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Abstract

Measuring the quality of determined protein structures is a very important problem in

bioinformatics. Kernel density estimation is a well-known nonparametric method which is

often used for exploratory data analysis. Recent advances, which have extended previous

linear methods to multi-dimensional circular data, give a sound basis for the analysis of

conformational angles of protein backbones, which lie on the torus. By using an energy test,

which is based on interpoint distances, we initially investigate the dependence of the angles

on the amino acid type. Then by computing tail probabilities which are based on amino-acid

conditional density estimates, a method is proposed which permits inference on a test set of

data. This can be used, for example, to validate protein structures, choose between possible

protein predictions and highlight unusual residue angles.

Keywords: Circular kernel; Conformational angle; Probability contour; Variable bandwidth;

von Mises density.

1 Introduction

Determination of protein structures is often carried out using X-ray crystallography, which leads

to a set of co-ordinates of all the atoms — measured within some resolution. Such structures

are typically made available in the Protein Data Bank, but they can be of variable quality.

Currently, there is a validation suite [Laskowski et al., 1993] of software which provides a set of

tools to validate and check structure data. A more recent approach, based on conformational

angles, has also been proposed by Lovell et al. [2003], and this paper builds on their approach.

A circular observation can be seen as a point on the unit circle, and represented by an angle

θ ∈ [−π, π). It is periodic, i.e. θ = θ + 2mπ for m ∈ Z, which sets apart circular statistical

analysis from standard real-line methods. Recent accounts are given by Jammalamadaka and

SenGupta [2001] and Mardia and Jupp [1999]. Concerning nonparametric density estimation,

there exist a few contributions focused on data lying on the circle or on the sphere (Bai et al.

[1988], Beran [1979], Klemelä [2000], Taylor [2008]). Recently, Di Marzio et al. [2010] obtained

general results for kernel estimation of densities (and their partial derivatives) defined on the

d-dimensional torus T := [−π, π]d.
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Data on the (two-dimensional) torus are commonly found in descriptions of protein structure.

Here, the protein backbone is given by a set of atom co-ordinates in R
3 which can then be

converted (without any loss of information) to a sequence of conformation angles. The sequence

of angles can be used to assign [Kabsch and Sander, 1983] the structure of that part of the

backbone (for example α-helix, β-sheet) which can then give insights into the functionality of

the protein. A potential higher-dimensional example is provided by NMR data which will give

replicate measurements, revealing a dynamic structure of the protein. For shorter peptides

the modes of variability could be studied by an analysis of the replicates, requiring density

estimation on a high-dimensional torus. In Section 2.1 we introduce toriodal kernels for kernel

density estimation and review a simple way to select the smoothing parameter. Our application,

of conformational angles in a protein backbone, is introduced in Section 3, and in Section 4 we

investigate whether the bivariate distributions of angles are dependent on the amino acid type.

Various validation scores, which can be used for “new” proteins, are introduced in Section 5.

We conclude with a discussion.

2 Density estimation on the torus

2.1 Toroidal kernels

A kernel density estimate on the circle is easily constructed by adopting a circular density (with

mean zero, and concentration parameter λ) for the kernel function. In this case, given angles

θ1, . . . , θn, the kernel density estimate is simply

f̂λ(θ) =
1

n

n
∑

i=1

Kλ(θ − θi)

where λ > 0 is the (inverse of the) smoothing parameter, and Kλ(·) is a circular (symmetric)

probability density function.

On the torus, we can use a d-fold product KC :=
∏d
s=1Kλs

, where C := (λs ∈ R+, s =

1, . . . , d) is a set of smoothing parameters. Most kernels are continuous and symmetric about the

origin, so the d-fold products of von Mises, wrapped normal and wrapped Cauchy distributions

are all valid. However, we note that the cardioid density (which was used by Lovell et al. [2003]):

(2π)−1{1 + 2λ cos(·)} with |λ| < 1/2, θ ∈ T gives a very inefficient kernel (see [Di Marzio et al.,

2009]) relative to the von Mises and wrapped normal kernels. This can be seen by considering

the Fourier series representations of the probability density function and the cardioid kernel.

Indeed, this kernel function was excluded in the definition of [Di Marzio et al., 2009] because it

failed to satisfy a limiting “concentration” criterion.

2.2 A plug-in rule for the von Mises kernel

The performance of a kernel density estimate is usually measured by the integrated mean squared

error

IMSE =

∫

E

(

f̂λ(θ) − f(θ)
)2

d θ
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which seeks a trade-off between the bias-squared and variance. In the case that d = 2 and a

multiplicative von Mises kernel function is adopted, we have a kernel density estimate of f(φ,ψ)

given by

f̂λ(φ,ψ) =
{

n(2π)2I0(λ)2
}−1

n
∑

i=1

exp{λ cos(φ− φi) + λ cos(ψ − ψi)}

where

• the bivariate data is given by (φi, ψi), i = 1, . . . , n

• Ir(λ) is the modified Bessel function of order r

• λ ≥ 0 is the concentration parameter of the von Mises density. In this case λ = 0 cor-

responds to a uniform density, and as λ → ∞ the density concentrates around the mean

(φi, ψi). Hence, when used in the kernel function λ is (inverse of the) smoothing parameter

(assumed — for simplicity — to be equal for both variables).

Note that distance between two angles is measured by taking the cosine of the difference, which

is important when the data may be distributed around the torus.

When f is assumed to be a bivariate von Mises distribution, with independent components,

and common concentration κ, then we can approximate the asymptotic integrated variance of

the kernel density estimate (see [Di Marzio et al., 2010]) as

λ/(4nπ)

with asymptotic integrated bias-squared as

κ
[

3κI0(2κ)
2 − I0(2κ)I1(2κ) + κI1(2κ)

2
] /

(32π2I0(κ)
4λ2) .

As usual, we see a trade-off between bias-squared and variance: as λ increases (corresponding

to less smoothing) the bias decreases whilst the variance increases, but when λ decreases the

bias increases whilst the variance decreases. In this setting (assuming von Mises data) we can

obtain an asymptotic choice for λ to minimize the asymptotic IMSE (integral of bias-squared

plus variance). We obtain a plug-in rule

λ∗ =
[

nκ̂
{

3κ̂I0(2κ̂)2 − I0(2κ̂)I1(2κ̂) + κ̂I1(2κ̂)2
} /

(4πI0(κ̂)4)
](1/3)

(1)

where κ̂ is an estimate of the concentration of the data.

As will be seen in the next section, angles associated with protein structure do not follow

a von Mises distribution so we will not adopt (1). In some cases they can be modelled by a

mixture of von Mises densities with an EM algorithm being used to fit the components [Mardia

et al., 2007]. In the case of data which are not von Mises, Taylor [2008] investigates robust ways

to obtain useful estimates of κ which can be used in (1), though cross-validation provides a more

objective approach to the choice of λ. In this case, we choose

λCV = arg min
λ

n
∏

i=1

f̂
(i)
λ (φi, ψi) (2)
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where

f̂
(i)
λ (φi, ψi) =

{

n(2π)2I0(λ)2
}−1

n
∑

j 6=i

exp{λ cos(φj − φi) + λ cos(ψj − ψi)}.

3 Conformational Angles

The backbone of a protein comprises a sequence of atoms

N1−Cα
1−C1−N2−Cα

2−C2− . . .−Np−Cα
p−Cp,

By choosing 4 atoms A1, . . . , A4 with A3 directly behind A2, A1 directly below A2 and A4 as

shown in the figure below, we can specify 3 dihedral angles: φ,ψ, ω.

θ A1 A2 A3 A4

φi Ci−1 Ni Cα
i Ci

ψi Ni Cα
i Ci Ni+1

ωi Cα
i−1 Ci−1 Ni Cα

i

The angle ω is usually restricted to be about zero. The remaining angles (φ,ψ) are measured

between −π and π. Scatter plots of the (φ,ψ) angles for a given protein are known as Ramachan-

dran plots; for further details, see Lesk [2010]. For any protein, it would be possible to compute

a kernel density estimate with λ being chosen by cross-validation. The kernel density estimates

can be used: (i) to indicate sub-groups in the data; (ii) for classification purposes [Kabsch and

Sander, 1983]; (iii) for estimation of quantiles; and (iv) for clustering. However, it should be

noted that — in general — the observations (φi, ψi), i = 1, . . . , n will not be independent, and

so the usual considerations of IMSE, and general principles underlying cross-validation, may not

hold. This lack of independence has been investigated by Berkholz et al. [2009] and has also

been modelled by Boomsma et al. [2008] using a Markov model — with bivariate von Mises

mixture components; a similar approach might be possible here.

4 Amino acid dependence and inference

Note that each pair (φi, ψi) is associated with an amino acid. There are twenty amino acids,

each coded by a single letter — for example Alanine (A) — and we use the letter Z to denote

a pre-proline amino acid. For a large database of proteins we can collect all bivariate angles

associated with each amino acid. Then we can estimate the probability density for each, say

f̂A(φ,ψ), f̂C(φ,ψ), f̂E(φ,ψ), f̂F(φ,ψ), . . .

It could be of interest to visually compare the distributions and this can be shown graphically

using contour representations for the densities.
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To make formal comparisons between the densities of angles for two amino acids is feasible

using booststrap methods, or circular analogues of the Kolmogorov-Smirnov test [Mardia and

Jupp, 1999]. Such tests reveal that it is possible to detect (statistically significant) differences

in the distribution between most amino acids. That is, for most pairs of amino acids we can

formally reject the hypothesis H0 : fk(φ,ψ) = fj(φ,ψ), k 6= j. In an all-against-all comparison

we can obtain a test statistic based on “energy” [Rizzo, 2007], and associated p-value for each

pair of amino acids. (Note that in such a multiple comparison situation, the threshold for an

interesting p-value would be much less than the usual 0.05.) These matrices have the potential

for use as additional information within a substitution matrix. Here we use the test statistics as

a distance matrix to which multi-dimensional scaling [Mardia et al., 1979] can be applied. This

allows a graphical representation of which amino acids are more similar; the results are shown

in Figure 1. It is interesting to note that the energy test cannot detect a difference between the

distributions of Alanine (A) and Glutamic Acid (E) even though these have different side-chain

polarities and charges. We have tried, with some difficulty, to intepret the two axes in Figure 1.

Although it is quite straightforward to describe the difference (or similarity) between any pair,

we have found it almost impossible to characterize the meaning of either dimension. We have

observed that the amino acids towards the left of the plot tend to have more complex contours

in the region corresponding to the β sheet. However, given that very few pairings are found to

have similar distributions, it seems important not to pool together angles from different amino

acids.

The kernel density estimate can be converted to probability contours, or level sets as follows.

Given α, with (0 ≤ α ≤ 1) define the set Bα = {(φ,ψ) | f̂(φ,ψ) ≥ t(α)} where t(α) is a threshold

determined so that
∫∫

(φ,ψ)∈Bα

f̂(φ,ψ)dφdψ = 1 − α.

A α−probability contour can then be drawn at the boundary of Bα. Some examples are shown in

Figure 2 (for similarities refer to Figure 1). Conversely, given a specific point (φ0, ψ0) a contour

passing through this point will have a specific value of α = α0, say which can be interpreted as a

measure of likelihood of occurrence at that location. It should be noted that these numbers are

not probabilities but correspond to the usual p-value in a hypothesis test in the sense that, if the

null hypothesis is true, then the values will be uniformly distributed in [0, 1]. These numbers

can be used for validation as described in the next section.

5 Validation for new proteins

Given existing density estimates for each amino acid: f̂A(φ,ψ), f̂C(φ,ψ), . . . these can be con-

verted (as above) to “probability functions”, say P̂A(φ,ψ), P̂C(φ,ψ), . . .. Then for a “new” n-

residue protein (which did not contribute training data to the density estimates) with {(Ai, φi, ψi), i =

1, . . . , n} we can compute a measure for the ith residue conditional on the amino acid type Ai,

i = 1, . . . , n. We can then create an overall measure of quality using the arithmetic or geometric
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Figure 1: Kruskal’s multidimensional scaling for the bootstrap test statistic to measure similarity

between the distributions of each pair of amino acids. Those connected by a continuous line

have distributions which are not significantly different at 5%; dashed lines are similar at 1%, and

dotted lines at 0.1%. Those amino acids which are not connected — and those which are not

shown (D, G, N, P, V and pre-proline) — have no similarities with any other (at 0.1% level).
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Figure 2: Contour (probability) plots of kernel density estimates for some example amino acids.

Comparison with Figure 1 shows that the distributions of pairs (A,E), (R,K), (F,Y) are indis-

tinguishable (p > 0.05), the distributions of (S,W), (F,S) are very similar (0.05 > p > 0.01) ,

and the distributions of (K,L), (R,L), (L,W) are probably distinct (0.01 > p > 0.001).
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mean. In practice, if there is a very small quantity, then the geometric mean, which is given by:







∏

jth amino acid type

∏

{i:Ai=j}

P̂j(φi, ψi)







1/n

(3)

is more likely to reveal this through a formal test. As is well-known, if the P̂ satisfy the null

hypothesis, then they will be uniformly distributed. Alternatively (or in addition), we can

consider mini,j P̂j(φi, ψi), or the list p = (p1, . . . , p21) where

pj = min
{i:Ai=j}

P̂j(φi, ψi).

When a previously validated training dataset is used, a leave-one-out approach can be adopted

to provide a benchmark for the above quantities, by which future data can be compared. The

proposed validation is formally intended to check both the labels (amino acids) and the angles.

Since the angles are derived from a set of 3-D co-ordinates, this would imply that the (relative) co-

ordinates have been accurately determined. So, in the event that a protein “fails” the validation

test, this could be due to an incorrect amino acid label or inaccurate co-ordinates obtained

from the X-ray technology. To distinguish between these two situations could be possible in

some cases. However, in practice, the situation is a little more complicated as the sequence of

labels is assumed to be known, and often used (with prior knowledge) to suggest the co-ordinate

structure. Note that this that this is a somewhat circular argument!

Using a cleaned up subset [Lovell et al., 2003] of the top 500 proteins from the Kinemage1

database, we can obtain a validation probability (using leave-one-protein-out cross-validation)

for each protein. This dataset has 74,414 bivariate angles, with frequencies for each amino acid

given in Table 1.

A 7506 C 1299 D 4711

E 4132 F 3313 G 6865

H 1579 I 3772 K 3482

L 5968 M 1399 N 3083

P 1898 Q 2177 R 2621

S 4767 T 4639 V 5607

W 1153 Y 2838 Z 1605

Table 1: Frequencies of amino acids in the database of Lovell et al. [2003], with “Z” denoting

pre-proline

The probabilities can be plotted (vs number of residues to improve clarity) and this plot,

together with a histogram, is shown in Figure 3. Given the nature of the data, it is not surprising

that the smallest probability is about 0.158 (for protein 1tgsIH), which gives no cause for concern.

It is also reassuring that these probabilities do not seem to depend on size.

1http://kinemage.biochem.duke.edu/databases/top500.php

8



0 100 200 300 400 500 600

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

protein database: cr oss−v alidation pr obabilities

number of amino acids

fit
te

d 
pr

ob
ab

ili
ty 119lH

153lH

16pkH

19hcAH

1a12AH

1a1yIH

1a28BH

1a2pAH

1a2zAH

1a3aDH 1a4iBH
1a62H

1a6mH

1a73AH
1a7sH

1a8dH1a8eH

1a8iH

1aacH

1aayH

1abaH

1adsH

1agjAH

1ah7H

1ahoH

1aieH

1ajjH

1ajsAH

1ak0H

1akoH

1akrH

1amfH

1ammH

1ampH

1aohBH

1aopH

1aqbH

1aquAH

1aqzAH

1arbH

1aruH

1atgH

1atlACH
1atzAH

1auoAH

1avwBH

1axnH

1ay7BH

1aylH

1b0uH

1b0yH

1b16AH1b3aAH

1b4kAH

1b4vH

1b5eAH

1b67AH

1b6aH1b6gH

1b8oH
1b9wH

1babBH

1bb1AH

1bbhAH

1bbzEFH
1bd0AH

1bdmBH

1bdoH

1becH

1behBH

1benABH

1bf4AH

1bf6BH

1bfdH

1bfgH

1bg2H

1bg6H

1bgcH1bgfH

1bhpH

1bi5H
1bj7H

1bk0H
1bk7H

1bkbH

1bkjAH

1bkrH

1bm8H1bpiH

1bqcH

1bqkH

1brtH
1bs0H

1bs9H
1bsmAH

1bteAH

1btkAH

1btyH

1bu7AH

1bu8H1bueH

1bw9AH

1bx4H1bx7H
1bxoH

1byiH

1byqH

1c02AH

1c1kH

1c1lH

1c24H

1c3dH

1c3pH

1c3wH

1c52H

1c5eAH

1c75H

1c90AH 1cb0H

1cc8H

1cczH

1cemH

1ceqH1cexH

1cf9BH

1cgoH

1chdH

1cipH

1cjwH

1ckaH

1ckeH

1cl8H

1cmbAH

1cnvH

1cnzBH

1cpqH

1cruAH

1cs1AH

1ctfH

1ctjH

1cv8H
1cvlH

1cxcH
1cxqH

1cxyH

1cy5H

1cydAH

1cyoH

1czfAH

1czpAH

1d2nH

1d3vAH

1d7pH
1dbgH

1dbwBH
1dciAH

1dcsH

1df4H

1dfuPH

1dgfAH

1dhnH
1di6H

1difAH

1dinH

1dlfH

1dnlH

1dosAH

1dozH
1dp7PH

1dpsDH

1dptAH

1dqsAH1dvjAH

1dxgAH

1ecoH

1edgH

1egwAH

1ejgH

1ek0H

1ek6AH

1elkAH

1ervH

1erxH

1es5H
1etnH

1euwH

1evhABH 1ezmH

1fdrH

1fdsH

1fkjH
1flmBH

1flpH

1fmbH
1fnaH

1fncH
1ftrAH

1fusH

1fvkAH

1fxdH

1g3pH

1gaiH

1gcaH
1gceH

1gciH

1gd1OH

1gdjH

1gdoBFH

1gofH

1gpeAH1gsoH

1guqAH

1gvpH 1h2rLH

1h2rSH

1hclH

1hfcH
1hfeSLH1hkaH

1hmtH 1hpmH

1htrH

1hxnH 1iabH
1idoH

1iibAH

1isuAH

1ixhH

1jerH

1jetH

1jhgABH

1kapH

1koeH

1kp6H1kpfH

1kptAH

1kuhH

1kveABH

1lamH
1lbuH

1lclH

1lkkH

1lmb4H

1lstH

1lucBH

1m6pAH

1mbaH

1mctIH

1mdcH

1mfiAH

1mfmH

1mgtH
1mjhBH

1mlaH

1mmlH

1mofH

1molAH

1moqH
1mpgBH

1mrjH

1mroBH

1mroCH
1msiH

1mskH
1mugH

1munH

1narH

1nbcAH

1nddBH

1nfnH

1nifH

1nkdH

1nkrH
1nlsH

1notH

1noxH

1npkH

1nulBH

1nwpAH

1nzyBH

1oaaH

1oncH

1opdH

1orcH
1osaH

1pcfAH
1pdaH

1pdoH

1pefH

1penH

1pgsH

1phnAH

1plcH
1pmiH

1poaH

1psrAH

1ptfH
1pymAH

1qauH 1qb7H

1qcxH

1qczH

1qd1BH1qddH
1qe3H

1qf9H

1qfmH1qftAH

1qgiH

1qgqH

1qgwBDH

1qh4AH

1qh5AH

1qh8AH

1qh8BH
1qhfAH

1qhvH

1qipBH
1qj4H

1qjdH1qk5AH

1qksAH1ql0AH

1qlwAH

1qnfH

1qnjH

1qq4H

1qq5AH

1qqqH

1qreH

1qrrH

1qs1AH

1qsaH

1qsgGH

1qtsH

1qtwH

1qu9AH

1qupAH

1qusH

1ra9H1rb9H
1rcfH

1rgeAH
1rhsH

1rieH

1rzlH

1sbpH

1sluH

1smdH1smlH
1stnH

1svfABH

1svyH

1swuBH

1t1dH 1taxH

1tc1BH

1tcaH

1tenH

1tfeH

1thvH

1tifH 1tmlH1toaAH

1tph1H1ttbAH

1tudH

1tx4AH

1tyvH

1uaeH

1ubpH

1uchH

1ugiDH

1uroH

1ushH

1uteH1uxyH

1vcaAH

1vccH
1vfrAH

1vfyH

1vhhH1vieH
1vjsH

1vnsH
1vsrH

1wabH

1wapBH 1whiH

1xikAH

1xjoH

1xnbH

1xwlH
1yacBH

1ygeH

1ytbAH

1yveIH

1zinH

256bAH

2a0bH

2actH2acyH

2ahjCH
2ahjDH

2arcBH

2ayhH

2baaH

2bbkHH

2bbkLH

2bc2AH

2bopAH

2cbaH

2cbpH

2cpgAH

2cplH

2cppH

2ctcH

2cuaAH

2cypH

2dpmH

2driH

2endH

2engH

2erlH

2fdnH

2garH

2hbgH

2hftH

2hmzAH

2igdH

2ilkH

2kntH

2lisH

2mcmH

2mhrH

2msbAH
2myrH

2nacAH

2nlrH
2porH

2pthH

2pvbH

2qwcH

2rn2H

2sakH

2sn3H

2spcAH

2tgiH

2tnfAH

2tpsAH2trxAH

3btoAH

3chbDH

3chyH

3claH

3cyrH

3eipAH 3ezmH

3grsH

3htsBH

3nulH

3proCH

3pteH
3pviAH

3pypH

3sdhAH

3sebH

3silH

3stdAH

3vubH

451cH

4eugH

4lztH

4pgaAH

4xisH
5cytH

5hpgAH

5icbH

5nulH

5p21H

6celH

6gsvBH

7a3hH

7atjH

7fd1H

7odcH

7rsaH

8abpH 8rucAIH

9wgaAH

1fasH

1fltVH1fltYH

1tgsIH

3ebxH

1edmBH
1tgxAH

1a92AH

estimated probabilities

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
20

40
60

80
10

0

9



We now consider a hypothetical “new” protein 1xb1 — which is not in the training database

— using the proposed validation procedure, and compare the outcomes with Procheck [Laskowski

Histogram of minimum probabilities
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Figure 4: Left: Histogram of log of the minimum tail probabilities for each of the Kinemage

proteins, with minimum of the “test” protein 1xb1. Right: Boxplots of the log of the minimum

tail probabilities by amino acid for the database, with extra points (×) corresponding to 1xb1.

et al., 1993], which is a commonly used tool for the validation of protein structures. (Procheck,

as well as MolProbity [Lovell et al., 2003] are used as part of a bigger validation tool provided

by the Protein Data Bank.) The geometric mean for the angles is 0.28, which is well within a

“normal” range of overall validation probabilities (Figure 3). The minimum P̂ is 1.7 × 10−11,

which — at first sight — does look significant, and it is a particular residue (E) that Procheck

associates with a “disallowed region”. However, if we consider a similar calculation for each of

the 500 Kinemage proteins, then this minimum ranks 14 — see Figure 4. Boxplots for each log pj

over the Kinemage database, with a comparison of the corresponding values for protein 1xb1

provides another visual check (Figure 4). More formal tests which compare the distribution of

the minimum amino acid tail probabilities of the Kinemage proteins with 1xb1 give p-values

ranging around 0.1.

6 Discussion

The above probabilities all critically depend on the choice of smoothing parameter — λ for the

von Mises kernel. In general, the smaller is λ (which corresponds to more smoothing), the larger

is the validation probability, and the less sensitive is the test.

In principle, the above method could be used on any dataset. Ideally, one would like training

data which consists of a large database of independent bivariate observations which are known

to be “correct”. (Note that our use of the Kinemage database does not have the sought-after

independence.) Probability estimates P̂A(φ,ψ), P̂C(φ,ψ), . . . for each amino acid require selection

10



of the λ’s which could be obtained by cross-validation (or a plug-in rule). Having stored the

P̂ ’s (on a reasonably fine grid on the torus) then formula (3) could be used to validate any new

protein structure.

An alternative to cross-validation for selection of the λ’s is to consider an adaptive kernel

bandwidth. Theoretical results — see, for example Terrell and Scott [1992] — suggest that using

a separate bandwidth for each observation, with a bandwidth that depends on density, will have

better theoretical properties. This approach has been adopted by Lovell et al. [2003], although

they have used an inefficient Cardioid kernel, and an adaptation that is not consistent with theory

which suggests that, for a von Mises kernel with concentration λ, the adaptive bandwith for

observation i should satisfy λi ∝ f(φi, ψi). However, limited simulation experiments suggest that

λi ∝ f(φi, ψi)
γ with γ ≈ 0.7 may work better for large datasets. Further work will investigate

this more closely, as well as examining which of the above proposed scores are more useful.
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J. Klemelä. Estimation of densities and derivatives of densities with directional data. Journal

of Multivariate Analysis, 73 (2000), 18–40.

R. A. Laskowski, M. W. MacArthur, D. S. Moss, J. M. Thornton, PROCHECK - a program to

check the stereochemical quality of protein structures. J. App. Cryst, 26 (1993), 283–291.

A. M. Lesk, ntroduction to protein science : architecture, function, and genomics. 2nd edition

Oxford: Oxford University Press, 2010.

S.C. Lovell, I.W. Davis, W.B. Arendall III, P.I.W. de Bakker, J.M. Word, M.G. Prisant, J.S.

Richardson, and D.C. Richardson. Structure Validation by Cα Geometry: φ,ψ and Cβ

Deviation. Proteins: Structure, Function and Genetics, 50 (2003), 437–450.

K. V. Mardia and P. E. Jupp. Directional Statistics. John Wiley, New York, NY, 1999.

K. V. Mardia, J. T. Kent and J. M. Bibby. Multivariate Analysis. London: Academic Press,

1979.

K.V. Mardia, C.C. Taylor, and G.K. Subramaniam. Protein bioinformatics and mixtures of

bivariate von mises distributions for angular data. Biometrics, 63 (2007), 505–512.

M. L. Rizzo Statistical Computing with R. Boca Raton: Chapman & Hall, 2007.

C. C. Taylor. Automatic bandwidth selection for circular density estimation. Computational

Statistics & Data Analysis, 52 (2008), 3493–3500.

G. R. Terrell, and D. W. Scott. Variable kernel density estimation. Annals of Statistics, 20

(1992), 1236–1265.

12


