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In this paper we propose the exploitation of anti-heliotropic orbits, corresponding to the hyperbolic solution 

of the J2 and solar radiation pressure dynamical system, as gateway orbits between the low-eccentricity orbits 

where atmospheric drag does not affect the motion and the high eccentricity orbits which enter in drag regime. 

The eccentricity can be maintained in the neighborhood of the unstable point by means of a controller preserving 

the Hamiltonian structure of the system. In this way, any initial eccentricity close to the equilibrium conditions 

will lead to a bound trajectory around the controlled elliptic equilibrium. By selecting the time the controller is 

turned off, one of the two unstable manifolds leaving the equilibrium point can be followed, leading the orbit to 

become circular of to increase its eccentricity until natural decay occurs. 

 

I. INTRODUCTION 

 The orbital evolution of high area-to-mass spacecraft, 

such as large thin solar sails or centimetre scaled ‘smart 

dust’ spacecraft [1], show a peculiar behaviour under the 

coupled effect of solar radiation pressure and the 

perturbation due to the Earth’s oblateness. Long-term 

oscillations in eccentricity have been observed since 1960 

in the orbital behaviour of satellites such as the ECHO 

balloon [2], Vanguard [3] and many others [4]. This 

dynamical system at low inclinations can be described 

through a Hamiltonian written in two variables, the 

osculating orbit eccentricity and the solar angle   

between the orbit pericentre and the Sun-line [5, 6]. At 

specific values of the orbit energy, the system allows the 

existence of three stationary points, of which two stable 

points at 0   and    correspond respectively to 

families of heliotropic and anti-heliotropic orbits [7]. The 

other stationary point correspond to a saddle solution. 

The use of an anti-heliotropic elliptical orbit, 

corresponding to the stable equilibrium at   , has 

been proposed for the GeoSail mission as long residence 

times are spent in the geomagnetic tail, hence enabling the 

statistical characterisation of plasma under a variety of 

solar wind conditions [8, 9]. The spacecraft is injected 

into an elliptical orbit at the frozen eccentricity with a 

perigee of 10 Earth radii and apogee beyond 25 Earth 

radii. A passively stabilised sail is used to achieve the 

passive progression of the apsides line, synchronously 

with the Sun-Earth line. This orbit can be maintained for 

an indefinite time. 

For lower values of semi-major axis, another 

equilibrium point exists in the phase space at   , due 

to the interaction with solar radiation pressure and the 

effect of the Earth’s oblateness. This solution exists 
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within a relatively limited range of semi-major axis and 

eccentricities. For an object with a non-negligible area-to-

mass, the hyperbolic equilibrium is found at high 

eccentricities and, interestingly, is very close to the 

critical eccentricity, for which the orbit perigee is within 

the Earth’s atmosphere. 

In this paper we propose the exploitation of anti-

heliotropic orbits, corresponding to the hyperbolic 

solution of the dynamical system, as gateway orbits 

between the low-eccentricity orbits where atmospheric 

drag does not affect the motion and the high eccentricity 

orbits which enter in drag regime. 

This unstable equilibrium has two dimensional stable 

and unstable manifolds of topological type ‘saddle  

saddle’ in the phase space of eccentricity- . Therefore, 

the eccentricity cannot be maintained near this interesting 

equilibrium point unless a controller preserving the 

Hamiltonian structure is constructed to change its 

topological type from hyperbolic to elliptic [10]. In this 

way, any initial eccentricity close to equilibrium 

conditions will lead to a bound trajectory around the 

controlled elliptic equilibrium. The controller works well 

because the invariant manifolds are employed in a 

feedback to remove the unstable dynamics, which has 

potential applications in generating the bounded Lissajous 

orbits near the off-axis solar sail equilibrium in the sail's 

circular restricted three body problem [10], and quasi-

periodic relative trajectories on a J2-perturbed mean 

circular orbit [11]. 

The control for the hyperbolic point can then be 

exploited as a gateway from the low-eccentricity region 

where librational motion around the stable equilibria is 

possible, to the high-eccentricity region, where the 

spacecraft naturally decay due to atmospheric drag. 

A GeoSail-type mission for the study of the close 

geomagnetic tail is designed, where a swarm of micro-

spacecraft equipped with small solar sails is initially 

deployed on a circular orbit. The controller allows the 

stabilisation of the swarm on an anti-heliotropic elliptical 

orbits in correspondence to the hyperbolic equilibrium. 

Afterwards, at the end of life, the swarm is forced to orbit 

decay through the unstable manifold leading to high 

eccentricities an so lowering the orbit perigee. 

This particular mission analysis is also envisaged to 

enhance coverage of the night side of a planet, for 

reflection of solar power, by passively transferring the 

spacecraft from a circular orbit, into an elliptical orbit, 

and then opening the “gateway to decay” at the end of 

mission or for a controlled decay about an oblate planet. 

The control requirements are quantified for different 

solar sail requirements and spacecraft masses. It is sought 

that such a control can be given by controlling the attitude 

of the sail or through electro-chromic control [12].  

II. PLANAR MODEL OF THE ORBITAL DYNAMICS 

II.I. Simplified planar dynamics 

The two-body dynamics of a spacecraft with high 

area-to-mass ratio orbiting the Earth is strongly perturbed 

by the term of the gravitational field due to the Earth’s 

oblateness 2J  and by the effect of solar radiation 

pressure. The secular rate of the orbital elements due to 

SRP and 2J  can be written in polar coordinates of the 

eccentricity vector ,   
T

x ye ee : 
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where cosxe e , sinye e  [13], with e the 

eccentricity, and   the angle between the Sun-Earth line 

and the direction of the orbit pericentre 

(  Sun       where   defines the longitude of the 
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pericentre and 
Sun  the true longitude of the Sun), as 

shown in Fig. 1. 

 

 
Fig. 1: Planar orbit geometry. 

 

Note that Eqs. (1) consider a planar problem only, i.e. 

the orbit has zero inclination and the equatorial plane is 

assumed to be in the ecliptic (i.e., the obliquity angle of 

the ecliptic with respect to the equator is set to zero). 

Moreover, the effect of the eclipses is neglected. As a 

consequence, the secular variation of semi-major axis and 

inclination is zero. These equations are governed by the 

solar radiation pressure parameter C and the oblateness 

parameter W, both dependent on the semi-major axis a 
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where SRPa  is the characteristic acceleration due to SRP 

SRP SR SunRa p c A m  with 6 2

SR 4.56 10 N mp    the 

solar pressure at 1 AU, Rc  the reflectivity coefficient, 

taken equal to 1.8 in this paper, SunA  is the area exposed 

to the Sun, and m is the mass of the body. In the 

expression for the oblateness parameter W 

3

2 1.083 10J    denotes the second zonal harmonic 

coefficient and EarthR  is the mean radius of the Earth. Sunn  

is the orbital angular velocity of the Earth around the Sun 

(circular Earth orbit is adopted), 3

Earthn a  is the 

orbit angular velocity of the body on its orbit, where 

Earth  the gravitational constant of the Earth. 

II.II. Hyperbolic equilibrium 

As detailed in [7], Eqs. (1) allow as an integral of motion 

the Hamiltonian which is fixed by the initial condition of 

the integration: 
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Eq. (3) describes the particle’s trajectory in the 
xe - ye  

phase space as analysed by Hamilton and Krivov [14] and 

Krivov and Getino [6]. The Hamiltonian in Eq. (3) allows 

a maximum of three stationary points 

The equilibrium of the 2-dimensional Hamiltonian 

system can be solved from: 

 0





H

e
 (4) 

We are now interested in the hyperbolic (saddle) 

equilibrium, which corresponds to the condition 

 2 0  
x x y y x ye e e e e eH H H  (5) 

The existence of the saddle and its eccentricity 

depends on the orbit semi-major axis and the area-to-mass 

of the spacecraft, which determines the SRP and J2 

parameters C and W in Eqs. (2). Fig. 2 from Ref. [7] 

shows the evolution of the eccentricity of the 0   and 

   stationary points as function of the semi-major axis 

for different area-to-mass ratios and considering a 

reflectivity coefficient of 1.8. The eccentricity and semi-

major axis range for which Eq. (5) is satisfied corresponds 

to the region in the graph between the black lines. The 

black line on the left boundary represents the solution for 

a Sun-synchronous orbit when the effect of SRP is 

negligible (i.e., conventional spacecraft for which we can 

assume 0C  ), [14] and, unlike the J2+SRP case, can be 
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achieved at any orientation of the orbit apse-line with 

respect to the Sun: 

 
2-syn 1Je W    (6) 

where the dependence on the semi-major axis is in the 

parameter W. 

In correspondence of the black line at the right 

boundary, instead, the stable equilibrium at    and the 

saddle at    converge to the same eccentricity in 

correspondence of a specific semi-major axis and area-to-

mass ratio (coloured circle). The corresponding phase 

space is represented in Fig. 3. 

 

 
Fig. 2: Eccentricity and semi-major axis of the hyperbolic point for different area-to-mass ratios. The other 

stationary points of the system are plotted in grey. The black line on the left represents the sun-synchronous 

solution with J2 only, the black line on the right represents the case in which the hyperbolic equilibrium and 

the stable equilibrium at ϕ=π coincide. The red line corresponds to sets of semi-major axis, eccentricities and 

area-to-mass ratios for which the Hamiltonian line passing through e=0 passes also through the hyperbolic 

eccentricity. The black shaded area represents orbits with a perigee below 800 km. 
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Fig. 3: Eccentricity-ϕ phase space evolution under 

the effects of J2+SRP. The hyperbolic equilibrium 

point and the stable equilibrium point at ϕ=π 

coincide. Semi-major axis of 13,767 km and area-

to-mass of 5 m2/kg. 

 

Fig. 4 shows a typical phase space in the presence of 

an hyperbolic solution at eccentricity of 0.49 and   . 

The stable equilibria at 0   and    are visible with 

an eccentricity of approximately 0.56 and 0.13, 

respectively. The evolution of initial conditions chosen in 

the neighbourhood of a stable equilibrium point will 

exhibit a librational evolution in the phase space around 

the stable equilibrium. The line generating in 

correspondence of 0e   and 2 3   separates the 

librational motion between the librational motion around 

0   from a rotational evolution above. Note that not all 

values of eccentricity are feasible for a given semi-major 

axis a, since the orbit perigee cannot move within the 

atmosphere to keep the orbit stable. Hence, the 

eccentricity cannot exceed its critical value: 

 
Earth  drag

crit 1


 
pR h

e
a

 (7) 

where we set  drag 800 kmph . 

 

 
Fig. 4: Hyperbolic regime in the eccentricity-ϕ phase 

space evolution under the effects of J2+SRP. The 

bold lines represent the separatrices in 

correspondence of the saddle point and zero 

eccentricity Hamiltonian, the shaded area marks 

orbit altitude lower than one Earth radius. Semi-

major axis of 14,864 km and area-to-mass of 5 

m
2
/kg. 

 

The line passing through the hyperbolic point 

separates the librational motion around    from a 

rotational motion above and below [5]. In correspondence 

of the red line in Fig. 2, the separatrix lines passing 

through 0e   and the saddle point overlap, as shown in 

Fig. 5. Such a condition was studied by Lücking et al. 

[15] for determining the minimum area-to-mass to allow 

natural de-orbit through an inflatable balloon to enhance 

the effect of solar radiation pressure. We will refer to the 

eccentricity of the hyperbolic point that can be reached 

from 0e  as hyp 0e . The reader can refer to Ref. [15] for 

the details on how to compute hyp 0e  whose expression is 

also reported in the Appendix Section  VI. Note that hyp 0e  

depends only on W in Eq. (2). However, for a certain 

semi-major axis, the value of hyp 0e  can be achieved with a 

specific area-to-mass ratio, as visible from Fig. 2.  
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Fig. 5: Hyperbolic regime in the eccentricity-ϕ phase 

space evolution under the effects of J2+SRP. The 

separatrices in correspondence of the saddle point 

and zero eccentricity Hamiltonian coincide. Semi-

major axis of 14,270.8 km and area-to-mass of 5 

m
2
/kg. 

III. STRUCTURE-PRESERVING STABILISATION 

FOR HAMILTONIAN SYSTEM 

Most classical astrodynamics problems can be 

classified as Hamiltonian systems, e.g. the circular 

restricted three-body problem (CR3BP) [10], and the 

relative dynamics on a J2-perturbed mean circular orbit 

[11]. For a hyperbolic Hamiltonian system, there exist 

hyperbolic equilibria that have stable, unstable, and centre 

manifolds, similar to the collinear libration points L1, L2, 

and L3 in the CR3BP. The unstable manifolds will lead to 

instability. Bounded motions near hyperbolic equilibria 

have been broadly applied to various missions, such as 

missions to increase the coverage rate of an object (i.e., a 

ground station or target spacecraft), e.g. to explore of far-

side of the Moon by using a s/c on the Lissajous orbit at 

the lunar L2 point, and mission that avoid communication 

signals being lost in the Sun (e.g., SOHO spacecraft 

located at an halo orbit at Earth L1 point), or to employ 

quasi-periodic relative trajectories for on-orbit 

surveillance, inspection or repair, which requires rapid 

changes in formation configuration for full three-

dimensional imaging. 

III.I. Controller design 

A structure-preserving controller [10] is here proposed 

to generate bounded trajectories near the equilibrium for 

the time-independent planar Hamiltonian system Eq (1). 

The poles of the system can be assigned to any different 

positions on the imaginary axis by the controller, so that 

the topology type of the equilibrium is changed by the 

controller from hyperbolic (saddle) to elliptic (centre). 

According to the Morse lemma [16], higher-order 

nonlinear terms will bring stability in the controlled 

Hamiltonian system, so the controller is Lyapunov stable 

[17]. 

The controller feedbacks the difference between the 

actual locations and the equilibrium, so all the 

components of the controlled variables should be of the 

same type. Thus, the eccentricity vector ,   
T

x ye ee  is 

preferred to design the controller in this paper. 

The hyperbolic equilibrium hyp  hyp  hyp,   
T

x ye ee  of 

the 2-dimensional Hamiltonian system is solved through 

Eqs. (4) and (5), and the variation equation Eq. (1) can be 

linearised near the equilibrium as: 

 
 hyp

y hypSun

  
 
    

        
   

x x

y x

e e

x y x x

ye e

x y

f f

e e e ed

e efd f

e e

e
 (8) 

For the hyperbolic system, the hyperbolic eigenvalues 

of the matrix associated to the system Eq. (8) are denoted 

as  , and the stable\unstable manifolds are denoted as 

u . Then the controller is constructed as follows: 

  2

1 2 hyp    
      

T TG GT u u u u e e  (9) 

where G1 and G2 are the controller gains of the unstable 

and stable manifolds, respectively. 

Some propositions and theorems have been put 

forward for the two-dimensional Hamiltonian system 

[10]. The stable and unstable manifolds can be used to 
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stabilize the system with different gains, however if one 

of the gains G1 or G2 is zero, this will lead to the failure of 

the stabilisation. 

III.II. Application of Hamiltonian structure-preserving 

control to stabilise relative motions about the hyperbolic 

eccentricity 

In the phase space represented in Fig. 4, the 

hyperbolic eccentricity located at    is unstable, and 

its invariant manifolds can be considered as the separatrix 

of the Hill's regions defined by the other stable 

equilibrium points of system Eq. (3). Therefore, any 

spacecraft near the hyperbolic eccentricity cannot be 

maintained on such an orbit; rather, depending on very 

small change in the orbital elements, it will move on the 

unstable manifold towards higher eccentricities, or on the 

unstable manifold towards lower eccentricities. By 

applying the Hamiltonian structure-preserving controller 

in Eq. (9), bounded trajectories can be achieved in the 

phase space near the hyperbolic eccentricity, like the one 

shown with the red line in Fig. 6. Differently to second-

order dynamical systems (such as the CR3BP), only 

periodic trajectories can be generated by the controller, 

because any intersection between the identical flow of the 

first-order Hamiltonian system is prohibited. 

 

 

Fig. 6: Controlled eccentricity near the hyperbolic 

point. The red solid line represents the periodic 

trajectory of the controlled eccentricity, and the 

blue line represents the natural trajectory of the 

uncontrolled eccentricity which reaches and then 

leaves the hyperbolic equilibrium. 

 

The proposed controller has potential applications into 

holding the spacecraft near the hyperbolic eccentricity 

during the mission life. At the end-of-life, the spacecraft 

can decide to decay (increasing its eccentricity beyond 

than the critical one Eq. (7)) or to return to the circular 

orbit. 

IV. MISSION DESIGN 

A spacecraft is initially placed into a 15,973 km 

circular orbit. When the solar sail is deployed, the A/m of 

the spacecraft increases from 0.01 to 10 m
2
/kg. Therefore, 

the orbit eccentricity will naturally increase, following the 

blue line in Fig. 2. The value of the semi-major axis was 

selected so that the hyperbolic eccentricities, equal to 

0.5383, can be reached from a circular orbit (i.e., 

intersection of the red line with the 10 m
2
/kg light line in 

Fig. 2). At the hyperbolic point the control gains are set to 

G+=2, and G-=-2 and the red trajectory is obtained. By 

applying the control, the phase space position can be 

stabilised indefinitely. This orbit corresponds to an anti-

heliotropic highly elliptical orbit, which maintains its 

apogee in the direction opposite to the Sun. Such an orbit 

can be exploited for mapping the phenomena in the close 

magnetic tail of the Earth as the apogee is always at 

18,193 km behind the Earth. Another application of such 

orbits can be envisaged for transmitting data or power (in 

this case a small inclination would be needed to free the 

spacecraft from eclipses at the apogee). In fact, the 

spacecraft will dwell on the night side of the Earth for a 

higher fraction of its period. 

Depending on the timing, the controller is turned off, 

the spacecraft can either go back to circular orbit (see Fig. 
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7 in Section  IV.I), or continue on the phase line used for 

reaching the hyperbolic equilibrium and naturally move to 

higher eccentricities (see Fig. 11 in Section  IV.II), where 

the effect of drag will cause the de-orbit and re-entry. 

IV.I. Gateway to circular orbits 

The mission in Fig. 7 is composed by three phases: (1) 

transfer from circular orbit to the hyperbolic equilibrium, 

represented by the blue line, (2) stabilisation around the 

hyperbolic equilibrium (red line) and (3) transfer back to 

circular orbit represented by the dotted blue line. At the 

hyperbolic eccentricity the orbit is maintained by the 

controller for a period of five years, as shown in Fig. 8 

and Fig. 9.  

 

 
Fig. 7: Hyperbolic point as gateway to circular orbit. 

Phase 1: transfer from circular orbit to the 

hyperbolic equilibrium (blue line); phase 2: 

stabilisation around the hyperbolic equilibrium 

(red line) and phase 3: transfer back to circular 

orbit represented by the dotted blue line. The 

major semi-axis is 15,973 km, and the area-to-

mass ratio is 10 m
2
/kg. 

 

 

Fig. 8: History of the eccentricity during the mission. 

The red solid line represents the periodic 

trajectory of the controlled eccentricity, and the 

blue solid and dotted lines represent the initial and 

final natural trajectory of the uncontrolled 

eccentricity. The major semi-axis is 15,973 km, 

and the area-to-mass ratio is 10 m
2
/kg. 

 

 

Fig. 9: History of  during the mission. The red solid 

line represents the periodic trajectory of the 

controlled eccentricity, and the blue solid and 

dotted lines represent the initial and final natural 

trajectory of the uncontrolled eccentricity. The 

major semi-axis is 15,973 km, and the area-to-

mass ratio is 10 m
2
/kg. 

 

Fig. 10 gives the magnitude of the control acceleration 

during the mission. 
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Fig. 10: The history of acceleration during the 

mission. The solid line represents the magnitude of 

control acceleration, and the dotted lines 

represents the control on ex, and the dash-dotted 

lines represents the control on ey. The major semi-

axis is 15,973 km, and the area-to-mass ratio is 10 

m
2
/kg. 

 

IV.II. Gateway to highly-elliptical orbits 

After the stabilisation phase at the hyperbolic point 

with the control gains G+=2, and G-=-2 the mission can 

evolve also in a different way. As it is shown in Fig. 11 

the spacecraft can decide to leave the eccentricity point 

following the unstable manifold towards higher 

eccentricities end enters the planet atmosphere, when the 

orbit will naturally decay. The mission in Fig. 11 is 

composed by three phases: (1) transfer from circular orbit 

to the hyperbolic equilibrium, represented by the blue 

line, (2) stabilisation around the hyperbolic equilibrium 

(red line) and (3) transfer beyond the critical eccentricity 

represented by the dotted blue line. At the hyperbolic 

eccentricity the orbit is maintained by the controller for a 

period of three years, as shown in Fig. 12 and Fig. 13. The 

magnitude of the control acceleration during the mission 

(see Fig. 14) has the same profile as in Fig. 10, the only 

difference is that the time for which the spacecraft is 

stabilised is here reduced to three years in order to meet 

the unstable manifold towards high eccentricities. 

 

 
Fig. 11: Hyperbolic point as gateway to highly-

elliptical orbits orbit. Phase 1: transfer from 

circular orbit to the hyperbolic equilibrium (blue 

line); phase 2: stabilisation around the hyperbolic 

equilibrium (red line) and phase 3: transfer 

beyond the critical eccentricity represented by the 

dotted blue line. The major semi-axis is 15,973 km, 

and the area-to-mass ratio is 10 m
2
/kg. 

 

 

Fig. 12: History of the eccentricity during the mission. 

The red solid line represents the periodic 

trajectory of the controlled eccentricity, and the 

blue solid and dotted lines represent the initial and 

final natural trajectory of the uncontrolled 

eccentricity. The major semi-axis is 15,973 km, 

and the area-to-mass ratio is 10 m
2
/kg. 
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Fig. 13: History of  during the mission. The red solid 

line represents the periodic trajectory of the 

controlled eccentricity, and the blue solid and 

dotted lines represent the initial and final natural 

trajectory of the uncontrolled eccentricity. The 

major semi-axis is 15,973 km, and the area-to-

mass ratio is 10 m
2
/kg. 

 

 

Fig. 14: The history of acceleration during the 

mission. The solid line represents the magnitude of 

control acceleration, and the dotted lines 

represents the control on ex, and the dash-dotted 

lines represents the control on ey. The major semi-

axis is 15,973 km, and the area-to-mass ratio is 10 

m
2
/kg. 

 

IV.III. Gateway to circular orbits for short-term solar sail 

A smaller solar sail is here considered so that the area-

to-mass of the spacecraft is 5 m
2
/kg. The mission leaves 

from circular orbit with a semi-major axis of 14,275 km 

and reaches in less than two years the hyperbolic 

eccentricity equal to 0.4091 (phase 1). During phase 2 of 

the mission, which last 5 years, the eccentricity is 

maintained liberating about the stationary value, though 

the Hamiltonian-preserving controller, with gains set as 

G+=3, and G-=-3. Fig. 15, Fig. 16, Fig. 17 represents the 

mission evolution in terms of orbital elements, while Fig. 

18 report the magnitude of the control acceleration. Note 

that the control acceleration reaches a lower peak when 

employing a lower A/m.  

 

 
Fig. 15: Hyperbolic point as gateway to circular orbit. 

Phase 1: transfer from circular orbit to the 

hyperbolic equilibrium (blue line); phase 2: 

stabilisation around the hyperbolic equilibrium 

(red line) and phase 3: transfer back to circular 

orbit represented by the dotted blue line. The 

major semi-axis is 14,275 km, and the area-to-

mass ratio is 5 m
2
/kg. 
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Fig. 16: History of the eccentricity during the mission. 

The red solid line represents the periodic 

trajectory of the controlled eccentricity, and the 

blue solid and dotted lines represent the initial and 

final natural trajectory of the uncontrolled 

eccentricity. The major semi-axis is 14,275 km, 

and the area-to-mass ratio is 5 m
2
/kg. 

 

 

Fig. 17: History of  during the mission. The red solid 

line represents the periodic trajectory of the 

controlled eccentricity, and the blue solid and 

dotted lines represent the initial and final natural 

trajectory of the uncontrolled eccentricity. The 

major semi-axis is 14,275 km, and the area-to-

mass ratio is 5 m
2
/kg. 

 

 

Fig. 18: The history of acceleration during the 

mission. The solid line represents the magnitude of 

control acceleration, and the dotted lines 

represents the control on ex, and the dash-dotted 

lines represents the control on ey. The major semi-

axis is 14,275 km, and the area-to-mass ratio is 5 

m
2
/kg. 

 

IV.IV. Gateway to highly-elliptical orbits for short-term 

solar sail 

In the same way as before, the 3
rd

 phase of the mission 

can be designed to reach to highly elliptical orbits, by 

properly selecting the time at which the controller is 

turned off, equal to seven years. The overall mission is 

represented in Fig. 19 to Fig. 22. Note that here the 

control gain were set to G+=2.9, and G-=-2.9. 
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Fig. 19: Hyperbolic point as gateway to highly-

elliptical orbits orbit. Phase 1: transfer from 

circular orbit to the hyperbolic equilibrium (blue 

line); phase 2: stabilisation around the hyperbolic 

equilibrium (red line) and phase 3: transfer 

beyond the critical eccentricity represented by the 

dotted blue line. The major semi-axis is 14,275 km, 

and the area-to-mass ratio is 5 m
2
/kg. 

 

 

Fig. 20: History of the eccentricity during the mission. 

The red solid line represents the periodic 

trajectory of the controlled eccentricity, and the 

blue solid and dotted lines represent the initial and 

final natural trajectory of the uncontrolled 

eccentricity. The major semi-axis is 14,275 km, 

and the area-to-mass ratio is 5 m
2
/kg. 

 

 

Fig. 21: History of  during the mission. The red solid 

line represents the periodic trajectory of the 

controlled eccentricity, and the blue solid and 

dotted lines represent the initial and final natural 

trajectory of the uncontrolled eccentricity. The 

major semi-axis is 14,275 km, and the area-to-

mass ratio is 5 m
2
/kg. 

 

 

Fig. 22: The history of acceleration during the 

mission. The solid line represents the magnitude of 

control acceleration, and the dotted lines 

represents the control on ex, and the dash-dotted 

lines represents the control on ey. The major semi-

axis is 14,275 km, and the area-to-mass ratio is 5 

m
2
/kg. 

IV.V. Gateway mission very small solar sail 

The same mission scenario was run also for the case in 

which the spacecraft have an area-to-mass of 1 m
2
/kg. 

This case is very short-term mission, as for example a 100 

kg spacecraft would require only a 5.6 m radius solar sail. 

The spacecraft is placed at a lower circular orbit with 

semi-major axis of 12,913 km. The hyperbolic 

eccentricity at 0.2278 can be maintained increasing the 

controller gains to G+=9, and G-=-9. This has an impact 

on the magnitude of the control acceleration, which 

increases to 0.02 km/s
2
 (see Fig. 23). The required control 

can be given by the solar sail which can change its 

attitude at the hyperbolic point. Future work will be 

devoted to derive the control law as function of the true 
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anomaly along the orbit that can be translated into the 

secular acceleration 
exu  and 

eyu . 

 

 

Fig. 23: The history of acceleration during the 

mission. The solid line represents the magnitude of 

control acceleration, and the dotted lines 

represents the control on ex, and the dash-dotted 

lines represents the control on ey. The major semi-

axis is 12,913 km, and the area-to-mass ratio is 1 

m
2
/kg. 

V. CONCLUSIONS 

This paper considered the dynamics of a spacecraft 

with area-to-mass higher than 1 m
2
/kg in the vicinity of 

the Earth or another planet. In particular, the attention was 

focused on the hyperbolic equilibrium point which exists 

for relatively low semi-major axis, due to the interaction 

of the Earth’s oblateness with the secular effects of solar 

radiation pressure on a light weight reflective solar sail. A 

controller which preserves the Hamiltonian structure of 

the system was used for stabilising the orbits around the 

hyperbolic equilibrium point. If the semi-major axis is 

properly selected, the critical eccentricity can be naturally 

reached from a circular orbit, by following the line the 

e   phase space evolution. At the critical eccentricity, 

by selecting the time when the controller is turned off, the 

mission can evolve in two ways: either going back to zero 

eccentricity or following the other unstable manifold 

which will bring the spacecraft on a highly-elliptical orbit, 

where  atmospheric drag will cause the perigee to 

decrease and the following re-entry. Such mission design 

has been proposed for several mission applications: for 

mapping the close magnetic tail of the Earth, or for 

stabilising a swarm of small spacecraft in the dark side of 

the planet for power and data transmission. The elliptical 

orbit at the critical eccentricity is always oriented with the 

apogee in the direction away of the Sun; therefore, the 

spacecraft will spend a longer fraction of its orbit in the 

night side of the Earth. The hyperbolic point can thus be 

transformed in a controlled gateway towards low 

eccentricity or high eccentricity orbits. 

In a future work, the control requirements will be 

quantified for different mission durations and feasible 

control systems will be studied for stabilisation, relying 

on solar sail, low-thrust propulsion, or electro-chromic 

control. Also an analytical method to automatically select 

the time when the control is turned off will be defined. 
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VI. APPENDIX: HYPERBOLIC ECCENTRICITY FOR HAMILTONAIN LINE PASSING THROUGH e=0 

The expression of the hyperbolic eccentricity in correspondence of the Hamiltonian line passing through 0e  is 

[15]: 
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