
1 INTRODUCTION 
Maritime transport has a great role in global 
transport of goods and products. Ship operations 
have to be optimized because of accuracy and safety 
of transportation. Component of safe transport is 
durability of ship structure which is affected by 
loads. Large part of total loads on ship structure is 
caused by sea waves. Ship maneuvering is one of 
ship operations that has effect on extreme values of 
wave loads. Wave heading and ship velocity are 
maneuvering components that can be changed by 
seamen. Open sea ship maneuvering in non-extreme 
environment conditions, largely, is a routine. 
Problems appear when ship is in extreme 
environment conditions when loads on ship structure 
are on high level. In those cases maneuvering has to 
be done such as changing direction of wave heading 
and/or reducing speed. Knowledge of wave loads 
and sustainable speeds simplify decisions to seamen. 
Seamen have to respect operability criteria for 
voluntary speed reduction and route changing in 
order to avoid possible damage of ship structure or 
cargo. Operability criteria considered in this paper 
are slamming, deck wetness, and vertical 
acceleration. 

Limiting values of operability criteria used in the 
present paper are given by Kehoe (1973), Ochi and 
Motter (1974) and Aertssen (1963, 1966, 1968, 
1972). Review of limiting values given by 
mentioned authors is also presented by Lloyd 
(1998). Influence of criteria limiting values are 
shown on example of 9200 TEU container ship by 

operability polar plots and other types of operability 
diagrams. Diagrams are discussed from the point of 
view of seafarers and their practical applicability is 
investigated. 

2 OPERABILITY CRITERIA 
Limiting values of operability criteria are used in 
seakeeping studies to validate ship response on 
different sea states. Exceeding limiting values leads 
to a reduction of ship operability. Operability 
limiting values represent border between acceptable 
and unacceptable phenomena such as number of 
bottom slamming in one minute or amount of 
vertical acceleration on fore perpendicular, etc. 
However, mentioned border is hard to define. Data 
from service therefore have priceless value. 
Statistical analysis of service data in comparison 
with seakeeping calculations gives the best 
validation of operation limiting values. 

 

2.1 Slamming 

At certain ship speeds and certain sea states bow of 
the ship emerges out of the sea. Re-entry leads to 
impact between flat bottom in the forward part of the 
ship and the sea surface. Result of impact is the 
suddenly developed force that produces transient 
vibrations of the hull, known as whipping. Seafarers 
can clearly feel slamming because vibrations of the 
hull complicate normal activity on board such as 
steerage, navigation, cargo control, etc. Slamming 
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also complicates repose of the crew which is very 
important for ship safety. Emerging of the bow is 
result of relative motions between sea surface 
elevation and ship motion components such as heave 
and pitch. Slamming will occur if relative motion is 
larger than draft of the ship and if relative speed is 
larger than critical speed (Ochi & Motter 1974). 

Ochi defined a critical relative speed of the bow 
as: 

 (1) 

where vcr is critical relative velocity, g is 
acceleration of gravity and L is length of the ship. 

Limiting value of slamming is usually given in 
term of probability. Probability of slamming is given 
as (Journée 1976): 

 (2) 

where  is draft of the ship,  is zero spectral 

moment for relative motion, and  is zero spectral 

moment for relative velocity. Limiting values of 

probability for slamming are given by many authors 

for merchant ships (Table 1). 

 
Table 1. Limiting values of probability for slamming by 
different authors  

 
 

2.2 Deck wetness 

Appearance of deck wetness can happen at any place 
on the ship where freeboard is not high enough. It 
usually occurs on fore part of the ship when relative 
motion of the bow exceeds height of the freeboard 
on bow. Deck wetness can cause equipment damage 
and loss of the cargo, especially on container ships. 

This type of seakeeping criteria is the most 
recognizable amongst seafarers because it is visually 
attractive. Probability of deck wetness is given as 
(Journée 1976): 

 (3) 

where  is freeboard on section  of the ship,  is 

zero spectral moment of relative motion. Limiting 

values of probability for deck wetness are given by 

many authors for merchant ships (Table 2). 

 

Table 2. Limiting values of probability for deck wetness by 
different authors  

Author 
Ochi and 

Motter (1974) 

SRA Japan 

(1975) 

Moan et 

al.(2006) 

Limiting 

value 
0.07 0.02 0.05 

2.3 Vertical acceleration at forward perpendicular 

Absolute vertical acceleration on bow can cause 

damage of the structure or equipment. Furthermore, 

excessive accelerations could disturb seafarers in 

their normal activity on ship. Inexperienced or not 

adapted seafarers feel seasickness that leads to 

impossibility of normal work and deficit of safety on 

ship. Vertical accelerations on the bridge are also 

very important for seafarers but are not taken under 

considerations when calculating operability. 

Limiting values (RMS) for vertical acceleration are 

given for different types of ships (Table 3.).  

 
Table 3. Root mean square (RMS) of vertical accelerations at 
FP (Moan et al. 2006): 

Merchant ships 

0.275g 

(Lpp<100m) 

0.050g 

(100m<Lpp<330m) 

VLCC 0.06g 

Product tanker 0.19g 

Bulk carrier 0.09g 

Containership 0.108g 

 

3 PRACTICAL APPLICATION OF 
OPERABILITY CRITERIA 

Application of operability criteria is performed for 
9200TEU container ship. 
 
Table 4. Characteristics of 9200 TEU container ship 

Lpp 335m 

B 42.8m 

T 13.17m 

v 25kn 

Capacity 9200 TEU 

 
Seakeeping features are calculated for different ship 
responses in short-term sea states based on the 
response amplitude operators (RAO). 3D panel 
method is employed for computation of RAOs, 
while 2-P Pierson–Moskowitz wave spectrum is 
used for short term spectral analysis. Sea states 
describing rough weather are given for North 
Atlantic sea environment according to the IACS 
recommendation Note No.34 (Table 5). 
 

Author 

Ochi 

and 

Motter 

(1974) 

SRA Japan 

(1975) 

Aertssen 

(1963, 

1966, 

1968, 

1972) 

Moan et 

al.(2006) 

Limiting 

value 
0.03 0.01 0.03 0.02 



5,5 6,5 7,5 8,5 9,5 10,5 11,5 12,5

0,5 865,6 1186,0 634,2 186,3 36,9 5,6 0,7 0,1

1,5 986 4976,0 7738,0 5569,7 2375,7 703,5 160,7 30,5

2,5 197,5 2158,8 6230,0 7449,5 4860,4 2066,0 644,5 160,2

3,5 34,9 696,5 3226,5 5675,0 5099,1 2838,0 114,1 337,7

4,5 6 196,1 1354,3 3288,5 3857,5 2685,5 1275,2 455,1

5,5 1 51,0 498,4 1602,9 2372,7 2008,3 1126,0 463,6

6,5 0,2 12,6 167,0 690,3 1257,9 1268,6 825,9 386,8

7,5 0 3,0 52,1 270,1 594,4 703,2 524,9 276,7

8,5 0 0,7 15,4 97,9 255,9 350,6 296,9 174,6

9,5 0 0,2 4,3 33,2 101,9 159,9 152,2 99,2

Tz - zero period
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Table 5. Interesting sea states from wave scatter diagram - 
IACS recommendation Note No.34 

 
RAOs are calculated using state-of-the-art 

seakeeping software Hydrostar (Bureau Veritas 
2010) while results are post processed using 
program Starspec (Bureau Veritas 2010). 
Calculations are based on 3D panel method and 
linear potential theory. 
 

 
Figure 1. 9200 TEU hydrodynamic model in Hydrostar 

3.1 Calculation of response amplitude operators 

Response amplitude operators (RAOs) are calculated 
at forward part of the ships for: 
− relative vertical motion (Fig.2), 
− relative vertical velocity (Fig.3), 
− absolute acceleration (Fig.4). 
 
All three RAOs are calculated for four speeds: 

 

 

 

 

 
Figure 2. RAO for relative vertical motion, v=3.215m/s 

 
Figure 3. RAO for relative vertical velocity, v=3.125m/s 

 

 
Figure 4. RAO for absolute acceleration, v=3.125m/s 

 
Figures 2, 3 and 4 represent RAOs for different 
wave headings (0

0
-360

0
). RAOs are dimensionless 

values and in dependence of frequency.  
 

3.2 Calculation of significant response of the ship 
in rough sea states 

For assessment of ship operability in rough sea 
states, ship response is calculated by Starspec 
software for spectral analysis. In this calculation 
only short term ship response is investigated because 
of assumption that rough sea state represents storm 
that lasts a few hours (short term). 

Some marginal sea states are excluded from IACS 
No.34 scatter diagram while interesting sea states 
presented in Table 5 are taken into account. 

 



 
Figure 5. Relevant wave spectra for IACS No.34 scatter 
diagram (Hs=1m) 

 
Figure 5 represents wave spectra (Hs=1m)  for 
interesting sea states defined in Table 5. Relation 
between Tp (Fig.5) and Tz (Table5) reads: 
 
Tp=1,41 Tz                 (4) 
 
where Tp is peak wave period and Tz is zero wave 
period (Prpić-Oršić & Čorić 2006.). 

2-P Pierson–Moskowitz wave spectrum 
formulation is used for short term spectral analysis. 
Formula for 2-P Pierson–Moskowitz wave spectrum 
reads: 

 (5) 

where Hs is significant wave height, ω is wave 
frequency and ωp is given as: 

 (6) 

180
o
 means that ship is heading waves with bow. 

One of the results of spectral analysis is zero spectral 
moment which represents variance of wave process 
defined by wave spectrum. Significant response may 
be determined as: 

 (7) 

where  is significant response (double amplitude) 
and  is zero spectral moment Significant response 
is calculated for each combination of RAO and 
speed of the ship. 

 
Figure 6. Significant response of relative velocity, v=3.125m/s, 
wave direction in bow (180) (for Hs=1m)  

 
Figure 6 shows that maximum significant response 
of the ship occurs for peak period range between 7 
and 13 seconds. That period range is recognized as 
significant and taken into calculation. Other wave 
periods (lower or higher) cause low values of 
significant response. Also, Figures 2, 3 and 4 shows 
that the highest values of the RAOs are for wave 
headings 120

0
 and 240

0
 which is in agreement with 

Figure 6.  

3.3 Limiting values of operability criteria 

Values of operability criteria i.e. slamming, deck 
wetness and vertical acceleration on F.P., 
representing margin between acceptable and 
unacceptable ship responses, are given in Table 5. 
Amongst many limiting values (Table1, Table 2 and 
Table3), values given by Moan et al. (2006) are 
chosen. 
 
Table 6. Limiting values used in operability calculation (Moan 
et al.  2006) 

Limiting probability of slamming 0.0112 

Limiting probability of deck wetness 0.05 

Limiting RMS of vertical bow 

accelerations  
0.108g 

3.4 Results 

Calculations carried out in Starspec connect 
significant responses and limiting values of 
operability criteria. Results are practically shown in: 
− operability polar plots showing which navigation 

azimuth is possible and safe for one sea state 
(Fig. 7), 

− operability diagram that shows which maneuver 
should be done on each sea state (Fig. 8), 

− speed diagram that shows which speed is 
sustainable for each sea state (Fig. 9). 



 
Figure 7. Polar diagram for different speeds and heading on 
one sea state.  

 
Polar diagram in Figure 7 shows overshooting of 

criteria in percentage. Diagram is valid for Hs=5.5m 
and Tp=14.8s where it is obvious that speed needs to 
be reduced for head and bow seas (from 180 to 120 
deg). Significant response shown on Figure 6 is 
maximum in azimuth range between 120

o
 and 240

o
 

which is also shown on Figure 7. In mentioned 
azimuth range operability limiting values are 
reached or overshooted. Detailed calculations 
showed that the reason for overshooting criteria is 
slamming which is usually the most severe 
operability limiting criterion.  
 

 
Figure 8. Operability diagram for different sea states  

 
Operability diagram in Figure 8 shows appropriate 
maneuvers for navigation on different sea states. 
Interesting maneuvers are speed reduction and route 
change. Both lead to reduction of operability criteria 
under limiting value. Speed reduction is maneuver 
that is done first. Maneuver that is done when speed 
reduction is not enough is route change. 

It is obvious that for Hs=5.5m and Tp=14.8s speed 
reduction has to be done. That can also be seen on 
Figure 7. 

 
Figure 9. Speed diagram for different sea states assuming head 
seas 

 
Speed diagram for different sea states, assuming 
head seas are shown in Figure 9.  Diagram 
represents speed limit for not overshooting 
operability criteria. It is obvious that for Hs=5.5m 
and Tp=14.8s ship speed has to be under 6m/s. 
 

4 CONCLUSION 

Polar plot, operability diagrams and speed 
diagrams presented in the paper represent orientation 
mark for seafarers how to maneuver ship on rough 
sea. A lot of uncertainties exist in this field of 
navigation and naval architecture. Ship structural 
design and safety depends on the extreme wave 
induced loads. Those loads depend a lot on the 
maneuvering in heavy seas. Maneuvers are based on 
the experience and practice of ship master. 
Therefore, maritime navigation and naval 
architecture are closely related fields that are the 
main issue of the research described in the present 
paper. 

Polar plots are given for each sea state. Number 
of sea states is large which makes list of polar plots 
unusable for seafarers in practice. Operability and 
speed diagrams are more useful. Aggravating 
circumstance is recognizing of sea state from the 
bridge of the boat. Experienced seafarer much better 
recognizes real parameters of the sea state.   The 
identification of sea state parameters is difficult 
because of the complex interaction of short-crested 
waves and swell waves.  

Seafarers are trained on simulators where rough 
sea state is simulated. In that way they get used to 
operate in such conditions. Reaction just in time 
often leads to prevention of cargo, equipment or 
even life. During school time and practice on 
simulator, seafarers learn about maneuvering in 
rough sea but do not learn impact of bad 
maneuvering on safety of ship structure. That makes 
indispensable better connection and communication 
between seafarers and naval architects.  



Maneuvering in rough sea is a part of 
International Safety Management Code (ISM Code). 
ISM Code includes check list for reaction of 
seafarers during navigation in rough sea but with 
lack of ship construction safety part and lack of 
operability criteria. 

Limiting values were established in past based on 
experience and changes of ship design, especially 
changing of bow geometry, leads to new 
calculations of limiting values. Example is bowflare 
slamming that appears on container ships which is 
totally different from bottom slamming and requires 
other approach to determining criteria. Also order of 
maneuvers (first speed reduction, than route change) 
is result of experience and can be changed 
depending on master’s decision. 

The method which calculates 3D seakeeping 
parameters is based on the Green function of wave 
diffraction-radiation problem, using wave encounter 
approximation in a case of small forward speed. 
Such linear seakeeping theory, expressed in 
frequency domain, is applicable for ships advancing 
with relatively low speed on small wave heights. 
Consequently, there are some inaccuracies and 
uncertainties when applying linear theory in extreme 
sea conditions. Ideally, uncertainties of the 
operational conditions needs to be accounted based 
on a probabilistic assessment of seakeeping events, 
expressed by random variables in defined limit state 
functions, which are used for the evaluation of 
different seakeeping hazards (Papanikolaou et al. 
2014). Such considerations are outside the scope of 
the present study. 

Future research of authors will be related to the 
connection of wave loads with operability criteria 
and exploring possibilities of improvement of 
existing and future operability criteria limiting 
values. The mentioned field is of interest for both 
naval architecture and maritime research disciplines 
which will lead to better incorporation of reaction of 
seafarers on rough sea maneuvering in ship 
structural design. 
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