 

than oil; consequently there is an increase in current proportional to the quantity and 

type of material detected 
(19)

.   

3.2.2.2 Temperature 

Fluctuations in oil temperature can be due to a number of factors. An increase in 

oxidation of the lubricant can cause it to become more acidic; this can lead to more 

corrosion of components and a change in viscosity as a consequence of thermal 

degradation. Thermal degradation can also cause the additives in the lubricant to 

become unstable and less efficient, reducing the gearbox performance and increasing 

wear 
(18)

. An increase in temperature is therefore a clear indication of a failure 

somewhere within the system.  

 

Thermocouple sensors can be used to monitor the temperature of the oil. It is assumed 

in this example that there is a negligible loss of heat as the oil flows from the 

component to its sample point.    

 

3.2.3 Gearbox Component: bearing  

The majority of failures in a wind turbine gearbox appear to start in the bearings 
(24)

. 

This is due to the bearings being unable to cope with large fluctuations in load and the 

changes in direction of load. Therefore this case study focusses on the condition of the 

bearing within the gearbox. 
 

A test-bed suitable for this demonstration circulates the oil with controls for temperature 

and flow rate, pressure and viscosity are all measured, and an inductive particle 

detection unit has been installed to detect ferrous and non-ferrous particles. 

 

The test-bed allows seeding of the oil with particles to represent bearing or gear-tooth 

wear and control of the temperature of the oil and its flow rate can also be manipulated 

to simulate various failure modes and test new sensor equipment. 

 

This platform offers itself to testing the diagnostics program created in LabVIEW as it 

is already controlled and monitored by LabVIEW software. By adding the diagnostics 

program a fully integrated system is created that facilitates both control and analysis of 
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the system. 

 

3.2.4 Application 

Testing of the Bayesian Belief Network approach was done by simulating failure modes 

by adjusting the temperature and particles in the oil.  

 

Prior to seeding of the particles the Bayesian inference program predicted the gearbox 

component to be in a Green operating state. As particles were seeded into the system the 

component condition was seen to be deteriorating. This is recorded in the program and 

is visible in the graph recording the component condition in Figure 2. As the component 

entered an abnormal condition the program suggests to the operator that maintenance be 

performed on the gearbox component. 
 

 
Figure 2. Deteriorating component condition within the Bayesian inference 

program, alarm suggesting maintenance be performed 

As more particles were seeded into the oil eventually a critical state was reached. The 

suggested action from the program is to shut-down the system to avoid further damage 

followed by maintenance being performed.  

 

Additionally a sensor warning was shown, suggesting the thermocouple sensor be 

checked. The reason for this is during the simulation the viscosity and particle count 

were manipulated to create the appearance of a failure mode occurring, however the 

temperature of the oil was left unrealistically low. This anomalous reading is therefore 

recognised by the program and highlighted to the operator. 

 

The deterioration curve gives the operator a clear signal of developing faults and the 

traffic light system employed allows operators to make instant critical decisions. 

 

3.3 Summary 

 

Bayesian Belief Networks are confirmed by the experimental case study to be effective 

in diagnosing faults and to give the operator clear instructions. The application to 
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offshore wind turbines is of particular interest. The nature of the program lends itself to 

remote locations in a number of ways. It is uploaded to the hardware supervising the 

gearbox and can therefore be monitored remotely through a network connection. It can 

detect faulty sensors which will reduce significantly the number of false alarms, and 

allow maintenance crews to check for or replace what it responsible when routine 

maintenance is performed; and it makes detailed records only when the system is not 

operating as expected, this aids with future diagnostics without overloading the network 

or user at times when data is not needed. 

 

4. Prognostics & Maintenance Strategies 
 

This paper proposes DBNs for prognostics. The potential of this work is shown through 

a case study analogous to the one conducted in the previous section using GeNIe. GeNie 

is a software tool specifically designed for creating, representing and analysing DBNs. 

However, it cannot directly represent PDFs and is not suitable for real-time input. It is 

used here for illustrative purposes. 
 

4.1 Case study 
 

The Dynamic Bayesian Network is applied to the same case as in the previous section. 

The aim of this study is to provide information to the on-line system to determine when 

maintenance is best conducted. The model includes sensor reliability, corrective as well 

as preventive maintenance, and a cost analysis section to determine the best 

maintenance strategy. The DBN developed using knowledge and example data provided 

by industrial partners, is shown in Figure 3. 

 

 
Figure 3.  GeNIe DBN demonstrating ability to define a maintenance strategy 

based on the cost. 

 



 

9 

 

The degradation of the gearbox bearing influences the condition monitoring readings, 

i.e. the temperature of the oil and particle count, as described in Section 3.1. Viscosity is 

derived from temperature readings and so degradation as a result of changing viscosity 

is included in the temperature reading in this example.  

 

High oil temperature and particle count increase the degradation rate of the gearbox and 

so these variables are fed back into the gearbox condition in the next time slice. 

Preventive maintenance is conducted on the basis of the sensor readings, whereas 

corrective maintenance is conducted only when the gearbox bearings fail. It is assumed 

that the both corrective and preventive maintenance return the bearings to the same 

level, however the cost both as regards to time and money are considered greater for 

corrective maintenance. This is in addition to the cost of repairs dependent on the state 

of the component as preventative action cannot be planned for in advance, which is of 

particular importance when dealing with structures that are offshore. 

 

The cost analysis is based on the steady state conditions of the gearbox and the 

maintenance strategy being followed. A base case where no preventive maintenance is 

performed is compared with the optimal preventive condition based maintenance 

strategy in Figure 4. The optimum maintenance strategy is shown in Figure 5. As well 

as improving the overall condition of the gearbox the preventative maintenance strategy 

increases profit by avoiding expensive corrective maintenance costs. 

 
 

Figure 4. GeNIe DBN analysis without conducting preventative maintenance (left) 

and while conducting optimal preventive condition based maintenance (right) 

 

 
Figure 5. Optimum preventative maintenance strategy 
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5. Conclusion 
 

Offshore wind turbine operators would benefit considerably from the use of intelligent 

systems approaches and techniques. In particular it has been shown that Bayesian Belief 

Networks and Dynamic Bayesian Belief Networks may be used for diagnostics and 

prognostics, as well as planning maintenance strategies. 

 

The LabVIEW program demonstrates how Bayesian Belief Networks can be used to 

effectively create a real-time condition monitoring system. A simulated failure mode 

was effectively recognised by the program as well as an anomalous sensor reading. The 

modular design of the program also allows new modules to be attached and 

modifications to be made with ease. Its design is also applicable offshore, where data 

extraction may be limited or restricted at times. 

 

The program in GeNIe demonstrates the ability to model systems and to optimise 

maintenance based on cost – establishing that, within the models parameters, 

preventative condition based action can reduce operation and maintenance costs 

offshore. 

 

It is especially relevant now with the rapid deployment in offshore wind associated 

costs that condition based monitoring is employed, as it has been shown here to increase 

the availability of the turbines, reduce costly corrective maintenance and simplify the 

job of the operator. 
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