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a b s t r a c t

In this work we investigate the laminar flow through square–square sudden contractions with various

contraction ratios (CR¼2.4, 4, 8 and 12), using a Newtonian fluid and a shear-thinning viscoelastic fluid.

Visualizations of the flow patterns were carried out using streak line photography and detailed velocity

field measurements were performed using particle image velocimetry. The experimental results are

compared with numerical predictions obtained using a finite-volume method. For the Newtonian fluid, a

corner vortex is found upstream of the contraction and increasing flow inertia leads to a reduction of the

vortex size. Good agreement is observed between experiments and numerical simulations. For the shear-

thinning fluid flow a corner vortex is also observed upstream of the contraction independently of the

contraction ratio. Increasing the elasticity of the flow, while still maintaining low inertia flow conditions,

leads to a strong increase of the vortex size, until an elastic instability sets in and the flow becomes time-

dependent at DeE200, 300, 70 and 450 for CR¼2.4, 4, 8 and 12, respectively. At low contraction ratios,

viscoelasticity brings out an anomalous divergent flow upstream of the contraction. For both fluids

studied the flow presents a complex three-dimensional helical vortex structure which is well predicted by

numerical simulations. However, for the viscoelastic fluid flow the maximum Deborah number achieved

in the numerical simulations is about one order of magnitude lower than the critical Deborah number for

the onset of the elastic instability found in the experiments.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Non-Newtonian fluids have been extensively studied since the
1940s, when investigations carried out during the Second World War
showed several interesting phenomena and stimulated numerous
industrial applications (Denn, 2004). Thereafter, flows of viscoelastic
fluids and consequently the impact of their rheological properties on
the flow patterns were the aim of several research studies. In this
context, special attention was given to entry-flow problems, and in
particular to contraction flows (e.g. Cable and Boger, 1978a, b, 1979;
White and Baird, 1988; Quinzani et al., 1995; Rothstein and McKinley,
1999; Alves et al., 2004; Lu et al., 2006; Oliveira et al., 2007; Walters
et al., 2009; Chung et al., 2009).

Several authors have investigated the Newtonian and non-New-
tonian fluid flow through sudden contractions with circular and
planar geometrical configurations, with particular emphasis on the
understanding of the flow patterns developed near the re-entrant and
salient corners (e.g. Boger et al., 1986; Nigen and Walters, 2002).

As described by Boger (1987) in his review, viscoelastic fluid
flow through axisymmetric contractions presents a rich variety of
flow patterns which depend on the contraction ratio, the fluid
rheology and the flow conditions. For instance, large corner vortices
develop upstream of the contraction plane, which are normally
preceded by the formation of lip vortices near the re-entrant corner,
as the Deborah number increases. In order to investigate the influ-
ence of inertial effects on the flow of non-Newtonian fluids through
axisymmetric contractions, Cable and Boger (1978a, b, 1979) analyzed
the flow of aqueous solutions of polyacrylamide (PAA) in 2:1 and 4:1
axisymmetric contractions. At low flow rates, i.e. in the absence of
significant inertial and elastic effects, the flow behavior is similar to
that found for a Newtonian fluid. As the flow rate is increased, two
different flow regimes were found, namely the vortex growth regime
and the onset of diverging streamlines. Evans and Walters (1986,
1989) and Walters and Webster (1982), amongst others, also studied
experimentally the flow of PAA solutions through planar contractions.
Later, Purnode and Crochet (1996) simulated numerically the experi-
mental results obtained previously by Evans and Walters (1986, 1989)
using the FENE-P constitutive equation. The effect of the polymer con-
centration, the contraction ratio and the shape of the re-entrant corner
on the appearance and enhancement of the vortices were establis-
hed. The authors found that the observed corner vortices increase in
strength with polymer concentration and a lip vortex appears for
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low-viscosity solutions. Additionally, the lip vortex sets in for the
contraction ratio of 4 in the presence of inertial effects, while for higher
contraction ratios inertia is not essential.

Most of the previous numerical works focused on the develop-
ment of robust and stable numerical methods to simulate the flow
of complex fluids with viscoelastic behavior, usually described using a
differential constitutive equation. Furthermore, two-dimensional (2D)
steady-state numerical simulations have been more exploited than
three-dimensional (3D) ones, primarily due to the limited computer
resources. However, the non-Newtonian fluid flow in 3D geometries
leads, in some cases, to a complex and time-dependent flow beha-
vior and therefore only time-dependent 3D numerical calculations
can accurately predict the characteristics of the flow. Most of the 3D
viscoelastic fluid flows investigated numerically are for planar con-
tractions with ending walls separated by a finite distance, usually
defining a large aspect ratio. For example, in the work of Mompean and
Deville (1997) the flow of an Oldroyd-B fluid was simulated numeri-
cally using 2D and quasi-2D calculations. The authors found that the
results obtained from 3D calculations are substantially different from
those obtained assuming a 2D approximation. Xue et al. (1998) also
studied the viscoelastic fluid flow in the benchmark 4:1 planar contra-
ction, using a three-dimensional finite-volume method. The 3D results
were also compared with 2D calculations using the upper-convected
Maxwell (UCM) and the Phan-Thien–Tanner (PTT) models, in order to
describe Boger and shear-thinning fluids, respectively, and the 2D
simulations were a good representation of the flow.

For the numerical simulation of viscoelastic fluid flow, it is very
important to select an adequate constitutive equation and the corr-
esponding rheological parameters in order to reproduce accurately
the shear viscosity, normal stress and extensional properties, since
these material functions have a direct impact on the flow behavior.

The square–square contraction is a simple geometrical arrange-
ment that leads to complex 3D flow patterns which can be useful as
a benchmark solution for the development of 3D numerical codes
in computational rheology. Sirakov et al. (2005) studied the flow of
a viscoelastic fluid from a square channel to a circular pipe with
smaller cross-sectional area. The authors reported the formation of
an open vortical structure in the flow through the contraction. This
three-dimensional behavior observed experimentally was success-
fully captured in the numerical results obtained using the eXtended
Pom–Pom model. Alves et al. (2005) investigated the Newtonian
and non-Newtonian fluid flow through a 4:1 square–square contrac-
tion. Two different Newtonian fluids were used in the experiments
and the corresponding flow patterns were simulated numerically.
Moreover, the flow of a viscoelastic fluid with a nearly constant shear
viscosity (Boger fluid) was also studied experimentally. More recently,
Sousa et al. (2009) investigated the effect of the contraction ratio on
the flow through square–square contractions of a Newtonian fluid
and the Boger fluid used by Alves et al. (2005). Contraction ratios of
2.4, 4, 8 and 12 were explored and for the Newtonian fluid the corner
vortex formed in the upstream channel was found to decrease in size
monotonically as the Reynolds number increases. On the other hand,
the viscoelastic fluid presented a different flow behavior that depends
strongly on the contraction ratio. For the lower contraction ratios,
diverging streamlines upstream of the contraction plane were obser-
ved with an initial decrease in the vortex size followed by an increase
as the Deborah number (or the flow rate) increases. For the higher
contraction ratios, vortex enhancement was found with localized
diverging streamlines occurring near the re-entrant corner. Further-
more, at high Deborah number flows, an elastic instability sets in and
the flow eventually becomes time-dependent. The flow through 3D
square–square contractions using a viscoelastic fluid with a shear-
thinning rheological behavior was also investigated experimentally
and numerically by Alves et al. (2008) using a 4:1 contraction ratio.
The authors found a strong vortex enhancement, with the flow even-
tually becoming unsteady as the Deborah number increases. The

correct representation of the extensional behavior of the fluid was
shown to be important in order to obtain accurate flow predictions.

In this work, we investigate the flow of a shear-thinning fluid
through 3D square–square contractions in more detail and assess
the influence of the contraction ratio upon the flow patterns and
the velocity field. For that purpose, we show the flow patterns
visualized using streak line photography and quantify the vortex
activity in terms of the vortex length. Moreover, we present the
velocity field obtained from particle image velocimetry (PIV) mea-
surements. The experiments were performed with a Newtonian and a
shear-thinning viscoelastic fluid and numerical simulations of the
flow were performed using a finite volume method (Oliveira et al.,
1998). The PTT model (Phan-Thien and Tanner, 1977) was used to
describe the rheology of the shear-thinning viscoelastic fluid.

The remainder of this paper is organized as follows: in Section 2
the experimental set-up is described, as well as the experimental
techniques used in the characterization of the flow. The fluids used
and the rheological characterization is presented in Section 3. The
numerical method employed for the simulation of the Newtonian
and non-Newtonian fluid flow as well as the characteristics of the
computational meshes used are described in Section 4. In Sections 5
and 6 we present and discuss the results regarding the flow patterns
and velocity field, respectively. Finally, in Section 7 the main conclu-
sions are summarized.

2. Experimental set-up and techniques

The test rig was made of transparent acrylic and placed in a dark
room for flow visualizations and particle image velocimetry measure-
ments. Fig. 1 shows schematically the experimental set-up.

The main duct is composed of two parts: an upstream channel
with a fixed width of 2H1¼24 mm and an interchangeable square
duct with a smaller inner side length, which fits precisely in the
larger square duct. To assess the effect of the contraction ratio, this
downstream side length can be set to 2H2¼10.0, 6.0, 3.0 or 2.0 mm,
corresponding to contraction ratios of 2.4, 4, 8 and 12, respectively.
We define the contraction ratio, CR, as the ratio between the upstream
and the downstream side lengths of the square ducts, CR¼H1/H2. The
upstream and downstream sections are denoted by subscripts 1 and 2,
respectively. The flow rate is set by varying the height between the two
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Fig. 1. Three-dimensional schematic representation of the experimental set-up

used for flow visualization and particle image velocimetry measurements.
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free surfaces of the reservoirs or using a vacuum pump (KNF Loboport
N811-KT.18) that applies vacuum to the outlet reservoir. For both
cases, the selection of the diameter of the pipe that connects the duct to
this outlet reservoir is also important to set the desired flow rate. To
avoid degradation of the viscoelastic fluids used, flow regulating valves
were not used in the experimental set-up. Further details on the
experimental set-up can be found in Sousa et al. (2009).

The flow patterns were visualized using long time exposure streak
line photography, while detailed velocity field measurements were
performed using PIV. For this purpose, the working fluids were seeded
with a low concentration of 10 mm PVC tracer particles. In order to
illuminate the plane of the flow under study, we used either a 3 mW
532 nm laser diode (Imatronic, model LLM115) or a 5 mW 635 nm
laser diode (Vector, model 5200-20), both fitted with a cylindrical lens
to create a light sheet. The streak line images were captured using a
Canon EOS 30D digital camera equipped with a macro lens (Canon
EF100 mm, f/2.8) and the exposure time was varied from about 1 to
103 s, depending on the flow rates.

For the PIV measurements, and for the flow visualizations at high
flow rates, a double pulsed Nd:YAG laser with a maximum energy of
50 mJ (Solo PIV III, New Wave Research) was used to illuminate the
channel and a digital CCD camera (Flow Sense 2M from Dantec Dyna-
mics coupled with a Nikon AF Micro 60 mm lens), which was placed
perpendicularly to the light sheet, was used to record the images. Time
interval between pulses was varied in the range of 10-4rDt/sr1
depending on the flow rates. The images were acquired and post-
processed by FlowManager v4.60 software (Dantec Dynamics) using
adaptive correlation on interrogation windows ranging between 64 by
64 pixels to 16 by 16 pixels, with 50% overlap.

3. Fluid characterization

A Newtonian fluid and a viscoelastic fluid with a shear-thinning
rheological behavior were used in this study. The Newtonian fluid,
used for comparison purposes, is an aqueous solution of glycerol
(85 % w/w) and the non-Newtonian fluid is a solution composed
of 40.0% (w/w) of glycerol, 59.9% (w/w) of water and PAA at a
weight concentration of 600 ppm. In order to minimize bacteriological
growth in the fluids, and consequently to prevent its degradation, a
biocide (Kathon LXE, Rohm and Haas) at a weight concentration of
25 ppm was added to all solutions. The density (r) of the Newtonian
and viscoelastic fluids, measured at 293.2 K using a hydrometer (ran-
ges 1200–1300 and 1100–1200 kg/m3; readability of 0.001 kg/m3),
were 1221 and 1156 kg m�3, respectively.

The fluids were characterized rheologically using a shear
rheometer (Physica MCR301, Anton Paar) under shear rate control.
The flow curves were measured at different temperatures (T) rang-
ing from 283.2 to 303.2 K. The effect of the temperature on the shear
viscosity can be described using an Arrhenius equation for the shift
factor, aT

lnðaT Þ ¼
DH

R

1

T
�

1

T0

� �
ð1Þ

where DH is the activation energy for flow, R the universal gas
constant and T0 the reference temperature. We selected T0¼293.2 K,
the average temperature at which the experiments were carried out,
since the temperature of the measurements varied from 293.0 to
294.7 K. The shift factor is generally defined as (Dealy and Plazek,
2009)

aT ¼
ZðTÞ
ZðT0Þ

T0

T

r0

r
ð2Þ

in whichZ(T0) is the shear viscosity at the reference temperature,Z(T)
is the shear viscosity at a given temperature T and r0 and r are the
fluid densities at the reference temperature, and at temperature T,

respectively. Nevertheless, in the range of measurements perfor-
med, the temperature variation is small and consequently the fluid
density does not change significantly. As a result, the shift factor can
be described as

aT ¼
ZðTÞ
ZðT0Þ

ð3Þ

For the Newtonian fluid, DH/R¼5580 K and Z0¼0.0982 Pa s at
the reference temperature. For the viscoelastic fluid, the flow curve
was measured also at various temperatures, ranging from 283.2 to
298.2 K, using a cone-plate with a 50 mm in diameter and 21 angle.
Subsequently, the time-temperature superposition principle (Dealy
and Plazek, 2009) was used to obtain the master curve at the reference
temperature (T0¼293.2 K). In this case, a ratio of DH/R¼2703 K was
obtained. Fig. 2 shows the resulting steady shear viscosity master
curve as well as the corresponding fit of a simplified Phan-Thien–
Tanner model (Phan-Thien and Tanner, 1977) with a solvent viscosity
contribution. A detailed description of this viscoelastic model is given
in Section 4.

The parameters of the PTT model used in the fit presented in
Fig. 2 are: extensibility parameter, e¼0.06; polymer shear viscosity
coefficient, ZP¼1.62 Pa s; solvent shear viscosity, ZS¼0.03 Pa s;
relaxation time, l¼32 s.

4. Numerical method and computational meshes

In order to describe the isothermal and laminar flow of New-
tonian and non-Newtonian incompressible fluids through square–
square contractions, the following equations need to be solved: the
conservation of mass and momentum,

rUu¼ 0 ð4Þ

r @u

@t
þrUuu

� �
¼�rpþZSr

2uþrUs ð5Þ

and an adequate constitutive equation for the polymeric contribu-
tion (s) to the extra stress tensor. In these equations, u is the velocity
vector, t the time, p the pressure and ZS the Newtonian solvent vis-
cosity. The solvent contribution to the extra stress tensor, sS¼ZS

(ru+ruT), is added explicitly in the momentum equation since this
diffusive term (ZSr

2u) promotes numerical stability.
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Fig. 2. Steady shear viscosity of the Newtonian and the shear-thinning fluid. For the

shear-thinning fluid, the symbols represent the experimental data measured at

different temperatures and the thick solid line the PTT model predictions. For the

Newtonian fluid, the thin solid line represents the shear viscosity of the fluid at

293.2 K. The minimum measurable shear viscosity based on 20 times the minimum

resolvable torque is represented by the dashed line.
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The rheological model used to fit the experimental shear data of
the viscoelastic fluid was the simplified form of the Phan-Thien–
Tanner model (cf. Section 3) and consequently, the polymeric con-
tribution to the extra-stress tensor is given by (Phan-Thien and
Tanner, 1977)

f ðTrsÞsþl
@s
@t
þrUus

� �
¼ ZPðruþruTÞþlðsUruþruT

UsÞ ð6Þ

The linear form of the PTT model was used, with the stress
function given by (Phan-Thien and Tanner, 1977)

f ðTrsÞ ¼ 1þ
le
ZP

TrðsÞ ð7Þ

where Tr(s) represents the trace of the extra-stress tensor. The
simplified form of the Phan-Thien–Tanner model predicts a zero
second-normal stress difference (N2) in fully developed shear flow,
shear–thinning in steady shear flow and strain hardening in
extensional flow, with the steady-state extensional viscosity being
inversely proportional to the extensibility parameter, ZEp1/e, for
low values of e. The fully developed flow of viscoelastic fluids with
non-zero N2 shows a secondary flow in the transverse directions for
non-circular ducts, as discussed by Yue et al. (2008). In the experi-
ments we did not observe secondary flow under fully developed
flow conditions, an indirect indication that the viscoelastic fluid has
a negligible N2, and the adequacy of using the simplified form of the
Phan-Thien–Tanner model.

An alternative formulation for the constitutive equation uses
the conformation tensor, A, which can be related to the extra-stress
tensor as

s¼
ZP

l
ðA�IÞ ð8Þ

where I represents the unitary tensor. For the PTT model the
evolution equation for A is

l
DA

Dt
�AUru�ruT

UA

� �
¼�YðTrAÞðA�IÞ ð9Þ

with Y(Tr A)¼1+e(TrA�3).
Eq. (9) preserves the positive definiteness of A, and using this

important property allows the use of the logarithm of the conforma-
tion tensor, H¼ logA, which can alleviate the numerical difficulties
related with exponential growth of stress profiles of highly elastic
flows, as proposed by Fattal and Kupferman (2004). This transfor-
mation, known as the log-conformation formulation, improves the
stability of the numerical method and alleviates the high-Weissenberg
number problem (HWNP), making possible to achieve converged
solutions at higher Deborah (or Weissenberg) numbers (e.g. Hulsen
et al., 2005). Eq. (9) can be re-written in terms of the logarithm of

the conformation tensor (Fattal and Kupferman, 2004)

l
@H
@t
þuUrH�ðRH�HRÞ�2E

� �
¼ Y TrðeHÞ

h i
ðe�H�IÞ ð10Þ

where R and E are a pure rotational tensor and a traceless
extensional tensor, respectively, which combine to form the
velocity gradient tensor (Fattal and Kupferman, 2004). After solving
Eq. (10) for H, the conformation tensor can be recovered using the
inverse transformation, A¼eH, and the extra-stress can be calcu-
lated using Eq. (8).

An implicit finite volume method (FVM) was used to solve numeri-
cally the set of Eqs. (4), (5) and (10). The governing equations are inte-
grated in space over the control volumes of the mesh, and integrated
in time over small time increments (dt), leading to linearized algebraic
equations to be solved for the logarithm of the conformation tensor
components, Yij,

aYP Yij,P ¼
X6

F ¼ 1

aYF Yij,FþSYij
ð11Þ

and for the velocity components, ui,

aPui,P ¼
X6

F ¼ 1

aFui,FþSui
ð12Þ

In Eqs. (11) and (12) aYP and aP represent the central coefficients,
and the coefficients of the neighbor cells aF account for advection
and diffusion (no diffusion in aYF due to the inexistence of diffusion
term in Eq. (10)). The summation is carried out over the six neighbor
cells (F) that have a face in common with cell P under analysis. The
source terms in Eqs. (11) and (12) include all the terms that are eva-
luated explicitly, based on previous time-step values. In summary, the
numerical methodology consists of the following steps:

1. The conformation tensor Aij is calculated from the extra-stress
components tij (using Eq. (8)), and the log-conformation tensor
Yij is calculated from Aij (cf. Afonso et al., 2009 for details).

2. The evolution equation for Yij (Eq. (10)) is solved implicitly to
obtain the new time level values of Yij.

3. The conformation tensor is calculated from Yij and the extra-
stress tensor at the new time level is computed using Eq. (8).

4. The momentum equation is solved for the three Cartesian
components of the velocity vector, ui.

5. The computed velocity field usually does not verify the continuity
equation, and a correction of ui and pressure is done to simulta-
neously verify the continuity and momentum equations, follow-
ing the SIMPLEC methodology (van Doormal and Raithby, 1984).

6. Steps 1–5 are repeated until convergence is achieved.

Fig. 3. Zoomed view near the contraction plane of the refined mesh (M80) used in the numerical simulations of the flow through the 4:1 contraction. (a) 3D view; (b) central

plane, z¼0 (only half of the plane is shown).
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Regarding the accuracy of the calculations, an implicit first-
order Euler scheme is used in the discretization of the time derivative,
second-order central differences are used to discretize the diffusive
terms and the CUBISTA high-resolution scheme (Alves et al., 2003a) is
used in the discretization of the advective terms in the momentum
and constitutive equations.

The simulations were performed on three-dimensional meshes
covering the whole wall-to-wall geometries, i.e. no symmetry at
the central and/or diagonal planes was enforced. The meshes
consist of orthogonal blocks which are composed of non-uniform
cells. A collocated mesh arrangement is used, i.e. all variables are
calculated at the center of the cells, avoiding that the stresses
(or the logarithm of the conformation tensor) are calculated exactly
on the re-entrant corners of the contraction, where the stresses
become unbounded (singular point), as demonstrated theoretically
by Evans and Sibley (2008) and numerically by Alves et al. (2003b)
for a planar contraction.

The inlets and outlets were positioned far from the contraction
plane so that fully developed flow conditions were attained. No-slip
boundary conditions were imposed at the solid walls and a uniform
velocity profile and null stress components were imposed at the
inlet boundary. The outflow boundary condition involves vanishing
stream wise gradients of velocity and stress components and linear
extrapolation of pressure from the two upstream computational cells.

Fig. 3 shows a zoomed view, near the contraction plane, of the
refined mesh used in the simulation of the flow through the 4:1
square–square contraction. To assess numerical accuracy, three
different computational meshes were used for CR¼2.4 and 4
(meshes M40, M64 and M80) and two meshes were used for
CR¼8 (meshes M40 and M64) and CR¼12 (meshes M48 and M60).

Details of the total number of cells (NC) as well as the cell smallest
dimensions (Dxmin/2H1, Dymin/2H1 and Dzmin/2H1) for each mesh
are described in Table 1. The reference number identifying each
mesh (e.g. M40) corresponds to the number of cells along each
transverse direction in the upstream channel.

5. Flow patterns and vortex length

5.1. Newtonian fluid

A detailed discussion of the Newtonian fluid flow through
square–square contractions with different contraction ratios was
documented in a previous work (Sousa et al., 2009). Here, we focus
only on the main results with the purpose of comparing the flow of
the Newtonian and the shear-thinning fluids.

In order to characterize the Newtonian fluid flow we use the
Reynolds number, here defined as Re¼rU2(2H2)/Z, where U2 is the
average velocity in the downstream channel. In Fig. 4 we show the flow
patterns obtained for the Newtonian fluid flow through the 8:1 square–
square contraction for two Reynolds numbers (Re¼2.13 and 13.7).
Moreover, in Fig. 4 we compare the experimental results with num-
erical predictions highlighting the variation of the vortex length with
increasing flow inertia. The vortex length, xR, is here defined as the
distance from the separation point to the contraction plane, as shown in
Fig. 4(a).

The Newtonian fluid flow behavior is similar for all contrac-
tion ratios studied (CR¼2.4, 4 and 8). A corner vortex appears up-
stream of the contraction plane which is typical of flows through
abrupt contractions (cf. Oliveira et al., 2007 for the axisymmetric
arrangement and Alves et al., 2003b for the planar configuration)
and agrees with the findings of Sirakov et al. (2005) and Alves et al.
(2005) for 3D geometries. Furthermore, the size of the upstream
vortex decreases when the Reynolds number is increased. The
comparison between the experimental and numerical results
demonstrates that there is an excellent agreement between both
approaches.

5.2. Shear-thinning viscoelastic fluid

Besides the contraction ratio and the Reynolds number, an imp-
ortant dimensionless number that should be taken into account for
the characterization of the viscoelastic fluid flow is the Deborah
number, which is here defined as De¼lU2/H2. Due to the shear-
thinning behavior of the viscoelastic fluid, the Reynolds number is
now defined as Re¼ rU2ð2H2Þ=Zð _gÞ, where the shear viscosity is

Table 1
Characteristics of the computational meshes used.

CR Mesh NC Dxmin/2H1 Dymin/2H1¼

Dzmin/2H1

2.4 M40 164000 2.08�10�2 1.99�10�2

M64 419840 1.30�10�2 1.25�10�2

M80 656000 1.03�10�2 9.93�10�3

4 M40 51000 1.31�10�2 1.25�10�2

M64 130560 8.20�10�3 8.16�10�3

M80 408000 6.26�10�3 6.25�10�3

8 M40 163200 7.50�10�3 7.50�10�3

M64 417792 4.69�10�3 4.55�10�3

12 M48 113664 1.07�10�2 9.52�10�3

M60 177600 8.61�10�3 8.33�10�3

Fig. 4. Experimental and numerical streamlines obtained at the center plane for the Newtonian fluid flow through the 8:1 square–square contraction at (a) Re¼2.13 and (b)

Re¼13.7.
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calculated using the PTT model at the characteristic shear rate
_g ¼U2=H2.

Fig. 5 shows the flow patterns for a low and a high contraction
ratio (CR¼2.4 and 12) for different Deborah numbers, which were

varied by changing the flow rate. The Reynolds number also varies
with the flow rate, but in all cases inertial effects are not important
because Re is small for the range of flow conditions studied with the
viscoelastic fluid.

Fig. 5. Flow patterns obtained with the viscoelastic fluid at the center plane for (a) CR¼2.4 and (b) CR¼12. The diverging streamlines which appear for CR¼2.4 are highlighted

by dashed lines (a4).
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For all CR studied, at low flow rates (or De), a Newtonian-like
behavior is observed (cf. Fig. 5(a1)). Increasing the Deborah number,
a strong vortex enhancement is observed (cf. Fig. 5(a2)–(a4) and
(b1)–(b4)). For the lower contraction ratios investigated, CR¼2.4 and
4, this vortex enhancement is accompanied by the onset of diverging
streamlines upstream of the contraction plane, which appear at
De410 for CR¼2.4 (cf. Fig. 5(a4)) and at De420 for CR¼4. Divergent
streamlines are often observed in viscoelastic contraction flows (Cable
and Boger, 1978a, b, 1979; Evans and Walters, 1989, McKinley et al.,
2007) and are usually enhanced at lower contraction ratios (Alves and
Poole, 2007), as confirmed here. In fact, in the present work divergent
flow was not observed for the higher contraction ratios, CR¼8 and 12.
Furthermore, the small values of the Reynolds numbers used in this
work suggest that inertia is not a fundamental condition for the app-
earance of diverging flow, in agreement with the findings of Alves and
Poole (2007).

The vortex length at the center plane of the square channel, xR,
was measured for all flow rates and contraction ratios studied,
using the streak line images captured experimentally as well the
velocity field predicted from numerical simulations. Fig. 6 shows
the variation of the dimensionless vortex length at the center plane
(xR/2H1) as a function of the Deborah number for all the contraction
ratios investigated. The recirculations that appear upstream of the
contraction increase in size with an increase in the flow rate
(or Deborah number), in contrast with Newtonian fluid flow, in
which the vortex length decreases slightly with the flow rate, as
shown in Section 5.1. For all CR, but particularly for the lower
contraction ratios studied in this work (CR¼2.4 and 4), the vortex
length increases considerably, exceeding three times the width of
the upstream channel. The vortex enhancement observed in the
flow of a shear-thinning fluid through contractions was previously
documented in the works of Alves et al. (2008) for a 4:1 square–
square contraction, by Evans and Walters (1986) for planar and
square–square abrupt contractions and by Cable and Boger (1978a)
for axisymmetric contractions. For Boger fluids vortex enhance-
ment is usually observed in axisymmetric and in square–square
contractions (Evans and Walters, 1986; Alves et al., 2005), while for
planar contractions vortex activity is suppressed or not significant
(Walters, 1985; Evans and Walters, 1986). This difference in flow
behavior can be related with the higher Hencky strains experienced
in square-square and axisymmetric contractions (eH ¼ 2lnCR), in
comparison to the planar arrangement (eH ¼ lnCR).

The numerical results presented in Fig. 6 for CR¼2.4 and 4 were
obtained using the three meshes described in Section 4 (M40, M64
and M80). For the range of De where steady solutions were obtai-
ned in the numerical simulations, the vortex lengths predicted
numerically are in good agreement with the experimental values.
Moreover, the differences between meshes M64 and M80 are small
(relative deviation of about 1%). For this reason and since numerical
simulation of the viscoelastic fluid flow using the more refined mesh
is time-consuming, for the higher contraction ratios, CR¼8 and 12,
we only show the numerical results obtained using mesh M40 or
M48 and M64 or M60, respectively. Average computational times
for CR¼2.4 were 15 hours using mesh M40, 6 days using mesh M64
and 4 weeks in mesh M80, in all cases using a desktop computer
with an Intel Core2 Quad Processor Q9400 running at 2.66 GHz, and
with 4 GB of RAM. For the other contraction ratios similar CPU times
were necessary to achieve convergence in each mesh. The max-
imum Deborah number (Demax) achieved in the numerical simula-
tions varied with CR and mesh used. In mesh M40 Demax varied from
24 to 43 for CR¼2.4 and 12, respectively, while for mesh M64 Demax

varied from 14 to 10 for CR¼2.4 and 12, respectively. In mesh M80
given the large CPU times involved, we restricted the simulations to
a few De cases, in order to assess numerical accuracy and conver-
gence with mesh refinement. The general trend observed, with
Demax decreasing with mesh refinement, has been reported in most
of the numerical studies of viscoelastic fluid flow in contractions
(Owens and Phillips 2002) and is related with the large gradients of
the stress (or conformation) field observed near the walls, and
particularly in the sharp (re-entrant) corners where the stress (and
conformation) field is unbounded (singular point).

In the numerical calculations we are only able to probe a range
of Deborah numbers much smaller than in the experiments, as a
consequence of the HWNP and the limitations of the PTT model.
Nevertheless, we are able to predict numerically the observed
vortex enhancement as De increases with good accuracy. To further
attest this, in Fig. 7 we show the numerical streamlines for the
shear-thinning fluid flow through the 2.4:1 square–square con-
traction and a comparison with the flow visualization at high De to

0.01
0.1

1

10

CR = 2.4
CR = 4
CR = 8
CR = 12

x R
/(2

H
1)

De
0.1 1 10 100 1000

CR = 2.4, 4, 8 and 12

Fig. 6. Dimensionless vortex length at the center plane as a function of the Deborah

number for all contraction ratios studied. The symbols represent the experimental

data, the thick solid lines represent the numerical predictions using mesh M40 (M48

for CR¼12), the thin solid lines the predictions using mesh M64 (M60 for CR¼12)

and the dashed lines the predictions using mesh M80.

Fig. 7. Viscoelastic fluid flow patterns predicted numerically for CR¼2.4 (mesh

M64) at the center plane at different flow conditions and comparison with

experimental results (d).
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illustrate the good agreement between experiments and numerical
predictions.

As explained previously, at low Deborah numbers the flow is
Newtonian-like (compare Figs. 7(a) and 5(a1) for the viscoelastic
fluid to Fig. 4(a) corresponding to the Newtonian fluid) and the

upstream vortices are slightly concave-shaped. At De¼0.231, the
numerical results show the presence of small lip vortices near the
re-entrant corners which were not observed in the experimen-
tal results because visualizations were restricted to De40.5 due
to experimental difficulties of operation at such low flow rates.

Fig. 8. Projected streamlines obtained for the viscoelastic fluid at different parallel planes of the 2.4:1 square–square contraction for Re¼0.930 and De¼92.0.

Fig. 9. Flow patterns of the viscoelastic fluid flow through the 8:1 square–square contraction acquired at different moments of the oscillating cycle for Re¼0.171 and De¼152:

(a) center plane; (b) middle plane between the wall and the center plane.
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Increasing De, the recirculations increase in size and become convex
in shape (cf. Fig. 7(b) and (c)) in contrast with those obtained for
Newtonian fluid flow. At a certain value of the Deborah number, there
is a reversal of the flow direction within the 3D recirculation which is
predicted numerically as can be seen in Fig. 7(c) and (d) where the
fluid is clearly entering the recirculation in the middle plane, in con-
trast with the behavior of low De or Newtonian fluid flows (cf. Fig. 4),
where the fluid exits the recirculation at the middle plane vortex.

For the lower CR, within the experimental range of flow rates
measured, it is possible to establish that the inversion of the flow
direction occurs at DeE3 and 2 for CR¼2.4 and 4, respectively. For
higher CR we are not able to determine experimentally the value of
De at which flow reversal takes place due to the absence of experi-
mental data at those flow conditions. From numerical results we
predict that this phenomenon occurs at DeE1.5 for all CR. The
same phenomenon was reported in the works of Alves et al. (2008)
and of Sousa et al. (2009) for the flow through square–square con-
tractions of a PAA-based shear-thinning and a Boger fluid, respec-
tively. Additionally, flow reversal was also observed in square–square
expansions (Sousa et al., submitted for publication) although in this
case it only happened for Newtonian fluids, when inertial effects
become important. The reported vortex enhancement due to elasti-
city in contraction flows, and due to inertia in expansion flows, seems
to be linked with the flow reversal phenomenon.

Fig. 8 shows the projected streamlines at different parallel
planes of the square channel, in order to illustrate the trajectory of
the fluid within the recirculation for high De flows in the 2.4:1 square–
square contraction. It is interesting to note that the recirculation
structure is complex and that the eye of the recirculation moves
upstream as the wall plane is approached.

When the flow rate (or De) is increased further, an elastic insta-
bility occurs and the flow becomes time-dependent, with the size of
the recirculations varying in time in a complex way, which eventually
becomes chaotic at larger flow rates. In Fig. 9 we show a sequence of
instantaneous pathlines visualized using the shear-thinning fluid for a
Deborah number at which the flow is unstable, clearly showing that
the vortices vary in size and shape with time. To further attest to the
time dependency and the three-dimensional structure of the flow we
also show in Fig. 9(b) instantaneous projections of pathlines at a plane
located at middle-distance between the center plane and the wall of
the square channel (y/H2¼70.50 or z/H2¼70.50). As can be seen,
the flow becomes asymmetric oscillating periodically, i.e. during a
cycle of oscillation, one region of the vortex size decreases while the
other part is increasing. From Fig. 9(b), it is possible to conclude that
the entire 3D vortical structure is moving. The normalized frequency
of oscillation, lf, is plotted in Fig. 10 as a function of the ratio De/CR,
together with results reported in a previous work (Sousa et al., 2009)
for a Boger fluid flowing through square–square contractions with
CR¼4, 8 and 12. A general trend can be identified with lf varying
approximately linearly with log(De/CR).

5.3. Flow pattern map

The different flow phenomena identified for the viscoelastic
fluid flow through square–square contractions can be summarized
in a CR–De map, as shown in Fig. 11.

Each flow regime is bounded between an upper and lower limit
that are marked as dashed lines in Fig. 11. The distinct flow regimes
observed with the shear-thinning fluid were categorized as:

� Newtonian-like flow for conditions of negligible elastic effects, in
which the upstream vortices increase in size only slightly as the
Deborah number increases.
� Vortex enhancement, in which the vortex increases significantly

due to elastic effects.

� Diverging streamlines, which occurs for the lower contraction
ratios (CR¼2.4 and 4) when the Deborah number (and conse-
quently the elastic effects) is further increased. We note that this
flow regime occurs simultaneously with vortex enhancement.
� Unsteady flow that occurs at higher Deborah numbers, in which

the entire flow field oscillates periodically.

6. Velocity field

In order to highlight the effect of elasticity on the velocity field,
in Fig. 12 we show dimensionless axial velocity profiles along the
centerline (y¼z¼0) for three contraction ratios at different Deborah
numbers. In addition, the numerical prediction of the axial velocity
profile for a Newtonian fluid flow under creeping flow conditions is
also presented in Fig. 12 for comparison purposes, since this is the
limiting case that would be observed with the viscoelastic fluid at very
low flow rates. For the range of high Deborah numbers at which the
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Fig. 10. Normalized frequency of oscillation as a function of De/CR for CR¼4, 8 and
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experimental velocity profiles were measured using PIV, we are
unable to obtain the velocity field numerically using the PTT model
due to the high Weissenberg number problem. However, we have

performed numerical calculations using a generalized Newtonian
fluid (GNF), which does not account for elasticity, but presents a rheo-
logical behavior in steady shear flow similar to that of the viscoelastic
fluid used in the experiments. For this purpose, a Carreau–Yasuda
model (Bird et al. 1987) was used to fit the shear viscosity data of the
GNF model

Z¼ ZSþ
Z0�ZS

½1þðL _gÞa�ð1�nÞ=a
ð13Þ

where the fitted parameters are Z0¼1.65 Pa s, ZS¼0.03 Pa s,L¼10 s,
n¼0.36 and a¼0.9.

For the inertialess Newtonian fluid flow the behavior is similar
for all CR: upstream of the contraction the fluid experiences a constant
axial velocity along the centerline, up to a location near the contr-
action plane, when the fluid accelerates and enters the downstream
channel eventually reaching the conditions of developed flow, with
u/U2¼2.096 at the centerline of a square channel (Sousa et al., 2009).
For the viscoelastic fluid flow, the influence of elasticity leads to a
different, and more complex, variation of the axial velocity along the
centerline. At a location far upstream from the contraction plane, the
value of the dimensionless axial velocity is similar to that found for
the Newtonian fluid. However, for all contraction ratios studied the
location at which the fluid starts to accelerate, due to entry effects,
shifts significantly upstream with an increase with the Deborah
number. For the lower contraction ratios (CR¼2.4 and 4) the presence
of diverging streamlines leads to a velocity undershoot immediately
before the fluid starts to accelerate. Concurrently, for the same CR, the
velocity profiles reveal an overshoot when the fluid flows through the
contraction plane and enters the downstream duct (in accordance
with the findings of Alves and Poole, 2007, Poole and Alves, 2009 and
Sousa et al., 2009) particularly for the lower CR. The enhancement of
the velocity undershoot and subsequent velocity overshoot in con-
traction flows of viscoelastic fluids was investigated by Alves and
Poole (2007) for smooth planar contractions and shown to be pronou-
nced at low contraction ratios, in agreement with our observation in a
square–square contraction flow. In Fig. 12 we also include the num-
erical results obtained with the GNF model in order to demonstrate
that the significant changes observed in the velocity profiles as De

increases, as well as the onset of undershoots and overshoots in the
centerline velocity profile are a consequence of elastic effects. For
clarity, only the predicted velocity profiles for the higher flow rates are
illustrated in Fig. 12 for each CR. The overshoot on the axial velocity
profiles for the lower CR is not observed in the numerical predictions
using the GNF model, showing clearly that this is an effect of elasticity.
The upstream shift of the velocity profile is also not captured in the
GNF simulations. On the other hand, the GNF model is able to accu-
rately predict the axial velocity in the downstream channel for fully
developed flow conditions for CR¼8. For CR¼2.4 and 4, due to the
large velocity overshoots, the fully developed flow conditions down-
stream of the contraction plane were not achieved in the PIV meas-
urements, but eventually the velocity profile will fall down to the
values predicted by the GNF model. We note that the dimensionless
velocity at the centerline under fully developed flow conditions is
lower than that found for a Newtonian fluid, due to the shear-thinning
rheological behavior of the GNF fluid.

Fig. 13 shows a contour plot of the velocity magnitude measured
using PIV at the center plane of the square duct (y¼0 or z¼0) for the
flow of the viscoelastic fluid at De¼76.3 and CR¼2.4. The velocity
magnitude is scaled with the downstream average axial velocity,
U2. As can be seen, the velocity magnitude increases significantly
near the contraction plane, which corresponds to the overshoot in
the axial velocity profile at that location (cf. Fig. 12(a)). Moreover,
we can also observe a large region with low velocities near the
corners, a confirmation of the large recirculations observed at high
De (cf. Fig. 5), and the existence of off-center maximum of the
velocity in the upstream region, a consequence of divergent flow.
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7. Conclusions

The flow of a viscoelastic fluid with a shear-thinning rheological
behavior, through square–square contractions was studied experi-
mental and numerically and compared with the flow of a Newtonian
fluid. In order to assess the effect of the contraction ratio on the fluid
flow and with the purpose of establishing benchmark solutions of the
non-Newtonian fluid flow through contractions with a square–square
geometrical arrangement, different contraction ratios were investi-
gated (CR¼2.4, 4, 8 and 12).

For the Newtonian fluid and for the range of contraction ratios
studied, a vortex appears upstream of the contraction plane, which
decreases in size with an increase of the flow inertia. For the viscoelastic
fluid flow a complex 3D corner vortex also appears. At low Deborah
numbers, the flow is similar to that found for the Newtonian fluid but
when the flow rate (or the Deborah number) is increased, the vortex
length increases significantly for all contraction ratios studied. Further-
more, when elastic effects are present, the increase of the vortex length
is accompanied by a reversal of the flow direction within the 3D open
vortical structure. For the lower contraction ratios, CR¼2.4 and 4,
diverging streamlines appear when the Deborah number is increased.
However, these diverging streamlines are not present in the flow
through the 8:1 and 12:1 square–square contractions. Independently
of CR, when elasticity is increased further, the flow eventually becomes
time-dependent, with the size of the vortices varying in time.
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