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Compositional modelling of partial discharge pulse
spectral characteristics

P. C. Baker, Member, IEEE, B. Stephen, Member, IEEE, and M. D. Judd, Senior Member, IEEE

Abstract—Partial discharge (PD) monitoring is an established
method for insulation health monitoring in high voltage plant.
A number of different approaches to PD defect diagnosis have
been developed to extract defect-specific information from PD
pulse data in both the time and frequency domains. Frequency
based PD pulse analysis has previously been demonstrated to
offer a low-power approach to PD defect identification, where
a mixture of passive and active analog electronics can be used
to generate diagnostic features in a low-power device suited to
wireless sensor network operation.

This paper examines approaches to implementing diagnostic
methods for frequency-based PD pulse diagnosis targeted at
compositional frequency spectrum features in a computationally
efficient manner. Dirichlet and Gaussian distributions are used to
demonstrate the complex probabilistic form of fault class decision
surfaces, which motivates the proposed application of the log
ratio transform to frequency composition data.

The results demonstrate that PD defects can be differentiated
using these frequency-based methods and that employing the
log ratio transform to the compositional frequency content data
yields increases in classification accuracy without necessarily
resorting to more complex classifiers.

Index Terms—Partial discharges, machine learning, condition
monitoring, RF signals, fault diagnosis, wireless sensor networks

I. INTRODUCTION

PARTIAL discharge (PD) monitoring is becoming an

increasingly valuable tool for determining the state of

electrical plant, which, due to regulatory and financial con-

straints on electricity utilities has become an area receiving

significant research in recent years. Successful applications

of PD monitoring include rotating machines [1], underground

cables [2], gas insulated substations (GIS) [3], air-insulated

substations [4] and power transformers [5, 6].

Partial discharges arise within electrical plant due to lo-

calised ionisation in regions where the electric field exceeds

the dielectric strength of the insulation. PD can indicate the

presence of faults long before equipment failure occurs. As

an electrical plant asset management tool, PD monitoring

provides a means of detecting, tracking and managing incipient

insulation defects well in advance of their development into

costly or unsafe failures. Partial discharges also contribute to

the gradual degradation of insulation, with the end result being

total, and potentially catastrophic, dielectric breakdown. To

monitor PD in HV plant, a number of established approaches

to PD detection have been developed including electrical,

radiometric (RF) and acoustic techniques.
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CIGRE recommendations for power transformer condition

monitoring suggest that the level of condition monitoring

applied to plant should be determined by the strategic value

of the asset [7]. The relative cost of on-line PD monitoring

systems compared to asset value have resulted in their use

being reserved for the most critical units. Hence, the devel-

opment of a low-cost approach would allow PD monitoring

to be economically viable on lower-valued assets where PD

monitoring would not otherwise be considered. To support this,

wireless sensor networks (WSNs) can provide the necessary

processing, storage and communication capabilities for this to

be realised. An RF PD pulse detector intended for wireless

sensor network operation was previously developed to offer

a low-cost approach to PD monitoring [8]. The device in-

corporated analog filters and low-power RF detectors in an

integrated form factor, detecting PD pulse spectral energies

across three bands between DC and 3.2 GHz. The device was

designed to be incorporated into a wireless sensor that could

feasibly be deployed onto a wide range of plant items such as

oil-filled transformers and GIS.
To complement the low-power frequency-based detection

method, a suitable diagnostic method is required that can

distil the features generated by a physical detector into useful

diagnostic information. The spectral energy content distributed

across D frequency bandwidths of a partial discharge pulse

represent a composition of the overall spectral content. D-

dimensional compositional data such as this can be represented

as points in a D-simplex, where a Barycentric coordinate

system allows for points to be plotted on a D−1 dimensional

plane: a restricted space that accommodates the inherent de-

pendence between compositional variables. In this paper, three

frequency-based PD pulse diagnostic methods are presented.

In the first instance, a simple discriminative classifier in the

form of a binary decision tree is shown to automatically

segment the simplex into regions that characterise the type

of partial discharges. This concept is then demonstrated as a

generative model over the simplex based around the Gaussian

and Dirichlet distributions. Dirichlet distributions are useful in

modelling the probability of proportional data; however, owing

to the multiple causes of partial discharges it is necessary

to incorporate more than one distribution to accommodate

such complexities. Finally, the log ratio transform is used to

transform data in the simplex back into Euclidian space, where

linear classification methods can be applied and compared.

II. MOTIVATION FOR WIRELESS PD SENSORS

For substation applications, wireless sensor networks can

be used to instrument existing equipment without the need for



wired communications links, fulfilling the role of a condition

monitoring network by combining remote sensing, data man-

agement and processing capabilities in a single architecture.

There have been two recent notable surveys on the use of

wireless technology for the electric power system. The first,

published by EPRI [9], investigated wireless connectivity op-

tions for electric substations and made technology recommen-

dations for specific application classes. The second, published

by the US Department of Energy [10], took a wider view

to look at wireless communications standards for use within

the electricity industry as a whole. These strategic studies

demonstrate that there is a an impetus for the use of wireless

sensor networks for power system monitoring brought on by

the requirement for increased observability of power system

assets for the ‘smart grid’, the high capital cost of cabling

within substations (upwards of $2000 USD per foot [11]),

coupled with maturing technology and ratification of industrial

wireless sensor network standards such as ISA100.11a and

WirelessHART [12]. In practical terms, the largest substation

wireless sensor network deployment to date consisted of over

250 wireless sensor nodes, measuring parameters including

temperature, vibration and SF6 insulating gas density [13].

Looking to the longer term, wireless condition monitoring

sensors such as these are likely to become ‘self-powering’,

drawing power from renewable sources or the ambient elec-

tromagnetic field found within substations [14].

III. PARTIAL DISCHARGE MONITORING AND DIAGNOSTICS

A. PD measurement

The physical nature of partial discharge has resulted in a

number of approaches to PD measurement being developed.

The commonly used techniques are:

1) IEC 60270: This is an electrical PD measurement

method for high voltage equipment [15], where the ‘apparent

charge’ equivalent of PD pulses are measured via capacitively

coupled sensors attached to the terminals of a single phase

of the plant. The IEC technique is best suited to off-line

testing in a laboratory or during factory validation to verify

the insulation condition before new plant is dispatched to

customers, as the level of electrical noise commonly present

within substations means that the technique does not perform

well in the field (although this has been addressed in part

through noise rejection methods [16]).

2) Acoustic: The acoustic PD detection method measures

PD pulses in the ultrasonic range, usually between 20 kHz and

1 MHz. This method, first applied in [17] to transformers,

is not subject to the electrical noise problems of the IEC

method because the measurable ultrasonic wave emission is

not affected by strong electric fields, however piezoelectric

sensors can also be subject to large amounts of environmental

noise within substations [5].

3) RF: The RF technique captures emissions from PD at

frequencies up to the UHF band, resulting in less susceptibility

to noise than the IEC and acoustic methods as electrical

interference tends to be concentrated at lower frequencies.

However, despite being more immune to noise than the IEC

and acoustic methods, RF PD pulse measurements are still

affected by factors including signal reflection, refraction and

attenuation, based upon the geometry and distance between

PD source and sensor. RF transducers are increasingly being

incorporated into new plant [7], although in some circum-

stances sensors can be retrofitted onto existing equipment. For

example in high-voltage transformers either onto inspection

hatches or through oil drain valves as shown in Fig. 1.

B. PD pulse diagnostics

To complement PD measurement techniques, a range of PD

defect diagnostic methods have been developed, largely draw-

ing from signal processing and machine learning techniques

with the aim of automating the otherwise labor-intensive

process of analysing PD pulse measurements. These can be

classified by their fundamental approach to extracting defect-

specific information from PD pulses.

1) Phase resolved diagnostics: As PD activity is under the

influence of the applied electric field which varies with the

external voltage, PD pulses can be resolved against electrical

phase for diagnostic purposes. Typically requiring high-speed

sampling to capture PD pulses with sufficient resolution,

phase-resolved partial discharge (PRPD) plots can reveal

defect-specific information that can be used for classification

and defect diagnosis. The RF method has been applied to

on-line plant items including transformers [18], GIS [19] and

cables [20], and automated phase-resolved diagnostic methods

have been developed based on techniques including fuzzy

classifiers [21], support vector machines [22] and knowledge-

based systems [23].

2) Pulse-sequence analysis: The Pulse Sequence Analysis

(PSA) method [24] analyses sequences of PD pulses in the

time domain, rather than against an absolute phase reference.

This incorporates the external voltage waveform magnitude as

a relative measure of externally applied electric field strength.

Automated analysis of pulse-sequence measurements has been

achieved through the use of artificial neural networks (ANNs)

[25].

3) Frequency-domain diagnostics: Frequency-domain diag-

nosis of PD pulses analyses the spectral content of PD pulses

as a measure to identify and discriminate defect types. The

frequency spectrum of different PD defect sources contains

varying proportions of RF energy across different frequency

bands, correlated to the geometry of the defect [26, 27],

illustrated in Fig. 2. The frequency spectrum of an observed

PD pulse is also dependent on the propagation path between

(a) Top-mounted (b) Mounted to oil gate valve

Fig. 1. Examples of RF sensors mounted on power transformers



0 200 400 600 800 1000
−40

−30

−20

−10

0

10

frequency (MHz)

R
F

 P
o
w

e
r 

(d
B

m
)

(a) Rolling particle defect.
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(b) Protrusion defect.

Fig. 2. PD pulse frequency spectra of two types of PD defect pulses generated under laboratory conditions. fs = 10GSs−1, data length = 20002.

the defect source and sensor, incorporating factors including

resonance and frequency-selective attenuation. The effect on

observed PD pulse spectra will therefore differ between plant

types as the complexity of the plant geometry varies, however

defect-specific information is still present is the measured

signal. Frequency-based analysis has previously been applied

to a range of HV plant, including Gas Insulated Substations

(GIS) [8, 27], XLPE cables [28], oil-filled transformers [29,

30] and induction motors [31]. In related work, a data-

driven approach to PD frequency spectra feature reduction

was achieved in [30]. This approach employed a wideband

sampling method where principle component analysis and

cluster analysis were applied for feature reduction. Euclidean

and Mahalanobis distance measures were employed, both of

which cannot accommodate for non-linearities in the data; an

issue which is addressed in this paper.

IV. FREQUENCY-BASED PD DETECTOR

The realisation of a diagnostic sensor based on the RF sens-

ing of PD pulses was achieved in [8, 32] to detect PD pulses

and perform rudimentary diagnostics based upon frequency

content and pulse magnitude. The motivation for developing

this device was to implement a low-cost, low-power package

which could be incorporated into an industrial wireless sensor

network and feasibly be powered by an energy harvesting

device within a substation [14]. This detection method does not

require an external voltage or timing reference and statistical

feature generation is carried out by multiple analog detector

channels.

The detector applies band filtering to incoming RF signals

to evaluate the PD spectral energy over the three bands shown

in Table I. Frequency bands were selected based upon previous

PD pulse frequency content analysis carried out by Meijer [33,

34]. The PD detector was used in the laboratory to capture PD

pulse data from a set of SF6 gas-filled test cells, data which

has also been used for the study presented in this paper. A full

description of the detector and the experimental study can be

found in [8, 35].

V. COMPOSITIONAL DATA

One key aspect of the spectral information captured in the

frequency-based method is that the data is compositional. In

some multivariate data sets, including the PD pulse dataset

used here, the information conveyed is from the values relative

TABLE I
FILTER BANDS EMPLOYED BY THE PD DETECTOR

Band Frequency (MHz)

1 0 - 450

2 400 - 750

3 700 - 3200

to each other rather than their explicit values or magnitudes.

Compositional data is multivariate and independent save for a

constant sum constraint (although variables in compositional

data are deemed independent, there is an element of spurious

correlation introduced through the common denominator [36]).

Individual variates contain information that the whole does

not convey. In reality only relative information is conveyed by

each variable with the remainder being from consideration of

multiple variables. The natural sample space for compositional

data x is the D-simplex SD which is a restricted part of Real

space:

SD =

{

x = [x1, . . . xD] ∈ ℜD
∣

∣

∣
xi ≥ 0,

D
∑

i=1

xi = λ

}

(1)

This constrains the variables to sum to a constant λ (which is

often unity) and enforces a constraint of strict positivity which

reflects the two characterising attributes of compositional data.

A 3-simplex can be represented in a ternary diagram which

displays the points using a Barycentric co-ordinate system.

In a 3-simplex, this is an equilateral triangle, in a 4-simplex

it is a generalised tetrahedron. Although D-dimensional, the

composition is noted by [37] to be completely specified by

D − 1 variables with the absent component being inferred

from the sum to unity.

A. Example of compositional PD data

Using a data set of 1673 PD pulses generated under labora-

tory conditions from SF6 test cells of 3 different defect PD [8],

a composition over the frequency bands 0-450 MHz, 400-750

MHz and 700-3200 MHz was generated.

Using this set PD signals, labelled according to type, allows

supervised learning techniques to be used to identify class-

specific decision boundaries. For future observations, PD type

can be inferred from the range of values each variable takes.
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One such technique is C4.5 [38] which uses the information

content of each observation instance to partition the observa-

tions hierarchically, producing a decision tree which branches

at particular values and terminates in leaf nodes when no

ambiguity remains regarding the class to which the observation

belongs. In [32], a decision tree was generated using C4.5 from

the 1673 samples. This partitioned the simplex into regions

that broadly represented the defect specific sub-compositions,

as shown in Fig. 3.

The tree classifier has several limitations as the represen-

tation of the tree in Barycentric co-ordinates shows. The

classifier decision boundaries are linear and restricted to being

aligned with the axes. The Floating Electrode class contains

almost equal energies over all three bands with relatively little

variance in the composition. Despite this, the classifier extends

the plausible region to include even zero energy in the 400 -

750 MHz band. Similarly, the Protrusion class is permitted to

have a sub-450MHz band content ranging from 0 - 100 %

even though it is never observed to have less than 50% of

its spectral energy in this band. Also, in [32] it is noted that

narrowband noise sources such as terrestrial TV transmissions,

cellphone and wireless communications will typically exhibit a

composition of 100% in the corresponding band. The presence

of any of these interference types would produce spurious

diagnostics from the decision tree classifier. What is lacking is

a measure of plausibility for the regions where compositions

have not been observed.

VI. PROBABILISTIC CHARACTERISATION OF SIMPLICIAL

PD DATA

The Dirichlet distribution for a D-dimensional composition

is given by [37]:

P (X;α) =
Γ
(

∑D

i=1
αi

)

∏D

l=1
Γ (αl)

D
∏

j=1

x
aj

j (2)

Where α is the parameter dictating the shape of the distribution

and Γ is the gamma function:

Γ (x) =

∫

∞

0

tx−1e−t dt (3)

The Gamma function effectively serves the same purpose

for continuous data as the factorial does for integer data. The

Dirichlet has a single hyperparameter α, which is normally a

D-dimensional vector although it can be a scalar in the case of

a symmetric Dirichlet (where all α are equal). The Dirichlet

can be reparameterised to provide a more intuitive view of

how α values reflect the shape of the resulting distribution. By

summing over all α, the precision (the inverse of the variance)

of the distribution can be obtained:

s =

D
∑

d=1

αd (4)

In conjunction with the precision, the mean can be found as

follows:

m =
{α1

s
,
α2

s
, . . . ,

αD

s

}

(5)

As a unimodal distribution, the mean defines the position

where the data is mostly concentrated in the simplex while

the precision shows the extent of its diffusion.

Learning the parameters of a Dirichlet distribution from

a set of exemplar data requires an iterative approximation

because the Maximum Likelihood solution does not exist in

a closed form. The Newton Raphson iterative method can be

used to approximate a maximum likelihood solution for the

parameters of a Dirichlet distribution [39]; for approximating

the parameter α, a Newton Raphson step takes the general

form:

αt+1 = αt −H−1(αt)g(αt) (6)

Where H−1 is the inverse Hessian (matrix of second deriva-

tives) and g is the gradient vector for α at step t. Since the

objective function (the Dirichlet distribution) is convex and

unimodal, it can be lower bound and the bound optimised to

the maximum point of the likelihood. The log probability of

a Dirichlet distribution with hyperparameter α is:

logP (X;α) = N log Γ

(

∑

D

αd

)

(7)

−N
∑

D

log Γ (αd)

+N
∑

D

(αd − 1) log x̄d

The observed sufficient statistics are given by:



x̄k =
1

N

∑

D

log xid (8)

The gradient is the first derivative of the log likelihood with

respect to α:

g =
d logP (X;α)

dα
= Ψ

(

K
∑

i=1

α

)

−Ψ(αk) + x̄k (9)

Where Ψ denotes the digamma function (the first derivative

of the log gamma function). The need for an explicit inverted

Hessian was bypassed in [39] with the following:

(H−1g)k =
1

qkk

[

gk −

∑ gj
qjj

1

z
+
∑

1

qij

]

(10)

where:

qjk = −NΨ′(αk)δ(j − k) (11)

and:

z = NΨ′

(

K
∑

i=1

αi

)

(12)

where Ψ′ is the trigamma function (the second derivative

of the log gamma function). Using this approach, Dirichlet

distributions were estimated from the same set of PD pulse

spectral defect compositions used to generate the decision tree

in the previous section.

The contour density plot in Fig. 4 shows how the distribu-

tion of the data is captured by class-conditional Dirichlet dis-

tributions. Although broadly correct, the inflexible covariance

structure of the Dirichlet distribution inadequately represents

the shape of the defect class envelope leading to a poor fit in

some areas and overlap between two of the classes.

VII. LOG RATIO TRANSFORM

Although the Dirichlet distribution is intended for use with

compositional data it is restricted in the shapes it can represent.

To give an impression of the true form of the distribution

of PD spectral energy in SD, a closer approximation to

the density function may be found by a Gaussian density

estimate. Fig. 5 shows that the Gaussian distribution has a

more flexible covariance structure but is not suited to use

within the simplex owing to its linear distance assumptions.

This limits the clusters to ellipses, whereas the underlying

compositions that they represent are not necessarily elliptic.

In Fig. 5, this also results in a cluster entering an undefined

space outside of the simplex.

The statistics typically used in RD are geared around

the absolute magnitudes of variables rather than the relative

magnitudes in SD [36]. Although these statistical measures

cannot be readily applied in SD, [37] showed that using the

log ratio transformation, points in SD could be mapped into

RD−1 space where they could then be used with statistics

that employed Euclidean measures of distance. If x is a point
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Fig. 4. Contour probability density plot of Dirichlet distribution learned in
the simplex
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in SD, to transform it into a variable y in RD−1 space, the

following mapping is used:

yi = log

(

xi

xD

)

i 6= D (13)

The inverse transform can be used to map useful statistics

(such as the location of a mean) back onto the simplex:

xi =
yi

∑D−1

d=1
exp {yd}+ 1

(14)

Fig. 6 shows the PD pulse spectral data transformed into

2D log ratio space, where an increased separability between
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Fig. 6. Scatter plot of the 3-simplex transformed into 2D log ratio space
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defect classes can be seen. Fig. 7 demonstrates how a Gaussian

distribution can be applied in log ratio space and translated

back to the 3-simplex for visualisation. This results in more

complex and more accurate density functions which better

match the shape of the clusters made up by individual data

points shown in Fig. 3. It is evident that the densities in log

ratio space provide a more accurate representation of the defect

conditional probability mass than their real space equivalents.

VIII. LINEAR CLASSIFICATION IN LOG RATIO SPACE

In order to quantify the benefit of using the Log ratio

transform, one of the simplest classifiers in pattern recognition

is employed: the General Linear Model (GLM) [35]; this

affords a computationally simple diagnostic capability and one

which can be implemented in a practical setting with minimal

TABLE II
ACCURACIES FOR CLASSIFICATION ON TRAINING AND TESTING SETS FOR

GENERAL LINEAR MODEL (GLM) IN SIMPLEX AND LOG RATIO SPACES

Feature Space
Accuracy / %

Training Testing

Simplex 94.74 95.94

Real (log ratio) 99.20 99.28

TABLE III
TRAINING SET CONFUSION MATRIX FOR THE GENERAL LINEAR MODEL

IN THE SIMPLEX, FOR FLOATING ELECTRODE (FE), ROLLING PARTICLE

(RP) AND PROTRUSION (PRO) DEFECTS

Classified as

FE RP PRO

A
ct

u
al FE 683 66 0

RP 0 179 0

PRO 0 0 326

risk. The simple GLM is based on the assumption that classes

are linearly separable with discrimination based on Euclidean

distance from the decision boundary. The performance of this

classifier is demonstrated on an exemplar PD set both in the

3-simplex and in the corresponding 2D log-ratio space.

A PD defect data set was randomly partitioned into a

1254 record training set and a held-out set of 419 records

for validation purposes, both with 3 PD classes: 1) Floating

Electrode; 2) Rolling Particle; and 3) Protrusion in SF6.

Table II shows the accuracies for classification on the

training and test sets for both spaces. The GLM training set

confusion matrix, in Table III, shows that the GLM performs

worst on training data in the simplex, misclassifying 66 rolling

particle instances as floating electrode instances. The reason

is the simple decision surface coupled with the inappropriate

Euclidean assumption made on non-Euclidean problem space.

Outperforming the Simplex-based training and testing sets,

the log ratio transformed testing set results can be seen in

Table IV. Significant gains in accuracy are achieved by using

the GLM with the adoption of the log ratio transform. The

explanation for this is transformation into Euclidean space,

which augments linear separation.

IX. DISCUSSION

Analysing the PD composition further, there may be circum-

stances where a simplex is inhabited by multiple subpopula-

tions which are distributed heterogeneously. This is illustrated

TABLE IV
TESTING SET CONFUSION MATRIX FOR THE GENERAL LINEAR MODEL IN

THE SIMPLEX, FOR FLOATING ELECTRODE (FE), ROLLING PARTICLE

(RP) AND PROTRUSION (PRO) DEFECTS

Classified as

FE RP PRO

A
ct

u
al FE 213 1 2

RP 0 66 0

PRO 0 0 137



in Fig. 6 where the Protrusion defect can be seen to have mul-

tiple distinct subpopulations which were the result of varying

the orientation of the PD defect to identify the effect on the

measured PD frequency spectra. The resulting sample space is

non-stationary, but non-stationarity can be approximated in a

piecewise manner using a linear combination of parametric

densities by using a finite mixture model. In [40, 41] the

Dirichlet distribution was used within a mixture modelling

framework, allowing an arbitrarily complex distribution on the

simplex to be represented. The finite mixture model assumes

that the true data likelihood function can be expressed using

a finite number of distributions of a known parametric form:

P (x) =

K
∑

m=1

P (θm)P (x; θm) (15)

Each distribution has its own parameter vector θ and is

scaled by a mixing proportion P (θm) which is the probability

of the observation being drawn from the associated distri-

bution. The mixture parameters may be learned by Monte

Carlo methods / stochastic approximation or by iterative ML

approach such as Expectation Maximisation (EM) [42, 43]. In

[44, 45], the authors note that the simple linear mixture will

not capture hierarchical structure in the data. The possibility

of a hierarchical Dirichlet model which embeds layers of

covariance complexity to an arbitrary fit was examined in

[46]. Considering the effects of defect geometry on observed

frequency spectra, exploring this hierarchical model further

has potential as a diagnostic tool as it may reveal multiple

simultaneous defects of the same type, albeit in different

locations.

The transforms described in this paper may be applicable

to the analysis of dissolved gases in transformer oil. Du-

val’s triangle [47], a commonly used dissolved gas analysis

(DGA) technique also uses a 3-simplex for compositional

analysis, relying upon linear classification boundaries. The

results presented in this paper suggest that Duval’s and other

compositional data diagnostic methods may be developed by

applying the techniques described.

X. CONCLUSION

This paper has shown that using the pulse spectral method

can reduce the PD monitoring problem to a frequency compo-

sition represented in a low dimensional simplex. The Dirichlet

distribution, an established probability distribution over com-

positional data, has been demonstrated as lacking flexibility

to adequately describe defect class conditional probabilities,

while using Gaussian distributions in an inherently non-

Euclidean feature space was demonstrated to be unsuitable.

The approach presented here involved using the log ratio

transform to map the PD frequency compositions from the

3-simplex into a 2D Euclidean space, allowing a compu-

tationally simple linear classifier to be employed. Higher

rates of accuracy were demonstrated using a simple classifier,

outperforming the same models on untransformed spaces.

Future work we intend to pursue in this area will be in

the areas of more sophisticated PD modelling for enhanced

decision support, proof of concept hardware implementations

for field tests, and investigations into other applications where

simplicial modelling and transformation may be applied to

compositional data to simplify and increase the accuracy of

simple diagnostic classifiers, such as Duval’s method for DGA.
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[40] K Sjölander, K Karplus, M Brown, R Hughey, a Krogh, I. S. Mian,
and D Haussler, “Dirichlet mixtures: a method for improved detection
of weak but significant protein sequence homology.,” Computer

applications in the biosciences : CABIOS, vol. 12, no. 4, pp. 327–45,
Aug. 1996.

[41] N. Bouguila and D. Ziou, “Unsupervised selection of a finite Dirichlet
mixture model: an MML-based approach,” IEEE Transactions on

Knowledge and Data Engineering, vol. 18, no. 8, pp. 993–1009, Aug.
2006.

[42] A. Dempster, N. Laird, and D. Rubin, “Maximum Likelihood from
Incomplete Data via the EM Algorithm,” Journal of the Royal

Statistical Society. Series B (Methodological), vol. 39, no. 1, pp. 1–38,
1977.

[43] G. J. McLachlan and T. Krishnan, The EM Algorithm and Extensions,
1997.

[44] D. MacKay and L. Peto, “A Hierarchical Dirichlet Language Model,”
Natural language engineering, vol. 1, no. 03, pp. 289–308, 1995.

[45] R. M. Neal, “Density Modeling and Clustering Using Dirichlet
Diffusion Trees,” Bayesian Statistics 7, pp. 619–629, 2003.

[46] S. Y. Dennis, “A Bayesian analysis of tree-structured statistical
decision problems,” Journal of Statistical Planning and Inference,
vol. 53, no. 3, pp. 323–344, Aug. 1996.

[47] M. Duval, “A review of faults detectable by gas-in-oil analysis in
transformers,” IEEE Electrical Insulation Magazine, vol. 18, no. 3,
pp. 8–17, 2002.

Dr Pete Baker (M’06) is a Research Associate
within the Institute for Energy & Environment at
the University of Strathclyde in Glasgow, Scotland,
UK. He received his BEng (Hons) Degree from
the University of Strathclyde in 2004, and his PhD
from the University of Strathclyde in 2010. His
research interests include substation condition mon-
itoring, wireless sensor networks, energy harvesting,
machine learning and multi-agent systems.

Dr Bruce Stephen (M’09) currently holds the post
of Senior Research Fellow within the Institute for
Energy and Environment at the University of Strath-
clyde. He received his B.Sc. from Glasgow Univer-
sity and M.Sc. and PhD degrees from the University
of Strathclyde and is a Chartered Engineer. His
research interests include Distributed Information
Systems, Machine Learning applications in Power
System and Animal Welfare Condition Monitoring /
Asset Management.

Dr Martin Judd (M’02, SM’04) was born in
Salford, England, in 1963. He graduated from the
University of Hull in 1985 with a BSc (Hons) degree
in Electronic Engineering. His subsequent industrial
experience included 4 years working for Marconi
Electronic Devices Ltd followed by 4 years with
EEV Ltd, both in Lincoln, England. Martin received
his PhD from the University of Strathclyde in 1996
for research into the excitation of UHF signals
by partial discharges in gas insulated switchgear.
From 1999 to 2004 he held an EPSRC Advanced

Research Fellowship concerned with electrodynamics of electrical discharge
phenomena. His fields of interest include high frequency electromagnetics,
generation and measurement of fast transients, partial discharges and energy
harvesting. Dr Judd holds the post of Reader in the Institute for Energy and
Environment at the University of Strathclyde. He is a Chartered Engineer, a
Member of the IET and Senior Member of the IEEE.


