
Strathprints Institutional Repository

MacKenzie, John and Nicola, Aurelian (2007) A discontinuous Galerkin moving mesh method for
Hamilton-Jacobi equations. SIAM Journal on Scientific Computing, 29 (6). pp. 2258-2282. ISSN
1064-8275

Strathprints is designed to allow users to access the research output of the University of Strathclyde.
Copyright c© and Moral Rights for the papers on this site are retained by the individual authors
and/or other copyright owners. You may not engage in further distribution of the material for any
profitmaking activities or any commercial gain. You may freely distribute both the url (http://
strathprints.strath.ac.uk/) and the content of this paper for research or study, educational, or
not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to Strathprints administrator:
mailto:strathprints@strath.ac.uk

http://strathprints.strath.ac.uk/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Strathclyde Institutional Repository

https://core.ac.uk/display/9558128?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://strathprints.strath.ac.uk/
http://strathprints.strath.ac.uk/
mailto:strathprints@strath.ac.uk
http://strathprints.strath.ac.uk/

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. SCI. COMPUT. c© 2007 Society for Industrial and Applied Mathematics
Vol. 29, No. 6, pp. 2258–2282

A DISCONTINUOUS GALERKIN MOVING MESH METHOD FOR
HAMILTON–JACOBI EQUATIONS∗

J. A. MACKENZIE† AND A. NICOLA‡

Abstract. In this paper we consider the numerical solution of first-order Hamilton–Jacobi
equations using the combination of a discontinuous Galerkin finite element method and an adaptive
r-refinement (mesh movement) strategy. Particular attention is given to the choice of an appropriate
adaptivity criterion when the solution becomes discontinuous. Numerical examples in one and two
dimensions are presented to demonstrate the effectiveness of the adaptive procedure.

Key words. adaptivity, moving meshes, discontinuous Galerkin finite elements, Hamilton–
Jacobi equations

AMS subject classifications. 35F25, 35L45, 35L65, 65M50, 65M60

DOI. 10.1137/060656243

1. Introduction. In this paper we consider the adaptive numerical solution of
Hamilton–Jacobi (HJ) equations

φt + H(φx1 , . . . , φxd
) = 0, φ(x, 0) = φ0(x),(1.1)

where x = (x1, . . . , xd) ∈ R
d, t > 0. HJ equations arise in many practical areas such as

differential games, mathematical finance, image enhancement, and front propagation.
It is well known that solutions of (1.1) are Lipschitz continuous, but derivatives can
become discontinuous even if the initial data is smooth. Since generalized solutions
are not unique, a selection principle is required to pick out the physically relevant so-
lution. For HJ equations the most commonly used condition is the vanishing viscosity
condition, which requires that the correct solution should be the vanishing viscosity
limit of smooth solutions of corresponding viscous problems. The notion of viscosity
solutions was introduced by Crandall and Lions [8], where the questions of existence,
uniqueness, and stability of solutions were addressed.

Crandall and Lions were also the first to study numerical approximations of (1.1)
and introduced the important class of monotone finite difference methods which were
shown to converge to the viscosity solution [7]. However, monotonic schemes are well
known to be at most first-order accurate.

There is a close relation between HJ equations and hyperbolic conservation laws
(see section 2.1 below). With this in mind, it is not surprising to find that many
of the numerical methods used to solve HJ equations are motivated by conservative
finite difference or finite volume methods for conservation laws. Methods that have
been proposed include high-order essentially nonoscillatory (ENO) schemes [22], [23],
weighted ENO schemes [15], and high-resolution central schemes [21].

An increasingly popular approach to solving hyperbolic conservation laws is the
discontinuous Galerkin (DG) finite element method [5], [6]. Recently, Hu and Shu

∗Received by the editors April 4, 2006; accepted for publication (in revised form) February 20,
2007; published electronically October 5, 2007.

http://www.siam.org/journals/sisc/29-6/65624.html
†Department of Mathematics, University of Strathclyde, Livingstone Tower, 26 Richmond Street,

Glasgow, G1 1XH, UK (jam@maths.strath.ac.uk).
‡Faculty of Mathematics and Computer Science, University of Ovidius, Blvd. Mamaia 124, 900527,

Constanta, Romania (anicola@univ-ovidius.ro).

2258

D
ow

nl
oa

de
d

09
/1

3/
12

 to
 1

30
.1

59
.1

04
.1

44
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MOVING MESH DG METHOD FOR HJ EQUATIONS 2259

[11] proposed a DG method to solve HJ equations by first rewriting (1.1) as a system
of conservation laws

(wi)t + (H(w))xi
= 0, i = 1, . . . , d, w(x, 0) = ∇φ0(x),(1.2)

where w = ∇φ. The usual DG formulation would be obtained if w belonged to
a space of piecewise polynomials. However, we note that wi, i = 1, . . . , d, are not
independent due to the restriction that w = ∇φ. In [11] a least squares procedure
was used to enforce this condition. More recently it was shown that it is possible to
enforce the gradient condition using a smaller solution space [19]. Theoretical analysis
of the accuracy and stability of the method was performed in [18].

One of the often cited advantages of DG methods is that since the numerical
solution is not continuous across interelement boundaries, this, in theory, makes solu-
tion adaptive strategies much easier to implement. This has led to the development
of a number of adaptive methods based on hp-refinement strategies for hyperbolic
conservation laws [4], [10].

An alternative adaptive strategy that has worked well for time-dependent prob-
lems is to use moving meshes. A useful way to construct an adaptive moving mesh is
to regard it as the image of a uniform mesh covering a computational domain under
a time-dependent transformation that clusters mesh elements towards areas where
improved spatial resolution is required. The transformation is often found through a
variational formulation where the mapping is the minimizer of a functional involving
properties of the mesh and the solution (see, e.g., [17], [29]). To improve the stability
and smooth the evolution of the moving mesh, Russell, Huang, and coworkers [14],
[12] found it useful to obtain the mapping as the solution of parabolic moving mesh
PDEs (MMPDEs) which are modified gradient flow equations for the minimization of
a suitable mesh functional.

For problems where solution discontinuities exist, the correct choice of an adap-
tivity criterion, or monitor function, is problematic [30]. It is not unusual to find in
the literature that many grid adaptation criteria are singular at solution discontinu-
ities. To prevent singularities from producing degenerate meshes, either some form of
smoothing procedure is employed or a regularized functional is used in the variational
formulation [1].

There are two main ways to solve PDEs using moving meshes. The first is to
reformulate the governing equations with respect to the moving reference frame. If
conservation is important, then this reformulation must be done carefully. Exam-
ples of this approach are arbitrary Lagrangian–Eulerian (ALE) methods which are
commonly used for problem with moving domains. Alternatively one may evolve the
numerical solution over one time step using a stationary mesh. Thereafter, the mesh is
moved, and some form of interpolation procedure is used to transfer the solution val-
ues from one mesh to another. This approach has been used successfully in the work
of Tang and coworkers [20], [31], [27] to solve hyperbolic problems where a suitable
conservative form of interpolation was proposed.

The aim of this paper is to consider the use of the DG method of Hu and Shu [11]
to solve HJ equations using a moving mesh method based on the solution of MMPDEs.
The governing equation is transformed to include the effect of the movement of the
mesh and this is done in such a way that the conservation properties of the original
equation are not lost. The adaptive mesh is driven by a monitor function which is
shown to be nonsingular in the presence of solution discontinuities. To produce an
acceptable mesh we smooth the monitor function before it is used to drive the adaptive
procedure.

D
ow

nl
oa

de
d

09
/1

3/
12

 to
 1

30
.1

59
.1

04
.1

44
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

2260 J. A. MACKENZIE AND A. NICOLA

The layout of the rest of this paper is as follows: in the next section we present
the governing HJ equations and their discretization using a moving mesh and a DG
formulation. In section 3 we present the MMPDEs and their discretization and we
discuss the choice of the monitor function. Finally, in section 4 we conduct a number
of numerical experiments in one and two dimensions.

2. DG discretization of HJ equations.

2.1. HJ equation in one dimension. Let us consider the HJ equation in one
dimension: {

φt + H(φx) = 0, (x, t) ∈ (a, b) × (0, T],

φ(x, 0) = φ0(x),
(2.1)

with appropriate boundary conditions. If u = φx and we differentiate (2.1) with
respect to x, then u satisfies the hyperbolic conservation law{

ut + H(u)x = 0, (x, t) ∈ (a, b) × (0, T],

u(x, 0) = u0(x).
(2.2)

We assume that the physical domain Ωp = [a, b] is the image of a computational
domain Ωc = [0, 1] which is obtained via the time-dependent mapping x = x(ξ, t). If
(2.2) is considered with respect to the moving coordinate frame, then

u̇− ẋux + H(u)x = 0, (x, t) ∈ (a, b) × (0, T],(2.3)

where (·) represents differentiation with respect to time keeping ξ fixed. Note that the
transformed equation is not in conservation form. Therefore, a discretization of (2.3)
will not be conservative in general, even if the H(u)x term is treated conservatively,
and this will lead to problems in convergence towards discontinuous solutions of (2.2)
(see [24]). Therefore, instead we will consider a discretization of the conservative form
in computational coordinates:{

˙(xξu) + (H(u) − ẋ u)ξ = 0, (ξ, t) ∈ (0, 1) × (0, T],

u(ξ, 0) = u0(ξ).
(2.4)

The aim is to discretize (2.4) in space using a DG method.

2.2. The DG discretization. For each partition {ξj+ 1
2
}Nj=0 of Ωc, we denote

Ij =
(
ξj− 1

2
, ξj+ 1

2

)
, Δj = ξj+ 1

2
− ξj− 1

2
, j = 1, . . . , N.

We use a uniform mesh to cover the computational domain such that

h = ξj+ 1
2
− ξj− 1

2
=

1

N
, ξj =

1

2

(
ξj+ 1

2
+ ξj− 1

2

)
, j = 1, . . . , N.(2.5)

If we multiply (2.4) by an arbitrary smooth function v, then integrating by parts over
the interval Ij we obtain∫

Ij

(˙xξu) v dξ −
∫
Ij

H̃(u, ẋ) vξ dξ + H̃(u, ẋ) v
∣∣∣
Ij

= 0,(2.6)

D
ow

nl
oa

de
d

09
/1

3/
12

 to
 1

30
.1

59
.1

04
.1

44
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MOVING MESH DG METHOD FOR HJ EQUATIONS 2261

where

H̃(u, ẋ) = H(u) − ẋ u,(2.7)

and

H̃(u, ẋ)v
∣∣∣
Ij

= H̃(u(ξj+ 1
2
, t), ẋ(ξj+ 1

2
)) v(ξj+ 1

2
)−H̃(u(ξj− 1

2
, t), ẋ(ξj− 1

2
)) v(ξj− 1

2
).(2.8)

In this paper we will approximate the exact solution u of (2.6) and the smooth function
v locally by linear polynomials. The numerical approximations uh and vh belong to
the finite dimensional space

V 1
h =

{
v : v|Ij ∈ P 1(Ij), j = 1, . . . , N

}
,(2.9)

where P 1(Ij) denotes the space of polynomials on Ij of degree at most one. In the
discontinuous Galerkin numerical method uh and vh are discontinuous at the points
ξj+ 1

2
, j = 0, . . . , N , and the question is how to evaluate their values in (2.8). We set

v−h
j+ 1

2

= lim
ξ→ξ−

j+ 1
2

vh(ξ) and v+
h
j− 1

2

= lim
ξ→ξ+

j− 1
2

vh(ξ).(2.10)

Furthermore, we replace the nonlinear flux function H̃(uh, ẋ) defined in (2.7) by a
numerical flux function that depends on the values of uh from the left and right at

the point
(
ξj+ 1

2
, t
)
, that is,

H̃(uh, ẋ)ξ
j+ 1

2

(t) ≈ Hj+ 1
2

(
uh

(
ξ−
j+ 1

2

, t
)
, uh

(
ξ+
j+ 1

2

, t
)
, ẋξ

j+ 1
2

(t)
)
.(2.11)

In this paper we have used the local Lax–Friedrichs flux

H(p, q, ẋ) =
1

2

(
H̃(p, ẋ) + H̃(q, ẋ) − c(q − p)

)
,(2.12)

where

c = max
min(p,q)≤u≤max(p,q)

∣∣∣∣∣∂H̃∂u
∣∣∣∣∣ .

It is well known that some form of slope or flux limiting procedure is necessary
to prevent oscillations at solution discontinuities when high-order methods are used
to solve nonlinear hyperbolic conservation laws [25]. For example, if u0

j denotes the
cell average of uh in Ij , then we have

uh(ξ) = u0
j + u1

j (ξ − ξj), j = 1, . . . , N,(2.13)

and

duh

dξ
= u1

j , j = 1, . . . , N,

is the slope of the numerical solution. One formula for limiting the slope in the
numerical approximation is the minmod function

m(q, r, s) =

{
sgn(q) min(|q|, |r|, |s|) if sgn(q) = sgn(r) = sgn(s),

0 otherwise,
(2.14)

D
ow

nl
oa

de
d

09
/1

3/
12

 to
 1

30
.1

59
.1

04
.1

44
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

2262 J. A. MACKENZIE AND A. NICOLA

where sgn is the usual sign function. The initial linear expression for uh is then
replaced by

uh(ξ) = u0
j + (u1

j)
mod(ξ − ξj), j = 1, . . . , N,(2.15)

where (u1
j)

mod is the limited slope computed as

(u1
j)

mod = m(u1
j , Δ+u

0
j/Δj , Δ−u

0
j/Δj),

in which Δ+ and Δ− are the usual forward and backward difference operators.
The discontinuous Galerkin space approximation is given as the solution of the

weak formulation∫
Ij

(˙xξuh)vh dξ −
∫
Ij

H̃(uh, ẋ)(vh)ξ dξ + Hj+ 1
2
v−h

j+ 1
2

−Hj− 1
2
v+
h
j− 1

2

= 0,(2.16)

and the initial condition is given by the projection∫
Ij

uh(ξ, 0)vh(ξ) dξ =

∫
Ij

u0(ξ)vh(ξ) dξ, j = 1, . . . , N,(2.17)

for all vh ∈ V 1
h .

It remains to describe how the gradient of the mesh mapping xξ is approximated.
We will assume that the map x = x(ξ, t) is piecewise linear so that

x(ξ, t) = xj− 1
2
(t) + N (ξ − ξj− 1

2
)
(
xj+ 1

2
(t) − xj− 1

2
(t)
)

(2.18)

for

ξj− 1
2
≤ ξ ≤ ξj+ 1

2
, j = 1, . . . , N.

It then follows that xξ used in the weak formulation (2.16) is given by

xξ(ξ, t) = N(xj+ 1
2
(t) − xj− 1

2
(t)), j = 1, . . . , N.(2.19)

2.2.1. Temporal integration. The discontinuous Galerkin discretization gives
rise to a system of ODEs which can be written as⎧⎨⎩

d

dt
(xξuh) = Lh(ẋ, xξ,uh) in (0, T],

uh(0) = u0h,

(2.20)

where u0h is the initial approximation for the vector of the degrees of freedom uh. To
integrate (2.20) numerically we use the second-order TVD Runge–Kutta method⎧⎪⎨⎪⎩

xn+1
ξ u

(1)
h = xn

ξu
n
h + Δt L(ẋn, xn

ξ ,u
n
h),

xn+1
ξ un+1

h =
1

2
xn
ξu

n
h +

1

2
xn+1
ξ u

(1)
h +

1

2
Δt L(ẋn+1, xn+1

ξ ,u
(1)
h).

(2.21)

For the temporal approximation of x(ξ, t) we will assume that we have a set of
grid points at time level tn and at tn+1 which have been obtained using the MMPDE

D
ow

nl
oa

de
d

09
/1

3/
12

 to
 1

30
.1

59
.1

04
.1

44
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MOVING MESH DG METHOD FOR HJ EQUATIONS 2263

described in section 3. The map will be assumed to be piecewise linear in time so
that

xj+ 1
2
(t) = xn

j+ 1
2

+ (t− tn)

⎛⎝xn+1
j+ 1

2

− xn
j+ 1

2

tn+1 − tn

⎞⎠ , tn ≤ t ≤ tn+1,(2.22)

and hence

ẋj+ 1
2
(t) =

xn+1
j+ 1

2

− xn
j+ 1

2

tn+1 − tn
, j = 0, . . . , N.(2.23)

Therefore, ẋ(ξ, t) will be piecewise linear in space and piecewise constant in time.
As the time integrator is explicit, the time step Δt has to be chosen to satisfy an

appropriate CFL condition ν ≤ 1, where the CFL number is

ν = Δtmax
j

{
|(Hu)j+ 1

2
− ẋj+ 1

2
|

xj+1 − xj

}
.(2.24)

Note that the time step restriction on a moving mesh is different from that arising on
a fixed nonuniform mesh due to the use of a modified wave speed. If the mesh velocity
is close to the same speed as a solution discontinuity, then the shifted wave speed will
be small where the mesh spacing is small, leading to global relaxation of the CFL
condition. On the other hand, if the mesh is stationary and is highly graded towards
large solution gradients, then stability requires the use of a globally small time step.
The use of local time-stepping procedures can mitigate against this problem, but this
certainly makes the overall algorithm more complicated (see, e.g., [26]).

2.2.2. Recovery of φh. If (φh)x = uh, then φh will be determined on each
interval Ij up to a constant. Following [11], the constant can be retrieved in two
ways:

1. Require that ∫
Ij

(φ̇h + H̃(uh, ẋ)) dξ = 0, j = 1, . . . , N.(2.25)

The ODE (2.25) is again solved using the second-order TVD Runge–Kutta
method (2.21).

2. Use (2.25) to update only the leftmost element I1, and then since (φh)x = uh

we have

φh(xj , t) = φh(x1, t) +

∫ xj

x1

uh(x, t) dx.(2.26)

In section 4 we compare the performance of both recovery procedures.

2.3. HJ equations in two dimensions. In two dimensions we have

φt + H(φx, φy) = 0, (x, y) ∈ Ωp, t > 0,(2.27)

where Ωp ⊆ lR2 is the physical domain. To generate an adaptive mesh we have
seen earlier that it is useful to regard the physical domain Ωp as the image of a
computational domain Ωc under the invertible maps

x = x(ξ, η, t), y = y(ξ, η, t), and ξ = ξ(x, y, t), η = η(x, y, t),(2.28)

D
ow

nl
oa

de
d

09
/1

3/
12

 to
 1

30
.1

59
.1

04
.1

44
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

2264 J. A. MACKENZIE AND A. NICOLA

where x = (x, y)T and ξ = (ξ, η)T are the physical and computational coordinates,
respectively. A mesh covering Ωp is obtained by applying the mapping given by (2.28)
to a partitioning of Ωc.

Given that the mesh can move, it is necessary to express the Eulerian (x-fixed)
temporal derivative in (2.27) in terms of the Lagrangian derivative along the trajectory
of the moving mesh. If a dot denotes differentiation with respect to time with (ξ, η)
fixed, then (2.27) becomes

φ̇− ẋφx − ẏφy + H(φx, φy) = 0,(2.29)

where (ẋ, ẏ) represents the mesh velocity. If we let u = φξ and v = φη, then by
differentiating (2.29) with respect to ξ and η we arrive at the system

u̇ + H̄ξ(u, v, ẋ, ẏ) = 0,(2.30)

v̇ + H̄η(u, v, ẋ, ẏ) = 0,(2.31)

where

H̄(u, v, ẋ, ẏ) = H(ξxu + ηxv, ξyu + ηyv) − ẋ(ξxu + ηxv) − ẏ(ξyu + ηyv).(2.32)

Using the vectorial notation

u =

(
u
v

)
, F 1 =

(
H̄
0

)
, F 2 =

(
0
H̄

)
,

we can rewrite (2.30) and (2.31) as the system of conservation laws

u̇ + [F 1(u)]ξ + [F 2(u)]η = 0.(2.33)

We apply a discontinuous Galerkin method to solve this coupled system (2.33) for
(u, v) = ∇ξφ, where the discretization takes place in the computational domain Ωc.

A recovery procedure will then be used to obtain an approximation of φ.

2.4. The DG discretization in two dimensions. Let Th denote a partition
of the computational domain Ωc and K an arbitrary element in this partition. We
consider the space of all polynomials of degree k restricted on the element K to be

Vh(K) = {p ∈ P k(K) : p is a polynomial of degree at most k on K}.(2.34)

To obtain a weak formulation we take the inner product of (2.33) with a test
function vh ∈ Vh, integrate over K ∈ Th, and replace u by its approximation uh ∈ Vh.
That is,

d

dt

∫
K

uh(ξ, t) · vh(ξ) dξ +

∫
K

[(F 1)ξ · vh + (F 2)η · vh] dξ = 0,(2.35)

and using integration by parts we obtain

d

dt

∫
K

uh(ξ, t) · vh(ξ) dξ

+
∑
e∈∂K

∫
e

{
(ne,K)1F 1 · vh(ξint(K)) + (ne,K)2F 2 · vh(ξint(K))

}
ds

−
∫
K

[F 1 · (vh)ξ + F 2 · (vh)η] dξ = 0,

(2.36)

D
ow

nl
oa

de
d

09
/1

3/
12

 to
 1

30
.1

59
.1

04
.1

44
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MOVING MESH DG METHOD FOR HJ EQUATIONS 2265

where ne,K = [(ne,K)1, (ne,K)2] is the unit normal to the edge e of the element K,
int(K) denotes the value taken from the interior of the element K, and ext(K) denotes
the value taken from the exterior of the element K. Next we define the normal flux

F e,K(u, ẋ, ẏ) = (ne,K)1F 1 + (ne,K)2F 2 =

[
(ne,K)1H̄
(ne,K)2H̄

]
.(2.37)

Note that F e,K is not well defined on the element edge as uh is discontinuous there.
Therefore, we replace it by the numerical flux function

F̂ e,K

(
uh(ξint(K)),uh(ξext(K)), ẋ, ẏ

)
.(2.38)

Again we will use the Lax–Friedrichs flux

F̂ e,K(a, b, ẋ, ẏ) =
1

2
[F e,K(a) + F e,K(b) + αe,K(a− b)] ,(2.39)

where

αe,K = ρ

(
(ne,K)1

∂F 1

∂u
+ (ne,K)2

∂F 2

∂u

)
(2.40)

and ρ(·) denotes the spectral radius of (·).
In this paper we will consider only the case that uh ∈ (P 1)2. In particular we

now discuss the basis used when uh is a discontinuous bilinear function defined on
a topologically rectangular mesh covering Ωc. We will assume that Ωc = [0, 1]2 is
covered by a uniform N × N element mesh. Following Hu and Shu [11], we assume
that the approximate solution of the HJ equation φh is piecewise discontinuous and
quadratic. Therefore, in the cell Kij = (ξi−1/2, ξi+1/2) × (ηj−1/2, ηj+1/2) we assume

φh(t) = φ(t) + φξ(t)μi + φη(t)νj + φξη(t)μiνj

+ φξξ(t)

(
μ2
i −

1

3

)
+ φηη(t)

(
ν2
j − 1

3

)
,(2.41)

where

μi(ξ) =
2(ξ − ξi)

Δξ
and νj(η) =

2(η − ηj)

Δη
.

The gradient in computational space ∇ξφh therefore takes the form

∇ξφh =

[2
Δξφξ(t) + 2

Δξφξη(t)νj + 4
Δξφξξ(t)μi

2
Δηφη(t) + 2

Δηφξη(t)μi + 4
Δηφηη(t)νj

]
,(2.42)

and hence there are five unknowns that determine ∇ξφh. A suitable basis for

V 1
2 = {(v1, v2, v3, v4, v5) : v|K = ∇ξφ, φ ∈ P 2(K) ∀K ∈ Th}

is given by

(2.43)

b1 =

[
1
0

]
, b2 =

[
0
1

]
, b3 =

[
μi

0

]
, b4 =

[
0
νj

]
, b5 =

[
νj

Δξ
μi

Δη

]
.

D
ow

nl
oa

de
d

09
/1

3/
12

 to
 1

30
.1

59
.1

04
.1

44
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

2266 J. A. MACKENZIE AND A. NICOLA

The local basis functions (2.43) can easily be shown to be orthogonal, and hence the
mass matrix is diagonal.

The evaluation of the edge and element integrals in (2.36) is achieved using
quadrature. For the edges,∫

e

F̂ e,K · vh(ξint(K))

≈
q∑

l=1

ωlF̂ e,K

(
uh(ξ

int(K)
l),uh(ξ

ext(K)
l), ẋl, ẏl

)
· vh(ξ

int(K)
l)|e|,

where ωl are the weights and ξl are the quadrature points along the edge. To estimate
these integrals we use the two-point Gauss quadrature rule. Similarly, for the element
integrals appearing in (2.36) we use the 2 × 2 Gauss product rule.

The mesh mapping x(ξ, t) is assumed to vary bilinearly in space based on the
position of the four grid nodes defining each element.

After carrying out the integrations and inverting the mass matrix, we finally arrive
at the system of ODEs

u̇ = L(ẋ,u), u = (u1, u2, u3, u4, u5)
T ,(2.44)

which will be solved using the explicit two-stage explicit TVD Runge–Kutta scheme
(2.21) to evolve u, where ẋ is assumed to be piecewise constant in time.

The solution of (2.44) allows us to evolve ∇ξφh. To calculate φh, we note from

(2.41) that we require a procedure to calculate the cell average φav. Following Hu
and Shu [11], we project the original HJ equation onto piecewise constants. That is,
for any element K we set∫

K

(φ̇h + H̄(uh, vh, ẋ, ẏ)) dξdη = 0.(2.45)

We note from (2.41) that

φav(t) =
1

|K|

∫
K

φh dξ dη,

and hence

φ̇av = − 1

|K|

∫
K

H̄(uh, vh, ẋ, ẏ) dξdη.(2.46)

We approximate the integral on the right-hand side of (2.46) using a 2 × 2 Gauss
quadrature rule so that

φ̇av = − 1

|K|

4∑
l=1

ωl

4
H̄((uh)l, (vh)l, ẋl, ẏl) |K|.(2.47)

The ODE (2.47) is again solved using the second-order TVD Runge–Kutta method
(2.21). One possibility is to solve (2.47) for each element of the mesh. However,
numerical experience reported in [11] indicates that this approach does not work well
when there are singularities in the derivatives and the integral path in time passes

D
ow

nl
oa

de
d

09
/1

3/
12

 to
 1

30
.1

59
.1

04
.1

44
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MOVING MESH DG METHOD FOR HJ EQUATIONS 2267

through the singularities at earlier times. Alternatively, one can solve (2.47) for only
one element, where there are no derivative singularities, and use the formula

φ(B, t) = φ(A, t) +

∫ B

A

(φx dx + φy dy)(2.48)

to update all of the remaining elements.

3. Moving mesh equations.

3.1. MMPDEs in one and two dimensions. Let us consider x = (x1, x2)
T

to be a point in the physical domain Ωp and ξ = (ξ1, ξ2)
T to be a point in the

computational domain Ωc. The mapping from the computational domain to the
physical domain is assumed to minimize the energy functional

I[ξ1, ξ2] =
1

2

∫
Ωp

(
(∇ξ1)

T
G−1∇ξ1 + (∇ξ2)

T
G−1∇ξ2

)
dx dy,(3.1)

where G is a symmetric positive-definite monitor matrix which involves various prop-
erties of the mesh and physical solution, and ∇ is the gradient operator with respect
to x = (x1, x2)

T .
A two-dimensional MMPDE is given by the gradient flow equations

∂ξ

∂t
= −P

τ

δI

δξ
=

P

τ
∇ ·
(
G−1∇ξ

)
,(3.2)

where τ > 0 is a temporal smoothing parameter and P is an operator with positive
spectrum used to regularize the evolution of the mesh. The parameter τ determines
how quickly the mesh adapts in time in an attempt to minimize (3.1). The value of
τ should be chosen to be small in relation to the time scale of the physical PDE to
ensure that the mesh adapts quickly enough to follow important solution features.
On the other hand, it is important to make sure that τ is not too small; otherwise the
mesh can evolve in an erratic manner, and this can have an adverse effect on accuracy.
Further discussion on the choice of τ can be found in [13].

In practice we work directly with the map x = x(ξ, t) because it defines explicitly
the location of the physical mesh points. Following [13] and [12], we switch the roles
of the dependent and independent variables in (3.2) to obtain

τ
∂x

∂t
= P

⎛⎝ 2∑
i,j=1

(ai ·G−1aj)
∂2x

∂ξi∂ξj
−

2∑
i,j=1

(
ai · ∂G

−1

∂ξj
aj

)
∂x

∂ξi

⎞⎠ ,(3.3)

where ai = ∇ξi. In [12], Huang proposed choosing P in order to limit the variation
over the domain of the coefficients in (3.3). To do this we choose

P =

(
2∑

i=1

a2
i,i + b2i

)− 1
2

,(3.4)

where

ai,j = ai ·G−1aj , bi = −
2∑

i,j=1

(
ai · ∂G

−1

∂ξj
aj

)
.(3.5)

D
ow

nl
oa

de
d

09
/1

3/
12

 to
 1

30
.1

59
.1

04
.1

44
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

2268 J. A. MACKENZIE AND A. NICOLA

Dirichlet boundary conditions for the above system are obtained by solving a one-
dimensional MMPDE. If ∂p ∈ ∂Ωp and ∂c ∈ ∂Ωc denote the physical and computa-
tional boundary segments with arc-lengths l and lc, respectively, then the mesh on ∂p
is the solution of

τ
∂s

∂t
=

1√
(M2 + (Mζ)2

∂

∂ζ

(
M

∂s

∂ζ

)
, ζ ∈ (0, lc),(3.6)

with s(0) = 0 and s(lc) = l. Here M is the one-dimensional projection of the two-
dimensional monitor function along the boundary. That is, if t is a unit tangent vector
along the boundary, then M(s, t) = tTGt.

3.2. Discretization and boundary conditions. The temporal discretization
of (3.3) is achieved using a semi-implicit method where

(xn+1 − xn) =
ΔtPn

τ
(an11x

n+1
ξξ + 2an12x

n+1
ξη + an22x

n+1
ηη + bn1x

n+1
ξ + bn2x

n+1
η).(3.7)

Freezing the coefficients aij , bi, and P has two very important effects. The first is that
it linearizes the equations that define the mesh xn+1. Moreover, the system of PDEs
represented by (3.7) for xn+1(ξ, η) and yn+1(ξ, η) decouples into two scalar equations
which have the same spatial derivatives. For simplicity, the spatial discretization of
(3.7) is performed using second-order central finite differences on an N ×N uniform
partition of Ωc = (0, 1) × (0, 1). Since the spatial derivatives are identical, the same
coefficient matrix needs to be inverted to find the x and y coordinates. We there-
fore solve first (3.7) for the x coordinates using an ILU-preconditioned BiCGStab
method until the mean-squared-root residual is less than 10−8. The same precondi-
tioner is then used to solve (3.7) for the y coordinates. In general, we have found
that convergence of the iterative solver is achieved in around 3–4 iterations per time
step. Additional details about the spatial discretization of the MMPDEs and the
performance of the ILU-preconditioned BiCGStab routine can be found in [3].

3.3. Choice of monitor function. The choice of a suitable adaptivity criterion
for problems which develop shocks is highly nontrivial. It is important that the mesh
points move smoothly towards regions where discontinuities exist so that the O(1)
error at the shock is localized within one or two mesh elements. For robustness, it is
also important that the rate of convergence of the method is not severely impaired by
the nonuniformity of the moving mesh.

A popular choice of monitor function is the scaled solution arc-length

M =

√
1 +

1

α
|ux|2,(3.8)

where α > 0 is a user-chosen parameter. The role of this parameter when α > 1 is
to reduce the local value of the monitor function when |ux| is large. This then leaves
the issue of the proper choice of α. The simplest approach is to set α = constant.
However, this procedure is unsatisfactory as the ideal value of α will be problem
dependent and any a priori choice of α will never prevent M → ∞ as |ux| → ∞.

A more sophisticated approach is to make α solution dependent. For example, in
[9], α ≈ max |u|2. However, for problems where u becomes discontinuous, this choice
of α will be ineffective in again stopping M from becoming unbounded. Another
popular choice is

M(x, t) =

(
1 +

|ux|2
α

)1/2

, α =
1

β(b− a)

∫ b

a

|ux|2dx.(3.9)

D
ow

nl
oa

de
d

09
/1

3/
12

 to
 1

30
.1

59
.1

04
.1

44
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MOVING MESH DG METHOD FOR HJ EQUATIONS 2269

If β = 1, then (3.9) is exactly a regularization of the monitor function used in [24].
For this monitor function the local derivative term is scaled by its average value over
the domain. It is not obvious that this monitor function is bounded above in the
presence of a solution discontinuity. Let us assume an idealized situation where

|ux|
 O
(

1

Δxmin

)
(3.10)

in the cell where |ux| is large and is constant |ux|
 C everywhere else. If the mesh
is obtained from an equidistribution principle, then∫ x

j+ 1
2

x
j− 1

2

M(x, t) dx =
1

N

∫ b

a

M(x, t) dx, j = 1, . . . , N.(3.11)

If we expand the integral in (3.9), we get

(3.12)

α =
1

β(b− a)

(∫ x∗− 1
2Δxmin

a

C2 dx +

∫ x∗+ 1
2Δxmin

x∗− 1
2Δxmin

1

Δx2
min

dx +

∫ b

x∗+ 1
2Δxmin

C2 dx

)
,

and hence

α
 1

β

(
(1 − Δxmin)C2 +

1

Δxmin(b− a)

)
≈ (Δxmin)−1.(3.13)

It is clear from (3.13) that α → ∞ as Δxmin → 0. If we examine the behavior of M ,
we observe that the monitor function is approximately 1 away from the shock as |ux|
is bounded and α tends to infinity. Close to the shock,

M
 O
(

1 +

1
Δx2

min

1
Δxmin

) 1
2

 O
(√

1

Δxmin

)
,

which is not bounded as Δxmin tends to zero. The problem with this monitor function
is that the maximum value of |ux|2 and its average value do not scale in the same way
as N increases.

To obtain a bounded monitor function we consider

M(x, t) =

(
1 +

|ux|2
α

) 1
2

, α =
1

β2
max

x
|ux|2,(3.14)

and β is a user-chosen parameter. It is clear that this monitor function satisfies the
bounds

1 ≤ M(x, t) ≤
√

1 + β2.

If we have a location x∗ where |ux| becomes large (such as at a shock) and the solution
elsewhere is smooth, then the monitor function will have a localized peak at x∗. It is
clear that the transition from the smooth to the nonsmooth region of the domain will
be almost discontinuous. This leads to an extremely rapid change in the mesh size
which might be far from ideal in practice and can lead to a loss in accuracy. Again if

D
ow

nl
oa

de
d

09
/1

3/
12

 to
 1

30
.1

59
.1

04
.1

44
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

2270 J. A. MACKENZIE AND A. NICOLA

the mesh is found by equidistribution of the monitor function, then if M
 1 except
in the cell containing x∗, we have√

1 + β2Δxmin
 1

N

(
(b− a) +

√
1 + β2 Δxmin

)
.(3.15)

Therefore, the minimum mesh spacing is

Δxmin
 (b− a)

(N − 1)
√

1 + β2
,(3.16)

which is approximately a factor of
√

1 + β2 smaller than the spacing that occurs when
using a uniform mesh. This is the monitor function that we will use in the following
one-dimensional examples.

For two-dimensional problems the monitor function used is of Winslow type,
where

G =

[
w 0
0 w

]
and

w =

√
1 +

|∇u|2
α

, where α =
1

β2
max
Ωp

|∇u|2.

This monitor function behaves in a similar fashion to the one-dimensional monitor in
the presence of solution discontinuities since the maximum of the solution gradient is
used rather than its average.

3.3.1. Smoothing of the monitor function. If the underlying problem in-
volves large solution variations, then the monitor function will be nonsmooth in space,
and this will affect the smoothness of the coordinate transformation. In practice, the
monitor function is smoothed before it is used in the numerical approximation of the
MMPDE.

A smooth transformation can be achieved using a boundary value problem (see
[13]) which involves an artificial diffusion term for smoothing the monitor function.

The smoothed monitor function M̃ satisfies the boundary value problem

M̃ − 1

λ2
M̃ξξ = M,(3.17)

with the boundary conditions

M̃ξ(0, t) = M̃ξ(1, t) = 0,(3.18)

where λ is a positive parameter. Equation (3.17) is discretized using central differences
as

M̃n
j+ 1

2
− 1

λ2 h2

(
M̃j+ 3

2
− 2M̃j+ 1

2
+ M̃j− 1

2

)
= Mj+ 1

2
, j = 1, . . . , N − 1,(3.19)

where h = 1/N . The boundary conditions are discretized as

M̃− 1
2

= M̃ 1
2
, M̃N+ 1

2
= M̃N− 1

2
.(3.20)

D
ow

nl
oa

de
d

09
/1

3/
12

 to
 1

30
.1

59
.1

04
.1

44
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MOVING MESH DG METHOD FOR HJ EQUATIONS 2271

It can be shown that the smoothed monitor function so obtained is bounded and
equidistribution leads to a locally quasi-uniform mesh [13]. In particular it can be
shown that

ν <
xj+ 3

2
(t) − xj+ 1

2
(t)

xj+ 1
2
(t) − xj− 1

2
(t)

< ν−1, j = 1, . . . , N − 1,

where

ν =

√
1 + 4γ − 1√
1 + 4γ + 1

and γ =
1

λh2
.

We can therefore see that the mesh becomes less smooth as we increase the parameter
λ. A similar procedure is used to smooth the monitor function in two dimensions.

3.3.2. Complete algorithm. If we assume that at time t = tn we have an
approximation of the physical solution un

h and a mesh xn, then we integrate forward
in time using the algorithm below.

1. Compute the monitor matrix Gn(x) = G(xn, tn) using un
h and xn.

2. Integrate the discretized MMPDE to get the mesh xn+1.
3. Integrate the physical PDEs to obtain un+1

h using the meshes xn and xn+1

to form ẋ.
4. Goto the next time step.

In theory this algorithm could be modified to return to step 1 after un+1
h has

been obtained in step 3 and the coefficients aij , bi in (3.5) have been evaluated at
tn+1 and xn+1. A new estimate of the mesh xn+1 could then be found by resolving
the MMPDEs. This process could be repeated a fixed number of times or until some
measure of grid convergence is reached. A similar approach was investigated in [2]
and [3], where it was found that larger time steps could be used without affecting
accuracy and that the gain in efficiency outweighed the additional cost of perform-
ing the additional steps. In the numerical experiments in the next section we have,
however, considered only the use of one pass of the algorithm above.

4. Numerical examples.

4.1. One-dimensional problems.

4.1.1. Example 1. The first example considered is the Burgers equation⎧⎪⎨⎪⎩ φt +
(φx + 1)

2

2
= 0, −1 < x < 1, t > 0,

φ(x, 0) = − cos(π(x− 0.85))

(4.1)

with periodic boundary conditions. This problem has also been considered in [28] and
[15]. As the solution evolves from the smooth initial condition, a discontinuity in the
derivative appears and propagates across the domain.

We first test the rate of convergence of the moving mesh DG method when the
solution is still smooth. In all of the following results we set CFL = 0.1, β = 10,
λ = 25, and τ = 0.001. Table 1 shows that the DG solution maintains its second-
order accuracy. Note that slope limiting was not needed for this example.

Figure 1 shows the computed DG solutions on a fixed and moving mesh at t =
0.99/π2, which is just before the solution becomes discontinuous. We can see that
the moving mesh results are a considerable improvement over the fixed mesh results

D
ow

nl
oa

de
d

09
/1

3/
12

 to
 1

30
.1

59
.1

04
.1

44
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

2272 J. A. MACKENZIE AND A. NICOLA

Table 1

Convergence of moving mesh DG solution at t = 0.5/π2.

N ||eu||L∞ Rate ||eφ||L∞ Rate ||eu||L1 Rate ||eφ||L1 Rate

20 1.92E − 01 − 4.26E − 03 − 4.13E − 02 − 3.21E − 03 −
40 4.24E − 02 2.18 9.75E − 04 2.13 8.53E − 03 2.28 8.03E − 04 2.00
80 1.10E − 02 1.95 2.61E − 04 1.90 2.04E − 03 2.07 2.17E − 04 1.89

160 2.78E − 03 1.98 6.71E − 05 1.96 5.05E − 04 2.01 5.75E − 05 1.92
320 7.02E − 04 1.99 1.71E − 05 1.97 1.26E − 04 2.00 1.48E − 05 1.96

−1 −0.5 0 0.5 1
−4

−3

−2

−1

0

1

2

3

4

x

uh

−1 −0.5 0 0.5 1
−4

−3

−2

−1

0

1

2

3

4

x

uh

−1 −0.5 0 0.5 1
−1.5

−1

−0.5

0

0.5

1

x

φh

−1 −0.5 0 0.5 1
−1.5

−1

−0.5

0

0.5

1

x

φh

Fig. 1. DG numerical solution (◦) and exact solution (+) obtained on a uniform stationary
mesh (left) and on a moving mesh (right) at time t = 0.99/π2.

as the shock in u and the corner in φ are much better resolved. Figure 2 shows the
solutions at t = 3/π2, where we can see that the shock in u is resolved over one or two
cell widths that are much smaller around the shock than those used with the uniform
mesh.

The computed mesh trajectories shown in Figure 3 are quite smooth, which is the
result of the smoothing of the monitor function. We observe that once the discontinu-
ity forms, the mesh points cluster around it to resolve it more accurately. Numerical
experience shows that as long as the numerical solution is smooth, both recovery
procedures (2.25) and (2.26) give similar results. In Figure 3 we also compare the
two recovery procedures at t = 1.5/π2 when the solution is nonsmooth. We can see
that the recovery procedure (2.25) does not perform well, whereas (2.26) appears to
perform much better and hence is the procedure we use for all further examples.

D
ow

nl
oa

de
d

09
/1

3/
12

 to
 1

30
.1

59
.1

04
.1

44
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MOVING MESH DG METHOD FOR HJ EQUATIONS 2273

−1 −0.5 0 0.5 1
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

x

uh

−1 −0.5 0 0.5 1
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

x

uh

−1 −0.5 0 0.5 1
−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

x

φh

−1 −0.5 0 0.5 1
−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

x

φh

Fig. 2. DG solution (◦) and exact solution (+) obtained on a uniform stationary mesh (left)
and on a moving mesh (right) at time t = 3/π2.

−1 −0.5 0 0.5 1

0.05

0.1

0.15

0.2

0.25

0.3

x

t

−1 −0.5 0 0.5 1
−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

x

φh

Fig. 3. Mesh trajectories and comparison between recovery procedures at t = 1.5/π2, (2.25)
(*), (2.26) (◦), and exact solution (+), with N = 40.

D
ow

nl
oa

de
d

09
/1

3/
12

 to
 1

30
.1

59
.1

04
.1

44
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

2274 J. A. MACKENZIE AND A. NICOLA

In Figure 4 we plot the evolution of the time step using a uniform stationary mesh
and the adaptive moving mesh. We can see that the time step used with the adaptive
mesh is not considerably smaller than that used with the uniform mesh even though
the mesh cells close to the shock region are much smaller than those occurring with
the uniform mesh.

4.1.2. Example 2. The second example considered is the following Riemann
problem with a nonconvex flux:{

φt + 1
4 (φ2

x − 1)(φ2
x − 4) = 0, −1 < x < 1, t > 0,

φ(x, 0) = −2|x|.
(4.2)

This problem has been considered in [11] and [28]. This test problem has an initial
discontinuity in the derivative of the solution u, and in time this develops into two
discontinuities moving in opposite directions. In [11] the authors point out that the
DG method fails to “open up” the initial single discontinuity in the derivative to
generate the correct entropy solution. Therefore, for this example we used the slope
limiting procedure as outlined earlier.

A comparison of the DG solutions using a uniform fixed mesh and a moving mesh
is shown in Figure 5. Again there is considerable improvement in the resolution of uh

and φh using the moving mesh. In Figure 6 we show the computed mesh trajectories
and we can see that the monitor function is able to both track discontinuities and
concentrate points in regions where more accuracy is needed.

4.1.3. Example 3. The third example considered is⎧⎪⎨⎪⎩
φt −

(
1 + φ2

x

)1/2
= 0, −1 < x < 1, t > 0,

φ(x, 0) =
1

2
cos(6πx),

(4.3)

with periodic boundary conditions. This is an example of front propagation in one
dimension and has also been considered in [22]. As the numerical solution evolves in
time, the solution develops corners since the graph of the initial solution moves in its
normal direction with unit speed. For this example we found it necessary to use the
slope limiting procedure.

In Figure 7 we show a comparison between φh obtained with DG using a stationary
mesh and a moving mesh. The differences between the numerical solutions can be
seen more clearly in Figure 8. It can be observed that the adaptive mesh does a much
better job of resolving the corner which has developed in the numerical solution φh.
Furthermore, the smooth part of the solution also appears to be much better resolved
using the moving mesh. In Figure 9 we plot mesh trajectories of the DG moving mesh
solution with N = 81 mesh points. We can see that the monitor function drives mesh
points towards the discontinuities in the first derivative of the solution. In Figure 9
we also plot the evolution of the numerical solution φh at time intervals of Δt = 0.01,
up to the final time t = 0.1. We can see clearly the initial function evolving with unit
speed in its normal direction and that the moving mesh DG method resolves well the
evolution of the corner singularities.

4.2. Two-dimensional problems.

4.2.1. Example 4. We consider the two-dimensional Burgers equation

φt +
1

2
(1 + φx + φy)

2 = 0, (x, y) ∈ (−2, 2)2,(4.4)

φ(x, y, 0) = − cos(π(x + y)/2),(4.5)

D
ow

nl
oa

de
d

09
/1

3/
12

 to
 1

30
.1

59
.1

04
.1

44
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MOVING MESH DG METHOD FOR HJ EQUATIONS 2275

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.5

1

1.5

2

2.5

3

3.5
x 10

−3

t

Δt

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.5

1

1.5

2

2.5

3
x 10

−3

t

Δt

Fig. 4. Time step evolution for Example 1: Uniform mesh (left), moving mesh (right), N = 20
(top line), N = 40 (middle line), N = 80 (bottom line).

−1 −0.5 0 0.5 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x

uh

−1 −0.5 0 0.5 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x

uh

−1 −0.5 0 0.5 1
−2

−1.9

−1.8

−1.7

−1.6

−1.5

−1.4

−1.3

−1.2

−1.1

−1

x

φh

−1 −0.5 0 0.5 1
−2

−1.9

−1.8

−1.7

−1.6

−1.5

−1.4

−1.3

−1.2

−1.1

−1

x

φh

Fig. 5. Comparison of results using DG uniform mesh (left), DG moving mesh method (right)
at t = 1 with N = 21, CFL = 0.33, β = 10, τ = 0.001 for Example 2.

D
ow

nl
oa

de
d

09
/1

3/
12

 to
 1

30
.1

59
.1

04
.1

44
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

2276 J. A. MACKENZIE AND A. NICOLA

−1 −0.5 0 0.5 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

t

Fig. 6. Mesh trajectories with N = 21 for Example 2.

0 0.2 0.4 0.6 0.8 1
0.61

0.62

0.63

0.64

0.65

0.66

0.67

0.68

0.69

0.7

x

φh

0 0.2 0.4 0.6 0.8 1
0.61

0.62

0.63

0.64

0.65

0.66

0.67

0.68

0.69

0.7

x

φh

Fig. 7. Numerical solution φh obtained with DG on a stationary mesh (�, left), on a moving
mesh (◦, right), and the reference solution (−) with N = 81 mesh points at t = 0.2.

0.25 0.3 0.35 0.4

0.68

0.682

0.684

0.686

0.688

0.69

0.692

0.694

0.696

0.698

0.7

x

φh

0.48 0.49 0.5 0.51 0.52 0.53

0.61

0.612

0.614

0.616

0.618

0.62

0.622

0.624

x

φh

Fig. 8. Zoom of the numerical solution φh obtained with DG on a stationary mesh (�, left),
on a moving mesh (◦, right), and the reference solution (−) with N = 81 at t = 0.2, in the smooth
region (left), and nonsmooth region (right).

D
ow

nl
oa

de
d

09
/1

3/
12

 to
 1

30
.1

59
.1

04
.1

44
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MOVING MESH DG METHOD FOR HJ EQUATIONS 2277

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

x

t

0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

1

1.5

x

φh

Fig. 9. Mesh trajectories and evolution of the numerical solution at time intervals Δt = 0.01,
up to t = 1 for Example 3.

with periodic boundary conditions. This problem was proposed in [23] and has also
been used as a test case in [28], [11], and [16]. From the smooth initial condition the
solution develops a discontinuity in ∇φ which propagates across the domain from the
bottom left to the top right. Figure 10 shows the results calculated at t = 1.5/π2

when ∇φ has become discontinuous. Note that flux limiting was not necessary for
this example, highlighting the additional stability properties of the DG formulation.
We can see that while there seem to be some slight oscillations in the moving mesh
calculations of φx, these seem to be damped out by the recovery procedure used to
calculate φh. The computed adaptive meshes at t = 0.5/π2 and t = 1.5/π2 are shown
in Figure 11, where we can see that the meshes have indeed clustered towards the
areas where the gradient is largest. Finally, Figure 12 shows a comparison of the
moving and fixed mesh results compared with a fine grid reference solution. We can
see that the adaptive mesh results are a considerable improvement on the fixed grid
results both in the corner region of the solution and in regions where the solution is
smooth.

4.2.2. Example 5. We next consider a problem with a nonconvex flux

φt − cos(1 + φx + φy) = 0, (x, y) ∈ (−2, 2)2,(4.6)

φ(x, y, 0) = − cos(π(x + y)/2),(4.7)

with periodic boundary conditions. The numerical results for this case are shown in
Figures 13 and 14. We again can see that the adaptive moving mesh algorithm does
a good job of clustering elements towards the discontinuities in the solution gradient.
The numerical results are comparable to the adaptive calculations presented in [28].

4.2.3. Example 6. Our final example is a prototype model in geometric optics
[16], [22]. The governing equation is

φt +
√

1 + φ2
x + φ2

y = 0, (x, y) ∈ (0, 1)2,(4.8)

φ(x, y, 0) = 0.25(cos(2πx) − 1)(cos(2πy) − 1) − 1,(4.9)

with periodic boundary conditions. The viscosity solution for this problem is a surface
with its maximum focusing into a peak which opens up. The surface moves downward

D
ow

nl
oa

de
d

09
/1

3/
12

 to
 1

30
.1

59
.1

04
.1

44
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

2278 J. A. MACKENZIE AND A. NICOLA

−2
−1

0
1

2 −2

−1

0

1

2

−2

−1

0

1

2

x
y

φx

−2
−1

0
1

2 −2

−1

0

1

2

−2

−1

0

1

2

x
y

φx

−2
−1

0
1

2 −2

−1

0

1

2

−1.5

−1

−0.5

0

0.5

1

x
y

φ

−2
−1

0
1

2 −2

−1

0

1

2

−1.5

−1

−0.5

0

0.5

1

x
y

φ

Fig. 10. Approximations of φx (top) and φ (bottom) at t = 1.5/π2 using uniform mesh (left)
and moving mesh (right), with N = 40 for Example 4.

−2 −1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x

y

−2 −1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x

y

Fig. 11. Adapted meshes at t = 0.5/π2 (left) and t = 1.5/π2 (right) obtained with N = 40 for
Example 4.

D
ow

nl
oa

de
d

09
/1

3/
12

 to
 1

30
.1

59
.1

04
.1

44
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MOVING MESH DG METHOD FOR HJ EQUATIONS 2279

Fig. 12. Comparison of numerical approximation of φ obtained using a uniform mesh with
N = 40 (�), moving mesh with N = 40 (◦), and uniform mesh N = 320 (—) for Example 4.

−2
−1

0
1

2 −2

−1

0

1

2

−1

−0.5

0

0.5

1

1.5

x
y

φ

−2
−1

0
1

2 −2

−1

0

1

2

−1.5

−1

−0.5

0

0.5

1

x
y

φ

Fig. 13. Approximations of φ at t = 1.5/π2 using a uniform mesh (left) and adaptive moving
mesh (right), where CFL = 0.05 and N = 40, for Example 5.

−2 −1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x

y

−2 −1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x

y

Fig. 14. 40 × 40 adaptive meshes at t = 0.5/π2 (left) and t = 1.5/π2 (right) for Example 5.

D
ow

nl
oa

de
d

09
/1

3/
12

 to
 1

30
.1

59
.1

04
.1

44
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

2280 J. A. MACKENZIE AND A. NICOLA

0

0.5

1

0

0.5

1
−1.7

−1.6

−1.5

−1.4

−1.3

xy

φ

0

0.5

1

0

0.5

1
−1.7

−1.6

−1.5

−1.4

−1.3

xy

φ

Fig. 15. Approximations of φ at t = 0.6 using a uniform mesh (left) and moving mesh (right)
for Example 6.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

Fig. 16. 40 × 40 adapted mesh at t = 0.6 for Example 6.

with a unit speed, asymptotically approaching a flat sheet. Figure 15 shows the
computed approximations of φ using a uniform and adaptive mesh with N = 40. We
can see that the adaptive moving mesh does a better job of resolving the focusing of
the solution. The mesh at the final time is shown in Figure 16, where we can see that
the mesh has been concentrated towards the focusing of the solution at the center of
the domain.

5. Conclusions. We have presented a DG method for the solution of nonlinear
HJ equations using an adaptive moving mesh refinement strategy. A suitable mesh
refinement criterion was used which does not become singular when the solution be-
come nonsmooth. Numerical experiments in one and two dimensions show that this
method works well and efficiently delivers high-resolution solutions using relatively
coarse meshes.

Although we have focused here on HJ equations, the moving mesh DG method
can also be applied to other hyperbolic problems such as the compressible Euler
equations, and work is progressing in this direction. Finally, solution adaptivity was
achieved in this paper using mesh movement. Future work will include a study of the
combination of mesh movement along with additional refinement strategies such as

D
ow

nl
oa

de
d

09
/1

3/
12

 to
 1

30
.1

59
.1

04
.1

44
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MOVING MESH DG METHOD FOR HJ EQUATIONS 2281

h and p refinement. The DG framework should hopefully make this combination of
strategies easier to implement.

REFERENCES

[1] B. N. Azarenok, Variational barrier method of adaptive grid generation in hyperbolic problems
of gas dynamics. SIAM J. Numer. Anal., 40 (2002), pp. 651–682.

[2] G. Beckett, J. A. Mackenzie, A. Ramage, and D. M. Sloan, On the numerical solution
of one-dimensional PDEs using adaptive methods based on equidistribution, J. Comput.
Phys., 167 (2001), pp. 372–392.

[3] G. Beckett, J. A. Mackenzie, A. Ramage, and D. M. Sloan, Computational solution
of two-dimensional unsteady PDEs using moving mesh methods, J. Comput. Phys., 182
(2002), pp. 478–495.

[4] K. S. Bey and J. T. Oden, hp-version discontinuous Galerkin methods for hyperbolic conser-
vation laws, Comput. Methods Appl. Mech. Engrg., 133 (1996), pp. 259–286.

[5] B. Cockburn, G. E. Karniadakis, and C. W. Shu, Discontinuous Galerkin Methods: Theory,
Computation and Applications, Springer, Berlin, 2000.

[6] B. Cockburn and C. W. Shu, The Runge-Kutta discontinuous Galerkin method for conser-
vation laws. V. Multidimensional systems, J. Comput. Phys., 141 (1998), pp. 199–224.

[7] M. G. Crandall and P. L. Lions, Two approximations of solutions of Hamilton-Jacobi equa-
tions, Math. Comput., 43 (1984), pp. 1–19.

[8] M. J. Crandall and P. L. Lions, Viscosity solutions of Hamilton-Jacobi equations, Trans.
Amer. Math. Soc., 277 (1983), pp. 1–42.

[9] E. A. Dorfi and L. O’C. Drury, Simple adaptive grids for 1-D initial value problems, J.
Comput. Phys., 69 (1987), pp. 175–195.

[10] P. Houston, B. Senior, and E. Suli, hp-discontinuous Galerkin finite element methods for
hyperbolic problems: Analysis and adaptivity, Internat. J. Numer. Methods Fluids, 40
(2002), pp. 153–169.

[11] C. Hu and C.-W. Shu, A discontinuous Galerkin finite element method for Hamilton–Jacobi
equations, SIAM J. Sci. Comput., 21 (1999), pp. 666–690.

[12] W. Huang, Practical aspects of formulation and solution of moving mesh partial differential
equations, J. Comput. Phys., 171 (2001), pp. 753–775.

[13] W. Huang and R. D. Russell, Analysis of moving mesh partial differential equations with
spatial smoothing, SIAM J. Numer. Anal., 34 (1997), pp. 1106–1126.

[14] W. Huang and R. D. Russell, Moving mesh strategy based on a gradient flow equation for
two-dimensional problems, SIAM J. Sci. Comput., 20 (1999), pp. 998–1015.

[15] G.-S. Jiang and D. Peng, Weighted ENO schemes for Hamilton–Jacobi equations, SIAM J.
Sci. Comput., 21 (2000), pp. 2126–2143.

[16] S. Jin and Z. Xin, Numerical passage from systems of conservation laws to Hamilton–Jacobi
equations, and relaxation schemes, SIAM J. Numer. Anal., 35 (1998), pp. 2385–2404.

[17] P. Knupp and S. Steinberg, Fundamentals of Grid Generation, CRC Press, Boca Raton, FL,
1994.

[18] O. Lepsky, C. Hu, and C. W. Shu, Analysis of the discontinuous Galerkin method for
Hamilton-Jacobi equations, Appl. Numer. Math., 33 (2000), pp. 423–434.

[19] F. Li and C. W. Shu, Reinterpretation and simplified implementation of a discontinuous
Galerkin method for Hamilton-Jacobi equations, Appl. Math. Lett., 18 (2005), pp. 1204–
1209.

[20] R. Li and T. Tang, Moving mesh discontinuous Galerkin method for hyperbolic conservation
laws, J. Sci. Comp., 27 (2006), pp. 347–363.

[21] C.-T. Lin and E. Tadmor, High-resolution nonoscillatory central schemes for Hamilton–
Jacobi equations, SIAM J. Sci. Comput., 21 (2000), pp. 2163–2186.

[22] S. Osher and J. A. Sethian, Fronts propagating with curvature dependent speed: Algorithms
based on Hamilton-Jacobi formulations, J. Comput. Phys., 79 (1988), pp. 12–49.

[23] S. Osher and C.-W. Shu, High-order essentially nonoscillatory schemes for Hamilton–Jacobi
equations, SIAM J. Numer. Anal., 28 (1991), pp. 907–922.

[24] J. M. Stockie, J. A. Mackenzie, and R. D. Russell, A moving mesh method for one-
dimensional hyperbolic conservation laws, SIAM J. Sci. Comput., 22 (2001), pp. 1791–
1813.

[25] P. K. Sweby, High resolution schemes using flux limiters for hyperbolic conservation laws,
SIAM J. Numer. Anal., 21 (1984), pp. 995–1011.

[26] Z. Tan, Z. Zhang, Y. Huang, and T. Tang, Moving mesh methods with locally varying time
steps, J. Comput. Phys., 200 (2004), pp. 347–367.

D
ow

nl
oa

de
d

09
/1

3/
12

 to
 1

30
.1

59
.1

04
.1

44
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

2282 J. A. MACKENZIE AND A. NICOLA

[27] H. Tang and T. Tang, Moving mesh methods for one- and two-dimensional hyperbolic con-
servation laws, SIAM J. Numer. Anal., 41 (2003), pp. 487–515.

[28] H.-Z. Tang, T. Tang, and P.-W. Zhang, An adaptive mesh redistribution method for non-
linear Hamilton-Jacobi equations in two- and three-dimensions, J. Comput. Phys., 188
(2003), pp. 543–572.

[29] J. F. Thompson, Z. A. Warsi, and C. W. Mastin, Numerical Grid Generation: Foundations
and Applications, North–Holland, New York, 1985.

[30] N. K. Yamaleev and M. H. Carpenter, On accuracy of adaptive grid methods for captured
shocks, J. Comput. Phys., 181 (2002), pp. 280–316.

[31] P. A. Zegeling, W. D. de Boer, and H. Tang, Robust and efficient adaptive moving mesh
solution of the 2-D Euler equations, in Recent Advances in Adaptive Computation, Con-
temp. Math. 383, AMS, Providence, RI, 2005, pp. 375–386.

D
ow

nl
oa

de
d

09
/1

3/
12

 to
 1

30
.1

59
.1

04
.1

44
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

