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The appearance of divergent streamlines and subsequent formation of free vortices 10

in Newtonian fluid flows through microfluidic flow-focusing geometries is discussed 11

in this work. The micro-geometries are shaped like a cross-slot but comprise three 12

entrances and one exit. The divergent flow and subsequent symmetric vortical 13

structures arising near the centreline of the main inlet channel are promoted even 14

under creeping flow conditions, and are observed experimentally and predicted 15

numerically above a critical value of the ratio of inlet velocities (VR). As VR is 16

further increased these free vortices continue to grow until a maximum size is reached 17

due to geometrical constraints. The numerical calculations are in good agreement with 18

the experimental observations and we probe numerically the effects of the geometric 19

parameters and of inertia on the flow patterns. In particular, we observe that the 20

appearance of the central recirculations depends non-monotonically on the relative 21

width of the entrance branches and we show that inertia enhances the appearance 22

of the free vortices. On the contrary, the presence of the walls in three-dimensional 23

geometries has a stabilizing effect for low Reynolds numbers, delaying the onset of 24

these secondary flows to higher VR. The linearity of the governing equations for 25

creeping flow of Newtonian fluids was invoked to determine the flow field for any VR 26

as a linear combination of the results of three other independent solutions in the same 27

geometry. 28

Key words: low-Reynolds-number flows, microfluidics, vortex dynamics 29

1. Introduction 30

Hydrodynamic focusing at the microscale has been used for various purposes, and 31

has found many interesting practical applications, including micro-mixing, droplet 32

formation, synthesis of micro-particles, among others. The basic design consists of 33

a long micro-channel with three entrances, typically in a cross-like arrangement, as 34

shown in figure 1, in which a central mainstream is shaped by two lateral streams 35

that work as sheath flows. A number of authors have used this type of configuration 36

as passive micro-mixers (Jensen 1998; Knight et al. 1998) and it has been shown 37

that mixing times can be controlled and reduced by adjusting the pressure ratio

† Email addresses for correspondence: monica.oliveira@fe.up.pt, monica.oliveira@strath.ac.uk
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FIGURE 1. The flow-focusing geometry: (a) microscope image showing the central region
of the experimental microfluidic channel with three inlets and one outlet; and (b) schematics
of the geometry showing the coordinate system and relevant geometrical variables and flow
rate, Q.

between the main inlet stream and the lateral sheath streams (Jensen 1998). Luo38

(2009) explored electrokinetic instability effects to promote mixing. Another widely39

explored application that makes use of flow-focusing micro-devices is the production40

of droplets with narrow size distribution, whose sizes are tailored by the flow-rate41

ratio of the two immiscible fluids (Anna, Bontoux & Stone 2003; Garstecki, Stone &42

Whitesides 2005; Anna & Mayer 2006; Nie et al. 2008). Using the same principle43

together with a curing or reaction process (usually promoted by UV illumination),44

solid polymeric particles, including multifunctional particles of controlled shape and45

size, have also been synthesized (Nisisako, Torii & Higuchi 2004; Dendukuri & Doyle46

2009).47

The strong elongational flows that can be generated at the centre of these devices48

make them particularly suitable for the study of extensional effects (Arratia, Gollub &49

Durian 2008; Oliveira et al. 2009). The effect of elasticity on filament thinning and50

break-up has been investigated by Arratia et al. (2008) using sets of two immiscible51

fluids. The authors observed distinct behaviours for Newtonian and polymeric fluids52

and discussed the suitability of the exponential flow thinning behaviour to measure53

the extensional viscosity of polymer solutions. Oliveira et al. (2009) investigated54

numerically the onset of two distinct elastic instabilities in viscoelastic fluid flows55

using the upper-convective Maxwell (UCM) (Bird, Armstrong & Hassager 1987) and56

Phan-Thien–Tanner (PTT) (Phan-Thien & Tanner 1977) rheological models: one in57

which the flow becomes asymmetric but remains steady, and a second instability at58

higher Deborah numbers in which the flow becomes unstable, oscillating periodically59

in time. This latter type of elastic instability can be exploited to passively promote60

mixing at the microscale, under low Reynolds number flow conditions. The present61

authors have previously discussed the possibility of using these geometries with a62

single fluid to obtain a uniform strain rate for extensional rheometry purposes (Oliveira63

et al. 2009).64

While investigating numerically the effect of operating and geometric parameters65

on Newtonian fluid flow through flow-focusing devices at low Reynolds numbers,66

typical of microfluidic flows, we predicted the onset of free vortices upstream of67

PROOFS



Divergent streamlines and free vortices in microfluidic flow focusing devices 3

the intersection region, located near the centre of the channel and away from any 68

solid–liquid interface. The location at which these vortical structures arise was at 69

first sight unexpected as recirculations typically develop near solid–liquid interfaces 70

for low Reynolds number flows. A well known example in Newtonian fluid flow 71

is the formation of recirculations downstream of an expansion even under creeping 72

flow conditions (Moffatt 1964), which increases in size and intensity as the Reynolds 73

number is increased (Townsend & Walters 1994; Chiang, Sheu & Wang 2000; Oliveira 74

2003; Tsai et al. 2006; Oliveira et al. 2008; Sousa et al. 2011). 75

The recirculation structures observed near the centreline in the flow-focusing 76

geometry are similar in appearance to bubble-like structures found during vortex 77

breakdown experiments in torsionally driven cavity flows (Leibovich 1978). We note, 78

however, that vortex breakdown occurs in flows with swirl and only at relatively 79

high Reynolds numbers (Escudier 1988), and therefore the underlying mechanism is 80

inherently different from the flow-focusing configuration considered here, even though 81

they may share some flow features. There are various types of vortex breakdown, but 82

essentially the strong swirl creates an adverse pressure gradient in the axial direction, 83

which the axial flow cannot sustain above a critical condition, leading to flow reversal 84

(Lucca-Negro & O’Doherty 2001). 85

In this paper we investigate the formation and enhancement of the vortical structures 86

formed at low Reynolds numbers in the flow-focusing geometry and characterize the 87

flow experimentally and numerically. We show that prior to the onset of these central 88

vortices the flow is initially characterized by the appearance of diverging streamlines 89

upstream of the intersection at lower VR. We show numerically that such diverging 90

streamlines can occur even in flows without inertia. 91

The paper is organized as follows. In § 2 we give an overview of the flow-focusing 92

geometry and the experimental set-up. In § 3, we present a brief outline of the 93

numerical method and computational meshes used. In § 4, an overview of the flow 94

characteristics observed in two-dimensional simulations is presented and in § 5 three- 95

dimensional experimental results are discussed and compared to the corresponding 96

three-dimensional numerical simulations. We conclude the paper with a brief summary 97

of our findings in § 6. 98

2. Flow geometry and experimental set-up 99

We study the flow of a Newtonian fluid (water) through a microfluidic flow- 100

focusing device which presents a cross-like shape and contains three inlets and 101

one outlet channel. The channels used in the experiments were fabricated in 102

polydimethylsiloxane (PDMS) from an SU-8 photoresist mould using standard soft- 103

lithography techniques (McDonald et al. 2000) which produce planar geometries of 104

constant depth (h = 100 μm in our mould). The geometry is presented in figure 1, 105

where the main variables are identified. The width of the inlet (D1, D2) and outlet 106

channels (D1) is kept the same and equal to 100 μm, which confers a square cross- 107

section to the geometry. The length of the inlet/outlet channels is large enough 108

(L/D1 = 50) to guarantee that the flow is fully developed far from the region of 109

interest at all flow rates studied. 110

A photograph of the experimental set-up is shown in figure 2. A syringe pump with 111

three autonomous modules (neMESYS, Cetoni GmbH) was used to inject the fluid in 112

each of the inlet streams independently. In this way, we are able to vary the imposed 113

flow-rate ratio, FR = Q2/Q1 (see figure 1), or the corresponding velocity ratio, defined 114

as the ratio of the inlet average velocities in the side streams to the average velocity in 115
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FIGURE 2. (Colour online) Experimental set-up showing the injection system and the optical
system used for flow visualization.

the central inlet stream (VR = U2/U1). Syringes with different volumes (50 μl–10 ml)116

were used according to the required flow rate and connected to the micro-geometries117

using Tygon tubing. The same type of tubing was used to connect the outlet channel to118

a reservoir where the fluid was collected.119

Flow visualizations were carried out using streak photography, in which long120

exposure times are used to capture the flow patterns. For this purpose, the fluid121

was seeded with 1 μm fluorescent tracer particles (Nile Red, Molecular Probes,122

Invitrogen, Ex/Em: 520/580 nm), and additionally a surfactant (sodium dodecyl123

sulphate, 0.1 wt%, Sigma-Aldrich) was added to the fluid to reduce the adhesion124

of fluorescent particles to the channel walls. The optical set-up is composed of125

an inverted epifluorescence microscope (DMI LED, Leica Microsystems GmbH)126

fitted with an appropriate filter cube (Leica Microsystems GmbH, excitation BP127

530–545 nm, dichroic mirror 565 nm, barrier filter 610–675 nm), a CCD camera128

(Leica Microsystems GmbH, DFC350 FX), and a 100 W mercury lamp as illumination129

source.130

All images shown in this work were captured at the centre plane using a 10×131

(NA = 0.25) microscope objective (Leica Microsystems GmbH). For the set-up used,132

the depth of field corresponds to δz = 12 μm calculated according to (Meinhart,133

Wereley & Gray 2000):134

δz = nλ0

(NA)2
+ ne

(NA)M
, (2.1)135

where n is the refractive index, λ0 is the wavelength of the light (in vacuum), NA is136

the numerical aperture of the objective, e is the minimum detectable size and M is the137

total magnification (in this case e/M = 0.65 μm).138

Furthermore, a limited number of experiments were carried out using a different139

technique in which a small amount of Rhodamine B dye (Sigma-Aldrich) was added140

to the central mainstream while no fluorescent dye (or fluorescent particles) were141

added to the fluid in the lateral entrances. In this way we take advantage of the142

relatively large depth of field to highlight the three-dimensionality of the fluid path143

based on the fluorescence intensity of the imaged dye stream.144
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WR 0.1 0.3 0.5 0.8 1 2 3 5 10

NC 13 965 13 965 16 475 20 491 23 001 35 551 48 603 74 205 85 751

TABLE 1. Total number of cells (NC) of the standard two-dimensional computational
meshes, with cell size in the central region �x = �y = D1/51.

3. Numerical method and computational meshes 145

In the numerical calculations, an in-house fully implicit finite volume method (FVM) 146

was used to solve the appropriate equations of conservation of mass and momentum 147

assuming the Newtonian fluid flow is isothermal and incompressible (Oliveira, Pinho & 148

Pinto 1998; Oliveira & Pinho 1999): 149

∇ ·u = 0, (3.1) 150

ρ

(
∂u
∂t

+ ∇ · (u u)

)
= −∇p + μ∇2u, (3.2) 151

where ρ is the density of the fluid, t the time, u the velocity vector, p the pressure and 152

μ the dynamic viscosity. 153

We use an implicit first-order Euler scheme for time discretization, central 154

differences for the discretization of the diffusive terms and the CUBISTA high- 155

resolution scheme (Alves, Oliveira & Pinho 2003) for the discretization of the 156

advective terms of the momentum equation. The details of the numerical method 157

will not be repeated here as they have been described thoroughly elsewhere (Oliveira 158

et al. 1998; Oliveira & Pinho 1999; Alves et al. 2003). A large number of simulations 159

were done under creeping flow conditions, i.e. in the limit when Re → 0. To simulate 160

such flows, we neglect the advective term on the left-hand side of the momentum 161

equation (3.2), hence solving the corresponding Stokes flow. In those cases we keep 162

the transient term (ρ∂u/∂t) and use a pseudo-time-marching algorithm to achieve 163

steady flow conditions. When steady state is achieved the transient term vanishes, and 164

we recover the Stokes equation, valid for creeping flow. 165

We perform both two- and three-dimensional simulations in which the standard 166

meshes are block-structured and divide the central region of the geometry uniformly 167

into control volumes of size �x = �y = D1/51. In the three-dimensional simulations, 168

the size and shape of the geometry were kept equal to the experiments, with side 169

streams being introduced into the central mainstream through channels of equal 170

dimensions. In this case two sets of meshes were used: a standard mesh used 171

to perform most of the calculations (NC = 140 625, �x = �y = �z = D1/25) and 172

a more refined mesh having nearly twice the number of cells in each direction 173

(NC = 1 125 000, �x = �y = �z = D1/51). In two-dimensional simulations, other 174

configurations have also been tested: in particular, the width of the lateral channels 175

(D2) was varied, while the width of the outlet channel was kept equal to D1. The 176

relative width of the entrance branches (WR = D2/D1) accounts for the effects of 177

geometric parameters and was varied from 0.1 to 10. Mesh refinement tests have 178

been carried out elsewhere (Oliveira et al. 2009) demonstrating the good accuracy of 179

the calculations using this mesh (�x = �y = D1/51). The total number of cells (NC) 180

varies according to the specific geometric configuration under consideration, as shown 181

in table 1. 182
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(a) (b) (c) (d)

(e) ( f ) (g) (h)

FIGURE 3. (Colour online) Effect of VR on the flow patterns obtained numerically under
creeping flow through a 2D flow-focusing geometry with WR = 1: (a) VR = 1; (b) VR = 20;
(c) VR = 100; (d) VR = 159; (e) VR = 200; (f ) VR = 1000; (g) VR = 106; (h) VR → ∞. For
VR = 1 (a) the dashed lines highlight the separation streamlines that define the converging
region. For VR = 100 (c) the dashed lines highlight the diverging character of the streamlines
upstream of the central region.

The physical properties of the fluid used in the three-dimensional numerical183

calculations were selected to match those measured experimentally, i.e. the viscosity184

was set to 0.891 mPa s and the density to 997 kg m−3, corresponding to water at185

25 ◦C, the temperature at which the experiments were performed.186

4. Two-dimensional results187

In this section we present an overview of the flow field obtained using numerical188

calculations considering a simplified two-dimensional flow-focusing geometry.189

4.1. Creeping flow characteristics190

The flow patterns obtained using two-dimensional (2D) numerical calculations under191

creeping flow conditions (Re = 0) are shown in figure 3. Under these particular192

operational conditions, the flow is steady and symmetric about the plane x = 0 and193

the two opposing lateral fluid streams shape the central mainstream that is flowing194

perpendicularly to the lateral entrances, generating a converging flow region. For195

VR = 1 (figure 3a), we use (red) dashed lines to show the separation streamlines196

that define the border between the flow entering from the lateral arms and the flow197

coming from the central inlet. The converging flow region, delimited by the separation198

streamlines, can be visualized as a smooth contraction geometry in which there is slip199

at the walls. In fact for low VR, the separation streamlines define a nearly hyperbolic200

shaped contraction, which is known to generate strong extensional flows near the201

centreline with nearly constant strain rate (James, Chandler & Armour 1990; Oliveira202

et al. 2007; Campo-Deaño et al. 2011).203

As VR is increased, the curvature of the separation streamlines near the lateral204

entrances is enhanced, and the Hencky strain imposed in the converging region205

increases. Here the Hencky strain is defined based on the widths of the converging206
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FIGURE 4. Axial velocity profiles at y/D1 = −0.75 for various VR under creeping flow
conditions (2D flow, WR = 1).

region upstream and downstream of the central region, εH = ln(D1/D′
3) where 207

D
′
3 is shown in figure 3(a) (VR = 1). For high strains, when the assumption 208

U
′
3 ≈ 1.5U3 is a reasonable approximation, the Hencky strain can be expressed as 209

εH = ln[3(1 + 2FR)/2]. Simultaneously, the streamlines in the mainstream channel just 210

upstream of the central region (for −1 � y/D1 � −0.75) become increasingly divergent 211

(see the red dashed streamlines in figure 3c for VR = 100), i.e. the flow moves first 212

towards the wall and then converges again toward the contraction, as if avoiding an 213

invisible obstacle (Alves & Poole 2007). Streamlines with this characteristic shape are 214

commonly observed in contraction flows with viscoelastic fluids with high extensional 215

viscosity, but not with Newtonian fluids under similar flow conditions (Evans & 216

Walters 1989; Boger & Binnington 1990; Hulsen 1993; Rodd et al. 2005; Alves 217

& Poole 2007). Diverging flow is generally ascribed to fluid elasticity in strong 218

extensional fields, and inertia- and deformation-rate-dependent material functions were 219

seen to enhance its intensity (Rodd et al. 2005). However, Alves & Poole (2007) 220

have shown numerically that inertia and shear-thinning conditions are not required 221

to observe divergent streamlines for contraction flows of viscoelastic fluids. Here, 222

we show that diverging streamlines can also be observed with Newtonian fluids 223

in the flow-focusing device under creeping flow conditions, i.e. without inertia or 224

elasticity. In other words, we demonstrate that divergent streamlines can arise due to 225

the coupling of geometric and viscous effects alone. 226

The evolution of the divergent flow in the central inlet arm can be followed in more 227

detail by analysing the velocity and pressure profiles in that region. Figure 4 shows the 228

axial velocity profiles along the x-direction in the region of the divergent streamlines, 229

specifically for y/D = −0.75. For VR = 1, the profile has a quasi-parabolic shape, 230

but as VR increases, the velocity at the centreline decreases, while an increase is 231

seen close to the bounding walls. Eventually, the maximum axial velocity shifts 232

from the centreline and the profiles exhibit strong velocity overshoots close to the 233

sidewalls. Further, the axial velocity profiles along the x = 0 centreline shown in 234

figure 5(a) exhibit an undershoot just upstream of the converging region, which is a 235

fingerprint of divergent flow (Alves & Poole 2007). The magnitude of this undershoot 236

increases gradually with increasing VR. Furthermore, as shown in figure 5(b), along 237
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FIGURE 5. (a) Axial velocity and (b) pressure profiles along the centreline (x/D1 = 0) for
various VR under creeping flow conditions (2D flow, WR = 1).

the centreline adverse pressure gradients are generated just upstream of the centre of238

the device to match the pressures resulting from the central and sheath inflows which239

eventually lead to flow separation.240

It is interesting to note that all the profiles at different VR (in figures 4 and 5)241

intersect each other at the same location, suggesting that these may belong to the242

same family of curves. In fact this is further supported by a theoretical analysis of243

the governing equations. It is well known that for two-dimensional creeping flows, the244

stream function for an incompressible Newtonian fluid flow satisfies the biharmonic245

equation246

∇4ψ = 0, (4.1)247

where ψ is the stream function (u = ∂ψ/∂y; v = −∂ψ/∂x). Such creeping flow248

solutions can be combined linearly, with the end result itself being a solution to249

the Stokes equation250

a∇4ψ1 + b∇4ψ2 = ∇4(aψ1 + bψ2) = ∇4ψ∗ = 0, (4.2)251

where a and b are arbitrary scalars. This characteristic, which ensues from the linear252

nature of the governing equations in creeping flows in conjunction with linearity and253
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FIGURE 6. (Colour online) Linear combination of three reference flow fields (a–c) to
determine the streamlines for (d) VR = 100. (e,f ) Comparison of the flow fields for VR = 100
(2D flow, WR = 1) obtained by a direct numerical simulation (red lines) and by linear
combination of reference solutions (black lines): (e) streamlines; (f ) normalized axial velocity
contour lines.

symmetry in the boundary conditions, is very useful in deriving results for a given 254

flow without solving it fully. It should be highlighted, however, that any predictive 255

capabilities are limited to the accuracy of the original reference results, i.e. the results 256

are still mesh-dependent, which means that any inaccuracies in the base simulations 257

will be reflected in the resulting predictions. 258

A consequence of the above analysis is that by using any three linearly independent 259

cases we are able to predict the flow field in the cross-geometry for any other VR in 260

the same mesh and, in fact, for any other flow configuration, whether symmetric 261

or not. We have tested this approach using the three reference cases illustrated 262

in figure 6(a–c). Figure 6(e,f ) shows a comparison between the results obtained 263

numerically for VR = 100 and those calculated by combining the three flow fields, 264

considering Q2L/Q1 = Q2R/Q1 = 100. It is clear that exactly the same solution is 265

obtained independently of the method used, both in terms of the streamlines and 266

in terms of the normalized velocity field (where any inconsistencies would be 267

easily detected). Furthermore, we are able to predict the flow in any type of cross- 268

like geometry with four inlets/outlets (whether in a flow-focusing or a cross-slot 269

arrangement). 270

Given this characteristic of the flow, we are able to collapse the corresponding 271

velocity profiles for different VR onto a single master curve using an appropriate 272

normalization. The same can be done for other variables such as pressure, normal 273

stress differences, etc. Figure 7 shows the profiles of the axial velocity, pressure and 274

the first normal stress difference normalized using the reference case (VR = 0). It is 275
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FIGURE 7. (a) Normalized axial velocity, (b) pressure and (c) first normal stress difference
(N1 = τyy − τxx) profiles along the centreline (x/D1 = 0) for various VR under creeping flow
conditions (2D flow, WR = 1). The reference conditions (ref ) were taken as those for VR = 0.

clear from this figure that the three sets of profiles indeed collapse onto a single276

master curve, and coefficient 3 is used for convenience as it ensures a normalization of277

the master velocity profile between 0 and 1.278
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SP
M

(a) (b)

(c)

SP

FIGURE 8. (Colour online) Mechanism of formation of free vortices showing the two
independent base flows. (a) Flow generated by the collision between two opposed streams
equivalent to a T-channel with a long cavity. A free stagnation point, SP (marked with a red
‘+’), is generated at the point of collision between the two streams, and recirculations form
below this SP yielding a minimum (negative) velocity close to point M (marked with a blue
‘×’). (b) Flow entering from the lower channel and exiting through the upper channel. When
the negative velocities in the lower channel of flow (a) are greater (in magnitude) than the
positive velocities of flow (b), then flow (c) is generated, corresponding to our results with
flow-focusing configuration above a critical VR.

4.2. Onset and development of free central vortices 279

One may also use the concept of linear combination of elementary flows, discussed in 280

the previous section, to predict the onset of vortices and the fact that these appear near 281

the centreline rather than near the walls. The flow-focusing flow at a given value of 282

VR may be constructed as a combination of two base flows, as depicted schematically 283

in figure 8: (a) flow in a T-channel with a deep cavity; and (b) flow entering from the 284

lower channel and exiting through the upper channel. 285

In the flow through a T-channel with a cavity, it is intuitively clear that a free 286

stagnation point (marked with SP in figure 8a) will be generated at the x = 0 287

centreline at the point of collision between the two streams. At the stagnation point the 288

velocity is zero, the extension rate is finite and the pressure attains a local maximum 289

in this region. The generation of a free SP in a similar geometry (though with a less 290

deep cavity) has been confirmed experimentally and numerically by Soulages et al. 291

(2009). As expected for the flow near a free stagnation point, the fluid is driven 292

away, both upwards and downwards, from the SP as sketched in figure 8(a). In other 293

words, the flow is highly compressive in the x-direction and highly extensional in the 294

y-direction, meaning that the velocity along the x = 0 axis centreline will be negative 295

below the SP and positive above the SP. 296

If we now superimpose base flow (a) onto flow (b), the positive centreline velocity 297

of flow (b) will partially offset the negative velocities of flow (a) that are present 298

below the SP. Nevertheless, if the contribution of flow (b) is much lower than that of 299

flow (a) (i.e. at high VR), there will still be a region of negative velocities at the x = 0

PROOFS
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centreline. Conversely, near the walls of the lower inlet channel, the fluid is always300

moving upwards, since both contributing flows exhibit positive velocities in this region.301

These two facts necessarily imply the formation of two symmetrical recirculations near302

the x = 0 axis, rather than close to the walls as sketched in figure 8(c). If, on the303

other hand, VR is low, the contribution of flow (b) is sufficient to ensure that the304

velocities in the x = 0 line are always positive, thus suppressing the vortex formation.305

Consequently, there will exist a critical point along the centreline at which the two306

contributions cancel out, i.e. the minimum velocity along the centreline is precisely307

zero, marking the onset of vortex formation. This critical point may be estimated from308

a linear combination of flows (a) and (b) by computing the value of VR for which309

the minimum centreline velocity reaches zero. This estimate yields a value for VRc in310

excellent agreement with the onset of vortex formation observed in figure 3. The onset311

of flow separation can also be intuitively thought to be due to the locally high pressure312

generated at the intersection of the lateral streams. This adverse pressure gradient313

experienced by the fluid elements emerging from the lower channel will lead to flow314

separation when the adverse pressure gradient is sufficiently high, a phenomenon that315

increases with an increase in VR.316

4.3. Effect of the velocity ratio (VR)317

As described above, for sufficiently large velocity ratios, the minimum velocity at the318

centreline reaches zero (for VR ≈ 159). Beyond this VR value, a reversal of the axial319

velocity along the centreline is observed, as shown by the negative axial velocities Uy320

in figure 5(a) (e.g. for VR = 200), leading to the formation of a pair of symmetrical321

recirculations near the centreline of the mainstream inlet channel just upstream of the322

central region (see figure 3d, VR = 159), at the core of the diverging streamline region.323

Recirculation growth is observed as VR is further increased until a second recirculation324

of lower intensity starts to form (see figure 3g, VR = 106), but now attached to the325

wall. In fact, for VR → ∞ the central inlet channel acts as a deep cavity with no net326

flow (Q1 = 0) (as sketched in figure 8a), and in this case a trail of recirculations is327

observed all along the cavity (see figure 3h, VR → ∞), with each subsequent pair of328

recirculations driven by the previous pair. The decay of the intensity of this chain of329

recirculations can be predicted according to the theoretical analysis of Moffatt (1964).330

This sequence of recirculations is analogous to that observed when a true cross-slot331

geometry is considered (two entrances and two exits) with unbalanced outflow streams.332

In this case, depicted in figure 9(b), vortical structures are also formed as VR increases,333

and they appear at nearly the same value of VR as for the flow-focusing geometry of334

figure 9(a). However, no divergent flow is observed in the cross-slot, and the primary335

recirculations are now localized at the wall rather than at the centre of the channel.336

We should emphasize that we are also able to predict the onset of vortex formation337

for any of these configurations by applying the linear combination of base solutions338

described in § 4.1. By using reference solutions VR = 0 and VR → ∞, one can predict339

the Newtonian fluid flow fields for both a flow-focusing arrangement (parameters a340

and b in (4.2) are both positive scalars) and a cross-slot geometry (parameters a and b341

have opposite signs).342

In figure 10, we show the effect of VR on the size of the primary recirculations,343

yR, of the flow focusing device. The size was determined at the centreline as also344

illustrated in figure 10. Above the critical VR, the centreline velocity becomes negative,345

leading to the formation of free central vortices, which grow in size, as shown346

qualitatively in figure 3 and quantitatively in figure 10. Initially, this growth follows347

closely a square-root function, yR/D1 = a1

√
ln(VR) − ln(VRc), where a1 is a fitting348
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(a)

(b)

FIGURE 9. (Colour online) Vortex formation under creeping flow conditions (2D flow,
WR = 1): comparison between (a) the flow-focusing device and (b) the cross-slot geometry
with unbalanced outflow streams.
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FIGURE 10. (Colour online) Effect of VR on vortex size under creeping flow conditions
(2D flow, WR = 1). The symbols represent the numerical data, the black dashed line
indicates the asymptotic value at VR → ∞ and the red solid line corresponds to the function
yR/D1 = a1

√
ln(VR) − ln(VRc), with a1 = 0.61 and VRc = 159.

parameter, and then approaches asymptotically the maximum vortex size reached for 349

VR → ∞. The value of VR at which the vortex practically reaches its maximum size 350

(∼0.9 ymax) coincides with the onset of the second set of recirculations. 351

4.4. Effect of the width ratio (WR) 352

The effect of the width ratio was also examined numerically using two-dimensional 353

calculations under creeping flow conditions. In figure 11, we show the flow patterns 354

for two distinct width ratios: WR = 0.3 and 3. 355
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(a)

(b)

FIGURE 11. Flow patterns obtained numerically under creeping flow through a 2D
flow-focusing geometry with (a) WR = 0.3 and (b) WR = 3.
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FIGURE 12. Effect of WR on the critical flow-rate ratio and on the critical velocity ratio
(inset) for the onset of secondary flow (2D flow, Re = 0).

The behaviour observed for 0.1 � WR � 10 is qualitatively similar to that observed356

for WR = 1, i.e. as VR increases, the divergent character of the streamlines is357

enhanced, followed by the formation and subsequent growth of central recirculations.358

However, the critical value of VR for the onset of the central recirculations depends on359

WR, as shown in the inset of figure 12. The transition envelope exhibits non-monotonic360

behaviour with the minimum value of the critical VR attained for WR ≈ 0.8. However,361

in terms of flow-rate ratio (remember that FR = VR × WR), the variation of its critical362

value with WR is monotonic (see figure 12).363

The vortex size was also measured as a function of VR for different values of WR,364

which are shown in the inset of figure 13. All the curves show the same shape, and365
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FIGURE 13. Vortex size under creeping flow conditions for various WR (2D flow, WR = 1).

FIGURE 14. Effect of Re on the flow patterns through a 2D flow-focusing geometry with
VR = 50 (WR = 1).

tend to maximum vortex sizes reached at VR → ∞ (yRinf ), which is almost independent 366

of WR. Once again, all the curves can be collapsed onto a master curve by appropriate 367

normalization, as shown in the main plot of figure 13, in which the vortex size is 368

normalized using yRinf and VR is normalized by the critical velocity ratio for the onset 369

of vortex formation. 370

4.5. Effect of inertia 371

The effect of inertia on the development of secondary flow was analysed at a constant 372

width ratio (WR = 1). To account for inertial effects, we define the Reynolds number 373

in terms of the exit channel quantities: Re = ρU3D3/μ. 374

In figure 14, we show the effect of Re on the flow patterns for VR = 50, which did 375

not exhibit free vortices under creeping flow conditions. Inertia pushes the divergent 376

streamline region forward into the centre of the flow-focusing device and promotes the 377

onset of central vortices, which appear at Re ≈ 140, therefore inducing a destabilizing 378

effect by promoting free vortices at lower values of VR. Also note the existence of 379

small lip vortices on the downstream corners for Re = 202, an expected consequence 380

of flow inertia in the flow in a re-entrant corner. 381

The effect of Re on the critical value of the VR for the onset of central vortices is 382

shown in figure 15. It is clear that inertia prompts the transition to secondary flow to 383

occur at lower values of VR. Even though inertia accelerates the appearance of free 384

vortices, we should note that for low VR (eg. VR = 10) free vortex formation is not 385
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FIGURE 15. Stability map: effect of Re on the critical velocity ratio for the onset of free
vortices (2D flow, WR = 1).

observed for the whole range of Reynolds numbers tested (0 � Re � 210), while for386

high VR (e.g. VR = 1000) free vortices are always present even under creeping flow387

conditions, as shown in figure 3.388

We should emphasize that in the case of inertial flows, it is not possible to use the389

superposition principle described in § 4.1 for creeping flows and the linear combination390

of two independent results is no longer a solution of the Navier–Stokes equation due391

to the presence of the nonlinear advective term; in these cases, the critical Re was392

determined numerically for each VR.393

5. Three-dimensional results394

In this section we compare the results obtained experimentally in a microfluidic395

channel of constant depth, as described in § 2, and those obtained numerically in the396

corresponding three-dimensional geometry (with top and bottom bounding walls) under397

equivalent flow conditions.398

Figure 16 shows the flow patterns observed maintaining Q1 constant while varying399

Q2 (and therefore varying VR and Re simultaneously). The grey-scale images were400

acquired at the channel centre plane using streak photography and the red lines are401

centre plane streamlines predicted numerically. Recirculations are also observed in402

this case, but its open three-dimensional structure is clearly distinct from the closed403

recirculations obtained in the numerical calculations for two-dimensional creeping flow404

shown in § 4. Good agreement is obtained between experimental observations and405

three-dimensional numerical predictions, both in terms of the critical conditions for the406

appearance of recirculations and in terms of the flow patterns.407

In figure 17(a), we show a three-dimensional view of the flow-focusing device with408

representative pathlines obtained numerically to highlight the three-dimensionality of409

the flow. This example corresponds to that shown in figure 16(d), and we can see410

that the fluid enters the recirculation at the centre plane, rotates towards its eye and411

exits the recirculation moving towards the top/bottom bounding walls. Evidence for412

this three-dimensionality is also observed experimentally (figure 17b) by injecting a413

dyed solution (using Rhodamine B) as described in § 2. Using this technique we can414

observe that most of the fluid entering through the central mainstream channel (dyed415

PROOFS



Divergent streamlines and free vortices in microfluidic flow focusing devices 17

(a) (b)

(c) (d )

FIGURE 16. (Colour online) Flow patterns in the 3D flow-focusing geometry for varying VR
and Re. Comparison between experimental (grey-scale images) and numerical pathlines (red
lines) at the centre plane. (a) Q1 = 0.3 ml h−1, Q2 = 0.3 ml h−1, VR = 1, Re = 2.8; (b) Q1 =
0.3 ml h−1, Q2 = 0.9 ml h−1, VR = 3, Re = 6.5; (c) Q1 = 0.3 ml h−1, Q2 = 15 ml h−1,
VR = 50, Re = 94.2; (d) Q1 = 0.3 ml h−1, Q2 = 18 ml h−1, VR = 60, Re = 113.

with Rhodamine B) exits the device close to the sidewalls and at a plane that is 416

closer to the bounding walls, where the fluorescence of the Rhodamine B dye can 417

still be perceived, albeit with a lower intensity than in the central entrance channel. 418

Indeed, the dyed region in the exit channel matches closely the projection of the 419

three-dimensional numerical pathlines (see figure 17b). 420

In figure 18 we show a flow classification map in the VR–Re parameter space. For 421

each set of flow conditions (VR, Re), we determined whether or not vortices were 422

present and this is identified by different symbols. Each thin solid line corresponds 423

to numerical simulations obtained for a constant value of Q1 (and varying Q2). From 424

this map it is clear that inertia has a destabilizing effect, inducing the appearance of 425

recirculations at lower critical VR than under creeping flow conditions. In the limit of 426

VR = 0, no steady central vortices are seen in the range of Re tested. On the contrary, 427

the bounding walls have a stabilizing effect for low Re flow conditions, delaying the 428

onset of the central vortices (compare the critical value of VR under creeping flow 429

conditions for the three-dimensional case (VR ≈ 628) with that for the two-dimensional 430

case presented in § 4.1 (VR ≈ 159)). Interestingly, at high Re the opposite trend is 431

found and the bounding walls actually have a destabilizing effect, as is clear from a 432
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(a) (b)

FIGURE 17. (Colour online) The 3D nature of the flow (VR = 60, Re = 113, Q1 = 0.3 ml h−1,
Q2 = 18 ml h−1). (a) Three-dimensional view of the flow-focusing device with representative
streamlines obtained numerically (in red) showing that the flow is highly three-dimensional
with the fluid entering the recirculation near the centre plane, rotating towards its eye and
exiting close to the top/bottom bounding walls. (b) Comparison between the experimental
photograph (grey-scale image) at the central plane obtained when Rhodamine is injected in
the main central channel and a projection of the numerical streamlines (in red).
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100 200 300 400 600500 700
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FIGURE 18. Flow classification map in the VR–Re domain (3D flow, WR = 1). The thick
solid line highlights the critical values for the onset of free vortices. The dashed line is that of
figure 15 for 2D flow.

comparison between the solid and dashed lines in figure 18, marking the transition for433

the three-dimensional and two-dimensional geometries, respectively.434

6. Conclusions435

We performed a systematic numerical and experimental study on Newtonian fluid436

flow through microfluidic devices in which hydrodynamic flow focusing is produced437

using two balanced lateral sheath streams that shape a third inlet stream. In particular,438

we focus on the onset and enhancement of symmetrical wall-detached recirculations439

that form near the centreline above a critical value of the ratio of inlet average440

velocities. Two- and three-dimensional numerical calculations were performed using441

PROOFS



Divergent streamlines and free vortices in microfluidic flow focusing devices 19

a finite volume method, and comparison of the three-dimensional results with the 442

experimental flow visualizations shows very good agreement. 443

We demonstrate that central vortices arise above a critical velocity ratio and are 444

preceded by the onset of diverging streamlines despite the hydrodynamic focusing 445

imposed by the lateral sheath streams. Recirculation growth was observed as VR was 446

increased, but was shown to be limited by the formation of a second recirculation of 447

lower intensity upstream of the primary one. The effect of the width ratio was studied 448

numerically, and it was shown that the critical VR above which the recirculations are 449

observed depends non-monotonically on this geometrical parameter. In addition, we 450

were able to show that vortex formation occurs even under creeping flow conditions, 451

despite flow inertia enhancing its appearance. In contrast, the presence of the walls in 452

three-dimensional geometries has a stabilizing effect at low Re, delaying the onset of 453

these recirculations, which are no longer closed recirculations. 454

Most importantly, we show for this complex flow the implications of Stokes flow 455

theory, since under creeping flow conditions we are able to predict the flow field for 456

any VR by combining linearly the results corresponding to any two other independent 457

solutions (e.g. VR = 0 and VR → ∞) in the same geometry. This approach allows us 458

to explain why vortices form upstream of the central region near the vertical centreline 459

and also to predict the critical value of VR for the onset of central vortices without 460

having to perform additional experiments or numerical calculations under creeping 461

flow conditions. 462
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