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ABSTRACT 
This paper presents a novel approach to repair modeling 

using a time domain Auto-Regressive model to represent meteo-

ocean site conditions. The short term hourly correlations, 

medium term access windows of periods up to days and the 

annual distribution of site data are captured. In addition, 

seasonality is included.  Correlation observed between wind 

and wave site can be incorporated if simultaneous data exists. 

Using this approach a time series for both significant wave 

height and mean wind speed is described. This allows MTTR to 

be implemented within the reliability simulation as a variable 

process, dependent on significant wave height. This approach 

automatically captures site characteristics including 

seasonality and allows for complex analysis using time 

dependent constraints such as working patterns to be 

implemented. A simple cost model for lost revenue determined 

by the concurrent simulated wind speed is also presented. A 

preliminary investigation of the influence of component 

reliability and access thresholds at various existing sites on 

availability is presented demonstrating the ability of the 

modeling approach to offer new insights into offshore wind 

turbine operation and maintenance. 

 

INTRODUCTION 
 Since the mid 1990s, there has been an exponential growth 

in the world wide installed capacity of wind turbines from 

around 6GW, concentrated in Northern Europe and the USA in 

1996 to almost 200 GW spread across the world [1]. Onshore 

wind power is now considered the most mature renewable 

technology and operators have obtained significant experience 

in operation and maintenance (O&M) of wind farms. The most 

common approach for large onshore wind farms is a 

combination of scheduled maintenance, typically one to two 

visits per year and reactive maintenance, restoring components 

after failure. This approach has been deemed to be cost 

effective for operators and has allowed onshore availabilities of 

over 97% to be achieved [2].  

 In the last decade offshore wind energy has experienced 

exponential growth to a worldwide installed capacity of over 

3GW focused in Northern European waters [3]. This expansion 

has coincided with the arrival of larger, multi MW machines 

suited to sites with higher mean wind speeds and has been 

driven by the decrease in available onshore sites and planning 

issues. This is particularly true in the UK where applications for 

large onshore wind farms have met with increasing planning 

difficulty and public resistance due to their visual impact. The 

shift towards offshore development has resulted in greater 

capacity currently being under development in the UK than 

onshore [4]. In addition, offshore projects currently at the 

scoping or development stage in Europe total exceed 100GW in 

capacity, [5]. It will only require a small proportion of these 

projects to be developed to create a significant market. 

The large capital expenditure for an offshore wind farm has 

resulted in a significantly different market structure from 

onshore wind. The market currently only exists for large scale 

developers and is dominated by a few OEMs and this trend is 

expected to continue. Offshore, there has been a lack of diverse 

operator experience and a conspicuous lack of failure databases 

such as those available for onshore [6-8]. In addition, many of 

the larger offshore wind farms are still operated under warranty. 

The result is that significant uncertainty exists surrounding 

offshore failure characteristics and early offshore wind farms 

have tended to adopt conventional operational strategies. This 

has resulted in poor availabilities of around 80% and a wide 

variation between operating years and different sites [9, 10]. 

Similar uncertainty exists around the costs of O&M with 

estimates ranging from 20 – 33% of overall project cost [11, 

12]. Even at lower estimates this represents a huge financial 

mailto:iain.dinwoodie@eee.strath.ac.uk
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investment with significant scope for savings.  It is therefore 

necessary to identify which components have a critical 

influence on operations and to quantify the benefits of 

alternative operational strategies. 

 Due to the emphasis of getting turbines into the water 

and generating power, much of the current industry and 

research focus has been on adapting onshore turbines to the 

offshore environment and developing foundation design and 

installation techniques. Nevertheless, a useful body of work 

exploring longer term O&M of turbines and advanced Asset 

Management (AM) has recently begun to emerge. A recent 

review covering the broad range of work in the field is 

presented in [13, 14]. 

METHODOLOGY 
Various methodologies have been used to represent the 

failure and repair process of wind turbines. The problem is 

considered too complex to adequately capture using analytical 

expressions therefore simulation has been used to represent the 

process in the majority of cases. The methodology in this work 

is based on simulation of failures as a stochastic process based 

on available failure rates. Time to repair is determined by using 

a representative time series for wave height and waiting for an 

adequate repair window. A similar general approach has been 

considered for commercial applications [15] however, the use 

of an AR time series model to generate a wave height time 

series with a correlated wind speed time series is presented for 

the first time.  

An alternative approach to understanding to failure 

modeling is to consider the statistical distribution of mean time 

to failures (MTTF), repair times and weather. This allows a 

more direct analysis of the influence of failure, repair and 

weather on offshore wind turbine O&M [16]. This approach 

allows for quicker analysis but does not allow for the level of 

complexity that a time series approach enables. For example 

modeling the influence of the number of turbines in a wind 

farm, vessel availability and spares provisions on O&M cannot 

be explored using statistical approaches as they are time 

constrained. In addition, statistical approaches to   

 A frequency domain approach is used to generate a 

representative wave series in [15] in order to examine some of 

these influences. As well as helping to reduce uncertainty by 

providing alternative methodology to the industry, the approach 

in this paper adds a correlated wind speed. This allows a more 

accurate assessment of losses associated with down time as 

well as advanced operating strategies involving the use of 

helicopter access in combination with vessels to be 

investigated.  

 

Monte Carlo Markov Chain Failure Model 
 The approach to simulating failure behavior in this work is 

described in [17]. The turbine is represented as a series of 

subsystems with known failure rate, λ defined in equation 1.  

Each subsystem may exist in one of a finite number of states 

and at each simulation time step will remain in that state or 

move to another state with a specified transfer probability. With 

sufficient knowledge of a system, deterioration can be 

represented using several system states as well as 

interdependencies between subsystems [18].  Currently, an 

adequate level of system knowledge is unavailable but the 

methodology presented in this study could be extended to 

incorporate this detail if it becomes available.  

 The simplest representation of an engineering system was 

adopted where each subsystem is statistically independent and 

is represented as a binary system either operating or failed. The 

transition probability of moving from an operating state to a 

failed state is governed by the failure distribution of the 

subsystem. The failure characteristics of onshore wind turbines 

have received some examination [8, 19] however no 

comparable work exists for offshore turbines. For this study it 

has therefore been assumed that failures have an exponentially 

distributed probability distribution, corresponding to random 

failures under normal operation. With this assumption, the 

probability of a failure occurring during any time step is 

described in Eq. (2). 
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 To implement this in the simulation, a random number is 

generated in the range zero to one for each subsystem and 

compared to the corresponding probability obtained in Eq. (2). 

Where the random number exceeds the specified value, a 

failure occurs. A single simulation run covers 20 years, a 

typical expected lifetime of a turbine including warranty.  A 

sufficient number of simulations are performed for the results 

to converge, the availabilities calculated at this point provide 

the desired results.  

 A turbine is deemed operational if all subsystems are 

operational. A solution of Eq. (2). for each subsystem at each 

time step is required and overall availability determined by 

looking at the ratio of time steps when all systems are operating 

versus those where at least one system is down. With sufficient 

knowledge of the system, advanced features such as 

redundancies or the ability to operate the overall system at 

reduced capacity under failure of individual subsystems could 

be investigated.  

 

AR Climate model 
 Auto-Regressive modeling approaches to describe time 

series data were first developed in [20], and have since been 

applied to a diverse range of applications. Of particular 

relevance to this work, AR models have been used to 

successfully describe significant wave height time histories 

[21], wind speeds for wind turbine power generation [22] and 

wind turbine maintenance [23]. The AR models, normalized by 

the mean of the data are described by Eq. (3). 
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This equation is valid only for a process having a Normal (or 

Gaussian) distribution. Neither annual wind speed nor 

significant wave heights follow a normal distribution and must 

therefore be transformed before Eq. (3) is applied to the data 

sets.  

 It has been demonstrated that for mean wind speed 

removing a fit of monthly mean and diurnal variation from 

observed data results in the annual distribution approximating a 

Normal distribution. For significant wave heights it is necessary 

to remove a fit of monthly mean values and then apply a Box-

Cox transformation on the data shown in Eq. (4) [21]. 
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 The required order of AR model in each case was 

determined using the auto-correlation function and partial 

autocorrelation function and determined as 2 and 20 for wind 

and wave models respectively. The determination of AR 

coefficients and model generation was performed using the 

MATLAB system identification toolbox. Figure 1 shows a 

sample original and transformed data set as well as a sample 

simulated time series of significant wave height. From Figure 1 

it is evident that the simulated time series displays common 

characteristics with the original data. The simulation is deemed 

acceptable if it captures the short, medium and long term 

characteristics of the observed site, the ability of this modeling 

approach to meet these criteria is discussed in the climate 

modeling section of this report. 

 By using a common modeling approach for both wind 

and wave climate it is possible to introduce correlation between 

the two. This is introduced by using a common random noise 

component based on correlation observed in the data.Figure 2 

shows how the relationship between wind and wave observed 

and simulated site at 3 hour resolution. 

 Analysis of available data in the North Sea [24] has 

observed that typical Pearson Correlation coefficient values 

between wind and wave data are of the order of 0.7-0.8. The 

correlation observed at both sites with coherent wind and wave 

data can be captured using this approach. Further sites with 

adequate data were not available for analysis but it is hoped that 

further analysis of several sites will determine the extent to 

which correlation between wind and wave data can be captured 

using this approach. The modeling approach may be 

unacceptable for sites where a very high correlation is 

observed. Countering this, it is likely that such a site would 

share similar seasonal trends in wind and wave data and the 

modeled values would have a higher correlation. 

 

 
 

Figure 1. INPUT DATA, TRANSFORMED DATA AND SIMULATION 
OUTPUT OF MEAN SIGNIFICANT WAVE HEIGHTS 

  

 
 

Figure 2. CORRELATION OF WIND AND WAVE DATA AND 
SIMULATION. 

 

Cost model 
 Due to the large size of offshore turbines, it is crucial to 

accurately capture the loss of earnings associated with turbine 

downtime. Basic analysis taking the rated power of a turbine 

and assuming a capacity factor and multiplying this by 

downtime does not take into account characteristics of 

individual sites such as seasonality and the fact access 
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limitations are more likely in above average site winds. By 

producing a time series of wind speed and determining lost 

revenue from a power curve a more representative loss of 

earning calculation is possible. This is particularly important 

when examining operational strategies as optimal strategies 

may vary between site and within a site depending on the 

season. A representative loss of earnings model is crucial to 

quantifying the benefit of different operational strategies as the 

optimum strategy is the one that minimizes the cost of energy, 

not simply the cost of O&M or maximizes availability. Mean 

simulated loss of earnings show good agreement with reported 

losses [9]. Each repair operation will also have an associated 

cost due to vessel and staff hire as well as component 

replacement. Although these costs are independent of the wind 

model, inclusion allows an investigation into the importance of 

climate dependent factors on overall costs. 

   

Sources of data 
 Various sources of wave and wind climate data are 

available. Weather data in the North Sea area is readily 

available although not always at the required locations or with 

adequate quality. Satisfactory time series of wave data in 

particular is difficult to obtain due to the harsh operating 

environment resulting in gaps in data and short measurement 

campaigns. The longest simultaneous wind speed and 

significant wave height time series data available was obtained 

from the FINO research platform database [25, 26] located off 

the coast of Germany close to the location of the Alpha Ventus 

research wind farm. Several years of high quality time series 

data was obtained through this resource and was primarily used 

for wave modeling verification. It was necessary to source 

alternative wind and wave data that were located close to the 

wind farms with published availability. As well as operation 

reports there is a large amount of climate data available at 

OWEZ [9] which has been extensively used in this work. For 

the UK Round 1 sites, wave data for access modeling was 

obtained from two separate databases; CEFAS Wavenet and 

BODC online data sets [27, 28].  It should be noted that the 

data extracted from these databases was not  the data set located 

closest to the wind farms but rather the nearest with a sufficient 

duration and data quality. 

 Little offshore WT failure data exists in the public domain. 

The two principle sources of data are the UK round 1 wind 

farms that received government funding under the capital 

grants scheme and data from Egmond aan Zee wind farm in the 

Netherlands [9, 10]. The failure data set is for a single turbine 

type and is biased by a serial defect where a overhaul of the 

drive train on all machines was required. In addition, the 

reported data includes all recorded faults the majority of which 

were corrected with remote resets and therefore did not 

significantly contribute to down time and were independent of 

wave climate. The total numbers of transfers to turbines are 

reported and this was taken to correspond to the number of 

failures, requiring action. The overall faults reported were 

scaled to correspond to the number of failures requiring a site 

visit while maintaining the ratio of failures between 

subsystems. The original data and resulting adjusted failure 

rates are shown in Table 1. 

 

 
Table 1: WT SUBSYSTEM FAILURE RATES AND DOWNTIME. 

Failures 

Subsystem Total Fails Turbine/Yr Adjusted  λ 

Ambient 1204 11.15 0.37 

Blade 180 1.67 0.06 

Brake 40 0.37 0.01 

Control 8788 81.37 2.69 

Converter 644 5.96 0.20 

Electrical 615 5.69 0.19 

Gearbox 1643 15.21 0.50 

Generator 682 6.31 0.21 

Pitch 2145 19.86 0.66 

Scheduled 3522 32.61 1.08 

Yaw 4810 44.54 1.47 

Structure 173 1.60 0.05 

Grid 68 0.63 0.02 

Total 24514 226.98 7.5 

Downtime 

 Down /failure  Total Down Adjusted  θ 

Ambient 16.56 1788 44.94 

Blade 29.88 3227 542.57 

Brake 2.95 319 241.36 

Control 165.84 17911 61.68 

Converter 63.59 6868 322.76 

Electrical 35.56 3840 188.97 

Gearbox 966.35 104366 1922.43 

Generator 262.34 28333 1257.30 

Pitch 86.13 9302 131.24 

Scheduled 83.47 9015 77.47 

Yaw 15.22 1644 10.34 

Structure 7.61 822 143.80 

Grid 6.94 746 333.35 

Total  188184 

 

 

 

  Applying onshore failure rates from previous studies to the 

offshore environment was considered as an alternative due to 

the greater availability of data. However, this approach was not 

adopted as these studies include a wide range of machines sizes 

and configurations, the majority of which are significantly 

different to large offshore turbines. Due to the small size of the 

data set, significant uncertainty is associated with failure rates 

and MTTR values. A simulation based approach allows this 

uncertainty to be quantified through sensitivity analysis of 
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failure rates for different subsystems against overall 

availability. The analysis presented is based on observed 

turbine and climate data as this was deemed preferable to an 

idealized example. 

RESULTS 
The results presented highlight the ability of an AR climate 

model coupled with a MCMC failure model to represent 

observed climate and availability trends. In addition, an 

investigation into the effect the introduction of fault classes has 

on availability with different access constraints is presented. 

 

Climate model  
A representative climate is required if the model is to be 

used to perform meaningful analysis. The climate model must 

capture the short and medium term duration characteristics that 

will determine waiting time after failures as well as the overall 

annual distribution observed at the site. In addition, any chosen 

methodology must be easily simulated and be generated from 

available data. Figure 3 shows a comparison of observed and 

simulated results at the Egmond aan Zee wind park (OWEZ); 

the ability of the AR methodology to successfully capture site 

characteristics is demonstrated. 

Another important characteristic observed in the data is the 

annual variation between wave climate characteristics at a 

single site. Data from the FINO met mast was used in order to 

analyze this as it provides time series data over several years 

and is located in the North Sea.  

The observed variability in annual wave distributions is 

shown in Figure 4, simulations of 10 years based on the site 

data and the variation in mean value in data and sample 

simulations are shown in Figure 4. The thick black line in both 

distribution pictures represents the mean annual distribution 

from the data and demonstrates good agreement with the 

observed data shown in Figure 3. 

Good agreement is found between data and simulation 

although there is more scatter amongst the measured data. This 

result can be explained by examining the availability of data 

where large gaps exist in years 2004, 2006 and 2009. The 

magnitude of variation in mean value is also consistent between 

the simulation and observed data.  

 

 
 

Figure 3. SIMULATION AND DATA SHORT AND MEDIUM TERM 
BEHAVIOUR AND OVERALL ANNUAL DISTRIBUTION 
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Figure 4. ANNUAL VARIABILITY IN DATA AND SIMULATION OUTPUT 

 

 

Availability model  
Having established that the climate model captures key site 

characteristics, it was combined with the failure model to 

produce an availability simulation model.  It is assumed that 

after a failure occurs to a subsystem it will remain in a down 

state until an adequate access window is present. The value of 

the access window required for each subsystem was determined 

from the reported MTTF values and time to repair vs access 

window plot shown in Figure 3. This approach does not take 

into account the fact that the repair process will have a weather 

independent aspect in operations planning and parts acquisition. 

Consequences of this are discussed in the Conclusion and 

Future work section. 

An inherent advantage of this modeling approach is that 

the seasonal variations in availability are captured in a single 

simulation. This is shown in Figure 5 where the availability 

over 20 years shows a clear seasonal component. This is driven 

purely by the climate model as failures occur at random and at 

this stage of modeling are not assumed to be more likely to 

occur in higher than average winds, an assumption that could 

be varied in future work. There has been investigation into the 

correlation of failure rates for onshore wind turbines and wind 

speed [29] but no such work exists for offshore turbines at this 

time and so was not incorporated.  Comparing the simulated 

availability to observed ability shows agreement although only 

3 years of observed data are available leading to larger variation 

in the data than would be expected over the life time of the 

wind farm. 

 

 
 
Figure 5. SIMULATED AVAILABILITY VARIATION OVER 20 YEARS 
AND MONTHLY AVAILABILITY OF SIMULATION AND DATA 
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Inter site analysis 
Using the OWEZ wind farm as the base case an 

investigation into the impact of wave climate on availability at 

other sites with published availibilites was performed. This 

analysis is simplified as it ignores key influences on overall 

availability such as distance from shore, spares provisions and 

operational strategy differences between sites. The round 1 sites 

are all near shore and use the same turbine model therefore the 

wave climate is the dominant difference between sites. The 

location of the sites as well as the wave buoys used for analysis 

is identified in Figure 6. Only the OWEZ site has wave buoy 

data at the same location as the wind farm and significant 

uncertainty therefore exists at the other sites. However, the 

study provides an insight into the degree to which wave 

climatology impacts availability. 

 

 
 

Figure 6. LOCATION OF WIND FARMS AND WAVE BUOYS  

 

The results of the baseline simulation with an access constraint 

of 1.5m significant wave height and the observed values at the 

published sites are displayed in Table 2. The model highlights 

the higher availability at sites sheltered by the UK mainland 

although as previously identified the influence of wave climate 

on availability is overstated by not considering weather 

independent factors.  

 
Table 2. OBSERVED AND SIMULATED AVAILABILITY [9, 10]. 

Wind Farm  Observed 

Availability 

Modelled 

Availability  

OWEZ  80.1 80.2 

Barrow  72.5 79.1 

Scroby Sands  81 88.8 

Kentish Flats  83 89.9 

Alpha Ventus*  N/A 71.0 

Influence of improved access and reduced λ 
 There has been wide spread recognition in the wind industry 

that improving the significant wave height that maintenance 

vehicles can operate in is necessary in order to improve 

availability of wind farms. Figure 7 shows a typical exceedance 

plot of significant wave height. 

 

 
 
Figure 7. TYPICAL WAVE HEIGHT EXCEEDANCE PLOT. 

 

 Considering only the number of days accessible per year as 

a measure of availability ignores the influence of failure rates. 

The combined modelling approach presented in this work 

overcomes this simplification. Availability was calculated for 

various access thresholds across the different sites and is shown 

in Figure 8 as highlighting the current industry standard as well 

the onshore availability.  

 

 
 
Figure 8. AVAILABILITY VS.  ACCESS VEHICLE THRESHOLD FOR 
VARIOUS SITES. 
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 From Figure 8 it is evident that increasing access vehicle 

threshold has significant benefits but does not achieve onshore 

levels of availability. The modelling approach identifies that 

there is greatest benefit at all sites from increasing the access 

threshold from 1.5 to 2.5 m but beyond this there is a drop off 

in improvement at near shore sites. A significant benefit 

identified is that improving the access vehicle reduces variation 

between sites and therefore operator uncertainty in revenue.  

 An alternative approach to improving availability is to 

reduce failure rates by improved turbine design or reduce the 

number of repair operations performed by the implementation 

of advanced asset management techniques. An initial analysis, 

of this approach examining failure rates is shown in  

Figure 9. It is identified that reducing failure rates to a sixth of 

the rate observed in early offshore sites, onshore availability 

levels are achieved without improving access vehicles. This 

failure rate equates to half the observed failure rate for onshore, 

a significant but feasible technical challenge for wind turbine 

manufacturers and operators.  

 

 
 

Figure 9. AVAILABILITY VS. OVERALL TURBINE FAILURE RATE AT 
VARIOUS SITES. 

 

Reduction of failure rates through modification of design is 

expensive and may be impractical to implement on existing 

turbines. Therefore, reducing repair operations through 

condition monitoring and specifically developed O&M 

strategies merit further investigation. 

 

Major and minor faults investigation 
 Recent work has identified that offshore there is a need to 

distinguish between minor faults that can be repaired remotely 

or with a single maintenance engineer visiting the site and 

major faults that require heavy lifting equipment, suitable 

vessels and a team of engineers [30]. An investigation into the 

degree to which modeling major and minor faults has on 

availability has been performed and the results are shown in 

Figure 10. The ratio of major to minor failure rates is based on 

those observed onshore in [30]. Minor failures are considered 

to have fixed downtime of one working day, independent of 

climate. Major fault rates and associated down time were 

modified so that overall downtime for the base case is 

consistent with the single fault class case. The original and 

modified values are shown in Appendix 1. 

 From Figure 10 it is observed that the influence of 

significant wave height is exacerbated when considering failure 

class. This is explained by the increase in waiting time for 

major repair activities increasing sensitivity to access vehicle 

constraints. A further analysis considering several classes of 

failures is required to fully establish the importance of 

including failure classes in availability modeling. 

 

 
 

Figure 10. INFLUENCE OF FAILURE CLASSES ON AVAILABILITY 
CURVE. 

CONCLUSIONS AND FUTURE WORK 
The paper presents an offshore wind turbine availability 

model based on a MCMC failure and an AR climate modeling 

approach. The abilities of the climate model to capture 

necessary site characteristics has been demonstrated for sites in 

the North Sea corresponding to current offshore wind farms. 

The capability of the combined model to represent observed 

failure behavior, including seasonality has been shown. An 

investigation into the impact of wave climatology, failure rates 

and failure classification on availability is also included. 

The investigation identifies the benefit and limitation in 

influencing availability by increased access vehicle thresholds. 

The most significant gains at all sites are obtained by increasing 

vehicle operability from 1.5 to 2.5 m significant wave height, 

after which gains diminish and a limit is reached that is 

dependent on failure characteristics of the turbine. For the 

reported failure rates, the limit is approximately 92%, 
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significantly below the 97% availability achieved onshore. 

Reduction in overall turbine failure rate to levels observed 

onshore increases availability at the baseline site to over 92% 

but a reduction by a factor of 8 is required to achieve onshore 

availabilities. A full sensitivity study combining improved 

access and reduced failure rates will be performed in the future. 

The introduction of failure classes has been explored for the 

case of minor and major faults. The results show that the 

availability curve is more sensitive to wave climate due to the 

extended downtime associated with major failures. This agrees 

with previous research for other UK sites using different 

methodology [16]. Expansion to include several categories and 

further analysis on a variety of sites will also be carried out in 

later work. 

It has been identified that the current delay model does not 

incorporate weather independent aspects of repair operations or 

variations in site logistic times; the model will be expanded to 

include these in future studies.  

The results presented in this work have concentrated solely 

on availability of a wind farm. Although availability is an 

important metric to indicate how well a wind farm is 

performing the principal driver for operators is to minimize cost 

of energy. Investing in a more advanced maintenance vehicle, 

condition monitoring system or refurbishment program may 

outweigh the benefit of improved availability. To investigate 

this full cost model is required. The added benefit of the AR 

modeling approach in reflecting loss of earnings was 

highlighted and a description of how this will be calculated has 

been described in this work.  

Future studies based on the analysis presented here will 

therefore include more complex failure and repair 

representation and will determine optimum solutions based on 

minimizing costs. In particular, a detailed sensitivity analysis to 

quantify the importance of failure rates and down time of all 

subsystems on availability and cost of energy will be possible 

using the described approach. In addition, the model can 

underpin investigations into unconventional maintenance 

approaches such as opportunistic or conditioned based 

maintenance to quantify their value to the operator. 
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NOMENCLATURE 
 

Symbol Definition 

f(t) Observed Failure Rates 

Hs Significant wave height 

N(t) Observed Time Period 

p AR degree 

U(t) Failure likelihood function 

Xt Modeled time data 

Yt Transformed time series 

εt White noise disturbance 

λ Failure Rate 

µ mean 

�̂�ln(𝐻𝑠 )
 Fourier Series fit of log means 

φt AR parameter 
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APPENDIX 1 
 

ORIGINAL AND MAJOR / MINOR CLASS FAILURE RATES AND DOWNTIMES 

  Original Modified 

  λ 

Downtime (hrs) 

λ Downtime (hrs) 

    minor major minor major 

Ambient 0.37 44.94 

 

0.37 

 

44.94 

Blade 0.06 542.57 0.04506 0.01001 24.00 2876.13 

Brake 0.01 241.36 0.00962 0.00262 24.00 1038.41 

Control 2.69 61.68 2.12263 0.56604 24.00 202.99 

Converter 0.20 322.76 0.15555 0.04148 24.00 1443.09 

Electrical 0.19 188.97 0.14855 0.03961 24.00 807.59 

Gearbox 0.50 1922.43 0.33511 0.16756 24.00 5719.29 

Generator 0.21 1257.30 0.13910 0.06955 24.00 3723.89 

Pitch 0.66 131.24 0.51042 0.14584 24.00 506.60 

Scheduled 1.08 77.47 

 

1.07755 

 

77.47 

Yaw 1.47 10.34 1.05115 0.42046 6.00 21.20 

Structure 0.05 143.80 0.04234 0.01059 24.00 622.99 

Grid 0.02 333.35 0.01642 0.00438 24.00 1493.42 

Where the MTTF was not related to failures, ambient and scheduled, no fault class was introduced. Where the expected down time 

was less than one day, the fixed downtime for a minor failure was reduced to 6 hours. 

 


