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Seeing beyond 2020: an economic evaluation of 
contemporary and emerging strategies for elimination of 
Trypanosoma brucei gambiense
C Simone Sutherland, Christopher M Stone, Peter Steinmann, Marcel Tanner, Fabrizio Tediosi

Summary
Background Trypanosoma brucei (T b) gambiense is targeted to reach elimination as a public health problem by 2020 
and full elimination by 2030. To achieve these goals, stakeholders need to consider strategies to accelerate elimination. 
Hence, we aimed to model several options related to current and emerging methods for case detection, treatment, 
and vector control across settings to assess cost-eff ectiveness and the probability of elimination.

Methods Five intervention strategies were modelled over 30 years for low, moderate, and high transmission settings. 
Model parameters related to costs, effi  cacy, and transmission were based on available evidence and parameter 
estimation. Outcomes included disability-adjusted life-years (DALYs), costs, and long-term prevalence. Sensitivity 
analyses were done to calculate the uncertainty of the results.

Findings To reach elimination targets for 2020 across all settings, approaches combining case detection, treatment, and 
vector control would be most eff ective. Elimination in high and moderate transmission areas was probable and cost-
eff ective when strategies included vector control and novel methods, with incremental cost-eff ectiveness ratios (ICERs) 
ranging from US$400 to $1500 per DALY averted. In low transmission areas, approaches including the newest 
interventions alone or in combination with tiny targets (vector control) were cost-eff ective, with ICERs of $200 or $1800 per 
DALY averted, respectively, but only strategies including vector control were likely to lead to elimination. Results of 
sensitivity analyses showed that allowing for biennial surveillance, reducing vector control maintenance costs, or 
variations of active surveillance coverage could also be cost-eff ective options for elimination, depending on the setting.

Interpretation Although various strategies might lead to elimination of T b gambiense, cost-eff ective approaches will include 
adoption of emerging technologies and, in some settings, increased surveillance or implementation of vector control.

Funding Bill & Melinda Gates Foundation.
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Introduction
Human African trypanosomiasis, or sleeping sickness, is 
caused by Trypanosoma brucei (T b) gambiense and 
T b rhodesiense. Approximately 70 million people live 
in at-risk areas in sub-Saharan Africa.1 According to 
Global Burden of Disease (GBD) data from the Institute 
for Health Metrics and Evaluation (IHME), human 
African trypanosomiasis contributes an estimated 
560 262 disability-adjusted life-years (DALYs) to the global 
burden of disease and ranks sixth in reference to the 
number of deaths among neglected tropical diseases.2 
T b gambiense is primarily maintained in a human–tsetse 
cycle, whereas T b rhodesiense trans mission entails a large 
spectrum of reservoir animals, mainly game. Thus, 
elimination eff orts have primarily targeted T b gambiense.

In 2011, WHO published a roadmap towards overcoming 
the impact of ten neglected tropical diseases (NTDs),3 and 
this commitment was renewed in January, 2012, as the 
London Declaration on Neglected Tropical Diseases, 
supported by the collaboration Uniting to Combat NTDs, 
became a new benchmark for elimination goals. It was 
then that the goal of control, described as reduction of 

disease to acceptable levels, was shifted to elimination, 
which pursues zero incidence in a defi ned geographical 
area.4 Human African trypanosomiasis caused by 
T b gambiense was one of the diseases targeted for 
elimination as a public health problem by 2020, which is 
defi ned as less than one case per 10 000 people per year,3,5 
and complete elimination by 2030. As the year 2020 
approaches, stakeholders committed to T b gambiense 
elimination have recognised that current interventions are 
resource-intensive, costly, and infeasible in remote or 
sociopolitically unstable areas, hindering foreseen 
elimination goals.5–7 Moreover, with several emerging novel 
technologies and approaches for surveillance, diagnosis, 
treatment, and prevention (vector control) of T b gambiense, 
now is the time to investigate whether new technologies 
can accelerate elimination and, if so, how to allocate current 
resources to the right combination of interventions.8

We aimed to analyse the cost-eff ectiveness of strategies 
for control and elimination of human African trypano-
somiasis caused by T b gambiense and to forecast the 
eff ect of these approaches on disease transmission. The 
outcomes presented here aim to assist decision makers 
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in determining which strategies are most likely to lead to 
elimination and will show good value for money.

Methods
Potential strategies for control and elimination
Various scenarios of current interventions and emerging 
methods have been proposed for control and elimin-
ation of human African trypanosomiasis caused by 
T b gambiense.9 We developed a series of strategies 
using these scenarios over time to ascertain which combin-
ation of interventions would be most likely to sustain 
control or accelerate towards elimination. After preliminary 
modelling (appendix pp 29–38), we identifi ed fi ve strategies 
as relevant options for control or elimination of human 
African trypanosomiasis caused by T b gambiense, which 
are depicted in fi gure 1 and described in the appendix (p 1).

Strategy A, “control”, is one of two strategies recom-
men ded by WHO5 and aims to bring the number of 
annual cases to an acceptable level. It focuses on 
screening and treating patients and refl ects the current 
approach practised by most national sleeping sickness 
control programmes across sub-Saharan Africa. 
In strategy A, patients self-report to local health centres 
(referred to as passive surveillance) and active case-
fi nding is done by teams of health workers who seek out 
patients living in aff ected areas (active surveillance). 
Diagnosis is done in public during in-village screening 
campaigns and requires blood testing for serological 
confi rmation of antigens in response to the parasite. 
Blood tests are confi rmed using the card-agglutination 
trypanosomiasis test (CATT). Patients who have a 
positive CATT undergo parasitological confi rmation of 
the disease. If confi rmation is received they are referred 
for lumbar puncture to check the cerebrospinal fl uid, to 

diff erentiate if the disease is in the early stages of 
development (stage 1 disease) or if the parasite has 
entered the CNS (stage 2 disease). In October, 2016, the 
approved treatment for human African trypanosomiasis 
on WHO’s essential drug list for stage 1 disease was 
pentamidine, whereas nifurtimox-efl ornithine combin-
ation therapy was the fi rst-line, parenteral treatment for 
patients who have progressed to stage 2.

Strategy B, “control plus tiny targets”, is the second 
strategy recommended by WHO and incorporates vector 
control to supplement the screen-confi rm-stage-treat 
approach. Tiny targets are small insecticide-impregnated 
screens measuring 0·5 × 0·25 m that are more cost-
eff ective and easier to deploy than are their larger 
predecessors (1 × 1 m² target; panel).10,11

The remaining three strategies incorporate innovative 
approaches in relation to surveillance, diagnosis, and 
treatment for control of T b gambiense, which are expected 
to arrive between 2016 and 2019. Strategy C, “new 
technologies 2016”, maintains strategy A until 2016, after 
which time case-detection will be switched to more 
fl exible teams on motorbikes and diagnosis of disease 
will be done using a fi rst-generation rapid diagnostic test 
algorithm (panel). Confi rmation and staging will be done 
using the loop-mediated isothermal amplifi cation 
(LAMP) technique, and treatment for the second stage of 
disease will switch to ten oral doses of fexinidazole. This 
process is continued until 2019, when fexinidazole will be 
considered for treatment of both stage 1 and 2 disease and 
a second-generation rapid diagnostic test will be available 
(panel). Strategy D, “new technologies 2016 and 2019”, 
mirrors strategy C until 2019, when a new oxaborole 
compound, SCYX-7158, will be available for treatment 
of both stages of disease with one oral dose (panel). 

Research in context

Evidence before this study
Eff orts to estimate the fi nancial resources needed for elimination 
of neglected tropical diseases have been done by WHO and 
collaborations including Uniting to Combat NTDs and The Lancet 
Commission on Investing in Health. Furthermore, in 2015 and 
2016, several researchers used modelling exercises to investigate 
the probability of elimination with available interventions in 
west and central Africa. However, a full economic assessment of 
multiple interventions for human African trypanosomiasis 
caused by Trypanosoma brucei (T b) gambiense has not been 
attempted. Building on our previous work, in which we identifi ed 
and considered new technologies as potential strategies to 
achieve elimination, we used a modelling approach to assess the 
cost-eff ectiveness and the probability of elimination of 
fi ve intervention strategies.

Added value of this study
Our analysis shows that potential additional gains can be made 
with emerging technologies, particularly short or single-dose 

oral treatments (fexinidazole and the oxaborole compound 
SCYX-7158), rapid diagnostic tests, and tiny targets. We also 
addressed trade-off s between costs, health eff ects, and 
elimination timelines that need to be considered by decision 
makers. Additionally, our results indicate that strategic 
planning for elimination campaigns should be tailored to suit 
the transmission situation of a given focus.

Implications of all the available evidence
The results presented in this report harmonise the 
contributions of current and emerging technologies that will be 
available to eliminate sleeping sickness and show good value 
for money, hence providing national sleeping sickness control 
programmes and global funders with evidence-based solutions 
for the elimination of human African trypanosomiasis caused 
by T b gambiense. 

For more on 
The Lancet Commission see 
http://globalhealth2035.org

See Online for appendix
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Finally, strategy E, “new technologies 2016 and 2019 plus 
tiny targets”, assesses the eff ect of combining strategy D 
with tiny targets. In strategies C, D, and E, we assumed 
that, by 2019, oral treatment will be appropriate for either 
stage of disease and, hence, parasitological confi rmation 
for staging will no longer be necessary.

Based on recommendations by WHO,5 we assumed that 
active screening was done annually in settings with high 

transmission and biennially in areas with moderate 
transmission, and that no active screening component was 
included in low transmission settings, where detection 
relies solely on passive surveillance. We also assumed that 
only passive surveillance would be implemented after 
elimination, until 2042. We did not model scenarios in 
which reinvasion of cases (tsetse fl y or human) happened 
after elimination. We based our estimated timelines on 
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Figure 1: Summary of potential strategies for control and elimination of human African trypanosomiasis caused by T b gambiense
Feasible scenarios are shown that could lead to elimination of human African trypanosomiasis caused by Trypanosoma brucei (T b) gambiense, based on current interventions and those in the pipeline.9 
Every scenario contains a component of surveillance, diagnostics, and treatment interventions to interrupt transmission of T b gambiense for a population at risk. Passive surveillance is combined with 
annual active surveillance in high-risk areas and with biennial surveillance in moderate-risk areas. In low-risk settings, active surveillance is not done and reliance is solely on passive surveillance. 
These approaches are based on recommendations for T b gambiense control outlined by WHO.5 For all scenarios when the model reaches elimination, it switches to passive surveillance only (the model 
assumes no reinvasion of cases or fl ies after elimination is reached). CATT=card-agglutination trypanosomiasis test. NECT=nifurtimox-efl ornithine combination therapy. RDT=rapid diagnostic test. 

Panel: Highlights of new treatments and emerging technologies used in the current modelling for control and elimination of 
human African trypanosomiasis caused by Trypanosoma brucei gambiense

2013: tiny targets
Traditional targets for vector control in the fi eld are quite large 
and costly with respect to maintenance and deployment. 
New targets (Vestergaard-Frandsen, Lausanne, Switzerland) 
are signifi cantly smaller in size and cost less than their larger 
predecessors.10,12 Tiny targets are made of a blue fabric that 
attracts fl ies, which are then killed by the 
insecticide-impregnated screens.13

2016: motorbike surveillance teams
Surveillance teams comprised of one or two people on a 
motorbike are feasible with newer diagnostic technologies that 
are easy to carry in a backpack and do not need cold-chain storage. 
Motorbikes also increase coverage because they can reach areas 
large trucks cannot access due to roads in poor condition.9

2016: fexinidazole
Fexinidazole is a well tolerated oral treatment to be given for 
10 consecutive days.14 It is currently in phase 3 trials15 in patients 
with human African trypanosomiasis stage 2 and stage 1 disease.

2016: rapid diagnostic test algorithm, 1st generation
First-generation rapid diagnostic tests have been made 
available.16,17 This algorithm considers the potential of such tests 
in combination with loop-mediated isothermal 
amplifi cation (LAMP), for which staging is done using blood 
instead of cerebrospinal fl uid obtained through lumbar 
puncture.9 

2019: rapid diagnostic test algorithm, 2nd generation
A second-generation rapid diagnostic test with recombinant 
antigens that needs no additional blood sample or lumbar 
puncture for parasitological staging and confi rmation.9

2019: SCYX-7158
SCYX-7158 is an oxaborole compound currently being tested 
in a phase 1 clinical trial.18 It is a single-dose oral tablet that 
aims to cure both disease stages of 
human African trypanosomiasis.9
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every producer’s estimate of products in the pipeline for 
human African trypano somiasis caused by T b gambiense 
during 2013; hence, the timelines we present here are to be 
taken as examples because, in reality, technologies could 
arrive sooner or later on the market than planned. For 
example, a fi rst-generation rapid diagnostic test arrived on 
the market in 2013 and has been used in endemic countries 
across sub-Saharan Africa since 2016. Moreover, evaluation 
of a second-generation rapid diagnostic test has been 
completed by the Foundation for Innovative New 
Diagnostics (FIND) and commercialisation is now 
expected in December, 2016, rather than 2019 as forecast. 

Health eff ect and economic modelling
To assess the long-term costs, health eff ects, and 
likelihood of the given strategies maintaining control or 
leading to elimination, we used an ordinary diff erential 
equation model of human African trypanosomiasis 
caused by T b gambiense (fi gure 2; appendix pp 11–13).19 
We divided the human population into several 
compartments: suscep tible (ie, uninfected); infected (but 
not yet infective); asymptomatic (ie, stage 1 disease); 
removed (ie, stage 2 disease); or being treated. The 
asymptomatic state is not synonymous with the absence 
of symptoms in the clinical sense but is stated as such to 

diff erentiate the primary stage of the disease from the 
second, more severe, stage. We also tracked the number 
of people who died from human African trypanosomiasis 
over time and assumed that, although human beings 
have stage 2 disease or are being treated, they are 
generally recumbent and not present in tsetse habitat. 
We divided tsetse fl ies into susceptible, exposed, and 
infected compartments. We accounted for heterogeneity 
in exposure to tsetse bites by modelling two human 
populations, one in which individuals lived and worked 
in a low transmission setting and the other in which 
people travelled between a low transmission area and 
one with greater exposure to tsetse bites. A possible 
animal reservoir1 was assumed to not contribute 
signifi cantly to transmission of human African 
trypanosomiasis caused by T b gambiense. The model 
structure, transmission parameters for areas with high, 
moderate, and low transmission, and investigations of 
the use of current technologies to reach elimination have 
been described in detail elsewhere.19 We fi tted the model 
using a Bayesian importance resampling procedure to 
three stable prevalence levels that coincide with slightly 
above low (0·02%), moderate (0·112%), and high (1·61%) 
transmission areas, defi ned previously by WHO. 
Parameters that varied between the strategies related 
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Figure 2: Ordinary diff erential equation model
(A) Heterogeneity captured by diff ering exposure levels of two populations living in the same area. Population 1 lives and works in a low-exposure habitat 
(eg, village). Population 2 commutes between habitats with low and high exposure, each harbouring tsetse and animal populations (eg, cattle) of varying sizes. 
(B) Transmission for populations in each habitat includes susceptible, infected, asymptomatic, and removed compartments (health states) for human beings, 
and susceptible, exposed, and infected compartments for tsetse fl ies (vectors).

For more on FIND see 
www.finddx.org
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to specifi c interventions are provided in the 
appendix (pp 3–5).5

For every model run, we allowed populations to reach a 
stable level of transmission over a 300-year period, in the 
absence of interventions. We then introduced inter-
ventions as specifi ed by the diff erent control and 
elimination strategies. If elimination was achieved in any 
run, we switched the interventions to post-elimination 
activities (passive surveillance). We tracked the disease 
burden attributable to human African trypanosomiasis by 
assigning a DALY value whenever an individual entered a 
relevant compartment (stage 1 disease, stage 2 disease, or 
death from disease). We calculated costs associated with 
interventions through incorporated cost functions.

Costing inputs, sources, perspective, and outcomes
Our analysis is from the perspective of a funder of 
a national sleeping sickness control programme; 
we modelled the annual prevalence, costs, and health 
outcomes (defi ned as DALYs)20 over 30 years, starting 
in 2013 (appendix p 2). We discounted costs and DALYs 
at 3% annually21,22 and assessed cost-eff ectiveness by 
calculating the incremental cost-eff ectiveness ratio 
(ICER) of each strategy relative to its next best 
comparator.

We developed a common unit for every intervention 
within a specifi c category then calculated a per diem cost 
based on cost functions for case detection, diagnostics, 
drug treatment, and vector control inter ventions. We took 
data inputs for direct costs from previous work,23 country 
reports, expert opinions, and manufacturers, when 
estimates were not published or available publicly. Cost 
parameters and formulas for cost functions are available 
in the appendix (pp 3–5). We converted unit prices from 
countries other than the USA to US$ using purchasing 
power parity listed in the World Economic Outlook 
database,24 and changed costs reported in € to US$ with 
the average exchange rate lists published on the European 
Central Bank Statistical Data Warehouse. We then 
infl ated these values to 2013 prices with average 
consumer price indices.24

Uncertainty analysis
We did a probabilistic sensitivity analysis to establish the 
eff ect of parameter uncertainty on the cost-eff ectiveness 
and probability of elimination. We imputed parameters 
related to surveillance coverage, cost of interventions, 
cost of drug treatments, case-detection sensitivity, and 
cost and effi  cacy of vector control probabilistically based 
on latin hypercube sampling, and we ran 500 simulations. 
A full description of input parameters is provided in the 
appendix (pp 5–10).

We plotted probabilistic results as cost-eff ectiveness 
acceptability curves for low, moderate, and high trans-
mission areas and reported the probability of 
elimination over the investigated period. We presented 
results in probabilistic terms and assessed them at two 

thresholds: elimination as a public health problem 
(less than one case in 10 000 people) by the year 2020; 
and full eli mination (zero cases) by 2030. We did a one-
way sensitivity analysis of discount rates, vector 
mortality, and coverage levels across all settings. 
Because we modelled no active surveillance in 
low transmission settings (based on WHO 
recommendations) in the base case analysis, we varied 
surveillance intensity in this setting to ascertain the 
potential eff ect on elimination and cost-eff ectiveness.

Previously, another molecule in development for 
human African trypanosomiasis failed to reach the 
market in late phase trials.25,26 Therefore, we modifi ed 
and modelled the strategies to assess the potential 
eff ect of the oxaborole compound SCYX-7158 
experiencing market failure. Furthermore, clinical 
trials for fexinidazole are underway (NCT02169557);  
hence, we decided to investi gate the potential eff ect on 
elimination if fexinidazole arrives on the market earlier 
than expected (to capture putative positive eff ects of 
ongoing trials).

Total costs (US$) 
per person

Total DALYs 
per person

Incremental 
cost-eff ectiveness ratio

High transmission area

Strategy D, new technologies 2016 
and 2019

45·49 
(44·82–46·15)

0·22 (0·22–0·23) ··

Strategy C, new technologies 2016 47·39 
(46·28–48·50)

0·25 (0·23–0·26) Dominated by strategy D

Strategy E, new technologies 
2016 and 2019 plus tiny targets

61·29 
(59·15–63·44)

0·18 (0·18–0·19) $386 per DALY averted*

Strategy B, control plus tiny targets 82·34 
(77·83–86·85)

0·20 (0·19–0·20) Dominated by strategy E

Strategy A, control 114·87 
(110·89–118·85)

0·34 (0·31–0·38) Dominated by strategy E

Moderate transmission area

Strategy D, new technologies 
2016 and 2019

20·22 
(19·94–20·50)

0·03 (0·03–0·03) ··

Strategy C, new technologies 2016 20·39 
(20·10–20·68)

0·03 (0·03–0·03) ··

Strategy E, new technologies 
2016 and 2019 plus tiny targets

37·60 
(36·16–39·05)

0·02 (0·02–0·02) $1509 per DALY averted*†

Strategy B, control plus tiny targets 48·01 
(45·53–50·49)

0·02 (0·02–0·02) Dominated by strategy E

Strategy A, control 55·18 
(53·80–56·55)

0·04 (0·04–0·05) Dominated by strategy E

Low transmission area

Strategy C, new technologies 2016 2·26 (2·12–2·40) 0·04 (0·03–0·04) ··

Strategy A, control 2·52 (2·37–2·67) 0·04 (0·04–0·05) Dominated by strategy C

Strategy D, new technologies 
2016 and 2019

2·97 (2·78–3·15) 0·03 (0·03–0·03) $160 per DALY averted†

Strategy E, new technologies 2016 
and 2019 plus tiny targets

42·39 
(39·75–45·04)

0·01 (0·01–0·01) $1812 per DALY averted*

Strategy B, control plus tiny targets 44·97 
(41·07–48·86)

0·01 (0·01–0·01) Dominated by strategy E

Data are mean (95% CI). DALY=disability-adjusted life year. *Relative to strategy D. †Relative to strategy C.

Table: Analysis of the diff erent strategies, by risk transmission area 

For the European Central Bank 
Statistical Data Warehouse see 
http://sdw.ecb.europa.eu
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Role of the funding source
The funder had no role in study design, data collection, 
data analysis, data interpretation, or writing of the report. 
The corresponding author had full access to all data in 
the study and had fi nal responsibility for the decision to 
submit for publication.

Results
The table shows results from the base case analysis 
(appendix p 14). In high transmission settings, strategy E—
comprising new technologies in 2016 and 2019 plus tiny 
targets—resulted in an ICER of $386 per DALY averted. 
In a moderate transmission setting, strategy E was also 
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Figure 3: Probabilistic sensitivity analysis
Cost-and-eff ect planes (left) and cost-eff ectiveness acceptability curves (right) for areas of high, moderate, and low transmission. Dots in the cost-and-eff ect planes 
represents the outcome of costs per person versus disability-adjusted life years (DALYs) per person for every simulation. Mean results for every strategy are depicted 
as squares. The cost-eff ectiveness acceptability curves show the probability that a given strategy is cost-eff ective based on the net monetary benefi t of every strategy 
at varying cost-eff ectiveness thresholds.
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cost-eff ective, at an ICER of $1509 per DALY averted. 
In low transmission areas, strategy D, consisting solely 
of new technologies in 2016 and 2019, resulted in an 
ICER of $160 per DALY averted; the next best approach 
after this one was strategy E, leading to an ICER of $1812 
per DALY averted. Strategy A, the current control, was 
dominated consistently across settings, meaning that 
this approach costs more money and averted fewer 
DALYs.

Figure 3 shows variability surrounding mean costs and 
DALYs of every strategy and cost-eff ectiveness 
acceptability curves (appendix pp 20–25). In high 
transmission areas, at the cost-eff ectiveness threshold of 
$400 per DALY averted, strategy E had the highest 
probability of being cost-eff ective. In settings of moderate 
transmission, strategies D and E both had the highest 
probability of being cost-eff ective, at a threshold of 
$1500 per DALY averted. In low transmission settings, 
strategy D had the highest probability of being cost-
eff ective, at a threshold of $200 per DALY averted, but at 
a threshold of $1800 per DALY averted, strategy B (in 
which tiny targets are added to current control eff orts) 
had the highest probability of being cost-eff ective, 
competing with strategy E. 

The results of the one-way sensitivity analysis are 
summarised in the appendix (pp 15–17). In high 
transmission areas, strategy E remained cost-eff ective 
over a range of parameter variations; however, the ICER 
for this approach decreased relative to base case 
estimates when mortality with tiny targets increased 
($244 per DALY averted), when annual costs of vector 
control maintenance were reduced ($309 per DALY 
averted), when patients received oral treatments at 
home exclusively ($318 per DALY averted), or when 
active surveillance coverage was less than 80% ($49–205 
per DALY averted). In areas of moderate transmission, 
strategy E also remained the most cost-eff ective option, 
with reductions in ICER from the base case analysis 
ranging from $317 to $1447 per DALY averted using the 
same parameter variations as for high transmission 
settings. In low transmission settings, strategy D 
typically remained the most cost-eff ective option across 
a range of parameter variations and was near to or 
lower than $100 per DALY averted either when 
maximum increases to passive surveillance were 
attributed to the arrival of fexinidazole on the market 
($33 per DALY averted) or when biennial active 
surveillance campaigns were initiated ($123 per DALY 
averted).

Figure 4 shows that, in high transmission areas, 
achieving the London Declaration targets for elimination 
of T b gambiense by 2020 and full elimination in 2030 is 
probable (appendix pp 26–28). Particularly, strategies 
with vector control alone or vector control combined with 
new technologies (strategies B and E, respectively) have a 
more than 90% chance of reaching elimination 
in 2020 and 2030, whereas strategies including new 

technologies alone (strategies C and D) have an 
80% chance. If regimens currently in place are 
maintained (strategy A), reaching elimination by 
2020 or 2030 is less likely (roughly 50%). In areas of 
moderate transmission, all strategies have a more 
than 80% chance of reaching the London targets by 2020. 
Full elimination by 2030 would be feasible with strategies 
that include vector control (96%; strategies B and E), 
whereas adopting new interventions in the absence of 
tiny targets (68%; strategies C and D), or current control 
activities (roughly 50%; strategy A), are less likely to 
reach full elimination in the next few decades. Similar to 
moderate transmission settings, in areas of low 
transmission, achieving elimination as a public health 
problem is almost certain with strategies that include 
tiny targets (97–99%; strategies B and E). Adopting new 
technologies alone without vector control (strategies C 
and D) are unlikely to reach 2020 targets (24–45%) but 
are superior to the current control approach (0·05%; 
strategy A). Full elimination in low transmission areas 
will require strategies that include vector control 
(83–86%; strategies B and E), but will lead to delays in 
achieving elimination goals.

In high and moderate transmission areas, where active 
surveillance is maintained, a decrease in the eff ectiveness 
of vector control (from 5·49% to 1% mortality) would 
have no eff ect on elimination targets, however; in low 
transmission areas, ineff ective vector control would 
render elimination elusive. Further improving the 
effi  cacy of targets (increase from 5·49% to 10%) would 
have relatively little eff ect compared with the base case 
analysis for high transmission areas but would guarantee 
elimination in moderate and low transmission settings 
with strategies that include vector control. Including 
active surveillance in addition to passive surveillance in 
low transmission areas, whether biennial or annual, 
would ensure that 2020 elimination targets will be 
achieved, but full elimination by 2030 is still most likely 
to occur with strategies that include vector control 
(appendix p 18). By contrast, the strategy currently in 
place (strategy A) is least likely to achieve full elimination. 
Varying the coverage of new technologies in low 
transmission zones had little eff ect relative to the base 
case results; however, an increase in treatment coverage 
with the oxaborole compound SCYX-7158 to approx i-
mately 45% led to a slight increase in the probability of 
elimination for strategies that included the oxaborole 
molecule (ie, strategies D and E) in these same areas. 
As provided in the appendix (pp 19, 20), coverage levels 
were varied in high and moderate transmission areas 
and showed overall that strategies with vector control 
(strategies B and E) would probably lead to elimination 
even when coverage was as low as 20%. Elimination as a 
public health problem (less than one in 10 000) was also 
achievable by 2030 when active screening coverage was 
equivalent to 60% and if oral tablet interventions become 
available (strategies C and D).
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Discussion
Overall, our simulations show that continuing to screen 
and treat individuals for human African trypanosomiasis 
caused by T b gambiense, using currently available drugs 
and diagnostic methods (strategy A), is not cost-eff ective 
compared with alternative strategies that are becoming 
available. Although this approach might lead to control 
over the next four decades, it is less likely to reach full 

elimination across transmission settings by 2030. 
Adopting new interventions as they arrive on the market 
in combination with use of tiny targets (strategy E) is the 
most cost-eff ective approach for control and elimination 
of human African trypanosomiasis caused by 
T b gambiense, at a threshold appropriate for low-income 
and middle-income countries,27 while leading to elimin-
ation goals in high transmission areas. In moderate 
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Figure 4: Probability of reaching targets
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defi nes elimination, in concordance with the WHO roadmap, as either elimination as a public health problem or less than one case in 10 000 people.3
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transmission zones, continually adopting new tech nol-
ogies as they arrive on the market alone (strategy D) or 
combined with tiny targets (strategy E) has a probability 
of being cost-eff ective near thresholds suitable for 
middle-income nations,27 with both these strategies 
likely to achieve London Declaration targets; however, 
only strategy E is likely to reach full elimination. In low 
transmission areas, a conundrum for decision makers 
between cost-eff ectiveness and elimination persists. 
Adopting new interventions in the absence of vector 
control measures (strategy D) has the highest probability 
of being cost-eff ective at a threshold of $200 per DALY 
averted21 but is unlikely to achieve short-term or long-
term elimination targets. Adding tiny targets to current 
control measures (strategy B) or in combination with 
new technologies (strategy E) is more likely to lead to 
elimination but is only likely to be cost-eff ective at 
thresholds above $1500 per DALY averted.27 These results 
highlight the economic constraints for global 
investments for elimination in areas with moderate and 
low transmission across sub-Saharan Africa. More 
than 98% of current cases of human African 
trypanosomiasis caused by T b gambiense are in low-
income countries with a reported gross national income 
of roughly $400 per person annually,27 whereas cost-
eff ectiveness thresholds for global investors are closer to 
$300 per DALY averted.21

It is important to note that these insights are based on 
a limited number of strategies, for which results refl ect 
the synergies of the input parameters available: in 
specifi c situations, current methods could well be 
adequate. For instance, elimination of human African 
trypanosomiasis caused by T b gambiense in Equatorial 
Guinea (Luba, Bioko Island) focused on a screen-and-treat 
campaign mechanism.28 Furthermore, our results show 
that addition of active biennial surveillance in low 
transmission areas would be a cost-eff ective option, 
leading to elimination at less than $150 per DALY 
averted. Findings of fi eld studies and modelling 
exercises12,29–32 have confi rmed our work, also showing 
that surveillance and treatment in combination with 
vector control can interrupt transmission in a shorter 
time span than can screen-and-treat campaigns alone. 
However, our analysis also examines the economic 
outcomes of these strategies, showing that although the 
cost-eff ectiveness of adding tiny targets will vary by 
setting, reducing vector control maintenance costs or 
varying surveillance coverage rates in combination with 
tiny targets could improve cost-eff ectiveness in high 
transmission areas while still possibly reaching 
elimination targets.

Many aspects of T b gambiense epidemiology remain 
elusive. For example, in recent years, the implications of 
asymptomatic carriers,33,34 potential animal reservoirs for 
human African trypanosomiasis caused by T b gambiense,33 
case reports of congenital transmission,35 systematic 
non-compliance of at-risk subgroups,34,36 and the part 

played by vectors34 have been considered or reconsidered. 
Changes to available evidence could potentially aff ect 
optimum elimination strategies, because our model 
assumes that animal reservoirs do not contribute 
signifi cantly to transmission of T b gambiense,19 that 
asymptomatic carriers are suffi  ciently rare in their 
occurrence,37 that vectors do transmit T b gambiense, and 
that sexual transmission is infrequent. If additional 
evidence to the contrary becomes available, new 
modelling studies should be developed to assess the 
eff ect that these novel insights into the epidemiology of 
human African trypanosomiasis might have on 
elimination goals.

Our assessments of new technologies have been made 
in the hope that the foreseen molecules would reach the 
market. Fexinidazole is now in phase 3 trials,15 with 
new studies for stage 2 human African trypano somiasis 
in adults and children. Findings of interim analyses show 
that fexinidazole is on track to come to the market, with a 
high possibility that it might be available for both stages 
of the disease in 2019.38 Furthermore, results from the 
one-way sensitivity analysis also showed that if oxaborole 
compounds fail to reach the market, fexinidazole in 
combination with new diagnostic methods would still be 
a cost-eff ective alternative likely to lead to elimination. 
Assuming that the oxaborole compound SCYX-7158 
becomes available in the near future as a safe, single-dose 
oral compound, elimination becomes highly feasible and 
could possibly be considered as a tool for mass drug 
administration to prevent resurgence in areas that have 
high exposure rates to infected vectors. There is also 
uncertainty surrounding the sensitivity and specifi city of 
current and emerging diagnostic tests, because diagnostic 
accuracy is related directly to prevalence and to 
identifi cation by the diagnostic test of antibodies that the 
hosts produce. These diffi  culties within diagnostic 
methods have also hindered research and development of 
a rapid diagnostic test that can diff erentiate stages of 
disease, meaning that lumbar puncture might be 
necessary for a longer time than once hoped. 

Economic concerns still remain because emerging 
technologies might also need a change in the health-care 
structure of aff ected countries. Although our analysis 
assesses the cost-eff ectiveness of strategies, fi nancing for a 
chosen strategy and assessing the budget eff ect that an 
elimination campaign would have on the current allotted 
fi scal space of decision makers are both necessary for global 
commitments towards elimination to be sustained.39 The 
indirect costs to society also need to be assessed because 
new treatments and reduced transmission will decrease 
potential out-of-pocket expenditures for aff ected families40 
and reduce productivity losses for aff ected individuals. 
Moreover, reduction of tsetse fl ies could potentially aff ord 
communities access to land currently not inhabited, 
cultivated, or used for alternative economic gains.41

Progress reports for elimination show that cases of 
human African trypanosomiasis caused by T b gambiense 

For more on new studies for 
stage 2 disease see http://www.
dndi.org
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are on the decline,42 which is a tribute to the concerted 
eff orts of the global community working towards 
elimination of this disease. However, there are still 
populations living in at-risk areas not under surveillance. 
This situation calls for continued and swift diff usion 
of up coming interventions in the pipeline across 
sub-Saharan Africa to further accelerate the decline of 
human African trypanosomiasis transmission and to 
ensure that 2020 targets and beyond become a reality.
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