UNIVERSITY OF LEEDS

This is a repository copy of Chain Plot: A Tool for Exploiting Bivariate Temporal Structures.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/74711/

Article:

Taylor, CC and Zempeni, A (2004) Chain Plot: A Tool for Exploiting Bivariate Temporal
Structures. Computational Statistics and Data Analysis, 46 (1). 141 - 153 . ISSN
0167-9473

https://doi.org/10.1016/S0167-9473(03)00120-8

Reuse
See Attached

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/



mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Chain Plot: A Tool for Exploiting Bivariate Temporal
Structures

C.C. Taylor

Dept. of Statistics,
University of Leeds,
Leeds LS2 9JT, UK

A. Zempkni

Dept. of Probability Theory & Statistics,
Eotvos Lond University,

Paznany ftany 1/C,

Budapest, H-1117

Abstract

In this paper we present a graphical tool useful for visuradizhe
cyclic behaviour of bivariate time series. We investigaseproper-
ties and link it to the asymmetry of the two variables conedriWe
also suggest adding approximate confidence bounds to théspmm
the plot and investigate the effect of lagging to the chawt.plve
conclude our paper by some standard Fourier analysisingland
comparing this to the chain plot.

Keywords: Asymmetry of Variable Levels; Environmental, Ex-
ploratory Data Analysis; Pollution; Symmetry; PeriodienE Series;
Visualization.
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1 Introduction

The idea we investigate in this paper has emerged duringavedy/
simple-looking problem in data analysis. We were given a et
from an automatic measurement station located at Szegath&ast-

ern Hungary. Environmental (climate and pollution) measwnts
were collected with readings every half an hour over a 4-peand.

For a detailed description and alternative analysis of tta det see
Makraet al. (2001). The method we describe in this paper was found
to be very useful for the data given. It is generally applieab the
analysis of bivariate time series with cyclic, or seasoc@mnponents.

We suggest the following plot as a visualization of the ji@bhaviour
of the daily pattern of certain pollutants. Let us supposgttitine se-
ries (X;)I_, and (Y;)L, have a periodic component with lengft
(in our caseX; andY; are half-hourly readings for two pollutants at
the time pointt, so N = 48). Let

o N T/N o N T/N
X = T ; Xt (i-1)N Y= T ; Y-y k=1,... N

(1)
Figure 1 is a scatter plot of these values on theg axis, labelled

by k, together with the usual separate time series plot of the two
components. In this example one of the series has a bimadatste,
whereas the other series is roughly unimodal though asyrmumeéhe
chain-like pattern gave us some ideas for further investigavhich

we present in the following sections.

Chain Plot: NO, vs O3 NO, concentration: half-hourly means O3 concentration: half-hourly means
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Fig. 1. Half-hourly means for two pollutants: simple chalat@nd marginal plots



temperature

We investigate behaviour of the chain plot for determinifiinctions
in Section 2, and bootstrap methodology for inference intiGed.
Some statistical applications are in section 4, and a bresfudsion
concludes the paper.

2 Chain plot for deterministic functions

In this section we consider continuous, deterministic fioms rather
than random variables, as this allows us to prove simpldtsgsihich
have obvious applications to the original setup as well. Wgpsse
our functionsz(t) andy(¢) to be bounded, continuous and defined
for ¢t € [0,1]. We note here that the time-scale transformations have
no effect on the suggested chain plot. Let us consider thplsimof

the two, sayz, as the reference function. As we want to get chain
plots rather than open-ended line plots, we confine oursdtvéhe
casesr(0) = z(1), y(0) = y(1) (which automatically holds for the
motivating example of periodic time series). In this setup,formal
definition of the chain plot isd := {(z(¢),y(t)) : t € [0,1]}. Thisis

of course a closed curve, and we shall investigate its ptiegdyelow,
which are relevant to the statistical problem under comattn.

As a motivation of our results, we show another example ofanch
plot in Figure 2 where we observe an almost one-dimensioaal b
haviour. This is substantially different from Figure 1. Whs the
main reason behind these differences?

Chain Plot: Humidity vs Temperature Humidity: half-hourly means Temperature: half-hourly means
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Fig. 2. Half-hourly means for climate variables: conneathdin plot and marginal plots

Let us defineA(z, y) as the total area within the closed curve, where



we might omit the arguments if it does not cause confusion.

2.1 The simplest case

In this section we introduce the main notions of this papex setup
which allows an easy interpretation.

Definition 1 We say our reference functianis simpleif it is strictly
monotonically increasing in0,¢,] and strictly monotonically de-
creasing infty, 1].

Remark 1 We note that we have not claimed the derivative: dd
exist at all the points.

We supposed that(0) = min{x(¢) : ¢t € [0,1]}, but it is not a real
condition, as the endpoints of the interval can be choseitrarily.
We have not posed any conditions for the &ett) : ¢ € [0, 1]}, but
in order to make the chain plot area for different pairs ofclions
(x,y) to be comparable, it is advised to normalize all the vargble

There are lots of real-life cases, where one of the comperddrihe
bivariate time series can be considered as a simple funteanper-
ature over a day being the most obvious example, see alsceR2jyu
The conditions of the following lemma are not at all unreadisn
real-life examples.

Let 2 be a simple function and defing : [0,%)] — R asz|j, and
Ty [to, 1] — R asz|p, 1.

Lemma 1 Let = be simple and suppose thak consists of a single
chain (.e.it is homeomorphic to a circle). Then

[y v )du = [V y(az' @)au]. (@)

Proof We just have to observe that Definition 1 and the remarks
afterwards imply that the chain can uniquely be cut into tvaotq
where the cutting points are its unique minimal and maxinades



along thez-axis:

{(@(t),y(t)) : t € [0,1]} = {(w, y(a1 " (w))) : u € [2(0), z(to)]}
U {(u,y(zy ' (u)) : w € [2(0), 2(to)(B)

As the two parts defined in (3) have no intersection pointdeirt
interior, the assertion (2) is a simple consequence of (3).

In the remainder of this section we use a transformationclvis
again the easiest to be introduced for simple referencaitng It is
similar to the probability-integral transformation — semlrechtset
al. (1999) for example — used to transform marginal distrilngiof
bivariate random variables to uniform ones. We use the fioams-
tion for one coordinate only, in order not to change the valug. In
our actual deterministic world, the role of the uniform disiition is
of course played by the function(t) = ct or z(t) = ¢(1 — t). Let

(E(0). 5(1)) = (2t (to), y(x1 " (2t2(t0)))) if 0<t<05
’ (21 — Balto), y(a3 (2(1 — H)a(te)))) if 0.5 < ¢ < 1
(4)

Remark 2 It is obvious that transformation (4) does not affect the
chain plot.z is a simple function, too.

We now reformulate — and at the same time generalize — our-prev
ous result (Lemma 1). This makes it easier to understand dagimg

of the aread we investigate and even more importantly it allows fur-
ther generalizations.

Proposition 1 Let z be simple. Then
0.5, _ ~
A= [ 1pu) = 51 = w)ldu (5)

Proof By Remark 2 we know tha#d can be calculated using the
functions(z, ¢). Sincex is simple A is a union of the areas of simple
chains, defined by the intersection poings: € [0, 1] : g(u) = g(1 —

u)}. For each simple chain, the area can be calculated by Lemma



1. It only has to be observed that the continuityzoéind y implies
that on the whole domain of integration eithg) > g(1 — u) or
y(u) < g(1—u), sowe can move the absolute value into the integral.

Formula (5) turns out to be important for calculating theaaog a
chain plot for observed data.

Definition 2 Theasymmetry indexf y with respect to a simple is
defined asAl(y, x) := A.

Analogues of this definition can be found in the literatum@: the
dependence function of bivariate extremes, an analogofustaba
was given in Villa-Diharce (2001). Our definition is easilyptivated,
see the first of the following properties:

(i) Al(y,z) =0 <= g(u) = g(1 —u) holds for allu € [0, 1].
This means that the behaviour gfduring the period of which
x Increases is exactly symmetric to its behaviour during #e d
crease ofr.

(i) If 0 <y < 1,then0 < Al(y,z) < 1, where the latter in-
equality can be changed into “smaller or equal” if we allow fo
noncontinuousy: y = dy, 1) hasAl(y,») = 1.

(i) The visible asymmetry in Definition 2 can be easily resal if
y is itself simple, since then we can choageas the reference
function and thus we are allowed to define (z,y) = A as
well.

Neither co-ordinates of Figure 1 are simple functions (eaéier
shifting the time scale to ensurg(0) = min{x(¢)}), SO we must
introduce necessary modifications in order to cover thissamilar

cases.
2.2 Some generalizations

Our aim is by no means to find the possible boundaries of the gen
eralizations, since we are mostly interested in questiassg from
statistical analysis.



So we loosen the conditions imposed for our reference fonatito
such an extent only, which allows the investigations of picady all
real-life applications.

Definition 3 We say our reference functionis normalif there are
points0 = s1 < t] < 89 <ty < 83 < - < ty, < Spy1 = 1
such thatz is strictly monotonically increasing oves;, t;] and x
is strictly monotonically decreasing ovét;, s;.1] or it is constant
over the whole intervals;, s; 1] (: = 1,...,m)andmin{x(t) : t €

[0, 1]} = (0).

Remark 3 The simple reference functions are exactly those normal
ones, which are non-constant and for which= 1.

Now the definition of the area of the chain plot is far from sjhd
forward, as in this more complicated case several innerdaoypl un-
usual configurations might arise (we do not think them to bey ve
common in real applications). We choose one possible definit
which is just an iteration of cases defined in the previous@ec

Let A be a chain plot which intersects itself by finitely many psint
Then we define its area recursively ds= A; + A*, where A4, is
the area of the first subchain (which is obtained simply byvirg
the plot until it is first closed). We then omit this part frohetchain
(A* is the remainder), and define its area similarly (this is detby
A*). More formally:

Step 1Let vy := min{u : Jv < u : z(u) = z(v),y(u) = y(v)}
(let v; be the corresponding) and the chaid; := {(z(¢),y(t)) :
v1 <t < wuy}. (It should be noted that extreme cases, where one
segment of the chain exactly coincides with another segnaeat
excluded from this definition — but one can get rid of such gart
by moving one of its components slightly, for example).

Step 2 The remaining part of the chain is thdiiz(¢),y(¢)) : 0 <
t < v} U{(x(t),y(t)) : uy <t <1} and go back to Step 1 (to
find the next sub-chain etc.)

Remark 4 Our definition of the area makes it possible to calculate a



certain area twice (see Figure 3), but it seems to be log@althese
parts play a multiple role in the asymmetry.

schematic chain plot marginal plots of x and y
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Fig. 3. Left: A schematic chain plot, in which there is a regighich is counted twice when
the total area is calculated. Right: the two functiar{$) (line) andy(¢) (dashed).

Now we have reduced our task of calculating the area of a gain
to the calculation of4;, which is homeomorphic to a circle — but of
course not always simple in the sense of our Definition 1. tialc
calculations of such an area can easily be performed by ncaher
methods. But in order to prepare the statistical procedoiresction
3 we sketch an iterative algorithm for the reduction of themal case
to the sum of simple ones as follows.

For a non-intersecting chain plot with a normal referencefion, we
can calculate its area iteratively: Let us use the notatfatetnition
3 and lete > 0 be so small thall uy € [0, 1] : z(ug) = x(s2) — €.
Then the line segment

I = {(2(s2) — te, y(s2) — (y(s2) — y(uo))t) : t € [0,1]
is entirely within the closed curve. Now the chain
{(z(u), y(w) s uo <u < s} U (6)

IS a chain with a simple reference function and theoordinate of
the remainder chain

{(@(u),y(w)): 0 <u <up UTU{(x(u),y(u) - s2 <u <1} (7)



has exactly one less maximum point, so the iteration is fadsh just
a finite number of steps.

As a final remark, we mention that the total area of the chai pl
Is the sum of local asymmetries for subchains, correspgridirthe
constructed simple parts of the normal reference function.

3 Statistical applications

3.1 Asymmetry index-calculation for observed data

Using the notions introduced in the previous section, omecedcu-
late the asymmetry index for the observed data. In order sngdone
only needs to interpolate the values between the obsenvptmts
(X4, Y,) and (X;.1,Y11). The simplest method is the linear inter-
polation, which we preferred in the current paper.

Carrying this out for the data under investigation, we getfthlow-
ing results. After normalizing both variables so that th@imum is

0 and the maximum is 1 — which is preferred here to the morelusua
normalization based on the standard deviation, since thaldnallow
arbitrarily large values foA in spite of the bounded variance — we
get area).453 for the chain plot in Figure 1 (N®vs.O3) and0.053
for the chain plot in Figure 2 (humiditys.temperature). For a chain
plot which forms a circle, the (normalized) arearig4 = 0.785, and

a square gives ardawhich is the maximal value for plots which only
include areas once. For the plot in Figure 3 the asymmetrgxingl
0.879.

3.2 Alignment and Lagging

The structure of the chain plot (its area and number of ietdisg
points) is associated with the general alignment of the ime teries.

To illustrate this further, and to indicate another possiide of chain
plots, we plotaggedversions in Figure 4. In this case we can see that
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the first part of the series is “aligned” (though possiblyhnopposite
sign) when they variable is lagged+2 whilst the second part of the
day is closely aligned when thevariable is lagged-4. This means
that by finding those lags which provide the smallest areaethain
plot, we can find those shifts where the two variables showrtbst
symmetrical behaviour (this lag can be interpreted as thdédathe
effect of one variable on another).

O lagged 1 O3 lagged 2 O3 lagged 3 O lagged 4

% A o 2 = P 5 o ) A % A o ) A %
NO, NO, NO, NO,

O3 lagged -1 O3 lagged -2 O3 lagged -3 O3 lagged 4

O3
0

P s s 2 2 P s 0 2 2 0 5 o 2 2 P
NO, NO, NO, NO,

Fig. 4. Connected chain plots for lagged series. Top rowitigedags; Bottom row: nega-
tive lags

3.3 A method for testing symmetry

Our aim in this subsection is to give a procedure for testymyraetry
between the variables. It is worth mentioning that in sonsesathe
physical processes behind the observed data suggest psésiae
Figure 4). In order to cope with this phenomenon, we first mine
the asymmetry index with respect of possible lags:

Amin = mwiln A[(Yt, ?t—m) (8)

From now on let us suppose that thiehas been shifted so that the
question is the symmetry ¢fX;, Y,) is the most symmetric data set
for which the symmetrical behaviour with respect to the nexiee X
IS investigated. The question we consider is the followican the

10



symmetry be accepted, based on an observed asymmetry itfelex

In order to tackle this question, we might either use parametod-
elling with a symmetric model:

Yt Xt + & (9)

where in the simplest case can be considered as an i.i.d. sequence
of 0-mean random variables. For such models more or lesglstra
forward methods for statistical inference are available.obvious
disadvantage of such an approach is that the cause of théleoss
rejection is not clear: it might well happen that there i jais ac-
ceptable level of discrepancy from symmetry, and rejectsoanly
based on the poor fit of the model. We thus suggest an alteenati
nonparametric method, focusing only on the symmetry.

Let us first suppose that the reference function construnyddter-
polation is simple. If it is only normal, then the procedufg®-7)

can be used to cut the curve into simple parts and then the syyym
of these parts can be tested independently. Let us use tisédrana-
tion ~ defined in the previous section in (4). This is of course based
on the observed averages and Y, but from now on we omit the
overline, when using-.

Our method relies on the fact that the area for the normaliedan
be approximated by

n/2—1
- S (¥ (/n) = V(1= k) (10)

(see (5), we supposedto be an even number). Equation (10) shows
that it is much more useful to base our procedures on the astn
valuesY ((k/n)) rather than the observéd, for which the contribu-
tion very much depends on the differen¥e , — X;. Let us introduce
the notationD(k/n) := Y ((k/n)) — Y ((1 — k/n)) and consider the
increments of the proceds(k/n): o, :== D(k/n)—D((k—1)/n) for
k=1,2,...,n/2.Itis obvious thalsz1 o, = D(1/2) — D(0) =0
and that part of Equation (10) where there is no sign changhe
absolute value is not needed) can be express@dﬁﬁ(nﬂ — k)op,

11



so we get the maximal value if thievalues are ordered.

Now we can describe the procedure we suggest: if we generate a
random permutation of the sét, ... , n/2} and permute the vector
(d1,...,0,/2) thenwe get another closed curve. If there was no asym-
metry between the variables, then we could suppose tharitieal
permutation was just a typical one, so the area of the ofigimae
would be near to this generated one.

If we repeat the permutation proceduké times and calculate (10)
for all, then we getM different possible values of the symmetry in-
dex. If the observed! is larger than the 95 (99 etc)% quantile of
this observed distribution, then the symmetry can be regect

There is an open question how to choasm Equation (10). We sug-
gest to use the same number of points as for the original wésens.
This could be investigated, but for ax with constant derivative we
use just the original observations. Another point agairiebaefined
grid is the extensive computing time and that in such caseesilal-
ways there is strong dependence among neighbouring valiesh
indicates that there is little gain in using all of them.

The suggested approach shows similarities to the methedspied

in Schmid and Trede (1995), where the classical two sammb-pr
lem is tested by a method, based on the area between two curves
The asymptotic distribution of their test statistic is theegral of the
Brownian bridge (see Shepp, 1982 for its tabulated didiob). We

also get this limit distribution for the scaled and randasmizequence

if certain mixing conditions can be supposed for the segeiénbut

as in our problems we have a definite, not too large number, age

do not exploit this idea here.

Applying the above method to the bivariate dataset of samelans
illustrated in Figure and 2 we get an estimajedalue (based on
10 000 bootstrap samples)@b268, and a few of the simulated chain
plots, corresponding to various critical values, are shmwkigure 5.
These plots are constructed with the same end points asdaatin
data. Thisp-value may be surprisingly small, given that the marginal

12



plots have a very similar structure, and the asymmetry intdel was
small. However, this sample size af= 1460 means that the chain
plot is very smooth and so there is little variability in thesultingy .
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Fig. 5. Simulated chain plots (continuous line) correspogdo the 0.999, 0.99, 0.9 and
0.5 gquantiles of the empirical distribution of the resard@symmetry index, based on the
(rescaled) chain plot of the data (dashed line) shown inrgigu
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4 Extensions

4.1 Correlations

The cross-covariance betweéi;)., and (Y;)L, at lagj is esti-
mated by

1 T—J — ,
and the cross-correlation at lgags estimated by
N Cry
Try(]) - sty

wheres? = T~y (X, — X)2. For the type of data considered here
most of the cross-correlation can be attributed to the Faadtlioth.X,
andY; have very pronounced periodic components. For example, for
the data considered in Figures 1 and 2 the cross-corretadi@given

in Figure 6. In such cases, we ought to consider the coroelafter

Cross-correlations: Humidity & Temperature Cross-correlations: NO, and O3
sl A
{7 T i wnmm [

Fig. 6. Cross-correlations of bivariate data

allowing for the periodic effects. This can be done by coaesmj the
cross-covariance at lagfor points at seasonal time, which is given

by
N T/N- — —
T Z (Xk;+z‘ N — X5) Vit jr@-nn — Yies) (1)

t=1

ny(kaj> -

14



fork=1,...,N, j=...,-1,0,1,..., N — j whereX; andY
are given in Equation (1). The adjusted sample cross-@tioael can
be estimated in an analogous manner. Incorporating alli®frtfor-
mation on the chain plot is difficult, since we now hawe cross-
correlation plots to display. However, if we initially cader j = 0
and use a normal approximation to describe the joint digtio of
X; and Y, then we can includa00(1 — «)% confidence limits
around each point in the chain plot. An example is shown iufég
7 which shows how the variability in the two variables changeer
time. An efficient way to construct such contours is to us@pob-
ordinates as follows.

Let § be a sequence of lengthangles in[0, 27|, and form thel x 2
matrix M = [cos 0, sin #]. Givenk, j form the covariance matrix for
the relevant data, say

Ca:r(kyj) Ca:y(k7])
Cya:(k7]) ny(k7])

Z:

Now solvev = X~'MT and then plot polar co-ordinateg?), ¢
around( X, Y ) wherer(0) is a vector of lengthi determined by

2
2 . Xa(1 — )
r(0) = v Mu

whereu = (1,1)T and x3(1 — «) is the 100(1 — «)% point from a
v? distribution with2 degrees of freedom.

It is evident in Figure 7, except around the middle of the dayds
20-30), that there is a small negative correlation betwegra
NO,. Such a plot also indicates times of greater joint changéen t
daily means — in this example between time period 10 and 1D(5:
and 5:30 a.m.), and from time periods 16 to 21 (8:00 to 10:80)a.
See Makreet al. (2001) for a more detailed analysis of the data.

15



Chain Plot with 90% Confidence Interval
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Fig. 7. Modified chain plot with 90% confidence intervals fgsia multivariate normal
approximation) based on the conditional covariance at ea@hpoint

4.2 Fourier Analysis

A straightforward Fourier analysis was made harder by thgela
number of missing values. So, in order to compare with thev@bo
results we fitted a linear model corresponding to only dailg 42
hourly periods (Bloomfield, 2000). That is, for each timeiesgrwe
fitted the model:

X; = a+ Ry cos(wit + ¢1) + Ro cos(wat + o) + &4

where R;, ¢;,© = 1,2 are the fitted amplitudes and phases, respec-
tively, corresponding to the frequencies with w; corresponding to
24-hourly and 12-hourly periods far= 1, 2, respectively. The re-
sults for the four time series used as examples in this papeh@wn

16



in Table 1.

Daily cycle 12-hour cycle
Time series| Amplitude Phase Amplitude Phaseg
NO, 40 1.37 7.06 2.18
O3 16.1 231 7.61 -0.94
Humidity 9.1 -0.94 212 -1.04
Temperature 35 224 0.76 -0.66

Table 1
Amplitude and phases corresponding to two fitted periodedah of four time series

For the climate time series (humidity and temperature) tiraidat-
ing period is the daily cycle, and the two phases are veryaindihis
implies that the asymmetry index is small (see Figure 2) and vi-
sually we would expect the chain plot to be long and thin. fher t
two pollutants, the phases for the daily cycle are very thife, and
the 12-hourly cycle is relatively more important for N@han for
O3. These values are consistent with the chain plot analysis (@
the phase differences, the lagging was necessary for acpisgme
symmetry), but we think not so immediately informative. brficu-
lar, it is not obvious how the two series can be partiallyradid using
the given phases for the two cycles.

5 Discussion

We end our paper with some comments on the use of the suggested
graphical tool. As here we have practically three dimersianin-
vestigate (time+two variables), the traditional sequenifckivariate
scatterplots (2 time series plots plus a scatterplot in agegrdo not

give a clear picture of the evolution of the relation overdim

We estimated the proposed measure of asymmetry for the ddéa u
investigation. An objective comparison of asymmetry infetiént
data sets was possible by the proposed nonparametric method

17
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