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Abstract - A modified State-Dependent Riccati Equation 

method is used which takes into account future 

variations in the system model dynamics. The system in 

the state dependent coefficient form, together with the 

prediction of the future trajectory, may be considered to 

be approximated by known time-varying system. For 

such a system the optimal control solution may be 

obtained for a discrete time system by solving the 

Riccati Difference Equation. The minimisation of the 

cost function for a predicted time-varying system is 

achieved by considering the prediction horizon as a 

combination of infinite and finite horizon parts. The 

infinite part is minimised by solving the Algebraic 

Riccati Equation and the finite part by the Riccati 

Difference Equation. The number of future prediction 

steps depends upon the problem and is a fixed variable 

chosen during the controller design.  A comparison of 

results is provided with other design methods, which 

indicates that there is considerable potential for the 

technique.  

 

1. INTRODUCTION 

  

 There is a need for control laws that are simple to 

compute, suitable for nonlinear systems [1] that may be 

optimised in some sense [2].  The family of LQ and LQG 

design methods [3,4] have been very successful for linear 

systems and the aim is to provide an equally simple method 

that can be used for nonlinear systems.  Linear quadratic 

optimal control [5] results, for time-varying linear systems 

are used. The main idea is to estimate the future variations 

in the nonlinear system characteristics [6] and to then apply 

the linear time-varying optimal control results.  The class of 

systems being considered are those which can be 

approximated by a state-space model with time dependent 

parameters. 

 A restricted class of nonlinear systems is used, 

which is the same as that employed in papers on the “State-

Dependent Riccati Equation” approach [7-12].  That is, the 

nonlinear system has a form that is like a linear state-space 

description but where the system matrices are functions of 

state.  In the so called State-Dependent Riccati Equation 

method the calculations are performed, assuming the 

system remains fixed (time-invariant) at the values for the 

current operating condition. The linear system matrices 

calculated at this point are then used for the solution of 

Algebraic Riccati Equation. The State-Dependent Riccati 

Equation technique assumes that the system may be 

approximated using the linear time-varying system model, 

since the State Dependent model has a linear structure and 

the system matrices depend on the state, which is assumed 

to be available at the current time instant k. 

It was reported [13] that the state-dependent Riccati 

equation method has many advantages over other non-

linear design methods. The main drawback is the lack of a 

guarantee of global asymptotic stability which in general is 

a difficult issue for non-linear systems. The local stability at 

the origin of the closed loop system results from the 

stabilising properties of the solution of the Algebraic 

Riccati Equation. Unfortunately, so far, one of the most 

efficient methods of assessing the stability of the SDRE 

controller is by simulation. Recent work in the stability 

analysis of the SDRE method either gave rather difficult 

conditions to check or imposed difficult requirements. In 

[14] the region of attraction for the SDRE controller, 

around the origin of the closed loop, is determined and for 

this region the stability of the controller is guaranteed. This 

may be difficult since closed-loop system equations are 

usually not known explicitly. In [15] the stability of the 

system controlled by the SDRE method is ensured via 

“satisficing” provided that a Control Lyapunov Function 

for considered system is known. The main difficulty with 

this technique is to find the global Control Lyapunov 

Function for the non-linear system. For some systems such 

a function may easily be determined and in this case the 

method may be employed. In [16] the estimation of the 

region of stability is substituted by the functional search 

problem. The State-Dependent model matrices were 

assumed to be polynomial functions of the state and the 

stability region estimate was obtained though optimisation. 

In the SDRE method where the Algebraic Riccati Equation 

is solved, using state-space matrices calculated at the 

current state it is assumed implicitly that the system in the 

future will remain fixed at the current operating point 

which is equivalent to the assumption that the system is 

time invariant with the system model fixed at the current 

time instant. This assumption represents a severe 

approximation since this is true only for the origin. 

Therefore there is only a guarantee of local stability for 

SDRE and as stated in [14,16] some region of attraction 

around the origin may be determined (this region may 

ideally cover the whole operating range).  

In this paper it is assumed that prediction of the future state 

trajectory may be determined. With this knowledge the 

Algebraic Riccati Equation may be solved not just for the 

current state (as it was done in the SDRE) but for the 

prediction of the future state. For a discrete time system 

controlled at time k it would mean that the ARE is solved at 
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k+ kp , where kp is the last prediction available. If the state 

at kp time instant represents the steady state of the system 

then the solution of ARE may be used as a boundary 

condition for the solution of the Difference Riccati 

Equation which is iterated backwards using available 

predictions of the system matrices. Finally the state 

feedback gain and the control signal may be obtained.  

The assumption on the knowledge of the state trajectory 

may be satisfied at a given time instant k first estimating the 

current and future control signal values for k, k + 1, k + 

2,…, k + kp-1. These values might for example be 

approximated using the last calculated value of the gain 

matrix Kc(k-1) and the State-Dependent model of the 

system.  Alternatively, an estimate of the future control can 

be computed assuming that the system parameters will 

remain fixed at their current values. Using the model and 

the control signal estimates the prediction of the state 

trajectory may be determined. This provides an indication 

of the likely time variation of the system matrices.  Given 

the time-varying system matrices the linear time-varying 

quadratic optimal controller results may then be applied.  

Thus the solution of the Algebraic Riccati Equation is first 

determined using the system model at time k + np, which is 

assumed time invariant from that point on.  The solution of 

the Algebraic Riccati Equation (say P∞) can then be used 
to initialize the time-varying Riccati difference equation to 

solve (backwards in time) for P(k+1).  The values of the 

Riccati solution {P(.)} at times k + kp-1, t + kp-2 ,.., t+1 

may then be computed.  The gain at time k, which is to be 

used to compute the control signal at time instant k then 

follows.  The whole process must be repeated at the next 

time instant. 

 

2. SYSTEM DESCRIPTION 

 

 The system is assumed to be approximated by a 

time-varying linear system with a state-space structure. 

This structure results directly from the state-dependent 

form of state-space system. The limited class of non-linear 

systems of interest are those which can be modelled by 

such state-space model [9,10].  Let the general (underlying) 

non-linear state-space model be given by the following 

equation: 

 

( ) ( )( 1) ( ) ( ) ( )p p p p px k f x k B x k u k+ = +  (1) 

( )( ) ( ) ( )p p p py k C x k x k=  (2) 

 

The assumption is now made that the function ( )( )pf x k  

may be re-written in the form: ( )( ) ( )p p pA x k x k . Detailed 

discussion of the possible methods of getting the state-

dependent form is given in [17]. In general there is an 

infinite number of such re-arrangements. This may be 

regarded as an additional degree of design freedom. To 

obtain a solution of the Algebraic Riccati Equation the 

assumption that for all px  the pair ( )( ), ( )p p p pA x B x  is 

point-wise controllable must be made. This assumption 

may be relaxed to stabilizability of the given pair with an 

additional requirement on observability through state 

weighting matrix. As a slight additional generalisation the 

state matrices may also be assumed control signal 

dependent. 

 As outlined in the introduction the prediction of 

state trajectory is used ( 1)... ( )p p px k x k k+ +  to calculate 

the prediction of the future system model matrices. Thus, 

for some time into the future the system can be 

approximated by a known time-varying linear state-space 

model.  

 To simplify notation ( )( )p pA x k , ( )( )p pB x k , 

( )( )p pC x k  are denoted as ( )pA k , ( )pB k , ( )pC k . 

 

Plant model: 

 

( 1) ( ) ( ) ( ) ( )p p p p px k A k x k B k u k+ = +  (3) 

( ) ( ) ( )p p py k C k x k=  (4) 

 

The model will include the following reference signal 

model: 

 

Reference signal model: 

 

( 1) ( )r r rx k A x k+ =  (5) 

( ) ( )r r ry k C x k=  (6) 

 

 

 Combining these equations the total augmented 

system, whose states are assumed to be available for 

feedback, become: 

 

Augmented System 

 

( 1) ( ) ( ) ( ) ( )x k A k x k B k u k+ = +  (7) 

( ) ( ) ( )y k C k x k=  (8) 

 

The augmented system matrices are defined as: 

 

( ) 0 ( )
( ) , ( ) ,

0 0

( ) ( ) 0 .

p p

r

p

A k A k
A k B k

A

C k C k

   
= =   

  

 =  

 

 

3. CONTROL ALGORITHM 

 

 The way in which the accuracy of the solution of 

the SDRE can be improved will now be considered. 



 

 

Assuming that it is possible to determine the future 

trajectory of the system with a certain accuracy the non-

linear system may be approximated using linear time-

varying model. With this knowledge the evident drawback 

of the SDRE assumption of the system invariance from the 

current time into the future may be removed if the future 

trajectory was known from the initial state to the origin. In 

this situation the state-dependent model can be replaced by 

the known time-varying linear system and the solution of 

this problem is straightforward. In practice it is not possible 

to obtain the state trajectory, only the prediction with a 

certain accuracy may be determined.  

 The approximate prediction of the state trajectory 

may be calculated using the state feedback gain Kc(k-1), 

obtained in the previous iteration of the control algorithm. 

It may be used to calculate the approximate control action 

for the current time instant. Given the current state 

measurement (or estimate) the state-space model matrices 

at the current time instant are obtained and the future state 

prediction may be calculated. Using the same state 

feedback gain (from the previous iteration of the control 

algorithm) a prediction of the next (future) control action 

may then be obtained. This procedure can be repeated and 

finally future states ( 1)... ( )p p px k x k k+ +  can be obtained 

and used for calculation of the future system model 

matrices. 

 The specification of the control algorithm may 

now be outlined. The cost-index involves the minimisation 

of the quadratic cost function [19] including the state and 

control: 

 

{ }( ) ( ) ( ) ( ) ( ) ( )
k

T T
k

n k

J x n Q n x n u n R n u n
+∞

=
= +∑        (9) 

 

where 

 

( ) ( ) ( )
T

p r p rQ n C n C Q C n C   = − −     

 

and the weightings : 0Q ≥  and 0R > . 

The weighting matrices Q  and R  may depend on the state 

of the system and the resulting cost function may not in 

general therefore be quadratic. 

 The minimization of the cost function subject to 

the non-linear system dynamics requires a solution of the 

non-linear optimization problem that in general difficult to 

obtain. To avoid this problem the minimisation of the cost 

function is performed subject to the linear approximation of 

the non-linear system. For a non-linear system the future 

values of the approximate linear system matrices for the 

infinite horizon are not really available. In the State 

Dependent Riccati Equation method the cost function is 

minimised with the assumption that system will remain 

time invariant from the current time on. In this case the 

cost-function is measured over the interval k to infinity.  

This corresponds to the interval over which the time-

varying model must be assumed to be known, if the usual 

optimal control solution for linear systems is to be applied.  

The way round this problem is to assume the state and 

control action up to say time k + kp-1 is calculable, so that 

the system is known up to k + kp. The length of the 

prediction horizon may be regarded as a tuning parameter. 

The prediction of the future trajectory is likely to be 

mismatched for longer horizons. The system’s non-linearity 

will have a significant impact on the prediction accuracy. 

For highly non-linear systems it may be necessary to reduce 

the horizon due to precision limitations. Also, weights in 

the cost function should be taken into consideration when 

the length of the horizon is chosen. A higher control 

penalty will result in slower response of the closed loop 

system. Consequently, the system state variation will be 

slower and the accuracy of the prediction within given 

horizon improved. After the time k + kp the system 

matrices will be assumed to remain constant.  Thus, a 

control action may be computed at time k and for future 

times.  In a similar way at time k+1 the system is assumed 

known up to 1pk k+ +  and is constant thereafter.  Thus, 

the new control signal is computed at k + 1 should be 

implemented, which is in the spirit of a receding horizon 

philosophy. 

 Assuming that after the ,k pk k k∞ = +  time instant 

the system will remain fixed then the cost function may be 

re-written into the following form: 

 
finite infinite

k k kJ J J= +     (10) 

{ }
1

( ) ( ) ( ) ( ) ( ) ( )
pk k

finite T T
k

n k

J x n Q n x n u n R n u n
+ −

=
= +∑      (11) 

, , ,

, , ,

( ) ( ) ( )

( ) ( ) ( )p

T
k k k kinfinite

k T
n k k

k k k

x k Q k x k
J

u k R k u k

+∞ ∞ ∞ ∞

= + ∞ ∞ ∞

  
= ∑  

+  
     (12) 

 

The minimisation of the second part - infinite
kJ  is obtained 

easily from an Algebraic Riccati Equation, calculated at 

time pk k+ . The solution of the Algebraic Riccati Equation 

does of course minimize the cost assuming the system is 

time-invariant. This solution is applicable since it is 

assumed, that the system will remain fixed after 

time pk k+ . The Algebraic Riccati Equation is given by the 

following expression calculated at the time 

instant ,k pk k k∞ = + : 

 



 

 

( )

, ,

, , ,

1

, , , ,

, ,

( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

T
k k

T
k k k

T
k k k k

k k

P k A k

P k P k B k

R k B k P k B k

B k P k

∞ ∞ ∞

∞ ∞ ∞ ∞ ∞

−

∞ ∞ ∞ ∞ ∞

∞ ∞ ∞

= ×

 − ×
 
 

+ × 
 
  

         (13) 

, ,( ) ( )k kA k Q k∞ ∞× +  

 

 After computing the control to minimize the cost 

term from pk k+  onwards the next step is to minimise the 

first part of the cost function so that the 
finite
kJ  is 

minimised. This minimisation problem involves the finite 

time cost function term.  The solution of the Algebraic 

Riccati Equation is taken as a boundary condition 

,( ) ( )p kP n n P k∞ ∞+ =  for the Riccati difference equation: 

 

( ) 1

( ) ( )

( 1) ( 1) ( )

( ) ( ) ( 1) ( ) ( )

( ) ( 1)

( )

T

T

T

P n A n

P n P n B n

R n B n P n B n A n

B n P n

Q n

−

= ×

 + − + ×
 
 + + × 
 +  
+

             (14) 

 

The Riccati difference equation iterations are performed for 

( ) ( )1 ,..., 1pn k k k= + − + . Finally the control signal at time 

k is obtained from the discrete time-varying Kalman gain 

expression, assuming the states are available for feedback, 

as: 

 

( ) ( ) ( )cu k K k x k=              (15) 

 

where 

 

( ) 1( ) ( ) ( 1) ( ) ( )

( ) ( 1) ( )

T
c

T

K k B k P k B k R k

B k P k A k

−
= − + +

× +
            (16) 

 

The stability issue may be tackled in a similar way 

as for the SDRE. As was noted in the introduction stability 

analysis for the nonlinear systems controlled by the SDRE 

algorithm may be difficult. In general it is not possible to 

have an explicit equation of the closed loop system. Hence 

for stability analysis the only suitable method seems to be 

that given in [15]. If the Control Lyapunov Function is 

known the method may be easily implemented and as a 

result a guarantee of global asymptotic stability achieved. 

The weakness of this method is the difficult issue of 

generating a suitable CLF for the non-linear system. If this 

is difficult then the only method to check the stability 

properties for the given application is to use simulation. 

 

4. SUMMARY OF THE ALGORITHM 

 

 There follows a list of the main steps in the 

computational algorithm: 

 

1. Estimate (or measure) the state 

2. Use a previous feedback gain to calculate the 

prediction of the current control 

3. Use the current control prediction and the model re-

calculated at time instant k to obtain the future state 

prediction. The state prediction together with the state 

feedback gain from previous iteration of the algorithm 

is used for the calculation of the future control 

prediction. The model once again is re-calculated using 

future state prediction, stored and the sequence can be 

repeated kp times. 

4. Use the model prediction for time instant k+kp and 

solve Algebraic Riccati Equation. 

5. Use ( ),kP k∞ ∞  as a boundary condition ( )pP k k+  for 

iterations of the Difference Riccati Equation and then 

use an appropriate prediction of the model through 

iteration of Riccati Equation. 

6. Use ( )1P k +  to calculate the feedback control gain 

and calculate the current control. 

 

 

5. NONLINEAR SERVO-SYSTEM EXAMPLE 

  

 To illustrate the potential possibilities of the 

proposed algorithm a simple second order non-linear 

unstable system is going to be controlled. The proposed 

algorithm is compared with SDRE method and with a linear 

controller. The block diagram of the object is shown in 

Fig.3. 

 

 
Figure 1: Block Diagram. 

 

The system is non-linear and the open loop unstable (pole 

out of the unit circle) and the state space model is given by 

the following equations: 

 

Plant model: 

 

( ),2

,2

atan ( )
01.7

( 1) ( ) ( )( )
0.3

0 1

p

p pp

x k

x k x k u kx k

 
   

+ = +   
  

  

 



 

 

  [ ]( ) 1 0 ( )p py t x t=  

 

with initial condition (0) setpointrx = .  In the example 

setpoint=1.2 and was chosen such, that the plant works on 

the non-linear part of the saturation characteristic. 

  

Reference Model: 

 

( 1) [1] ( )r rx t x t+ =  

[ ]( ) 1 ( )r ry t x t=  

 

with initial condition (0) setpointrx = .  In the example 

setpoint=1.2 and was chosen such, that the plant works on 

the non-linear part of the saturation characteristic.  

 

The step response of the closed loop system is shown in 

Figure 2 and the corresponding control action is shown in 

figure 3. 
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Figure 2: Output Responses for Comparison  

 

In the example it was assumed that states were available for 

measurement. However with the model given in the form 

shown in figure 2 it is straightforward to implement a 

Kalman Filter. 

From analysis of the output response it may be concluded 

that the linear controller gave a significant steady-state 

error.  The constant gain used for state feedback was 

designed for the plant parameters calculated around its 

parameters corresponding to the setpoint value.  When the 

gain was designed using the initial system parameters, the 

system with such a controller did not give a stable response. 

 

It may be noted that the proposed algorithm gives 

significantly better performance, compared to a SDRE 

controller and this gives better performance when 

compared to a linear controller. The latter stabilises the 

system, but the response, especially in terms of the steady 

state error, is not adequate. 
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Figure 3: Control Signals for Comparison 

 

 

6. CONCLUDING REMARKS 

  

 The main advantage of the proposed technique is 

the simplicity of the approach. In the steady-state the 

control law reduces to the optimal control for a time-

invariant system, which for small perturbations is desirable.  

When there are large reference or disturbance signal 

changes the control law is evaluated taking into account the 

future changes in the system parameters brought about by 

the presence of non-linearities.  This is an improvement 

over the state-dependent Riccati equation method, which 

assumes the system remains fixed at the nonlinear function 

values at the time t.  A comparison of the results for the 

example reveals that valuable improvements are obtained, 

even for a relatively small number of steps kp. 

 For most nonlinear control design approaches 

stability issues are central to the theory and this requires 

either elegant mathematical results or empirical procedures 

[18].  The approach above is optimisation based and the 

focus is more on the performance, under different operating 

conditions.  The analysis of performance is rather easier to 

achieve, either from operating records, or from theoretical 

results.  Thus, the confidence necessary to encourage the 

use of the approach is more likely to be achieved by this 

optimization method.  This does not imply that a measure 

of stability is not important, but it changes the focus of the 

design onto property, which is easier to measure and 

benchmark. 
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