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Chain Plot: A Tool for Exploiting Bivariate Temporal
Structures

C.C. Taylor
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Dept. of Probability Theory & Statistics,
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Abstract

In this paper we present a graphical tool useful for visualizing the
cyclic behaviour of bivariate time series. We investigate its proper-
ties and link it to the asymmetry of the two variables concerned. We
also suggest adding approximate confidence bounds to the points on
the plot and investigate the effect of lagging to the chain plot. We
conclude our paper by some standard Fourier analysis, relating and
comparing this to the chain plot.

Keywords: Asymmetry of Variable Levels; Environmental; Ex-
ploratory Data Analysis; Pollution; Symmetry; Periodic Time Series;
Visualization.



1 Introduction

The idea we investigate in this paper has emerged during a relatively
simple-looking problem in data analysis. We were given a data set
from an automatic measurement station located at Szeged, Southeast-
ern Hungary. Environmental (climate and pollution) measurements
were collected with readings every half an hour over a 4-yearperiod.
For a detailed description and alternative analysis of the data set see
Makraet al. (2001). The method we describe in this paper was found
to be very useful for the data given. It is generally applicable to the
analysis of bivariate time series with cyclic, or seasonal,components.

We suggest the following plot as a visualization of the jointbehaviour
of the daily pattern of certain pollutants. Let us suppose the time se-
ries (Xt)

T
t=1 and (Yt)

T
t=1 have a periodic component with lengthN

(in our caseXt andYt are half-hourly readings for two pollutants at
the time pointt, soN = 48). Let

Xk =
N

T

T/N
∑

i=1

Xk+(i−1)N Y k =
N

T

T/N
∑

i=1

Yk+(i−1)N k = 1, . . . , N.

(1)
Figure 1 is a scatter plot of these values on thex, y axis, labelled
by k , together with the usual separate time series plot of the two
components. In this example one of the series has a bimodal structure,
whereas the other series is roughly unimodal though asymmetric. The
chain-like pattern gave us some ideas for further investigation which
we present in the following sections.
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Fig. 1. Half-hourly means for two pollutants: simple chain plot and marginal plots
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We investigate behaviour of the chain plot for deterministic functions
in Section 2, and bootstrap methodology for inference in Section 3.
Some statistical applications are in section 4, and a brief discussion
concludes the paper.

2 Chain plot for deterministic functions

In this section we consider continuous, deterministic functions rather
than random variables, as this allows us to prove simple results, which
have obvious applications to the original setup as well. We suppose
our functionsx(t) and y(t) to be bounded, continuous and defined
for t ∈ [0, 1]. We note here that the time-scale transformations have
no effect on the suggested chain plot. Let us consider the simpler of
the two, sayx, as the reference function. As we want to get chain
plots rather than open-ended line plots, we confine ourselves to the
casesx(0) = x(1), y(0) = y(1) (which automatically holds for the
motivating example of periodic time series). In this setup,the formal
definition of the chain plot isA := {(x(t), y(t)) : t ∈ [0, 1]}. This is
of course a closed curve, and we shall investigate its properties below,
which are relevant to the statistical problem under consideration.

As a motivation of our results, we show another example of a chain
plot in Figure 2 where we observe an almost one-dimensional be-
haviour. This is substantially different from Figure 1. What is the
main reason behind these differences?
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Let us defineA(x, y) as the total area within the closed curve, where
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we might omit the arguments if it does not cause confusion.

2.1 The simplest case

In this section we introduce the main notions of this paper ina setup
which allows an easy interpretation.

Definition 1 We say our reference functionx is simpleif it is strictly
monotonically increasing in[0, t0] and strictly monotonically de-
creasing in[t0, 1].

Remark 1 We note that we have not claimed the derivative ofx to
exist at all the points.

We supposed thatx(0) = min{x(t) : t ∈ [0, 1]}, but it is not a real
condition, as the endpoints of the interval can be chosen arbitrarily.
We have not posed any conditions for the set{x(t) : t ∈ [0, 1]}, but
in order to make the chain plot area for different pairs of functions
(x, y) to be comparable, it is advised to normalize all the variables.

There are lots of real-life cases, where one of the components of the
bivariate time series can be considered as a simple function(temper-
ature over a day being the most obvious example, see also Figure 2).
The conditions of the following lemma are not at all unrealistic in
real-life examples.

Let x be a simple function and definex1 : [0, t0] → R asx|[0,t0] and
x2 : [t0, 1] → R asx|[t0,1] .

Lemma 1 Let x be simple and suppose thatA consists of a single
chain (i.e. it is homeomorphic to a circle). Then

A =

∣

∣

∣

∣

∣

∫ x(t0)

x(0)
y(x−1

1 (u))du−
∫ x(t0)

x(0)
y(x−1

2 (u))du

∣

∣

∣

∣

∣

. (2)

Proof We just have to observe that Definition 1 and the remarks
afterwards imply that the chain can uniquely be cut into two parts,
where the cutting points are its unique minimal and maximal values
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along thex-axis:

{(x(t), y(t)) : t ∈ [0, 1]} = {(u, y(x−1
1 (u))) : u ∈ [x(0), x(t0)]}

∪ {(u, y(x−1
2 (u))) : u ∈ [x(0), x(t0)]}(3)

As the two parts defined in (3) have no intersection points in their
interior, the assertion (2) is a simple consequence of (3).

In the remainder of this section we use a transformation, which is
again the easiest to be introduced for simple reference functions. It is
similar to the probability-integral transformation — see Embrechtset
al. (1999) for example — used to transform marginal distributions of
bivariate random variables to uniform ones. We use the transforma-
tion for one coordinate only, in order not to change the valueof A. In
our actual deterministic world, the role of the uniform distribution is
of course played by the functionx(t) = ct or x(t) = c(1 − t). Let

(x̃(t), ỹ(t)) :=



















(2tx(t0), y(x−1
1 (2tx(t0)))) if 0 ≤ t ≤ 0.5

(2(1 − t)x(t0), y(x−1
2 (2(1 − t)x(t0)))) if 0.5 < t ≤ 1

(4)

Remark 2 It is obvious that transformation (4) does not affect the
chain plot.x̃ is a simple function, too.

We now reformulate — and at the same time generalize — our previ-
ous result (Lemma 1). This makes it easier to understand the meaning
of the areaA we investigate and even more importantly it allows fur-
ther generalizations.

Proposition 1 Let x be simple. Then

A =
∫ 0.5

0
|ỹ(u) − ỹ(1 − u)|du. (5)

Proof By Remark 2 we know thatA can be calculated using the
functions(x̃, ỹ). Sincex is simpleA is a union of the areas of simple
chains, defined by the intersection points:{u ∈ [0, 1] : ỹ(u) = ỹ(1−

u)}. For each simple chain, the area can be calculated by Lemma

5



1. It only has to be observed that the continuity ofx and y implies
that on the whole domain of integration eitherỹ(u) > ỹ(1 − u) or
ỹ(u) < ỹ(1−u), so we can move the absolute value into the integral.

Formula (5) turns out to be important for calculating the area of a
chain plot for observed data.

Definition 2 Theasymmetry indexof y with respect to a simplex is
defined asAI(y, x) := A.

Analogues of this definition can be found in the literature: for the
dependence function of bivariate extremes, an analogous definition
was given in Villa-Diharce (2001). Our definition is easily motivated,
see the first of the following properties:

(i) AI(y, x) = 0 ⇐⇒ ỹ(u) = ỹ(1 − u) holds for allu ∈ [0, 1].
This means that the behaviour ofy during the period of which
x increases is exactly symmetric to its behaviour during the de-
crease ofx.

(ii) If 0 ≤ y ≤ 1, then 0 ≤ AI(y, x) < 1, where the latter in-
equality can be changed into “smaller or equal” if we allow for
noncontinuousy : y = δ[t0,1] hasAI(y, x) = 1.

(iii) The visible asymmetry in Definition 2 can be easily resolved if
y is itself simple, since then we can choosey as the reference
function and thus we are allowed to defineAI(x, y) = A as
well.

Neither co-ordinates of Figure 1 are simple functions (evenafter
shifting the time scale to ensurex(0) = min{x(t)}), so we must
introduce necessary modifications in order to cover this andsimilar
cases.

2.2 Some generalizations

Our aim is by no means to find the possible boundaries of the gen-
eralizations, since we are mostly interested in questions arising from
statistical analysis.
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So we loosen the conditions imposed for our reference function x to
such an extent only, which allows the investigations of practically all
real-life applications.

Definition 3 We say our reference functionx is normal if there are
points 0 = s1 < t1 < s2 < t2 < s3 < · · · < tm < sm+1 = 1

such thatx is strictly monotonically increasing over[si, ti] and x
is strictly monotonically decreasing over[ti, si+1] or it is constant
over the whole interval[si, si+1] (i = 1, . . . , m) and min{x(t) : t ∈
[0, 1]} = x(0).

Remark 3 The simple reference functions are exactly those normal
ones, which are non-constant and for whichm = 1.

Now the definition of the area of the chain plot is far from straight-
forward, as in this more complicated case several inner loops and un-
usual configurations might arise (we do not think them to be very
common in real applications). We choose one possible definition,
which is just an iteration of cases defined in the previous section.

Let A be a chain plot which intersects itself by finitely many points.
Then we define its area recursively asA = A1 + A∗ , whereA1 is
the area of the first subchain (which is obtained simply by drawing
the plot until it is first closed). We then omit this part from the chain
(A∗ is the remainder), and define its area similarly (this is denoted by
A∗ ). More formally:

Step 1 Let u1 := min{u : ∃v < u : x(u) = x(v), y(u) = y(v)}

(let v1 be the correspondingv ) and the chainA1 := {(x(t), y(t)) :
v1 ≤ t ≤ u1}. (It should be noted that extreme cases, where one
segment of the chain exactly coincides with another segment, are
excluded from this definition — but one can get rid of such parts
by moving one of its components slightly, for example).

Step 2 The remaining part of the chain is then{(x(t), y(t)) : 0 ≤
t ≤ v1} ∪ {(x(t), y(t)) : u1 ≤ t ≤ 1} and go back to Step 1 (to
find the next sub-chain etc.)

Remark 4 Our definition of the area makes it possible to calculate a
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certain area twice (see Figure 3), but it seems to be logical,as these
parts play a multiple role in the asymmetry.
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Fig. 3. Left: A schematic chain plot, in which there is a region which is counted twice when
the total area is calculated. Right: the two functionsx(t) (line) andy(t) (dashed).

Now we have reduced our task of calculating the area of a chainplot,
to the calculation ofAi , which is homeomorphic to a circle — but of
course not always simple in the sense of our Definition 1. Practical
calculations of such an area can easily be performed by numerical
methods. But in order to prepare the statistical proceduresof section
3 we sketch an iterative algorithm for the reduction of the normal case
to the sum of simple ones as follows.

For a non-intersecting chain plot with a normal reference function, we
can calculate its area iteratively: Let us use the notation of definition
3 and letε > 0 be so small that∃ u0 ∈ [0, t1] : x(u0) = x(s2) − ε.
Then the line segment

I := {(x(s2) − tε, y(s2) − (y(s2) − y(u0))t) : t ∈ [0, 1]

is entirely within the closed curve. Now the chain

{(x(u), y(u)) : u0 ≤ u ≤ s2} ∪ I (6)

is a chain with a simple reference function and thex coordinate of
the remainder chain

{(x(u), y(u)) : 0 ≤ u ≤ u0} ∪ I ∪ {(x(u), y(u)) : s2 ≤ u ≤ 1} (7)
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has exactly one less maximum point, so the iteration is finished in just
a finite number of steps.

As a final remark, we mention that the total area of the chain plot
is the sum of local asymmetries for subchains, corresponding to the
constructed simple parts of the normal reference function.

3 Statistical applications

3.1 Asymmetry index-calculation for observed data

Using the notions introduced in the previous section, one can calcu-
late the asymmetry index for the observed data. In order to doso, one
only needs to interpolate the values between the observation points
(Xt, Y t) and (Xt+1, Y t+1). The simplest method is the linear inter-
polation, which we preferred in the current paper.

Carrying this out for the data under investigation, we got the follow-
ing results. After normalizing both variables so that the minimum is
0 and the maximum is 1 — which is preferred here to the more usual
normalization based on the standard deviation, since that would allow
arbitrarily large values forA in spite of the bounded variance — we
get area0.453 for the chain plot in Figure 1 (NO2 vs.O3 ) and0.053
for the chain plot in Figure 2 (humidityvs.temperature). For a chain
plot which forms a circle, the (normalized) area isπ/4 = 0.785, and
a square gives area1 which is the maximal value for plots which only
include areas once. For the plot in Figure 3 the asymmetry index is
0.879.

3.2 Alignment and Lagging

The structure of the chain plot (its area and number of intersecting
points) is associated with the general alignment of the two time series.
To illustrate this further, and to indicate another possible use of chain
plots, we plotlaggedversions in Figure 4. In this case we can see that
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the first part of the series is “aligned” (though possibly with opposite
sign) when they variable is lagged+2 whilst the second part of the
day is closely aligned when they variable is lagged−4. This means
that by finding those lags which provide the smallest area of the chain
plot, we can find those shifts where the two variables show themost
symmetrical behaviour (this lag can be interpreted as the lag for the
effect of one variable on another).
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Fig. 4. Connected chain plots for lagged series. Top row: positive lags; Bottom row: nega-
tive lags

3.3 A method for testing symmetry

Our aim in this subsection is to give a procedure for testing symmetry
between the variables. It is worth mentioning that in some cases, the
physical processes behind the observed data suggest time lags (see
Figure 4). In order to cope with this phenomenon, we first minimize
the asymmetry index with respect of possible lags:

Amin := min
m

AI(Xt, Y t−m) (8)

From now on let us suppose that theY has been shifted so that the
question is the symmetry of(X t, Y t) is the most symmetric data set
for which the symmetrical behaviour with respect to the referenceX

is investigated. The question we consider is the following:can the
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symmetry be accepted, based on an observed asymmetry indexA?

In order to tackle this question, we might either use parametric mod-
elling with a symmetric model:

Y t = Xt + εt (9)

where in the simplest caseεt can be considered as an i.i.d. sequence
of 0-mean random variables. For such models more or less straight-
forward methods for statistical inference are available. An obvious
disadvantage of such an approach is that the cause of the possible
rejection is not clear: it might well happen that there is just an ac-
ceptable level of discrepancy from symmetry, and rejectionis only
based on the poor fit of the model. We thus suggest an alternative
nonparametric method, focusing only on the symmetry.

Let us first suppose that the reference function constructedby inter-
polation is simple. If it is only normal, then the procedure of (6–7)
can be used to cut the curve into simple parts and then the symmetry
of these parts can be tested independently. Let us use the transforma-
tion ∼ defined in the previous section in (4). This is of course based
on the observed averagesX and Y , but from now on we omit the
overline, when using∼.

Our method relies on the fact that the area for the normalizedAI can
be approximated by

1

n

n/2−1
∑

k=1

|Ỹ (k/n) − Ỹ (1 − k/n)| (10)

(see (5), we supposedn to be an even number). Equation (10) shows
that it is much more useful to base our procedures on the estimated
valuesỸ ((k/n)) rather than the observed̃Yt , for which the contribu-
tion very much depends on the differenceX̃t+1−X̃t . Let us introduce
the notationD(k/n) := Ỹ ((k/n))− Ỹ ((1 − k/n)) and consider the
increments of the processD(k/n): δk := D(k/n)−D((k−1)/n) for
k = 1, 2, . . . , n/2. It is obvious that

∑n/2
k=1 δk = D(1/2) − D(0) = 0

and that part of Equation (10) where there is no sign change (i.e. the
absolute value is not needed) can be expressed as

∑n/2
k=1(n/2 − k)δk ,
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so we get the maximal value if theδ values are ordered.

Now we can describe the procedure we suggest: if we generate a
random permutation of the set{1, . . . , n/2} and permute the vector
(δ1, . . . , δn/2) then we get another closed curve. If there was no asym-
metry between the variables, then we could suppose that the original
permutation was just a typical one, so the area of the original curve
would be near to this generated one.

If we repeat the permutation procedureM times and calculate (10)
for all, then we getM different possible values of the symmetry in-
dex. If the observedAI is larger than the 95 (99 etc)% quantile of
this observed distribution, then the symmetry can be rejected.

There is an open question how to choosen in Equation (10). We sug-
gest to use the same number of points as for the original observations.
This could be investigated, but for anX with constant derivative we
use just the original observations. Another point against atoo refined
grid is the extensive computing time and that in such cases almost al-
ways there is strong dependence among neighbouring values,which
indicates that there is little gain in using all of them.

The suggested approach shows similarities to the methods presented
in Schmid and Trede (1995), where the classical two sample prob-
lem is tested by a method, based on the area between two curves.
The asymptotic distribution of their test statistic is the integral of the
Brownian bridge (see Shepp, 1982 for its tabulated distribution). We
also get this limit distribution for the scaled and randomized sequence
if certain mixing conditions can be supposed for the sequence δ , but
as in our problems we have a definite, not too large number asn, we
do not exploit this idea here.

Applying the above method to the bivariate dataset of samplemeans
illustrated in Figure and 2 we get an estimatedp-value (based on
10 000 bootstrap samples) of0.0268, and a few of the simulated chain
plots, corresponding to various critical values, are shownin Figure 5.
These plots are constructed with the same end points as for the raw
data. Thisp-value may be surprisingly small, given that the marginal
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plots have a very similar structure, and the asymmetry indexitself was
small. However, this sample size ofn = 1460 means that the chain
plot is very smooth and so there is little variability in the resultingδk .
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13



4 Extensions

4.1 Correlations

The cross-covariance between(Xt)
T
t=1 and (Yt)

T
t=1 at lag j is esti-

mated by

cxy(j) =
1

T

T−j
∑

t=1

(Xt − X)(Yt+j − Y ) j = . . . ,−1, 0, 1, . . .

and the cross-correlation at lagj is estimated by

rxy(j) =
cxy

sxsy

wheres2
x = T−1 ∑

(Xt − X)2 . For the type of data considered here
most of the cross-correlation can be attributed to the fact that bothXt

andYt have very pronounced periodic components. For example, for
the data considered in Figures 1 and 2 the cross-correlations are given
in Figure 6. In such cases, we ought to consider the correlation after
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Fig. 6. Cross-correlations of bivariate data

allowing for the periodic effects. This can be done by considering the
cross-covariance at lagj for points at seasonal timek , which is given
by

cxy(k, j) =
N

T

T/N−k
∑

t=1

(Xk+(t−1)N − Xk)(Yk+j+(t−1)N − Y k+j) (11)
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for k = 1, . . . , N, j = . . . ,−1, 0, 1, . . . , N − j whereXk andY k+j

are given in Equation (1). The adjusted sample cross-correlation can
be estimated in an analogous manner. Incorporating all of this infor-
mation on the chain plot is difficult, since we now haveN cross-
correlation plots to display. However, if we initially consider j = 0
and use a normal approximation to describe the joint distribution of
Xk and Y k , then we can include100(1 − α)% confidence limits
around each point in the chain plot. An example is shown in Figure
7 which shows how the variability in the two variables changes over
time. An efficient way to construct such contours is to use polar co-
ordinates as follows.

Let θ be a sequence of lengthl angles in[0, 2π], and form thel × 2
matrix M = [cos θ, sin θ]. Givenk, j form the covariance matrix for
the relevant data, say

Σ =











cxx(k, j) cxy(k, j)

cyx(k, j) cyy(k, j)











Now solve v = Σ−1MT and then plot polar co-ordinatesr(θ), θ
around(Xk, Y k) wherer(θ) is a vector of lengthl determined by

r2(θ) =
χ2

2(1 − α)

vTMu

whereu = (1, 1)T andχ2
2(1 − α) is the100(1 − α)% point from a

χ2 distribution with2 degrees of freedom.

It is evident in Figure 7, except around the middle of the day (times
20–30), that there is a small negative correlation between O3 and
NO2 . Such a plot also indicates times of greater joint change in the
daily means — in this example between time period 10 and 11 (5:00
and 5:30 a.m.), and from time periods 16 to 21 (8:00 to 10:30 a.m.).
See Makraet al. (2001) for a more detailed analysis of the data.
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approximation) based on the conditional covariance at eachtime point

4.2 Fourier Analysis

A straightforward Fourier analysis was made harder by the large
number of missing values. So, in order to compare with the above
results we fitted a linear model corresponding to only daily and 12
hourly periods (Bloomfield, 2000). That is, for each time series, we
fitted the model:

Xt = α + R1 cos(ω1t + φ1) + R2 cos(ω2t + φ2) + εt

whereRi, φi, i = 1, 2 are the fitted amplitudes and phases, respec-
tively, corresponding to the frequenciesωi , with ωi corresponding to
24-hourly and 12-hourly periods fori = 1, 2, respectively. The re-
sults for the four time series used as examples in this paper are shown
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in Table 1.

Daily cycle 12-hour cycle

Time series Amplitude Phase Amplitude Phase

NO2 4.0 1.37 7.06 2.18

O3 16.1 2.31 7.61 -0.94

Humidity 9.1 -0.94 2.12 -1.04

Temperature 3.5 2.24 0.76 -0.66
Table 1
Amplitude and phases corresponding to two fitted periods foreach of four time series

For the climate time series (humidity and temperature) the dominat-
ing period is the daily cycle, and the two phases are very similar. This
implies that the asymmetry indexA is small (see Figure 2) and vi-
sually we would expect the chain plot to be long and thin. For the
two pollutants, the phases for the daily cycle are very different, and
the 12-hourly cycle is relatively more important for NO2 than for
O3 . These values are consistent with the chain plot analysis (due to
the phase differences, the lagging was necessary for achieving some
symmetry), but we think not so immediately informative. In particu-
lar, it is not obvious how the two series can be partially aligned using
the given phases for the two cycles.

5 Discussion

We end our paper with some comments on the use of the suggested
graphical tool. As here we have practically three dimensions to in-
vestigate (time+two variables), the traditional sequenceof bivariate
scatterplots (2 time series plots plus a scatterplot in our case) do not
give a clear picture of the evolution of the relation over time.

We estimated the proposed measure of asymmetry for the data under
investigation. An objective comparison of asymmetry in different
data sets was possible by the proposed nonparametric method.
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