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Abstract:  In the present study, the concept of the Output Frequency Response Function 

(OFRF), recently proposed by the authors, is applied to theoretically investigate the 

transmissibility of SDOF passive vibration isolators with a nonlinear anti-symmetric 

damping curve. The results reveal that a nonlinear anti-symmetric damping characteristic 

has almost no effect on the transmissibility of SDOF vibration isolators over both low 

and high frequency ranges where the frequencies are much lower or higher than the 

isolator’s resonant frequency. On the other hand, the introduction of a nonlinear anti-

symmetric damping can significantly reduce the transmissibility of the vibration isolator 

over the resonant frequency region. The results indicate that nonlinear vibration isolators 

with an anti-symmetric damping characteristic have great potential to overcome the 

dilemma encountered in the design of passive linear vibration isolators, that is, increasing 

the level of damping to reduce the transmissibility at the resonance could increase the 

transmissibility over the range of higher frequencies. These important theoretical 

conclusions are then verified by simulation studies. 

1. Introduction 

A vibration isolator is a device that is often inserted between a support base and 

equipment to reduce the vibration energy transmission from the support base so as to 

protect the equipment from undesired disturbances [1]. For a conventional passive 

vibration isolator design, there are two well-known trade-offs regarding the design of 

stiffness and damping [2]. In order to obtain a low transmissibility over a wide frequency 

range, the elastic stiffness of the isolator should be as small as possible. However, if the 

elastic stiffness is too small, this will lead to large static and quasi-static displacements 
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which are likely to be detrimental to the supported equipment. In addition, to reduce 

transmissibility at the resonance, it is better to introduce a higher damping in the isolator. 

This may cause deterioration to the transmissibility over the higher frequency range. To 

overcome these limitations of conventional passive isolators, recent developments 

involve using the active control techniques, which generally fall into three categories: 

adaptive-passive [3], semi-active [4][5] and fully active [6]. A fully active isolator system 

turns out to be very complex. More effort has been made in the development of adaptive-

passive and semi-active methods, among which the most popular method is the skyhook 

technique whose name is derived from the fact that it is a passive damper hooked to an 

imaginary inertial reference point. In skyhook controlled semi-active isolators, the 

damping effect can be automatically switched off to produce a desired damping 

characteristic that conventional passive isolators can not achieve so as to minimize the 

transmissibility level over a wide region of frequencies [2][7][8]. A comparison between 

different semi-active damping control strategies has been carried out by Liu and 

colleagues [5].  

To improve the performance of conventional passive isolators, several authors have 

developed different types of nonlinear vibration isolators and have investigated the 

unique dynamic behaviours, which cannot be studied based on linear theories [9]~[12]. A 

very comprehensive survey of recent developments of nonlinear vibration isolators has 

been contributed by Ibrahim [13], in which many cited studies [14]-[21] reveal that the 

introduction of nonlinear damping and stiffness are of great benefit in vibration isolation. 

More recently, using the concept of the Output Frequency Response Functions (OFRFs) 

[22][23], the authors [24] have revealed that, for a single degree of freedom (SDOF) 

vibration isolator, a cubic nonlinear damping characteristic can produce an ideal vibration 

isolation such that only the transmissibility over the resonant region of frequencies is 

modified by the damping effect and the transmissibility over the non-resonant regions of 

frequencies remain almost unaffected. In the present study, these results are extended to 

investigate the analytical relationship between the transmissibility and the nonlinear 

damping characteristic parameters of SDOF vibration isolators with a nonlinear anti-

symmetric damping curve. This analysis theoretically proves that the introduction of a 

nonlinear anti-symmetric damping characteristic can produce the ideal vibration isolation, 

that is, “There is little damping in the isolation region but considerable damping around 

the isolator�s natural frequency” [25] so as to achieve a required transmissibility over the 

isolation range of frequencies and reduced amplification at the resonance at the same 

time. Numerical simulation studies are carried out to verify the theoretical analysis and 

 3



demonstrate the considerable engineering significance of the conclusions reached in this 

study. The revelation that the isolators with a nonlinear anti-symmetric damping 

characteristic possess ideal vibration isolation properties provides an important basis for 

the development of novel passive solution to vibration isolation problems. 

2. SDOF Linear Passive Isolators 
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Fig. 1, SDOF linear passive isolator 

Consider the SDOF linear passive isolator shown in Fig 1, where 

 sin()( tAtf IN )                   (1) = Ω
is the harmonic force acting on the system with frequency Ω  and magnitude A,  

is the force transmitted to the supporting structure or base, and z  is the displacement 

of mass M.  The equations of motion of the SDOF vibration isolator system are given by  
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where K and C  are the spring and damping characteristic parameters of the system 

respectively.   

Eq. (2) can be described in a dimensionless form as follows 
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From Eq. (3), it can be shown that 
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Denote )(ΩT as the force transmissibility of the SDOF isolator system (2) in terms of the 

normalized frequency Ω , it is easy to deduce from Eq. (3) that  
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where )(2 ΩjY  is the spectrum of )(2 τy  described by )(2 ωjY  evaluated at frequency 

Ω=ω .  

 
Fig. 2, Effect of damping on the force transmissibility of system (3)  

 
Fig. 3, The damping required by a ideal isolator 

From Eq. (5), the effects of damping on the force transmissibility can be evaluated. The 

results are shown in Fig. 2, which clearly indicate that although the introduction of a 

higher damping effect reduces the transmissibility around the resonant frequencies, the 

higher damping effect, at the same time, increases the transmissibility where the 

normalized frequencies are higher than 2  Hz. The damping required by an ideal 

vibration isolator is shown in Fig. 3, which is frequency-dependent and the basis of the 
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adaptive passive isolation systems [2]. However, such a requirement can obviously not be 

met simply by a linear passive isolator.  

3. SDOF Passive Isolators with a Nonlinear Anti-symmetric Damping 
Characteristic 

In addition to active control solutions, it has been realized that specific nonlinear passive 

isolators have the potential to overcome the limitations of linear passive isolators [13]. 

The objective of the present study is to theoretically investigate the effect of nonlinear 

damping characteristic parameters of SDOF vibration isolators with a nonlinear anti-

symmetric damping curve on the transmissibility so as to extend the analysis results in 

[24] to a more general situation. 

3.1 The Model of SDOF Nonlinear Passive Isolators 

The considered SDOF nonlinear passive isolators are shown in Fig. 4.  
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Fig. 4, SDOF passive isolator with a nonlinear anti-symmetric damping characteristic 

For linear passive isolators the damping force Fd is equal to C , but the damping force of 

the nonlinear passive isolator is described by 
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where  are the nonlinear damping characteristic parameters of the 

system.  Therefore, the equations of motion of the SDOF nonlinear isolators are given by 

       (7) 

Denote 

 6



 
( ) 12

2
)12(

)12( +

+
+ =

p

p

p

p

KM

AC
ξ                 (p = 1,…,Q) (8) 

Then, the SDOF nonlinear isolator system (7) can be described as a dimensionless, one 

input two output system as 
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From Eqs. (7) and (9), it can be shown that the force transmissibility of the nonlinear 

passive isolator is determined by  
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The force transmissibility )(ΩT  of the SDOF nonlinear isolator (9) can also be studied 
by investigating the spectrum of y2(Ĳ) of system (9), that is,  

)()( 2 Ω=Ω jYT                                                    (11) 

However, unlike the case for linear passive isolators there is currently no simple explicit 

analytical expression like Eq. (5) available which can be used to describe the relationship 

between the force transmissibility and system parameters for nonlinear passive isolators. 

3.2 Representation of the Force Transmissibility of Nonlinear SDOF 
Isolators Using the OFRF 

The OFRF is a concept recently proposed by the authors in [22][23] for the study of the 

output frequency response of nonlinear Volterra systems.  

Nonlinear Volterra systems represent a wide class of nonlinear systems whose input 

output relationship can be described by a Volterra series model over the regime around a 

stable equilibrium [26][27]. For nonlinear Volterra systems which can equally be 

described by a polynomial type nonlinear differential equation model which has been 

widely used for the modeling of practical physical systems, it has been shown in [22][23] 

that the system output spectrum can be represented by an explicit polynomial function of 

the model parameters which define the system nonlinearity. This result is referred to as 

the OFRF, and provides a significant analytical link between the output frequency 

response and nonlinear characteristic parameters for a wide range of practical nonlinear 

systems.    

In the following, the OFRF concept will be applied to the case of the one input two 

output system (9) to produce an analytical polynomial relationship between the spectrum 
)(2 ωjY ),,1(,)12( Qpp L=+ and the system’s nonlinear characteristic parameters ξ . 
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Because )(2 ωjY  is related to the force transmissibility )(ΩT of system (9) via Eq. (11), 

the result will, in fact, provide an OFRF based analytical expression for )(ΩT . 

According to [28], it is known that when subject to a sinusoidal input 
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N is the maximum order of nonlinearity in the Volterra series expansion of the system 
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with  (J = 1,2), denoting the n
th order Volterra kernel, and 

       (J = 1, 2) (16) 

defines the nth order Generalised Frequency Response Function (GFRF) [29] between the 

input and  the first and second system outputs respectively.   

By using the harmonic probing method [30], the specific expression of  

(J = 1,2) of the one input two output nonlinear differential model (9) can be determined 

to yield  
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where  is the floor function indicating the largest integer no less than . 

Moreover, according to the results recently revealed by the authors [22][23], the high 
order GFRFs  for the nonlinear passive isolator (9) can be 

expressed as the following form 

⎣ 2/N ⎦ 2/N

),,( )12(1
)1(

)12( ++ ωω nn jjH L

[ ]
( ) ( )

( ))12(1
)(

)12(
,,

)12(3
)12(1

12

1

)1(
1

)12(1
)1(

)12(

,,
)(

),,(

)12(3

)12()12(3

)12(3
++

∈
+

+

+

=

++

+

++

+ Θ
++

= ∑
∏

n

jj

n

Jjj

j

Q

j

n

n

i

ii

nn

jj
jjL

jHj

jjH

Q

nQ

Q ωωξξ
ωω

ωω

ωω

LL
L

L

L

L

 

( ⎣ ⎦2/)1(,,1 −= Nn L ) (21) 

where 
[ ]1)()()( 1

2
11 ++++++−−=++ ξωωωωωω nnn jjjL LLL          (22) 

and  represents a function of frequency variables ( )12(1
)(

)12( ,,)12(3

++ ωωΘ +

n

jj

n jjQ L
L ) ,,1 Lω  

)1+2( nω  and the system’s linear characteristic parameters, and  is a set of Q 

dimensional nonnegative integer vectors which contains the exponents of those 
monomials  which are present in the polynomial representation (21).  

)12( +nJ

)12(3
)12(3

+

+
Qj

Q

j ξξ L

For example, applying the recursive algorithm proposed by the authors in [23], which is 
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determined as follows, 

[ ]
( ) 3

31

1
1

31
)1(

3

)(
),,( ξ

ωω

ωω
ωω

jjL

jHj

jjH i

ii

++
=
∏
=

L
L

3
)1(

                                (24) 

 9



[ ]
( ) [ 53

2
3

51

5

1

)1(
1

51
)1(

5

)(
),,( ξξ

ωω

ωω
ωω +

++
=
∏
= B

jjL

jHj

jjH i

ii

L
L ]                          (25) 

[ ]
( )

( )
⎥
⎦

⎤
⎢
⎣

⎡

++
+

++
=
∏
=

)(

)(
),,(

3553

3533
3
3

71

7

1

)1(
1

71
)1(

7
BB

BBBB

jjL

jHj

jjH i

ii

ξξ
ξ

ωω

ωω
ωω

L
L                         (26) 

Although the procedure introduced in the Appendix seems quite simple, the generated 

expression can be extremely complicated when the order of the GFRF becomes higher. 

However, it is easy to notice from the above procedure and the example that, for system  
(9),  in Eq. (21) can be uniformly expressed as the following form )(
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where n  is an integer dependent on n.  
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The OFRF (28) represents the spectrum of the second output of system (9) as an explicit 

polynomial function of the system’s nonlinear characteristic parameters, which, 

obviously, can considerably facilitate the analysis of the effect of system nonlinearity on 

the output frequency responses.  

By using Eq. (28), the transmissibility of the SDOF isolator system (9) as given by Eq. 

(11) can further be expressed as 
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and { }ΩΩ−∈ ,kω , .    12,...,1 += nk

From equations (32) and (34), it is known that when ),,1(,0 Qp L)12( p ==+ξ  i.e. there is 

no nonlinear damping, the transmissibility is determined as follows, 

21 1
1
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ξ
ξ

j

j
jPT                                    (35) 

which is the same as Eq. (5) and is the expression of transmissibility widely used in 

engineering practice for the design of linear SDOF vibration isolators. 

When nonlinear damping is introduced, i.e., ),,1(,0)12( Qpp L=≠+ξ , Eq. (32) indicates 

that the transmissibility will be different from the well-known result given by Eq. (35) 
and, given the linear damping characteristic parameter ξ , the difference as described by 

the second term in Eq. (32) is a function of both the nonlinear anti-symmetric damping 
characteristic parameters  )12( +pξ , ),,1( Qp L=  and the frequency Ω . In the next section, 

)(ΩT  given by (32) over the frequency ranges of 1<<Ω  and 1>>Ω , and the effect of 

)12( +pξ ,  on  the value of ),,1( Qp L= )(ΩT over the frequency range of 1≈Ω  will be 

analyzed to reveal the significant benefits of nonlinear anti-symmetric damping 

characteristic on vibration isolation. 
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3.3. Effects of Nonlinear Anti-symmetric Damping on Transmissibility 

Consider the SDOF vibration isolator subject to a sinusoidal force excitation as described 

by Eq. (2), and assume that the outputs of the isolator is dimensionless, one input two 

output system representation given by Eq. (9) can be described by the nonlinear Volterra 

series model (15) around zero equilibrium. The effect of a nonlinear anti-symmetric 

damping characteristic on the transmissibility of the vibration isolator is investigated over 

the resonant and non-resonant frequency ranges respectively in the following sections.  

3.3.1 Transmissibility over the Non-Resonant Frequency Ranges 
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This conclusion shows that a nonlinear anti-symmetric damping characteristic has almost 

no effect on the transmissibility of SDOF vibration isolators over the frequency ranges 
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where the frequencies are much lower or much higher than the isolator’s resonant 

frequency.  

3.3.2 Transmissibility over the Resonant Frequency Range 

This case is more complicated than the non-resonance case studied in the last sub-section. 
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The important conclusion described as Eq. (54) indicates that an increase in the nonlinear 

anti-symmetric damping characteristic can reduce the transmissibility over the resonant 

frequency range.  

Next, assume the first two terms of the damping nonlinearity in Eq. (7) are positive and 
nonzero, that is,  and >0. Denote  3ξ 5ξ
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According to Eq. (54), there exist 3ξ  and 05 >ξ  such that if ),0( 33 ξξ ∈  and ),0( 55 ξξ ∈
0)0,( 33 <Δ

, 

then ξ  and 0),0( 55 <Δ ξ .  
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Moreover, as the Sign-Preserving Property [31] states, there is a į5 > 0 such that if 
),0( 55 δξ ∈ , then ),( 533 ξξΔ  has the same sign as )0,( 33 ξΔ . Similarly, there is a į3 > 0 

such that if ),0 3(3 δξ ∈ , then ),( 535 ξξΔ  has the same sign as ),0( 55 ξΔ . This means that, 

if ),0() 3ξI,0( 33 δξ ∈  and ),0(),0( 5δ I∈ 55 ξξ , then the increase of 3ξ  and 5ξ  can reduce 

the transmissibility over the resonant frequency range. This conclusion can be extended 

to the more general case where all terms of the damping nonlinearity in equation (54) are 
nonzero. Therefore, when 1≈Ω , there must exist 0)12( >+Qδ  ( QQ ,L,1= ) such that if 
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The conclusions reached in Section 3.3 reveal that the vibration isolator with a nonlinear 

anti-symmetric damping characteristic has great potential to overcome the limitations of 

linear vibration isolators, and an effective exploitation of the capability of the nonlinear 

vibration isolator can provide a novel passive solution to the aforementioned well-known 

dilemma associated with the design of passive linear vibration isolators. 

4. Numerical Verification and Discussions 

4.1 Numerical Studies 

 

Fig. 5, the transmissibility of the nonlinear isolator with different ȟ3 and a constant ȟ5  
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Fig. 6, The transmissibility of the nonlinear isolator with different ȟ5 and a constant ȟ3 

In order to verify the significant effects of a nonlinear anti-symmetric damping 

characteristic on vibration isolation, which has been theoretically analysed above, 

numerical simulation studies were conducted by applying the Runge-Kutta method to the 

dimensionless, one input two output system (9) with Q = 2 to evaluate the transmissibility 
)(ΩT . Two sets of results are shown in Fig. 5 and Fig. 6 respectively. 

In the results shown in Fig. 5, ȟ5 is taken as a constant 0.1 and the other nonlinear 

damping characteristic parameter ȟ3 is varied from 0.1 to 0.5 in steps of 0.2. In Fig. 6, ȟ3 

is kept constant at 0.1 and ȟ5 is varied. Moreover, for a better comparison with the linear 

isolator, the transmissibility of the linear isolator (3) for the two cases of ȟ =0.1 and ȟ 
=1.0 is also shown in the figures. All results clearly indicate that the introduction of the 
nonlinear anti-symmetric damping can not only significantly reduce )(ΩT  and 

consequently suppress the vibration at the resonant frequency 1≈Ω , but these designs 
also keeps )(ΩT  almost unchanged over the isolation frequency ranges where 1<<Ω  

and 1>>Ω . These results confirm the theoretical analysis results proved in Section 3.3. 

Therefore, the numerical studies have verified the important conclusions revealed in 

Section 3.3.  

The theoretical analysis based on the concept of OFRFs and the numerical studies clearly 

show the effects of vibration isolators with a nonlinear anti-symmetric damping 
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characteristic are equivalent to that of adaptive passive isolators, which have the ideal 

dynamic damping response as shown in Fig. 3. Consequently, the nonlinear isolators can 

be used to overcome the dilemma associated with the design of passive linear vibration 

isolators. 

4.2 Discussion 

The validity of the important properties described by Eqs. (41) and (56) are based on the 

premise that the nonlinear damping characteristic of the vibration isolator is anti-

symmetric and the nonlinear characteristic parameters are positive. However, these 

premises may not always be true in practice. Therefore it is necessary to test the 

sensitivity and robustness of the designs when, for example, the damping characteristic is 

not exactly anti-symmetric and some nonlinear damping characteristic parameters are 

negative.  

 
Fig. 7, The transmissibility of the nonlinear isolator with a non-anti-symmetric damping 

characteristic 
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where the presence of the 2nd power term makes the nonlinear damping characteristic no 

longer anti-asymmetry. Fig. 7 shows the transmissibility of the nonlinear vibration 
isolator in this case. Clearly, the increase of 3ξ  can still significantly reduce the 

transmissibility around the resonant frequency region and there is almost no effect on the 

transmissibility over the non-resonant frequency region. Therefore, the properties given 

by Eqs. (41) and (56) are still valid in the case where the anti-symmetry requirement for 

the nonlinear damping characteristic is not exactly satisfied.  

 
Fig. 8, The transmissibility of the nonlinear isolator with a negative nonlinear damping 

characteristic parameter 
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isolator is considered to be of the following form 
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where 5ξ  is negative. The numerical simulation results shown in Fig. 8 clearly indicate 

that the increase of 3ξ  can also significantly reduce the transmissibility around the 

resonant region and has no effect on the transmissibility over the non-resonant frequency 

regions, i.e, the properties given by Eqs. (41) and (56) are still valid.  
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5. Conclusions 

The concept of the OFRF has been used to investigate the effects of a nonlinear anti-

symmetric damping characteristic on the transmissibility of nonlinear vibration isolators. 

The following four important conclusions have been established by theoretical analysis 

and / or numerical simulation studies: 

i) A nonlinear anti-symmetric damping characteristic has almost no effect on the 

transmissibility of SDOF vibration isolators over both low and high frequency ranges 

where the frequencies are much lower or much higher than the isolator’s resonant 

frequency.  

ii)  The introduction of a nonlinear anti-symmetric damping into vibration isolators can 

significantly reduce the transmissibility over the resonant frequency region.  

iii)  Properties 1) and 2) are valid even in the case where the anti-symmetry requirement 

for the nonlinear damping characteristic is not exactly satisfied.  

iv) Properties 1) and 2) generally hold when the damping characteristic parameters are 

positive but are still valid when some of these parameters are relatively small but 

negative. 

The performance of nonlinear vibration isolators with an anti-symmetric damping 

characteristic imply that the effects of such nonlinear isolators are equivalent to that of 

adaptive passive isolators having an ideal frequency-dependent damping effect which is 

significant around the resonant frequency region but less significant over the non-

resonant frequency regions. These conclusions are of significant importance for the 

design of vibration isolators as they reveal that the nonlinear vibration isolator with an 

anti-symmetric damping characteristic has great potential to overcome the dilemma 

associated with the design of passive linear vibration isolators.  

Results for MDOF systems and other related cases would be reported in forthcoming 

publications. 
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Appendix:   

The recursive algorithm proposed by the authors [23] can be used to determine how many 

and what monomials involved in Eq. (21), as follows:  
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Denote the set of all the monomials involved in Eq. (21) as , and , then 
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Similar procedure can be used to determine the corresponding function  for the 
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For example, applying the methods (A-1) and (A-2) to the isolator (9) with Q = 2 up to 

the 7th order yields 
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 up to 7th order are given as follows,  

ZB

ZB

)12( +Θ n

[ ] [ ]1]1[]1[]1[ =⊗⊗=Θ  3

[ ] [ ] [ ]1]1[]1[]1[]1[]1[]1[]1[ 3335 BB  ⊗ ⊗ ⊗ =⊗⊗⊗Θ⊗=Θ U

[ ] [ ] [ ]]1[]1[]1[]1[]1[]1[]1[ 335533337 ⊗⊗⊗⊗Θ⊗⊗⊗Θ⊗⊗Θ⊗Θ⊗⊗=Θ BBBB UU

[ ]353533 BBBBBB

 

     =  
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There are two more terms in  than in , and the first two elements in  are 

associated with  and the other two are associated with 
7Θ 7M 7Θ

3
3ξ 53ξξ , therefore, in Eq. (21) 

( ) ;0,, 31
)0,1(

3 =Θ ωω jj L  ( ) ;,, 351
)0,2(

5 Bjj =Θ ωω L  ( ) 1,, 51
)1,0(

5 =Θ ωω jj L ; 

( ) ;,,)0,3( BBBBjj +=Θ ωω L 3533717  ( ))1,1( ,, BBjj +=Θ ωω L 35717  
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